1 - Interceram

Transcription

1 - Interceram
0 6 • 1 3 D EC E M B E R V OL. 6 2
G 5593
www.interceram-review.info
06
2013
Trade Fairs &
Conventions
International Colloquium on
Refractories 2013, Germany
Annual Meeting 2013 of the
Serbian Ceramic Society
COMPOSITES EUROPE 2013,
Germany
IPB 2013, China
Ceramics Asia 2013, India
Refractories for Industry
2014, Russia
Ceramics Forum
Silver-doped Bioactive
Glasses: What remains
unanswered?
Utilization of Sugar-Beet
Industry By-Product for the
Production of Anorthite
Raw Materials
Worldwide
Cameroon: Induration of
Laterites in Tropical Areas
Egypt: Utilization of Granite
Found in the Central Eastern
Desert as Fluxing Material in
the Preparation of Ceramic
Recipes
/1[
([FHOOHQFHLQ(OHPHQWDO$QDO\VLV
(/75$ DQDO\]HUV DUH XVHG ZRUOGZLGH IRU UHOLDEOH DQG SUHFLVH HOHPHQW
DQDO\VLVRIVROLGV7\SLFDOVDPSOHPDWHULDOVLQFOXGHFHPHQWVWHHOLURQ
FRSSHUIXHOVDQGFHUDPLFV(/75$SURYLGHVFXVWRPHURULHQWHGVROXWLRQV
VXFKDVLQGLYLGXDOO\DGDSWDEOHLQIUDUHGFHOOVDQGDGGRQVIRUH[DPSOH
IRU7,&DQDO\VLV
7KHUPRJUDYLPHWULFDQDO\VLV
IRUWKHGHWHUPLQDWLRQRI
PRLVWXUHYRODWLOHVDQGDVK
6LPXOWDQHRXVFDUERQDQG
VXOIXUDQDO\VLVRIRUJDQLF$1'
LQRUJDQLFVDPSOHPDWHULDOV
Q )OH[LEOHUDPSVIURPWRƒ&
Q /DUJHVDPSOHYROXPHVXSWRJ
Q 6LPXOWDQHRXVDQDO\VLVRIVDPSOHV
ZZZHOWUDRUJWKHUPRVWHS
Q )XOOIOH[LELOLW\GXHWRFRPELQHGLQGXFWLRQ
DQGUHVLVWDQFHIXUQDFH(/75$'XDO
)XUQDFH7HFKQRORJ\
Q 8SWRIRXULQGHSHQGHQWLQIUDUHGFHOOV
ZLWKIOH[LEOHPHDVXULQJUDQJH
ZZZHOWUDRUJFV
High-Performance
Ceramics
Bioactivity and Drug
Delivering Ability of a
Chitosan/46S6 Melted
Bioactive Glass Biocomposite Scaffold
(OWUD*PE+_5HWVFK$OOHH_+DDQ_*HUPDQ\
(0DLOLQIR#HOWUDRUJ_:::(/75$25*
,17(5&(5$0
I M PRINT
Publisher and publishing house:
Expert Fachmedien GmbH
Aachener Str. 172, 40223 Düsseldorf, Germany
Phone: +49 (0) 2 11 / 15 91-2 10
Fax: +49 (0)2 11 / 15 91-1 50
www.expert-fachmedien.de, www.interceram-review.info
Management: Paul Robert Hoene
Owner of title rights: DVS Media GmbH, Düsseldorf
Editorial department:
Dr. Hubert Pelc (managing editor/responsible)
Phone: +49 (0) 2 11 / 15 91-2 30
E-Mail: hubert.pelc@dvs-hg.de
Dr.-Ing. Paul-Eberhard Keilbar
Phone: +49 (0)3 41 / 94 102 37
E-Mail: keilbar@t-online.de
Sylvia Hanagan (editorial assistant)
Phone: +49 (0) 2 11 / 15 91-2 31
E-Mail: sylvia.hanagan@dvs-hg.de
Editorial committee of INTERCERAM – International Ceramic Review:
Prof. C.G. Aneziris, Germany, Prof. Dr. A. Boccaccini, Great Britain, Prof. Ph.
Boch, France, Prof. Dr. A.O. Boschi, Brazil, Dr. José Carlos Bressiani, Brazil,
Prof. D.R. Dinger, USA, Dr. Sc. tech. Jiri Götz, Czech Republic, Prof. Dr. rer.
nat. Olaf Krause, Germany, Prof. Dr. W. Krönert, Germany, Dipl.-Ing. (FH)
J. Mendheim, Germany, Dr. rer. nat. H. Mörtel, Germany, Dr. R. Muccillo,
Brazil, Prof. Dr. V.C. Pandolfelli, Brazil, Eng. J.Q. Peng, P.R. China, Dr. A.
Ravaglioli, Italy, Ing. H. Ries, Germany, Dr. A. J. Ruys, Australia, Prof. Dr. R.
Salomão, Brazil, B. Sezer, Turkey, Dr. R. G. Shah, India, Prof. S. Somiya,
Japan, Dr. St. Stefanov, Bulgaria, Dr. G. Sukul, India, Dr. A.G. Verduch,
Spain, Dr. S. Zhang, Great Britain
Layout & printing: Kraft Druck GmbH, Industriestraße 5–9,
D-76275 Ettlingen, Germany
Advertisements:
Iris Jansen (responsible)
Phone: +49 (0)2 11 / 15 91-2 16
Britta Wingartz
Phone: +49 (0) 2 11 / 15 91-2 18
E-Mail: iris.jansen@dvs-hg.de
E-Mail: britta.wingartz@dvs-hg.de
Subscription:
Expert Fachmedien GmbH
Alexander Werum
Reader service
Große Hub 10, D-65344 Eltville
Tel.: +49 (0) 61 23 / 92 38-1 51, Fax: +49 (0) 61 23 / 92 38-1 39
E-Mail: a.werum@vertriebsunion.de / keramischezeitschrift@vuservice.de
Subscription charges 6 magazines:
Print:
233,– € + shipping costs 21,– € (Germany),
233,– € + shipping costs 27,– € (foreign countries)
Print + Online:
277,– € + shipping costs 21,– € (Germany)
277,– € + shipping costs 27,– € (foreign countries)
Online:
144,50 €
Single issue:
42,50 € + shipping costs
© Copyright 2013
Expert Fachmedien GmbH
D-40223 Düsseldorf, Germany
ISSN: 0020-5214
"INTERCERAM – International Ceramic Review" and its special edition
"INTERCERAM – Refractories Manual" as well as the contributions, figures
and tables included in these journals are protected by copyright. With the
exception of the statutorily authorised cases, any utilisation without the
consent of Expert Fachmedien GmbH is punishable. We do not accept any
liability for manuscripts submitted without solicitation. When the work is
accepted for publication, the author transfers to the publishing house the
exclusive publishing rights for the period until the copyright expires. This
transfer of rights relates, in particular, to the rights of the publishing
house to reproduce the work for commercial purposes as a copy (microfilm, photocopy, CD-ROM or other processes) and/or to include it in
electronic or other databases.
Fracking: Boon or Bane?
Dear Readers,
For energy producers, fracking is a magic word that promises a golden
age, especially in the USA. Due to progress made in recent years with
this production method, shale gas fields can be developed that were
previously not economically viable. With fracking, drilling is first
done vertically down to the clay shale and is then further extended
horizontally within the formation – over distances as far as 1–2 kilometres. In the next step water, chemical solvents and sand are injected
under high pressure into the well bore in order to break up the clay
shale. This produces cracks in the rock, through which methane flows
to the well bore and then to the surface.
Production forecasts are coming thick and fast, and it is estimated that
the USA could satisfy its demand for gas for 200 years with this technique. According to the International Energy Agency (IEA), underground natural gas resources are so big that by 2020 the USA could
overtake Russia and Saudi Arabia as the largest producer of energy and
possibly become import-independent.
However, the environmental consequences of this method have not
been researched extensively, and critics are worried, for example,
about contamination and depletion of drinking water sources. For a
borehole in shale gas, approximately 10,000 m3 of water, 300 m3 proppant and 50 metric tons of chemicals are needed. For 300 holes this
potentially adds up to 3 million m3 of water, 90,000 m3 proppant and
15,000 metric tons of chemicals. The water used for fracking, as well as
deep groundwater coming to the surface, must be collected and
cleaned. Deep groundwater may contain salt, heavy metals, hydrocarbons and radioactive isotopes, as well as – after the fracking procedure – part of the fracking fluid. Thus, it is no wonder that fracking is
controversially discussed all over the world.
Proponents of fracking technology argue that many coal-fired power
plants in the USA have been shut down and replaced by gas-fired
plants, which has led to decreases of about 400 million tons in CO2
emissions per year from fossil fuels over the past 7–8 years. Would
worldwide promotion of fracking then have a positive effect on the
atmosphere and block global warming?
A recently published article in “National Geographic Germany” pointed
out that methane is an even more potent greenhouse gas than CO2,
which is of great concern to climate researchers. Since 2006, measurements have shown that the methane content in the atmosphere is on
the rise. Many experts are of the opinion that this is also a consequence
of strongly intensified drilling of shale gas reserves.
Thus, the development and use of any fossil fuel – be it methane, coal
or oil – unfortunately still appears to contribute to a global rise in
temperature. Against this background, discussions about the pros
and cons of each delivery method, while of value, may divert us from
solving one of our most pressing problems: limiting global warming.
The real solution will come through developing and implementing
effective sustainable technologies for energy production, coupled with
energy-efficient industrial processes. All other paths will inexorably
lead to failure and possible disaster!
Dr. Hubert Pelc
redaktion-keramik@dvs-hg.de
,17(5&(5$0
‡
&217(176 '(&(0%(5
CERAMICS FORUM
Anorthite (CaO·Al2O3·2SiO2) exhibits a low
thermal expansion coefficient and dielectric
constant as well as good wear resistance.
These properties nominate anorthite to be a
promising material for substrate applications,
e.g. in the electronics industry. Filter cake produced from the processing of juice purification
during the production of sugar from sugar-beet
is a solid waste containing pulp, carbonate, lime
residue and molasses. This is a major problem
unless it is not utilized. The article starting on
page 426 reports the suitability of sugar-beet
filter cake as a novel starting material in the
preparation of anorthite bodies.
RAW MATERIALS WORLDWIDE
HIGH-PERFORMANCE CERAMICS
Laterites and lateritic soils are readily available
in tropical and subtropical areas. The degree of
induration of these materials varies, ranging
from an almost loose, coherent mass with very
poor mechanical properties to the most dense
and hardened blocks. The objective of the study
presented on page 430 was to investigate the
potential use of indurated laterites as effective
structural building and construction materials.
Since the development of an economic technology to produce construction materials in tropical
areas enhance the building practices, this work
was sponsored by “The Academy of Sciences for
the Third World”.
Composite systems are becoming more and more
popular in biomedical applications because of
the effective combination of the desired properties of their constituents. From this perspective,
inorganic bioactive glass fillers and biocompatible polymer matrices are one of the mostly
developed systems for orthopaedic and dental
applications. The research report starting on
page 444 describes the fabrication of a biocomposite scaffolds loaded with ciprofloxacin.
All the results of the study suggest that this
composite system can serve as an appropriate
bioactive matrix for tissue regeneration.
T R A D E FA I R S & C O N V E N T I O N S
H I G H - P E RFO R M A N C E C E RA M I C S
418 Refractories Colloquium Reflects European Industries
Resurgence
444 Bioactivity and Drug Delivering Ability of a
Chitosan/46S6 Melted Bioactive Glass Biocomposite
Scaffold
419 Serbian Ceramic Society Second Annual Meeting
2013
M. Mabrouk, A.A. Mostafa, H. Oudadesse, A.A. Mahmoud,
M. I. El-Gohary
419 COMPOSITES EUROPE 2013 with Strong Growth Spurt
420 Most Important Event for the Powder and Bulk Industries in China
R E G U L A R F E AT U R E S
421 International Ceramics Industry Exhibition in India
415 Imprint
421 International Conference “Refractories for Industry –
2014” in Moscow
415 Editorial
416 Contents
443 Index of Advertisers
C E RA M I C S FO RU M
422 Company News
423 Silver-doped Bioactive Glasses: What Remains
Unanswered?
M. Mozafari, F. Moztarzadeh
IBC Meeting Diary
B UYE RS ’ G U I D E
453 Ceramic Industry Suppliers Guide
426 Utilization of Sugar-Beet Industry By-Products
for the Production of Anorthite
H.F. El-Maghraby, A.A. Aly, S.M. Naga
R A W M AT E R I A L S W O R L D W I D E
430 Induration of Laterites in Tropical Areas: Assessment
for Potential Structural Applications
E. Kamseu, A. Nzeukou, P. Lemougna, N. Billong, U.C. Melo,
C. Leonelli
438 Utilization of Granite Found in the Umm Had Area,
Central Eastern Desert (Egypt), as Fluxing Material
in the Preparation of Ceramic Recipes
S.E. Ahmed, S.H. Abd El Rahim, D.A. Abdel Aziz, N.I. Abd El Ghaffar
E XC LU S I V E FO R S U B S C RI B E RS
1–4 Recycling of Glazed Floor Tile Industry Scrap in
Masonry Mortar
J.S. Costa, C.A. Martins, W. Libardi, J.B. Baldo
2014
22nd-26th September 2014 - Rimini, Italy
ORGANISE D BY RIMINI FIE R A - I N C OOP E R AT I ON WI T H ACI MAC
www.tecnargilla.it
omniadvert.com
24th International Exhibition of Technologies and Supplies for the Ceramic and Brick Industries
,17(5&(5$0
75$'()$,56&219(17,216
Refractories Colloquium
Reflects European Industries
Resurgence
Brüssel, and was entitled “Paving the way to 2050 – the ceramic industry roadmap” which was an initiative developed by the European
ceramic community to advance environmental and economic benefits for the companies and the countries that they are based in. Details of the contents of this lengthy but important document were
issued by PRE earlier this year (available at: www.cerameunie.eu).
D.A. Jarvis*
Main topic: Refractories for industrials
The magnificent facilities afforded by the Eurogress Congress
Centre Aachen (Germany) was once more the backdrop to a successful meeting of the worlds refractories community. ECREF, the
European Centre for Refractories based in Höhr-Grenzhausen
(German) organised the 56th annual international colloquium in
this popular venue. The meeting was held September 25–26, 2013
and welcomed over 380 delegates from all over the world. Each year
the meeting alternates between featuring papers mainly on iron and
steel and other more general topics. This year’s theme was “Refractories for Industrials”. As usual the meeting opened with a general
session and then was divided into different technical topics running
concurrently in the two main lecture theatres with simultaneous
translation between the two main conference languages German
and English.
The venue: Eurogress Congress Centre Aachen
In the opening session all of the delegates were welcomed by
Thomas Seger, Association of the German Refractories Industry,
Höhr-Grenzhausen. Mr Seger was accompanied and supported by
a number of other figures in the European refractories industry
including Francois Wanec, PRE Fédération Européenne des Fabricants de Produits Réfractaires, Brüssel, Prof. Rainer Telle, Institut für Gesteinshüttenkunde, RWTH Aachen, Prof. Christos G.
Aneziris and Prof. Ernst Schlegel of the Institut für Keramik, Glasund Baustofftechnik, Technische Universität Bergakademie Freiberg. Also in attendance were Gangolf Stegh, DGFS-Deutsche
Gesellschaft Feuerfest- und Schornsteinbau e.V., Bonn, Dr. Ulrich
Roger, Deutsche Glastechnische Gesellschaft e.V. (DGG), Martin
Roth, Bundesverband der Deutschen Ziegelindustrie e.V., Bonn,
and Dr. Detlev Nicklas, Deutsche Keramische Gesellschaft e.V.,
Köln.
The keynote lecture was presented by Astrid Volckaert, PRE
Fédération Européenne des Fabricants de Produits Réfractaires,
Technical sessions
Before lunch the programme featured the presentation of the
Gustav Eirich Award given each year for an award winning paper
on refractories technology chosen by a panel of judges. Immediately after lunch two technical sessions on “Processing of Ceramics” and the “Testing of Refractories” started in both main lecture
halls.
The papers on ceramic processing covered diverse topics, but with
several strong references to the production and use of low thermal
mass bricks and monolithics. These have clear advantages of the
ability to allow the construction of lightweight structures while at
the same time saving significant amounts of energy and money. The
presentations on testing emphasised the necessity to be able to
replicate and compare test results from different sources. They also
touched on the importance of specialised procedures such as for
carbon monoxide resistance and the development of new tests in
areas like ultrasonics which can be used in non destructive testing of
samples and, in some cases, also structures.
The session on monolithic refractories featured new developments
in the chemistry, granulometry and bonding systems of castable
materials to further enhance their performance in service and lower
the unit cost in operation. The papers on raw materials developed
the theme that without detailed planning and preparation there
may be future problems in the availability of high quality raw materials produced using lower energy levels to higher environmental
standards.
The next day of the meeting saw major sessions on monolithic refractories and on installation techniques, equipment and applications. Concurrently topics on testing were covered. Additionally a
number of individual detailed company papers were presented.
Some of the newer – less usual – applications covered were the development and use of refractories for vessels engaged in coal gasification and the need for them to resist very aggressive slags. There
were also presentations on refractories used in biomass and hazardous waste treatments and in titanium chlorinator vessels. Papers on
refractories for the production of non ferrous metals were also featured as were instances of refractories used in the cement and in the
glass industries.
Exhibition area
* David A. Jarvis, Industry Consultant, E-Mail: dajarvis@btopenworld.com
,17(5&(5$0
75$'()$,56&219(17,216
Exhibition
In the area situated next to the entrance foyer was also a well attended exhibition with more than twenty companies showcasing their
products, capabilities and services. The DIFK Deutsches Institut für
Feuerfest und Keramik GmbH, Höhr-Grenzhausen (Germany), featured a stand from which they offered information on their constituent refractories companies based in Germany. Several acadamic
bodies such as the Institut für Gesteinshüttenkunde of RWTH
Aachen, Hochschule Koblenz (Germany), and the Institut für
Keramik, Glas- u. Baustofftechnik, Freiberg (Germany) were exhibiting and also contributing many of the technical presentation in the
colloquium.
Serbian Ceramic Society
Second Annual Meeting 2013
D.A. Jarvis*
The Serbian Academy of Sciences and Arts (SASA) has held a very
successful annual technical meeting from September 30 to October
1, 2013, in Belgrade. It was entitled “Advanced Ceramics and Application II: New Frontiers in Multifunctional Material Science and
Processing.”
The Society was the lead organizer in partnership with the Institute
of Chemistry, Technology and Metallurgy, the Institute for Technology of Nuclear and other Raw Mineral Materials, the Institute for
Testing of Materials, and the Archeological Institute of SASA.
nomical and for Societal Needs – 2025” by Marcel H. Van de
Voorde, Delft University of Technology (Netherlands). This was
followed by presentations on the synthesis of nano ceramics while
in the second Plenary Session the presentations featured five technical papers ranging from “Silicon Carbide Composites” by Rainer
Gadow, Institute for Manufacturing Technologies of Ceramic
Components and Composites, Stuttgart (Germany) to “Powder
Materials as Fractal Objects” by Ljubiša M. Kocić of, University of
Niš (Serbia). Plenary Session III featured three papers including
“Ceramics and its Dimensions – Heritage, Creativity, Visions for
Ceramics in a Multicultural Europe” by W. Siemen of Deutsches
Porzellanmuseum, Hohenberg (Germany) to “Plasma Devices
and Preparing of Nonconductive Materials” by researchers from
Serbian and Bulgarian Institutes.
The invited session opened with a paper on “Sintering and Measuring Conditions –Effects on the Dielectric Properties of TTB Ceramic Materials” by Andrei Rotaru, University of St Andrews (UK),
with input from INFLPR Bucharest – National Institute for Laser,
Plasma and Radiation Physics Laser Department, and The Central and Eastern European Committee for Thermal Analysis and
Calorimetry.
Four other presentations from Serbian and Bulgarian institutes
were also given. There were two other sessions featuring more than
sixteen papers on a wide range of subjects. The poster session covered almost fifty presentations on ceramic related topics.
COMPOSITES EUROPE 2013
with Strong Growth Spurt
Poster presentation (courtesy of Prof. Vojislav Mitić)
More than 100 delegates from both – the scientific and artistic –
ceramic communities in Canada, Brazil, Bulgaria, France, Germany,
Japan, Poland, Romania, Serbia, Slovenia and the UK attended the
event. Co-chaired by Prof. Vojislav Mitić, President of the Serbian
Ceramic Society and Prof. Olivera Milošević, President of the
Serbian Ceramic Society Assembly, the conference was organized
around the twin themes of opening up new frontiers for designing
advanced ceramic materials and preservation of cultural heritage
and divided up into three plenary sessions – a session on invited
papers and a large poster session. The individual technical sessions
covered very widely ranging topics related to research and more directly to practical applications in the fields of energy conservation.
The meeting opened in Plenary Session I with a paper on the
“European Roadmap for Nanotechnology: Directions for Eco-
Lightweight construction is today’s priority, and composite materials
are the necessary key technology. The impending boom of these innovative materials was also reflected at COMPOSITES EUROPE
2013 which set new records with a clear increase in exhibitor (26 %)
and visitor figures (30 %). 406 exhibitors (previous event in Stuttgart
2011: 322) from 28 countries and 9,171 visitors (2011: 7,080) came
to the Stuttgart exhibition Centre from September 17–19, 2013.
“With these figures, COMPOSITES EUROPE has now definitely
established a firm position for itself among European lightweight
construction fairs”, says Hans-Joachim Erbel, CEO with trade fair
organizer Reed Exhibitions Germany. The leading producers and
processors of composite materials, mechanical engineering companies and research institutions had come to Stuttgart for the
eight edition. The focus of the trade fair, the lecture programme
and the accompanying conference of AVK (Federation of Reinforced Plastics, Germany) this year were new materials systems,
integrated production technologies and innovations for the application markets.
“Composites are a key technology for Germany as an industrial
location. That is also evident at COMPOSITES EUROPE”, says AVK
Chairman Dr. Michael Effing. The significance of Germany as a
location for the composites industry and its application sectors is
,17(5&(5$0
75$'()$,56&219(17,216
also reflected in the strong participation of international key players
in the trade fair. The large national pavilions with leading companies from France, Italy, the Netherlands, the USA and China emphasize the international importance of COMPOSITES EUROPE. Being held at the trade fair location Stuttgart – in the heart of Southern Germany, Europe’s largest market for lightweight construction
– COMPOSITES EUROPE is closer to its application markets than
any other event. One in two trade fair visitors came from the automotive sector, followed by the aviation and mechanical engineering
segments.
Composites market continues to pick up speed
The mood at COMPOSITES EUROPE demonstrated: The sales
markets for composite materials continue to pick up speed. The
future prospects for the industry, while varying according to sector,
are generally good. This is evident from the Composites Market
Report 2013 published jointly by AVK and the Association of Carbon Composites (CCeV). In the largest segment – glass-fibre reinforced plastics – experts expect a growth in Europe. With respectable increases, Germany is the largest market and driving force in
this field and has now for the first time become the largest producer
in Europe. Prospects for the CRP (carbon fiber reinforced plastics)
market are promising, according to the market report: here the experts of the CCeV industry network see a sound market with minimum annual growth rates of 13 %. Currently, the potential for
growth is in the large mass segments of wind power plants, aerospace and sports, as well as in the automotive segment which is
considered the strongest driving force with the highest potential.
As a result, companies have a positive view of the future. When
asked about the perspective for business developments in their industry, 80 % of the exhibitors expressed the expectation of a light to
strong upward trend in the market.
Advances in automation
Automation of processes for the mass production of composite
components continues to be the precondition for the success of
composite materials in the application industries. At COMPOSITES
EUROPE, composite application markets such as automotive, aviation, wind power as well as the building sector were the primary
focus of the fair. The growing number of exhibitors from the mechanical engineering segment confirms the increasing significance
of COMPOSITES EUROPE: “Most of the exhibiting VDMA (German Engineering Association) member companies are highly satisfied and express gratification at the increasingly internationality of
trade visitors“, says Dr. Walter Begemann of the VDMA Forum
Composite Technology. “We see fibre-reinforced composites as
having great potential. We therefore feel that we are in the right
place at COMPOSITES EUROPE”, adds Krauss Maffei’s Sebastian
Schmidhuber.
The next COMPOSITES EUROPE will take place from 7 to 9 October 2014 in Duesseldorf (Germany) – at the same time as the ALUMINIUM World Trade Fair. According to schedule, COMPOSITES
EUROPE will then return to Stuttgart in 2015, where it will again be
accompanied by HYBRID Expo.
Contact and further information: Dr. Mike Seidensticker,
Press Office, phone: +49 (0) 21 19 01 91-2 21,
E-Mail: mike.seidensticker@reedexpo.de,
Website: www.composites-europe.com
Most Important Event for the
Powder and Bulk Industries
in China
The 11th International Powder & Bulk Solids Processing Conference
& Exhibition (IPB) (October 15 to 17, 2013, Shanghai) has come to
a fruitful close. 166 exhibitors from 11 countries showcased the
latest technologies for processing powder, granules, and bulk solids
in a display venue of more than 2,349 m2. During the three-day
show, IPB 2013 attracted 6,446 visitors from 24 countries and regions. Visitors came from a wide variety of industries, among them
the chemical industry (30 %), mechanical and plant engineering
(12 %), the pharmaceutical industry (10 %), food and feed manufacturing (9 %), and the mining industry (6 %). Approximately 350
visitors at the parallel U.K./China International Particle Technology
Forum discussed recent advances and identified future research directions in particle science and technology. The conference is held
every two years, either in the U.K. or China. This year’s attendees
included engineers and scientists who were also key buyers at IPB.
NürnbergMesse China and the Chinese Society of Particuology
jointly organize China’s annual “one-stop-shop” trade show for all
industries focusing on mixing, conveying, milling, screening, and
granulating. Over the past eleven years, IPB has become the most
important international platform for the powder and bulk sector in
China. Almost every fifth exhibitor was international: The top exhibiting nations after China were Germany, Japan, and the United States.
The products on display included basic mechanical processing and
nano particle technologies, measurement and control systems, and
many more. According to a trade show survey, 80 % of the exhibitors were satisfied with the professional qualifications and competence of the trade visitors: 91 % explained that they were able to
reach their most important target groups at IPB 2013. Every 9th exhibitor expected follow-up business due to contacts made during
the trade show.
Informative supporting program
The high-quality exhibition was complemented by an edifying supporting program. BS&B Safety System Asia Pacific hosted the workshop “Industrial dust explosion risk management”. Zhangjiagang
Fanchang Machinery organized a seminar on the topic “Mixing,
measurement, and transport of powder materials.” Another highlight at IPB 2013 was the workshop “Optimizing dry powder measurements” held by HORIBA Trading.
The next IPB will take place from October 14 to 16, 2014, at the
INTEX, Shanghai.
More Information: Evian Gu, Project Manager,
phone: +86 (0) 21 60 36-12 20, E-Mail: evian.gu@nm-china.com.cn,
Website: www.ipbexpo.com/en
,17(5&(5$0
75$'()$,56&219(17,216
International Ceramics
Industry Exhibition in India
Ceramics Asia 2013 will be held from December 18–20, 2013 in
Gujarat University Exhibition Center, Ahmedabad (India). This
event is designed to cater to the growing markets in the Asian region
and its potential for the ceramic industry in particular.
Ceramic industry in India
The ceramic industry in India is more than 100 years old. It comprises mainly of ceramic tiles, sanitaryware, tableware and – more
recently – technical ceramics. The heavy clay industry in India offers
a big market. State-of-the-art ceramic goods are being manufactured in the country and the technology adopted by the organized
sector within Indian ceramic industry is of international standard.
Ceramic tile industry in India
Today ceramic tile throughout the world is not hand-made or
hand-painted for the most part. Automated manufacturing techniques are used and the human hand does not enter into the picture until it is time to install the tile. Most modern houses throughout use ceramic tiles for their bathrooms and kitchens and in every vital area of the premises. Ceramic tiles are also the choice of
industries, where walls and floors must resist chemicals. And the
space shuttle never leaves earth without its protective jacket of
high-tech, heat resistant tiles. A major change that took over ceramic tiles industry was the introduction of vitrified and porcelain
tiles. These entrant tiles are said to be the future tiles which account for 50 % of total tile sales by value.
Ceramic tiles as a product segment has grown to a sizable chunk
today at approximately 600 million m2 production per annum. The
key drives for the ceramic tiles in India are the boom in housing sector coupled by government policies fuelling strong growth in housing sector. The investment in the last 5 years has been to the tune of
approx € 725 Million. The industry also enjoys the unique distinction of being highly indigenous with an abundance of raw materials,
technical skills, infrastructural facilities despite being fairly capital
intensive. A total of over 550,000 people are employed in the sector.
Sanitaryware industry in India
The sanitaryware industry in India is divided into two sectors, the
organized and unorganized sectors. In the unorganized sector
around 250 companies produce basic sanitaryware under various
brand names. Their production capacity totals 500.000 Mio t/year.
The industry has been growing by about 15–18 % over the last two
years. Goods are exported to East and West Asia, Africa, Europe and
Canada. The sanitaryware industry in India has shown dramatic
growth over the last 5 years, with major players doubling their production capacity. The manufacturers have adapted better technologies, like battery casting, beam casting, and imported fast-firing
cycle kiln technology.
Indian tableware industry
India is exporting bone china tableware to Europe, Canada, Australia,
etc. At present, production capacity of bone china tableware in India
is 200 t/day – and nearly 25 % of total production is exported. New
bone china units in India are using the latest technology and equipment and even the old stoneware industry has come a long way.
Technical ceramics
The global market for advanced ceramics is estimated at € 19 Billion, the Indian market at about € 40 Million. A combination of
special raw materials and superior manufacturing techniques deliver products with unique resistances to temperature, corrosion and
wear for use in the electronics, automotive and aerospace industries.
The per unit realization from advanced ceramics products is much
higher than margins on regular products and Indian Export Promotion Council India (Capexil) is likely to plan a roadmap for the
development of exports of advanced ceramics products under a
Market Access Initiative (MAI) scheme. The industry is expected to
grow at a rate of 10 % in the future.
Major growth drivers in this industry
The key driver for the ceramic tiles and sanitaryware in India is the
boom in housing sector coupled by government policies fuelling
strong growth in housing sector. The retail boom in the Indian
economy has also influenced the demand for higher end products.
Overall the bullish growth estimates in the Indian economy has significantly influenced the growth of the Indian ceramic industry.
Contact: Michael Wong, phone: +86 (0) 20 83 27 63 69,
E-Mail: ceramicsasia@unifair.com, Website: www.ceramicsasia.net
International Conference
“Refractories for Industry –
2014” in Moscow
Experts of different ministers, federal services, leading Russian and
foreign engineering companies, developers, institutes, refractory
and metallurgy companies will take part in The XXIII Annual
International Conference from February 04-05, 2014 in Moscow
in the Conference Hall of the Warsaw Hotel.
Conference topics
Raw materials: Raw materials used for modern refractory production; problems of raw materials quality increase; methods of decreasing admixtures in raw materials; primary ore preparation of
raw materials; analysis of Russian and foreign raw material deposits
Equipment: Equipment utilization experience in different refractory productions; problems of reconstruction and exploitation of
equipment; new equipment supplied by foreign companies for refractory production
Unshaped: New technologies in modern refractory production;
composition and raw material preparation demands; properties of
refractory products; problems of refractory quality increase
Pig iron/steel: Experience of different refractory applications in
units of ferrous metallurgy; refractory stability; comparison of different manufactures refractory products
Steel casting: New researches of refractories in steel casting units
Foundry, cement, glass: Application of refractories in the foundry,
cement and glass industries; ceramics; new requirements of industry and manufactures offers
Investment, technical & sales management, markets: Analysis of
Russian refractory market for 2013 and long-term development; investment projects of technical reconstruction of enterprises; technical and sales management of refractory enterprises; investigation of
refractory enterprises and production on the basis of information
and analytical systems.
The conference languages are Russian and English (simultaneous
interpretation.
More information and registration: Andrey G. Borisov,
phone: +7 (499) 1 29-37-09, E-Mail: borisov@gol.ru
,17(5&(5$0
&(5$0,&6)2580
Company News
Determination of Carbon
and Sulfur in Organic and
Inorganic Solids
When using conventional elemental analyzers for carbon and sulfur
determination in solids, the user has to decide whether to use a
resistance furnace to analyze organic compounds or an induction
furnace for inorganic compounds.
Not with ELTRA’s unique CS-2000 analyzer which combines both
techniques! Thus the user only needs one analyzer to examine
organic matrices (such as fuels, oils, chemicals) and inorganic
matrices (such as steel, ores, ceramics, glass) for their carbon and
sulfur content directly without cumbersome sample preparation.
The analysis time of the CS-2000 is very short: analysis of steel,
for example, only takes about 50 seconds; for coal it is about
90 seconds.
RHI: Problems in Norway
Strain Earnings Situation
In the third quarter of 2013, revenues fell to € 427.4 million, down
4.0 % on the previous quarter. While the revenues of the Steel Division declined by 3.6 % because business in Europe was weaker than
expected, the Industrial Division’s revenues fell by 4.7 % especially
due to the postponement of projects in the business unit glass.
The operating result in the past quarter amounted to € 32.2 million
and is burdened by technical problems in the newly constructed
fusion plant in Norway totaling roughly € 12 million, and by negative currency effects. Compared to the operating result of the second
quarter of 2013, which was adversely affected by negative one-off
effects of € 11 million, this corresponds to an increase by 18.4 %.
The operating result margin rose from 6.1 % to 7.5 %. EBIT
amounted to € 30.7 million in the third quarter of 2013 and was
influenced by write-offs of € 1.9 million in China resulting from
product and process enhancements. The decline in EBIT compared
to the previous quarter is primarily attributable to the positive
effects from the termination of the US Chapter 11 proceedings recorded in the second quarter of 2013.
Contact and more information: Simon Kuchelbacher,
Investor Relations, phone: +43 (0) 5 02 13-66 76,
E-Mail: simon.kuchelbacher@rhi-ag.com, Website: www.rhi-ag.com
Taking Responsibility for the
Community and Environment
CS-2000 analyzer (©ELTRA)
Carbon and sulfur are measured simultaneously with an accurate
infrared detection system. Up to four measuring cells can be customized according to the user’s requirements. Dual infrared detectors for C and S allow reliable detection of both parameters from
sensitive, low levels to high ranges. The CS-2000 analyzer is a robust,
maintenance-friendly and flexible instrument for carbon and sulfur
determination in organic and inorganic samples which is unique in
the market.
Benefits:
• Analysis of organic and inorganic samples,
• individual measuring ranges for C and S from low ppm levels to
high percentages,
• up to 100 % CS determination, depending on sample weight,
• very short analysis time,
• automated sample feeding (option),
• robust design for use both in production and lab.
Further information: Ute Vedder, phone: +49 (0)21 04 23 33-1 55,
E-Mail: u.vedder@verder-scientific.com, Website: www.eltra.org
The alumina produced by Alteo is used to make a very wide range
of products that are an intrinsic part of everyday life: tiling, LCD
screens, fireproofing material used in carpets, pollution control
systems for automobiles, DIY abrasives (sandpaper…).
The production plants are located close to urban communities, providing the driving force behind Alteo’s determination to perform in
an exemplary manner in terms of environmental protection and
sustainable development. This philosophy is shared by the whole
Group workforce and results in constant striving to minimize the
impact of the business on the environment. Alteo has adopted a
proactive approach towards environmental protection, and employee health and safety for many years. Alteo is very much an industrial player working closely with the local community. Consequently it has a communication policy firmly focused on complete
transparency in order to maintain the dialogue concerning issues
related to health and safety as well as sustainable development. An
example of this is the decision made by the Gardanne factory
management to sign the Charte Responsible Care® (Responsible
Care Charter) of the Union des Industries Chimiques (Chemical
Industries Union) which is consistent with this approach. Alteo
was awarded a trophy at the “Trophées Responsible Care de Méditerranée” (“Mediterranean Responsible Care Awards”) in 2011.
More Information: Amélie Ranger, Communication Manager,
phone: +33 (0) 4 42 65 22 16,
E-Mail: amelie.ranger@alteo-alumina.com,
Website: www.alteo-alumina.com
,17(5&(5$0
&(5$0,&6)2580
M. Mozafari 1, 2, 3, F. Moztarzadeh 4
Silver-doped Bioactive Glasses:
What Remains Unanswered?
7+($87+256
Masoud Mozafari earned his Ph.D. degree with honors
on Biomedical Engineering-Biomaterials from Amirkabir
University of Technology (Tehran Polytechnic), 2013.
During 2012–2013, he joined Oklahoma State University
and Pennsylvania State University as a research associate
and research visiting scholar, respectively. Dr. Mozafari’s
research interests involve the understanding of whole
field of biomaterials with respect to biological interactions, and also delivery systems for potentially useful stem cell and genetic purposes. He has over 150 pre-reviewed publications as chapter
books, conference and journal papers. Dr. Mozafari has received several
awards including “Top 10 National Outstanding Scientific Authors” (2011).
Dr. Mozafari is currently an assistant professor and head of “Bioengineering Research Group” in Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran.
E-Mail: mozafari.masoud@gmail.com
Fathollah Moztarzadeh is a faculty member of Amirkabir
University of Technology (Tehran Polytechnic) and distinguished professor of biomedical engineering. He obtained his Ph.D. in 1976 from Technische Universitat
Clausthal, Germany, with specialization on Materials
Science and Engineering. Prof. Moztarzadeh has been
the director of Commission for Industry of National Research Council, research deputy and research consultant
of Ministery of culture and higher Education of Iran, and director of highly
regarded Materials and Energy Research Center (MERC). Prof. Moztarzadeh
has also received many national and international awards such as ECO
award in the field of Natural Sciences (1993), Iran’s selected academic lecturer of the year and Iran’s selected researcher of the year (1992), and the
Lasting Personalities Award of 2007, Iran. He is currently member of basic
science group, the Academy of Sciences of Iran.
$%675$&7
.(<:25'6
A critical issue in orthopaedic and dental implant surgery is the development of infections due to bacterial colonization in the
surrounding sites. The potential of bioactive glass materials has clearly been confirmed for tissue engineering. To prevent
infections, it would be reasonable to synthesize ideal bioactive glasses containing antibacterial elements. There have been
several attempts to introduce silver into bioactive glass structures to take advantage of its strong antibacterial activity
against microorganisms. It has been speculated that this idea and the advent of modern biomaterials could result in significant future advances. However, there is considerable evidence that silver ions also have cytotoxic and genotoxic effects in
higher organisms, which causes concern about its harmful impacts. Undoubtedly, this strategy needs further investigation
and many critical questions have to be answered before it can be successfully advanced.
1 Introduction
The development of infection and bacterial colonization after implantation of bioactive materials is a critical issue in orthopaedic
and dental surgery [1]. The ensuing use of antibiotics and antibacterial strategies has shed light on alternate strategies for minimizing
the danger of infection, risk of implant failure, and even avoiding
patient death [2–3]. Since the 1800’s, silver has frequently been used
for medical applications due to its effective antibacterial activity, but
its antimicrobial mechanism is not fully understood [4–5]. Some
studies have suggested that silver ions can potentially interact with
bacterial cells by binding sulfhydryl groups of bacteria enzymes,
binding to microbial DNA to prevent bacteria replication, inhibiting
1 Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran
(Iran)
2 Helmerich Advanced Technology Research Center, School of Materials Science and
Engineering, Oklahoma State University, Tulsa, OK 74106 (USA)
3 Department of Materials Science and Engineering, Pennsylvania State University,
University Park, PA 16802 (USA)
4 Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence),
Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran (Iran)
bioactive glass, silver,
tissue engineering
Interceram 62 (2013) [6]
cell respiration, and restricting transport of vital substances within
cells [6–8].
Since bioactive glass materials have been extensively used as orthopaedic and dental grafting materials, silver-containing bioactive
glasses have recently been developed to induce inhibitory effects on
bacterial growth [9–12]. Many studies have reported on introduction of silver oxide into bioactive glass structures with the aim of
potentially minimizing the risk of microbial contamination through
the antimicrobial activity of silver ions [13–14]. Releasing silver ions
as dissolution products from silver-containing bioactive glasses is
proven to inhibit growth of different bacterial strains (such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus)
without compromising the bioactivity of the glass [15].
This idea that cells can mechanistically protect themselves by progressively pumping out silver ions [16] or binding silver ions to
suitable molecules like metallothioneins [17] makes the class of
silver-containing bioactive glasses promising biomaterials with
anti-inflammatory properties. As can be seen from the growing
number of publications in the field (trend-line of Fig. 1), there has
been heightened interest in the incorporation of silver into bioactive
glass structures over the last decade.
,17(5&(5$0
&(5$0,&6)2580
Fig. 1 • Number of papers
published per year in the field
of silver-containing bioactive
glasses, compiled from a
literature search in the Scopus
database [TITLE-ABS-KEY-AUTH
(silver bioactive glass)]
1
2 Issues and challenges
Like any other novel medical therapy, a number of critical challenges and opportunities have yet to be considered. Although doping
with added metal ions seems to be a promising approach to enhance
the anti-bacterial characteristics of bioactive glasses, more detailed
analyses of the biological response of cells exposed to silver-containing bioactive glasses are needed to confirm the exact effects of silver
ions in the human body. While the concept of using silver in bioactive glasses is exciting, there are critical obstacles that may take
several years to overcome. Among issues that will determine the
practicality of the approach are:
• Bacterial resistance to silver. Even after extensive experience in
medical applications of silver, there are still concerns that overuse
of silver may lead to resistance among bacteria strains. Resistance
to silver by bacterial plasmids has been observed by researchers in
the field of molecular genetics [18]. This resistance to antimicrobial agents reportedly occurs via different mechanisms directly related to changes in the nature of the bacterial cell wall. The cell
boundary may act as a permeability barrier, reducing uptake of
the compound [19–21].
• Disruption of cell biochemistry. Since silver ions are a kind of
soft Lewis acid with an affinity to sulfur and nitrogen, it is possible for them to disturb biochemical processes by interaction with
thiol and amino groups of proteins, nucleic acids and cell membranes [22–23]. In addition, depending on involved cell type, reactive oxygen species could form when silver ions are released
from bioactive glasses [24–27]. These molecules can subsequently
react with various biological macromolecules, resulting in DNA
damage, oxidation of amino acids and oxidative inactivation of
specific enzymes.
• Toxicity of silver. The degree of silver toxicity is associated with
the volume of released ions. Besides the release behaviour of bioactive glasses, cellular uptake kinetics can play a significant role in
the bioavailability of these silver-containing materials [28–31].
When high concentrations of silver are present, there is danger of
silver distribution in the bloodstream and accumulation in different tissues and organs. The ions are then able to form harmful
complexes with widely separated biomolecules. Unfortunately,
published results on the silver release behaviour of bioactive
glasses are not strictly comparable due to their use of different
glass compositions and experimental conditions.
• Unknown effects of free silver ions. Silver-containing bioactive
glass releases silver ions that act as biochemically active agents. As
there are various ways for silver ions to disrupt biological processes, it is not possible to formulate general and simple rules about
the origins, toxic actions, and ultimate effects of the released ions.
The actual functions of many different mechanisms have yet to be
properly researched and understood.
• Biodegradation and dissolution of implants. The addition of
silver can also affect the structural and textural properties of bioactive glasses and raise their biodegradation and dissolution rates.
Increasing silver content makes glass structure very complex. It is
expected that the breakdown behaviour of this class of materials
will be greatly affected. Since silver ions are monovalent, replacing
silver by calcium in the glass structure could reduce the number
of non-bridging oxygen groups and decrease the glass dissolution
rate [32]. This suggests that more detailed studies on the structural properties of bioactive glasses are needed to design better
glasses that achieve controlled release behaviour by manipulating silver content.
,17(5&(5$0
&(5$0,&6)2580
3 Prospects
Although there are still major issues to overcome, the proponents of
this strategy are optimistic that silver-containing bioactive glasses
will be an effective approach to minimize the risk of infection in
implanted sites and will have an increasing impact on clinical applications. Extended research in materials science and the cellular biology aspects of this class of materials need to be conducted to fully
understand the processes involved in the antimicrobial properties of
silver. In addition, future in vivo and in vitro studies should systematically assess the various effects of silver on bioactive glasses. Interdisciplinary researches and effective collaborations can potentially
overcome the major issues related to bioactive silver use and make
this treatment a viable option in the near future.
References
[1] Campoccia, D, Montanaro, L, Arciola, C.R.: The significance of infection related
to orthopedic devices and issues of antibiotic resistance. Biomaterials 27 (2006)
2331–2339
[2] Hook, A.L., Chang, C.-Y., Yang, J., Luckett, J., Cockayne, A., Atkinson, S., et al.:
Combinatorial discovery of polymers resistant to bacterial attachment, Nat. Biotech. 30 (2012) 868–875
[3] Li, P., Poon, Y.F., Li, W., Zhu, H.-Y., Yeap, S.H., Cao, Y., et al.: A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability.
Nat. Mater. 10 (2011) 149–156
[4] McHugh, G.L., Moellering, R.C., Hopkins, C.C., Swartz, M.N,: Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin: A new threat in
burn units? Lancet 305 (1975) 235–240
[5] Hendry, A.T, Stewart, I.O.: Auxanographic grouping and typing of Neisseria gonorrhoeae. Can. J. Microbiol. 25 (1979) 515–521
[6] Politano, A.D., Campbell, K.T., Rosenberger, L.H., Sawyer, R.G.: Use of silver in
the prevention and treatment of infections: silver review. Surg Infect (Larchmt)
14 (2013) 8–20
[7] Vitale-Brovarone, C., Miola, M,, Balagna, C., Vern´e, E.: 3D-glass–ceramic scaffolds with antibacterial properties for bone grafting. Chem. Engi. J. 137 (2008)
129–136
[8] Chen, W., Liu, Y., Courtney, H.S., Bettenga, M., Agrawal, C.M., Bumgardner, J.D.,
Ong, J.L.: In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomater. 27 (2006) 5512–5517
[9] Blaker, J.J., Nazhat, S.N., Boccaccini, A.R.: Development and characterisation of
silver-doped bioactive glasscoated sutures for tissue engineering and wound
healing applications. Biomater. 25 (2004) 1319–1329
[10] Kawashita, M., Tsuneyama, S., Miyaji, F., Kokubo, T., Kozuka, H., Yamamoto, K.:
Antibacterial silver-containing silica glass prepared by sol-gel method. Biomater.
21 (2000) 393–398
[11] Vernè, E., Nunzio, S.D., Bosetti, M., Appendino, P., Vitale Brovarone, C., Maina,
G., et al.: Surface characterization of silver-doped bioactive glass. Biomater.
26(25) (2005) 5111–5119
[12] Di Nunzio, S., Vitale Brovarone, C., Spriano, S., Milanese, D., Verné, E., Bergo,
V., et al.: Silver containing bioactive glasses prepared by molten salt ionexchange. J. Europ. Ceram. Soc. 24 (2004) 2935–2942
[13] Bellantone, M., Coleman, N.J., Hench, L.L.: Bacteriostatic action of a novel fourcomponent bioactive glass. J Biomed. Mater. Res. 51 (2000) 484–490
[14] Clupper, D.C., Hench, L.L.: Bioactive response of Ag-doped tape cast Bioglasss
45S5 following heat treatment. J Mater. Sci. Mater. Med. 12 (2001) 917–921
[15] Bellantone, M., Williams, H.D., Hench, L.L.: Broad-spectrum bactericidal activity
of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46 (2002) 1940–1945
[16] Silver, S.: Bacterial silver resistance: molecular biology and uses and misuses of
silver compounds. Fems Microbiol. Rev. 27 (2003) 341–353
[17] Luther, E.M., Schmidt, M.M., Diendorf, J., Epple, M., Dringen, R.: Upregulation of
Metallothioneins After Exposure of Cultured Primary Astrocytes to Silver Nanoparticles. Neurochem. Res. 37 (2012) 1639–1648
[18] Silver, S.: Bacterial resistance to toxic metal ions. Gene 179 (1996) 9–19
[19] Svitlana, Ch., Matthias, E.: Silver as Antibacterial Agent: Ion, Nanoparticle, and
Metal. Angew. Chem. Internat. Edi. 52 (2013) 1636–1653
[20] McDonnell, G., Russell. A.D.: Antiseptics and disinfectants: activity, action and
resistance. Clin Microbiol Rev. 12 (1999) 147–179
[21] Russell, A.D.: Plasmids and bacterial resistance to biocides. J. Appl. Microbiol. 83
(1997) 155–165
[22] Silver, S., Gupta, A., Matsui, K., Lo, J.F.: Resistance to Ag(I) cations in bacteria:
Environments, genes and proteins. Met.-Based Drugs 6 (1999) 315–320
[23] Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O.: A mechanistic study
of the anti-bacterial effect of silver ions on Esherichia coli and Staphylococcus
aureus. J. Biomed. Mater. Res. Part A 52 (2000) 662–668
[24] Liu, W., Wu, Y.A., Wang, C., Li, H.C., Wang, T., Liao, C.Y., et al.: Impact of silver
nanoparticles on human cells: Effect of particle size. Nanotoxicology 4 (2010)
319–330
[25] Valodkar, M., Jadeja, R.N., Thounaojam, M.C., Devkar, R.V., Thakore, S.: In vitro
toxicity study of plant latex capped silver nanoparticles in human lung carcinoma
cells. Mater. Sci. Eng. C31 (2011) 1723–1728
[26] Foldbjerg, R., Dang, D.A., Autrup, H.: Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line. Arch. Toxicol. 85 (2011) 743–750
[27] Greulich, C., Diendorf, J., Geßmann, J., Simon, T., Habijan, T., Eggeler, G., Schildhauer, T.A., Epple, M., Kçller, M.: Cell type-specific responses of peripheral blood
mononuclear cells to silver nanoparticles. Acta Biomater. 7 (2011) 3505–3514
[28] Limbach, L.K., Li, Y.C., Grass, R.N., Brunner, T.J., Hintermann, M.A., Muller, M.,
Gunther, D., Stark, W.J.: Oxide Nanoparticle Uptake in Human Lung Fibroblasts:
Effect of Particle Size, Agglomeration and Diffusion at Low Concentration. Environ. Sci. Technol. 39 (2005) 9370–9376
[29] Teeguarden, J.G., Hinderliter, P.M., Orr, G., Thrall, B.D., Pounds, J.G.: Toxicol. Sci.
95 (2007) 300
[30] Stark, W.J.: Nanoparticles in biological systems. Angew. Chem. Internat. Edi. 50
(2011) 1242–1258
[31] Cutting, K., White, R., Edmonds, M.: The safety and efficacy of dressings with
silverd addressing clinical concerns. Internat. Wound J. 4 (2007) 177–184
[32] El-Kady, A.M., Ali, A.F., Rizk, R.A., Ahmed, M.M.: Synthesis, characterization and
microbiological response of silver doped bioactive glass nanoparticles. Ceramics
Internat. 38 (2012) 177–188
Received: 10.08.2013
,17(5&(5$0
&(5$0,&6)2580
H.F. El-Maghraby, A.A. Aly, S.M. Naga
Utilization of Sugar-Beet Industry
By-Products for the Production of
Anorthite
7+($87+25
The corresponding author,
Dr. Hesham F. El-Maghraby,
earned his Ph.D. from Institute of Chemical Technology
(ICT), Prague (Czech Republic)
in 2008. He is currently researcher in the area of Ceramic Chemistry and Technology
at the National Research Centre (NRC), Cairo
(Egypt).
E-Mail: hf_elmaghraby@yahoo.com
$%675$&7
.(<:25'6
The filter cake produced from the processing of juice purification during
the production of sugar from sugar-beet is a solid waste, which represents a major problem unless it is utilized. Accordingly, the aim of the
present work is to study the suitability of sugar-beet filter cake as a
novel starting material in the preparation of anorthite bodies. To synthesize anorthite bodies, El-Tieh kaolin (Al2O3·SiO2·2H2O) from Sinai, Egypt,
was used as a source of alumina and SiO2, while the filter cake was used
as a source of CaO. A predominant anorthite phase was found to be
present on sintering the anorthite batches at 1200 °C and up to 1350 °C
for 1 h. The prepared bodies possess a bending strength of 25.23 MPa
and a relative density of 64.5 %.
1 Introduction
Anorthite (CaO·Al2O3·2SiO2) exhibits low thermal expansion coefficient of 4.8·10–6·K–1, low dielectric constant of 6.2 at 1 MHz [1],
and good wear resistance [2]. These properties nominate anorthite
to be a promising material for substrate applications in the electronics industry.
The theoretical composition of anorthite is 20.2 % CaO, 36.6 %
Al2O3, and 43.2 % SiO2 on weight basis. The natural anorthite mineral has triclinic symmetry with Ca2+ ions residing in the interstices
of the (Si-Al)-O tetrahedral framework [3].
The synthesis of anorthite was studied by using different methods,
such as sintering of mixtures of calcium carbonate, kaolinite, alumina and aluminium hydroxide in addition to mechanochemical
treatment or employing different sintering aids [2, 4–8). On the
other hand, Borglum et al. [9] and Tulyaganov [10] synthesized
anorthite either via hydrothermal processing of monocalcium aluminate and quartz at 200 °C or via the crystallization of glass having
a stoichiometric anorthite composition.
The utilization of some industrial waste in the manufacture of
anorthite has been studied recently by many authors. Kurama and
Ozel [11] used marble and gypsum moulded waste as a source of
CaO in the production of anorthite. They reported that anorthite
could be produced as the main phase above 1200 °C with a maximum density of 80 %. El-Maghraby et al. [12] stated in their study
that the gabbro plagioclase fraction concentrated from Egyptian
gabbro can be used as a raw material in the fabrication of anorthite
ceramics. They showed that an increase of the plagioclase fraction
content up to 70.75 mass-% leads to lowering the vitrification temperature of the bodies produced to 1175 °C. Sutcu and Akkurt [13]
produced porous anorthite ceramics from mixtures of paper
processing residues and clay of different sources. Their results indicated that anorthite formation was quite successful in samples with
30–40 mass-% of paper residues fired at 1300 °C. The samples produced were composed of anorthite as the major phase together with
some minor secondary phases such as mullite or gehlenite, depending on the calcite to clay ratio.
Sugar from sugar beet is produced in about 50 countries worldwide.
The by-products of a beet-sugar factory are: pulp, carbonation, lime
residue and molasses. Calcium hydroxide is used in sugar factories
beet-sugar manufacture,
anorthite, mechanical
properties, microstructure
Interceram 62 (2013) [6]
in the juice-purification station to improve the quality of the beet
juice. After lime has been used, the juice is mixed with CO2, which
again precipitates lime in the form of calcium carbonate. The calcium carbonate is then concentrated using cake filters to produce
carbonation-lime residue. The calcium carbonate residue stockpiled in the factory can take up space. Therefore, the sugar industry
has been trying to find different uses for this material [14]. Delta
sugar factories in El-Hamoul, Kafer El-Sheikh governorate, Egypt,
produce about 150,000 t of filter cake each year. During the processing season the filter cake is pumped out of the factory to storage regions which occupy about 80 feddan outside the factory and which
are considered as an environmental pollutant.
The aim of the present study is to evaluate the possibility of using
the sugar-beet industry filter cake by-product in the production of
anorthite bodies. The physical and mechanical properties of the resultant bodies were investigated together with their microstructure
and phase composition.
2 Materials and methods
2.1 Materials and processing
Filter cake obtained as a by-product from the sugar beet industry
was used as a source of CaO to fabricate anorthite (CaO·Al2O3·2SiO2)
while, El-Tieh kaolin (Al2O3·2SiO2·2H2O) from Sinai Egypt, was
used as a source of Al2O3 and SiO2 (Table 1) Both filter cake and
kaolin were mixed in proper amounts to get a 1 : 1 : 2 stoichiometric
anorthite mixture. A very small deficiency in the alumina stoichiometry was overcome by the addition of small amount of fine grade
calcined alumina (provided by Almatis GmbH Ludwigshafen,
Germany). For complete homogeneity, the stoichiometric anorthite
mixture was treated by a roller tank at 500 rounds per minute for
3 h.
The mixed component was moulded under a specific force of
60 kN/cm2. Discs of 2.5 cm diameter and 0.5 cm thickness, as well as
prisms of 5.0 cm × 1.0 cm × 1.0 cm were pressed to measure the
physicomechanical properties. Samples were dried at 110 °C overnight before firing at 1150 to 1350 °C with a firing interval of 50 °C.
The firing temperature was raised at a rate of 5 °C/min, followed by
a soaking time of 1 h at the peak temperature.
,17(5&(5$0
&(5$0,&6)2580
1
2
;LTWLYH[\YL*‡
Fig. 2 • DTA curve of the anorthite batch
3
;.THZZ
␪‡
Fig. 1 • XRD of the crystalline phases observed; A – anorthite, M – mullite, Q
– quartz, Cr – cristobalite, C – corundum
2.2 Characterization
Qualitative X-ray diffraction using a Philips X-ray diffractometer
(PW 1840) and Cu-K_ radiation were the tools used to identify the
crystalline phases appearing in the fired specimens. The bulk density was evaluated using the Archimedes method (ASTM C-20) with
water as the liquid medium. The three-point bending strength of
the fired samples was determined using a universal testing machine
(model 4204, Instron Corp., Danvers, Mass, USA) at a crosshead
speed of 1 mm/min. At least 10 specimens were measured. The
microstructure of the samples was investigated via SEM (model XL
30, Philips, Eindhoven, The Netherlands).
Table 1 • Chemical analysis of the starting materials
Oxide
Calcined sugar cane
refinement waste / mass-%
El-Tieh kaolin / mass-%
SiO2
Al2O3
Fe2O3
CaO
MgO
Na2O
K2O
[SO3]2–
TiO2
P2O5
MnO
Cl–
LOI
2.04
0.53
0.44
88.00
5.92
0.04
0.13
1.73
0.04
1.14
–
–
–
50.59
33.08
1.49
0.15
0.01
0.09
0.10
0.02
2.11
–
0.01
0.06
11.90
;LTWLYH[\YL*‡
Fig. 3 • TG curve of the anorthite batch
3 Results
The chemical analyses of the filter cake and El-Tieh kaolin used are
given in Table 1. The table shows that the filter cake is composed
mainly of calcium oxide together with minor amounts of SiO2 and
MgO.
The dependence of anorthite phase crystallization on firing temperature was reflected in XRD patterns (Fig. 1). The patterns showed
that all samples contain anorthite as the major phase irrespective of
the firing temperature Samples fired at 1150 °C showed the presence
of mullite, cristobalite, quartz and corundum phases. At 1200 °C the
XRD pattern shows anorthite and a minor amount of quartz, while
samples fired over 1200 °C and up to 1350 °C clearly indicated a
predominant anorthite phase.
The DTA and TG curves of the anorthite batch are shown in
Figs. 2–3. Two endothermic peaks and three exothermic peaks are
observed at 506.9, 704.9, 173.9, 397.2 and about 860 °C, respectively.
The first endothermic peak results from the dehydroxylation of
Table 2 • Physical and mechanical properties of the anorthite bodies fired at 1300 °C/1 h
Sample
Anorthite
Bulk density / g/cm3
Relative density / %
Bending strength / MPa
Apparent porosity / %
1.78
64.50
25.23
30.80
,17(5&(5$0
&(5$0,&6)2580
4
5
(b)
(a)
Fig. 4 • TEM micrograph of (a) sugar-beet filter cake and (b) El-Tieh kaolin
7
(a)
6
(b)
Fig. 7 • SEM micrograph of (a) fine grain matrix of samples sintered at
1150 °C and (b) samples sintered at 1350 °C with lamellar crystals of
anorthite
kaolinite to metakaolinite, while the second arises from the decomposition of the Ca compounds. The third exothermic peak is attributed to the crystallization of calcium aluminium silicate, similarly to
the crystallization of spinel phase from metakaolinite [15]. The first
and second exothermic peaks are due to the dehydration of the filter
cake. The TG curve shows a two-step reaction, with steep weight
losses at 550, and 700 °C corresponding to the dehydroxylation of
kaolinite and decomposition of Ca compounds.
It is widely recognized that the particle size of a ceramic body has a
significant impact on the packing efficiency, which in turn, influences the size and shape of pores, the shrinkage behaviour and
microstructure development [16]. The TEM micrograph (Fig. 4 a);
of the sugar-beet cake shows that it possess a fine particle size with a
diameter ranging between 14.6 and 51 nm. On the other hand, the
El-Tieh kaolin particle size ranges between 253 and 544 nm (Fig. 4 b).
Table 2 summarizes the physical and mechanical properties of a
fired anorthite body fired at 1300 °C/1 h. It shows that the samples
possess a relative density of 64.5 %, calculated from the true density
2.76 g/cm3 of triclinic anorthite. The samples’ three-point bending
strength was found to be 25.23 MPa.
SEM images of the fracture surface of the fired samples fired at
1350 °C are shown in Fig. 5, which illustrates randomly oriented
tabular and layered anorthite crystals with different geometric
shapes and sizes.
Figure 6 shows the microstructure of the bodies fired at 1150 °C
and indicates the formation of mullite phase. Relatively small size
mullite grains were formed on the surface of the quartz grains.
Samples fired at 1150 °C generally, revealed a fine grained matrix
of crystals (Fig. 7 a). On the other hand, samples fired at 1350 °C
were characterized by cuboids or lamellar crystals of anorthite
(Fig. 7 b).
Fig. 5 • SEM micrograph of the
anorthite samples sintered at
1350 °C/1 h; randomly oriented
tabular and layered anorthite crystals with different geometric shapes
and sizes are illustrated
Fig. 6 • SEM micrograph of the
anorthite samples sintered at
1150 °C/1 h; the formation of mullite
phase is indicated
4 Conclusions
• Results showed that the filter cake, obtained as a by-product of
beet-sugar manufacture can be used successfully as a CaO
source in the production of anorthite.
• XRD patterns showed that all samples composed of filter cake,
obtained as a by-product of beet-sugar manufacture and ElTieh kaolin contain anorthite as the major phase, irrespective of
firing temperature. Samples fired at 1150 °C contained anorthite
as major phase and also minor secondary phases such as mullite,
cristobalite, quartz and corundum phases. Firing over 1200 up
to 1350 °C clearly indicated a predominant anorthite phase.
• The three-point bending strength of the samples was found to be
25.23 MPa. The reason for this low bending strength is the low
density and high porosity of the samples.
References
[1] Gdula, R.A.: Anorthite ceramics dielectric. Amer. Ceram. Soc. Bull. 50 (1971) [6]
555–557
[2] Kobayashi, Y., Kato, E.: Low-temperature fabrication of Anorthite ceramics. J. Amer.
Ceram. Soc. 77 (1994) [3] 833–834
[3] Donny, G.: Hexagonal CaAl2Si2O8. Acta Crystal. 5 (1952) 153
[4] Mergen, A., Aslanoğlu, Z.: Low-temperature fabrication of anorthite ceramics from
kaolinite and calcium carbonate with boron oxide addition. Ceram. Internat. 29
(2003) 667–670
[5] Kavalci, S., Yalamaç, E., Akkurt, S.: Effects of boron addition and intensive grinding
on synthesis of anorthite ceramics. Ceram. Internat. 34 (2008) 1629–1635
[6] Okada, K., Watanabe, N.,Jha, K.V., Kameshima, Y., Yasumori, A., MacKenzie, K.J.D.:
Effects of grinding and firing conditions on CaAl2Si2O8 phase formation by solid-state
reaction of kaolinite with CaCO3. Appl. Clay Sci. 23 (2003) 329–336
[7] Traoré, K., Kabré, T.S., Blanchart, P.: Gehlenite and anorthite crystallization from
kaolinite and calcite mix. Ceram. Internat. 29 (2003) 377–383
[8] Tai, W.-P., Kimura, K., Jinnai, K.: A new approach to anorthite porcelain bodies using
nonplastic raw materials. J. Europ. Ceram. Soc. 22 (2002) 463–470
[9] Borglum, B.P., Bukowski, J.M., Young, J.F.: Low-temperature synthesis of hexagonal
anorthite via hydrothermal processing. J. Amer. Ceram. Soc. 76 [5] (1993) 1354–1356
[10] Tulyaganov, D.U.: Phase equilibrium in the fluorapatite–anorthite–diopside system. J.
Amer. Ceram. Soc. 83 (2000) [12] 1–7
[11] Kurama, S., Ozel, E.: The influence of different CaO source in the production of
anorthite ceramics. Ceram. Internat. 35 (2009) 827–830
[12] El-Maghraby, A., Mobarak, H.A., Bakr, I., Mörtel, H., Naga, S.M.: Anorthite ceramics
based on plagioclases concentrated from gabbro. CIMTEC 2002, 10th International Ceramics Congress & 3rd Forum on New Materials, Italy, 14–18 July (2002)
[13] Sutcu, M., Akkurt, S.: Utilization of recycled paper processing residues and clay of
different sources for the production of porous anorthite ceramics. J. Europ. Ceram.
Soc. 30 (2010) 1785–1793
[14] Asadi, M.: Beet – sugar handbook. Wiley – Interscience, A John Wiley & Sons, Inc.,
Publication, (2007)
[15] Okada, K., Otsuka, N., Ossaka, J.: Characterization of the spinel phase formed in the
kaolinite – mullite thermal sequence. J. Amer. Ceram. Soc. 69 (1986) C 251–253
[16] Taskiran, M.U., Demirkol, N., Capoglu, A.: A new porcelainised stoneware material
based on anorthite. J. Europ. Ceram. Soc. 25 (2005) 293–300
Received: 14.09.2013
˗‫ڎڎ‬ᬅᬝၬ੿షᜉ‫ܬ‬
ԣथናᬝၬӼၷฝЦֶ̗࡙᜿͘
&KLQD,QHUQDWLRQDO&HUDPLFV7HFKQRORJ\(TXLSPHQW
%XLOGLQJ&HUDPLFV6DQLWDU\ZDUH([KLELWLRQ
May 21-24, 2014
China Import and Export Fair
Pazhou Complex · Guangzhou
7KH:RUOG¶V/DUJHVW([KLELWLRQLQ&HUDPLF,QGXVWU\
6TXDUH0HWHUV
3URIHVVLRQDO9LVLWRUV
([KLELWRUV
0HFKDQLFDO(TXLSPHQWV
&RQWDFW
2UJDQL]HU
$$1*5#VJMEJOH.BUFSJBMT4VC$PVODJM
4BO-J)F3E#BJXBO[IVBOH
#FJKJOH$IJOB
.S0OFBM,BOH.T %JEP-JV
5FM
'BY
&NBJMJOGP!DFSBNJDTDIJOBOFU
8FCXXXDFSBNJDTDIJOBOFU
$IJOB#VJMEJOH.BUFSJBMT'FEFSBUJPO
$IJOB#VJMEJOH$FSBNJDT4BOJUBSZXBSF"TTPDJBUJPO
$$1*5#VJMEJOH.BUFSJBMT4VC$PVODJM
6SRQVRU
#.&5$P-UE
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
E. Kamseu1, 2, A. Nzeukou1, P. Lemougna1, N. Billong 1, U.C. Melo1, C. Leonelli 2
Induration of Laterites in Tropical Areas:
Assessment for Potential Structural
Applications
7+($87+25
$%675$&7
.(<:25'6
The corresponding author, Dr. Elie Kamseu, is
Senior Researcher at the Local Materials Promotion Authority (MIPROMALO) in Cameroon. Over
recent years he has conducted projects in the
areas of inorganic polymer cements, refractories, ceramics and glass in collaboration with the
Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Italy. His
special research interest focuses on phases evolution, mechanical properties and microstructure
in sintering and cold chemical synthesis. He has
authored more than 40 articles in international
journals in the fields of valorization of mineral
resources, engineering materials and quality
control. He has been honored by the TWAS
(Academy of science for the third World) with
prize and research grant.
E-Mail: kamseuelie2001@yahoo.fr
Indurated lateritic blocks (yellow-brown and red) were collected from
two deposits in Yaoundé, Cameroon for investigation as structural building and construction materials. Dimensioned blocks were characterized
using XRD, DTA/TGA, mechanical compression, water absorption and
porosity tests, and examination by optical and electron microscope.
Water absorption values, pore size distribution and cumulative pore volume were used to compare indurated laterites with fired clay-based
bricks. Atmospheric exposure of the test specimens resulted in progressive strengthening of the matrix and transformation of yellow areas to a
browner colour. This confirms other observations in the literature which
describe induration as the transformation of goethite to hematite with
red matrix as the end step and most stable laterite form.
Presence of larger size pores and significant pore-to-surface area ratio
negatively affect the material’s compressive strength. However, due to
stability in water, blocks with significant phase distribution and amorphous interlinking are suitable as structural building and construction
materials.
1 Introduction
Laterites and lateritic soils are readily available in tropical and subtropical areas of the
world (38 % of the world’s land surface).
The name laterite is derived from the Latin
term “later”, meaning brick. The degree of
induration of the materials varies, ranging
from an almost loose, coherent mass with
very poor mechanical properties to the most
dense and hardened blocks. The hardness
of laterites is a function of its content in
iron oxides or hydroxides and the degree
of dehydration/desiccation of iron-based
minerals and other hydroxides [1–5].
Our objective was to investigate the use of
indurated materials as effective structural
products or raw materials for engineering
and to identify suitable applications for
looser laterite masses. In this first part we
characterize indurated laterites physicomechanically and present some basic conclusions on their suitability for building and
construction.
To understand the induration of laterites
requires consideration of a complex chemical system: Fe2O3–Al2O3–SiO2–H2O. A major
role is attributed to accumulation of iron via
dissolution and precipitation. Two important constituent laterite profiles [6–7] are
involved: goethite-diaspore and hematitecorundum. Both are solid solutions of crystallized iron-rich oxihydroxides. Nuclide
nodule concretions with high concentration
of iron always form within a kaolinite soil
matrix. Al-hematite and Al-goethite displace clay through an epigenetic process.
The distribution of the Fe3+-kaolinite, Al3+goethite and Al3+-hematite as well as iron
and aluminium content is controlled by silica activity [6–7]. Goethite precipitates in
large pores in contact with quartz grains,
while hematite forms in the smallest pores
of kaolinite. In natural and synthetic
goethite, substitutions of Al3+ for Fe3+ range
from 0 to 33 mol-% of AlO(OH) [8–11]. In
natural and synthetic hematite, substitution
consumes between 0 and 15 mol-% of Al2O3
[11–15]. Various authors have shown that
an increasing substitution of iron by aluminium in kaolinite induces a diminution
of crystallinity and an increase in disordering [15–18]. The degree of substitution of
Al3+ for Fe3+ in goethite or hematite and
corresponding degree of substitution of Fe3+
for Al3+ in kaolinite is highly variable under
natural conditions. These substitutions affect the crystallinity and solubility of the
goethite, hematite and kaolinite minerals
present in laterites. The highest aluminium
content in hematite form is found together
1 Local Materials Promotion Authority/MIPROMALO,
P. Box: 2396 Yaoundé (Cameroon)
2 Department of Engineering “Enzo Ferrari”, University
of Modena and Reggio Emilia, Via Vignolese 905/A,
41125 Modena (Italy)
lateritic blocks,
goethite, hematite,
porosity, structural
materials
Interceram 62 (2013) [6]
with maximum development of nodules
and maximum dissolution of kaolinite.
High aluminium content in goethite is
found accompanying the first stage of rehydration of Al-hematite together with a
dismantling of nodular horizon. Presence of
alkalis and formation of disordered kaolinite and amorphous phases enhance polycondensation and formation of films with
binder properties that are able to induce
induration.
Factors controlling the formation of indurated laterite matrices include grain size,
precipitation kinetics and equilibrium conditions involving water activity. In the first
steps of the induration, very small sized
mottles and concretions form that are mostly hematite and goethite. Tiny particles of
size about 100 Å suggest the significant influence of water action and dehydration.
During the last steps, goethite appears in
quite well-formed crystals with size about
1 μm, Schwertmann et al. [13] and Maignien
[16] found that rapid release of Fe and low
concentration of organic compounds favours hematite formation, while high organic compound concentration promotes
goethite. For kinetic reasons, goethite is
more common than hematite, but after
hematite is created, it does not rehydrate to
form coarse goethite. In tropical areas,
kaolinite generally contains quartz sand.
During induration, iron accumulation is
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
essentially due to leaching of iron from sand
to clay. The driving force of the migration
and accumulation of iron is suggested to be
differences in the size of pores, which tends
to be accentuated as concretion proceeds
[6]. Because of its porosity, kaolinite will
normally fix water much more readily than
quartz. When the pressure of water is higher,
water-filled pores of quartz become important. The details of each situation affect the
formation of nodules and concretions.
Schellmann’s chemical and mineralogical
results [17] show that the primary minerals
are generally not fully dissolved but are partially transformed into secondary minerals
that are more stable.
In this work we collected metastable laterite
samples with high goethite content and a
stable matrix with high hematite concentration from two different deposits in Cameroon (Yaoundé). We studied the series of
samples for their suitability as structural
matrices for building applications. The suitability of lateritic concretions as materials
for building structures is dependent on the
stability of the Al-goethite and its progressive replacement by hematite under the influence of temperature, atmosphere and
humidity. As induration proceeds, structural strength is enhanced. The interaction of
goethite mottles and high water content (in
a tropical zone) results in hardened matrix
over time, through loss of water and progressive transformation of goethite to hematite. During building block use, this transformation does not reverse.
2 Petrology of Yaoundé region
(Cameroon)
In the region of Yaoundé, thick plates appear on the Precambrian lateritic land profile, mainly composed of migmatitic and
gneiss bedrock. These rocks have undergone
significant weathering in the humid tropical
climate and the final stage of laterization of
the soil is reflected in the crustal horizon or
“duricrust”. Laterite is generally observed in
the “median horizon” of the weathering
profile. This hardened horizon is red or
yellow with a vacuolar texture. Its thickness
and hardness are variable and often includes
a mixed-clay fraction. Geological work on
the plates in the Yaoundé area [18–19]
shows that the different stages of their formation can be understood through examination of the weathering profile, as follows,
from bottom to top:
• In the alteration layer, there is a fragmentation and dispersion of quartz veins containing microscopic crystallites of kaolinite. The matrix, saturated with kaolinite
through a system of fine porosity micro-
pores, is the site of accumulation of iron
as goethite.
• The median layer contains brown
goethitic deposits, highly substituted for
alumina, together with gibbsite nodules
containing abundant garnets surrounded
by aluminium oxides. Inside the nodules
and kaolinite crystals, goethite is transformed into fine crystals of hematite [4].
The microporosity of kaolinite enhances
accumulation of iron. Kaolinite will not
dissolve or dissolves very slowly where
quartz remains in the matrix [2, 4]. As
iron content increases, a “duricrusting”
mechanism progresses if and only if the
hematite content is able to outweigh the
goethite [4].
• In the red surface layer, we observe a redistribution of iron in the bleached region
around micro-cracks, and significant loss
results in wide micro-cracks. This induces
a growing illuviation of clay toward the
surface. When iron content is high and the
quartz fraction is low by weight (less than
10 mass-%), replacement of kaolinite and
hematite by aluminous goethite seems to
be triggered. Widespread change occurs as
disappearing “host attractive iron” (hematite) in the kaolinite causes a loss of stability in the structure of nodules [2, 4]. A system that previously tended toward closure
(nodulation) passes to a system that is
open (destruction of nodules). This opening process is enhanced as the surface
horizon becomes waterlogged in the rainy
season. Hydration promotes transformation of hematite to goethite and kaolinite
to gibbsite, marked by a concentric pattern of goethite observed around nodules
[19]. It ultimately leads to degradation of
the formerly sharply-defined nodules and
the integrity of the massive plate. Iron and
aluminium freed from the upper profile
later migrate downwards during favourable climatic conditions to participate in
the duricrusting mechanism [2, 4, 18].
Even if iron content is high, the ferruginous accumulation is not extensive, since
the iron is in the form of goethite [2, 4].
The stability of indurated structures seems
be ensured if a threshold amount of kaolinite remains inside the nodules. If the
kaolinite is hydrated and then replaced by
aluminium goethite or gibbsite nodules,
stability is no longer guaranteed [2, 4].
Hydration and disintegration take over,
preventing dehydration and encrustation.
Goethite appears as a identifying marker or
may be an agent in the dismantling of the
plates [3, 7]. Mottled clay at the base of the
surface profile and the horizon gravel, and
sensitivity to climatic fluctuations are the
two Achilles heels of encrustation. Quartz
favours creation of leaching structures while
aluminium promotes kaolinite abundance
and provides a facility for the accumulation
of iron.
3 Materials and experimental
3.1 Materials
The two studied laterite formations were
located at Yaoundé, in quarries exploited for
the production of construction gravel. The
geographical coordinates for collection of
red and yellow samples were: N03°50.138’,
E011°28.665’ and N03°52.781’, E011°25.161’
at altitudes of 748 m and 761 m. The two
quarries are both situated in high hills with
indurated laterites available throughout
their entire volume. The geological profile at
the sites consists of three levels of superficial
lateritic material overlaid above migmatitic
rock. Classical materials are observed from
the base to the top: an isalteritic layer; an
iron nodular layer with blocks of duricrust,
currently being dismantled; and a surface
clayey layer. Two colours of duricrust were
sampled, red and yellow. The red duricrust
contained very hard nodules >50 mm in
diameter, while crumbly nodules (0.5 and
1 mm in diameter) were in the yellow
duricrust. The samples were labelled RG
(red duricrust) and YW (yellow duricrust).
Rectangular block specimens (16 cm × 4 cm
× 4 cm) were made by sawing the samples
using a Clipper device. Very small samples
(2 cm × 1 cm × 1 cm) from homogeneous
highly-indurated areas of the sample material were also prepared to assess the continuity of the matrices.
3.2 Experimental
3.2.1 Water absorption, density, porosity and
compressive strength
The two laterite samples were physically
characterized by measuring their apparent
density, water absorption, compressive
strength, structure and porosity. Water absorption and bulk density were measured
on sectioned samples using Archimedes’
principle. The final values were an average
of measurements for three specimens of
each indurated laterite.
An AutoPore IV 9500 mercury intrusion
porosimeter (MIP) with two low-pressure
ports and a high-pressure chamber was
used, covering a pore diameter range from
approximately 360 to 0.005 μm. Specimens
of ~ 1 cm3 volume from mechanical test
samples were used. The measurement involved: (1) a low-pressure test with a penetrometer (from 0 to 50 psia/345 kpa, resolution 0.01psi, with pore diameter 360 to
3.6 μm and transducer accuracy of +1 of
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
1
(a)
(b)
Fig. 1 • Stereomicrographical features of the Hematite (a) and Goethite (b) based indurated laterites
from Yaoundé, Cameroon: HN – Hematite nodule, GN – Goethite nodule, mn – micro-nodule matrix,
y – yellow fringe, h – red fringes, v – voids
2
(a)
(b)
Fig. 2 • Full dense area of the indurated matrix of a) hematite-rich and b) goethite-rich laterite
full scale) and (2) a high-pressure step
(resolution 0.1 psi from atmospheric pressure to 3000 psia, and 0.2 psi from 3000 to
33000 psia/228 MPa, with pore diameter
6 to 0.005 μm and transducer accuracy of
+1 of full scale). After sample weight, analysis conditions, penetrometer properties and
report options are set, the AutoPore software automatically records the porosity data
measurements.
Mercury porosimetry is based on a capillary
law governing liquid penetration into small
pores. This law, in the case of a non-wetting
liquid like mercury and cylindrical pores, is
expressed by the Washburn equation:
冢冣
1
D=–
4 acos p
where D is pore diameter, p the applied
pressure, a the surface tension, and is
contact angle, all in consistent units. The
surface tension of mercury varies with its
purity. The generally recommended value
used for the test was 485 dynes/cm. The
contact angle between mercury and the test
solid containing pores varies depending on
solid composition. A value of 130 ° is recommended in the absence of specific information to the contrary.
The volume of mercury V penetrating the
pores is measured directly as a function of
applied pressure. This p-V information
serves as a unique characterization of pore
structure. Equation (1) uses a specialized
model that assumes pores are cylindrical in
shape. As this is rarely the case for real materials, the model may not accurately represent actual pores, but its use is generally accepted as a practical means for treating what
would otherwise be a most complex problem. Mercury extrusion from pores upon reduction of pressure is also in general accord
with equation (1), but it tends to overestimate the size of pore diameters. Mercury
extrudes at pressures lower than those at
which the pores were filled. This is usually
attributed to receding contact angles being
less than advancing ones. It is also commonly observed that actual pores always trap
some of the mercury. This is likely due to
pore irregularities giving rise to enlarged
internal chambers and “inkwell” structures.
These two phenomena give rise to hysteresis
behaviour in plotted P-V curves, i.e. distinct
intrusion and extrusion paths.
The concept of tortuosity can be used to describe compaction of the structural matrix in
materials. For semi-vitrified bodies, it refers
to the ratio of diffusivity in free space to diffusivity in the porous medium. Tortuosity
can be quantified by the use of 3D reconstructions, where the sum of distances between intermediate centroids of the pore is
divided by the Euclidean length of the pore.
The compressive strength of the samples was
measured with a “Perrier” compression testing machine with a displacement of 1 mm/
min for larger samples of dimensions 5 cm ×
5 cm × 14 cm. An MTS 810 material testing
machine was used for small samples (1 cm ×
1 cm × 2 cm) selected from material having
homogeneous area with high densification
and low inclusions. Both compressive tests
were done under maximum loading of
5000 kN. The results shown here are averages from tests on three similar specimens.
Mineralogical analyses were carried out
with a Philips Model PW 3710 X-ray powder diffractometer (XRD; Cu-K_, Ni-filtered
radiation). The XRD testing was performed
on finely-ground RG and YW powder samples.
Differential thermal analysis (DTA/TGA)
was performed on the two samples, using a
Netzsch STA 429 CD unit in air atmosphere.
The analysis was carried out on ground
powders at a heating rate of 10 °C/min in
platinum-rhodium crucibles using calcined
alumina as reference.
3.2.2 Stereomicroscopy and scanning
electronic microscope analysis
Pieces of size 1 cm × 1 cm × 0.3 cm fractured by mechanical testing were polished
(using diamond paste after grinding with
silicon carbide powders and water) for surface observations with an Olympus SZX10
DFPlan stereoscope.
The polished surfaces were washed with
acetone, dried and gold-coated for image
analysis using SEM. A scanning electron
microscope equipped with an EDS detector
(operating at 20 kV) was used for microstructural examination of the specimens
with secondary electron images (SEI) and
back scattered images (BSI). Microanalysis
for phase identification and distribution
was performed using the embedded EDS
digital controller and control software.
4 Results
4.1 Phases, structure and microstructure
of indurated laterites
Typical morphology for the indurated laterite matrices is shown in Fig. 1 a for the RG
sample and in Fig. 1 b for YW. Both materials have structural concretions in which
various amounts of kaolinite fill pores and
micro-cracks. The matrices are heterogeneous where components can be identified.
The images show:
• Porous, high ferruginous areas with open
cavities of relatively large size for hematite
(Fig. 1 a) and goethite nodules (Fig. 1 b)
• Compact and dense regions having significant hardness and very low porosity.
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
These areas are completely red in the
hematite-based indurated laterites and
yellow in the goethite-based indurated
specimens (Fig. 2)
• Micro-nodule matrix transitions between
yellow and red matrix where there is a
mix of hematite and goethite nodules of
size smaller than completely mature nodules
• Areas of yellow non-porous matrix mass
essentially rich in kaolinite.
The different areas are cemented together
but show evidence of discontinuity in their
engineering properties (e.g. hardness, density, porosity). The phenomenon of induration generates this coarse structure and enhances porosity within specimen samples.
Figure 3 shows selected micrographs illustrating the microstructural features of the
RG (Figs. 3 a–b) and YW samples (Figs. 3
c–d). The RG matrix has high iron concentration (XRD in Fig. 4 a). The iron crust
here has a sheet structure, although in isolated areas a globular iron structure is
dominant. The spectrum of the YW matrix
(Fig. 4 b) shows higher concentrations of
alumina and silica compared to RG. This
high alumina and silica content comes from
kaolinite. Microstructural investigations
have demonstrated that YW is dominated
by the typical situation displayed in Fig. 3 c,
a matrix with three distinct areas. In the first
region (K), iron accumulation is advanced,
with a mixture of iron in sheet structure and
globular form, as can be observed under
high magnification (Fig. 3 d). In this area,
the kaolinite that has already resisted dissolution and transformation is visible within
the iron crust and is completely dehydrated.
The second area (FN) is dominated by a significant concentration of iron-rich nuclide
nodules. In this region, the nuclide nodules
are still mixed with clay in a compact structure leaving few voids. Figure 3 c shows the
direction of transformation of matrix to
iron crust through arrows situated in the
third, transitional area between the kaolinite-rich and nuclide nodule regions. These
results demonstrate that the YW sample has
not reached its final step of laterite transformation as indicated in the literature. The
YW sample is essentially made up of
goethite. In this case, additional weathering
would eventually result in a hematite-based
iron crust end-product with low kaolinite
inclusion as in the RG sample.
Further analysis of the iron crusts in the two
samples shows that those from the sample
RG (Fig. 5 a) can be described as mostly
homogeneous Fe2O3-based sheet structure
matrix in which some FeOOH globular
structures are dispersed (Fig. 5 b). As evi-
3
Fig. 3 • Selected micrographs illustrating the microstructural features of the indurated laterites RG
(a and b) and YW (c and d): M – Matrix, FS – iron sheets, FG – globular iron, v – voids, q – quartz,
K – kaolinite-rich area adjacent to nodule matrix, FN – area of high concentration of nuclide nodules
4
Fig. 4 • Spectra illustrating the chemical composition of the indurated laterites RG (a), YW (b) and high
concentration of iron crust in RG (c) and YW (d)
denced by EDS analysis, the iron crust in RG
is dominated by hematite with atomic ratio
2 : 3 between iron and oxygen. Sample YW
contains a mix between goethite and hematite in a complex geometry with high heterogeneity.
XRD patterns of the two indurated laterites
(RG and YW) are shown superimposed in
Figs. 6 a–b. The minerals present in the two
materials, kaolinite, quartz, goethite, hem-
atite, anatase, and ilmenite, are very similar. Larger magnification (Fig. 6 b) shows
significant amorphous phase, quartz and
hematite present in the RG sample. The
amorphous phase can be attributed to silica accumulated during induration. The
presence of amorphous silica and quartz is
generally at the expense of kaolinite. According to Tardy et al. [2, 4, 6], dissolution
of kaolinite precedes laterite iron-accumu-
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
2 FeOOH A Fe2O3 + H2O
5
D
E
F
G
Fig. 5 • Micrographs of iron crust in RG (a and b) and YW (c and d) matrices
lation. The indurated laterite RG contained
higher goethite and kaolinite content compared to YW. The difference in colour of
the two studied plates (red for RG and yellow for YW) likely arises from the more
predominant proportion of goethite in RG
and hematite in YW [18–21]. The two samples were collected from deposits already
under exploitation, so it is difficult to assess the effect of atmospheric air exposure
at each location. However, the large volume
of previously excavated blocks indurated
enough to be considered for structural use
indicates that the deposit formed and hardened many years ago.
Lecomte-Nana [22] and many other authors
that studied Yaoundé region deposits suggest that progressive accumulation of iron
with dissolution of kaolinite is the mechanism for formation of indurated matrices in
tropical humid climates. This mechanism
can be adopted for the Yaoundé deposits
investigated in this study. The laterite samples studied by Lecomte-Nana [22] had similar mineralogy, also containing kaolinite,
quartz, hematite and goethite. The indurated samples in our work had less kaolinite
and greater goethite/hematite content. As
observed by Schellmann [17], the primary
minerals are generally not fully dissolved
but are partially transformed into secondary
minerals that are more stable under intensive weathering.
Figures 7 a–b shows the thermochemical
transformation of the two laterites under
increasing temperature. From the DTA
curves of Fig. 7 a, a very small endothermic
peak is observed before 200 °C for both
goethite and hematite-based indurated laterites. This is confirmed by a mass loss on
ignition of less than 2 mass-% (Fig. 7 b).
The endothermic peak at 345 °C corresponds to transformation of goethite to
hematite following the equation:
(2)
The intensity of the peak is greater for YW
than for RG. At this stage, the total weight
loss is 4.2 mass-% for RG and 5.4 mass-%
for the YW sample. These results are consistent with mineralogical observations that
goethite content is higher when kaolinite is
still present and that transformation of
goethite to hematite is linked to reduction
of kaolinite. At temperatures of 529 °C and
532 °C, a significant endothermic peak characterizes the departure of structural water
from the kaolinite in the indurated RG and
YW laterites. The intensity of the RG endothermic peak is a consequence of its high
kaolinite content, as noted previously. The
weight loss corresponding to dehydroxylation of RG was 4.1 mass-% and the value for
YW was 9.08 mass-%. The small endothermic peak at 577 °C observed for laterite RG
is attributed to transformation of _-quartz
to `-quartz. The absence of this feature in
the YW sample suggests that its quartz content was comparatively low. These observations are in agreement with XRD patterns.
The exothermic peaks present at 974 °C are
similar to the paired endothermic peaks at
529 and 532 °C. They indicate formation of
spinel (SiO2·Al2O3) or mullite (2SiO2·3Al2O3).
In the study materials, decomposition of
kaolinite and formation of mullite or spinel
takes place at relatively low temperatures. In
standard kaolinite, decomposition generally
occurs at 575 °C and mullite forms at temperatures >980 °C. The accumulated iron
affects the kaolinite structure, reducing
crystallinity [6–10] and enhancing the kinetics of decomposition.
4.2 Porosity, densification and mechanical
properties
The two indurated materials have porous
structure. The cumulative pore volumes of
0.160 ml/g for RG and 0.110 ml/g for YW
(Fig. 8) are close to that of fired bricks or
Table 1 • Physico-mechanical properties of the indurated laterites RG and YW
Samples
RG
YW
Color
Reddish
Yellowish
Compressive strength / MPa
Random samples
5 cm × 5 cm × 14 cm
Indurated homogeneous
5 cm × 5 cm × 14 cm
3.46 (1.52)
2.30 (1.10)
12.4 (0.9)
8.9 (1.2)
Water absorption /
mass-%
Bulk density / g/cm3
10.96 (1.96)
13.38 (0.76)
2.38 (0.29)
2.27 (0.13)
Table 2 • Porosity parameters of the indurated laterites RG and YW
RG
YW
Cumulative pore
volume / ml/g
Total porosity /
vol.-%
Total pore area /
m2/g
Stem volume /
vol.-%
Permeability /
mdarcy
Tortuosity / unit
0.16
0.11
45.97
18.57
14.49
9.86
43
34
63.45
11.24
7.71
16.58
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
6a
6b
e‡
e‡
Fig. 6 b • High magnification of the XRD patterns with evidence of amorphous
materials
7a
7b
+:*›=TN
;.THZZ
Fig. 6 a • XRD patterns of the two indurated laterites: K – Kaolinite,
Q – quartz, Go – Goethite, He – Hematite, An – Anatase, Il – Ilmenite
;LTWLYH[\YL‡*
;LTWLYH[\YL‡*
Fig. 7 a • DTA curves of the indurated laterites RG and YW
concrete cement [22]. From Fig. 8 b, the
mean pore size is concentrated between 0.01
and 0.1 μm. Large pores are randomly dispersed in both matrices (Figs. 9 a–b) and in
some cases are larger than the range of
measurement of the mercury intrusion
porosimeter used in the study. Large pores
(q >300 μm) are commonly observed in
goethite and hematite-based indurated laterites. The fraction of pores with diameter
>363 μm was 2.14 vol.-% for both samples.
24.30 vol.-% (RG) and 30 vol.-% (YW) of
pores have diameter >7.6 μm. RG has
55 vol.-% of pores with diameter <0.1 μm
while YW has 43.5 vol.-%. Figure 9 shows
that the pores with diameter >1 μm have
highly variable size and this can explain why
no clear peaks are observed in the interval
between 1 and 363 μm in Fig. 8 b. The variations in observed pore size reflect the heterogeneous nature of the two matrices. For
sample RG pores with size less than 0.1 μm,
a volume peak is observed at 0.05 μm to-
Fig. 7 b • TGA curves of the indurated laterites RG and YW
gether with others at 0.07, 0.044, 0.039,
0.035, 0.033, 0.01 and 0.006 μm. Over the
same size interval, sample YW has a significant peak at 0.0062 μm, together with lesser
peaks at 0.028 and 0.01 μm.
Water absorption after 24 h immersion was
11 % for sample RG and 13.5 % for YW.
Bulk density was 2.38 g/cm3 for RG and
2.27 g/cm3 for YW (Table 1). Compressive
strength was measured as 3.46 MPa for randomly chosen RG samples and 2.30 MPa for
YW, increasing to 12.4 MPa and 8.9 MPa,
respectively, when well-indurated homogeneous samples were tested. In general, RG
had lower water absorption, higher compressive strength, more cumulative pore
volume and greater total porosity than YW
(Tables 1–2). The total pore area is also
higher for RG than YW (14.49 m2/g compared to 9.85 m2/g). Finally, the tortuosity of
sample YW was 16.58 and 7.70 for RG.
These observations show that the RG sample had a relatively more porous structure
than YW, which might be due to the fact
that the final step of induration removes
water and kaolinite which, when present, interfere with fine-scale porosity and increase
tortuosity. Although it has lower cumulative
pore volume and total porosity and greater
tortuosity, the YW sample has less compressive strength and lower density. This is explained by the fact that a significant portion
of the kaolinite present in the laterite matrix
is loosely linked to the structure and does
not provide enough bonding strength to
enhance matrix integrity. The induration of
the YW samples also appears to be less extensive. It is reasonable to suppose, as stated
in the literature, that the YW deposit has
made less progress in transformation to a
more hardened form through replacement
of goethite by hematite. Moreover, the formation of indurated hematite-based lateritic concretes takes place in the context of a
relative absence of water. This results in
desiccation, volume contraction, formation
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
8b
+PMMLYLU[PHSPU[Y\ZPVUT3N›T
*\T\SH[P]LWVYL]VS\TLT3N
8a
7VYLKPHTL[LY›T
7VYLKPHTL[LY›T
Fig. 8 a • Cumulative pore volume (mL/g) of the two indurated laterites
of micro-cracks and creation of voids that
affect the porosity values measured by mercury intrusion porosimetry.
The compressive mechanical strength of
indurated laterites was found to be essentially a function of its heterogeneity and
porosity. This was clearly demonstrated by
the compressive strength differences measured between the large and small test samples. While it is possible to have small volumes of coherent, homogeneous laterite
matrix, it is difficult to have continuity
across larger-scale structures and phases.
When multiplicities of small integrated
volumes occur, the connections between
them are generally of heterogeneous character. This study provides evidence implicating the role of local heterogeneities in
the failure process of indurated laterites.
This heterogeneity and variations in porosity and pore size distribution, act to diminish the high connectivity and compressive
strength of the isolated, small-sized, coherent and homogeneous indurated matrix
components. Interactions between phases
are common in indurated laterites because
they normally contain various minerals (of
coarsening structure), pores and microfractures which can be fluid or kaolinitefilled. Digitized stereoscope microstructure
image data can be used to measure the
characteristics of these different minerals,
pores and micro-fractures and quantify the
degree of heterogeneity.
5 Discussion and conclusions
Efficient and economic utilization of laterite-based materials for various structural
applications is a necessity and a challenge
for the tropical and subtropical areas of the
world. It is more common for people living
in these areas to have exploitable laterite
Fig. 8 b • Pore size distribution in the indurated laterites RG and YW
9
(a)
(b)
Fig. 9 • Stereomicrograph features of the Hematite (a) and Goethite (b) based indurated laterites
showing larger size pores
than clay. These lateritic soils have unique
properties and can be developed into new
materials for building and construction.
Even where deposits are not directly exposed in readily-accessible matrices of appropriate strength, mottled areas can be
exposed to the atmosphere and sun and selfindurate, resulting in hardened blocks and a
simple, efficient production cycle for creation of structural materials.
This investigation of material from two indurated lateritic Yaoundé deposits examined matrices with relatively high porosity,
including large size pores. In the case of the
YW deposit, these pores were partly filled
with kaolinite, inducing a decrease in cumulative pore volume and an increase in
tortuosity. We conclude with the following
summary remarks about our results:
• The two studied indurated laterite deposits contained kaolinite, quartz and ilmenite as common minerals. The RG sample
contained more hematite than goethite
iron minerals, while YW showed the presence of greater goethite content than
hematite. The iron phases in RG were pre-
dominately in sheet structure form and
YW had more globular iron.
• Local heterogeneity couples with variations in porosity and pore size distribution to bring down the compressive
strength of indurated matrices and compromise the connectivity and strength of
isolated coherent and homogeneous component volumes. Interactions that promote failure between phases are common
in indurated laterites due to the presence
of various coarse minerals, pores, and
micro fractures that can be fluid or kaolinite-filled.
• Digitized stereoscope and scanning electron microscope (SEM) image data of
laterite microstructure, such as the characteristics of different minerals, pores and
micro-fractures, can be used to quantify
the level of heterogeneity.
• Better understanding of the mechanisms
and capacity of laterite matrices to form
hardened body structures is important
and crucial for potential expanded use of
the materials. Improved exploitation of
laterite matrices is certainly possible.
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
Laterite phases were found to be connected by cement-like material identified as
amorphous silica. It is suggested that as
substitution of iron in kaolinite occurs, its
crystallinity is diminished and disordering
increases [15–18]. This disorder directly
affects dissolution and polycondensation
of the kaolinite matrix. Singh and Gilkes
[23] attributed the induration of kaolinitebased laterites to the presence of amorphous
silica from organic matter. Wetting and
drying cycles induce growth of a silica layer
deposited by the dissolution of embedded
organic matter. The deposited silica is absorbed on the kaolinite surface and eventually welds adjacent laterite phases at their
points of contact [23]. Even less than
5 mass-% silica content is sufficient to bind
the whole matrix without filling pore space
to a significant extent. This is in agreement
with microstructural observations of the
mineralogy of the two indurated laterites
under study. Major amorphous silica phase
was identified in RG, the more hardened of
the two samples. It provides strength and
connectivity between coarse phases, allowing the matrices to remain porous with
transformed iron sheet-based structures.
The laterite concretes have micro-, mesoand macro-pores which negatively affect the
final mechanical properties and limit many
potential uses of the materials. However,
when use is appropriate for an application,
the materials are a promising alternative to
many conventional building and construction materials otherwise produced at the
expense of the environment [24, 25]. Houses, internal structures, bridges, roads, and
other constructions can be built using indurated laterites which display high density,
low water absorption and good long-term
stability. Their integrity is insured by the
cement-like amorphous filler materials that
hold the laterite structure together.
The results of this study add to understanding of hardened lateritic concretes and can
be important in drawing a protocol for production and preparation of dimensioned
laterite blocks for structural applications.
Natural pieces, easily dimensioned, when
used for building and construction are
economically suitable, energy-efficient and
environmentally friendly. Their physical
properties (water absorption between 11
and 13.5 mass-%, density ~2 g/cm3, stability
in water, and the intrinsic strength of the
interconnections between coarse phases)
allows their classification as alternative
hollow bricks. Through intelligent and economical utilization of this technology and
related products, the countries of tropical
areas, and particularly Cameroon, can produce construction materials and enhance
building practices, while helping to save nature and the environment.
Acknowledgment
The authors of this article wish to acknowledge a contribution from The Academy of
Sciences for the Third World (TWAS):
Grant No.: 11-024 RG/CHE/AF/AC-G;
UNESCO FR:3240262695.
References
[1] Trolard, F., Tardy, Y.: A model of Fe3+-Kaolinite, Al3+Goethite, Al3+-Hematite equilibria in laterites. Clay
Minerals 24 (1989) 1–21
[2] Tardy, Y., Trolard, F., Roquin, C., Novikoff, A.: Distribution of hydrated and dehydrated minerals in
lateritic profiles and landscapes, Geochemistry of
the earth’s surface and of mineral formation, 2nd
Internat. Symposium, July, 2–8, Aix en Provence,
France, (1990) 133–136
[3] Nahon, D.: Curasses ferrugineuses et encroûtements calcaires au Sénégal Occidental et en Mauritanie, Systèmes évolutifs: Géochimie, structures,
relais et coexistence. Sci. Geol. Mém. 44 (1976)
232 pp
[4] Tardy, Y., Novikoff, A.: Activité de l’eau et déplacement des équilibres gibbsite-kaolinite dans les profils latéritiques. C.R. Acad. Sci., Paris, 306, serie II,
(1988) 39–44
[5] Beauvais, A., Tardy, Y.: Degradation and dismanting
of iron crusts under climatic changes in Central
Africa. Cehmical geology 107 (1993) 277–280
[6] Tardy, Y., Nahon, D.: Geochemistry of laterites, stability of Al-goethite, Al-Hemtaite, and Fe3+-Kaolinite in Bauxites and Ferrites: An approach to the
mechanism of concretion formation. Amer. J. of Sci.
285 (1985) 865–903
[7] Nahon, D., Janot, C., Karpoff, A.M., Paquet, H.,
Tardy, Y.: Mineralogy, petrography and structures
of iron crusts (ferrites) developed on sandstones in
the western part of Senegal. Geoderma 19 (1977)
263–277
[8] Beneslavsky, S.I.: New aluminum-bearing minerals
in bauxites: Akad. Nauk SSSR, Doklady 113 (1957)
367–369
[9] Simon, A., Lang, M., Seidel, M.: Substitutions dans
les hydroxydes FeOOH et AlOOH : Chem. Zvesti 13
(1959) 733–736
[10] Janot, C., Gilbert, H., de Grammont, X., Biais:
Etude des substitutions Al-Fe dans des roches
latéritques. Soc. Française Minéralogie Cristallographie bull. 90 (1971) 213–223
[11] Janot, C., Gilbert, H., Tobias, C.: Caracterisation de
kaolinite ferrifères par stechiométrie Mossbauer.
Soc. Francaise Minéralogie Crystallographie bull.
90 (1973) 281–291
[12] Schwertmann, U., Murad, E.: Effect of pH on the
formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals 31 (1983) 277–284
[13] Schwertmann, U., Friedl, J., Stanjek, H.: From
Fe(III) ions to ferrihydrite and then to hematite. J.
of Colloid and Interface Sci. 209 (1999) 215–223
[14] Schwertmann, U., Stanjek, H., Becher, H.-H.: Longterm in vitro transformation of 2-line ferrihydrite
to goethite/hematite at 4, 10, 15 and 25 °C. Clay
Minerals 39 (2004) 433–438
[15] Kamgang, K.B.V., Ekodeck, G.E., Njilah I.K.: Evolution géochimique des formations latéritiques dans
l’écosystème périforestier du sud-est cameroun: le
site de kandara. African J. of Sci. and Technology
(AJST) Science and Engineering Series 2 (2001)
19–32
[16] Maignien, R.: Review of research on latérites.
UNESCO. Natural resources research IV. Printed by
Vaillant-Carmanne, Liège, (1966) 136 p.
[17] Schellmann, U., Schulze, D.G., Murad, E.: Identification of ferrihydrite in soils by dissolution kinetics,
differential X-ray diffraction, and Mossbauer spectroscopy. Soil Sci. Soc. Amer. J. 46 (1982) 869–875
[18] Yongue, F.R.: Contribution à l’étude pétrologique
de l’alatération et des faciès de cuirassement
ferrugineux des gneiss migmatitiques de la région
de Yaoundé. These de doctorat 3ème cycle de
l’Université de Yaoundé, (1986) 209 p.
[19] Onguene Mala: Différenciations pédologiques dans
la région deYaoundé (Cameroun): Transformation
d’un sol rouge ferra,lIitique en sol à horizonjaune
et relation avec l’évolution du modelé. These de
doctorat l’Université de Paris VI, (1993) 294 p.
[20] Laplante, A.: Les sols rouges latéritiques formes
sur les basaltes anciens au Cameroun. Actes et
Comptes Rendus du Vème Congrès Internat. de la
Science du Sol, Léopoldville,16–21 août 1954, IV
(1954) 140–143
[21] Maignien, R.: Differents processus de cuirassement en A. O. F. Centre de Pédologie de Hann. Extrait des Comptes Rendus de la 2e Conférence
lnterafricaine des Sols, Léopoldville, 9–14 août
1954, document 116 (1954) 1469–1486.
[22] Lecomte, G.L., Lesueur, E., Bonnet, J.P., Lecomte,
G.: Characterization of a lateritic geomaterial and
its elaboration through a chemical route. Construction and Building Mater. 23 (2009) [2] 1126–1132
[23] Singh, B., Gilkes, R.J.: The recognition of amorphous silica in indurated soil profiles. Clay Minerals
28 (1993) 461–474
[24] Patrick, N., Lemougna, Melo, U.C., Kamseu, E.,
Tchamba, A.B.: Laterite Based Stabilized Products
for Sustainable Building Applications in Tropical
Countries: Review and Prospects for the Case of
Cameroon. Sustainability 3 (2011) 293–305
[25] Kasthurba, A.K., Santhanam, M., Mathews, M.S.:
Investigation of laterite stones for building purpose from Malabar region, Kerela state, SW IndiaPart 1: Field studies and profile characterization.
Construction and Building Mater. 21 (2007) 73–82
Received: 27.05.2013
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
S.E. Ahmed*, S.H. Abd El Rahim**, D.A. Abdel Aziz*, N.I. Abd El Ghaffar**
Utilization of Granite Found in the Umm
Had Area, Central Eastern Desert (Egypt),
as Fluxing Material in the Preparation of
Ceramic Recipes
7+($87+25
$%675$&7
.(<:25'6
The corresponding author, Prof. Doaa A. Abdel
Aziz, earned her B.Sc. in chemistry from Ain
Shams University (1981), her M.Sc. in inorganic
chemistry from Cairo University (1992) and her
Ph.D. in applied inorganic chemistry from Zazieg
University (1997). Since 2011 she has been Professor in the Ceramic, Refractories and Building
Materials Department of the National Research
Centre, Egypt. She was awarded a scientific
grant for six months at the Department of Engineering Materials, Sheffield University (UK),
where she did research in the field of microwave
dielectric ceramic materials. Her research interests include electrical insulators properties of
conventional ceramics and dielectric materials
based on perovskite structure – especially microwave dielectric materials.
E-Mail: doaa_ziz@hotmail.com
The Umm Had area is easily accessible following the Qusier-Qift asphalt
road. Microscopically and petrochemically, Umm Had granitic rocks are
classified into monzogranite, syenogranite and alkali feldspar granite.
Granite represents a good source for the alkali oxides (K2O + Na2O) contained in the potash feldspar minerals (orthoclase and microcline) and
the sodic plagioclase feldspar mineral (albite). These alkali feldspar minerals represent the main fluxing materials in ceramic recipes.
A series of ceramic recipes was prepared by adding 30, 50, 60 and
70 mass-% of granite from Umm Had area, Central Eastern Desert, Egypt
into the batch compositions. The sintering behaviour and degrees of
densification of the ceramic bodies were evaluated by determining their
physico-mechanical properties and characterizing them by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Samples
with 30, 50 and 60 mass-% granite fired at 1150 °C for 1 h showed a
higher bulk density ()2.47g/cm3) and bending strength (30 and 36 MPa).
However, the G70 sample fired at 1100 °C for 1 h showed a slightly decreased density value (2.40 g/cm3) and bending strength (25 MPa). The
increased physico-mechanical properties were mainly due to lower water
adsorption ()0.87%), in addition to the major crystalline phases and
glassy matrix formed during the firing process. These results illustrate
the possibility of utilizing granite in ceramic tile production.
1 Introduction
The Umm Had area is a part of the Central
Eastern Desert of Egypt. The area is easily
accessible from the east following the Red
Sea highway along the coast to Quseir city
(Fig. 1). The Qusier-Qift asphalt road leads
to the area in the south and connects the
River Nile with the Red Sea coast. The easy
accessibility and the fact that granite is to be
found there may encourage the construction of ceramic factories as well as the sustainable development and civilization in the
Central Eastern Desert of Egypt.
The geological, petrological, mineralogical,
geochemical, petrochemical, geochronological “age dating” and geotectonics studies;
assessment of ornamental stones, as well as
the remote sensing and geographic information system (GIS) techniques in the Umm
Had area have attracted the attention of
many authors, e.g. [1–9].
The most used raw materials in traditional
ceramic industries can be basically divided
into three categories: plastic components
(clay), fluxing components (feldspars) and
inert components (quartz, sand). Many authors have demonstrated the possibility of a
successful substitution of feldspars (flux) by
other natural resource rocks with comparable chemical composition, such as zeolites
[10], volcanic rocks and others in the production of ceramic bodies [11–15]. Fluxes
are raw materials with a high amount of
alkaline oxides, mainly K2O and Na2O which
in reaction with silica and alumina, promote
liquid phase formation that facilitates the
densification. The liquid phase surrounds
the solid particles and by surface tension
enables the approach of particles, closing
the porosity [16, 17]. The substitution of
feldspars by other rocks can be used in the
range of 15–75 mass-% for both conventional and fast firing regimes. Previous work
reported that the granite could be used to
* Ceramic Department, National Research Centre,
12622 Dokki, Cairo (Egypt)
** Geological Sciences Department, National Research
Centre, 12622 Dokki, Cairo (Egypt)
ceramic, granite,
physico-mechanical
properties, utilization
Interceram 62 (2013) [6]
improve the mechanical properties, workability and chemical resistance of conventional concrete mixtures. Moreover, granite
was also investigated and found to be suitable as a feldspathic raw material that forms a
glassy matrix at lower temperatures for the
manufacture of floor tiles [18–20], porcelainized stoneware and tiles [21, 22], redclay ceramics [23], bricks [24], glass [25]
and glass-ceramics [26], and glaze [27, 28].
The use of granite in ceramic bodies industries after detecting its potentialities is today
considered as an activity to diversify products, decrease final costs as well as to provide
alternative raw materials to a series of industrial sectors.
Therefore, the aim of this work is the chemical and mineralogical characterization of
granite from the Umm Had area, Central
Eastern Desert (Egypt) for their utilization
in the formulation of new stoneware ceramic bodies. Also, the effects of granite flux
(30–70 mass-%) on the densification properties, crystalline phases and microstructure
of the prepared bodies were investigated.
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
2 Materials and methods
The geologic map of Umm Had area has
modified using the Remote Sensing and the
Geographic Information System (GIS) techniques. The mineralogical composition and
petrographic study of the granite were accomplished in thin sections using Research
Polarizing Microscope and some polished
surfaces of the granite were also studied
using Research Ore Microscope for their
opaque minerals content.
2.1 Geological setting
The Umm Had area lies in the Central
Eastern Desert of Egypt between latitudes
26°00’–26°06’ N and longitudes 33°27’–
33°36’ E (Fig. 2). The studied area covered
the following rock varieties: metasediments
(amphibolites), serpentinite, metavolcanics,
Hammamat sediments, Dokhan volcanics,
post-Hammamat felsite, Umm Had younger
granites (monzogranite, syenogranite and
alkali feldspar granite) and Nubian sandstone. The field observations of the granite
are shown in Figs. 3a, b, and c.
2.2 Processing
The main raw materials used to formulate
the various experimental mixtures include
Tieh clay (from Sinai, Egypt) and granite
(from the Umm Had area, Central Eastern
Desert, Egypt). Chemical analyses of the raw
materials (Table 1) were carried out at the
National Research Centre in Egypt using an
XRF wavelength dispersive spectrometer
(Axios Advanced, PANalytical 2005).
Table 2 illustrates the batch composition of
the four formulations processed in the
present work. Granite was added at the cost
of Tieh clay with 30, 50, 60 and 70 mass-%.
These batches are referred to in the text as
G30, G50, G60 and G70, respectively. The
mass fractions required for the various formulations were wet mixed in a ball mill for
1 h. The dried powders were processed in the
form of discs 2.5 cm in diameter and 0.3 cm
in thickness under a pressure of 20 kN.
These discs were used to determine the physical properties. The specimens were dried at
110 °C and fired between 1000 and 1200 °C
for 1 h. The firing schedule comprised heating, soaking at maximum temperature for
1 h and cooling to room temperature in 2 h.
Physical properties in terms of bulk density,
1
^ƚƵĚLJĂƌĞĂ
hŵŵ ĨĨĞŝŶ
hŵŵ ,ĂĚ
YƵƐĞŝƌͲYŝĨƚ ƌŽĂĚ
ϮϬŬŵ
ďƵŝƌĂŶ
&ĂǁĂŬŚŝƌ
Fig. 1 • Landsat image showing the location of the area under study
2
Fig. 2 • Geologic map of the Umm Had area (Fowler, 2001; modified by Abd El Ghaffar, 2010)
water absorption, and apparent porosity
were determined by using the Archimedes
water displacement method, as specified by
the ISO 10545-3 Standard. Linear shrinkage
was determined according to ASTM C356-03.
Bars with dimension (1 × 1 × 7 cm) were
processed under the same conditions and
fired at selected maturing temperatures to
measure the modulus of rupture by a threepoint method using the Instron Machine
type 1128 Universal Testing. The micro-
structure of the fired bodies was examined
by using an electron-probe microanalyzer
(EPMA, model: JEOL-JAX-840A, Japan) under operating conditions of 30 kV, attached
to an EDAX unit for microanalysis. Specimens were mechanically polished, chemically etched by 20 % hydrofluoric acid solution
for 30 s, thoroughly washed, dried and gold
sputtered. The crystalline phases were identified by XRD analysis using Bruker apparatus, Axs, D8-ADVANCE (Germany, 2001).
Table 1 • Chemical analysis of the raw materials used
Constituents
/ mass-%
SiO2
TiO2
Al2O3
Fe2O3
MnO
MgO
CaO
SrO
Na2O
K 2O
P2O3
SO3
ZrO2
L.O.I.
Tieh clay
47.27
1.51
35.01
0.38
–
0.02
0.29
0.37
0.01
0.05
0.62
0.02
0.11
12.40
Granite
74.22
0.02
14.26
1.07
0.03
0.10
0.69
–
3.63
5.13
0.02
0.04
–
0.90
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
3
Fig. 3 • Field observations and microscopical investigations of Umm Had granite: (A) distant view showing
low lying masses of granite – (B) close-up view showing an aplite dyke cutting the granite – (C) close-up
view showing jointed pink blocks of granite with dimensions suitable for quarrying as ornamental stones –
(D) photomicrograph showing orthoclase-perthite exhibiting a patchy type of perthitic texture (40x) –
(E) photomicrograph showing orthoclase-perthite exhibiting a flame type perthitic texture (40x) –
(F) Photomicrograph showing martite pseudomorphs after magnetite, later corroded by the gangues (200x)
3 Results and discussion
3.1 Characterization of the raw materials
3.1.1 Microscopical investigations
Migascopically, Umm Had granitic rocks are
hard and massive; they exhibit medium to
coarse grains with pink and buff colours.
Microscopically, Umm Had granitic rocks
are divided into monzogranite, syenogranite
and alkali feldspar granite. The granite represents a good source for the alkali oxides
(K2O + Na2O) contained in potash feldspar
minerals (orthoclase and microcline) and
Table 2 • Calculated chemical composition of the mixtures investigated – G: granite
(mass-%), K: clay (mass-%)
Constituents /
mass-%
SiO2
TiO2
Al2O3
Fe2O3
MnO
MgO
CaO
SrO
Na2O
K2O
P2O3
SO3
ZrO2
30G/70K
55.36
1.07
28.79
0.59
0.01
0.04
0.38
0.26
1.07
1.58
0.44
0.03
0.08
Batch compositions
50G/50K
60G/40K
60.75
63.44
0.77
0.62
24.64
22.56
0.73
0.80
0.02
0.02
0.06
0.07
0.44
0.47
0.19
0.15
1.77
2.12
2.59
3.10
0.32
0.26
0.03
0.03
0.06
0.04
70G/30K
66.14
0.47
20.49
0.87
0.02
0.08
0.50
0.11
2.48
3.61
0.20
0.03
0.03
the sodic plagioclase feldspar mineral
(albite). These alkali feldspar minerals represent the main fluxing materials in the
ceramic industries. The granite is holocrystalline, coarse-grained, non-porphyritic
with subhedral-granular and perthitic textures (Figs. 3d, e). The essential minerals are
composed of potash feldspars (orthoclase
and microcline), quartz, sodic plagioclase
feldspar (albite) and biotite. The accessory
minerals include sphene, apatite and
opaques “martite” (Fig. 3f). The secondary
minerals (alteration products) are represented by sericite, muscovite and chlorite.
• Orthoclase (K,Na) AlSi3O8 occurs as
colourless allotriomorphic equigranular
crystals. Albite is commonly intergrown
with orthoclase to form orthoclaseperthite, which exhibits a perthitic texture
(Figs. 3d, e). Sometimes, orthoclase is
sericitized (altered) to sericite. Sericite is a
minutely crystalline variety of muscovite.
• Microcline (KAlSi3O8) occurs as colourless subidiomorphic to allotriomorphic
equigranular crystals. Albite is commonly
intergrown with microcline to form microcline-perthite, which exhibits perthitic
texture. Microcline exhibits polysynthetic
twinning. Sometimes, microcline is sericitized (altered) to sericite.
• Albite (NaAlSi3O8) occurs as colourless
idiomorphic to subidiomorphic equigranular crystals, which exhibit a subhedralgranular texture. It is distinguished by its
albite-type lamellar twinning. Sometimes, albite is also sericitized (altered)
to sericite.
• Biotite K2(Mg,Fe)2(OH)2(AlSi3O10) forms
brown pleochroic subidiomorphic equigranular crystals. Sometimes, biotite is
altered to chlorite associated with opaques.
• Quartz (SiO2) occurs as colourless allotriomorphic equigranular crystals. The
mineral corrodes orthoclase, microcline,
albite, biotite and opaques.
• Opaques are mainly represented by martite (Fe2O3), which occurs as allotriomorphic aggregates pseudomorphs after magnetite (Fe3O4). It contains a few relics of
pre-existing magnetite. The mineral is
highly corroded and can be replaced by
silicate gangue minerals (Fig. 3f).
3.1.2 Chemical and mineralogical analyses
Figure 4 shows the XRD patterns of Tieh clay
and granite. It can be seen that the clay contains kaolinite and quartz. The granite contains quartz, together with feldspar minerals
such as microcline (KAlSi3O8) and minor
amounts of albite (NaAlSi3O8). The minerals identified by XRD are in agreement with
the results obtained by XRF (Table 1).
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
4
5
;ĂͿ
ϮϬђŵ
;ĐͿ
ϮϬђŵ
Fig. 4 • XRD of raw materials granite and Tieh clay
;ďͿ
ϮϬђŵ
;ĚͿ
ϮϬђŵ
Fig. 5 • Microphotograph of SEM of fired bodies containing different proportions of granite: (a) 30 mass-%, (b) 50 mass-%, (c) 60 mass-%, (d) 70 mass-%
6
ume fraction and the extremely small size.
This might prove to be evidence of the formation of a primary mullite that did not
develop sufficiently at lower temperatures.
It is well known that at a temperature of
650 °C decomposition of kaolinite with the
formation of metakaolinite becomes thermodynamically possible:
Al2O3·2SiO2·2H2O A Al2O3·2SiO2 + 2H2O
The transformation of metakaolinite to
mullite becomes thermodynamically favourable at temperatures above 962 °C:
Fig. 6 • XRD analysis
of fired granite bodies
3.2 Characterization of the fired bodies
3.2.1 Scanning electron micrograph
SEM of polished and etched samples G30,
G50, G60 fired at 1150 °C and G70 fired at
1100 °C are shown in Fig. 5a–d. A study of
the microstructural reveals that all samples
contain patches of acicular mullite crystallites phase embedded in the glassy matrix;
large undissolved quartz grains remained
at the core of mullite clusters. However,
raising the percentage of granite from 30 to
70 mass-% led to the development of a more
aggressive liquid phase content, as can be
seen in Fig. 5d.
3.2.2 X-ray diffraction analysis
Figure 6 represents the results of XRD analysis of fired samples. It can be seen that the
main crystalline phases are mullite and unreacted quartz, in addition to trace amount
orthoclase phases. The frequency of the
crystalline phases is greatly affected by the
granite content. The quantity of remaining
unreacted quartz increases from G30 to G70
with an increase in the amount of granite.
This is mainly due to the higher content of
quartz in the original granite sample, as can
be seen in Table 2. G30 and G50 show relatively higher proportions of mullite when
fired at 1150 °C for 1 h, as evident from the
intensity of the peaks in Fig. 6 and Table 2.
However, raising the percentage of granite
from 60 to 70 mass-% led to the development of a more liquid phase content that
favoured the dissolution of primary mullite
formed from clay after firing in G60 at
1150 °C and G70 at 1100 °C. The silica-rich
glassy phase favours the recrystallization of
secondary mullite needles. The weakest of
the peaks belonged to the mullite phase in
the samples with high content of granite.
Probably, a small amount of tiny mullite was
formed in the samples by the reaction of the
metakaolinite caused by the dehydroxylation process of kaolin. However, this mullite
phase was difficult to detect due to the vol-
Al2O3·2SiO2 A (1/3) 3Al2O3·2SiO2 + (2/3) SiO2
So, mullite begins crystallizing at around
1000 °C. Meanwhile, the crystalline phases
identified by XRD are confirmed by the
results of the SEM in Fig. 5.
3.3 Physical properties
Fig. 7a–c shows the changes in water absorption, apparent density and linear shrinkage of the sintered specimens as a function
of the sintering temperatures and the granite content, respectively. The linear shrinkage increased with sintering temperature increase (due to dehydroxylation and containing metakaolinite then formation of new
crystalline phases). The body becomes richer with the glassy phase, which helps to fill
up the inter-particle spacing, as a result of
which volume is reduced. The water absorption values decrease significantly at 1100
and 1150 °C. This behaviour is related to the
lower viscosity of the liquid phase and the
consequent improvement of the densification process produced at these temperatures. The temperature effect on the apparent density is similar to that observed for
the water absorption. The best bulk density
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
7
Fig. 7 • Physical properties of bodies containing granite at different firing temperatures: (a) linear shrinkage, (b) bulk density, (c) water absorption,
(d) apparent porosity
granite, the amount of crystalline phases
and the microstructure of the fired bodies,
as shown in Fig. 8. In principle, due to densification, one would expect an increase in
the bending strength varying between 30
and 36 MPa, with granite addition up to
60 mass-%. However, the reduction in BS
with 70 mass-% granite addition can be
explained by the higher amount of quartz
content (Table 2). Quartz can promote the
appearance of micro-cracks due to their
volumetric variation at 573 °C. These micro-cracks are known to act as stress raisers,
contributing to reducing the mechanical
strength [29, 30].
8
Fig. 8 • Bending strength of fired bodies containing different proportions of granite: G 30 mass-%,
G 50 mass-%, G 60 mass-%, G 70 mass-%
values of )2.48 g/cm3 were obtained with
bodies containing granite G30, G50 and
G60 fired at 1150 °C for 1h. However, the
G70 sample fired at 1100 °C for 1 h showed
a slight decrease in the density value
(2.40 g/cm3). The low bulk density value
of bodies containing 70 mass-% granite,
attributed to the relatively high proportion
of the glassy phase at the expense of the
crystalline phase, is evident in Fig. 7d. The
addition of granite from 30 up to 60 mass-%
had a significant effect on increasing the
bulk density values and lower water absorption up to ()0.87%).
The bending strength (BS) is a property that
is strongly dependent on the amount of
4 Conclusions
The results presented and discussed in this
work enable us to draw the following conclusions:
1. Granite is composed of quartz, orthoclase, microcline and albite. According to
its characteristics, granite is a nonplastic
ceramic material and, therefore, can be
beneficially used in the production of
stoneware ceramic bodies.
2. Samples with 30 and 50 mass-% granite
show higher bulk densities, bending
strengths and lower water adsorption,
which is mainly due to the major crystalline phases and glassy matrix formed
during the firing process.
,17(5&(5$0
5$:0$7(5,$/6:25/':,'(
3. XRD analysis indicates that no significant
effect on mullitization was observed as a
result of the granite addition. However, a
gradual increase in the residual quartz
content was observed with a progressive
increase in the granite addition.
4. The ceramic bodies prepared by utilizing
the granite meet the requirements for
ceramic floor tiles according to the
Standard specification for ceramic floor
tiles (SABS no.1449-1989).
References
[1] Abd El Ghaffar, N.I.: Geological and petrological
studies of some granitic rocks in the Central Eastern Desert, Egypt, and their economic aspects using
remote sensing and GIS techniques. Ph.D. Thesis,
Fac. Sci., Ain Shams Univ., Cairo (2010)
[2] Akaad, M.K., Noweir, A.M., Kotb, H.: Geology and
petrochemistry of granite association of the Arabian desert orogenic belt between lat. 25°35v and
26°30v N. Delta J. Sci. 3 (1979) 107–151
[3] El-Sayed, M.M.: Tectonic setting and petrogenesis
of the Kadbora pluton. A late proterozoic anorogenic A-type younger granitoid in the Egyptian
shield. Chemie der Erde 58 (1998) 38–63
[4] Fowler, T.: Pan African granite emplacement mechanisms in the eastern desert, Egypt. J. African Earth
Sci. 32 (2001) [1] 61–86
[5] Greenberg, J.K.: Characteristics and origin of Egyptian younger granites. Summary. Geolog. Soc. Am.
Bull. Part I 92 (1981) 224–232
[6] Mohamed, F.H.: Geochemistry of Bir Um Hibal complex: Alkaline syenites and granites from the eastern desert of Egypt. Chemie der Erde 56 (1996)
45–64
[7] Mohamed, F.H., Kanisawi, S.: The Pan African intrusive complex of Ghorabat area, southern Egypt:
Geochemical and mineralogical constraint on arc
related and anorogenic magmatism. Chemie der
Erde 59 (1999) 259–286
[8] Osman, A.F., El-Alfy, Z.S., Abd El Rahim, S.H., Abd
El Ghaffar, N.I.: Discriminations of neoproterozoic
granitic phases in the Central Eastern Desert of
Egypt, using enhanced thematic mapper data with
field and petrographic studies.Egypt. J. Geology 54
(2010) 96–113
[9] Stern, R.J., Hedge, C.: Geochronological and isotopic constrains on late precambrian crustal evolution in the eastern desert Egypt. Am. J. Sci. 285
(1985) 97–172
[10] Gennaro, R., Cappelletti, P., Cerri, G., Gennaro, M.,
Dondi, M., Guarini, G.: Influence of zeolites on the
sintering and technological properties of porcelain
stoneware tiles. J. Eur. Ceram. Soc. 23 (2003)
2237–2245
[11] Ibrahim, D.M., Sallam, E.H., Khalil, A.A., Naga,
S.M.: Nepheline syenite-talc low temperature
vitrified bodies. Ceram. Inter. 7 (1981) 69–72
[12] Burat, F., Kangal, O., Onal, G.: An alternative mineral in the glass and ceramic industry: nepheline
syenite. Miner. Eng. 19 (2006) 370–371
[13] Salem, A., Jazayeri, S.H., Rastelli, E., Timellini, G.:
Dilatometric study of shrinkage during sintering
process for porcelain stoneware body in presence
of nepheline syenite. J Mater. Process Technol. 209
(2009) 1240–1246
[14] Ryshchenko, M.I., Shchukina, L.P., Fedorenko, E.Y.,
Firsov, K.N.: Possibility of obtaining ceramogranite
using quartz-feldspar raw material from Ukraine.
Glass Ceram. 65 (2008) [1–2] 23–26
[15] Tereshchenko, I.M., Pun’Ko, G.N., Serikova, L.V.:
Optimization of ceramic granite composite compositions. Glass Ceram. 57 (2000) [11–12] 435–437
[16] Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to Ceramics. 2nd ed., Wiley, New York
(1975) 495
[17] Emiliani, G.P., Corbara, F.: Tecnología Cerámica: La
Lavorazione. Gruppo Editoriale Faenza Editrice,
Faenza (1999) 97
[18] Naga, S.M., Sallam, E.H., Abdel Aziz, D.A.: Verified
heavy-duty floor tiles from Egyptian raw materials.
cfi-Ber.DKG 70 (1993) 10
[19] Segadães, A.M., Carvalho, M.A., Acchar, W.: Using
marble and granite rejects to enhance the processing of clay products. Appl. Clay Sci. 30 (2005) 42–52
[20] Torres, P., Manjate, R.S., Cuaresma, S., Fernández,
H.R., Ferreira, J.M.F.: Development of ceramic floor
tile compositions based on quartzite and granite
sludges. J. Eur. Ceram. Soc. 27 (2007) 4649–4655
[21] Hernández-Crespo, M.S., Rincón, J.M.: New porcelainized stoneware materials obtained by recycling
of MSW incinerator fly ashes and granite sawing
residues. Ceram. Inter. 27 (2001) 713–720.
[22] Torres, P., Fernandes, H.R., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F.: Incorporation of granite cutting sludge in industrial porcelain tile formulations. J. Eur. Ceram. Soc. 24 (2004) 3177–3185
[23] Acchar, W., Vieira, F.A., Hotza, D.: Effect of marble
and granite sludge in clay materials. Mater. Sci.
Eng. A 419 (2006) 306–309
[24] Menezes, R.R., Ferreira, H.S., Neves, G.A., Lira,
H.L., Ferreira, H.C.: Use of granite sawing wastes
in the production of ceramic bricks and tiles. J. Eur.
Ceram. Soc. 25 (2005) 1149–1158
[25] Hojamberdiev, M., Eminov, Ash., Yunhua, Xu.: Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceram. Inter. 37 (2011)
871–876
[26] Pisciella, P., Crisucci, S., Karamanov, A., Pelino, M.:
Chemical durability of glasses obtained by vitrification of industrial wastes. Waste Manage 21 (2001)
1–9
[27] Marabini, A.M., Plescia, P., Maccari, D., Burragato,
F., Pelino, M.: New materials from industrial and
mining wastes: Glass-ceramics and glass and rockwool fiber. Int. J. Miner. Process 53 (1998)121–134
[28] Romero, M., Rincón, J.M., Acosta, A.: Crystallisation of a zirconium based glaze for ceramic tile
coatings. J. Eur. Ceram. Soc. 23 (2003) 1629–1635
[29] Pavlov, V.F., Mitrokhin, V.S.: Formation of mullite
in clay firing and its connection with the properties
of products. Trudy lnstituta NIlstroikeramika 32
(1979) 53–75
[30] Vieira, C.M.F., Soares, T.M., Sánchez, R., Monteiro,
S.N.: Incorporation of granite waste in red ceramics. Mater. Sci. and Eng. A 373 (2004) 115–121
Received: 03.06.2013
IN D EX O F ADV E RT I S E RS
Ceramics China 2014
Eltra GmbH
GiMA International Exhibition Group GmbH
Rimini Fiera S.p.A.
Unifair Exhibition Service Co. Ltd.
CN-Guangzhou
D-Haan
D-Hamburg
I-Rimini
CN-Guangzhou
429
FC
BC
417
IFC
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
M. Mabrouk1,2, A.A. Mostafa1,2, H. Oudadesse1, A.A. Mahmoud3, M. I. El-Gohary 4
Bioactivity and Drug Delivering Ability
of a Chitosan/46S6 Melted Bioactive Glass
Biocomposite Scaffold
7+($87+25
The corresponding author,
Mostafa Mabrouk, is Researcher at the Biomaterials Department, National Research Centre, Cairo (Egypt). His research
interests include the synthesis
and characterization of biomaterials and nanomaterials.
E-Mail: owka_05@yahoo.com
1 Introduction
Polymeric scaffolds have been demonstrated
to have great potential for tissue engineering, for they serve to support, reinforce, and
in some cases organize tissue regeneration.
Chitosan is natural polymer made of glucosamine and N-acetylglucosamine units
linked by 1–4 glycosidic bonds and has been
proven to be biologically renewable, biodegradable, biocompatible, nonantigenic,
nontoxic, and biofunctional [1]. The use of
chitosan for tissue engineering as a scaffold
material has been reported, and porous chitosan matrix has been suggested as a potential candidate for bone regeneration due to
its proper biological and physical properties
[2]. Chitosan and some of its complexes
have also been studied for use in a number
1 Université de Rennes 1, UMR CNRS 6226, 263 av. du
Général Leclerc, 35042 Rennes Cedex (France)
2 Biomaterials Department, National Research Centre,
Cairo (Egypt)
3 Pharmaceutical Technology Department, National
Research Centre, Cairo (Egypt)
4 Physics Department, Faculty of Science, Al-Azhar
University, Cairo (Egypt)
$%675$&7
.(<:25'6
Macroporous chitosan scaffolds (Ch) reinforced by quaternary bioactive
glass with the 46S6 system of 46 mass-% SiO2, 24 mass-% CaO, 24 mass-%
Na2O, 6 mass-% P2O5 prepared by a melting technique (MB) loaded with
ciprofloxacin (Cip) were prepared by a lyophilization technique. Theses
porous composite materials were especially designed as both a drug carrier for controlled drug release and a scaffold for bone regeneration. The
biodegradation rate and in-vitro mineralization of the prepared scaffolds
were performed by soaking the scaffolds in simulated body fluid (SBF).
Phase identification, microstructure, porosity, bioactivity, mechanical
properties and drug release ability in phosphate buffer solution (PBS)
were characterized by XRD, FTIR, mercury porosimeter, SEM coupled with
EDS, ICP-OES, a universal testing machine and a UV-spectrophotometer.
The addition of bioactive glass resulted in the formation of an appetite
layer on the scaffolds surfaces. The fracture toughness (KIc) of Ch is enhanced by incorporation of glass, as the glass content increases the KIc
increase. Incorporation of Cip up to 20 mass-% into Ch/MB scaffolds was
successfully achieved during the preparation procedure. The morphology,
structure and release behaviour of the loaded scaffolds were found to be
highly dependable on the glass content and drug concentrations.
of biomedical applications, among which
their use as drug carriers in drug-delivery
systemsis especially noteworthy [3–5]. In
tissue engineering, it is highly desirable that
macroporous chitosan scaffolds can be used
for bone implantation and drug delivery
synergistically. The porous structure can
provide a scaffold for bone cells to grow in
and its degradability allows the drugs to be
released to implantation sites. However, as a
drug carrier, pure chitosan is pH sensitive,
which makes it difficult to control the drugrelease behaviour under various pH values
of the internal human organs. Over-release
of the drug may induce harmful effects on
the human body. Furthermore, as a scaffold,
pure chitosan is mechanically weak and
lacks osteoconductivity, which hinders its
use as a bone implant.
Bioactive glass has many applications in
bone tissue engineering because of its
known ability to bond strongly to bone and
promote bone growth upon in vivo implantation [6]. When implanted in the body,
bioactive glass induces an interfacial bioactive response. By contrast (in vitro) it has
been documented that the ionic products
bone tissue engineering,
Ch/MB scaffolds,
ciprofloxacin, sustained
release, freeze-drying
Interceram 62 (2013) [6]
from the dissolution of bioactive glass actually enhance osteoblast attachment, proliferation, differentiation and mineralization
[7–9], as well as induce the differentiation
of bone marrow stromal cells into mature
extracellular producing osteoblasts [10].
Furthermore, the dissolution products of
bioactive glass exert control over genetic
factors of bone growth [11]. Nevertheless,
bioactive glass, as compared to cortical and
cancellous bone forms, tends to have weaker
mechanical properties, especially in porous
form. This fact restricts the use of these materials in a wide range of applications.
Composite systems are becoming more
popular in biomedical applications because
of the effective combination of the desired
properties of their constituents. From this
perspective, inorganic bioactive glass fillers
and biocompatible polymer matrices are
one of the mostly developed systems for
orthopaedic and dental applications. These
systems have osteoconductive and osteoinductive properties, as well as good mechanical strength of bioactive glass and high
biocompatibility and processability of polymers [12].
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
Local application of antibiotic release systems is important for hard tissue engineering, because of both poor vascularity inbone
tissue for oral or intravascular therapy and
easiness of microbial attack in dental sites
where it is an area open to the environment
[13, 14].
Composite scaffolds could be used as drugdelivery systems for the antibiotic treatment
of osteomylitis, a common bone disease
caused by bacterial infection of the bone
medullary cavity, cortex, and/or periosteum
upon implantation. These systems have the
advantage that no second surgical procedure
is required for implant removal. Ciprofloxacin (1-cyclopropyl-6-fluro-1, 4-dihydro4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid) is a fluoroquinolone derivative,
which is widely used in osteomyelitis because of its favourable penetration and bactericidal effect on all the probable osteomyelitis pathogens. Ciprofloxacin acts by inhibiting the bacterial enzymes DNA gyrase [15].
Hence the aim of this work is to prepare a
scaffold with controlled release properties
for water-soluble drugs; the incorporated
Ch scaffolds with MB particles containing
ciprofloxacin without the use of possibly
toxic surfactants are prepared in this research. The effect of MB content and the
drug percentage on the development of
tailored medicated scaffolds during freezedrying has also been investigated. The
chemical, morphological and release properties of ciprofloxacin loaded Ch/MB scaffolds are also investigated.
2 Materials and methods
2.1 Fabrication of Ch/MB–Cip scaffolds
2.1.1 Synthesis of bioactive glass by a melting
technique
46s6 bioactive glass powder was synthesized
by a melting technique. The materials used
were calcium silicate (Alfa Aesar, molecular
weight = 233−250, Germany), trisodium
trimetaphosphate (Molecular weight = 305.9,
Sigma, Germany) and sodium meta silicate
pentahydrate (Molecular weight = 212.1,
Sigma, Germany); the latter was heated at
200 °C / 2 h before the starting materials
were mixed by mechanical mixer for 1 h The
batch was melted in an Rh-Pt crucible
through the following firing regime [16]:
heating to 900 °C / 1 h at a rate of 10 K/min,
firing at 1350 °C / 3 h at a rate of 20 K/min.
The melted glass was poured into a preheated die at 500 °C near the glass transition
temperature. The resulting bioactive glass
was crushed and ground in a mechanical agate mortar and sieved to a grain size of less
than 63 μm; the glass was given the code MB
for simplicity.
Fig. 1 • Biocomposite
scaffold preparation
method
1
2.1.2 Composite preparation
Ch/MB-Cip composite scaffolds were prepared by employing freeze-drying as demonstrated in Fig. 1. Firstly, Ch (ALDRICH,
medium molecular weight, Germany) was
dissolved in acidified water using acetic acid
(Analar Normapur, Molecular weight = 60.05,
Germany) at room temperature for 3 h using a polymer concentration of 3 mass-%.
The dissolved Ch was normalized by the
addition of a few droplets of sodium hydroxide solution until white precipitate was
achieved. After removal of this precipitate,
three different concentrations of MB, 33.5,
50 and 66.5 mass-%, were added to the Ch
solution and continuously stirred overnight
using a magnetic stirrer in order to break
the MB agglomerates and ensure a better
(homogenous) distribution of MB particles
in the composite scaffolds. Three different
concentrations of ciprofloxacin, 5, 10 and
20 mass-%, were added to the above mixture continue stirred for 1 h (scaffolds with
the same composition were prepared without drug loading as a control). Scaffolds
were casted in 24 well plates and kept at
–18 °C overnight and freeze dried for 24 h.
Then the scaffolds were removed from the
well plates and kept in the desecrator for
further analysis as mentioned below.
2.2 Morphological and microstructural
properties
The microarchitecture of these scaffolds was
assessed qualitatively by use of scanning electron microscopy (SEM) and quantitatively
by use of mercury intrusion porosimetry
(MIP) and the liquid displacement method.
2.2.1 SEM
SEM analyses were performed on a thin
piece of scaffold sheared from the centre
using a sharp razor blade after soaking in
liquid nitrogen for 2 min. Scaffolds were
observed through the use of SEM (max.
20 kV) with a gold palladium coating to
avoid beam damage of the polymer, something which can be prominent on scaffolds
having a very fine microstructure.
2.2.2 MIP
MIP was performed using (PORESIZER
9320 V2.08) to determine the median pore
diameter, skeletal density and percent porosity.
2.2.3 Liquid displacement method
Scaffold samples were submersed in cyclohexane for 1 h. The volume of a scaffold
immersed in the fluid is equal to the volume
of the displaced fluid, and we can calculate
the porosity from Equation (1):
P / % = [(W1-W3)/ (W2-W3)] x 100
(1)
where W1 is the weight of the scaffold before
immersion, W2 the weight of the scaffold
after immersion and W3 the weight after
drying by this method, from which we can
obtain the porosity percentage (P / %).
2.3 Mechanical properties of the prepared
scaffolds
Fracture mechanics provide the appropriate
methodology to quantify the fracture resistance of biocomposite scaffolds. Under linear
elastic conditions, fracture instability is
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
reached when the stress intensity of preexisting crack exceeds the fracture toughness, KIc, of the scaffold:
K=Ymapp (Ÿa)1/2= KIc
(2)
where mapp is the applied stress, a is the crack
length, and Y is the function of geometry,
crack size and shape.
A fracture toughness test was machined
from semi-circulars discs that have been
cut from the scaffolds (without drugs).
After machining, specimens were dry polished up to 1200 grit finish. The specimens
used had a width of R ~ 5.5–9 and a thickness of B ~ 4–7. The initial portion of the
notch was carefully machined using a slow
speed saw, with the final portion being introduced through the use of a fine blade
under an optical microscope; the length of
this notch was determined by the following
equation: a=0.32 (2R), and mapp was calculated by using Equation (3):
mapp =P/2RB
on the principle of electron-matter interactions. To allow surface conduction, the
scaffolds were metalized by a gold-palladium layer (a few μm thick) before being
introduced into the analysis room. Semiquantitative chemical analysis on scaffold
surfaces after immersion in SBF, covered by
gold-palladium layer to allow surface conduction, was performed by energy dispersive spectroscopy (EDS) in Jeol JSM 6400.
2.4.4 ICP-OES
The concentrations of Ca, p and Si elements
after each soaking time in SBF were measured by using inductively coupled plasmaoptical-emission spectrometry (ICP-OES).
This method offers high sensitivity, less than
1μg/g depending on the matrix analyzed
and offers a high accuracy. The principle is
based on the determination of the amount
of each element present in solution by analyzing the intensity of the radiation emitted
at the specific elemental frequency after the
nebulization of atoms.
of the release medium were taken, and the
drug concentration was determined spectrophotometrically at 277 nm (Jenway 6705
UV/Vis, UK). The samples were replaced
with fresh buffer in order to keep the medium at a constant volume. All experiments
were carried out in triplicate. Ciprofloxacin
release was monitored for 360 h.
2.6.1 Mechanism of ciprofloxacin release
The Korsmeyer-Peppas model [20] was used
to find out the mechanism of drug release
from the scaffolds investigated:
Mt / M'= Ktn
(5)
where Mt / M' is the fraction of drug
released at time t, k is the rate constant and
n is the release exponent of the Korsmeyer–
Peppas model. In the case of quasi-Fickian
diffusion, the value of n < 0.5, Fickian diffusion n = 0.5, non-Fickian or anomalous
transport n = 0.5–1.0 and case II transport
n = 1.0.
(3)
2.4 Bioactivity
2.4.1 Phase analysis by x-ray diffraction
(XRD)
The X-ray diffraction (XRD) technique
(Philips X’Pert-MPD system with a CuKa
wavelength of 1.5418 Å) was used to analyze
the structure of the prepared MB and Ch/
MB composite scaffolds. The diffractometer
was operated at 40 kV and 30 mA at a 2e
range of 10–70 °, with a step size of 0.058/s.
2.4.2 Infrared studies
Fourier transformed infrared analysis
(FTIR; Nicolet Magna-IR 550 spectrometer,
Madison, Wisconsin) was performed to
identify the nature of the chemical bonds
between atoms. The samples were small
pellets, of 0.5 cm diameter, obtained by
pressing the scaffold powder with KBr.
2.4.3 SEM coupled with EDS
The morphology of the surfaces of scaffolds
was studied by SEM (Jeol JSM 6301). This is
a technique of morphological analysis based
2.5 In vitro degradation studies
The degradation pattern of the composite
scaffold was studied in SBF medium at
37 °C. Groups of scaffolds (three scaffolds in
each) were immersed in SBF and incubated
for up to 30 days. After each period of time
one of the scaffolds was washed twice with
distilled water to remove any ions adsorbed
on the surface and was dried. The initial
weight of the scaffold was noted as Wo and
the dry weight as Wt. The degradation of
scaffolds was calculated with Equation (4):
Degradation / % = (Wo – Wt)/Wo × 100 (4)
2.6 Ciprofloxacin release behaviour
Drug incorporation into the scaffolds was
investigated by means of XRD, FTIR and
SEM coupled with EDS.
Phosphate buffer solution (PBS), pH 7.4
(10 ml), previously heated at 37 °C, was
added to test tubes containing the freshly
prepared scaffolds. The tubes were kept at
37 °C with shaking (50 oscillations min–1)
and, at pre-established times, 1 ml samples
Table1 • Porosity percentage and pore diameter measured by MIP and liquid
displacement
Sample name
Skeletal
density / g/ml
Ch 3 %
0.9161
Pore diameter
range (4V/A)
Porosity / %
μm
nm
Porosimeter
Liquid displacement
150.07
6
85.91
95
2Ch:1MB
0.9923
163
6
88.12
72.56
1Ch:1MB
2.4470
165.6
11
85.91
67.45
1Ch:2MB
2.9919
177.08
6
84.65
60.84
3 Results and discussion
3.1 Morphological and microstructural
properties
The morphology of the prepared scaffolds is
presented in Fig. 2. It can be observed that
all the prepared scaffolds have wide range of
interconnected pores including macro, micro and nanopores, as was also confirmed by
a mercury porosimeter. By increasing the
MB concentration, the pore size in the scaffolds also increased. The average pore size of
the scaffolds fabricated was increased from
150 ± 5 μm to 170 ± 24 μm by increasing the
concentration of MB from 0 mass-% to
66.5 mass-%. The wide range of pores sizes
for all the scaffolds fabricated with different
MB concentration indicated that pores in
all the scaffolds were interconnected and
seeded cells would be proliferated throughout the 3D structure of the scaffold. The
pore size was found to be in the range of
100–200 μm, suitable for tissue engineering
applications [18].
Pores are essential for the migration and
proliferation of the cells, nutrient supply
and vascularization [19]. The surface of the
chitosan control scaffold was found to be
smooth compared to the Ch/MB composite
scaffold. This may be due to the incorporation of MB that significantly increases the
surface area of the scaffolds, further enhancing the bioactivity of the scaffolds [20, 21].
The porosity percentage for the prepared
scaffolds was determined by MIP and liquid
displacement methods, and there was no
significant difference between the two methods, as demonstrated in Table 1.
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
2
3
Fig. 3 • Fracture toughness of prepared Ch/MB Scaffolds with reference to
Ch alon
3.2 Mechanical properties
The mechanical behaviour of the prepared scaffolds was characterized by determining the fracture toughness KIc. Ch alone exhibits
low fracture toughness, as shown in Fig. 3. In the Ch/MB scaffolds a
marked change could be observed: as the amount of glass increased
the fracture toughness increased. Table 1 shows the skeletal density
of the Ch and Ch/MB composite scaffolds measured by MIP. It was
also observed that the density of the scaffolds increased with increasing concentration of glass, as reported earlier [22, 23]. A combination of high strength and high toughness could be achieved by
incorporating microparticles of MB into the Ch matrix.
3.3 Bioactivity
Figures 4 and 5 represent XRD and FTIR, respectively, of the prepared Ch/MB composite scaffolds with MB and Ch as references before immersion in SBF.
Fig. 2 • SEM images for (a) chitosan scaffold, (b) 2Ch:1MB scaffold, (c)
1Ch:1MB and (d) 1Ch:2MB scaffold with magnifications of X300 and X1000
4
3.3.1 XRD analysis and FTIR before immersion in SBF
The XRD patterns from both samples of pure Ch showed some diffraction bands. Hence, it has been identified as a semi-crystalline
5
O
Fig. 4 • XRD of the prepared scaffolds before immersion in SBF with reference
to MB
:DYHQXPEHUFP±
Fig. 5 • FTIR of the prepared scaffolds before immersion in SBF with reference
to MB
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
6
7
O
O
O
Fig. 6 • (a) XRD of 2Ch:1MB, (b) XRD of 1Ch:1MB,
(c) XRD of 1Ch:2MB – in all cases after soaking in
SBF
structure due to the superior concentration
of hydroxyl groups. On the other hand,
XRD studies confirmed that the prepared
glass generally existed in an amorphous
state and no diffraction peaks could be observed except a broad band between 15° and
40° (2e) [25]. For the Ch/MB scaffold five
peaks can be noted; at an approximately
crystalline peak at 2e of 21.23° (001), 26.08°
(022), 27.34° due to glass polymer combination, 39.59° (131), and 47.81° (444). This indicates some degree of crystallinity on the
biopolymer network, which diminishes with
an increase of the glass content. This would
be a typical XRD pattern for the scaffold
showing contribution from all components
in the system [26].
FTIR before immersion in SBF showed a
strong interaction between MB and Ch.
Vibration bands were observed at 467 and a
:DYHQXPEHUFP±
:DYHQXPEHUFP±
:DYHQXPEHUFP±
Fig. 7 • (a) FTIR of 2Ch:1MB, (b) FTIR of 1Ch:1MB,
(c) FTIR of 1Ch:2MB – all after soaking in SBF
shoulder at 1200 cm–1, which are assigned to
the Si–O–Si bending mode. The vibration
band at 1070 cm–1 and a double peak at 607
and 567cm–1 are due to the stretching vibration of phosphate groups [25]. The peaks at
2889 and 1637 cm–1 are attributed to CH
stretching and C=O bending vibration band
of Ch. This indicates that Ch is present on
the surface of scaffold particles [27, 28]. The
FTIR spectrum of the Ch scaffold shows a
peak at 1580 cm–1, which corresponds to the
primary amide groups of chitosan, this peak
diminishes with increasing glass content.
The peak at 1030 cm–1, which is attributed
to phosphate groups, was present in Ch/BG
scaffold, while the peak at 1070 cm–1 was
observed in Ch, which was absent in Ch/BG,
and was assigned to C–O stretching of chitosan [29].
3.3.2 XRD analysis and FTIR after
immersion in SBF
The XRD of the prepared scaffolds after
soaking in SBF for different time intervals is
demonstrated in Fig. 6. XRD spectra of Ch/
MB composite scaffolds showed sharp
peaks, 25.88°, 31.8°, 39.89° and 46.7° (2e)
attributed to 022, 211, 221 and 222 reticular
planes of HA [30, 31]. The increase in the
intensity of peaks from 2 days to 30 days was
indicative of the increase in the deposition
of HA. It also confirmed that the presence of
MB increased the deposition of HA on the
scaffolds [32] (Fig. 6). The IR spectrum of
synthetic hydroxy apatite was used as references to evaluate the structural evolution
and the bioactivities of the prepared scaffolds [33]. After soaking in SBF solution, the
initial characteristic bands of the Ch/MB
biocomposite are modified strongly because
of the interfacial reactions between scaffolds
and the SBF. Consequently, the spectra of
these biomaterials reveal new bands as
demonstrated in Fig. 7.
In detail, the spectrum of Ch/MB biocomposite shows three new, well-defined phosphate bands at 565, 603 and 1039 cm–1 after
2 days of soaking in physiological solution
for Ch/MB scaffolds. They are assigned to
stretching vibrations of the PO43– group in
phosphate crystalline phases. This result
confirms the formation of a calcium phosphate layer; this spectrum is quite similar to
that of hydroxyl apatite except for the two
bands located at 1620 and 3423 cm–1. These
bands are characteristic of the presence of
water related to the hygroscopic feature of
the apatite formed. In addition, the carbonate band at 1420 cm–1 is also observed. This
band attributes to a stretching vibration of
the C−O liaisons in carbonate groups. The
presence of carbonate bands indicates the
formation of a layer of carbonated hydroxyl
apatite on the surface of Ch/MB biocomposite. The results obtained highlight the
rapid formation of the apatite layer on the
surface of the Ch/MB biocomposite.
In addition, Ch/MB scaffolds reveal three
Si–O–Si bands at 470 cm–1 (bending vibration), 799 cm–1 (bending vibration) and
1075 cm–1 (stretching vibration). These
confirm the presence of a silica gel [34]. The
appearance of apatite mineral and a silica
gel indicate the interactions between the
scaffolds and SBF as described by Hench et
al. [35]. The results obtained confirm the
bioactivity of the Ch/MB biocomposite.
3.3.3 SEM with EDS after immersion in SBF
The bioactive character of the composite
scaffolds was tested in vitro by analyzing the
ability to form apatite at their surface after
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
8
Fig. 8 • (a) Ch SEM with EDS, (b) 1Ch:2MB SEM – all after 3 weeks of immersion in SBF
9
Fig. 9 • (a) Ca ion concentrations, (b) P ion concentrations, (c) Si ion concentrations – after soaking of
Ch Scaffolds in SBF at different time intervals
being immersed in SBF. Two compositions
of the prepared scaffolds were investigated
by SEM coupled with EDS (Fig. 8) to evaluate their surface changes after soaking in
SBF for 21 days. The 1Ch:2MB sample was
chosen with reference to Ch alone due to the
high MB content, which induces a much
better formation of the Ca–P layer on their
surfaces, as confirmed by XRD and FTIR. A
marked apatite formation can be seen on
the surface of Ch/MB scaffolds, which is
distributed over their entire surface.
The precipitated layer formed above the entire surface could be identified as calcium
phosphate once it had formed a dense precipitate with the typical cauliflower morphology. A close inspection of layer deposits
in the interior of the material indicated that
the scaffold could induce calcification beyond the surface of the scaffold. The precipitated layer also appeared to be well-connected to the biopolymer fraction and tended to its fibrillar structure. The EDS spectra
revealed that the elements present in the
control sample before immersion in SBF
were those composition of the MB bioactive
glass beside C, N and O that related to chitosan polymer. The presence of Ca, P, Na
and Cl elements on the surface of the prepared composite scaffolds were determined
by EDS. After 21 days of immersion in SBF
the phosphocalcic ratio Ca/P was nearly
equal to the stoichiometric apatite [36–41].
This study obviously indicates that the MB
microparticles introduced in the Ch/MB
scaffold promote the formation in vitro of
bone-like apatite, which could induce a positive contact with surrounding tissue after
implantation in a bone defect. We suggest
that the osteoconductive properties of the
scaffold could be more relevant for longterm implantation. Bone regeneration is
expected to follow its own process while Ch
is progressively degraded.
3.3.4 Evaluation of elemental concentrations
in SBF
The change of ion concentrations in SBF is
demonstrated in Fig. 9. For P and Si ions
they have the same behaviour for all the prepared scaffolds, with little difference in their
amount in the SBF. This is due to the variation of MB concentration in the prepared
scaffolds which result in different integration limit between MB and Ch polymer. The
ion concentration of Ca was found to be
completely different for each scaffold composition. This is believed to be due to the
glass content in the scaffolds of the MB
used, as they in turn change the porosity
and the degradation rate in the SBF [37–40,
42–44].
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
10
11
Oƒ
Fig. 10 • Biodegradation rate of the scaffolds prepared in SBF
3.4 Degradation
The biodegradation rate of the prepared
scaffolds was investigated in SBF at different
time intervals with Ch alone as the control,
as shown in Fig. 10. The in vitro biodegradation of scaffolds after 1 month of immersion in SBF showed a significant difference
in the degradation rate of composite scaffolds compared to Ch scaffolds. Ch/MB
composite scaffolds showed a significant
decline in the degradation rate compared to
chitosan scaffolds. Degradation of chitosan
can result in acidic degradation products,
which may be neutralized by alkali groups
leaching out from MB, thus reducing the
degradation rate [23].
3.5 Ciprofloxacin incorporation
The success of the incorporation of the
ciprofloxacin drug into Ch and Ch/MB
scaffolds during the preparation procedure
was confirmed by XRD, FTIR and SEM
coupled with EDS.
3.5.1 XRD
XRD confirmed the presence of the ciprofloxacin drug in the Ch and Ch/MB scaffolds as shown in Fig. 11a. Ciprofloxacin has
specific sharp crystal peaks and Ch has a
specific broad peak, while a halopattern was
recorded for Ch/MB loaded with ciprofloxacin, demonstrating their amorphous
state. When ciprofloxacin was entrapped into the Ch matrix, its sharp crystal peaks
overlapped with the noise of the coated polymer and the disappearing ciprofloxacin
was completely and successfully entrapped
into the matrix of the Ch polymer. This indicates that Ch loaded with ciprofloxacin
shows three identification peaks at 2e of
12.67°, 20.05° and 25.85° due the presence
of the drug because of its close molecular
packing and regular crystallization. However, for Ch/MB scaffolds loaded with ciprofloxacin there are three peaks 11.79°, 21.12°
Fig. 11 • (a) XRD and
(b) FT-IR of 1Ch:2MB
scaffold incorporated
with 20 % ciprofloxacin
:DYHQXPEHUFP±
and 29.44°, due to the presence of MB particles [45–49].
3.5.2 FTIR
The ciprofloxacin loaded scaffolds’ FTIR is
shown in Fig. 11b. The FTIR spectrum of
ciprofloxacin showed the presence of the
following bands: at 3098.08 cm–1 due to the
stretching vibration of the –NH group, at
1644.98 cm–1 due to the stretching vibration
of the C=O group in the primary amide and
at 1593.88 cm–1 due to the bending vibration of N–H group in the secondary amide.
The stretching vibration of the O=S=O
group appeared at 1148.40 cm–1, aromatic
CH stretching vibration appeared at
3064.33 cm–1 and the –CH aromatic ring
bending appeared at 828.277 cm–1. The Ch
scaffolds loaded with drugs indicated the
presence of new bands at 3522, 1637, 798.67
and 1473.52 cm–1 due to the presence of the
ciprofloxacin drug. These bands were also
indicated for Ch/MB scaffolds loaded with
ciprofloxacin, in addition to another two
bands at 1088 and 463.23 cm–1, with higher
intensity due to the combination of drugs
with glass particles in the polymer matrix.
A shorter band appeared in the region
1500–1200 cm–1, which was ascribed to the
hydrated bonds with ciprofloxacin molecules. Another large band assigned to the
C–O–C stretching vibration occurred between 1200 and 1030 cm–1, which shifted
from 1047 cm–1 for scaffolds without drugs
to 1083 cm–1 for scaffolds with drugs [47–55].
The FTIR spectra indicate that although an
interaction occurs with both Ch/MB scaffolds, this is probably because Ch/MB has a
greater content of pendant hydroxyl groups
that are more accessible for establishing
hydrogen bonds [47].
3.5.3 SEM coupled with EDS
The SEM image of the drug shows a rod
shape and its EDS indicates the presence of F
and Cl elements, which are the main components of the drug. SEM of the incorporated
scaffolds with ciprofloxacin indicates of a
rod shape in the scaffolds [48, 52]; moreover,
the EDS confirms the presence of these elements. XRD, FTIR and SEM coupled with
EDS indicate and confirm the success of the
incorporation of ciprofloxacin into Ch and
Ch/MB scaffolds, as shown in Fig. 12.
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
12
Fig. 12 • SEM of (a) ciprofloxacin, (b) Ch scaffold loaded with 20 % ciprofloxacin, (c) 1Ch:2MB scaffold
loaded with 20 % ciprofloxacin
13
3.6 Release behaviour of ciprofloxacin
The release behaviour of ciprofloxacin
from the prepared scaffolds is presented in
Figs. 13a and b. Ciprofloxacin, as expected,
exhibits a burst release from the system investigated. Moreover, a sustained drug release profile was observed from the figures
investigated with a quasi-Fickian diffusion
mechanism (n-values less than 0.5). This
mechanism indicates that the polymer is
hydrated, swells and then the drug diffuses
through the swollen matrix system, which
ultimately slows down the kinetic release.
The drug release rate increases with an increase of the drug concentration, which is
due to the higher deference between the
scaffold and the surrounding medium in the
PBS solution. Incorporation of MB into the
scaffold matrix affected the ciprofloxacin
release behaviour, decreased the burst effect
due to the porosity decreasing by the incorporation of glass particles into the Ch matrix [53–55].
4 Conclusions
In this study, Ch/MB biocomposite scaffolds
loaded with ciprofloxacin with a well-interconnected pore structure were fabricated
via a freeze-drying technique. The degradation rate, fracture toughness and physicochemical properties of the scaffold prepared
by freeze-drying for tissue engineering
could be controlled by controlling the glass
concentration. The pore size achieved is
suitable for cell activation and tissue regeneration. Drug loaded scaffolds with ciprofloxacin exhibit a good drug delivery system
with sustained drug release. The intimate
interaction between the bioactive glass 46s6
and chitosan chains has the potential to
combine bone bonding and bioactive ion
release and controlled degradation. The results of controlled release tests showed that
the amount of ciprofloxacin released decreased with an increase in the proportion
of glass content and increased as the amount
of drug loaded in the scaffold increased. All
these results suggest that the Ch/MB composite scaffold can serve as an appropriate
bioactive matrix for tissue regeneration and
treatment of osteomylitis.
References
Fig. 13 • Cumulative ciprofloxacin release of (a) Ch scaffolds in PBS, (b) 1Ch:2MB scaffolds in PBS
[1] Aydelotte, M., Schumacher, B., Kuettnerk, K.:
Heterogeneity of articular chondrocytes. In: Kuettner, K., Schleyerbach, R., Peyron, J., Hascall, V.,
(ed.) Articular cartilage and osteoarthritis. Raven
Press, New York (1992) 237–249, ISBN 978-088167-862-8
[2] Madihally, S.V., Matthew, H.W.T.: Porous chitosan
scaffolds for tissue engineering. Biomater. 20
(1999) 1133–1142
,17(5&(5$0
+,*+3(5)250$1&(&(5$0,&6
[3] Aiedeh, K., Gianasi, E., Orienti, I., Zecchi, V.: Chitosan microcapsules as controlled release systems
for insulin. J. Microencapsul. 14 (1997) 567–576
[4] Miyazaki, S., Yamaguchi, H., Takada, M., Hou,
W.M., Takeichi, Y., Yasubuchi, H.: Pharmaceutical
application of biomedical polymers. 29. Preliminary
study on film dosage form prepared from chitosan
for oral drug delivery. Acta Pharm. Nord. 2 (1990)
401–406
[5] Muzzarelli, R., Biagini, G., Pugnaloni, A., Filippini,
O., Baldassarre, V., Castaldini, C., Rizzoli C.: Reconstruction of parodontal tissue with chitosan. Biomater. 10 (1989) 598–603
[6] Hench, L.L.: Genetic design of bioactive glass. J.
Eur. Ceram. Soc. 7 (2009) 1257–1265
[7] Kaufmann, E.E., Ducheyne, P., Shapiro, I.: Effect of
varying physical properties of porous, surface
modified bioactive glass 45s5 on osteoblast proliferation and maturation. J. Biomed. Mater. Res. 52
(2000) 783–796
[8] Jones, J.R., Tsigkou, O., Coates, E.E.: Extracellular
matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using
primary human osteoblast (HOB) cells. Biomater.
28 (2007) 1653–1663
[9] Valerio, P., Pereira, M.M., Goes, A.M.: The effect
of ionic products from bioactive glass dissolution
on osteoblast proliferation and collagen production. Biomater. 25 (2004) 2941–2848
[10] Radin, S., Reilly, G., Bhargave, G.: Osteogenic effects of bioactive glass on bone marrow stromal
cells. J. Biomed. Mater. Res. A73 (2005) 21–29
[11] Xynos, I.D., Buttery, L.D., Hench L.L.: Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce IGF II m
RNA expression and protein synthesis. Biochem.
Biophys. Res. Communication 276 (2000) 461–465
[12] Azevedo, L., Gomes, J.C., Stringheta, P.C., Gontijo,
M.M.C., Padovani, C.R., Ribeiro, L.R. et al.: Black
bean ( Phaseolus vulgaris L.) as a protective agent
against DNA damage in mice. Food and Chemical
Toxicology 41 (2003) 1671–1676
[13] Mouriño, V., Boccaccini, A.R.: Bone tissue engineering therapeutics: controlled drug delivery in
three-dimensional scaffolds, J. R. Soc. Interface 7
(2010) 209
[14] Yildirim, M. S., Hasanreisoglu, U., Hasirci, N., Sultan, N.J: Oral Rehabil. 32 (2005) 518
[15] Nayak, A.K., Sen, K.K.: Hydroxyapatite-ciprofloxacin minipellets for bone-implant delivery:
Preparation, characterization, in-vitro drug adsorption and dissolution studies. Int. J. Drug. Dev. Res.
1 (2009) 47–59
[16] Dietrich, E., Oudadesse, H., Lucas-Girot, A., Mami,
M.: In vitro bioactivity of melt-derived glass 46S6
doped with magnesium. J. Biomed. Mater. Res. 88
(2009) 1087–1096
[17] Korsmeyer, R.W., Gurny, R. et al.: Mechanisms of
solute release from porous hydrophilic polymers.
Int. J. Pharm. 15 (1983) 25–35
[18] Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomat. 26
(2005) 5474–5491
[19] Peter, M., Binulal, N.S., Nair, S.V., Selvamurugan,
N., Tamura, H., Jayakumar, R.: Novel biodegradable
chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J. 158 (2010) 353–361
[20] Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D.,
Hong, Z., Mano, J.F.: Polymer/bioactive glass nanocomposites for biomedical applications: A review.
Comp. Sci. and Tech. 70 (2010) [13] 1764–1776
[21] Misra, S.K., Nazhat, S.N., Valappil, S.P.: Fabrication
and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass. Biomacromolecules 8 (2007) 2112–2119
[22] Mao, J.S., Zhao, L.G., Yin, Y.J., Yao, K.D.: Structure
and properties of bilayer chitosan–gelatin scaffolds. Biomater. 24 (2003) 1067–1074
[23] Peter, M., Binulala, N.S., Nair, S.V., Selvamurugan,
N., Tamura, H., Jayakumar, R.: Nanocomposite
scaffolds of bioactive glass ceramic nanoparticles
disseminated chitosan matrix for tissue engineering applications. Carbohyd. Polymer. 79 (2010)
284–289
[24] Saiz, E., Zimmermann, E.A., Lee, J.S., Wegst, U.G.K.,
Tomsia, A.P.: Perspectives on the role of nanotechnology in bone tissue Engineering. Dent. Mater. 29
(2013) 103–115
[25] Xia, W., Chang, J.: Preparation and characterization
of nano- bioactive-glasses (NBG) by a quick alkalimediated sol–gel method. Mater. Lett. 61 (2007)
3251–3253
[26] Zheng, J.P., Wang, C.Z., Wang, X.X., Wang, H.Y.,
Zhuang, H., Yao, K.D.: Preparation of biomimetic
three-dimensional gelatin/montmorillonite-chitosan
scaffolds for tissue engineering. React. Funct. Polymer. 67 (2007) 780–788
[27] Mansur, H., Costa, H.: Nanostructured poly(vinyl
alcohol)/bioactive glass and poly (vinylalcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem. Eng. J. 137 (2008) 72–83
[28] Petrova, S., Miloshev, S., Mateva, R., Illev, I.: Synthesis of amphiphilic PEG–PCL–PEG triblock copolymer. J. Univ. Chem. Technol. Metall. 43 (2008) 199–
204
[29] Li, J., Dou, Y., Yang, J., Yin, Y., Zhang, H., Yao, F.,
Wang, H., Yao, Y.: Surface characterization and
biocompatibility of micro- and nano-hydroxyapatite/chitosan–gelatin network films. Mater. Sci.
Eng. C29 (2009) 1207–1215
[30] Chai, C., Nissan, B.B., Pyke, S., Evans, L.: Sol-gel
derived hydroxylapatite coatings for biomedical
applications. Mater. and Manufact. Proc. 10 (1995)
205–216
[31] Tan, H., Kacey, G.M.: Injectable biodegradable hydrogels for tissue engineering applications. Mater.
3 (2010) 1746–1767
[32] Kokubo, T., Kim, H.M., Kawashita, M.: Novel bioactive materials with different mechanical properties. Biomat. 24 (2003) 2161–2175
[33] Misra, S.K., Mohn, D., Brunner,T.J.: Comparison of
nanoscale and microscale bioactive glass on the
properties of P(3HB)/bioglass composites. Biomat.
29 (2008) 1750–1761
[34] Dietrich, E., Oudadesse, H., Lucas-Girot, A., Mami,
M.: In vitro bioactivity of melt-derived glass 46S6
doped with magnesium. J. Biomed. Mater. Res. 88
(2009) 1087–1096
[35] Hench, L.L.: The story of bioglass. J. Mater Sci:
Mater. Med. 17 (2006) 967–978
[36] Yazdanpanah, A., Reza, K., Moztarzadeh, F.: Enhancement of the fracture toughness in bioactive
glass-based nanocomposites with nanocrystalline
forsterite as advanced biomaterials for bone tissue
engineering applications. Ceram. Inter. 38 (2012)
5007–5014
[37] Mami, M., Oudadesse, H., Doebez-Sridi, R.: Synthesis and in-vitro characterization of melt derived
47S CaO-P2O5-SiO2-Na2O bioactive glass. Ceram.
Silik. 52 (2008) [3] 121–129
[38] Oudadesse, H., Bui, X.V., Yann, L.: Chitosan Effects
on Bioactive Glass for Application as Biocopmosite
Biomaterial. Int .J. Biolog. and Biomed. Eng. 5 (2011)
49–56
[39] Oudadesse, H., Mostafa, A., Bui, X.V.: Physicochemical assessment of biomimetic nano-hydroxyapatite/polymer matrix for use in bony surgery. Int. J.
Biolog. and Biomed. Eng. 5 (2011) 103–110
[40] Mami, M., Lucas-Girot, A., Oudadesse, H.: Investigation of the surface reactivity of a sol–gel derived
glass in the ternary system SiO2-CaO-P2O5. App.
Surf. Sci. 54 (2008) 7386–7393
[41] Bellucci, D., Cannillo, V., Sola, A.: Macroporous
Bioglass®-derived scaffolds for bone tissue regeneration. Ceram. Int. 37 (2011) 1575–1585
[42] Julian, R.J.: New trends in bioactive scaffolds: The
importance of nanostructure. J. Eur. Ceram. Soc. 29
(2009) 1275–1281
[43] Oudadesse, H., Mami, M., Doebez-Sridi, R.: Study
of the bioactivity of various mineral compositions
of bioactive glasses. Bioceram. Develop. and App.
1 (2011), Article ID D110151
[44] Oudadesse, H., Mami, M., Doebez-Sridi, R., Pellen,
P., Perez, F., Jeanne, S., Chauvel-Lebret, D., Mostafa, A., Cathelineau. G.: Study of various mineral
compositions and their bioactivity of bioactive
glasses. Bioceram. 22 (2009) 379–382
[45] Peter, M., Binulal, N.S., Nair, S.V.: Novel biodegradable chitosan–gelatin/nano-bioactive glass
ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J. 158 (2010) 353–361
[46] Unnithan, A.R., Barakat, N.A.M., Tirupathi Pichiah,
P.B.: Wound-dressing materials with antibacterial
activity from electrospun polyurethane–dextran
nanofiber mats containing ciprofloxacin HCl. Carbohyd. Polymer. 90 (2012) 1786–1793
[47] Sahoo, S., Charkaborti, C.K., Behera, P.K.: Qualitativ analysis of a ciprofloxacin / HPMC mucoadhesive
suspension. Int. J. Pharm. and Bio. Sci. 3 (2012)
558–576
[48] Rodríguez-Tenreiro, C., Alvarez-Lorenzo, C.,
Concheiro, A., Torres-Labandeira, J.J.: Characterization of cyclodextrin-carbopol interactions by DSC
and FTIR. J. Therm. An. Calorim. 77 (2004) 403–411
[49] Nayak, A.K., Laha, B., Sen, K.K.: Development of
hydroxyapatite-ciprofloxacin bone-implants using
quality by design. Acta Pharm. 61 (2011) 25–36
[50] Sunitha, A., Kumar, S.: Study on the effect of polymers on the release rate of drug from ciprofloxacin
hydrochloride microspheres. J. Pharm. Cosmetol. 1
(2010) [1] 1–8
[51] Kesavan, S., Alamelu Bai, S.: Effect of surfactant
on the release of ciprofloxacin from gelatin microspheres. J. Ars. Pharm. 51 (2010) [1] 1–16
[52] Thakre, Y.M., Choudhary, M.D.: Synthesis, characterization and evaluation of derivative of Ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-[4-(phenyl
carbonyl) piperazin-1-yl]-1, 4-dihydroquinoline-3carboxylic acid) and their complexes. J. Chem.
Pharm. Res. 3 (2011) [5] 390–398
[53] Wang, Q., Zedong, D.Y., Kennedy, J.: Controlled release of ciprofloxacin hydrochloride from chitosan/
polyethylene glycol blend films. Carbohyd. Polymer
.69 (2007) 336–343
[54] Sunitha, A., Kumar, S.: Study on effect of solvents
& nonsolvents on microspheres of ciprofloxacin:
Coacervation Phase Separation. J. Adv. Sci. Res. 1
(2010 ) [2] 24–33
[55] Puga, A.M., Rey-Rico, A., Magariños, B.: Hot melt
poly-e- caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta
Biomater. 8 (2012) 1507–1501
Received: 29.07.2013
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Ceramic Industry Suppliers Guide
Publication in:
KERAMISCHE ZEITSCHRIFT and INTERCERAM
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
Plant Construction — Plant Consulting
Preparation
Firing
Refractories
Shaping
Glazing — Decorating
Laboratory Equipment
Measuring — Controlling
Raw Materials — Bodies
Advanced Ceramics — Semi Finished — Finished Products
Advanced Ceramics — Semi Finished — Finished Products
Drying
Consumables
Environmental — Labour Protection
Various Systems
Final Treatment — Sorting
Services — Trading — Second-Hand Machinery — Consulting
© Expert Fachmedien GmbH
Aachener Straße 172
D-40223 Düsseldorf
Phone: +49 211 1591-152
Fax:
+49 211 1591-150
453
INTERCERAM 6/2013
K
454
Plant Construction Plant Consulting
01
and heavy clay ceramics
01012
Beralmar Tecnologic S.A.
E-08227 Terrassa
+34/93/7312200
Schönbeck GmbH & Co. KG
Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt
+49 (0)5721/9800026-28, ¬ +49 (0)5721/81433
e-mail: info@schoenbeck-maschinen.de
Internet: www.schoenbeck-maschinen.de
Preparation
02
Żclassifiers
02006
Allgaier Process Technology GmbH
Ulmer Straße 75, D-73066 Uhingen
+49 (0)7161/301-0, ¬ +49 (0)7161/32452
e-mail: info@allgaier.de, Internet: www.allgaier.de
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
Żcomminution plants
02064
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
Żcrushers: roller crushers
02011
Ludwig Wery GmbH Maschinenfabrik
Kaiserstraße 58-60, D-66482 Zweibrücken
+49 (0)6332/3345, ¬ +49 (0)6332/17506
e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de
Żdry grinding plants
02018
Maschinenfabrik Gustav Eirich GmbH & Co. KG
Walldürner Straße 50, D-74736 Hardheim
+49 (0)6283/51-0
e-mail: eirich@eirich.de, Internet: www.eirich.com
Żmagnetic separators
02019
Allgaier Process Technology GmbH
Ulmer Straße 75, D-73066 Uhingen
+49 (0)7161/301-0, ¬ +49 (0)7161/32452
e-mail: info@allgaier.de, Internet: www.allgaier.de
Eriez Magnetics Europe Ltd.
GB-Caerphilly CF83 8YG
+44 (029)/20868501, ¬ +44 (029)/20851314
Eriez Magnetics Vertriebs GmbH
D-85737 Ismaning
+49 (0)89/966540, ¬ +49 (0)89/963534
Goudsmit Magnetic Systems BV
Postfach 18, Petunialaan 19 , NL-5580 AA Waalre
+31/(0)40/2213283, ¬ +31/(0)40/2217325
e-mail: info@goudsmit-magnetics.nl
Internet: www.goudsmit-magnetics.nl
STEINERT Elektromagnetbau GmbH
Widdersdorfer Straße 329, D-50933 Köln
+49 (0)221/4984-0, ¬ +49 (0)221/4984-102
e-mail: sales@steinert.de, Internet: www.steinert.de
02082
NEUMAN & ESSER GmbH Mahl- u. Sichtsysteme
Werkstraße, D-52531 Übach-Palenberg
+49 (0)2451/481-02, ¬ +49 (0)2451/481-200
e-mail: neagmbh@neuman-esser.de
Internet: www.neuman-esser.com
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
02073
Ludwig Wery GmbH Maschinenfabrik
Kaiserstraße 58-60, D-66482 Zweibrücken
+49 (0)6332/3345, ¬ +49 (0)6332/17506
e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de
02005
Ludwig Wery GmbH Maschinenfabrik
Kaiserstraße 58-60, D-66482 Zweibrücken
+49 (0)6332/3345, ¬ +49 (0)6332/17506
e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de
Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH
D-58300 Wetter-Wengern
+49 (0)2335/9799-0, ¬ +49 (0)2335/9799-29
e-mail: fries@naescher-snv.de
Internet: www.naescher-snv.de
Żmills: dry ball mills
02025
Hosokawa Alpine Aktiengesellschaft
Peter-Dörfler-Straße 13-25, D-86199 Augsburg
+49 (0)821/5906-279, ¬ +49 (0)821/5906-610
e-mail: mineral@alpine.hosokawa.com
Internet: www.alpinehosokawa.com
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
02026
Hosokawa Alpine Aktiengesellschaft
Peter-Dörfler-Straße 13-25, D-86199 Augsburg
+49 (0)821/5906-279, ¬ +49 (0)821/5906-610
e-mail: mineral@alpine.hosokawa.com
Internet: www.alpinehosokawa.com
NEUMAN & ESSER GmbH Mahl- u. Sichtsysteme
Werkstraße, D-52531 Übach-Palenberg
+49 (0)2451/481-02, ¬ +49 (0)2451/481-200
e-mail: neagmbh@neuman-esser.de
Internet: www.neuman-esser.com
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
SWECO EUROPE S.A.
Rue de la Recherche 8, B-140 Nivelles
+32 67/893434, ¬ +32 67/893428
e-mail: europe@sweco.com, Internet: www.sewco.com
Żmills: hammer mills
02027
Eriez Magnetics Europe Ltd.
GB-Caerphilly CF83 8YG
+44 (029)/20868501, ¬ +44 (029)/20851314
Eriez Magnetics Vertriebs GmbH
D-85737 Ismaning
+49 (0)89/966540, ¬ +49 (0)89/963534
ALFA Maschinen GmbH
Benzstraße 2, D-84056 Rottenburg a. d. Laaber
+49 (0)8781/2022790, ¬ +49 (0)8781/20227931
e-mail: info@alfa-maschinen.de
Internet: www.alfa-maschinen.de
Ludwig Wery GmbH Maschinenfabrik
Kaiserstraße 58-60, D-66482 Zweibrücken
+49 (0)6332/3345, ¬ +49 (0)6332/17506
e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de
Żmetal detectors
Żmills: impact mills
Żmagnets: superconducting magnets
02065
02020
Eriez Magnetics Europe Ltd.
GB-Caerphilly CF83 8YG
+44 (029)/20868501, ¬ +44 (029)/20851314
Eriez Magnetics Vertriebs GmbH
D-85737 Ismaning
+49 (0)89/966540, ¬ +49 (0)89/963534
Żmills: agitator ball mills
02012
02024
Żmills: fine grinding mills
Allgaier Process Technology GmbH
Ulmer Straße 75, D-73066 Uhingen
+49 (0)7161/301-0, ¬ +49 (0)7161/32452
e-mail: info@allgaier.de, Internet: www.allgaier.de
02083
Żmills: corundum disc mills
Hacke Maschinenbau, Inh. Klaus Gillessen
Deutschherrenstraße 1, D-56179 Vallendar
+49 (0)261/62095, ¬ +49 (0)261/69746
e-mail: info@hacke-engoben.com
Internet: www.hacke-engoben.com
Żmagnets: permanent magnets
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
Żfeeders: box feeders
feeders: high-capacity feeders
Żkneaders
Żplants for the production of building
Żfeeders
B U Y E R S‘ G U I D E
Żmills: jar mills
02084
Willy A. Bachofen AG Maschinenfabrik
Junkermattstraße 11, CH-4132 Muttenz
+41 61/6867100, ¬ +41 61/6867110
e-mail: wab@wab.ch, Internet: www.wab.ch
Maschinenfabrik Gustav Eirich GmbH & Co. KG
Walldürner Straße 50, D-74736 Hardheim
+49 (0)6283/51-0
e-mail: eirich@eirich.de, Internet: www.eirich.com
Żmills: ball mills
02028
Ludwig Wery GmbH Maschinenfabrik
Kaiserstraße 58-60, D-66482 Zweibrücken
+49 (0)6332/3345, ¬ +49 (0)6332/17506
e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de#
Żmills: roller mills
02022
Hosokawa Alpine Aktiengesellschaft
Peter-Dörfler-Straße 13-25, D-86199 Augsburg
+49 (0)821/5906-279, ¬ +49 (0)821/5906-610
e-mail: mineral@alpine.hosokawa.com
Internet: www.alpinehosokawa.com
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
02047
02066
NEUMAN & ESSER GmbH Mahl- u. Sichtsysteme
Werkstraße, D-52531 Übach-Palenberg
+49 (0)2451/481-02, ¬ +49 (0)2451/481-200
e-mail: neagmbh@neuman-esser.de
Internet: www.neuman-esser.com
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
Żscreening machines
02043
Allgaier Process Technology GmbH
Ulmer Straße 75, D-73066 Uhingen
+49 (0)7161/301-0, ¬ +49 (0)7161/32452
e-mail: info@allgaier.de, Internet: www.allgaier.de
SWECO EUROPE S.A.
Rue de la Recherche 8, B-140 Nivelles
+32 67/893434, ¬ +32 67/893428
e-mail: europe@sweco.com, Internet: www.sewco.com
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Żsifters: air sifters
02077
Hosokawa Alpine Aktiengesellschaft
Peter-Dörfler-Straße 13-25, D-86199 Augsburg
+49 (0)821/5906-279, ¬ +49 (0)821/5906-610
e-mail: mineral@alpine.hosokawa.com
Internet: www.alpinehosokawa.com
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
Żweighing devices
02046
SENSOR CONTROL Ges. f. Sensorik u. Automation mbH
Robert-Bosch-Straße 5, D-56566 Neuwied
+49 (0)2631/964000, ¬ +49 (0)2631/964040
Firing
03
Żburners: gas burners
03004
Beralmar Tecnologic S.A.
E-08227 Terrassa
+34/93/7312200
Żburner plants
03001
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
Żcalcining plants
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
SILCA GmbH
Auf dem Hüls 6, D-40822 Mettmann
+49 (0)2104/97270, ¬ +49 (0)2104/76902
Internet: www.silca-online.de
03016
CTB GmbH
Industriestraße 16, D-12099 Berlin
+49 (0)30/340956-0, ¬ +49 (0)30/340956-99
e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
LINN-High-Therm GmbH
Heinrich-Hertz-Platz 1, D-92275 Eschenfelden
+49(0)9665/91400, ¬ +49(0)9665/1720
e-Mail: info@linn.de, Internet: www.linn.de
Żkilns: conveyor-typer kilns
03017
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-231
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żkilns: decorating kilns
03018
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
03043
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
Żkiln cars
03014
Cervice
D-04155 Leipzig
+49 (0)341/5640883
CTB GmbH
Industriestraße 16, D-12099 Berlin
+49 (0)30/340956-0, ¬ +49 (0)30/340956-99
e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
Keramischer OFENBAU GmbH
Gropiusstraße 7, D-31137 Hildesheim
+49 (0)5121/747400, ¬ +49 (0)5121/747474
e-mail: info@keramischerofenbau.de
Internet: www.keramischerofenbau.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-231
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żkilns: chamber kilns
03003
Beralmar Tecnologic S.A.
E-08227 Terrassa
+34/93/7312200
Eclipse Combustion GmbH
Profilstraße 13, D-58093 Hagen/Westf.
+49 (0)2331/958600
e-mail: hagen@eclipsecombustion.com
Internet: www.eclipsenet.com
Elster Kromschröder GmbH
Postfach 2809, D-49018 Osnabrück
Strotheweg 1, D-49504 Lotte
+49 (0)541/1214-0, ¬ +49 (0)541/1214-370
e-mail: info@kromschroeder.com
Internet: www.kromschroeder.com
NOXMAT GmbH
Ringstraße, D-09569 Oederan
+49 (0)37292/65030, ¬ +49 (0)37292/4207
Internet: www.noxmat.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żburners: oil burners
Żkilns
455
03013
Żkilns: electric kilns
03019
Carbolite GmbH
Upstadter Straße 28, D-76698 Ubstadt-Weiher
+49 (0)7251/962286, ¬ +49 (0)7251/962285
e-mail: info-de@carbolite.com
Internet: www.carbolite.com
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żkilns: elevator kilns
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
03020
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
Żkilns: fast firing kilns
03027
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-231
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
Żkilns: gas/vacuum-tight high
temperature kilns
03022
FCT Anlagenbau GmbH
Hönbacher Straße 10, D-96515 Sonneberg
+49 (0)3675/7484-0, ¬ +49 (0)3675/7484-44
e-Mail: fct-anlagenbau@fct-anlagenbau.de
Internet: www.fct-anlagenbau.de
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
LINN-High-Therm GmbH
Heinrich-Hertz-Platz 1, D-92275 Eschenfelden
+49(0)9665/91400, ¬ +49(0)9665/1720
e-Mail: info@linn.de, Internet: www.linn.de
MUT ADVANCED HEATING GmbH
Fritz-Winkler-Straße 1-2, D-07749 Jena
+49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11
e-mail: mut@mut-jena.de, Internet: www.mut-jena.de
Żkilns: gas/vacuum-tight rotary kilns
03058
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
Żkilns: high temperature kilns
03021
Carbolite GmbH
Upstadter Straße 28, D-76698 Ubstadt-Weiher
+49 (0)7251/962286, ¬ +49 (0)7251/962285
e-mail: info-de@carbolite.com
Internet: www.carbolite.com
CTB GmbH
Industriestraße 16, D-12099 Berlin
+49 (0)30/340956-0, ¬ +49 (0)30/340956-99
e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
LINN-High-Therm GmbH
Heinrich-Hertz-Platz 1, D-92275 Eschenfelden
+49(0)9665/91400, ¬ +49(0)9665/1720
e-mail: info@linn.de, Internet: www.linn.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
INTERCERAM 6/2013
456
Żkilns: laboratory kilns
03039
Carbolite GmbH
Upstadter Straße 28, D-76698 Ubstadt-Weiher
+49 (0)7251/962286, ¬ +49 (0)7251/962285
e-mail: info-de@carbolite.com
Internet: www.carbolite.com
CTB GmbH
Industriestraße 16, D-12099 Berlin
+49 (0)30/340956-0, ¬ +49 (0)30/340956-99
e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de
Grothe Rohstoffe GmbH & Co. KG
Postfach 1169, D-31667 Bückeburg
+49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60
e-mail: info@grothe.net, Internet: www.grothe.net
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
LINN-High-Therm GmbH
Heinrich-Hertz-Platz 1, D-92275 Eschenfelden
+49(0)9665/91400, ¬ +49(0)9665/1720
e-Mail: info@linn.de, Internet: www.linn.de
MUT ADVANCED HEATING GmbH
Fritz-Winkler-Straße 1-2, D-07749 Jena
+49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11
e-mail: mut@mut-jena.de, Internet: www.mut-jena.de
Żkilns: microwave kilns
03049
LINN-High-Therm GmbH
Heinrich-Hertz-Platz 1, D-92275 Eschenfelden
+49(0)9665/91400, ¬ +49(0)9665/1720
e-Mail: info@linn.de, Internet: www.linn.de
Vötsch Industrietechnik GmbH
Umweltsimulation-Wärmetechnik
Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth
+49 (0)6408/8473, ¬ +49 (0)6408/848747
e-mail: info-wt@v-it.com, Internet: www.v-it.com
Żkilns: muffle kilns
03040
Carbolite GmbH
Upstadter Straße 28, D-76698 Ubstadt-Weiher
+49 (0)7251/962286, ¬ +49 (0)7251/962285
e-mail: info-de@carbolite.com
Internet: www.carbolite.com
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
Żkilns: periodic kilns
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żkilns: potter‘s kilns
Żkilns: roller kilns
03025
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
LINN-High-Therm GmbH
Heinrich-Hertz-Platz 1, D-92275 Eschenfelden
+49(0)9665/91400, ¬ +49(0)9665/1720
e-Mail: info@linn.de, Internet: www.linn.de
Żkilns: rotary kilns
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
03026
03046
HORN Glass Industries AG
Bergstraße 2, D-95703 Plößberg
+49 (0)9636/9204-35, ¬ +49 (0)9636/9204-10
e-mail: kunz@hornglas.de, Internet: www.hornglas.de
MUT ADVANCED HEATING GmbH
Fritz-Winkler-Straße 1-2, D-07749 Jena
+49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11
e-mail: mut@mut-jena.de, Internet: www.mut-jena.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
03030
CTB GmbH
Industriestraße 16, D-12099 Berlin
+49 (0)30/340956-0, ¬ +49 (0)30/340956-99
e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
Keramischer OFENBAU GmbH
Gropiusstraße 7, D-31137 Hildesheim
+49 (0)5121/747400, ¬ +49 (0)5121/747474
e-mail: info@keramischerofenbau.de
Internet: www.keramischerofenbau.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żkilns: sintering kilns
Żkilns: pusher-type kilns
03028
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
Internet: www.riedhammer.de
Keramischer OFENBAU GmbH
Gropiusstraße 7, D-31137 Hildesheim
+49 (0)5121/747400, ¬ +49 (0)5121/747474
e-mail: info@keramischerofenbau.de
Internet: www.keramischerofenbau.de
MUT ADVANCED HEATING GmbH
Fritz-Winkler-Straße 1-2, D-07749 Jena
+49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11
e-mail: mut@mut-jena.de, Internet: www.mut-jena.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żkilns: shuttle kilns
03024
B U Y E R S‘ G U I D E
K
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
MUT ADVANCED HEATING GmbH
Fritz-Winkler-Straße 1-2, D-07749 Jena
+49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11
e-mail: mut@mut-jena.de, Internet: www.mut-jena.de
03045
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
Żkilns: tempering kilns
03031
Carbolite GmbH
Upstadter Straße 28, D-76698 Ubstadt-Weiher
+49 (0)7251/962286, ¬ +49 (0)7251/962285
e-mail: info-de@carbolite.com
Internet: www.carbolite.com
Żkilns: top hat kilns
03032
CTB GmbH
Industriestraße 16, D-12099 Berlin
+49 (0)30/340956-0, ¬ +49 (0)30/340956-99
e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de
HORN Glass Industries AG
Bergstraße 2, D-95703 Plößberg
+49 (0)9636/9204-35, ¬ +49 (0)9636/9204-10
e-mail: kunz@hornglas.de, Internet: www.hornglas.de
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
MUT ADVANCED HEATING GmbH
Fritz-Winkler-Straße 1-2, D-07749 Jena
+49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11
e-mail: mut@mut-jena.de, Internet: www.mut-jena.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żkilns: tunnel kilns
03033
Beralmar Tecnologic S.A.
E-08227 Terrassa
+34/93/7312200
CTB GmbH
Industriestrasse 16, D-12099 Berlin
+49 (0)30/340956-0, ¬ +49 (0)30/340956-99
e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
Keramischer OFENBAU GmbH
Gropiusstraße 7, D-31137 Hildesheim
+49 (0)5121/747400, ¬ +49 (0)5121/747474
e-mail: info@keramischerofenbau.de
Internet: www.keramischerofenbau.de
Riedhammer GmbH
Klingenhofstraße 72, D-90411 Nürnberg
+49 (0)911/5218-0, ¬ +49 (0)911/5218-0
e-mail: mail@riedhammer.de
Internet: www.riedhammer.de
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
WISTRA GmbH
Zum Mühlengraben 16-18, D-52355 Düren
+49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79
e-mail: info@wistra.com, Internet: www.wistra.com
Żkilns: vacuum sintering kilns
FCT Anlagenbau GmbH
Hönbacher Straße 10, D-96515 Sonneberg
+49 (0)3675/7484-0, ¬ +49 (0)3675/7484-44
e-Mail: fct-anlagenbau@fct-anlagenbau.de
Internet: www.fct-anlagenbau.de
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
03057
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Refractories
04
457
Żfibres: ceramic
04099
General Insulation Europe
Johannespfad 7, D-57223 Kreuztal
+49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15
e-mail: europe@general-insulation-ltd.com
Internet: www.general-insulation-ltd.com
Żfibres: steel fibres
Żasbestos substituting materials
04001
Promat GmbH
High Performance Insulation
Scheifenkamp 16, D-40878 Ratingen
+49 (0)2102/493473, ¬ +49 (0)2102/493115
e-mail: bl@promat.de, Internet: www.promat.de
Żcassettes for roofing tiles
Refratechnik Ceramics GmbH
Barkhausener Straße 55, D-49328 Melle/Buer
+49 (0)5427/81-117, ¬ +49 (0)5427/81-191
e-mail: iris.niermann@refra.com, Internet: www.refra.com
Żcassettes: H-cassettes
04003
Refratechnik Ceramics GmbH
Barkhausener Straße 55, D-49328 Melle/Buer
+49 (0)5427/81-117, ¬ +49 (0)5427/81-191
e-mail: iris.niermann@refra.com, Internet: www.refra.com
Żcassettes: U-cassettes
04033
Refratechnik Ceramics GmbH
Barkhausener Straße 55, D-49328 Melle/Buer
+49 (0)5427/81-117, ¬ +49 (0)5427/81-191
e-mail: iris.niermann@refra.com, Internet: www.refra.com
Żcomponents: ceramic fibre freeproducts, vacuum-shaped
04071
General Insulation Europe
Johannespfad 7, D-57223 Kreuztal
+49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15
e-mail: europe@general-insulation-ltd.com
Internet: www.general-insulation-ltd.com
Żcomponents: special shapes for handmade-stoves
04068
General Insulation Europe
Johannespfad 7, D-57223 Kreuztal
+49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15
e-mail: europe@general-insulation-ltd.com
Internet: www.general-insulation-ltd.com
Żfibre linings
04006
Promat GmbH
High Performance Insulation
Scheifenkamp 16, D-40878 Ratingen
+49 (0)2102/493473, ¬ +49 (0)2102/493115
e-mail: bl@promat.de, Internet: www.promat.de
SILCA GmbH
Auf dem Hüls 6, D-40822 Mettmann
+49 (0)2104/97270, ¬ +49 (0)2104/76902
Internet: www.silca-online.de
Żfibre-products: vacuum shaped
04007
04036
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
04108
Rath Aktiengesellschaft
Walfischgasse 14, A-1010 Wien
+43 (1)5134427-0, ¬ +43 (1)5134427-87
e-mail: info@rath-group.com
Internet: www.rath-group.com
Żhigh temperature insulation wool:
Vacuum shaped
04109
Żinsulating materials: calcium silicate
plates
General Insulation Europe
Johannespfad 7, D-57223 Kreuztal
+49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15
e-mail: europe@general-insulation-ltd.com
Internet: www.general-insulation-ltd.com
Promat GmbH
High Performance Insulation
Scheifenkamp 16, D-40878 Ratingen
+49 (0)2102/493473, ¬ +49 (0)2102/493115
e-mail: bl@promat.de, Internet: www.promat.de
SILCA GmbH
Auf dem Hüls 6, D-40822 Mettmann
+49 (0)2104/97270, ¬ +49 (0)2104/76902
Internet: www.silca-online.de
Żinsulating materials: high-temperature
insulating materials
Żkiln furniture: SiSiC and SSiC
04005
Promat GmbH
High Performance Insulation
Scheifenkamp 16, D-40878 Ratingen
+49 (0)2102/493473, ¬ +49 (0)2102/493115
e-mail: bl@promat.de, Internet: www.promat.de
SILCA GmbH
Auf dem Hüls 6, D-40822 Mettmann
+49 (0)2104/97270, ¬ +49 (0)2104/76902
Internet: www.silca-online.de
04050
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
04107
Rath Aktiengesellschaft
Walfischgasse 14, A-1010 Wien
+43 (1)5134427-0, ¬ +43 (1)5134427-87
e-mail: info@rath-group.com
Internet: www.rath-group.com
Żrefractories: anchors
04075
04010
Refratechnik Ceramics GmbH
Barkhausener Straße 55, D-49328 Melle/Buer
+49 (0)5427/81-117, ¬ +49 (0)5427/81-191
e-mail: iris.niermann@refra.com, Internet: www.refra.com
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
VGT-DYKO GmbH
Grossalmeroder Str.18, D-37247 Grossalmerode
+49 (0)5604/934-0, ¬ +49 (0)5604/934-289
e-mail: info@vgt-dyko.com, Internet: www.vgt-dyko.com
Żlinings: high temperature insulation wool
Rath Aktiengesellschaft
Walfischgasse 14, A-1010 Wien
+43 (1)5134427-0, ¬ +43 (1)5134427-87
e-mail: info@rath-group.com
Internet: www.rath-group.com
Żinsulating materials: microporous
insulating
SILCA GmbH
Auf dem Hüls 6, D-40822 Mettmann
+49 (0)2104/97270, ¬ +49 (0)2104/76902
Internet: www.silca-online.de
Żfibres
Silicon Refractory Anchoring Systems BV
Monsterseweg 2, NL-2291 PB Wateringen
+31 174/225522, ¬ +31 174/225529
e-mail: info@silicon-tif.nl, Internet: www.silicon-tif.nl
Żhigh temperature insulation wool:
04044
04102
Żkiln furniture
04059
Silicon Refractory Anchoring Systems BV
Monsterseweg 2, NL-2291 PB Wateringen
+31 174/225522, ¬ +31 174/225529
e-mail: info@silicon-tif.nl, Internet: www.silicon-tif.nl
Żrefractories: binders
04012
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żrefractories: calcium aluminate cement
04070
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
Ceske Lupkove Zavosy a.s.
P.O. Box 1171, CZ-27101 Nove Straseci
+4 20/313574084, ¬ +4 20/313572131
e-mail: refracer@refracer.cz, Internet: www.cluz.cz
04055
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
General Insulation Europe
Johannespfad 7, D-57223 Kreuztal
+49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15
e-mail: europe@general-insulation-ltd.com
Internet: www.general-insulation-ltd.com
Promat GmbH
High Performance Insulation
Scheifenkamp 16, D-40878 Ratingen
+49 (0)2102/493473, ¬ +49 (0)2102/493115
e-mail: bl@promat.de, Internet: www.promat.de
SILCA GmbH
Auf dem Hüls 6, D-40822 Mettmann
+49 (0)2104/97270, ¬ +49 (0)2104/76902
Internet: www.silca-online.de
Żrefractories: insulating bricks
04021
CBF GmbH
Gewerbepark Stadlhof 7, A-8772 Traboch
+43 (0)3843/35778, ¬ +43 (0)3843/35778-20
e-mail: info@cb-feuerfest.com
Internet: www.cb-feuerfest.com
Insulating Fired Brick
Route de Vendoeuvres, F-36500 Buzancais
+33 (0)254/022525, ¬ +33 (0)254/841320
e-mail: contact@ifbgroup.fr, Internet: www.ifbgroup.fr
Promat GmbH
High Performance Insulation
Scheifenkamp 16, D-40878 Ratingen
+49 (0)2102/493473, ¬ +49 (0)2102/493115
e-mail: bl@promat.de, Internet: www.promat.de
Rath Aktiengesellschaft
Walfischgasse 14, A-1010 Wien
+43 (1)5134427-0, ¬ +43 (1)5134427-87
e-mail: info@rath-group.com
Internet: www.rath-group.com
SILCA GmbH
Auf dem Hüls 6, D-40822 Mettmann
+49 (0)2104/97270, ¬ +49 (0)2104/76902
Internet: www.silca-online.de
INTERCERAM 6/2013
458
VGT-DYKO GmbH
Grossalmeroder Str.18, D-37247 Grossalmerode
+49 (0)5604/934-0, ¬ +49 (0)5604/934-289
e-mail: info@vgt-dyko.com, Internet: www.vgt-dyko.com
Żrefractories: kiln car linings
04008
Refratechnik Ceramics GmbH
Barkhausener Straße 55, D-49328 Melle/Buer
+49 (0)5427/81-117, ¬ +49 (0)5427/81-191
e-mail: iris.niermann@refra.com, Internet: www.refra.com
VGT-DYKO GmbH
Grossalmeroder Str.18, D-37247 Grossalmerode
+49 (0)5604/934-0, ¬ +49 (0)5604/934-289
e-mail: info@vgt-dyko.com, Internet: www.vgt-dyko.com
Żrefractories: linings
04023
Promat GmbH
High Performance Insulation
Scheifenkamp 16, D-40878 Ratingen
+49 (0)2102/493473, ¬ +49 (0)2102/493115
e-mail: bl@promat.de, Internet: www.promat.de
SILCA GmbH
Auf dem Hüls 6, D-40822 Mettmann
+49 (0)2104/97270, ¬ +49 (0)2104/76902
Internet: www.silca-online.de
Żrefractories: spinel (magnesium
aluminate)
04028
Refratechnik Ceramics GmbH
Barkhausener Straße 55, D-49328 Melle/Buer
+49 (0)5427/81-117, ¬ +49 (0)5427/81-191
e-mail: iris.niermann@refra.com, Internet: www.refra.com
Shaping
05
___ 05042
05004
05022
Massform, Industrieproduktedesign GmbH
Hauptstraße 52, D-56424 Mogendorf
+49 (0)2623/2514, ¬ +49 (0)2623/2419
e-mail:massform@t-online.de, Internet: www.massform.de
05012
Żmoulds, models, design
05066
Atelier für moderne Formgestaltung
Helmut Hartenfels
Krugbäckerstraße 14, D-56235 Ransbach-Baumbach
+49 (0)2623/1202, ¬ +49 (0)2623/80189
e-mail: modellbau-hartenfels@t-online.de
Internet: www.hartenfels-gipsformen.de
Massform, Industrieproduktedesign GmbH
Hauptstraße 52, D-56424 Mogendorf
+49 (0)2623/2514, ¬ +49 (0)2623/2419
e-mail:massform@t-online.de, Internet: www.massform.de
Żplastics for mould making
05024
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
05025
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
05010
LOOMIS PRODUCTS Kahlefeld GmbH
Stockwiesen 3, D-67659 Kaiserslautern
+49 (0)6301/7999970, ¬ +49 (0)6301/7999992
e-mail: info@loomis-gmbh.de
Internet: www.loomis-gmbh.de
Żpresses: hydraulic presses
EPSI NV (Engineered Pressure Systems Int. NV)
Walgoedstraat 19, B-9140 Temse
+32 3/7112464, ¬ +32 3/7111870
e-mail: epsi@epsi.be
Internet: www.epsi-highpressure.com
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
LOOMIS PRODUCTS Kahlefeld GmbH
Stockwiesen 3, D-67659 Kaiserslautern
+49 (0)6301/7999970, ¬ +49 (0)6301/7999992
e-mail: info@loomis-gmbh.de
Internet: www.loomis-gmbh.de
Żpresses: extruders
05008
LOOMIS PRODUCTS Kahlefeld GmbH
Stockwiesen 3, D-67659 Kaiserslautern
+49 (0)6301/7999970, ¬ +49 (0)6301/7999992
e-mail: info@loomis-gmbh.de
Internet: www.loomis-gmbh.de
Żpresses: hot isostatic presses
EPSI NV (Engineered Pressure Systems Int. NV)
Walgoedstraat 19, B-9140 Temse
+32 3/7112464, ¬ +32 3/7111870
e-mail: epsi@epsi.be
Internet: www.epsi-highpressure.com
05031
05030
KOMAGE Gellner Maschinenfabrik KG
Dr.-Hermann-Gellner-Straße 1, D-54427 Kell am See
+49 (0)6589/9142-0, ¬ +49 (0)6589/9142-19
e-mail: info@komage.de, Internet: www.komage.de
OSTERWALDER AG
Industriering 4, CH-3250 Lyss
+41 32/3871400, ¬ +41 32/3871404
e-mail: info@osterwalder-ag.ch
Internet: www.osterwalder.com
Viebahn Pressen Systeme GmbH
Hammerwiese 4, D-51647 Gummersbach
+49 (0)2261/9183-0, ¬ +49 (0)2261/9183-21
e-mail: info@viebahn-pressen.de,
Internet: www.viebahn-pressen.de
Żpresses: mechanical presses
05063
KOMAGE Gellner Maschinenfabrik KG
Dr.-Hermann-Gellner-Straße 1, D-54427 Kell am See
+49 (0)6589/9142-0, ¬ +49 (0)6589/9142-19
e-mail: info@komage.de, Internet: www.komage.de
Żpresses: mechanical-hydraulic presses
05052
OSTERWALDER AG
Industriering 4, CH-3250 Lyss
+41 32/3871400, ¬ +41 32/3871404
e-mail: info@osterwalder-ag.ch
Internet: www.osterwalder.com
Żpresses: pot presses
05032
VSM
Transport Weg 70, NL-2421 LS Nieuwkoop
+31 172/573839, ¬ +31 172/574653
e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl
Żpresses: tableware presses
05035
VSM
Transport Weg 70, NL-2421 LS Nieuwkoop
+31 172/573839, ¬ +31 172/574653
e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl
Żpunching plants
05038
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
Żrubber and PU-bags
05046
05005
MECO THE MANUFACTURERS EQUIPMENT COMPANY
35 Enterprise Drive, USA-Middletown, OH 45044
+001 513/424-3573, ¬ +001 513/424-3576
e-mail: dfm@meco-wires.com
Żextruders: vacuum extruders
Żmoulds: plastic moulds
Żpresses: cold isostatic presses
Ets ROCHET
Zone Industrielle
69 avenue de la Rijole F-09100 Pamiers
+33/534013500, ¬ +33/534013501
e-mail: contact@rochetsa.com
Internet: www.coupeur-rochet.fr
Żcutting wires
05021
Massform, Industrieproduktedesign GmbH
Hauptstraße 52, D-56424 Mogendorf
+49 (0)2623/2514, ¬ +49 (0)2623/2419
e-mail:massform@t-online.de, Internet: www.massform.de
Żpotters‘ wheels
KARO Electronics Vertriebs GmbH
Algasinger Weg 14, D-84405 Dorfen
+49 (0)8081/957450, ¬ +49 (0)8081/957469
e-mail: info@karoelectronics.de
Internet: www.karoelectronics.de
Żcutters
Żmoulds: plaster moulds
Massform, Industrieproduktedesign GmbH
Hauptstraße 52, D-56424 Mogendorf
+49 (0)2623/2514, ¬ +49 (0)2623/2419
e-mail:massform@t-online.de, Internet: www.massform.de
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
casting plants: tape casting plants
05020
VSM
Transport Weg 70, NL-2421 LS Nieuwkoop
+31 172/573839, ¬ +31 172/574653
e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl
Żmoulds: pressure casting moulds
04069
Żsuspended roofs
Żmoulds: metal moulds
B U Y E R S‘ G U I D E
05050
LOOMIS PRODUCTS Kahlefeld GmbH
Stockwiesen 3, D-67659 Kaiserslautern
+49 (0)6301/7999970, ¬ +49 (0)6301/7999992
e-mail: info@loomis-gmbh.de
Internet: www.loomis-gmbh.de
Żsponge belt stripes (plain or corrugated)
05040
Michael Zervos
D-86911 Diessen/Ammersee
+49 (0)8807/8417 + 1704
¬ +49 (0)8807/5054 + 8792
Żsponges: hand-sponges
(sponge materials)
05077
Michael Zervos
D-86911 Diessen/Ammersee
+49 (0)8807/8417 + 1704
¬ +49 (0)8807/5054 + 8792
Żsponge rollers
Michael Zervos
D-86911 Diessen/Ammersee
+49 (0)8807/8417 + 1704
¬ +49 (0)8807/5054 + 8792
05041
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Żtexturing wires
05043
MECO THE MANUFACTURERS EQUIPMENT COMPANY
35 Enterprise Drive, USA-Middletown, OH 45044
+001 513/424-3573, ¬ +001 513/424-3576
e-mail: dfm@meco-wires.com
Żtools: modelling tools
05018
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żtools: pressing tools
05044
LOOMIS PRODUCTS Kahlefeld GmbH
Stockwiesen 3, D-67659 Kaiserslautern
+49 (0)6301/7999970, ¬ +49 (0)6301/7999992
e-mail: info@loomis-gmbh.de
Internet: www.loomis-gmbh.de
Glazing - Decorating
06
Żauxiliary agents for decoartion
06008
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żcolour spraying plants
06002
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żcolours: ceramic colours
06003
W.C. Heraeus GmbH Business Unit Precious Colours
Heraeusstraße 12-14, D-63450 Hanau
+49 (0)6181/354420, ¬ +49 (0)6181/359637
e-Mail: preciouscolours@heraeus.com
Internet: www.heraeus-preciouscolours.com +
www.heraeus-ccd.com
Johnson Matthey CT
Fregatweg 38, NL-6222 NZ Maastricht
+31 (0)43/3525400, ¬ +31 (0)43/3525444
e-mail: sales@matthey.com
Internet: www.colour.matthey.com
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, D-51149 Köln
+49 (0)2203/89850, ¬ +49 (0)2203/8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Żcolours: decorating colours
06004
Michael Zervos
D-86911 Diessen/Ammersee
+49 (0)8807/8417 + 1704
¬ +49 (0)8807/5054 + 8792
06011
06071
Stempelspirale
D-35440 Linden
+49 (0)6403/5777, ¬ +49 (0)6403/925838
e-mail: info@stempelspirale.de
Internet: www.stempelspirale.de
Żengobes
Żfettling wheels
Żglaze auxiliary agents: binders
06060
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
06013
Chem. Fabrik Mineralmahlwerk Kurt Hacke GmbH
Deutschherrenstraße 1, D-56179 Vallendar
+49 (0)261/62095, ¬ +49 (0)261/69746
e-mail: info@hacke-engoben.com
Internet: www.hacke-engoben.com
Emailleschmelze und Glasurenfabrikation
Josef Opavsky und Sohn
Inh. Dipl.-Ing. (FH) Heinz Kropp GmbH
Hillscheider Straße 11, D-56179 Vallendar
+49 (0)261/96344-0, ¬ +49 (0)261/96344-22
e-mail: info@opavsky-glasuren.de
Internet: www.opavsky-glasuren.de
Grothe Rohstoffe GmbH & Co. KG
P.O. Box 1169, D-31667 Bückeburg
+49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60
e-mail: info@grothe.net, Internet: www.grothe.net
Johnson Matthey CT
Fregatweg 38, NL-6222 NZ Maastricht
+31 (0)43/3525400, ¬ +31 (0)43/3525444
e-mail: sales@matthey.com
Internet: www.colour.matthey.com
Prince Minerals GmbH
Tauberstrasse 32, 97922 Lauda-Königshofen
+49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29
e-Mail: sales@princeminerals.com
Internet: www.princeminerals.com
Rheinische Email– und Glasurenfabrik
Mondré und Manz GmbH
Steinackerstraße 51, D-53840 Troisdorf
+49 (0)2241/75015/16, ¬ +49 (0)2241/83234
e-mail: mondreundmanz@t-online.de
WENDEL GmbH
Email– und Glasurenfabrik
Am Güterbahnhof 30, D-35683 Dillenburg
+49 (0)2771/906-0, ¬ +49 (0)2771/906-160
e-Mail:info@wendel-email.de
Internet: www.wendel-email.de
06016
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żfrits
Johnson Matthey CT
Fregatweg 38, NL-6222 NZ Maastricht
+31 (0)43/3525400, ¬ +31 (0)43/3525444
e-mail: sales@matthey.com
Internet: www.colour.matthey.com
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, D-51149 Köln
+49 (0)2203/89850, ¬ +49 (0)2203/8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Żdecorating sponges (natural)
Żdecorating stamps and rubber stamps
459
06017
Emailleschmelze und Glasurenfabrikation
Josef Opavsky und Sohn
Inh. Dipl.-Ing. (FH) Heinz Kropp GmbH
Hillscheider Straße 11, D-56179 Vallendar
+49 (0)261/96344-0, ¬ +49 (0)261/96344-22
e-mail: info@opavsky-glasuren.de
Internet: www.opavsky-glasuren.de
Johnson Matthey CT
Fregatweg 38, NL-6222 NZ Maastricht
+31 (0)43/3525400, ¬ +31 (0)43/3525444
e-mail: sales@matthey.com
Internet: www.colour.matthey.com
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, D-51149 Köln
+49 (0)2203/89850, ¬ +49 (0)2203/8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Rheinische Email– und Glasurenfabrik
Mondré und Manz GmbH
Steinackerstraße 51, D-53840 Troisdorf
+49 (0)2241/75015/16, ¬ +49 (0)2241/83234
e-mail: mondreundmanz@t-online.de
WENDEL GmbH
Email– und Glasurenfabrik
Am Güterbahnhof 30, D-35683 Dillenburg
+49 (0)2771/906-0, ¬ +49 (0)2771/906-160
e-Mail: info@wendel-email.de
Internet: www.wendel-email.de
Żglaze auxiliary agents: rheological
binders
06061
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żglaze auxiliary agents: suspending
agents
06046
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żglazes
06023
Chem. Fabrik Mineralmahlwerk Kurt Hacke GmbH
Deutschherrenstraße 1, D-56179 Vallendar
+49 (0)261/62095, ¬ +49 (0)261/69746
e-mail: info@hacke-engoben.com
Internet: www.hacke-engoben.com
Emailleschmelze und Glasurenfabrikation
Josef Opavsky und Sohn
Inh. Dipl.-Ing. (FH) Heinz Kropp GmbH
Hillscheider Straße 11, D-56179 Vallendar
+49 (0)261/96344-0, ¬ +49 (0)261/96344-22
e-mail: info@opavsky-glasuren.de
Internet: www.opavsky-glasuren.de
Grothe Rohstoffe GmbH & Co. KG
P.O. Box 1169, D-31667 Bückeburg
+49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60
e-mail: info@grothe.net, Internet: www.grothe.net
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Johnson Matthey CT
Fregatweg 38, NL-6222 NZ Maastricht
+31 (0)43/3525400, ¬ +31 (0)43/3525444
e-mail: sales@matthey.com
Internet: www.colour.matthey.com
Prince Minerals GmbH
Tauberstrasse 32, 97922 Lauda-Königshofen
+49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29
e-Mail: sales@princeminerals.com
Internet: www.princeminerals.com
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, D-51149 Köln
+49 (0)2203/89850, ¬ +49 (0)2203/8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Rheinische Email– und Glasurenfabrik
Mondré und Manz GmbH
Steinackerstraße 51, D-53840 Troisdorf
+49 (0)2241/75015/16, ¬ +49 (0)2241/83234
e-mail: mondreundmanz@t-online.de
WENDEL GmbH
Email– und Glasurenfabrik
Am Güterbahnhof 30, D-35683 Dillenburg
+49 (0)2771/906-0, ¬ +49 (0)2771/906-160
e-Mail: info@wendel-email.de
Internet: www.wendel-email.de
Żglaze spraying equipment
06055
Schönbeck GmbH & Co. KG
Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt
+49 (0)5721/9800026-28, ¬ +49 (0)5721/81433
e-mail: info@schoenbeck-maschinen.de
Internet: www.schoenbeck-maschinen.de
VSM
Transport Weg 70, NL-2421 LS Nieuwkoop
+31 172/573839, ¬ +31 172/574653
e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl
INTERCERAM 6/2013
K
460
Żglazing plants: automatic
06053
Schönbeck GmbH & Co. KG
Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt
+49 (0)5721/9800026-28, ¬ +49 (0)5721/81433
e-mail: info@schoenbeck-maschinen.de
Internet: www.schoenbeck-maschinen.de
VSM
Transport Weg 70, NL-2421 LS Nieuwkoop
+31 172/573839, ¬ +31 172/574653
e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl
Żgold erasers
06069
Stempelspirale
D-35440 Linden
+49 (0)6403/5777, ¬ +49 (0)6403/925838
e-mail: info@stempelspirale.de
Internet: www.stempelspirale.de
Żprecious metal preparations
06027
07
Żdifferential scanning calorimeter
Żdifferential thermal analysers
06070
06029
Johnson Matthey CT
Fregatweg 38, NL-6222 NZ Maastricht
+31 (0)43/3525400, ¬ +31 (0)43/3525444
e-mail: sales@matthey.com
Internet: www.colour.matthey.com
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żsponge rubber belts for glaze removal
06020
06041
06043
VSM
Transport Weg 70, NL-2421 LS Nieuwkoop
+31 172/573839, ¬ +31 172/574653
e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl
Żdispersion-stability-analysers
07005
07035
07031
BÄHR Thermoanalyse GmbH
Altendorfstraße 12, D-32603 Hüllhorst
+49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90
e-mail: info@baehr-thermo.de
Internet: www.baehr-thermo.de
07029
POROTEC GmbH
Niederhofheimer Straße 55a, D-65719 Hofheim
+49 (0)6192/2069034 ¬ +49 (0)6192/2069035
e-mail: info@porotec.de, Internet: www.porotec.de
07028
POROTEC GmbH
Niederhofheimer Straße 55a, D-65719 Hofheim
+49 (0)6192/2069034 ¬ +49 (0)6192/2069035
e-mail: info@porotec.de, Internet: www.porotec.de
07030
POROTEC GmbH
Niederhofheimer Straße 55a, D-65719 Hofheim
+49 (0)6192/2069034 ¬ +49 (0)6192/2069035
e-mail: info@porotec.de, Internet: www.porotec.de
07013
LOOMIS PRODUCTS Kahlefeld GmbH
Stockwiesen 3, D-67659 Kaiserslautern
+49 (0)6301/7999970, ¬ +49 (0)6301/7999992
e-mail: info@loomis-gmbh.de
Internet: www.loomis-gmbh.de
07021
BÄHR Thermoanalyse GmbH
Altendorfstraße 12, D-32603 Hüllhorst
+49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90
e-mail: info@baehr-thermo.de
Internet: www.baehr-thermo.de
Żultrasonic NDC systems
07025
Proceq SA
Ringstraße 2, CH-8603 Schwerzenbach
+41 (0)43/3553800, ¬ +41 (0)43/3553812
07007
Żviscosimeters: high temperature
BÄHR Thermoanalyse GmbH
Altendorfstraße 12, D-32603 Hüllhorst
+49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90
e-mail: info@baehr-thermo.de
Internet: www.baehr-thermo.de
Żgrain size-/particle size analysators
Żload testing devices
Żthermogravimetric devices
07018
07014
LOOMIS PRODUCTS Kahlefeld GmbH
Stockwiesen 3, D-67659 Kaiserslautern
+49 (0)6301/7999970, ¬ +49 (0)6301/7999992
e-mail: info@loomis-gmbh.de
Internet: www.loomis-gmbh.de
Żpresses: laboratory presses, isostatic
L.U.M. GmbH
Rudower Chaussee 29, D-12489 Berlin
+49 (0)30/67806030, ¬ +49 (0)30/67806058
e-mail: info@lum-gmbh.de, Internet: www.lum-gmbh.com
Żglaze tension testers
Żlaboratory vacuum extruders
Żporosity measuring devices
BÄHR Thermoanalyse GmbH
Altendorfstraße 12, D-32603 Hüllhorst
+49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90
e-mail: info@baehr-thermo.de
Internet: www.baehr-thermo.de
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żspraying robots
07004
07045
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Żmeasuring devices: surface
measuring devices
BÄHR Thermoanalyse GmbH
Altendorfstraße 12, D-32603 Hüllhorst
+49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90
e-mail: info@baehr-thermo.de
Internet: www.baehr-thermo.de
Żdilatometers: optical
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Stempelspirale
D-35440 Linden
+49 (0)6403/5777, ¬ +49 (0)6403/925838
e-mail: info@stempelspirale.de
Internet: www.stempelspirale.de
Żspraying guns
07003
BÄHR Thermoanalyse GmbH
Altendorfstraße 12, D-32603 Hüllhorst
+49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90
e-mail: info@baehr-thermo.de
Internet: www.baehr-thermo.de
Żdilatometers
Żkiln furniture for laborytory kilns
Żmeasuring devices: density
measuring devices
BÄHR Thermoanalyse GmbH
Altendorfstraße 12, D-32603 Hüllhorst
+49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90
e-mail: info@baehr-thermo.de
Internet: www.baehr-thermo.de
Stempelspirale
D-35440 Linden
+49 (0)6403/5777, ¬ +49 (0)6403/925838
e-mail: info@stempelspirale.de
Internet: www.stempelspirale.de
Żscreen printing media
06044
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Johnson Matthey CT
Fregatweg 38, NL-6222 NZ Maastricht
+31 (0)43/3525400, ¬ +31 (0)43/3525444
e-mail: sales@matthey.com
Internet: www.colour.matthey.com
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, D-51149 Köln
+49 (0)2203/89850, ¬ +49 (0)2203/8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Laboratory Equipment
W.C. Heraeus GmbH Business Unit Precious Colours
Heraeusstraße 12-14, D-63450 Hanau
+49 (0)6181/354420, ¬ +49 (0)6181/359637
e-Mail: preciouscolours@heraeus.com
Internet: www.heraeus-preciouscolours.com +
www.heraeus-ccd.com
Johnson Matthey CT
Fregatweg 38, NL-6222 NZ Maastricht
+31 (0)43/3525400, ¬ +31 (0)43/3525444
e-mail: sales@matthey.com
Internet: www.colour.matthey.com
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, 51149 Köln
+49 2203 898500, ¬ +49 2203 8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Żrubber squeegees
Żstains
B U Y E R S‘ G U I D E
07008
L.U.M. GmbH
Rudower Chaussee 29, D-12489 Berlin
+49 (0)30/67806030, ¬ +49 (0)30/67806058
e-mail: info@lum-gmbh.de, Internet: www.lum-gmbh.com
POROTEC GmbH
Niederhofheimer Straße 55a, D-65719 Hofheim
+49 (0)6192/2069034 ¬ +49 (0)6192/2069035
e-mail: info@porotec.de, Internet: www.porotec.de
07023
BÄHR Thermoanalyse GmbH
Altendorfstraße 12, D-32603 Hüllhorst
+49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90
e-mail: info@baehr-thermo.de
Internet: www.baehr-thermo.de
+49 (0)2631/964000, ¬ +49 (0)2631/964040
Żzeta potential measuring devices
07041
POROTEC GmbH
Niederhofheimer Straße 55a, D-65719 Hofheim
+49 (0)6192/2069034 ¬ +49 (0)6192/2069035
e-mail: info@porotec.de, Internet: www.porotec.de
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Measuring - Controlling
08
Żrecorders
08027
Eurotherm Deutschland GmbH
Ottostraße 1, D-65549 Limburg
+49 (0)6431/298-0, ¬ +49 (0)6431/298-119
e-mail: info.de@eurotherm.com
Internet: www.eurotherm.com
Żflow meters
08001
08006
SENSOR CONTROL Ges. f. Sensorik u. Automation mbH
Robert-Bosch-Straße 5, D-56566 Neuwied
+49 (0)2631/964000, ¬ +49 (0)2631/964040
Żmeasuring and controlling devices
08008
Eurotherm Deutschland GmbH
Ottostraße 1, D-65549 Limburg
+49 (0)6431/298-0, ¬ +49 (0)6431/298-119
e-mail: info.de@eurotherm.com
Internet: www.eurotherm.com
SENSOR CONTROL Ges. f. Sensorik u. Automation mbH
Robert-Bosch-Straße 5, D-56566 Neuwied
+49 (0)2631/964000, ¬ +49 (0)2631/964040
Żmoisture measuring devices
08010
ACO Automation Components
Industriestraße 2, D-79793 Wutöschingen
+49 (0)7746/91316, ¬ +49 (0)7746/91317
e-mail: info@acoweb.de, Internet www.acoweb.de
SENSOR CONTROL Ges. f. Sensorik u. Automation mbH
Robert-Bosch-Straße 5, D-56566 Neuwied
+49 (0)2631/964000, ¬ +49 (0)2631/964040
Żoxygen sensors
08029
Albion
30/31 Station Close, GB-Potters Bar, Herts EN6 3HE
+44 1707/607230, ¬ +44 1707/607235
e-mail: gfenner@albiongroup.co.uk
Internet: www.oxygen-analyser.com
Żprocess automation equipment
08021
08014
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
Eurotherm Deutschland GmbH
Ottostraße 1, D-65549 Limburg
+49 (0)6431/298-0, ¬ +49 (0)6431/298-119
e-mail: info.de@eurotherm.com
Internet: www.eurotherm.com
Internet: www.laborofen.com
SENSOR CONTROL Ges. f. Sensorik u. Automation mbH
Robert-Bosch-Straße 5, D-56566 Neuwied
+49 (0)2631/964000, ¬ +49 (0)2631/964040
09
09001
Electro Abrasives
Ortwin Rave, Produkte + Dienstleistungen
Bachweg 8, D-56072 Koblenz
+49 (0)261/9114408, ¬ +49 (0)261/9114248
e-mail: info@rave-minerals.com
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, 51149 Köln
+49 2203 898500, ¬ +49 2203 8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Żadditives: deflocculants and
dispersing agents
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
09291
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żalumina: calcined
09003
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
Martinswerk GmbH
Kölner Straße 110, D-50127 Bergheim
+49 (0)2271/9020, ¬ +49 (0)2271/902710
Internet: www.martinswerk.de
Nabaltec AG
P.O.Box 1860, D-92409 Schwandorf
+49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57
e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de
Żalumina: general
Żalumina: tabular alumina
09002
09006
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
09294
Żaluminium hydroxide
09007
Nabaltec AG
P.O.Box 1860, D-92409 Schwandorf
+49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57
e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de
Żaluminium nitride
09292
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żadditives: pressing- and stamping oils
09170
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
Martinswerk GmbH
Kölner Straße 110, D-50127 Bergheim
+49 (0)2271/9020, ¬ +49 (0)2271/902710
Internet: www.martinswerk.de
Nabaltec AG
P.O.Box 1860, D-92409 Schwandorf
+49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57
e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żadditives: plasticisers
Żadditives: tape casting additives
Żadditives: wetting agents
Raw Material - Bodies
Żadditives
09290
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
SENSOR CONTROL Ges. f. Sensorik u. Automation mbH
Robert-Bosch-Straße 5, D-56566 Neuwied
+49 (0)2631/964000, ¬ +49 (0)2631/964040
Ibea GmbH
Kleine Bahnstraße 8, D-22525 Hamburg
+49 (0)40/689887-0, ¬ +49 (0)40/689887-29
e-mail: info@ibea.de
Internet: www.ibea.de
Żlevel gauges
08020
Datapaq GmbH
Deutsche Niederlassung
Valdorfer Straße 100, D-32602 Vlotho
+49 (0)5733/18433, ¬ +49 (0)5733/18432
e-mail: sales@datapaq.de
Eurotherm Deutschland GmbH
Ottostraße 1, D-65549 Limburg
+49 (0)6431/298-0, ¬ +49 (0)6431/298-119
e-mail: info.de@eurotherm.com
Internet: www.eurotherm.com
Żtemperature measuring devices
Żadditives: pressure casting auxiliary
agents
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
08004
SCHMIDT Technology
Feldbergstraße 1, D-78112 St. Georgen
+49 (0)7724/8990, ¬ +49 (0)7724/899101
e-mail: info@schmidttechnology.de
Internet: www.schmidttechnology.de
Żinspetion systems
08018
Eurotherm Deutschland GmbH
Ottostraße 1, D-65549 Limburg
+49 (0)6431/298-0, ¬ +49 (0)6431/298-119
e-mail: info.de@eurotherm.com
Internet: www.eurotherm.com
Żtemperature controllers
Żcontrol systems: electronic
461
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żbarium carbonate
09293
09008
09010
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Prince Minerals GmbH
Tauberstrasse 32, 97922 Lauda-Königshofen
+49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29
e-Mail: sales@princeminerals.com
Internet: www.princeminerals.com
INTERCERAM 6/2013
462
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
Żbauxite
09014
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
Żbentonite
09015
Clariant Produkte (Deutschland) GmbH
Ostenriederstraße 15, D-85368 Moosburg
+49 (0)8761/82645, ¬ +49 (0)8761/82512
e-mail: albert.stuetze@clariant.com
Internet: www.clariant.com
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
S&B Industrial Minerals GmbH
Schmielenfeldstraße 78, D-45772 Marl
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: spezialbentonit@ikominerals.com
Internet: www.ikominerals.com
Żbinders: chemical binders
09182
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żbinders: temporary binders
09289
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
Żbinders: thermoplastic injection
moulding binders
Żbodies: casting slips
09152
09027
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żbodies: ceramic bodies
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
INMATEC Technologies GmbH
Heerstraßenbenden 10, D-53359 Rheinbach
+49 (0)2226/9087-0, ¬ +49 (0)2226/9087-10
e-mail: info@inmatec-gmbh.com
Internet: www.inmatec-gmbh.com
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Nabaltec AG
P.O.Box 1860, D-92409 Schwandorf
+49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57
e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de
Quarzsandwerke Weissenbrunn Bauer & Co.
P.O. Box 144, D-96369 Weissenbrunn
+49 (0)9261/628030, ¬ +49 (0)9261/52224
e-mail: info@qsw-weissenbrunn.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żbodies: do-it-yourself bodies
Żbodies: earthenware bodies
09144
09143
09019
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
09194
Żboron carbide
09022
Electro Abrasives
Ortwin Rave, Produkte + Dienstleistungen
Bachweg 8, D-56072 Koblenz
+49 (0)261/9114408, ¬ +49 (0)261/9114248
e-mail: info@rave-minerals.com
Sintec Keramik GmbH
Romantische Straße 18, D-87642 Halblech
+49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30
e-mail: info@sintec-keramik.com
09139
Żboron carbide: fine-powdered
09278
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żboron: crystalline
09016
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
Quarzsandwerke Weissenbrunn Bauer & Co.
P.O. Box 144, D-96369 Weissenbrunn
+49 (0)9261/628030, ¬ +49 (0)9261/52224
e-mail: info@qsw-weissenbrunn.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żbone ash
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
Quarzsandwerke Weissenbrunn Bauer & Co.
P.O. Box 144, D-96369 Weissenbrunn
+49 (0)9261/628030, ¬ +49 (0)9261/52224
e-mail: info@qsw-weissenbrunn.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żbodies: stoneware bodies
09147
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żboron: amorphous
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żbodies: ready-made-bodies
Żbodies: stove tile bodies
09017
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żbodies: general
ZSCHIMMER & SCHWARZ GmbH & Co KG
Max-Schwarz-Straße 3-5, D-56112 Lahnstein
+49 (0)2621/12485, ¬ +49 (0)2621/12403
e-mail: keramik@zschimmer-schwarz.com
Internet: www.zschimmer-schwarz.com
B U Y E R S‘ G U I D E
09195
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żboron nitride
09023
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Sintec Keramik GmbH
Romantische Straße 18, D-87642 Halblech
+49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30
e-mail: info@sintec-keramik.com
Internet: www.sintec-keramik.com
09146
Żbrownstone
09024
Grothe Rohstoffe GmbH & Co. KG
P.O. Box 1169, D-31667 Bückeburg
+49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60
e-mail: info@grothe.net, Internet: www.grothe.net
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Żcalcite
09025
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żcalcium carbonate
09026
Magnesia GmbH
Max-Jenne-Straße 2-4, D-21337 Lüneburg
+49 (0)4131/8710-0, ¬ + 49 (0)4131/8710-55
e-mail: info@magnesia.de, Internet: www.magnesia.de
Eduard Merkle GmbH & Co. KG
Kalk- u. Steinmahlwerke
D-89143 Blaubeuren-Altental
+49 (0)7344/9601-0, ¬ +49 (0)7344/9601-11
e-mail: vertrieb@eduard-merkle.de
Internet: www.eduard-merkle.de
Żchromite ore & chromite ore sand,
chromite
09032
Grothe Rohstoffe GmbH & Co. KG
P.O. Box 1169, D-31667 Bückeburg
+49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60
e-mail: info@grothe.net, Internet: www.grothe.net
Żclays: ball clays
09034
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de
Tonwerk der Stadt Klingenberg a. Main
Wilhelmstraße 107, D-63911 Klingenberg a. Main
+49 (0)9372/2438, ¬ +49 (0)9372/921059
e-mail: tonwerk@klingenberg-main.de
Internet: www.tonwerk-klingenberg.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: casting clays
09035
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: flint clays
Tonwerk der Stadt Klingenberg a. Main
Wilhelmstraße 107, D-63911 Klingenberg a. Main
+49 (0)9372/2438, ¬ +49 (0)9372/921059
e-mail: tonwerk@klingenberg-main.de
Internet: www.tonwerk-klingenberg.de
09280
Żclays: general
463
09033
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de
Walderdorff´sche Tongruben & Herz GmbH & Co.
D-56412 Boden
+49 (0)2602/927013, ¬ +49 (0)2602/80437
e-mail: wth-ton@wth-ton.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: ground
09136
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de
Internet: www.tonbergbau.de
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
Teublitzer Ton GmbH
Industriestraße 27, D-93142 Maxhütte-Haidhof
+49 (0)94 71/30 26 13, ¬ +49 (0)94 71/30 26 25
Tonwerk der Stadt Klingenberg a. Main
Wilhelmstraße 107, D-63911 Klingenberg a. Main
+49 (0)9372/2438, ¬ +49 (0)9372/921059
e-mail: tonwerk@klingenberg-main.de
Internet: www.tonwerk-klingenberg.de
Walderdorff´sche Tongruben & Herz GmbH & Co.
D-56412 Boden
+49 (0)2602/927013, ¬ +49 (0)2602/80437
e-mail: wth-ton@wth-ton.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: light firing
09036
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de
Walderdorff´sche Tongruben & Herz GmbH & Co.
D-56412 Boden
+49 (0)2602/927013, ¬ +49 (0)2602/80437
e-mail: wth-ton@wth-ton.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: red firing
09125
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de
Walderdorff´sche Tongruben & Herz GmbH & Co.
D-56412 Boden
+49 (0)2602/927013, ¬ +49 (0)2602/80437
e-mail: wth-ton@wth-ton.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: refractory clays
09037
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de
Rohstoffgesellschaft mbH PONHOLZ
Industriestraße 27, D-93142 Maxhütte-Haidhof
+49 (0)9471/3026-0, ¬ +49 (0)9471/3026-25
Walderdorff´sche Tongruben & Herz GmbH & Co.
D-56412 Boden
+49 (0)2602/927013, ¬ +49 (0)2602/80437
e-mail: wth-ton@wth-ton.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: shaly clays
09038
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: special clays
09056
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
Tonwerk der Stadt Klingenberg a. Main
Wilhelmstraße 107, D-63911 Klingenberg a. Main
+49 (0)9372/2438, ¬ +49 (0)9372/921059
e-mail: tonwerk@klingenberg-main.de
Internet: www.tonwerk-klingenberg.de
Walderdorff´sche Tongruben & Herz GmbH & Co.
D-56412 Boden
+49 (0)2602/927013, ¬ +49 (0)2602/80437
e-mail: wth-ton@wth-ton.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: white firing
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
09126
INTERCERAM 6/2013
464
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de
Walderdorff´sche Tongruben & Herz GmbH & Co.
D-56412 Boden
+49 (0)2602/927013, ¬ +49 (0)2602/80437
e-mail: wth-ton@wth-ton.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żclays: yellow firing
09039
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Walderdorff´sche Tongruben & Herz GmbH & Co.
D-56412 Boden
+49 (0)2602/927013, ¬ +49 (0)2602/80437
e-mail: wth-ton@wth-ton.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żcobalt compounds
09040
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żcopper oxide
09043
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, D-51149 Köln
+49 (0)2203/89850, ¬ +49 (0)2203/8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Żcordierite
09044
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Ceske Lupkove Zavody a.s.
P.O. Box c.p. 1171, CZ-27101 Nove Straseci
+420/313 57 4084, ¬ +420/572131
e-mail: refracer@refracer.cz, Internet: www.cluz.cz
Żcorundum
09045
09046
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
09049
Gottfried Feldspat GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
Max Schmidt Feldspatwerk „Silbergrube“
Silbergrube 1, D-92726 Waidhaus
+49 (0)9652/230, ¬ +49 (0)9652/1532
e-mail: silbergrube@t-online.de
Sibelco Deutschland GmbH, Standort Brake
Am Binnenhafen, D-26919 Brake
+49 (0)4401/9383-0, ¬ +49 (0)4401/93873-72
e-mail: kontakt@sibelco.de, Internet: www.sibelco.de
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
Saarfeldspatwerke H. Huppert GmbH & Co. KG
Kobenhüttenweg 51, D-66123 Saarbrücken
+49 (0)681/968790, ¬ +49 (0)681/62296
e-mail: info@saarfeldspat.de
Internet: www.saarfeldspat.de
Żfeldspar sands: Al2 O3 -and K2 O-rich
09226
Gottfried Feldspat GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Quarzsandwerk Wellmersdorf GmbH & Co. KG
Brennereistraße 20, D-96465 Neustadt
+49 (0)9568/2350, ¬ +49 (0)9568/86166
e-mail: info-qsw@cemex.com.de
Internet: www.quarzsande.com
Żfeldspar: ceramic feldspar sands
Żfeldspar: glass feldspar sands
09228
09227
09050
09051
Gottfried Feldspat GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
09190
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
Żfillers: light coloured
09295
Ceske Lupkove Zavody a.s.
P.O. Box c.p. 1171, CZ-27101 Nove Straseci
+420/313 57 4084, ¬ +420/572131
e-mail: refracer@refracer.cz, Internet: www.cluz.cz
Żglass powder
09140
Dennert Poraver GmbH
Mozartweg 1, D-96132 Schlüsselfeld
+49 (0)9552/92977-0, ¬ +49 (0)9552/92977-26
e-Mail: info@poraver.de, Internet: www.poraver.de
Ernst Letschert KG - Mahlwerk
Mühlenweg 19, D-56235 Ransbach-Baumbach
+49 (0)2623/2209, ¬ +49 (0)2623/1620
e-mail: info@letschert-kg.de
Internet: www.letschert-kg.de
Żgranulates for powder injection
moulding (CIM and MIM)
09273
09054
Dennert Poraver GmbH
Mozartweg 1, D-96132 Schlüsselfeld
+49 (0)9552/92977-0, ¬ +49 (0)9552/92977-26
e-Mail: info@poraver.de, Internet: www.poraver.de
09058
GEORG H. LUH GMBH
Schöne Aussicht 39, D-65396 Walluf
+49 (0)6123/798-0, ¬ +49 (0)6123/798-44
e-mail: office@luh.de, Internet: www.luh.de
Żgrog
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żfillers: general
Żgeopolymer
Żgraphite
Quarzsandwerk Wellmersdorf GmbH & Co. KG
Brennereistraße 20, D-96465 Neustadt
+49 (0)9568/2350, ¬ +49 (0)9568/86166
e-mail: info-qsw@cemex.com.de
Internet: www.quarzsande.com
Żfeldspar: sodium feldspar
GEORG H. LUH GMBH
Schöne Aussicht 39, D-65396 Walluf
+49 (0)6123/798-0, ¬ +49 (0)6123/798-44
e-mail: office@luh.de, Internet: www.luh.de
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
INMATEC Technologies GmbH
Heerstraßenbenden 10, D-53359 Rheinbach
+49 (0)2226/9087-0, ¬ +49 (0)2226/9087-10
e-mail: info@inmatec-gmbh.com
Internet: www.inmatec-gmbh.com
Gottfried Feldspat GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Quarzsandwerk Wellmersdorf GmbH & Co. KG
Brennereistraße 20, D-96465 Neustadt
+49 (0)9568/2350, ¬ +49 (0)9568/86166
e-mail: info-qsw@cemex.com.de
Internet: www.quarzsande.com
Żfeldspar: scandinavian
Almatis GmbH
Lyoner Straße 9, D-60528 Frankfurt a.M.
+49 (0)69/957341-0, ¬ +49 (0)69/957341-13
Internet: www.almatis.com
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
Żdolomite
Żfeldspar
B U Y E R S‘ G U I D E
09029
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Ernst Letschert KG - Mahlwerk
Mühlenweg 19, D-56235 Ransbach-Baumbach
+49 (0)2623/2209, ¬ +49 (0)2623/1620
e-mail: info@letschert-kg.de
Internet: www.letschert-kg.de
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żgrog: bulk grog
09060
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Ernst Letschert KG - Mahlwerk
Mühlenweg 19, D-56235 Ransbach-Baumbach
+49 (0)2623/2209, ¬ +49 (0)2623/1620
e-mail: info@letschert-kg.de
Internet: www.letschert-kg.de
Żgrog: granulated grog
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Ernst Letschert KG - Mahlwerk
Mühlenweg 19, D-56235 Ransbach-Baumbach
+49 (0)2623/2209, ¬ +49 (0)2623/1620
e-mail: info@letschert-kg.de
Internet: www.letschert-kg.de
09061
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Żgrog: ground grog (grains)
09062
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Ceske Lupkove Zavody a.s.
P.O. Box c.p. 1171, CZ-27101 Nove Straseci
+420/313 57 4084, ¬ +420/572131
e-mail: refracer@refracer.cz, Internet: www.cluz.cz
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Ernst Letschert KG - Mahlwerk
Mühlenweg 19, D-56235 Ransbach-Baumbach
+49 (0)2623/2209, ¬ +49 (0)2623/1620
e-mail: info@letschert-kg.de
Internet: www.letschert-kg.de
Rohstoffgesellschaft mbH PONHOLZ
Industriestraße 27, D-93142 Maxhütte-Haidhof
+49 (0)9471/3026-0, ¬ +49 (0)9471/3026-25
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żgrog: lightweight grog
09065
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
09203
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
09174
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żkaolin: metakaolin
Żiron oxide
09191
Prince Minerals GmbH
Tauberstrasse 32, 97922 Lauda-Königshofen
+49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29
e-Mail: sales@princeminerals.com
Internet: www.princeminerals.com
Żkaolin chamotte
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Ceske Lupkove Zavody a.s.
P.O. Box c.p. 1171, CZ-27101 Nove Straseci
+420/313 57 4084, ¬ +420/572131
e-mail: refracer@refracer.cz, Internet: www.cluz.cz
Goerg & Schneider GmbH & Co. KG
P.O. Box 1261, D-56425 Siershahn
+49 (0)2623/604-0, ¬ +49 (0)2623/604-40
e-mail: info@goerg-schneider.de
Internet: www.goerg-schneider.de
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
GEORG H. LUH GMBH
Schöne Aussicht 39, D-65396 Walluf
+49 (0)6123/798-0, ¬ +49 (0)6123/798-44
e-mail: office@luh.de, Internet: www.luh.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
09200
09080
Grothe Rohstoffe GmbH & Co. KG
P.O. Box 1169, D-31667 Bückeburg
+49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60
e-mail: info@grothe.net, Internet: www.grothe.net
Żmolybdenum disilicide
09201
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żmullite, sintered
09155
Nabaltec AG
P.O.Box 1860, D-92409 Schwandorf
+49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57
e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de
Żnepheline syenite
09087
Sibelco Deutschland GmbH, Standort Brake
Am Binnenhafen, D-26919 Brake
+49 (0)4401/9383-0, ¬ +49 (0)4401/93873-72
e-mail: kontakt@sibelco.de, Internet: www.sibelco.de
09175
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
09069
09074
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
Lassmann Kommandite
Bahnhofstraße 41, D-56422 Wirges
P.O. Box 1147, D-56418 Wirges
+49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39
e-mail: info@tonbergbau.de
Internet: www.tonbergbau.de
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żmagnesia
Żmanganese compounds
Żnickel carbonate
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
Żloam sand
09128
Magnesia GmbH
Max-Jenne-Straße 2-4, D-21337 Lüneburg
+49 (0)4131/8710-0, ¬ + 49 (0)4131/8710-55
e-mail: info@magnesia.de, Internet: www.magnesia.de
09066
Kaolin- u. Tonwerke Salzmünde GmbH
Ziegelei 13, D-06198 Salzmünde
+49 (0)34609/20267, ¬ +49 (0)34609/20220
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żkyanite: crude
09030
Żkaolin: containing feldspar
09109
Ceske Lupkove Zavody a.s.
P.O. Box c.p. 1171, CZ-27101 Nove Straseci
+420/313 57 4084, ¬ +420/572131
e-mail: refracer@refracer.cz, Internet: www.cluz.cz
Dennert Poraver GmbH
Mozartweg 1, D-96132 Schlüsselfeld
+49 (0)9552/92977-0, ¬ +49 (0)9552/92977-26
e-Mail: info@poraver.de, Internet: www.poraver.de
Żkaolin: purified
09064
09078
Żmagnesium hydroxide
Żkaolin: crude, white firing
Żkaolin: ground
Żmagnesium fluoride
Magnesia GmbH
Max-Jenne-Straße 2-4, D-21337 Lüneburg
+49 (0)4131/8710-0, ¬ + 49 (0)4131/8710-55
e-mail: info@magnesia.de, Internet: www.magnesia.de
09028
Rohstoffgesellschaft mbH PONHOLZ
Industriestraße 27, D-93142 Maxhütte-Haidhof
+49 (0)9471/3026-0, ¬ +49 (0)9471/3026-25
Żkaolin: china-clay
Żkaolin: crude
465
09075
Magnesia GmbH
Max-Jenne-Straße 2-4, D-21337 Lüneburg
+49 (0)4131/8710-0, ¬ + 49 (0)4131/8710-55
e-mail: info@magnesia.de, Internet: www.magnesia.de
Żolivine
09214
Prince Minerals GmbH
Tauberstrasse 32, 97922 Lauda-Königshofen
+49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29
e-Mail: sales@princeminerals.com
Internet: www.princeminerals.com
Sibelco Deutschland GmbH, Standort Brake
Am Binnenhafen, D-26919 Brake
+49 (0)4401/9383-0, ¬ +49 (0)4401/93873-72
e-mail: kontakt@sibelco.de, Internet: www.sibelco.de
Żpegmatite
09088
Gottfried Feldspat GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
Żplaster
09090
BK Giulini GmbH
P.O. Box 217251, D-67072 Ludwigshafen
+49 (0)621/5709-415, ¬ +49 (0)621/5709-443
e-mail: pcg@bk-giulini.com
Saint-Gobain Formula GmbH
Kutzhütte, D-37445 Walkenried
+49 (0)5525/2030, ¬ +49 (0)5525/551
e-mail: info@bpbformula.com
Internet: www.bpbformula.com
INTERCERAM
K
6/2013
466
Żplaster: moulding plaster
09084
Żsilicon powder
BK Giulini GmbH
P.O. Box 217251, D-67072 Ludwigshafen
+49 (0)621/5709-415, ¬ +49 (0)621/5709-443
e-mail: pcg@bk-giulini.com
Saint-Gobain Formula GmbH
Kutzhütte, D-37445 Walkenried
+49 (0)5525/2030, ¬ +49 (0)5525/551
e-mail: info@bpbformula.com
Internet: www.bpbformula.com
KEYVEST SA
Rue de la Bureautique 2-4
B-4460 Grâce-Hollogne
+32 4/2390746, ¬ +32 4/2390748
e-mail: info@keyvestbelgium.be
Internet: www.keyvestbelgium.be
Żplaster: synthetic plaster
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
09092
BK Giulini GmbH
P.O. Box 217251, D-67072 Ludwigshafen
+49 (0)621/5709-415, ¬ +49 (0)621/5709-443
e-mail: pcg@bk-giulini.com
Żplastic material: porous
09180
BK Giulini GmbH
P.O. Box 217251, D-67072 Ludwigshafen
+49 (0)621/5709-415, ¬ +49 (0)621/5709-443
e-mail: pcg@bk-giulini.com
Żsilica sand
09101
Quarzsand GmbH Nudersdorf
Kirchstraße 8, D-06889 Lutherstadt Wittenberg
+49 (0)34929/20244, ¬ +49 (0)34929/20248
e-mail: info@qsnudersdorf.de
Internet: www.qsnudersdorf.de
Żsilicon carbide
09102
09103
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żsilicon carbide: fine powdered
09105
09106
09107
09223
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
09110
Imerys Tableware Deutschland GmbH
Ludwigsmühle 13, D-95100 Selb
+49 (0)9287/731312, ¬ +49 (0)9287/731313
e-Mail: info@imerys-ceramics.com
Internet: www.imerys-ceramics.com
Żtin oxide
09111
09187
09104
AlzChem Trostberg GmbH
Dr. Albert-Frank-Straße 32, D-83303 Trostberg
+49 (0)8621/86-2219,¬ +49 (0)8621/86-502219
e-mail: werner.gross@alzchem.com
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
09196
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żtitanium carbonnitride
09199
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żtitanium diboride
Żyttrium oxide
09114
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
09116
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
Żtitanium carbide
09113
GEORG H. LUH GMBH
Schöne Aussicht 39, D-65396 Walluf
+49 (0)6123/798-0, ¬ +49 (0)6123/798-44
e-mail: office@luh.de, Internet: www.luh.de
Sibelco Deutschland GmbH, Standort Brake
Am Binnenhafen, D-26919 Brake
+49 (0)4401/9383-0, ¬ +49 (0)4401/93873-72
e-mail: kontakt@sibelco.de, Internet: www.sibelco.de
S&B Industrial Minerals GmbH
Otavi Minerals
Bockholtstraße 129, D-41460 Neuss
+49 (0)2131/950543, ¬ +49 (0)2131/950555
e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de
Żzinc oxide
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żtitania
09198
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żwollastonite
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Żtalc
Sintec Keramik GmbH
Romantische Straße 18, D-87642 Halblech
+49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30
e-mail: info@sintec-keramik.com
Internet: www.sintec-keramik.com
Żtitanium nitride
09279
Electro Abrasives
Ortwin Rave, Produkte + Dienstleistungen
Bachweg 8, D-56072 Koblenz
+49 (0)261/9114408, ¬ +49 (0)261/9114248
e-mail: info@rave-minerals.com
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żsilicon nitrides
Żsoapstone: calcined
Żspodumen
Electro Abrasives
Ortwin Rave, Produkte + Dienstleistungen
Bachweg 8, D-56072 Koblenz
+49 (0)261/9114408, ¬ +49 (0)261/9114248
e-mail: info@rave-minerals.com
ESK-SIC GmbH
Günter-Wiebke-Straße 1, D-50226 Frechen
+49 (0)2234/512-0, ¬ +49 (0)2234/512-100
e-mail: info@esk-sic.com, Internet: www.esk-sic.com
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Żsilicon carbide: Ȗ-type
Żsoapstone
B U Y E R S‘ G U I D E
09112
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żzircon flour
09118
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Żzirconia powder: high purity
09186
Tosoh Europe BV
Crown Building-South; Hullenbergweg 359
NL-1101 CP Amsterdam
+31/20/5650014, ¬ +31/20/6915458
e-mail: duin@tosoheur.com, Internet: www.tosoh.com
UCM Advanced Ceramics GmbH
Ferroweg 1,, D-79725 Laufenburg
+49 (0)7763/933-500, ¬ +49 (0)7763/933-489
e-mail: gordon.bennett@ucm-fm.com
Żzirconium carbide
09197
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Żzirconium diboride
09121
H.C. Starck GmbH
Im Schleeke 78-91, D-38642 Goslar
P.O. Box 2540, D-38615 Goslar
+49 (0)5321/7513145, ¬ +49 (0)5321/7514145
e-mail: bettina.essmann@hcstarck.com
Internet: www.hcstarck.com
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Żzirconium opacifiers
09119
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Żzircon sand
09120
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Żzircon silicate
09122
09117
UCM Advanced Ceramics GmbH
Ferroweg 1,, D-79725 Laufenburg
+49 (0)7763/933-500, ¬ +49 (0)7763/933-489
e-mail: gordon.bennett@ucm-fm.com
Żzirconia: fused zirconia
09158
UCM Advanced Ceramics GmbH
Ferroweg 1,, D-79725 Laufenburg
+49 (0)7763/933-500, ¬ +49 (0)7763/933-489
e-mail: gordon.bennett@ucm-fm.com
Advanced Ceramics Semi Finished - Finished
Products
10
Żalumina parts
10001
DOCERAM GmbH
Heßlingsweg 65-67, D-44309 Dortmund
+49 (0)231/925025-0, ¬ +49 (0)231/925025-70
e-mail: info@doceram.com, Internet: www.doceram.com
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
DOCERAM GmbH
Heßlingsweg 65-67, D-44309 Dortmund
+49 (0)231/925025-0, ¬ +49 (0)231/925025-70
e-mail: info@doceram.com, Internet: www.doceram.com
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Żcomposites: : carbon fibres/
carbon composites
Żnon-oxide ceramics
10016
10013
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
10007
DOCERAM GmbH
Heßlingsweg 65-67, D-44309 Dortmund
+49 (0)231/925025-0, ¬ +49 (0)231/925025-70
e-mail: info@doceram.com, Internet: www.doceram.com
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Żprecision injection-moulded parts
10017
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Żsliding rings
10012
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH
D-58300 Wetter-Wengern
+49 (0)2335/9799-0, ¬ +49 (0)2335/9799-29
e-mail: fries@naescher-snv.de
Internet: www.naescher-snv.de
Transport - Conveying Packaging - Storage
11
Żconveying systems: general
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Żoxide ceramic
ŻSiC components with coatings
10002
Sintec Keramik GmbH
Romantische Straße 18, D-87642 Halblech
+49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30
e-mail: info@sintec-keramik.com
Internet: www.sintec-keramik.com
10015
DOCERAM GmbH
Heßlingsweg 65-67, D-44309 Dortmund
+49 (0)231/925025-0, ¬ +49 (0)231/925025-70
e-mail: info@doceram.com, Internet: www.doceram.com
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
SPT Roth Ltd.
Werkstraße 28, CH-3250 Lyss
+41 (0)32/3878080 ¬ +41 (0)32/3878088
e-mail: cim@sptroth.com
Internet: www.smallprecisiontools.com
ŻSiC components
Żbearings
10004
09157
UCM Advanced Ceramics GmbH
Ferroweg 1,, D-79725 Laufenburg
+49 (0)7763/933-500, ¬ +49 (0)7763/933-489
e-mail: gordon.bennett@ucm-fm.com
Żzirconia: partially stabilized
10003
DOCERAM GmbH
Heßlingsweg 65-67, D-44309 Dortmund
+49 (0)231/925025-0, ¬ +49 (0)231/925025-70
e-mail: info@doceram.com, Internet: www.doceram.com
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Sintec Keramik GmbH
Romantische Straße 18, D-87642 Halblech
+49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30
e-mail: info@sintec-keramik.com
Internet: www.sintec-keramik.com
Żceramic components: wear resistant
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, D-51149 Köln
+49 (0)2203/89850, ¬ +49 (0)2203/8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Żzirconia
Żceramic components
467
10014
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
11060
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
Żconveying systems: mechanical
11005
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
Schönbeck GmbH & Co. KG
Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt
+49 (0)5721/9800026-28, ¬ +49 (0)5721/81433
e-mail: info@schoenbeck-maschinen.de
Internet: www.schoenbeck-maschinen.de
Żconveying systems: pneumatic
11006
Hensel GmbH
Eisenhüttenstraße 26, D-57074 Siegen
+49 (0)271/6612335, ¬ +49 (0)271/61866
e-mail: info@hensel-giessereitechnik.de
Internet: www.hensel-giessereitechnik.de
Żconveyor belts
11007
VHV Anlagenbau GmbH
Dornierstraße 9, D-48477 Hörstel
+49 (0)5459/9338-0, ¬ +49 (0)5459/9338-80
e-mail: info@vhv-anlagenbau.de
Internet: www.vhv-anlagenbau.de
Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH
D-58300 Wetter-Wengern
+49 (0)2335/9799-0, ¬ +49 (0)2335/9799-29
e-mail: fries@naescher-snv.de
Internet: www.naescher-snv.de
Żconveyors: screw conveyors
11010
RUSSIG Fördertechnik GmbH & Co. KG
D-59269 Beckum
+49 (0)2521/14091, ¬ +49 (0)2521/13621
e-mail: info@russig.de, Internet: www.russig.de
Żconveyors: steel-plate conveyors
Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH
D-58300 Wetter-Wengern
+49 (0)2335/9799-0, ¬ +49 (0)2335/9799-29
e-mail: fries@naescher-snv.de
Internet: www.naescher-snv.de
11011
INTERCERAM
K
6/2013
468
Żhandling and storage systems
11018
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
Schönbeck GmbH & Co. KG
Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt
+49 (0)5721/9800026-28, ¬ +49 (0)5721/81433
e-mail: info@schoenbeck-maschinen.de
Internet: www.schoenbeck-maschinen.de
11021
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
Żsetting plants
11035
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
Schönbeck GmbH & Co. KG
Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt
+49 (0)5721/9800026-28, ¬ +49 (0)5721/81433
e-mail: info@schoenbeck-maschinen.de
Internet: www.schoenbeck-maschinen.de
Żtransfer cars
11039
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
Żunloading plants: automatic
ROTHO Robert Thomas
Metall- und Elektrowerke GmbH & Co. KG
Hellerstraße 6, D-57290 Neunkirchen
+49 (0)2735/788-543, ¬ +49 (0)2735/788-559
e-mail: m-eisel@rotho.de
Internet: www.rotho.de
Vötsch Industrietechnik GmbH
Umweltsimulation-Wärmetechnik
Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth
+49 (0)6408/8473, ¬ +49 (0)6408/848747
e-mail: info-wt@v-it.com, Internet: www.v-it.com
Żdryers: continuous dryers
Żkiln-car transport systems
11014
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
Schönbeck GmbH & Co. KG
Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt
+49 (0)5721/9800026-28, ¬ +49 (0)5721/81433
e-mail: info@schoenbeck-maschinen.de
Internet: www.schoenbeck-maschinen.de
Drying
Żdryers: belt dryers
12003
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
Żdryers: chamber dryers
12004
Beralmar Tecnologic S.A.
E-08227 Terrassa
+34/93/7312200
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
12020
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
Vötsch Industrietechnik GmbH
Umweltsimulation-Wärmetechnik
Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth
+49 (0)6408/8473, ¬ +49 (0)6408/848747
e-mail: info-wt@v-it.com, Internet: www.v-it.com
Żdryers: drum dryers
12005
Allgaier Process Technology GmbH
Ulmer Straße 75, D-73066 Uhingen
+49 (0)4103/8042-0, ¬ +49 (0)4103/8042-40
e-mail: info@allgaier.de, Internet: www.allgaier.de
Gebr. Pfeiffer SE
Barbarossastraße 50-54, D-67655 Kaiserslautern
+49 (0)631/4161-0, ¬ +49 (0)631/4161-290
e-mail: kv-p@gpse.de, Internet: www.gpse.de
Vötsch Industrietechnik GmbH
Umweltsimulation-Wärmetechnik
Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth
+49 (0)6408/8473, ¬ +49 (0)6408/848747
e-mail: info-wt@v-it.com, Internet: www.v-it.com
Żdryers: fast dryers
12009
ROTHO Robert Thomas
Metall- und Elektrowerke GmbH & Co. KG
Hellerstraße 6, D-57290 Neunkirchen
+49 (0)2735/788-543, ¬ +49 (0)2735/788-559
e-mail: m-eisel@rotho.de
Internet: www.rotho.de
Żdryers: tunnel dryers
12006
Allgaier Process Technology GmbH
Ulmer Straße 75, D-73066 Uhingen
+49 (0)4103/8042-0, ¬ +49 (0)4103/8042-40
e-mail: info@allgaier.de, Internet: www.allgaier.de
12002
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
ROTHO Robert Thomas
Metall- und Elektrowerke GmbH & Co. KG
Hellerstraße 6, D-57290 Neunkirchen
+49 (0)2735/788-543, ¬ +49 (0)2735/788-559
e-mail: m-eisel@rotho.de
Internet: www.rotho.de
Vötsch Industrietechnik GmbH
Umweltsimulation-Wärmetechnik
Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth
+49 (0)6408/8473, ¬ +49 (0)6408/848747
e-mail: info-wt@v-it.com, Internet: www.v-it.com
Żdryers: special dryers
12010
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
12011
Beralmar Tecnologic S.A.
E-08227 Terrassa
+34/93/7312200
Żdryers trays
12018
ROTHO Robert Thomas
Metall- und Elektrowerke GmbH & Co. KG
Hellerstraße 6, D-57290 Neunkirchen
+49 (0)2735/788-543, ¬ +49 (0)2735/788-559
e-mail: m-eisel@rotho.de
Internet: www.rotho.de
Żdrying plants
12013
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
ROTHO Robert Thomas
Metall- und Elektrowerke GmbH & Co. KG
Hellerstraße 6, D-57290 Neunkirchen
+49 (0)2735/788-543, ¬ +49 (0)2735/788-559
e-mail: m-eisel@rotho.de
Internet: www.rotho.de
Vötsch Industrietechnik GmbH
Umweltsimulation-Wärmetechnik
Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth
+49 (0)6408/8473, ¬ +49 (0)6408/848747
e-mail: info-wt@v-it.com, Internet: www.v-it.com
Consumables
13
Żcones: pyrometric
13023
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
Żgrinding media
Żdryers: fluidized dryers
Żdryers: general
12
B U Y E R S‘ G U I D E
13006
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Tosoh Europe BV
Crown Building-South; Hullenbergweg 359
NL-1101 CP Amsterdam
+31 20/5650014, ¬ +31 20/6915458
e-mail: duin@tosoheur.com, Internet: www.tosoh.com
Żpebbles, grinding balls
13015
Sigmund Lindner GmbH
Oberwarmensteinacher Straße 38
D-95485 Warmensteinach
+49 (0)9277/99410, ¬ +49 (0)9277/99499
e-mail: sili@sigmund-lindner.com
Internet: www.sigmund-lindner.com
REIMBOLD & STRICK
Handels- und Entwicklungsgesellschaft für
chemisch-keramische Produkte mbH
Hansestraße 70, 51149 Köln
+49 2203 898500, ¬ +49 2203 8985260
e-mail: info@reimbold-und-strick.de
Internet: www.reimbold-und-strick.de
Żmill linings
13018
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
B U Y E R S‘ G U I D E
INTERCERAM 6/2013
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Żsponges: natural sponges
Żwaste gas purification devices
13020
13021
Michael Zervos
D-86911 Diessen/Ammersee
+49 (0)8807/8417 + 1704
¬ +49 (0)8807/5054 + 8792
Żwear resistant parts
13031
Environmental Labour Protection
14
Hellmich GmbH & Co. KG
Holtkampweg 13, D-32278 Kirchlengern
+49 (0)5223/75770, ¬ +49 (0)5223/75730
e-mail: info@hellmich.com, Internet: www.helmich.com
HF Absorb - Ing. Büro Medau
Arbeitsgemeinschaft Ing. Büro Medau &
Ing. Büro Rittmann
Hauensteinstraße 64, D-79713 Bad Säckingen
+49 (0)7761/50500, ¬ +49 (0)7761/5534443
e-mail: ing.buero@medau.de, Internet: www.medau.de
Żthermal and catalytic afterburning plants
14009
A. Hässler Anlagenbau GmbH
Jahnstraße 45, D-89155 Erbach
+49 (0)7305/8060, ¬ +49 (0)7305/22382
e-mail: haessler-anlagenbau@t-online.de
Tridelta Thermprozess GmbH
Marie-Curie-Straße 14, D-07629 Hermsdorf
+49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99
e-mail: info@tridelta-thermprozess.de
Internet: www.tridelta-thermprozess.de
Żvacuum cleaners: stationary
15006
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Hellmich GmbH & Co. KG
Holtkampweg 13, D-32278 Kirchlengern
+49 (0)5223/75770, ¬ +49 (0)5223/75730
e-mail: info@hellmich.com, Internet: www.helmich.com
Żpottery accessories
14017
Hellmich GmbH & Co. KG
Holtkampweg 13, D-32278 Kirchlengern
+49 (0)5223/75770, ¬ +49 (0)5223/75730
e-mail: info@hellmich.com, Internet: www.helmich.com
17
Carl Jäger GmbH
D-56206 Hilgert
+49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29
e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de
16
Żcrack detection plants: acoustic
16002
RTE Akustik + Prüftechnik GmbH
Gewerbestraße 26, D-76327 Pfinztal
+49 (0)721/94650-0, ¬ +49 (0)721/94650-50
e-mail: info@rte.de, Internet: www.rte.de
Żsifter wheels
16017
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Żsorting systems: opto-electronic
16016
STEINERT Elektromagnetbau GmbH
Widdersdorfer Straße 329, D-50933 Köln
+49 (0)221/4984-0, ¬ +49 (0)221/4984-102
e-mail: sales@steinert.de, Internet: www.steinert.de
Żsorting systems: roentgenographic
STEINERT Elektromagnetbau GmbH
Widdersdorfer Straße 329, D-50933 Köln
+49 (0)221/4984-0, ¬ +49 (0)221/4984-102
e-mail: sales@steinert.de, Internet: www.steinert.de
17001
Freiberger Silicium– und Targetbearbeitung GmbH
Gewerbepark „Schwarze Kiefern“, Zoxy-Platz 1,
D-09633 Halsbrücke
+49 (0)3731/774070, ¬ +49 (0)3731/7740711
e-mail: info@fst-freiberg.de, Internet: www.fst-freiberg.de
Żceramic product realisation
17022
Keramik-Institut GmbH
Ossietzkystraße 37 a, D-01662 Meißen
+49 (0)3521/463515, ¬ +49 (0)3521/463516
e-mail: info@keramikinstitut.de
Internet: www.keramikinstitut.de
Żceramic to metal sealings
15004
14001
14007
Services - Trading Second-Hand Machinery
-Consulting
Żceramic machining (advanced ceramics)
15
Final Treatment Sorting
Hellmich GmbH & Co. KG
Holtkampweg 13, D-32278 Kirchlengern
+49 (0)5223/75770, ¬ +49 (0)5223/75730
e-mail: info@hellmich.com, Internet: www.helmich.com
Keller Lufttechnik GmbH + Co. KG
Neue Weilheimer Straße 30
D-73230 Kircheim unter Teck
+49 (0)7021/574-0, ¬ +49 (0)7021/52430
e-mail: info@keller-lufttechnik.de
Internet: www.keller-lufttechnik.de
Bernd Münstermann GmbH & Co. KG
Lengericher Straße 22, D-48291 Telgte-Westbevern
+49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92
e-mail: info@muenstermann.com
Internet: www.muenstermann.com
Żfluor absorption systems
Various Systems
Żheat exchangers
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Żdedusting plants
14012
Hellmich GmbH & Co. KG
Holtkampweg 13, D-32278 Kirchlengern
+49 (0)5223/75770, ¬ +49 (0)5223/75730
e-mail: info@hellmich.com, Internet: www.helmich.com
Michael Zervos
D-86911 Diessen/Ammersee
+49 (0)8807/8417 + 1704
¬ +49 (0)8807/5054 + 8792
Żsponges: synthetic sponges
469
16019
17002
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Żcommission processing
17005
Freiberger Silicium– und Targetbearbeitung GmbH
Gewerbepark „Schwarze Kiefern“, Zoxy-Platz 1,
D-09633 Halsbrücke
+49 (0)3731/774070, ¬ +49 (0)3731/7740711
e-mail: info@fst-freiberg.de, Internet: www.fst-freiberg.de
Keramik-Institut GmbH
Ossietzkystraße 37 a, D-01662 Meißen
+49 (0)3521/463515, ¬ +49 (0)3521/463516
e-mail: info@keramikinstitut.de
Internet: www.keramikinstitut.de
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Arno Witgert
D-56414 Herschbach/Oww.
+49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33
Żconsultancy / expertises
17003
IS
Sachverständigenbüro
Gernandt - Osterkamp - Stengert
Sachverständige für Maschinen, Anlagen und Produkte
der Keramikindustrie
Kleinenbremer Straße 16, D-32457 Porta Westfalica
+49 (0)5722/91290-0, ¬ +49 (0)5722/91290-99
e-mail: info@experts-gos.de
Internet: www.experts-gos.de
Keramik-Institut GmbH
Ossietzkystraße 37 a, D-01662 Meißen
+49 (0)3521/463515, ¬ +49 (0)3521/463516
e-mail: info@keramikinstitut.de
Internet: www.keramikinstitut.de
Żgrinding on commission
Adolf Gottfried Tonwerke GmbH
Tonwerkstraße 3, D-96269 Großheirath
+49 (0)9565/7970, ¬ +49 (0)9565/79735
e-mail: info@gottfried.de, Internet: www.gottfried.de
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Kürzeder & März
Stalleringer Straße 3, D-85457 Hörlkofen
+49 (0)8122/85922, ¬ +49 (0)8122/86122
e-mail: rudolf.maerz@maerkur.com
Internet: www.maerkur.com
17026
INTERCERAM
K
6/2013
470
Ernst Letschert KG - Mahlwerk
Mühlenweg 19, D-56235 Ransbach-Baumbach
+49 (0)2623/2209, ¬ +49 (0)2623/1620
e-mail: info@letschert-kg.de
Internet: www.letschert-kg.de
THEODOR STEPHAN KG GmbH & Co. KG
Liebenscheider Straße 40, D-57299 Burbach
+49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90
e-mail: info@stephan-tonbergbau.de
Internet: www.stephan-tonbergbau.de
Żkiln/dryer activation
17035
Keramik-Institut GmbH
Ossietzkystraße 37 a, D-01662 Meißen
+49 (0)3521/463515, ¬ +49 (0)3521/463516
e-mail: info@keramikinstitut.de
Internet: www.keramikinstitut.de
Żkiln repairs
17006
Cervice
D-04155 Leipzig
+49 (0)341/5640883
Żlaboratory services
17031
ESA Eidam & Seiferling Analytik GmbH
Heinrich-Hertz-Straße 10, D-07629 Hermsdorf
+49 (0)36601/903500, ¬ +49 (0)36601/903501
e-mail: info@esahermsdorf.de
Internet: www.esahermsdorf.de
H.C. Starck Ceramics GmbH & Co. KG
Lorenz-Hutschenreuther-Straße 81, D-95100 Selb
+49 (0)9287/807-152, ¬ +49 (0)9287/807-483
e-mail: monrad.joseph@hcstarck.com
Internet: www.hcstarck-ceramics.com
Johann-Friedrich-Böttger-Institut
Prüf– und Entwicklungslabor
Weißenbacher Straße 60, D-95100 Selb
+49 (0)9287/88277-00, ¬ +49 (0)9287/88277-119
Keramik-Institut GmbH
Ossietzkystraße 37 a, D-01662 Meißen
+49 (0)3521/463515, ¬ +49 (0)3521/463516
e-mail: info@keramikinstitut.de
Internet: www.keramikinstitut.de
Żmicronizing
17007
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
Żmixture on commission: dry/pasty/fluid
17028
LOOP GmbH
Am Nordturm 5, D-46562 Voerde
+49 (0)281/83135, ¬ +49 (0)281/83137
e-mail:mail@loop-gmbh.de
Żprecision machining
17024
Freiberger Silicium– und Targetbearbeitung GmbH
Gewerbepark „Schwarze Kiefern“, Zoxy-Platz 1,
D-09633 Halsbrücke
+49 (0)3731/774070, ¬ +49 (0)3731/7740711
e-mail: info@fst-freiberg.de, Internet: www.fst-freiberg.de
Żprocess analyses
17023
Keramik-Institut GmbH
Ossietzkystraße 37 a, D-01662 Meißen
+49 (0)3521/463515, ¬ +49 (0)3521/463516
e-mail: info@keramikinstitut.de
Internet: www.keramikinstitut.de
Żresearch and development services
Keramik-Institut GmbH
Ossietzkystraße 37 a, D-01662 Meißen
+49 (0)3521/463515, ¬ +49 (0)3521/463516
e-mail: info@keramikinstitut.de
Internet: www.keramikinstitut.de
17010
sawing on commission
B U Y E R S‘ G U I D E
17017
Freiberger Silicium– und Targetbearbeitung GmbH
Gewerbepark „Schwarze Kiefern“, Zoxy-Platz 1,
D-09633 Halsbrücke
+49 (0)3731/774070, ¬ +49 (0)3731/7740711
e-mail: info@fst-freiberg.de, Internet: www.fst-freiberg.de
Żsecond-hand machinery
17011
ABIS GmbH
Falkenstraße 1, D-90596 Schwanstetten
+49 (0)9170/97835, ¬ +49 (0)9170/97834
e-mail: info@abis-gmbh.com, Internet: www.abis.info
HEUTZ-HOMBURG AG
An der Follmühle 2-4, B-4730 Hauset
+32 (0)87/659140, ¬ +32 (0)87/653092
Dieter Liphardt GmbH & Co. KG
D-37247 Großalmerode
+49 (0)5604/93390, ¬ +49 (0)5604/933926
e-Mail: info@colisit.de
Rumke Keramikmaschinen, Engineering & Handel GmbH
Bleikaule 5, D-59929 Brilon
+49 (0)2961/4000, ¬ +49 (0)2961/1228
e-mail: Rumke-GmbH@t-online.de
Żspray drying
Keramik-Institut GmbH
Ossietzkystraße 37 a, D-01662 Meißen
+49 (0)3521/463515, ¬ +49 (0)3521/463516
e-mail: info@keramikinstitut.de
Internet: www.keramikinstitut.de
Helmut Kreutz Mahlwerke GmbH
Mahlwerke-Kreutz-Straße
D-35708 Haiger
+49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60
e-mail: info@kreutz-mahlwerke.de
Internet: www.kreutz-mahlwerke.de
17013
B U Y E R S‘ G U I D E
Company
INTERCERAM 6/2013
471
Product
ACO Automation Components ................................................................................... 08010
Adolf Gottfried Tonwerke GmbH ..................................... 09029, 09033, 09036, 09037,
09038, 09039, 09044, 09061,
09062, 09064, 09106, 09107,
09125, 09136, 09144, 09147, 17026
Albion .......................................................................................................................... 08029
ALFA Maschinen …………………………………………………………………………………….…..… 02027
Allgaier Process Technology GmbH ………….................................. 02006, 02019, 02043,
02073, 12005, 12006
Almatis GmbH .................................................................. 04012, 04055, 04069, 04070,
09002, 09003, 09006, 09045, 09294
AlzChem Hart GmbH .................................................................................................. 09104
Willy A. Bachofen AG .................................................................................................. 02084
BÄHR Thermoanalyse GmbH .......................................... 07003, 07004, 07005, 07007,
07021, 07023, 07031, 07035
Beralmar Tecnologic S.A. ................................................ 01012, 03003, 03004, 03033,
12004,12011
BK Giulini Chemie GmbH & Co. OHG ............................... 09084, 09090, 09092, 09180
Johann-Friedrich-Böttger-Institut .............................................................................. 17031
Carbolite GmbH ............................................................... 03019, 03021, 03031, 03039,
03040
Cervice .......................................................................................................... 03014, 17006
Ceske Lupkove Zavody a.s. ...........................................................04070, 09044, 09062,
09064, 09109, 09295
Chemische Fabrik Mineralwerk Kurt Hacke GmbH.................................... 06013, 06023
Clariant Produkte (Deutschland) GmbH.................................................................... 09015
CNS Farnell Limited ................................................................................................... 07025
CTB GmbH ........................................................................ 03014, 03016, 03021, 03030,
03032, 03033, 03039
Dennert Poraver GmbH …………………………………………………...…… 09054, 09109, 09140
DOCERAM GmbH ........................................................................... 10001, 10003, 10004,
10007, 10015
Eclipse Combustion GmbH ........................................................................................ 03003
Electro Abrasives .............................................................. 09001, 09022, 09102, 09279
Elster Kromschröder GmbH ...................................................................................... 03003
Emailleschmelze und Glasurenfabrikation
Josef Opavsky & Sohn .................................................................... 06013, 06017, 06023
EPSI NV ......................................................................................................... 05031, 05046
Eriez Magnetics Europe Ltd. .......................................................... 02019, 02020, 02065
Eriez Magnetics Vertriebs GmbH ................................................... 02019, 02020, 02065
ESA Eidam & Seiferling Analytik GmbH ………………………………………………………….. 17031
ESK-SIC GmbH ........................................................................................................... 09102
Eurotherm Deutschland GmbH .................................................... 08008, 08014, 08018,
08020, 08027
FCT Anlagenbau GmbH …………….………………………………………………………. 03022, 03057
Freiberger Silicium– und Targetbearbeitung GmbH …………………………… 17001, 17005,
17017, 17024
Gernandt - Osterkamp - Stengert .............................................................................. 17003
2043
Goerg & Schneider GmbH & Co. KG ............................... 09016, 09017, 09027, 09034,
09035, 09036, 09060, 09062,
09064, 09065, 09126, 09136,
09143, 09146, 09147
Gottfried Feldspat GmbH ................................................ 09049, 09051, 09088, 09226,
09228
Goudsmit Magnetic Systems BV................................................................................ 02019
Grothe Rohstoffe GmbH & Co. KG .................................. 03039, 06013, 06023, 09024,
09032, 09080
Hacke Maschinenbau ................................................................................................ 02024
A. Hässler Anlagenbau GmbH.......................................... 02064, 03001, 03013, 03027,
03030, 03033, 08014, 11014,
11021, 11035, 14009
Atelier für moderne Formgestaltung
Helmut Hartenfels ..................................................................................................... 05066
H. C. Starck GmbH ........................................................... 09008, 09023, 09103, 09104,
09112, 09114, 09121, 09194,
09195, 09196, 09197, 09198,
09199, 09201, 09278, 09279
Hellmich GmbH & Co. KG ................................................ 14001, 14007, 14012, 14017,
15006
Hensel GmbH ............................................................................................................. 11006
Company
Product
W.C. Heraeus GmbH .................................................................................... 06003, 06027
HEUTZ-HOMBURG AG ................................................................................................ 17011
HF Absorb - Ing. Büro Medau………...……………………………………………………………….. 14007
HORN Glass Industries AG
03032, 03046
Hosokawa Alpine AG ..........................................02006, 02022, 02025, 02026, 02027,
02028, 02066, 02077, 02082, 02084, 07008
Imerys Tableware Deutschland GmbH ……………………… 09016, 09027, 09030, 09049,
09064, 09088, 09106, 09110,
09139, 09144
INMATEC Technologies mbH ....................................................................... 09144, 09273
Insulating Fired Brick ................................................................................................. 04021
Carl Jäger GmbH .............................................................. 02047, 03025, 04010, 05018,
05024, 05025, 06002, 06016,
06020, 06023, 06041, 06044,
06046, 09010, 09015, 09019,
09024, 09025, 09027, 09030,
09035, 09036, 09040, 09043,
09046, 09050, 09062, 09111,
09116, 09122, 09125, 09136,
09144, 09175, 13023, 15004
Johnson Matthey CT ........................................................ 06003, 06004, 06013, 06017,
06023, 06027, 06029, 06044
Kaolin- u. Tonwerke Salzmünde GmbH ........................ 09033, 09034, 09035, 09056,
09066, 09074, 09126, 09136,
09200, 09203
KARO Electronics Vertriebs GmbH ................................. 03014, 03016, 03020, 03021,
03022, 030248 03024, 03030,
03032, 03033, 03039, 03040,
03045, 03057, 05038, 05042,
05046
Keller Lufttechnik GmbH + Co. KG ........................................................................... 14001
Keramik-Institut GmbH .................................................... 17003, 17005, 17010, 17013,
17022, 17023, 17031, 17035
Keramischer OFENBAU GmbH ......................................... 03014, 03028, 03030, 03033
KEYVEST SA …............................................................................................................. 09105
KOMAGE Gellner Maschinenfabrik KG ....................................................... 05030, 05063
Kürzeder & März ........................................................................................................ 17026
Lassmann Kommandite .................................................. 09033, 09034, 09035, 09036,
09037, 09074, 09125, 09126,
09136
Ernst Letschert KG - Mahlwerk ………………………………..…...……... 09029, 09060, 09061,
09062, 09140, 17026
Sigmund Lindner GmbH ............................................................................................ 13015
LINN-High-Therm GmbH .................................................. 03016, 03021, 03022, 03025,
03030, 03039, 03049
Dieter Liphardt GmbH & Co. KG................................................................................ 17011
LOOMIS PRODUCTS Kahlefeld GmbH ............................. 05008, 05010, 05044, 05046
05050, 07013, 07014
LOOP GmbH …………………...…………………………………………………………..……………….. 17028
GEORG H. LUH GMBH .................................................................... 09030, 09058, 09113
L.U.M. GmbH ................................................................................................ 07008, 07018
Magnesia GmbH ............................................................... 09026, 09075, 09078, 09128
Helmut Kreutz Mahlwerke GmbH ................................................. 09118, 09119, 09120,
09122,
10007, 13006, 13018, 17005,
17007, 17013, 17026
Martinswerk GmbH .......................................................................................09002, 09003
Maschinenfabrik Gustav Eirich GmbH & Co. KG …………………..…………… 02018, 02084
Massform Industrieproduktedesign GmbH ................... 05012, 05021, 05022, 05066
MECO THE MANUFACTURERS
EQUIPMENT COMPANY …………………………………………..………………..……….. 05005, 05043
Eduard Merkle GmbH & Co.KG ................................................................................. 09026
Bernd Münstermann GmbH & Co. KG ......................... 11005, 110039, 11060, 12002,
12003, 12004, 12010, 12013,
12020, 14001
MUT ADVANCED HEATING GmbH ................................... 03022, 03028, 03032, 03039,
03045, 03046
Nabaltec AG...................................................................... 09002, 09003, 09007, 09144,
09155
NETZSCH Grinding & Dispersing ……………….……………… 02006, 02026, 02029, 02040,
02077, 02082, 02083, 02084,
07009, 17007, 17026
Neuman & Esser GmbH ................................................................. 02026, 02066, 02082
OSTERWALDER AG ....................................................................................... 05030, 05052
S&B Industrial Minerals GmbH
OTAVI Minerals ................................................................. 04012, 04036, 09010, 09014,
09029, 09043, 09045, 09049,
09069, 09113, 09187, 09223
472
Company
INTERCERAM 6/2013
Product
Gebr. Pfeiffer SE ………………………………………...……………………….. 02006, 02022, 02025,
02026, 02066, 02077,
02082, 02083, 12005, 12020
POROTEC GmbH ............................................................................ 07008, 07028, 07029,
07030, 07041
Prince Minerals GmbH ……………………………………………………….... 06013, 06023, 09010,
09191, 09214
Promat GmbH …………………............................................. 04001, 04005, 04006, 04021,
04023, 04055, 04075
Quarzsand GmbH Nudersdorf ................................................................................... 09101
Quarzsandwerke Weissenbrunn ................................................... 09016, 09139, 09144
Quarzsandwerk Wellmersdorf
GmbH & Co. KG .............................................................................. 09226, 09227, 09228
Rath Aktiengesellschaft ................................................... 04021, 04107, 04108, 04109
Rau GmbH .................................................................................................................. 17011
Refratechnik Ceramics GmbH....................................................... 04003, 04008, 04010,
04028, 04033, 04044
REIMBOLD & STRICK ....................................................... 06003, 06004, 06017, 06023,
06044, 09043, 09122
Rheinische Email– und Glasurenfabrik
Mondré & Manz GmbH .................................................................. 06013, 06017, 06023
Riedhammer GmbH ..........................................................03014, 03017, 03019, 03020,
03021, 03024, 03026, 03027,
03028, 03030, 03032, 03033,
03045, 03046
ETS ROCHET ............................................................................................................... 05004
Rohstoffgesellschaft mbH PONHOLZ ............................................ 09028, 09037, 09062
ROTHO Robert Thomas
Metall– u. Elektrowerke GmbH + Co. KG .................................... 12002, 12004, 12009,
12013, 12018
RTE Akustik + Prüftechnik GmbH ............................................................................ 16002
Rumke Keramikmaschinen,
Engineering & Handel GmbH .................................................................................... 17011
S&B Industrial Minerals GmbH ................................................................................ 09015
Saarfeldspatwerke
H. Huppert GmbH & Co. KG ...................................................................................... 09049
Saint-Gobain Formula GmbH ...................................................................... 09084, 09090
SCHMIDT Technology ………………………..……………………………….…………………...….… 08004
Schönbeck GmbH & Co. KG …………………………………..... 01012, 06053, 06055, 11005,
11014, 11018, 11035
SENSOR CONTROL Ges. f.
Sensorik u. Automation mbH ........................................... 02046, 08006, 08008, 08010
08014, 08021
Sibelco Deutschland GmbH ............................................. 09049, 09087, 09113, 09214
Silicon BV ...................................................................................................... 04059, 04102
SILCA GmbH .................................................................... .03013, 04005, 04006, 04007,
04021, 04023, 04055, 04075
Sintec Keramik GmbH .........................................09022, 09023, 09112,.10002, 10003
SPT Roth Ltd ............................................................................................................... 10015
STEINERT Elektromagnetbau GmbH ............................................. 02019, 16016, 16019
Stempelspirale .................................................................. 06020, 06069, 06070, 06071
THEODOR STEPHAN KG GmbH & Co. KG..................................... 09035, 09038, 09054,
09056, 09074, 09136, 09174,
09190, 09203, 17026
SWECO EUROPE S.A. ................................................................................... 02026, 02043
Teublitzer Ton GmbH ................................................................................................ 09136
Tonwerk der Stadt Klingenberg a. Main ..........................09034, 09056, 09136, 09280
Tosoh Europe BV ......................................................................................... 09186, 13006
Tridelta Thermprozess GmbH ………………………………..… 03017, 03020, 03027, 03030,
03033, 03043, 03046,
03058, 12003, 14009
UCM Advanced Ceramics GmbH………………………………… 09117, 09157, 09158, 09186
VGT-DYKO GmbH..............................................................................04008, 04010, 04021
VHV Anlagenbau GmbH ............................................................................................. 11007
Viebahn Pressen Systeme GmbH ............................................................................. 05030
Vötsch Industrietechnik GmbH ...................................... .03049, 12002, 12004, 12005,
12013, 12020
VSM .................................................................................. 05020, 05032, 05035, 06043,
06053, 06055
Walderdorff´sche Tongruben &
Herz GmbH & Co. ............................................................. 09033, 09036, 09037, 09039,
09056, 09125, 09126, 09136
WENDEL GmbH .............................................................................. 06013, 06017, 06023
Ludwig Wery GmbH ....................................................................... 02005, 02011, 02012,
02027, 02028
Company
B U Y E R S‘ G U I D E
Product
WISTRA GmbH ................................................................. 03003, 03014, 03017, 03018,
03019, 03021, 03024, 03028,
03030, 03032, 03033
Arno Witgert ..................................................................... 09016, 09017, 09027, 09029,
09030, 09033, 09034, 09035,
09036, 09037, 09038, 09039,
09056, 09062, 09065, 09066,
09074, 09125, 09126, 09136,
09139, 09143, 09144, 09146,
09147, 09174, 17005
Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH …............... 02005, 11007, 11011
Michael Zervos ................................................................. 05040, 05041, 05077, 06011,
13020, 13021
ZSCHIMMER & SCHWARZ GmbH & Co KG .................................. 04012, 06008, 06029,
06046, 06060, 06061,
09001, 09152, 09170,
09182, 09289, 09290,
09291, 09292, 09293,
09294
12013, 12020
LIST OF PRODUCTS
INTERCERAM 6/2013
ɼ Plant Construction — Plant Consulting
01 010
01 018
01 019
01 012
01 003
01 006
01 014
01 015
01 017
01 013
01 016
01 009
flower pot production lines
frit melting plants
microwave plants
plants for the production of building and
heavy clay ceramics
plants for the production of ceramics
plants for the production of expanded clay
plants for the production of refractories
plants for the production of sand-lime bricks
plants for the production of stoneware pipes
plants for the production of tableware
plants for the production of tiles
project engineering
ɼ Preparation
02 001
02 053
02 003
02 004
02 067
02 079
02 006
02 007
02 062
02 083
02 008
02 055
02 010
02 011
02 009
02 060
02 049
02 082
02 012
02 005
02 013
02 064
02 014
02 015
02 016
02 075
02 057
02 017
02 048
02 018
02 058
02 019
02 071
02 070
02 072
02 059
02 073
02 065
02 020
02 002
02 084
02 021
02 022
02 023
02 024
02 033
02 056
02 025
02 026
02 040
02 050
02 027
02 028
02 047
02 029
02 042
02 031
02 066
02 032
02 061
02 076
02 034
02 051
02 035
02 036
02 052
02 030
02 037
02 081
02 080
02 078
02 068
02 038
02 039
02 041
agitators
agitators: propeller agitators
blungers: general
blungers: propeller blungers
bowl mills
briquetting plants
classifiers
classifiers: cyclones
clay purifier
comminution plants
crushers
crushers: breakers
crushers: jaw crushers
crushers: roller crushers
crushers: single-toggle jaw crushers
crushers: wet crushers
cyclones
dry grinding plants
feeders
feeders: box feeders
feeders: circular feeders
feeders: high-capacity feeders
feeders: screen circular feeders
feeders: vibratory feeders
filter presses
flat slide valves
grain heaters
granulators, pelletizers
heating drums
kneaders
kneaders: screen kneaders
magnetic separators
magnetic separators: magnetic drums
magnetic separators: magnetic filters
magnetic separators: magnetic grates
magnetic separators for wet and dry preparation
magnets: permanent magnets
magnets: superconducting magnets
metal detectors
metering units
mills: agitator ball mills
mills: annular gap mills
mills: ball mills
mills: centrifugal mills
mills: corundum disc mills
mills: disc mills
mills: drum mills
mills: dry ball mills
mills: fine grinding mills
mills: frit mills
mills: grinding mills
mills: hammer mills
mills: impact mills
mills: jar mills
mills: jet impact mills
mills: pendulum mills
mills: ring-roll mills
mills: roller mills
mills: roller press mills
mills: vibrating ball mills
mills: vibratory mills
mixers: continuous mixers
mixers: de-airing plaster mixers
mixers: double shaft mixers
mixers: periodic mixers
mixers: plaster mixers
pan mills
pelletizing tables
plants for the production of grinding wheels
powder feeding and mixing units
preparation plants
pressure heads
pugmills
roll turning devices
rotary vane feeders
02 043
02 054
02 044
02 074
02 077
02 045
02 063
02 046
screening machines
screening machines: ultrasonic-supported
screens: oscillating screens
screens: vibratory screens
sifters: air-sifters
spray driers
waste chopper
weighing devices
ɼ Firing
03 048
03 001
03 003
03 037
03 004
03 002
03 043
03 006
03 007
03 009
03 008
03 063
03 031
03 010
03 061
03 034
03 054
03 012
03 038
03 013
03 014
03 015
03 053
03 016
03 017
03 018
03 019
03 020
03 027
03 062
03 022
03 058
03 021
03 039
03 052
03 049
03 040
03 047
03 024
03 025
03 056
03 026
03 028
03 046
03 055
03 029
03 030
03 045
03 051
03 032
03 033
03 057
03 042
03 005
03 041
03 036
03 060
03 044
autoclaves for hardening of sand-lime bricks
burner plants
burners: gas burners
burners: infrared burners
burners: oil burners
burners: solid fuel burners
calcining plants
chimneys: brick chimneys
chimneys: concrete chimneys
chimneys: refractory chimneys
chimneys: steel chimneys
crystal growing systems
furnaces: annealing furnaces
furnaces: pit furnaces
furnaces: tube furnaces
gas generators
graphite components
heating conductors
kiln baskets
kiln cars
kilns
kilns: annealing kilns
kilns: braziers
kilns: chamber kilns
kilns: conveyor-type kilns
kilns: decorating kilns
kilns: electric kilns
kilns: elevator kilns
kilns: fast firing kilns
kilns: fibre drawing kilns
kilns: gas/vacuum-tight high temperature kilns
kilns: gas/vacuum-tight rotary kilns
kilns: high temperature kilns
kilns: laboratory kilns
kilns: microwave conveyor-belt kilns
kilns: microwave kilns
kilns: muffle kilns
kilns: pendulum kilns
kilns: periodic kilns
kilns: potters’ kilns
kilns: pressure sintering kilns
kilns: pusher-type kilns
kilns: roller kilns
kilns: rotary kilns
kilns: rotary pusher kilns
kilns: shaft kilns
kilns: shuttle kilns
kilns: sintering kilns
kilns: temperature gradient kilns
kilns: top hat kilns
kilns: tunnel kilns
kilns: vacuum sintering kilns
process firing systems
rollers and tubes: ceramic
rollers and tubes: fused silica
rollers and tubes: metallic
rollers and tubes: RSiC
rollers and tubes: SiSiC
ɼ Refractories
04 001
04 045
04 049
04 003
04 033
04 044
04 004
04 046
04 071
04 052
04 106
04 067
04 068
04 042
04 006
04 007
04 099
04 036
04 072
04 102
asbestos substituting materials
burners: SiSiC burner nozzles
burners: SSiC burner nozzles
cassettes: H-cassettes
cassettes: U-cassettes
cassettes for roofing tiles
cassettes for tiles
ceramic fibre textiles
components: ceramic fibre-free-products, vacuum
shaped
components: ceramic vacuum shaped products
components: chamotte moulded parts
components: plasma-sprayed
components: special shapes for hand-made-stoves
corrosion-resistant agents
fibre linings
fibre-products: vacuum shaped
fibres: ceramic
fibres: general
fibres: polypropylene fibres
fibres: steel fibres
473
04 027
04 103
04 062
04 063
04 108
04 109
04 075
04 005
04 064
04 040
04 055
04 010
04 018
04 011
04 057
04 056
04 050
04 107
04 054
04 013
04 034
04 059
04 014
04 002
04 012
04 073
04 074
04 077
04 076
04 048
04 070
04 065
04 015
04 039
04 105
04 025
04 047
04 019
04 058
04 066
04 037
04 020
04 016
04 021
04 043
04 051
04 022
04 008
04 009
04 017
04 023
04 079
04 078
04 024
04 038
04 026
04 101
04 035
04 069
04 029
04 053
04 030
04 041
04 031
04 032
04 060
04 028
fibres: up to 1800 °C
filters for aluminum foundries
heat protective materials: general
heat protective materials: up to 1600 °C
high temperature insulation wool
high temperature insulation wool: vacuum shaped
insulating materials: calcium silicate plates
insulating materials: high-temperature insulating
materials
insulating materials: insulating fibre products
insulating materials: low temperature
insulating materials: microporous insulating
kiln furniture
kiln furniture: honeycomb ceramic
kiln furniture: low mass
kiln furniture: NSiC
kiln furniture: RSiC
kiln furniture: SiSiC and SSiC
linings: high temperature insulation wool
refractories for stove-fitters
refractories: acidic bricks
refractories: alumina bricks
refractories: anchors
refractories: basic bricks
refractories: bats
refractories: binders
refractories: binders, liquid
refractories: binders, pulverized
refractories: bricks based on Al2O3
refractories: bricks based on SiC
refractories: building materials
refractories: calcium aluminate cement
refractories: carbon/graphite
refractories: castables, concretes
refractories: cement
refractories: chamotte bricks and panels
refractories: chrome-alumina refractories
refractories: fibre-free
refractories: fused silica
refractories: fused magnesia-chromite
refractories: fused spinel
refractories: furnace insulating assemblies
refractories: gunning mixes
refractories: high alumina concretes
refractories: insulating bricks
refractories: insulating bricks
refractories: insulating materials
refractories: insulating seals
refractories: kiln car linings
refractories: kiln car sealings
refractories: lightweight concretes
refractories: linings
refractories: mixes based on Al2O3
refractories: mixes based on SiC
refractories: mortars
refractories: putties
refractories: ramming mixes
refractories: repairing mixes
refractories: silica bricks
refractories: spinel (magnesium aluminate)
saggars: alumina saggars
saggars: high alumina saggars for high
temperature applications
saggars: mullite saggars
saggars: SiC saggars
saggars for plates
saggars for tiles
soldering and welding devices
suspended roofs
ɼ Shaping
05 001
05 002
05 042
05 003
05 004
05 005
05 006
05 081
05 079
05 007
05 054
05 008
05 009
05 010
05 055
05 065
05 011
05 014
05 045
05 015
05 017
casting benches
casting machines: automatic
casting plants: tape casting plants
cup jolleying machines
cutters
cutting wires
de-airing plants for plaster, slips
die changing devices
die cleaning devices
dies (extruders)
enjection moulding machines
extruders
extruders: pipe extruders
extruders: vacuum extruders
extruders: vacuum screw extruders
extruders for stoneware pipes
fettling and sponging machines
insulator copying machines
jar ramming machines
jiggering spindles
marking devices
INTERCERAM 6/2013
474
05 016
05 067
05 071
05 020
05 021
05 022
05 012
05 069
05 068
05 023
05 070
05 066
05 072
05 019
05 024
05 025
05 046
05 026
05 027
05 053
05 031
05 029
05 030
05 047
05 052
05 063
05 080
05 032
05 051
05 048
05 033
05 034
05 035
05 036
05 013
05 028
05 062
05 064
05 037
05 038
05 050
05 057
05 058
05 039
05 040
05 076
05 061
05 060
05 077
05 059
05 074
05 075
05 041
05 073
05 049
05 043
05 018
05 044
05 056
05 078
moulding machines: low pressure
moulds: casting moulds
moulds: do-it-yourself moulds
moulds: metal moulds
moulds: plaster moulds
moulds: plastic moulds
moulds: pressure casting moulds
moulds: RAM-squeeze moulds
moulds: roller moulds
moulds: soft mud moulds
moulds: for stove tiles
moulds, models, design
moulds & models: CNC processed
plaster mould making plants
plastics for mould making
potters’ wheels
presses: cold isostatic presses
presses: dry presses
presses: excenter presses
presses: friction presses
presses: hot isostatic presses
presses: hot presses
presses: hydraulic presses
presses: hydraulic presses for the production
of asymmetric articles
presses: mechanical-hydraulic presses
presses: mechanical presses
presses: piston presses
presses: pot presses
presses: presses for refractories
presses: presses for roofing tiles
presses: soft mud presses
presses: special shape presses
presses: tableware presses
presses: turntable presses
presses for grinding wheel production
presses for hollow ware
presses for heat insulating materials
presses for sand-lime bricks
pressure casting machines
punching plants
rubber and PU bags
sawing machines
saws: disc saws
sponge belts
sponge belt stripes (plain or corrugated)
sponge materials (synthetic)
sponge plates (sheets)
sponge-tuft belts for finishing brims
sponges: hand-sponges (sponge materials)
sponges: hand-sponges synth.
(spec. foam materials)
sponges: oval hand sponges
sponges: printing sponges
sponge rollers
sponges: sheets sponges
sponges for manual finishing
texturing wires
tools: modelling tools
tools: pressing tools
turntables with vibrating device
velour belts
ɼ Glazing — Decorating
06 008
06 048
06 001
06 002
06 003
06 004
06 085
06 058
06 005
06 064
06 006
06 073
06 074
06 007
06 009
06 010
06 011
06 071
06 012
06 019
06 051
06 013
06 014
06 015
06 016
06 017
06 018
06 086
auxiliary agents for decoration
chamois leather
colour resists
colour spraying plants
colours: ceramic colours
colours: decorating colours
colours: glaze colours
colours: leadless and cadmium-free colours
colours: leadless colours
colours: organic
colours: thermoplastic colours
decal cutting machines
decal positioning machines
decals and transfers
decorating machines
decorating media
decorating sponges (natural)
decorating stamps & rubber stamps
dipping devices
dry glazing machines
enamels: jewellery enamels
engobes
engobing plants
exhaust booths
fettling wheels
frits
frits: granulated
frits: ground
06 049
06 052
06 060
06 059
06 025
06 061
06 046
06 056
06 050
06 022
06 021
06 062
06 055
06 057
06 023
06 024
06 053
06 069
06 065
06 026
06 077
06 075
06 076
06 083
06 027
06 028
06 070
06 031
06 030
06 032
06 067
06 033
06 029
06 084
06 087
06 020
06 054
06 063
06 040
06 041
06 042
06 043
06 044
06 068
06 066
06 072
06 045
06 047
frits: pelletized
glaze auxiliary agents
glaze auxiliary agents: binders
glaze auxiliary agents: deflocculants
glaze auxiliary agents: opacifiers
glaze auxiliary agents: rheological binders
glaze auxiliary agents: suspending agents
glaze dipping devices
glaze fettling devices
glaze pumps
glaze sponging devices
glaze spraying cubicles
glaze spraying equipment
glaze spraying plants
glazes
glazing lines
glazing plants, automatic
gold eraser
metal-complex-salt solutions
pigments
pigments: colouring pigments
pigments: inclusion pigments
pigments: inorganic
pigments: pearly lustre pigments
precious metal preparations
pressure vessels
rubber squeegees
screen printing accessories
screen printing fabrics
screen printing gauzes
screen printing glazes
screen printing machines
screen printing media
sliptrailer
special glasses for specific purposes
sponge rubber belts for glaze removal
sponges: viscose sponges
spraying chambers
spraying devices
spraying guns
spraying plants
spraying robots
stains
stains: crystallized granulated
stains: granulated
stains: red firing
stamping machines
transfer applying machines
ɼ Laboratory Equipment
07 017
07 036
07 024
07 038
07 001
07 002
07 029
07 033
07 003
07 004
07 005
07 035
07 018
07 007
07 008
07 032
07 045
07 037
07 009
07 011
07 012
07 013
07 015
07 014
07 031
07 016
07 040
07 042
07 046
07 030
07 043
07 039
07 006
07 027
07 044
07 010
07 028
07 026
07 034
07 019
07 020
07 021
bending strength testers
brick-height metering units
brick testing devices
bulk density measuring devices
calorimeters: heat-flow differential calorimeters
crucibles
density measuring devices
dicing saws
differential scanning calorimeter
differential thermal analysers
dilatometers
dilatometers: optical
dispersion-stability-analysers
glaze tension testers
grain size - / particle size analysers
hot-bending strength testing devices
kiln furniture for laboratory kilns
laboratory disc saws
laboratory mills
laboratory porcelain
laboratory preparation plants
laboratory presses: isostatic
laboratory pumps
laboratory vacuum extruders
load testing devices
measuring instruments: general
microscopes
microscopes: heating microscopes
microscopes: thermionic microscopes
porosity measuring devices
R.U.L. apparatus
sample preparation equipment
scales
screens
single-granule testing devices
spectrometers
surface measuring devices
testing devices
testing devices: dielectric properties
thermal conductivity measuring devices
thermoanalysers
thermogravimetric devices
LIST OF PRODUCTS
07 025
07 022
07 023
07 041
ultrasonic NDC systems
viscosimeters
viscosimeters: high temperature
zeta potential measuring devices
ɼ Measuring — Controlling
08 039
08 048
08 027
08 003
08 041
08 004
08 025
08 005
08 043
08 001
08 038
08 006
08 007
08 008
08 030
08 009
08 010
08 042
08 011
08 029
08 013
08 014
08 015
08 016
08 018
08 047
08 044
08 019
08 020
08 021
08 022
08 040
CO measuring devices
compression strength testing machines
control systems: electronic
dust measuring instruments
equipment for automation of industrial furnaces
flow meters
flue gas analysers
hygrometers
image processing equipment, industrial
inspection systems
lambda sensors
level gauges
material flow controllers
measuring and controlling devices
measuring cars: wireless
micro processor controllers
moisture measuring devices
optical inspection systems for tile sorting
oxygen probes
oxygen sensors
plasticity measuring devices
process automation equipment
process controllers
pyrometers: optical
recorders
solids flow measuring systems
surface inspection systems
switch boards
temperature controllers
temperature measuring devices
thermocouples
zirconium oxide probes
ɼ Raw Materials — Bodies
09 001
09 294
09 181
09 192
09 292
09 293
09 290
09 170
09 291
09 159
09 204
09 003
09 004
09 002
09 005
09 006
09 221
09 007
09 008
09 124
09 009
09 160
09 010
09 011
09 012
09 013
09 142
09 014
09 215
09 015
09 182
09 183
09 168
09 289
09 152
09 161
09 027
09 144
09 017
09 143
09 139
09 016
09 145
09 146
09 147
09 019
09 020
09 148
09 021
09 149
09 194
additives
additives: deflocculants and dispersing agents
additives: deflocculants for bodies
additives: microsilica
additives: plasticizers
additives: pressing and stamping agents
addititves: pressure casting auxiliary agents
additives: tapee casting additives
additives: wetting agents
additives for dehydration
alumina
alumina: calcined
alumina: fused alumina
alumina: general
alumina: high purity
alumina: tabular alumina
alumina: white fused
aluminium hydroxide
aluminium nitride
aluminium titanate
andalusite
antimony oxide
barium carbonate
barium compounds
barium fluoride
barium sulfate
barium titanate
bauxite
bauxite: raw bauxite
bentonite
binders: chemical binders
binders: evolatile binders for bodies
binders: organic binders
binders: temporary binders
binders: thermoplastic injection moulding binders
bismuth oxide
bodies: casting slips
bodies: ceramic bodies
bodies: do-it-yourself bodies
bodies: earthenware bodies
bodies: general
bodies: ready-made bodies
bodies: special bodies
bodies: stoneware bodies
bodies: stove tile bodies
bone ash
bones: calcined
borax
boric acid
boric oxide
boron: amorphous
LIST OF PRODUCTS
09 195
09 022
09 278
09 150
09 023
09 024
09 025
09 026
09 162
09 172
09 213
09 177
09 189
09 032
09 163
09 034
09 035
09 280
09 033
09 136
09 036
09 125
09 037
09 038
09 056
09 126
09 039
09 040
09 127
09 151
09 153
09 041
09 042
09 043
09 044
09 045
09 048
09 222
09 221
09 276
09 067
09 046
09 218
09 047
09 049
09 228
09 227
09 050
09 051
09 226
09 052
09 053
09 208
09 171
09 202
09 190
09 054
09 055
09 209
09 281
09 140
09 184
09 273
09 058
09 059
09 141
09 224
09 029
09 060
09 061
09 062
09 028
09 283
09 185
09 063
09 191
09 216
09 030
09 064
09 030
09 200
09 065
09 203
09 031
09 109
09 174
09 066
09 068
09 069
09 070
09 071
09 072
09 164
boron: crystalline
boron carbide
boron carbide: fine-powdered
boron compounds
boron nitride
brownstone
calcite
calcium carbonate
calcium fluoride
calcium zirconate
cement clinker
cerium oxide
chrome corundum
chromite ore & chromite ore sand
chromium oxide
clays: ball clays
clays: casting clays
clays: flint clay
clays: general
clays: ground
clays: light firing
clays: red firing
clays: refractory clays
clays: shaly clays
clays: special clays
clays: white firing
clays: yellow firing
cobalt compounds
cobalt metal powder
cobalt oxide
cobalt salts
colemanite
colouring agents for bodies/glazes
copper oxide
cordierite
corundum
corundum: fused cast
corundum: fused recycled
corundum: pure
cristobalite
cryolite: synthetic
dolomite
dolomite: sintered
dolomitic talcum
feldspar
feldspar: ceramic feldspar sands
feldspar: glass feldspar sands
feldspar: scandinavian
feldspar: sodium feldspar
feldspar sands: Al2O3 -and K2O-rich
ferrite powders
ferrosilicon metal
ferrosilicon nitride
fillers: cenospheres
fillers: fillite
fillers: general
fillers: light coloured
fluorspar
fluorspar: acid grade
garnet
glass powder
glues
granulates for powder injection moulding
(CIM and MIM)
graphite
graphite powder
graphite: pyrolytic graphite
grit stone: Thiviers grit stone
grog
grog: bulk grog
grog: granulated grog
grog: ground grog (grains)
grog: lightweight grog
ilmenite
impregnating agents
iron ore
iron oxide
iron oxide: red
kaolin
kaolin chamotte
kaolin: china clay
kaolin: containing feldspar
kaolin: crude
kaolin: crude, white firing
kaolin: english
kaolin: metakaolin
kaolin: ground
kaolin: washed
kyanite: calcined
kyanite: crude
kyanite: scandinavian
lead oxide
lead silicate
lithium carbonate
INTERCERAM 6/2013
09 138
09 073
09 074
09 075
09 076
09 207
09 077
09 079
09 078
09 128
09 080
09 274
09 129
09 082
09 154
09 083
09 201
09 085
09 156
09 155
09 086
09 178
09 087
09 134
09 175
09 135
09 214
09 288
09 081
09 088
09 173
09 091
09 130
09 089
09 131
09 090
09 285
09 284
09 084
09 092
09 180
09 093
09 169
09 094
09 095
09 179
09 096
09 167
09 097
09 231
09 176
09 098
09 225
09 099
09 277
09 100
09 101
09 102
09 103
09 279
09 217
09 104
09 105
09 282
09 057
09 106
09 107
09 286
09 287
09 133
09 219
09 223
09 018
09 232
09 108
09 110
09 188
09 111
09 187
09 196
09 199
09 112
09 198
09 132
09 166
09 165
09 123
09 137
09 113
09 114
09 115
09 116
09 118
09 120
lithium minerals
lithium salts
loam sand
magnesia
magnesia: calcined
magnesia: dead-burned
magnesia: fused
magnesite
magnesium fluoride
magnesium hydroxide
manganese compounds
manganese oxide
mica
mineral products
molochite
molten products (special)
molybdenum disilicide
mullite
mullite: electrofused
mullite: sintered
mullite fireclay
neodymium oxide
nepheline syenite
nepheline: synthetic
nickel carbonate
nickel oxide
olivine
opening material: natural
quartz: micronized
pegmatite
perlite
petalite
petroleum coke
phonolithe
plasma-spray powders
plaster
plaster: hard moulding plaster
plaster: modelling plaster
plaster: moulding plaster
plaster: synthetic plaster
plastics: porous
platelets
porcelain shards
potassium fluorosilicate
potassium silicate
praseodymium oxide
precursors: organo-metallic
pyrite
pyrophyllite
quartz: fused
rare earths
resins: epoxy resins
resins: furan resins
resins: phenolic resins
rutile
silica flour
silica sand
silicon carbide
silicon carbide: ȕ-type
silicon carbide: fine-powdered
silicon metal
silicon nitride
silicon powder
sillimanite
sintering powder
soapstone
soapstone: calcined
spinel: magnesia-alumina spinel
spinel: magnesia-chrome spinel
spinel: refractory
spinel: sintered
spodumene
stains for bodies
strontium carbonate
strontium compounds
talc
Thiviers sandstone
tin oxide
titania
titanium carbide
titanium carbonnitride
titanium diboride
titanium nitride
tungsten powder
vanadates
vanadium oxides
vermiculite
whiskers
wollastonite
yttrium oxide
zeolite
zinc oxide
zircon flour
zircon sand
475
09 120
09 122
09 117
09 157
09 158
09 186
09 197
09 121
09 119
zircon sand
zircon silicate
zirconia
zirconia: fused zirconia
zirconia: partially stabilized
zirconia powder, high purity
zirconium carbide
zirconium diboride
zirconium opacifiers
ɼ Advanced Ceramics — Semi Finished —
Finished Products
10 026
10 001
10 013
10 023
10 003
10 004
10 011
10 002
10 028
10 018
10 019
10 005
10 020
10 027
10 016
10 006
10 007
10 008
10 009
10 015
10 014
10 017
10 012
abrasives
alumina parts
bearings
cermets
ceramic components
ceramic components: wear resistant
ceramic composites: whisker reinforced
composites: carbon fibres/carbon composites
composites: ceramic metal
electro ceramics: thermistors
electro ceramics: varistors
glass ceramics
high-temperature superconductors
honeycomb ceramics (cordierite)
non-oxide ceramics
nuclear ceramics
oxide ceramics
piezo-electric ceramics
plasma ceramics
precision injection-moulded parts
SiC components
SiC components with coatings
sliding rings
ɼ Transport — Conveying — Packaging —
Storage
11 058
11 059
11 003
11 060
11 005
11 006
11 007
11 008
11 045
11 050
11 009
11 010
11 011
11 012
11 013
11 015
11 065
11 016
11 062
11 017
11 044
11 018
11 019
11 020
11 021
11 022
11 001
11 024
11 023
11 025
11 026
11 053
11 027
11 028
11 029
11 074
11 046
11 031
11 076
11 030
11 042
11 077
11 047
11 075
11 073
11 032
11 033
11 034
11 063
11 064
11 051
11 035
big-bag-handling
bottling plants
bucket elevators
conveying systems: general
conveying systems: mechanical
conveying systems: pneumatic
conveyor belts
conveyor belts: metal
conveyor belts: textile, asbestos-free
conveyor belts: up/down curving
conveyors: chain conveyors
conveyors: screw conveyors
conveyors: steel-plate conveyors
conveyors: vibratory conveyors
conveyors: wire-mesh conveyors
elevators
elevators: nylon buckets for elevators
feeding belts
foil wrapping equipment
fork lift trucks
handling and conveyor systems
handling and storage systems
handling plants for pipes
handling plants for refractories
kiln car transport systems
lath stackers
linkage equipment
loading/unloading devices for flatware
loading/unloading devices: general
loading/unloading devices for tiles
packaging machines
pallets
pallet-returning systems
palletizing plants
pumps
pumps: compressed-air diaphragm pumps
pumps: diaphragm-piston pumps
pumps: diaphragm pumps
pumps: disc pumps
pumps: dosing pumps
pumps: excentric worm pumps
pumps: gear pumps
pumps: hose-diaphragm-piston pumps
pumps: rotary lobe pumps
pumps: rotary-piston pumps
pumps: slurry pumps
pumps: squeeze pumps
pumps: suction pumps
pumps for filter presses
rack-type cars
robotised plants
setting plants
INTERCERAM 6/2013
476
11 041
11 036
11 037
11 004
11 038
11 048
11 052
11 061
11 039
11 002
11 014
11 049
shrink wrapping equipment
silo discharge devices
silos
silo transports
stackers: automatic
storage systems
strapping equipment for transportation
stretch-wrapping plants
transfer cars
transport systems
unloading plants: automatic
wheels and axles
ɼ Drying
12 001
12 026
12 025
12 030
12 023
12 018
12 003
12 004
12 028
12 020
12 005
12 009
12 006
12 002
12 007
12 017
12 008
12 019
12 010
12 029
12 011
12 022
12 015
12 012
12 027
12 013
12 024
12 021
12 014
12 016
12 031
dryer cars and stillages
dryer constructions in modular systems
dryer doors
dryer laths
dryer stellages
dryer trays
dryers: belt dryers
dryers: chamber dryers
dryers: channel dryers
dryers: continuous dryers
dryers: drum dryers
dryers: fast dryers
dryers: fluidized bed dryers
dryers: general
dryers: infrared dryers
dryers: nozzle dryers
dryers: microwave dryers
dryers: rotary dryers
dryers: special dryers
dryers: spray dryers
dryers: tunnel dryers
dryers: vacuum dryers
dryers for tiles
dryers for wet tiles
dryers and coolers
drying plants
drying support units
pallets: metal pallets
pallets: plastic pallets
pallets: wooden pallets
plaster moulds - drying fans
ɼ Consumables
13 034
13 001
13 023
13 004
13 028
13 003
13 005
13 026
13 010
13 002
13 006
13 008
13 007
13 027
13 018
13 009
13 015
13 011
13 012
13 013
13 014
13 022
13 030
13 025
13 016
13 029
13 017
13 020
13 021
13 033
13 031
bristles
brushes
cones: pyrometric cones
filtering cloths
filtering fabrics
filter media
filters
fixing systems
flint
gold burn brushes and discs
grinding media
high temperature lubricants
lubricants
mill lining blocks
mill linings
moulding oil
pebbles, grinding balls
pebbles: silex
plates: perforated
punching oils
pyrometer tubes
pyrometric protection tubes
release agents / mould lubricants
roller shells
screen wire-clothes
Seger cones
sponges
sponges: natural sponges
sponges: synthetic sponges
temperature measuring rings, ceramic buller rings
wear-resistant parts
ɼ Environmental — Labour Protection
14 015
14 001
14 016
14 013
14 004
14 005
14 006
14 014
14 007
bleeding-off systems
dedusting plants
emission measuring devices
environmental plants
filters: ceramic filters
filters: filter tubes, filter hoses
filters: hot air filters up to 850 °C
flue gas purification systems
fluor absorption systems
14 003
14 019
14 008
14 009
14 010
14 017
14 012
14 011
protective clothing
sewage treatment plants
silo overflow protection devices
thermal and catalytic afterburning plants
vacuum cleaners
vacuum cleaners: stationary
waste gas purification systems
waste water purification systems
ɼ Various Systems
15 001
15 002
15 010
15 003
15 005
15 006
15 008
15 004
15 007
15 009
air heaters and circulaters
biscuit ware cleaning plants
blasting media
compressors
fans
heat exchangers
magnets
pottery accessories
roll doors
special machinery
ɼ Final Treatment — Sorting
16 014
16 001
16 005
16 013
16 011
16 015
16 004
16 003
16 006
16 012
16 018
16 017
16 007
16 016
16 019
16 008
16 009
16 010
cutting-off machines
diamond tools
diamond wire saws
disc sawing machines
equipment for finishing of refractory bricks etc.
flat grinding machines
grinding and polishing machines
grinding machines for finished products
grinding wheel finishing equipment
metallization of electroceramics: Ag/Pd pastes
positioning systems
sifter wheels
sorting plants
sorting systems: opto-electronic
sorting systems: roentgenographic
splitters: automatic
ultrasonic erosion machines
ultrasonic machining devices
ɼ Services — Trading — Second- Hand
Machinery — Consulting
17 032
17 001
17 022
17 002
17 004
17 005
17 003
17 018
17 027
17 026
17 037
17 038
17 019
17 035
17 036
17 006
17 034
17 031
17 021
17 016
17 020
17 025
17 007
17 028
17 008
17 024
17 023
17 009
17 015
17 010
1 7017
17 011
17 012
17 033
17 013
17 014
09 120
09 122
09 117
09 157
09 158
09 186
09 197
09 121
09 119
burner/heating plant service
ceramic machining (advanced ceramics)
ceramic product realisation
ceramic to metal sealings
chimney inspection and repair
commission processing
consultancy/expertises
factory automation machinery
graining on commission
grinding on commission
industrial data logging
industry representations
ISO 9000 certification
kiln/dryer activation
kiln/dryer control
kiln repairs
know-how for the production of grinding wheels
laboratory services
laser machining & ultrasonic machining
machining centres
management consultancies
marketing & communication
micronizing
mixture in commission: dry/pasty
plasma spraying
precision machining
process analyses
quality control
repair of mill linings
research and development services
sawing on commission
second-hand machinery
sintering plants
software
spray drying
wear resistant coatings
zircon sand
zircon silicate
zirconia
zirconia: fused zirconia
zirconia: partially stabilized
zirconia powder, high purity
zirconium carbide
zirconium diboride
zirconium opacifiers
LIST OF PRODUCTS
PRICE LIST
INTERCERAM 6/2013
477
Ceramic Industry Suppliers Guide
Publication in:
KERAMISCHE ZEITSCHRIFT:
circulation: 5,000 copies
frequency:
6 x annual
language: German
INTERCERAM:
circulation: 5,000 copies
frequency:
6 x annual
language: English
You can reach with your entry engineers, managers, suppliers etc. involved in the development, manufacture and appliction of ceramic products or with plant engineering.
The advantages at a glance:
x Organised topically into 17 main groups with key words for a wide range of products in
the whitewares and heavy clay industries
x Monthly update of your company’s address and products possible
x Complete listing of your entries in German and English
x Opportunity to develop new international contacts
x Your entry appears additional in the Internet (www.interceram-review.info) with a link
to your homepage
Prices:
number of key-words
costs per annum in EUR
number of key-words
costs per annum in EUR
1
105
6
423
2
210
7
476
3
264
8
529
4
317
9
582
5
370
10
635
For any other key-word we will charge you EUR 53.-
Contact person:
Boris Hanisch
Phone: +49 (0) 211/1591-152
Fax:
+49 (0) 211/1591-150
e-mail: boris.hanisch@dvs-hg.de
INTERCERAM 6/2013
K
478
ORDER FORM
Order Form
Expert Fachmedien GmbH
c/o Boris Hanisch
Entry:
____________________________________________________________________________________
Company
VAT no.
____________________________________________________________________________________
Street Address resp. P.O. Box
____________________________________________________________________________________
Postal Code, City
____________________________________________________________________________________
Phone
Fax:
____________________________________________________________________________________
e-mail:
Internet:
Alphabetical classification under letter: (please mark with a cross)
A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
under the following key-words:
Code-No.: (you can find the code-no. in the list of products at the previous page)
1. ____________ 6.___________ 11.
2. ____________ 7.___________ 12.
3. ____________ 8.___________ 13.
4. ____________ 9.___________ 14.
5. ____________ 10. __________ 15.
__________
__________
__________
__________
__________
16. __________
17. __________
18. __________
19. __________
20. __________
21. ___________26. ___________
22. ___________27. ___________
23. ___________28. ___________
24. ___________29. ___________
25. ___________30. ___________
Contac person:
____________________________________________________________________
Oder sign:
____________________________________________________________________
Date:
__________________ Signature:
____________________________________________
The entries in the Buyers guide take place in each case with a term of 12 month until canceled. Discontinuation will be accepted at the end of a subscription year considering 6 weeks notice. Deadline is
the 15th of each month.
Meeting Diary
December 18–20, 2013
Ahmedabad (IND)
Ceramics Asia 2013.
www.ceramicsasia.net
January 26–31, 2014
Daytona Beach, FL (USA)
ICACC’14 38th International Conference and Expo on Advanced Ceramics and Composites.
www.ceramics.org/meetings/acers-meetings
February 04–05, 2014
Warsaw (PL)
Refractories for Industry 2014, The XXIII Annual International Conference.
borisov@gol.ru
February 11–14, 2014
Valencia (E)
Cevisama.
cevisama.feriavalencia.com
February 17–18, 2014
Castellon (E)
Qualicer XIII World Congress on Ceramic Tile Quality.
www.qualicer.org
February 26–28, 2014
Ahmedabad (IND)
Indian Ceramics 2014.
www.indian-ceramics.com
March 11–14, 2014
São Paolo (BR)
Revestir 2014.
www.exporevestir.com.br
March 24–26, 2014
Clausthal-Zellerfeld (D)
DKG Annual Meeting & Symposium on High Performance Ceramics.
www.jahrestagung2014.dkg.de
April 1–4, 2014
April 15–18, 2014
Moskau (RU)
Mosbuild 2014.
www.mosbuild.com
April 7–11, 2014
Hannover (D)
Hannover Messe.
www.hannovermesse.de
May 6–8, 2014
Karlsruhe (D)
European Symposium on Friction Wear and Wear Protection.
www.dgm.de
May 13–14, 2014
Prague (CZ)
18. Conference on Refractories and HITHERM Prague 2014.
sis@csvts.cz
May 21–24, 2014
Guangzhou (CN)
Ceramics China 2014.
www.ceramicschina.net
May 25–30, 2014
Aachen (D)
1st Joint Meeting of DGG – ACerS GOMD.
www.dgg-gomd.org
June 3–5, 2014
Nürnberg (D)
Sensor + Test 2014.
www.sensor-test.de
June 8–13, 2014
Montecatini Terme (I)
CIMTEC 2014, 13th Internationals Ceramic Congress & 6th Forum on New Materials.
www.cimtec-congress.org
August 17–21, 2014
Beijing (CN)
5th International Congress on Ceramics.
www.icc-5.com
September 22–26, 2014
Rimini (I)
Tecnargilla 2014.
www.tecnargilla.it
September 24–25, 2014
Aachen (D)
57th International Colloquium on Refractories.
Sept. 30–Oct. 2, 2014
Nürnberg (D)
Powtech.
www.powtech.de
October 5–10, 2014
Hernstein (A)
International Conference on Electrophoretic Deposition V: Fundamentals and Applications (EPD 2014).
www.engconf.org
October 7–9, 2014
Düsseldorf (D)
Aluminium 2014.
www.aluminium-messe.com
October 12–16, 2014
Pittsburgh, PA (USA)
MS&T’14: Materials Science & Technology Conference and Exhibition with ACerS 116th Annual Meeting.
www.ceramics.org/meetings/acers-meeting
October 21–23, 2014
München (D)
Materialica 2014.
www.materialica.de
October 22–24, 2014
Dresden (D)
Cellular Materials, CellMAT 2014.
www.dgm.de
Cersanex
(SSZLJ[VYZ!
·*LYHTPJH·:[VUL_·;LJOUVJLYHTPJH
·)H[OYVVTZ·7VVS·:H\UH·:WH
*LYHTPJZ:[VUL)H[OYVVTZ
ò(WYPS
,_WVJLU[YL4VZJV^
-VYTVYLPUMVYTH[PVUWSLHZL]PZP[[OL^LIZP[L
`LHYZVM4VZ)\PSK¶
I\PSKPUN[OLM\[\YL
[VNL[OLY
9\ZZPH»ZSLHKPUNI\PSKPUN
HUKPU[LYPVYZL_OPIP[PVU
(YJOP[LJ[\YL·*VUZ[Y\J[PVU·+LZPNU·+LJVY
4HPUI\ZPULZZUL^ZWHWLY!
6MÄJPHSPUMVYTH[PVUWHY[ULY!
,UX\PYPLZ!
;! ,!I\PSKPUN'NPTHKL
:\WWVY[LKI`!