home inspection job il
Transcription
home inspection job il
Euro 15.- International Journal for Nuclear Power ISSN · 1431-5254 www.nucmag.com 7 | 2014 July Annual Meeting on Nuclear Technology 2014: Opening Address Challenges for Education of Nuclear Engineers: Beyond Nuclear Basics The New Duty of Care for Nuclear Power Plant Operators Nuclear Power World Report 2013 atw © | 2014 | Author's Copy 7 Content International Journal for Nuclear Power July 2014 Dr. Ralf Güldner, President DAtF at the Plenary Session of the 45th Annual Meeting on Nuclear Technology (Page 418) Official organ of the Kerntechnische Gesellschaft e. V. (KTG) Editorial 405 Viva España! Viva España! Nuclear Today 407 J. Shepherd Time to Increase Momentum in Bridging the Nuclear Skills Gap Dringender Handlungsbedarf beim Erhalt und Ausbau zukünftiger kerntechnischer Kompetenzen Spotlight on Nuclear Law 408 T. Leidinger Nuclear Fuel Tax in Court Kernbrennstoffsteuer vor Gericht Content in brief atw © | 2014 | Author's Copy Overview of engineering tools applications and their possible interfaces (Page 427) Cover: Power – motivation for using nuclear energy. View of the substation of the Santa María de Garoña nuclear power plant in Spain. The plant temporarily stopped operation in 2012/2013 due to uncertain fiscal and regulatory conditions. In May 2014 the operator Nuclenor announced to renew the operating license. If approved, the station will be restarted and allowed to operate until 2 March 2031 (Courtesy: Nuclenor). 410 412 Inside Nuclear with NucNet 416 L. Mitev The Role of Nuclear in the US and in the World – Interview with Donald Hoffman Die Rolle der Kernenergie in den USA und weltweit – Interview mit Donald Hoffman R. Güldner 417 45th Annual Meeting on Nuclear Technology: Opening Address 45. Jahrestagung Kerntechnik 2014: Eröffnungsrede 422 Impressions: 45th Annual Meeting on Nuclear Technology Impressionen der 45. Jahrestagung Kerntechnik C. Schönfelder 424 Current Challenges for Education of Nuclear Engineers: Beyond Nuclear Basics Aktuelle Herausforderungen der Ausbildung von Nuklearingenieuren: Über nuklere Grundlagen hinaus P. Pla 428 L. Ammirabile G. Pascal A. Annunziato Preservation of Thermalhydraulic and Severe Accident Experimental Data Produced by the European Commission Dokumentation und Erhalt von experimentellen thermohydraulischen Daten und Daten zu Schwerstörfallexperimenten aus Programmen der Europäischen Kommission >>> atw © | 2014 | Author's Copy <<< atw Vol. 59 (2014) Issue 7 | July Content I. Erdebil 432 A. Omar Regulatory Oversight – Approach to Life Extension of Nuclear Research Reactors Ein Überblick aus Sicht der Genehmigungsbehörde – Laufzeitverlängerungen für Forschungsreaktoren ENS High Scientific Council 436 Position Paper on Irradiated Fuel and Waste Management: The Achille’s Heel of the Nuclear Industry? Positionspapier zum Umgang mit bestrahltem Kernbrennstoff und radioaktiven Abfällen: die Achillesferse der kerntechnischen Industrie? H. Posser 438 The New Duty of Care for Nuclear Power Plant Operators in Sec. 9a subpara. 2a AtG Zur neuen Sorgepflicht der Kraftwerksbetreiber gem. § 9a Abs. 2a AtG G. Brückner 441 B. Schmitt M. Micklinghoff External Laundry Service – a Tool for Fleet Management and Flexible Decommissioning Externer Wäscheservice – ein Werkzeug der zentralen Steuerung und der flexiblen Rückbauplanung The Editor 445 Nuclear Power World Report 2013 Kernenergie Weltreport 2013 Imprint 451 News 451 Market Data 460 Publications 462 JRC STRESA-SARNET portal (http://stresa.jrc.ec.europa.eu/sarnet/) (Page 429) Future challenges for decommissioning of nuclear power plants in Germany (Page 444) Slovak Republic 4|2 Czech Republic 6 Hungary 4 Finland 4|1 Slovenia 1 Sweden 10 Belarus -|1 Netherlands 1 Canada 19 Russia 33|10 United Kingdom 16 Belgium 7 Rep. Korea 23|5 Germany 9 USA 100|5 Calendar 463 KTG-Mitteilungen 465 Mexico 2 Switzerland 5 France 58|1 Armenia 1 Spain 7 Iran 1 Bulgaria 2 Ukraine 15 UAE -|2 Romania 2 Pakistan 3|2 India 21|6 South Africa 2 Nuclear power plant units in operation: 435, location with units ( first number) Nuclear power plant units under construction: 70, location with units ( second number) Insert: Publication from AINT, 46. Annual Meeting on Nuclear Technology – Call for Papers atw Vol. 59 (2014) Issue 7 | July Japan 49|2 Taiwan 6|2 Brazil 2|1 Argentina 2|1 atw © | 2014 | Author's Copy China 20|29 >>> atw © | 2014 | Author's Copy <<< As of: 31.12.2013 atw - atomwirtschaft, 6/2014 World map nuclear power plants. Number of nuclear power plant units in operation (first number) and number of nuclear power plant units under construction (second number) (Page 446) 411 Content in Brief Time to Increase Momentum in Bridging the Nuclear Skills Gap (Page 407) J. Shepherd A international conference hosted by the International Atomic Energy Agency (IAEA) in May 2014 highlighted the difficult balancing act that countries have in making sure that a pool of talent continues to be available to the nuclear sector into the future. The International Conference on Human Resource Development for Nuclear Power Programmes noted the huge task of maintaining a skilled workforce with the ability to cover nuclear in its widest sense: everything from fuel manufacturing, nuclear power plant operations, decommissioning, waste management and of course nurturing those who may become future regulators or captains of industry. The conference also correctly identified the different requirements of countries depending on their individual circumstances. There can certainly be no delay in this task. Even if no new nuclear power plants were to be built again – which is certainly not the case – highly-skilled individuals would still be required to manage existing plants, work in decommissioning, waste management and so on. The nuclear industry should continue and expand its support for academies, training establishments and other such institutions with the goal of training the next generation of nuclear professionals. At the same time, knowledge transfer programmes should be stepped up, so that professionals who are approaching retirement can pass on their invaluable expertise to those who will follow them. Nuclear Fuel Tax in Court (Page 408) atw © | 2014 | Author's Copy T. Leidinger Besides the “Nuclear Energy Moratorium” (temporary shutdown of eight nuclear power plants after the Fukushima incident) and the legally decreed “Nuclear Energy Phase-Out” (by the 13th AtG-amendment), also the legality of the nuclear fuel tax is being challenged in court. After receiving urgent legal proposals from 5 nuclear power plant operators, the Hamburg fiscal court ( 4V 154/13) temporarily obliged on 14 April 2014 respective main customs offices through 27 decisions to reimburse 2.2 b. Euro nuclear fuel tax to the operating companies. In all respects a remarkable process. It is not in favour of cleverness to impose a political target even accepting immense constitutional and union law risks. Taxation “at any price” is neither a statement of state sovereignty nor one for a sound fiscal policy. Early and serious warnings of constitutional experts and specialists in the field of tax law with regard to the nuclear fuel tax were not lacking. 412 The Role of Nuclear in the US and in the World – Interview with Donald Hoffman (Page 416) L. Mitev Donald Hoffman, outgoing president of the American Nuclear Society (ANS), talks to NucNet about the economics of nuclear energy in the US, the role of SMRs and the need for “fair and appropriate” 123 Agreements (Section 123 of the United States Atomic Energy Act of 1954, titled “Cooperation With Other Nations”, establishes an agreement for cooperation as a prerequisite for nuclear deals between the US and any other nation. Such agreements are called “123 Agreements”). 45th Annual Meeting on Nuclear Techno-logy: Opening address (Page 417) R. Güldner The operators of Germany’s nuclear power plants continue to make their contribution to the security of supply with the safe and reliable operation of their plants, thus ensuring the success of the energy transition. Despite increased load following operation due to a further increase in feed-in especially of volatile renewable energies, three German nuclear power plants were in the Top Ten global producers of electricity from nuclear energy in 2013. In spite of not producing an equivalent of seven full-load days due to load following operation, the Isar 2 nuclear power plant once again bears the proud title of “world champion producer”. This balance is also an impressive performance record for nuclear power made in Germany. Despite the accelerated nuclear phaseout, German plants with German operators, and suppliers and service providers based mainly in Germany, are in the top category worldwide once more. Since the end of last year Germany has a new Federal Government as a new version of the grand coalition of 2005 to 2009. The government has set new priorities in the energy sector. However, on many questions concerning nuclear energy, particularly the complex topics of decommissioning and waste management, we are still seeing far too little movement at present. Main topics are: • New site selection process for final repository for high active waste • Alternative interim storage – just not Gorleben • Decommissioning, dismantling and administrative bottlenecks • Lack of predictability for low and medium active waste • Nuclear fuel tax, electricity market and security of supply • Electricity market, security of supply and regulation >>> atw © | 2014 | Author's Copy <<< Current Challenges for Education of Nuclear Engineers: Beyond Nuclear Basics (Page 424) C. Schönfelder In past decades, curricula for the education of nuclear engineers (either as a major or minor subject) have been well established all over the world. However, from the point of view of a nuclear supplier, recent experiences in large and complex new build as well as modernization projects have shown that important competences required in these projects were not addressed during the education of young graduates. Consequently, in the past nuclear industry has been obliged to either accept long periods for job familiarization, or to develop and implement various dedicated internal training measures. Although the topics normally addressed in nuclear engineering education (like neutron and reactor physics, nuclear materials or thermohydraulics and the associated calculation methods) build up important competences, this paper shows that the current status of nuclear applications requires adaptations of educational curricula. As a conclusion, when academic nuclear engineering curricula start taking into account current competence needs in nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, especially on an international level. The recommendations presented should not only be of importance for the nuclear fission field, but also for the fusion community. Here, the Horizon 2020 Roadmap to Fusion as published in 2012 now is focusing on ITER and on a longer-term development of fusion technology for a future demonstration reactor DEMO. The very challenging work program is leading to a strong need for exactly those skills that are described in this article. Preservation of Thermalhydraulic and Severe Accident Experimental Data Produced by the European Commission (Page 428) P. Pla, L. Ammirabile, G. Pascal and A. Annunziato The experimental data recorded in Integral Effect Test Facilities (ITFs) are traditionally used in order to validate Best Estimate (BE) system codes and to investigate the behaviour of Nuclear Power Plants (NPP) under accident scenarios. In the same way, facilities dedicated to specific thermalhydraulic (TH) Severe Accident (SA) phenomena are used for the development and improvement of specific analytical models and codes used in the SA analysis for Light Water Reactors (LWR). The extent to which the existing reactor safety experimental databases are preserved was well known and frequently debated and questioned in the nuclear community. The Joint Research Centre (JRC) of the European Commission (EC) has been deeply involved in atw Vol. 59 (2014) Issue 7 | July Content in Brief several projects for experimental data production and experimental data preservation. The paper is presenting these large EC initiatives on the production of experimental data and its storage in the JRC STRESA node. The objective of the paper is to further disseminate and promote the usage of the database containing these experimental data and to demonstrate long-term importance of well maintained experimental databases. At present time the Nuclear Reactor Safety Assessment Unit (NRSA) of the JRC Institute of Energy and Transport in Petten is engaged in the development of a new STRESA tool to secure EU storage for SA experimental data and calculations. The target is to keep the main features of the existing STRESA structure but using the new informatics technologies that are nowadays available and providing new capabilities. The development of this new STRESA tool should be completed by the end of 2014. Regulatory Oversight – Approach to Life Extension of Nuclear Research Reactors (Page 432) I. Erdebil and A. Omar As nuclear power plants and large research and isotope production facilities age, licensees are applying for permission to extend the operation of such nuclear installations beyond their assumed design life. It is the current practice in such cases for the Canadian Nuclear Safety Commission (CNSC) to request the licensee to conduct an Integrated Safety Review (ISR). This is to collect sufficient and necessary information to allow CNSC staff to make determinations and recommendations to support regulatory decisions on granting a licence for safe and reliable continued operation of such facilities. The ISR (a process equivalent to a one-time Periodic Safety Review (PSR)) is a systematic and comprehensive assessment to determine the extent to which the plant conforms to modern codes, standards and practices; the licensing bases remains valid over the proposed extended operation period; arrangements are in place to maintain continued plant safety; and to ensure improvements are implemented to resolve identified issues. This paper presents the Canadian regulatory oversight experience, challenges, and lessons learned from the assessment of the results of an ISR that was conducted by a licensee to extend the operating licence of the National Research Universal (NRU) reactor in Canada. Position Paper on Irradiated Fuel and Waste Management: The Achille’s Heel of the Nuclear Industry? (Page 436) atw © | 2014 | Author's Copy ENS The management and final disposal of irradiated fuel and nuclear waste is often presented by the media and perceived by the public as being an unsolved problem that restricts the future of nuclear energy. However, the nuclear industry focused on this problem very early on and has developed proven technical solutions. atw Vol. 59 (2014) Issue 7 | July Nuclear energy will continue developing worldwide, in spite of the Fukushima accident. Even in those European countries that have decided to phase-out nuclear energy there is a legacy of nuclear waste that must be dealt with. The scientific and technical expertise needed for waste management already exists. Management decisions must be taken. Now is the time for political courage. The New Duty of Care for Nuclear Power Plant Operators in Sec. 9a subpara. 2a AtG (Page 438) H. Posser The new stipulation in Sec. 9a subpara. 2a AtG – pursuant to which operators of nuclear power plants are no longer entitled to use the interim storage facility in Gorleben for radioactive waste stemming from the reprocessing plants in Sellafield and La Hague, but have to establish further capacities in their own facilities for spent nuclear fuels at the site of the power plants – is illegal under constitutional law. It imposes an unproportional burden on the plant operators as well as on GNS, and infringes property rights without pursuing a legitimate purpose. External Laundry Service – a Tool for Fleet Management and Flexible Decommissioning (Page 441) G. Brückner, B. Schmitt and M. Micklinghoff While it is common in other countries such as the USA or Sweden to send out contaminated garments to an external laundering facility, this is not the case in Germany, where the preferred tendency in the nuclear industry is to remain independent from an external service provider. After the US based company “UniTech” built a laundering facility for controlled area garment in Coevorden, Netherlands, in 1996, German operators began testing this service for decommissioning work. At the time, their justification for this choice was based on the following: • In case of a disrupted delivery the consequences would not be as severe for a nuclear power plant in the process of decommissioning. • Additional investments (evaporators) would have been necessary to install in the laundries of the individual nuclear power plants. • The existing on-site laundries and waste treatment equipment were often not suited to deal with nuclides, specific to decommissioning. It quickly became evident that a specialized service provider could conduct the necessary tasks more effectively, more flexibly, and with higher quality than an ancillary on-site facility. In addition, it became evident that central fleet management tasks are facilitated by contracting an external service provider. Business and technical processes, and requirements agreed upon in a framework agreement, supported the introduction of unified standards. The road map for future decommissioning projects in Germany is impacted by many uncertainties. Therefore, planning requires a great deal of flexibility. Here, as with other related >>> atw © | 2014 | Author's Copy <<< operations, it is critical that enough protective garments are in the right place at the right time. If this does not happen, delays, additional costs and changes to process planning result. For these reasons, an external laundering and garment management service is the most reliable solution. Industry experience shows that even very short-term requests for large quantities of protective garments can be fulfilled. Also, no costs are incurred when there is no decommissioning activity over extended periods of time. Nuclear Power World Report 2013 (Page 445) The Editor At the end of 2013, 435 nuclear power plants were available for energy supply in 31 countries of the world. This means that the number decreased by 2 units compared to the previous year’s number on 31 December 2012. The aggregate gross power of the plants amounted to approx. 398,861 MWe, the aggregate net power, to 378,070 MWe (gross: 392,793 MWe, net: 372,572 MWe, new data base as of 2013: nameplate capacities). Four units were commissioned in 2014; three units in China and one in India. Eight units were shut down permanently in 2013; 2 units in Japan, and four units in the USA. Two units in Canada were declared permanently shut-down after a long-term shutdown. 70 nuclear generating units – 2 more than at the end of 2012 – were under construction in late 2013 in 15 countries with an aggregate gross power of approx. 73,814 MWe and net power of approx. 69,279 MWe. Six new projects have been started in 2013 in four countries (Belarus, China, the Republic of Korea, and the United Arab Emirates). Worldwide, some 125 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases license applications have been submitted or contracts have already been signed. Some 100 further projects are planned. Net electricity generation in nuclear power plants worldwide in 2013 achieved a level of approx. 2,364.15 billion (109) kWh (2012: approx. 2,350.80 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-I fast breeder (USA) on December 20, 1951, cumulated net production has reached approx. 70,310 billion kWh, and operating experience has grown to some 15,400 reactor years. atw Vol. 59 (2014) No. 7 »atw - International Journal for Nuclear Power« is published monthly by INFORUM Verlags- und Verwaltungsgesellschaft mbH Robert-Koch-Platz 4, 10115 Berlin, Germany phone +49 30 498555-10 fax +49 30 498555-19 Publisher: e-mail: atw@atomwirtschaft.de Editorial: e-mail: editorial@atomwirtschaft.com www.nucmag.com 413 Content in Brief (German) Dringender Handlungsbedarf beim Erhalt und Ausbau zukünftiger kerntechnischer Kompetenzen (Seite 407) J. Shepherd Auf einer Konferenz der Internationalen Atomenergie-Organisation (IAEO) im Mai 2014 wurde die aktuelle und absehbare schwierige Gratwanderung deutlich, die auf alle Länder mit kerntechnischen Aktivitäten zukommt, um zukünftig auf ausreichend kompetentes Personal zurück greifen zu können. Klar umrissen wurde auf der International Conference on Human Resource Development for Nuclear Programmes die Aufgabe, ausreichend Personal für alle im weitesten Sinne kerntechnischen Aktivitäten auszubilden und zu qualifizieren: von der Kernbrennstoffherstellung über den Kernkraftwerksbetrieb, die Entsorgung aber auch die Aufgaben der Aufsichtsbehörden sowie das Führungspersonal. Es wurde auch betont, dass auf die einzelnen Länder unterschiedliche Aufgaben zukommen, die abhängig von den jeweiligen kerntechnischen Aktivitäten sind aber für alle Länder gleichermaßen Herausforderungen darstellen. Betont wurde, dass Lösungen für diese Aufgabe nicht hinausgeschoben werden dürfen. Unabhängig von möglichen Kernkraftwerksneubauten – diese kommen bzw. werden kommen – ist hoch qualifiziertes Personal für alle Bereiche der Kerntechnik erforderlich. Die kerntechnische Industrie sollte daher ihr Engagement fortsetzen und erweitern und unter anderem Akademien, Bildungseinrichtungen und andere Institutionen unterstützen mit dem Ziel, die Ausbildung der nächsten Generation von „Kerntechnikern“ zu fördern. Gleichzeitig sollten Programme zum Know-how-Erhalt und zur Know-how-Sicherung für den Übergang von heutigen zu zukünftigen Know-how-Trägern initiiert werden. Kernbrennstoffsteuer vor Gericht (Seite 408) atw © | 2014 | Author's Copy T. Leidinger Neben dem „Kernkraftmoratorium“ (vorübergehende Abschaltung von 8 Kernkraftwerken nach Fukushima) und dem gesetzlich verordneten „Kernenergieausstieg“ (durch die 13. AtG-Novelle) wird auch über die Rechtmäßigkeit der Kernbrennstoffsteuer vor Gericht gestritten. Das Finanzgericht Hamburg (4 V 154/13) hat am 14. April 2014 auf die Eilrechtsanträge von fünf Kernkraftwerksbetreibern in 27 Beschlüssen die zuständigen Hauptzollämter vorläufig verpflichtet, insgesamt über 2,2 Mrd. Euro Kernbrennstoffsteuer an die Betreiberunternehmen zu erstatten. Ein in jeder Hinsicht bemerkenswerter Vorgang. Es spricht nicht für Klugheit, ein politisches Ziel auch unter Inkaufnahme immenser verfassungs- und unionsrechtlicher Risiken durchzusetzen. Eine Besteuerung „um jeden Preis“ ist weder Ausweis staatlicher Souveränität noch für solide Haushaltspolitik. An frühen und ernsten Warnungen namhafter Verfassungs- und Steuerrechtsexperten hat es in Bezug auf die Kernbrennstoffsteuer nicht gefehlt. 414 Die Rolle der Kernenergie in den USA und weltweit – Interview mit Donald Hoffman (Seite 416) L. Mitev Donald Hoffman, scheidender President der American Nuclear Society (ANS), stellte sich den Fragen von NucNet zur wirtschaftlichen Situation der Kernenergie in den USA, der Rolle von SMRs (Small and medium sized reactors, Kernkraftwerken kleiner und mittlerer Leistung) und der Notwendigkeit von fairen und geeigneten „123 Vereinbarungen“ (diese regeln gemäß U.S. Atomic Energy Act von 1954) den Außenhandel zwischen den USA und anderen Staaten. 45. Jahrestagung Kerntechnik 2014: Eröffnungsrede (Seite 417) R. Güldner Die Betreiber der deutschen Kernkraftwerke leisten mit dem sicheren und verlässlichen Betrieb Ihrer Anlagen weiterhin ihren Beitrag zur Versorgungssicherheit und damit zum Gelingen der Energiewende. Trotz des verstärkten Lastfolgebetriebs aufgrund einer weiter gewachsenen Einspeisung insbesondere volatiler erneuerbarer Energien, befinden sich 2013 drei deutsche Kernkraftwerke unter den Top Ten der weltweiten Stromerzeugung aus Kernenergie und das Kernkraftwerk Isar 2 kann sich trotz des Verlustes von insgesamt 7 Vollasttagen durch Lastfolgebetrieb erneut mit dem Titel „Produktionsweltmeister“ schmücken. Diese Bilanz ist auch ein eindrucksvoller Leistungsnachweis für Kerntechnik made in Germany: Trotz beschleunigtem Ausstiegs liegen deutsche Anlagen mit deutschen Betreibern und überwiegend in Deutschland angesiedelten Zulieferern und Dienstleistern weltweit wieder in der Spitzengruppe. Seit Ende vergangenen Jahres ist eine neue Bundesregierung als Neuauflage der großen Koalition von 2005 bis 2009 im Amt. Im Energiebereich mit dem Reformentwurf zum EEG und bei anderen Themen wie der Renten- und Arbeitsmarktpolitik hat die Regierung neue Akzente gesetzt. In vielen Fragen der Kernenergie insbesondere in dem Themenkomplex Stilllegung und Entsorgung sehen wir aber derzeit noch viel zu wenig Bewegung. Wichtige Themen für die Kernenergie in Deutschland sind: • Neues Standortauswahlverfahren für Endlager hochradioaktiver Abfälle • Alternative Zwischenlagerung – nur nicht Gorleben • Stilllegung, Rückbau und administrative Engpässe • Fehlende Planbarkeit bei schwach- und mittelaktiven Abfällen • Kernbrennstoffsteuer, Strommarkt und Versorgungssicherheit • Strommarkt, Versorgungssicherheit und Regulierung Aktuelle Herausforderungen der Ausbildung von Nuklearingenieuren: Über nuklere Grundlagen hinaus(Seite 424) C. Schönfelder In den vergangenen Jahrzehnten haben sich die Ingenieur-Studiengänge in der Kerntechnik – sowohl >>> atw © | 2014 | Author's Copy <<< im Haupt- als auch im Nebenfach – weltweit etabliert; sie wurden zum überwiegenden Teil vereinheitlicht. Aus der Sicht eines Kerntechnik-Anbieters haben jedoch Erfahrungen in aktuellen großen Neubau- und Modernisierungsprojekten gezeigt, dass wichtige, für diese Projekte erforderliche Kompetenzen nicht in diesen Studiengängen entwickelt werden. Konsequenterweise war die Nuklearindustrie daher in der Vergangenheit gezwungen, entweder längere Einarbeitungszeiten zu akzeptieren oder spezielle jobspezifische interne Trainingskurse zu entwickeln und durchzuführen. Obwohl die Themen, die üblicherweise in Ingenieur-Studiengängen zur Kerntechnik behandelt werden (wie Neutronen- und Reaktorphysik, Materialtechnik oder Thermohydraulik sowie die zugehörigen Berechnungsprogramme), wichtige Kompetenzen aufbauen, zeigt dieser Artikel, dass wesentliche Anpassungen der Ingenieur-Studiengänge in der Kerntechnik erforderlich sind. Wenn die aktuellen Kompetenzanforderungen seitens der Kerntechnik-Industrie bei diesen Ingenieur-Studiengängen berücksichtigt werden, wird dies zum Nutzen der heutigen wie auch der zukünftigen Ingenieur-Generation sein: Sie wird besser auf ihre beruflichen Aufgaben und ihre berufliche Laufbahn vorbereitet sein, insbesondere auch auf einem internationalen Niveau. Die vorgestellten Empfehlungen sind nicht nur für Arbeiten in der Kern(spaltungs)-Industrie von Bedeutung, sondern auch im Bereich der Kernfusion. Entsprechend der im Jahr 2012 von der Europäischen Kommission veröffentlichten „Horizon 2020 Roadmap to Fusion“ wurde hier der Schwerpunkt auf die Fertigstellung und den Betrieb von ITER und auf die langfristige Entwicklung der Kernfusionstechnik für ein zukünftiges Demonstrations-Fusionskraftwerk DEMO gelegt. Das außerordentlich herausfordernde Arbeitsprogramm erfordert jedoch genau jene Kompetenzen, die in diesem Artikel beschrieben werden. Dokumentation und Erhalt von experimentellen thermohydraulischen Daten und Daten zu Schwerstörfallexperimenten aus Programmen der Europäischen Kommission (Seite 428) P. Pla, L. Ammirabile, G. Pascal und A. Annunziato Experimentelle Daten aus Versuchen von Integral Effect Test Facilities (ITFs) werden eingesetzt, um Best Estimate (BE) System Codes zu validieren und damit das Verhalten von Kernkraftwerken unter Schwerstörfallbedingungen zu untersuchen. Ebenso werden die Daten aus Einrichtungen zur Untersuchung der Thermohydraulik und Schwerstörfallphänomenen in Modelle und Codes für die Simulation von Vorgängen in Leichtwasserreaktoren verwendet. Frühzeitig haben die Beteiligten Wege für den Erhalt dieser umfangreichen und wertvollen Datenbasis diskutiert. Das Joint Research Centre (JRC) der European Commission (EC) war in viele Experimente mit eingebunden, hat damit Daten geliefert und sichert diese entsprechend. Vorgestellt werden Aktivitäten der EC zur langfristigen Sicherung der genannten Daten im Rahmen des JRC STRESA Knotens. Die Daten atw Vol. 59 (2014) Issue 7 | July Content in Brief (German) werden damit für zukünftige Forschung und Entwicklung zugänglich gemacht und verdeutlichen zudem die Bedeutung der experimentellen Quellen. Derzeit arbeitet die Nuclear Reactor Safety Assessment Unit (NRSA) des JRC Institute of Energy and Transport in Petten an der Entwicklung eines neuen STRESA-Tools, um die Daten für zukünftige Schwerstörfallexperimente und -berechnungen noch optimaler verfügbar zu machen. Ziel ist die Weiterführung der bisherigen STRESAStruktur unter Berücksichtigung von neuen Möglichkeiten der Informationstechnologie. Das neue STRESA-Tool soll Ende 2014 zur Verfügung stehen. Ein Überblick aus Sicht der Genehmigungsbehörde - Laufzeitverlängerungen für Forschungsreaktoren (Seite 432) I. Erdebil und A. Omar Betreiber von Kernkraftwerken sowie kerntechnischen Einrichtungen für die Forschung und Isotopenproduktion stellen zunehmend Anträge für Laufzeitverlängerungen über die ursprünglich vorgesehenen Betriebszeiten hinaus. Für die Canadian Nuclear Safety Commission (CNSC) ist es gängige Praxis, in solchen Fällen einen Integrated Safety Review (ISR) durchzuführen. Diese Überprüfung liefert der CNSC ausreichende und notwendige Informationen, um eine qualifizierte Entscheidung über den Antrag auf Verlängerung der Betriebslizenz treffen zu können. Der ISR (ein Verfahren ähnlich einem einmaligen Periodic Safety Review (PSR)) ist ein systematischer Ansatz mit Bewertung, um festzustellen, inwieweit eine Anlage aktuellen Anforderungen, Standards und Practices genügt. Vorgestellt werden Erfahrungen, Herausforderungen und Folgerungen aus dem ISR im Rahmen der Lizenzverlängerung für den Forschungsreaktor National Research Universal (NRU) in Kanada. Positionspapier zum Umgang mit bestrahltem Kernbrennstoff und radioaktiven Abfällen: die Achillesferse der kerntechnischen Industrie? (Seite 436) atw © | 2014 | Author's Copy ENS Der Umgang und die Endlagerung von bestrahltem Kernbrennstoff und radioaktiven Abfällen wird häufig in den Medien thematisiert und wird von der Öffentlichkeit als unlösbares und damit die Kernenergie begrenzendes Problem angesehen. Allerdings hat die kerntechnische Industrie diese Themen schon frühzeitig aufgenommen und inzwischen verlässliche technische Lösungen zu Umgang und sicherer Lagerung entwickelt. Die Kernenergie wird sich weltweit weiter entwickeln ohne langfristige Einschränkungen beim Neu- und Zubau durch die Ereignisse in Fukushima. Selbst Länder, die nach Fukushima einen Ausstieg aus der Kernenergie beschlossen haben, müssen sicher mit den Abfällen umgehen. Wissenschaftliche und technische Expertise wird dafür benötigt und sichere Lösungen zum Abfallmanagement sind verfügbar. Jetzt ist es Aufgabe der Politik, die technischen Lösungen umzusetzen und notwendige Entscheidungen zu fällen. atw Vol. 59 (2014) Issue 7 | July Zur neuen Sorgepflicht der Kraftwerksbetreiber gem. § 9a Abs. 2a AtG (Seite 438) H. Posser Der neue § 9a Abs. 2a AtG – wonach Kernkraftwerksbetreiber Wiederaufarbeitungsabfälle aus Sellafield und La Hague nicht mehr (wie bisher) in das Transportbehälterlager Gorleben verbringen dürfen, sondern Kapazitäten in den standortnahen Zwischenlagern zu schaffen haben – ist in mehrfacher Hinsicht verfassungswidrig. Die Neuregelung verstößt gegen die Berufsausübungsfreiheit des Art. 12 Abs. 1 GG, weil sie – ohne einen legitimen Zweck zu verfolgen – eine unverhältnismäßige Belastung der Kraftwerksbetreiber bewirkt. Sie verstößt zudem gegen die Eigentumsgarantie des Art. 14 Abs. 1 GG, weil sie Investitionen in das TBL-Gorleben frustriert und durch die Notwendigkeit von Änderungsgenehmigungen Eigentumspositionen erneut zur Disposition stellt. Neben den Kraftwerksbetreibern ist auch die GNS betroffen, da ihre Erwerbsbedingungen zielgerichtet und nachteilig verändert werden. Externer Wäscheservice - ein Werkzeug der zentralen Steuerung und der flexiblen Rückbauplanung (Seite 441) G. Brückner, B. Schmitt und M. Micklinghoff Während in anderen Länder wie in den USA oder auch in Schweden die meisten Kraftwerke das Waschen von Kontrollbereichswäsche weitgehend an einen externen Dienstleister abgegeben haben, ist man in Deutschland eher zögerlich, da man beim Leistungsbetrieb unabhängig bleiben will. Nachdem die Fa. Unitech im Jahr 1996 eine Wäscherei für Kontrollbereichskleidung im niederländischen Coevorden errichtet hatte, haben die deutschen Betreiber diesen Service dann zunächst für Rückbauanlagen getestet. Dafür sprachen u. a. folgende Gründe: • Bei einer Anlage im Rückbau wären die Folgen einer evtl. gestörten Wäschelieferung nicht so gravierend. • Generell wären weitere Investitionen (Verdampfer) für die kraftwerkseigene Wäscherei erforderlich gewesen. • Oft lag ein rückbauspezifisches Nuklidspektrum vor, das zur Folge hatte, dass das Konzept der Abfallbehandlung einschließlich der Wäscherei neu überdacht werden musste. Es zeigte sich schnell, dass ein spezialisiertes Unternehmen die gestellten Aufgaben qualitativ hochwertiger, effektiver und flexibler bewältigen kann als ein Nebenbetrieb in der Anlage vor Ort. Darüber hinaus ergab sich, dass eine zentrale Flottensteuerung durch die Beauftragung eines externen Dienstleister gefördert wird. Die in einem Rahmenvertrag geregelten kaufmännischen Abläufe, technischen Prozesse und Anforderungen unterstützen die Einführung von einheitlichen Standards. Für die zukünftig anstehenden Rückbauprojekte in Deutschland ist der zeitliche Verlauf mit großen Unsicherheiten verbunden. Daher muss die Planung einen hohen Grad von Flexibilität beinhalten. Hier kommt es wie beim Restbetrieb entscheidend darauf an, dass genügend Schutzbekleidung zum richtigen Zeitpunkt am richtigen Ort ist. Ist dies nicht gegeben, sind Verzögerun- >>> atw © | 2014 | Author's Copy <<< gen, Mehrkosten und Änderungen der Ablaufplanung die Folge. Ein externer Wasch- & Mietservice ist diesbezüglich die zuverlässigste Lösung. Die Erfahrungen zeigen, dass auch sehr kurzfristig größere Mengen an Schutzkleidung bereitgestellt werden können. Umgekehrt fallen auch keine Kosten an, wenn möglicherweise über einen längeren Zeitraum keine größeren Rückbauaktivitäten stattfinden. Kernenergie Weltreport 2013 (Seite 445) Redaktion Zum Jahresende 2013 standen weltweit in 31 Ländern 435 Kernkraftwerke zur Energieversorgung zur Verfügung. Im Vorjahresvergleich hat sich damit die Anzahl der Anlagen um 2 vermindert. Die Gesamt-Bruttoleistung der Reaktorblöcke betrug rund 398.861 MWe bzw. die Gesamt-Nettoleistung 378.070 MWe und nahm somit etwas zu (Vorjahr: brutto: 392.793 MWe, netto: 372.572 MWe, ab 2013 neu auf Basis der Nennleistungen). Neu in Betrieb genommen wurden im Jahr 2013 vier Anlagen; drei in China und eine in Indien. Den Betrieb endgültig eingestellt haben in 2013 weltweit insgesamt 8 Anlagen; 2 in Japan, 4 in den USA, 2 Anlagen in Kanada stellten nach einem Langzeitstillstand den Betrieb endgültig ein. 70 Kernkraftwerksblöcke mit einer GesamtBruttoleistung von rund 73.814 MWe bzw. Gesamt-Nettoleistung von 69.279 MWe waren in 15 Ländern in Bau. Damit hat sich die Zahl der in Bau befindlichen Anlagen im Vorjahresvergleich um 2 erhöht. Insgesamt 6 Bauprojekte in den 4 Ländern Belarus, China, der Republik Korea und Vereinigten Arabischen Emiraten wurden neu aufgenommen. Weltweit befinden sich rund weitere 125 Kernkraftwerksneubauten in der konkreten Projektierungs-, Planungs- bzw. Genehmigungsphase, zum Teil schon mit gestelltem Genehmigungsantrag oder erfolgter Auftragsvergabe. Etwa 100 zusätzliche Kernkraftwerksprojekte werden darüber hinaus mit unterschiedlichem Planungsstand genannt. Die Nettostromerzeugung in Kernkraftwerken erreichte in 2013 weltweit mit rund 2.364,15 Mrd. kWh ein etwas besseres Ergebnis als im Vorjahr mit 2.350,80 Mrd. kWh. Seit der ersten Stromerzeugung in einem Kernkraftwerk am 20. Dezember 1951 im Natrium gekühlten Schnellen Brutreaktor EBR-I (USA) sind damit kumuliert netto rd. 70.310 Mrd. kWh erzeugt worden und die Betriebserfahrungen sind auf rund 15.400 Reaktorbetriebsjahre angewachsen. atw Vol. 59 (2014) No. 7 »atw - International Journal for Nuclear Power« is published monthly by INFORUM Verlags- und Verwaltungsgesellschaft mbH Robert-Koch-Platz 4, 10115 Berlin, Germany phone +49 30 498555-10 fax +49 30 498555-19 Publisher: e-mail: atw@atomwirtschaft.de Editorial: e-mail: editorial@atomwirtschaft.com www.nucmag.com 415 Education and Competence Current Challenges for Education of Nuclear Engineers: 1 Beyond Nuclear Basics Christian Schönfelder, Offenbach/Germany 1. A need for change? atw © | 2014 | Author's Copy As an original equipment manufacturer, AREVA provides comprehensive solutions for new build of nuclear power plants (NPP), as well as modernization, life time extension or power upgrade of operating NPPs and supply of safety important products for NPPs, such as digital safety related Instrumentation and Control (I&C) systems. In the past years the growing number of related projects increased the demand for soon to be recruited personnel. However, due to the stagnation of the nuclear market in the 1990s, in general and in almost all countries with a considerably share of nuclear in electrical energy production, nuclear education had been kept at a level that only allowed for replacement of people leaving the nuclear sector. Consequently, nuclear industry (e.g. nuclear operators or nuclear system suppliers such as AREVA) had to design, develop and implement appropriate training curricula to prepare newly recruited staff (both young graduates and people with a professional career) for their future job positions. Here, the focus was laid on engineers to be engaged in NPP design, construction, commissioning, operation, maintenance, or management of related projects. These engineers often had no nuclear background or experience at all. However, even in the most desirable case of a well grounded nuclear education, experiences in nuclear projects have Address of the Author: Christian Schönfelder Training Center, AREVA GmbH Kaiserleistr. 29 63067 Offenbach/Germany 424 shown that some important competences were missing. Often this resulted in reduced team or even project performance, and consequently a need to design, develop and implement appropriate training measures on the spot to avoid long periods of job familiarization. Analyzing these experiences, and considering the current status of nuclear education curricula, it may be concluded that these should be revised to adopt currently missing key competencies. Thereby one would address important human resources development challenges, described e.g. in [1], and contribute significantly on the long term to the success of nuclear projects. Furthermore, one should also consider the extent to which people employed in the nuclear field will have to be educated on nuclear engineering topics. Following the approach as proposed by NEA (OECD Nuclear Energy Agency), see [2], one has to distinguish between the following groups: first, “nuclear” people with a specialized formal education in nuclear subjects (e.g. nuclear engineering, radiochemistry, radiological protection, etc.); next “nuclearized” people with formal education and training in a relevant (non-nuclear) area (e.g. mechanical, electrical, civil engineering, systems) but who need to acquire knowledge of the nuclear environment in which they have to apply their competencies; and finally “nuclear-aware” people requiring nuclear awareness to work in the industry (e.g. electricians, mechanics, and other crafts and support personnel). As demonstrated by NEA, but also by EHRO-N (European Human Resources Observatory for the Nuclear Energy Sector), see [3] and [4], the expected headcount in the categories “nuclearized” and “nuclear-aware” is much higher than for the “nuclear” category. As the considerations presented in this paper refer to general, cross-cutting themes that are not purely “nuclear”, the resulting recommendations will be of im- >>> atw © | 2014 | Author's Copy <<< portance for a rather large population, i.e. also for those students that study nuclear only as a minor subject. Next, the conclusions drawn in this paper and the resulting recommendations should also be of particular interest for the fusion community. According to the Horizon 2020 Roadmap to Fusion as published in 2012 by the European Commission, the fusion development is now entering into a new phase. From a science-driven, laboratory based and non-nuclear technology it is moving into an industry / technology driven nuclear technology. The International Thermonuclear Experimental Reactor (ITER2) is a first step in this triple transition, and itself already a highly demanding project. Here as well as in the follow-up project of design and then construction of a future demonstration reactor DEMO, managed and implemented by the EUROFusion consortium3, exactly those skills as described in this paper will play a crucial role for the success of these projects. In the following we shall focus on those competencies that are more closely related to nuclear technology; other skills, related e.g. to (nuclear) project management, contract management or communication, although desirable for current nuclear projects (see, e.g., [5]), will not be dealt with further. Various factors have contributed to the current situation and the need for change of nuclear education curricula, i.e. better adaptation to new demands on the nuclear market. Not only the societal demand for enhanced levels of nuclear safety (reinforced by the recent Fukushima incident), but also the demand for highly competitive cost and schedule schemes for new build as well as modernization projects. The latter has been further fuelled not only by reduced investment and financing possibilities as a consequence of the recent global financial crisis, but also by the latest availability of other competitive energy resources (like shale gas). Considering also the limited numbers of capable and competent vendors and the limited demand of utilities, the nuclear market has now evolved into an international market, with a restricted number of international companies acting globally, i.e. with internationally distributed subsidiaries and project teams as well as an international supply chain. Hence the ability to act efficiently in an international environment with ___________ 1 Revised version of a paper presented at NESTet2013 (Nuclear Engineering Science and Technology, Nuclear Education and Training), Madrid, Spain, November 2013 2 See http://www.iter.org/ 3 See http://www.efda.org/efda/horizon2020/ atw Vol. 59 (2014) Issue 7 | July Education and Competence diverse national as well as business culture is highly desirable. atw © | 2014 | Author's Copy 2. Nuclear safety A nuclear safety culture, as an enveloping set of competencies and attitudes, should already be established and fostered during university education. Nuclear engineering education curricula should address nuclear safety as a starting point for all further measures. This means focusing on safety culture, national and organizational culture, national and international regulatory frameworks and their applications in regard to fostering safety culture, and how the emphasis on safety of nuclear power improves the quality of safety not only in the energy sector, but in society as a whole. In past decades, also as a response to industrial incidents, the importance of safety culture and how to develop and foster it has been the focus of several institutions or organizations, like the International Atomic Energy Agency (IAEA), the Institute of Nuclear Power Operations (INPO), or the World Association of Nuclear Operators (WANO). As numerous guidelines, standards and related recommendations for implementation as well as accompanying information or training resulted from these activities, there is now an abundance of material available to be further transferred into educational curricula. Furthermore, use should be made of the material developed or implemented within the NUSHARE project4. The main objective of this project established in 2013 is to develop and implement education, training and information programs strengthening competences required for achieving excellence in nuclear safety culture. Safety culture should be introduced into engineering curricula at least on a more generalized level, not necessarily specific to the nuclear field. In covering this in a wider sense, the course could also be used for engineering education outside nuclear. Here, the nuclear application could serve as an example for other technologies, the application of which bear an inherent risk for people and the environment (e.g. aviation, chemical, automotive, civil construction). The course should address those topics already listed above, and case studies or examples from diverse technical applications as well as their impact on further development of the technology or of related legal and regulatory framework and associated codes and standards. As such, the course could serve as an introduction to the field of codes and standards, which is a successive topic also to be addressed in engineering curricula (see chapter 3). Role games could supplement course objectives and support a deeper atw Vol. 59 (2014) Issue 7 | July and thorough understanding as well as implementation of the principles of safety culture. Course implementation could be further enhanced by site visits to design, construction, manufacturing or operation / maintenance facilities that are appropriate for achieving the learning objectives of the course. In particular, these site visits could demonstrate examples for the implementation of safety culture in practice. Facilities will certainly be found close to any educational institute. Of course this will include contacts to other non-nuclear applications, if they are dealt with in the wider sense as mentioned above. 3. Codes and standards One important aspect of safety culture is the strict adherence to codes and standards to be applied in the appropriate work (i.e. engineering) environment. This implies that educational curricula should address various guidelines and standards (e.g. from the IAEA5), regulatory codes and standards (e.g. ASME code6, IEEE7, RCC-E8 and RCC-M9, YVL guides10). Furthermore, how to apply the relevant codes and standards in regular nuclear engineering activities should be dealt with, clarifying also the roles and responsibilities of the different stakeholders. As material is largely available on different aspects of these codes and standards, as well as different institutions already providing introductory or advanced training on these codes and standards, suitable education courses should be developed that at least provide an overview on existing codes and standards, and on their importance for licensing and respective design and operation of nuclear facilities (also including, as example, nuclear fusion facilities like ITER11, in particular when becoming nuclear). Briefly describing the history of codes and standards development from different national points of view, as well as the different areas of application, will lead to a thorough understanding of their importance. If possible, some examples for application in nuclear engineering should be included, too. In particular, the latter should deal with the impact of safety classification on scope and schedule of the licensing process that must be followed in parallel to design, construction and commissioning activities. Furthermore, the impact of safety classification on manufacturing, construction / erection and commissioning activities of companies within the supply chain must be clearly demonstrated and understood by the students. As presented in [6], the capability of the supply chain companies to >>> atw © | 2014 | Author's Copy <<< comply with requirements of codes and standards that have to be applied in a nuclear project is a rather critical success factor. In summary, the consideration of codes and standards in nuclear engineering education will greatly enhance the students’ abilities to act not only in a national environment, but also to adapt to a global environment which will become more and more harmonized in a global and very competitive nuclear market 12. Furthermore, this will help employees in the future to boost their global as well as institutional mobility, e.g. between research institutions, operating organizations, industry and regulatory bodies. 4. Engineering workflow Closely related to the application of codes and standards is the engineering workflow in the different phases of a nuclear project. First of all, it will be important to develop a good understanding of the role of engineering activities in a typical nuclear project, in particular during the design phase, considering the impact of these activities on further phases (see Figure 1) like construction, procurement, installation and commissioning. Starting with the design phase, 2 aspects have to be considered in detail. At first, as different technical disciplines need to work together on the upcoming project respecting the engineering workflow, numerous interfaces need to be defined between the involved trades, requiring an awareness of involved engineers on how to pass on information across those interfaces. To illustrate this on an overview level: the design of the power ___________ 4 5 6 7 8 9 10 11 12 See www.nushare.eu See http://www-ns.iaea.org/standards/ American Society of Mechanical Engineers, see http://www.asme.org/ Institute of Electrical and Electronics Engineers, see http://www.ieee.org/index. html Règles de Conception et de Construction des matériels Electriques des îlots nucléaires, see e.g. http://www.afcen.org/V11/ index.php?menu=rcc_e_fr Règles de Conception et de Construction des matériels Mécaniques des îlots nucléaires REP, see e.g. http://www.afcen.org/ V11/index.php?menu=rcc_m_fr Regulatory Guides on nuclear safety, see http://www.stuk.fi/julkaisut_maaraykset/ viranomaisohjeet/en_GB/yvl/ International Thermonuclear Experimental Reactor, see http://www.iter.org/ See, for example, the activities of the WNA Cordel Working group, http://www.worldnuclear.org/WNA/About-WNA/WNA-Working-Groups/#cordel 425 Education and Competence Fig. 1. Engineering (design) as part of nuclear project workflow. atw © | 2014 | Author's Copy plant process(es) will result in a structure of plant systems with different components to be designed, and with supporting electrical as well as instrumentation and automation systems, and moreover with further equipment like heating, ventilation and air conditioning (HVAC) systems, all to be placed in an appropriate building with optimal layout and civil design. For illustration, see Figure 2. As a result, the input resp. requirements and the results of each specific activity have to be well understood and correlated, often in an iterative way. Here, of utmost importance is the competence to fully understand the technical interdependencies. Secondly, the format in which input resp. requirements and the results of each specific activity have to be developed, and in particular the information content will strongly influence the performance of the engineering workflow. Typically, the results will be published as system descriptions or functional requirements, normally in different levels of design (conceptual / basic / detailed /actual), using not only a coherent structure, but also dedicated formal descriptions or symbols. In this case the requirements of codes and standards will play an important role, as well as the intended use of the design results for further activities in NPP new build or modernization projects, like procurement, manufacturing, inspection, construction, erec- Fig. 2. 426 tion, commissioning, operation or maintenance. Providing students with a global overview about the technical interdependencies in the engineering workflow, and about format, content and structure of typical engineering documentation will greatly enhance their ability to understand one important aspect of current nuclear engineering activities. And they will be better prepared for starting their engineering work, e.g. specifying functional requirements and deriving specifications from these requirements as well as applying numerical methods and codes for this purpose. Thereby they will better find their place in the nuclear work force, and better understand their roles and responsibilities in the engineering workflow, and in related activities like project management, procurement, manufacturing, inspection, construction, erection, commissioning, operation or maintenance. 5. Engineering tools Closely connected to an introduction to the engineering workflow are the engineering tools that are applied for this purpose. Here, the focus is not on the application of calculation methods for process or system analysis as well as specification. In the past, the rapid development of informa- Engineering (design) workflow: interdependencies of different technical disciplines, examples (color denotes related activities). >>> atw © | 2014 | Author's Copy <<< tion technology together with the application of numerical methods has provided scientists as well as engineers with powerful tools e.g. for structure loads / thermal hydraulics / reactor core, fuel calculations or other simulation analysis. To some extent the basics of these codes have already been introduced into nuclear engineering education. Consequently students can already familiarize themselves with these types of tools during their university curricula. Instead, in this context information systems that support engineering activities are of high importance. Here, the focus is on the information stored and processed, and their support of engineering workflow as well as the roles and responsibilities of different persons involved in these. The information systems / engineering tools can be considered as comparable to those that are offered by companies like Oracle or SAP, and that support the workflow and related information in nearly all business related internal processes of enterprises. One example of an information system is presented in [6]. Cost, supply chain, design and quality management for engineered equipment is dealt with. 3D model data may be imported or exported during the project so that the information on the engineered systems may be upgraded in accordance with the project implementation phase. Examples of these engineering tools include those that support document management, time scheduling, plant configuration management, and the resulting material management (including logistics and spare parts), considering also the interfaces to layout design as well as other business information tools (e.g. finance and accounting), see Figure 3. Of particular interest will be tools that allow for the 3D modelling of processes, components, systems, and complete plants, and allow for the subsequent specification of systems and components, with CAD models and P&ID13 schemes as output that may be used for further information processing. Here, several software vendors are active on an international level, often with an extensive suite of appropriate products and related interfaces that should allow for the seamless support of an engineering workflow and the related project activities, covering in principle all phases of a plant lifecycle. Students should be introduced to these tools, to better understand how only the application of these tools may currently facilitate an efficient and competitive engineering workflow. One good example, like ___________ 13 Piping and Instrumentation Diagram atw Vol. 59 (2014) Issue 7 | July Education and Competence As a matter of course this will also imply a reduction of time spent on the subjects that are covered by now by the current educational curricula. In this case, a close cooperation between academic institutions and industry will be very beneficial for selecting the right balance. 8. References Fig. 3. Overview of engineering tools applications and their possible interfaces. the other tools also in service in other technical applications outside nuclear, is document management. Here, a simple software system, to be used in a dedicated course on the subject of engineering tools, could easily show which type of information can be managed with it, and how this will greatly enhance the efficiency of an engineering workflow. As the listed engineering tools are well being used outside nuclear, a cross cutting special course on engineering tools will be for the benefit of other engineering disciplines outside nuclear, too, enabling a broad application in engineering education. 6. Cooperation between academic institutions and industry As can be easily understood from the above chapters, cooperation between academic institutions and industry would optimally support the extension and adaptation of nuclear engineering education, thereby also enhancing the link to the nuclear professional environment in support of a better consideration of students’ future work environment. Examples could include handover of appropriate basic material for course development, visits of nuclear sites, common workshops, or the provision of lectures by industry experts. These lectures could provide examples, case studies and data from industrial applications that are often not available at academic institutions. Various examples are presented and described in detail in [7] and [8]. Another example refers to simulation codes (see above): in this case, industry may provide opportunities for working with these simulation codes (e.g. by demonstrations, workshops, and internships), or even provide appropriate tools, like a full scope simulator as described in [9]. 7. Conclusions The above-mentioned chapters have shown a concise overview about the most stringent competence needs in the current nuclear field, valid not only for nuclear suppliers such as AREVA, but also for nuclear operators, safety authorities, technical support organizations, and further service providers or other companies active in the nuclear supply chain, in particular when active on an international level. When academic nuclear engineering curricula start taking into account these competence needs of nuclear industry, it will be for the benefit of the current and future generation of nuclear engineers. They will be better prepared for their future job positions and career perspectives, above all on an international level, in particular as regards mobility and for a lifelong professional development. [1] Baltin, G.; Glaubrecht, S.; Schönfelder, C.: Next Generation of Human Resources for GEN (Generation) III+ New Build Projects, in: ENC 2014 (European Nuclear Conference), Marseille, France, May 2014. [2] NEA-Report: Nuclear Education and Training: From Concern to Capability, OECD 2012. [3] EHRO-N Report: Putting into Perspective the Supply of and Demand for Nuclear Experts By 2020 Within the EU-27 Nuclear Energy Sector, European Commission, Joint Research Center, 2012. [4] EHRO-N Report: Top-down Workforce Demand Extrapolation From Nuclear Energy Scenarios, European Commission, Joint Research Center, 2013. [5] Jimenez, R: A Comprehensive Framework for Successful Nuclear New Build Delivery, in: ENC 2014 (European Nuclear Conference), Marseille, France, May 2014. [6] Martinez Gozalo, I.; Díaz Prada, J.I.; Merino Teillet, A.: New Build Methodology Approach by Iberdrola, in: ENC 2014 (European Nuclear Conference), Marseille, France, May 2014. [7] Niewinski, G.; Mazgaj, P.; Swirski, K.; Baltin, G.; Glaubrecht, S.; Leyer, S.; Schönfelder, C.; Blotas, B.; Moussavi, M.; Rozwadowski, A.: Polish Experience in the Preparation of the Nuclear Program and the Education of Students in Cooperation with AREVA, in: NESTet 2013 (Nuclear Engineering Science and Technology, Nuclear Education and Training), Madrid, Spain, November 2013. [8] Bajer, T.; Slugen, V.; Glaubrecht, S.; Schönfelder, C.: Support of a University Master Course by a Nuclear Supplier, in: Annual Meeting on Nuclear Technology, Frankfurt, Germany, May 2014. [9] Ahnert, C.; et al.: Educating Nuclear Engineers by Nuclear Science and Technology Master at UPM, in atw Vol. 59, p. 310–314 (2014). atw © | 2014 | Author's Copy _____________________________________ www.nucmag.com atw Vol. 59 (2014) Issue 7 | July >>> atw © | 2014 | Author's Copy <<< 427 International Journal for Nuclear Power atw-digital 2013 The Year 2013 of Nuclear Power on One CD atw-digital 2013 j j j j j Expert's articles, reports, interviews, and news covering all technical, economic and political topics of nuclear power and nuclear technology. All 11 issues on more than 700 pages. Navigate quickly to the desired papers with a few mouse clicks. International Journal for Nuclear Power Internationale Zeitschrift für Kernenergie www.nucmag.com Read the articles on your computer or print them out. atw-digital Convenient search function in all papers as full-text search and/or deliberate search for authors and documents titles. 2013 I would like to order the CD atw-digital 2013 (single user license), payment by invoice: 69.- € (Germany, incl. postage and VAT) 49.- € (Special price for DAtF- and KTG-Members, incl. postage and VAT) _________________________________________________ (EU member states, without VAT number, incl. VAT, excl. postage) _________________________________________________ 69.- € 57.98 € (EU member states with VAT number and all other countries, no VAT, excl. postage) Network license (corporate license) and license for Research & Education on request. Please send your order to: INFORUM Verlags- und Verwaltungsgesellschaft mbH Robert-Koch-Platz 4 10115 Berlin GERMANY Fax-No. +49 30 498555-19 or order online: www.nucmag.com Surname, First Name Organization/Order no. _____________________________________________________________ Street _____________________________________________________________ Postal Code City Country _____________________________________________________________ Telephone/E-mail VAT no. (EU countries except Germany) I order the CD atw-digital 2013 and agree to the terms and cancellation rights referred to below. _____________________________________________________________ Date Signature Cancellation: This order may be cancelled within 14 days. A notice must be sent to INFORUM Verlags- und Verwaltungsgesellschaft mbH, Robert-Koch-Platz 4, 10115 Berlin, Germany, within this period. The deadline will be observed by due mailing. Prompt dispatch of the notification is sufficient for compliance with the cancellation conditions. Subscription International Journal for Nuclear Power Herewith, I would like to subscribe to the atw – International Journal for Nuclear Power from now on. ________________________________________________________ Surname, First Name ______________________________________________________________________ Organization/Order no. ______________________________________________________________________ Street ______________________________________________________________________ Post code City Country ______________________________________________________________________ Telephone/E-mail VAT no. (EU countries except Germany) I agree to the terms and cancellation rights referred to below. ______________________________________________________________________ Date Signature Preferred payment method (please tick): By SEPA ______________________________________________________________________ Name of bank ______________________________________________________________________ IBAN BIC By invoice Please send your order to: INFORUM Verlags- und Verwaltungsgesellschaft mbH Robert-Koch-Platz 4 10115 Berlin Germany or by Fax to +49 30 498555-19 www.nucmag.com Terms and cancellation rights You will receive the atw (11 issues/year) at the subscription price. Germany: Per issue/copy (incl. VAT, excl. postage) 15.- € Annual subscription (incl. VAT and postage) 165.- € All EU member states without VAT number: Per issue/copy (incl. VAT, excl. postage) 15.- € Annual subscription (incl. VAT, excl. postage) 165.- € EU member states with VAT number and all other countries: Per issue/copy (no VAT, excl. postage) 14.02 € Annual subscription (no VAT, excl. postage) 154.21 € The publisher must be notified of cancellation of the subscription no later than 4 weeks before the end of the subscription period. Unless terminated with a notice period of one month to the end of the subscription period, the subscription will be extended for a further year in each case under the subscription terms applicable at the time. Cancellation guarantee: This order may be cancelled within two weeks of the order form being received at INFORUM Verlags- und Verwaltungsgesellschaft mbH, Robert-KochPlatz 4, 10115 Berlin, Germany. Prompt dispatch of the notification is sufficient for compliance with the cancellation conditions.