Causes and Effects of Pulsations in Compressor
Transcription
Causes and Effects of Pulsations in Compressor
technische universität dortmund Causes and Effects of Pulsations in Compressor Systems A. Brümmer Chair of Fluid Technology, TU Dortmund technische universität dortmund Contents 1. Definition of pulsations 2. Excitation mechanisms 3. Natural frequencies 4. Effects of Pulsations 5. Examples including measures 6. Vision to discuss -2- technische universität dortmund Definition and example of pulsations Pulsations are periodic variations in flow-velocity and pressure about mean values. Pressure-pulsation inside reciprocating cylinder (red) and just outside pressure valve (black) bar 80 pressure 70 60 50 40 80 120 160 200 240 time ms -3- technische universität dortmund Acoustic Impedance Relationship between velocity pulsation and pressure pulsation: Z=p/c Z p c ρ a or c=p/Z characteristic acoustic impedance (Z = ρ* a for plane waves travelling through pipes in one direction) amplitude of pressure pulsation amplitude of velocity pulsation mass density of gas speed of sound Speed of sound a2 = (dp/dρ)s = κ*R*T (ideal gas) κ R T ratio of specific heats (cp/cv) gas constant absolute temperature -4- technische universität dortmund Next chapter 2. Excitation mechanisms -5- Excitation mechanisms technische universität dortmund Main sources of pulsation • positive displacement compressors (“pocket passing” frequency and harmonics) • centrifugal compressors (“blade-pass” frequency and harmonics) • vortex shedding (flow around a obstruction) • high flow turbulence (e. g. close to control valves) • thermo-acoustic instability (heat exchanger, combustion chamber) reference: NEA Group -6- Pulsation frequency technische universität dortmund compressors (e. g. centrifugal-, screw-, roots-) f = i*n*rpm f i n rpm pulsation frequency ith harmonic of pulsation (1,2,3,…) number of blades or lobes (driven male rotor) or active chambers compressor speed vortex shedding f = St*c / d f St c d pulsation frequency Strouhal number (typical values for obstructions St=0.2–0.5) mean flow velocity effective diameter of obstructions -7- Explanation of thermo-acoustic instability technische universität dortmund “If heat be given to the air at the moment of greatest condensation, or be taken from it at the moment of greatest rarefaction, the vibration is encouraged.” (Rayleigh`s criterion, by 1878) t+T I = ( 1 / T ) ∫ p (t) q' (t) dt t I p(t) q’(t) Rayleigh integral (index) I>0 => amplification of a disturbance I<0 => damping of a disturbance pressure pulsation time-varying component of heat transfer -8- Strength of excitation technische universität dortmund In most cases the strength of pulsation excitation is proportional to the flow-velocity fluctuations of the source! Examples: - flow velocity fluctuations at pistons or valves of recips - flow velocity fluctuations at the inlet or outlet of screws - flow velocity fluctuations at the internal passages of turbo-compressors -9- technische universität dortmund Next chapter 3. Natural frequencies - 10 - Natural frequencies technische universität dortmund Acoustic natural frequencies - plane waves (low frequencies) - cross-wall modes - three dimensional modes Structural natural frequencies - bending modes (low frequencies) - shell wall natural frequencies - three dimensional modes - 11 - technische universität dortmund Plane pulse propagation Pulse reflection at „closed end“: - closed valve or blind flange - control valve with high pressure drop - valves of compressors pipe pressure pipe length - 12 - technische universität dortmund Plane pulse propagation Pulse reflection at „open end“: - pipes connected to vessels or pulsation dampers vessel - open valves without significant pressure drop - huge cross-sectional jumps pipe pressure pipe length - 13 - Pulse reflection and transmission at a cross-sectional jump technische universität dortmund Cross-sectional jump (m=0.5) pipe pressure pipe length - 14 - Superposition of left- and right-going waves technische universität dortmund pipe pipe section right-going wave left-going wave “standing wave” fixed point maximum - 15 - technische universität dortmund Plane wave natural frequencies Half wave length mode (standing wave) fi= i * a / (2 * L) fi a closed natural frequency of ith multiple of fundamental mode (half wave) speed of sound pressure amplitude closed open pressure amplitude open i=1 i=2 i=3 L L - 16 - technische universität dortmund Plane wave natural frequencies open Quarter wave length mode (standing wave) pressure amplitude closed i=1 fi= (2i-1) * a / (4 * L) fi a L natural frequency of ith multiple of fundamental mode speed of sound length of pipe section i=2 i=3 L - 17 - Thermo-acoustically induced “standing wave“ technische universität dortmund movable heat source blower open end open end reference: Dr. Lenz, KÖTTER Consulting Engineers KG - 18 - Cross-wall acoustic natural frequency technische universität dortmund - 19 - Cross-wall acoustic natural frequency f(m,n ) = β (m,n ) ⋅ a π ⋅d f(m,n) a d β(m,n) technische universität dortmund cross-wall acoustic natural frequency speed of sound pipe diameter zeros of Bessel function - 20 - Lateral vibration mode of beams (bending mode) 1 fk = 2π fk λk E I µ ⎛ λk ⎞ ⎜ ⎟ ⎝ l ⎠ 2 EI µ technische universität dortmund k = 1, 2, 3,... natural frequency of kth bending mode frequency-factor (next slice) modulus of elasticity moment of inertia mass of beam per unit length - 21 - Lateral vibration mode of beams (bending mode) boundary conditions technische universität dortmund λk -values - 22 - technische universität dortmund Shall wall natural frequencies λk ⎛ 1/ 2 ⎞ E ⎜ ⎟ fk = 2 ⎟ ⎜ π ⋅ d ⎝ µ ( 1 −ν ) ⎠ 1 2s k( k ² − 1 ) λk = 1 / 2 12 d ( 1 + k ²)1 / 2 fk λk d s E ν I µ k natural frequency of kth mode frequency-factor mean diameter of pipe wall pipe wall thickness modulus of elasticity Poisson’s ratio moment of inertia mass of beam per unit length mode number (2,3,4…) - 23 - Master rule to avoid vibration problems technische universität dortmund Avoid coincidences of main excitation frequencies and natural frequencies (acoustic and structure) of the compressor system ! e. g. reciprocating compressors design according to API 618 (new 5th edition): - lowest mechanical natural frequency is 2.4 times above the highest compressor speed - higher mechanical natural frequencies must have a separation margin of 20% to significant acoustic excitation frequencies - 24 - technische universität dortmund Next chapter 4. Effects of pulsations - 25 - Effects of pulsations technische universität dortmund Pulsations may cause the following problems: - compressor and system vibrations - increased system maintenance - efficiency losses of the compressor - flow metering faults - high noise radiation - 26 - technische universität dortmund Next chapter 5. Examples including measures - 27 - technische universität dortmund Avoid heavy valves at thin stubs RMS vibration spectrum at measuring location SKD33x SKD33x mm/s eff 60 SKD33x 56 mm/s RMS 40 measure 20 0 0 25 50 75 100 125 150 175 200 Hz - 28 - technische universität dortmund High vibrations at a reciprocating compressor RMS vibration spectrum at measuring location SKS13x SKS13x mm/s eff 50 41 mm/s RMS 40 SKS13x 30 20 10 0 0 25 50 75 100 125 150 175 200 Hz - 29 - technische universität dortmund Root cause analysis for high vibrations RMS spectrum of the acoustic shaking forces p Kreisgas_KraftPD_x_058.b 35.000 N (100 Hz) kN 15 10 5 0 0 50 100 150 200 Hz - 30 - Remedial measures elastomer support technische universität dortmund Pulsation damping plate - 31 - High frequency vibrations at a screw compressor technische universität dortmund Pressure measuring locations PS1abs PS1abs PD1_0, PD1_120 PD2_45, PD2_270 PD4abs PD3_0, PD3_120 - 32 - technische universität dortmund Measured pressure pulsations at discharge side PD1_120 PD2_270 bar 4 bar 4 3 3 2 2 1 1 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 kHz s 600 kHz bar 1.0 s 600 bar 1.0 480 0.8 480 0.8 360 0.6 360 0.6 240 0.4 240 0.4 120 0.2 120 0.2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 4.0 kHz 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 - 334.0 3.5 kHz technische universität dortmund Root cause analysis (plane wave modes) pocket passing frequency: 285 to 585 Hz (variable-speed drive) speed of sound a= 310 m/s plane wave mode i open end - closed end fi 1 52 2 157 3 262 4 367 5 472 6 577 Hz L = 1462 mm - 34 - technische universität dortmund Root cause analysis (cross-wall modes) inner pipe diameter d = 168.3 mm and wall thickness s = 4.5 mm m= n= 0 1 2 3 0 0 1140 1889 2602 1 2372 3302 4156 4968 Hz - 35 - Coincidence chart (excitation and cross wall natural frequencies) kth acoustic and structural mode technische universität dortmund ith pocket passing frequency 2500 1x Drehzahl 1. Pulsation 2. Harm. Pu 3. Harm. Pu 4. Harm. Pu 5. Harm. Pu 6. Harm. Pu Quermode (1 1140 Hz Quermode (2 Quermode (3 Quermode (0 1. zyl. Scha 2. zyl. Scha 3. zyl. Scha frequency [Hz]. 2000 1500 1000 500 0 1500 2000 2500 3000 motor rotation speed [1/min] - 36 - technische universität dortmund Root cause analysis PD1_120 PD2_270 bar 4 3 bar 4 plane wave resonances 2 2 1 1 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 cross wall mode 3 3.5 4.0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 kHz s 600 kHz bar 1.0 s 600 bar 1.0 480 0.8 480 0.8 360 0.6 360 0.6 240 0.4 240 0.4 120 0.2 120 0.2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 4.0 kHz 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 - 374.0 3.5 kHz Remedial measures technische universität dortmund cross wall mode breaker - 38 - technische universität dortmund Disadvantage of both remedial measures Additional energy costs due to the power loss of orifice plates! Power loss calculated for a pressure drop of 0.5% of static pressure p. 100 power loss [kW] 80 p=10 MPa 60 5 MPa 40 1 MPa 20 0 0 2000 4000 6000 Volume flow [m³/h] 8000 10000 - 39 - technische universität dortmund Next chapter 6. Vision to discuss - 40 - Vision technische universität dortmund Design compressor systems without orifice plates as damping device! Approach: 1. Design pulsation bottles to residual pulsations of 0.5% (1%) ptp. 2. Use Helmholtz resonators (virtual orifice) to attenuate cylinder nozzle resonances. - 41 - Helmholtz resonator (virtual orifice VO) technische universität dortmund reference: Broerman et al., SwRI at GMRC 2008 - 42 - Vision technische universität dortmund Design compressor systems without orifice plates as damping device! Approach: 1. Design pulsation bottles to residual pulsations of 0.5% (1%) ptp. 2. Use Helmholtz resonators (virtual orifice) to attenuate cylinder nozzle resonances. 3. For trouble shooting think about a side branch resonator or control valve instead of an orifice plate. - 43 -