Multimedia Databases - IfIS - Technische Universität Braunschweig

Transcription

Multimedia Databases - IfIS - Technische Universität Braunschweig
10/27/2009
0. Organizational Issues
• Lecture
– 22.10.2009 – 04.02.2010
– 15:00-17:15 (3 lecture hours with a break)
– Exercises, detours, and home work
discussion integrated into lecture
Multimedia Databases
• 4 Credits
• Exams
Wolf-Tilo Balke
Silviu Homoceanu
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
– Oral exam
– 50% of exercise points needed
to be eligible for the exam
Multimedia Databases – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
0. Organizational Issues
0. Organizational Issues
– Castelli/Bergman: Image Databases,
Wiley, 2002
• Recommended literature
– Schmitt: Ähnlichkeitssuche in
Multimedia-Datenbanken,
Oldenbourg, 2005
– Khoshafian/Baker: Multimedia and
Imaging Databases, Morgan
Kaufmann, 1996
– Steinmetz: Multimedia-Technologie:
Grundlagen, Komponenten und
Systeme, Springer, 1999
Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
– Sometimes: original papers (on our Web page)
3
0. Organizational Issues
Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
4
1. Introduction
• Course Web page
1. Introduction
– http://www.ifis.cs.tu-bs.de/teaching/ws-0910/mmdb
1.1 What are multimedia databases?
1.2 Multimedia database applications
1.3 Evaluation of retrieval techniques
– Contains slides, excercises,
related papers and a video
of the lecture
– Any questions? Just drop
us an email…
Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
2
5
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
6
1
10/27/2009
1.1 Multimedia Databases
1.1 Basic Definitions
• What are multimedia databases (MMDB)?
• Multimedia
– Databases + multimedia = MMDB
– The concept of multimedia expresses the
integration of different digital media types
– The integration is usually performed in a document
– Basic media types are text, image, vector graphics,
audio and video
• Key words: databases and multimedia
• We already know databases, so what is
multimedia?
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
7
1.1 Data Types
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
8
1.1 Documents
• Text
• Earliest definition of information retrieval:
“Documents are logically interdependent
digitally encoded texts“
• Extension to multimedia documents allows the
additional integration of other media types as
images, audio or video
– Text data, Spreadsheets, E-Mail, …
• Image
– Photos (Bitmaps), Vector graphics, CAD, …
• Audio
– Speech- and music records, annotations, wave files,
MIDI, MP3, …
• Video
– Dynamical image record, frame-sequences,
MPEG, AVI, …
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
9
1.1 Documents
10
1.1 Basic Definitions
• Document types
• Medium
– Media objects are documents which are of
only one type (not necessarily text)
– Multimedia objects are general documents
which allow an arbitrary combination of
different types
– A medium is a carrier of information in a
communication connection
– It is independent of the transported information
– The used medium can also be
changed during information
transfer
• Multimedia data is transferred through the
use of a medium
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
11
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
12
2
10/27/2009
1.1 Medium Example
1.1 Medium Classification
• Book
• Based on receiver type
– Visual/optical medium
– Acoustic mediums
– Haptical medium – through tactile senses
– Olfactory medium – through smell
– Gustatory medium – through taste
– Communication between author
and reader
– Independent from content
– Hierarchically built on text
and images
– Reading out loud represents
medium change to sound/audio
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
• Based on time
– Dynamic
– Static
13
1.1 Multimedia Databases
• Persistent storage of multimedia data, e.g.:
– What multimedia is
– And how it is transported (through some medium)
– Text documents
– Vector graphics, CAD
– Images, audio, video
• But… why do we need databases?
• Content-based retrieval
– Most important operations of databases are data
storage and data retrieval
– Efficient content based search
– Standardization of meta-data (e. g., MPEG-7, MPEG-21)
15
1.1 Multimedia Databases
16
1960
– Special retrieval functionality as well as corresponding
optimization can be provided in both cases…
– But in the second case we also get the general
advantages of databases
Retrieval procedures for text documents
(Information Retrieval)
1970
Relational Databases and SQL
1980
Presence of multimedia objects intensifies
Declarative query language
Orthogonal combination of the query functionality
Query optimization, Index structures
Transaction management, recovery
...
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1.1 Historical Overview
• Stand-alone vs. database storage model?
•
•
•
•
•
14
1.1 Multimedia Databases
• We now have seen…
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1990
SQL-92 introduces BLOBs
First Multimedia-Databases
2000
17
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
18
3
10/27/2009
1.1 Commercial Systems
1.1 Requirements
• Relational Databases use the data type BLOB
(binary large object)
• Requirements for multimedia databases
(Christodoulakis, 1985)
– Uninterpreted data
– Retrieval through metadata like e.g., file name, size,
author, …
– Classical database functionality
– Maintenance of unformatted data
– Consideration of
special storage and
presentation devices
• Object-relational extensions feature
enhanced retrieval functionality
– Semantic search
– IBM DB2 Extenders, Oracle Cartridges, …
– Integration in DB through UDFs, UDTs, Stored
Procedures, …
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
19
1.1 Requirements
– User interface – how should the user interact with
the system? Separate structure from content!
– Information extraction – (automatic) generation
of content-based features
– Storage devices – very large storage capacity,
redundancy control and compression
– Information retrieval – integration of some
extended search functionality
– Software architecture – new or extension of
existing databases?
– Content addressing – identification of the objects
through content-based features
– Performance – improvements using indexes,
optimization, etc.
21
1.1 Retrieval
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
22
1.1 Retrieval
• Retrieval means the choice between data
objects which can be based on…
• Closer look at the search functionality
– „Semantic“ search functionality
– Orthogonal integration of classical and extended
functionality
– Search does not directly access the media objects
– Extraction, normalization and indexing of contentbased features
– Meaningful similarity/distance measures
– a SELECT condition (exact match)
– or a defined similarity connection
(best match)
• Retrieval may cover the delivery
of the results to the user, too
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
20
1.1 Requirements
• To comply with these requirements the following
aspects need to be considered
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
23
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
24
4
10/27/2009
1.1 Content-based Retrieval
• “Retrieve all images showing a sunset !”
1.1 Schematic View
• Usually 2 main steps
– Example: image databases
Image
collection
Image analysis
and feature
extraction
Digitization
Image
database
Creating the database
Querying the database
Image
query
• What exactly do these images have in common?
Image analysis
and feature
extraction
Digitization
Similarity
search
Search result
25
1.1 Detailed View
Query
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Query
Result
Result
Query preparation
3. Query
preparation
5. Result preparation
Query plan & feature values
Result data
4. Similarity computation & query processing
Feature values
Normalization
Segmentation
Feature extraction
Optimization
Feature values
Query plan
Similarity computation
Raw & relational data
Raw data
2. Extraction
of features
26
1.1 More Detailed View
Relevance feedback
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Result preparation
Medium transformation
Format transformation
Result data
Query processing
Feature values
MM Database
MM-Database
Feature index
BLOBs/CLOBs
MM-Database
Relational DB
Metadata
Profile
Structure data
Feature extraction
Pre-processing
1. Insert into the
database
Feature recognition
Feature preparation
Decomposition
Normalization
Segmentation
MM-Objects + relational data
MM-Objects
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
27
1.2 Applications
28
1.2 Applications
• Lots of multimedia content on the Web
• Cameras are everywhere
– Social networking e.g., Facebook, MySpace, Hi5, Orkut,
etc.
– Photo sharing e.g., Flickr, Photobucket, Imeem, Picasa,
etc.
– Video sharing e.g., YouTube, Megavideo, Metacafe,
blip.tv, Liveleak, etc.
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Relational data
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
29
– In London “there are at least
500,000 cameras in the city, and
one study showed that in a single
day a person could expect to be filmed 300 times”
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
30
5
10/27/2009
1.2 Applications
1.2 Applications
• Picasa face recognition
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
• Picasa, face recognition example
31
1.2 Applications
• Picasa example
33
1.2 Sample Scenario
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
34
1.2 Sample Scenario
• Consider a police investigation of
a large-scale drug operation
• Possible generated data:
• Possible queries
– Image query by example:
police officer has a photograph
and wants to find the identity
of the person in the picture
– Video data captured by surveillance cameras
– Audio data captured
– Image data consisting of still photographs taken by
investigators
– Structured relational data
containing background
information
– Geographic information
system data
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
32
1.2 Applications
• Picasa, learning
phase
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
• Query: “retrieve all images from the image library in which
the person appearing in the (currently displayed)
photograph appears”
– Image query by keywords: police officer wants to
examine pictures of “Tony Soprano”
• Query: “retrieve all images from the image library in which
‘Tony Soprano’ appears"
35
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
36
6
10/27/2009
1.2 Sample Scenario
1.2 Sample Scenario
– Video Query:
– Heterogeneous Multimedia Query:
• Query: “Find all video segments in which
Jerry appears”
• By examining the answer of the above query,
the police officer hopes to find other people
who have previously interacted with the victim
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
• Find all individuals who have been photographed with “Tony
Soprano” and who have been convicted of attempted
murder in New Jersey and who have recently had electronic
fund transfers made into their bank accounts from ABC
Corp.
37
1.2 Characteristics
38
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1.2 Example
• Basic difference
• Passive static retrieval
– Static
– Art historical use case
• High number of search queries (read access), few modifications of the data
state
– Dynamic
• Often modifications of the data state
– Active
• Database functionality lead to application operations
– Passive
• Database reacts only at requests from outside
– Standard search
• Queries are answered through the use of metadata e.g., Google-image
search
– Retrieval functionality
• Content based search on the multimedia repository e.g., Picasa face
recognition
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
39
1.2 Example
40
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1.2 Example
– Possible hit in a multimedia database
• Active dynamic retrieval
– Wetter warning through evaluation of satellite photos
Extraction
Typhoon-Warning
for the Philippines
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
41
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
42
7
10/27/2009
1.2 Example
1.2 Example
• Standard search
• Retrieval functionality
– Queries are answered through the use of metadata
e.g., Google-image search
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
– Content based e.g., Picasa face recognition
43
1.3 Towards Evaluation
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
44
1.3 Evaluating Efficiency
• Basic evaluation of retrieval techniques
• Characteristic values to measure
efficiency are e.g.:
– Efficiency of the system
• Efficient utilization of system resources
• Scalable also over big collections
– Memory usage
– CPU-time
– Number of I/O-Operations
– Response time
– Effectivity of the retrieval process
• High quality of the result
• Meaningful usage of the system
• Depends on the (Hardware-) environment
– Weighting is application specific
• Goal: the system should be efficient enough!
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
45
1.3 Evaluating Effectivity
46
1.3 Evaluating Effectivity
• Measuring effectivity is more difficult and always
depending on the query
• Goal: define some query-dependent evaluation
measures!
– Objective quality metrics
– Result evaluation based on the query
– Independent from used querying interface
and retrieval procedure
– Leads to comparability of different systems/algorithms
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
47
• Effectivity can be measured regarding some
explicit query
– Main focus on evaluating the behavior of the system
with respect to a query
– Relevance of the result set
• But effectivity also needs to consider implicit
information needs
– Main focus on evaluating the usefulness, usability and
user friendliness of the system
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
48
8
10/27/2009
1.3 Relevance
1.3 Usefulness (Pertinence)
• To evaluate a retrieval system over some query,
each document will be classified binary as
relevant or irrelevant with respect to the
query
• Subjective measure estimating to what degree
the information need of the user is satisfied
– Difficult to measure (empirical studies)
– Questionable instrument for comparing
procedures/systems
– This classification is performed by “experts”
– The response of the system to the query will be
compared to this manual classification
• Attention: useful documents can be irrelevant
when considering the query (serendipity)
• In this lecture:
explicit query evaluation measures only!
• Compare the obtained response with the “ideal” result
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
49
1.3 Involved Sets
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
50
1.3 False Positives
• Irrelevant documents, classified as relevant by the
system
collection
searched for
(= relevant)
– False alarms, false drops, …
found
(= query result)
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
• Needlessly increase the result set
• Usually inevitable (ambiguity)
• Can be easily eliminated by the user
51
1.3 False Negatives
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
52
1.3 Remaining Sets
• Relevant documents classified by the system as
irrelevant
• Correct positives (correct alarms)
– All documents correctly classified by the
system as relevant
– False dismissals
• Correct negatives (correct dismissals)
– All documents correctly classified by the system as
irrelevant
• Dangerous, since they can not be detected easily
by the user
– Does the collection contain “better” documents?
– False positives are usually not as bad as false negatives
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
53
• All sets are disjunctive and their reunion is the
entire document collection
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
54
9
10/27/2009
1.3 Overview
Systemevaluation
1.3 Interpretation
relevant
irrelevant
relevant
ca
fd
irrelevant
fa
cd
Userevaluation
• {Relevant results} = fd + ca
• {Retrieved results} = ca + fa
collection
fd
ca
searched for
fa
found
cd
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
55
1.3 Precision
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
56
1.3 Recall
• Precision measures the ratio of correctly
returned documents relative to all returned
documents
• Recall measures the ratio of correctly returned
documents relative to all relevant documents
– R = ca / (ca + fd)
– P = ca / (ca + fa)
• Value between [0, 1]
(1 representing the best value)
• High number of false drops mean
worse results
• Value between [0, 1]
(1 representing the best value)
• High number of false alarms mean
worse results
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
57
1.3 Precision-Recall Analysis
• Both measures only make sense, if considered at
the same time
58
1.3 Actual Evaluation
• Alarms (returned elements) can be easily
divided in ca and fa
– E.g., get perfect recall by simply returning all
documents, but then the precision is extremely low…
• Can be balanced by tuning the system
– E.g., smaller result sets lead to better precision rates
at the cost of recall
– Precision is easy to calculate
• Dismissals (not returned elements) are not so
trivial to divide in cd und fd, because the entire
collection has to be classified
– Recall is difficult to calculate
• Standardized Benchmarks
• Usually the average precision-recall of more
queries is considered (macro evaluation)
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
– Provided connections and queries
– Annotated result sets
59
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
60
10
10/27/2009
1.3 TREC
1.3 Example
• Text REtrieval Conference
• De-Facto-Standard since 1992
• Establish average precision for 11 fixed recall
points (0; 0,1; 0,2; …; 1) according to defined
procedures (trec_eval)
• Different tracks, extended also for video data,
´Web retrieval and Question Answering
• Other initiatives: e.g., CLEF (cross-language
retrieval) or INEX (XML-Documents)
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
fa
ca fd cd
P
R
Q1
8
2
6
4
0,2
0,25
Q2
2
8
2
8
0,8
0,8
0,5
0,525
Average
61
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1.3 Representation
62
Next lecture
• Precision-Recall-Graphs
•
•
•
•
Average precision of
the system 3 at a
recall-level of 0,2
System 1
Query
Retrieval of images by color
Introduction to color spaces
Color histograms
Matching
Which system is the
best?
System 2
System 3
What is more
important: recall or
precision?
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
63
Multimedia Databases – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
64
11