1 - Interceram
Transcription
1 - Interceram
0 6 • 1 3 D EC E M B E R V OL. 6 2 G 5593 www.interceram-review.info 06 2013 Trade Fairs & Conventions International Colloquium on Refractories 2013, Germany Annual Meeting 2013 of the Serbian Ceramic Society COMPOSITES EUROPE 2013, Germany IPB 2013, China Ceramics Asia 2013, India Refractories for Industry 2014, Russia Ceramics Forum Silver-doped Bioactive Glasses: What remains unanswered? Utilization of Sugar-Beet Industry By-Product for the Production of Anorthite Raw Materials Worldwide Cameroon: Induration of Laterites in Tropical Areas Egypt: Utilization of Granite Found in the Central Eastern Desert as Fluxing Material in the Preparation of Ceramic Recipes /1[ ([FHOOHQFHLQ(OHPHQWDO$QDO\VLV (/75$ DQDO\]HUV DUH XVHG ZRUOGZLGH IRU UHOLDEOH DQG SUHFLVH HOHPHQW DQDO\VLVRIVROLGV7\SLFDOVDPSOHPDWHULDOVLQFOXGHFHPHQWVWHHOLURQ FRSSHUIXHOVDQGFHUDPLFV(/75$SURYLGHVFXVWRPHURULHQWHGVROXWLRQV VXFKDVLQGLYLGXDOO\DGDSWDEOHLQIUDUHGFHOOVDQGDGGRQVIRUH[DPSOH IRU7,&DQDO\VLV 7KHUPRJUDYLPHWULFDQDO\VLV IRUWKHGHWHUPLQDWLRQRI PRLVWXUHYRODWLOHVDQGDVK 6LPXOWDQHRXVFDUERQDQG VXOIXUDQDO\VLVRIRUJDQLF$1' LQRUJDQLFVDPSOHPDWHULDOV Q )OH[LEOHUDPSVIURPWR& Q /DUJHVDPSOHYROXPHVXSWRJ Q 6LPXOWDQHRXVDQDO\VLVRIVDPSOHV ZZZHOWUDRUJWKHUPRVWHS Q )XOOIOH[LELOLW\GXHWRFRPELQHGLQGXFWLRQ DQGUHVLVWDQFHIXUQDFH(/75$'XDO )XUQDFH7HFKQRORJ\ Q 8SWRIRXULQGHSHQGHQWLQIUDUHGFHOOV ZLWKIOH[LEOHPHDVXULQJUDQJH ZZZHOWUDRUJFV High-Performance Ceramics Bioactivity and Drug Delivering Ability of a Chitosan/46S6 Melted Bioactive Glass Biocomposite Scaffold (OWUD*PE+_5HWVFK$OOHH_+DDQ_*HUPDQ\ (0DLOLQIR#HOWUDRUJ_:::(/75$25* ,17(5&(5$0 I M PRINT Publisher and publishing house: Expert Fachmedien GmbH Aachener Str. 172, 40223 Düsseldorf, Germany Phone: +49 (0) 2 11 / 15 91-2 10 Fax: +49 (0)2 11 / 15 91-1 50 www.expert-fachmedien.de, www.interceram-review.info Management: Paul Robert Hoene Owner of title rights: DVS Media GmbH, Düsseldorf Editorial department: Dr. Hubert Pelc (managing editor/responsible) Phone: +49 (0) 2 11 / 15 91-2 30 E-Mail: hubert.pelc@dvs-hg.de Dr.-Ing. Paul-Eberhard Keilbar Phone: +49 (0)3 41 / 94 102 37 E-Mail: keilbar@t-online.de Sylvia Hanagan (editorial assistant) Phone: +49 (0) 2 11 / 15 91-2 31 E-Mail: sylvia.hanagan@dvs-hg.de Editorial committee of INTERCERAM – International Ceramic Review: Prof. C.G. Aneziris, Germany, Prof. Dr. A. Boccaccini, Great Britain, Prof. Ph. Boch, France, Prof. Dr. A.O. Boschi, Brazil, Dr. José Carlos Bressiani, Brazil, Prof. D.R. Dinger, USA, Dr. Sc. tech. Jiri Götz, Czech Republic, Prof. Dr. rer. nat. Olaf Krause, Germany, Prof. Dr. W. Krönert, Germany, Dipl.-Ing. (FH) J. Mendheim, Germany, Dr. rer. nat. H. Mörtel, Germany, Dr. R. Muccillo, Brazil, Prof. Dr. V.C. Pandolfelli, Brazil, Eng. J.Q. Peng, P.R. China, Dr. A. Ravaglioli, Italy, Ing. H. Ries, Germany, Dr. A. J. Ruys, Australia, Prof. Dr. R. Salomão, Brazil, B. Sezer, Turkey, Dr. R. G. Shah, India, Prof. S. Somiya, Japan, Dr. St. Stefanov, Bulgaria, Dr. G. Sukul, India, Dr. A.G. Verduch, Spain, Dr. S. Zhang, Great Britain Layout & printing: Kraft Druck GmbH, Industriestraße 5–9, D-76275 Ettlingen, Germany Advertisements: Iris Jansen (responsible) Phone: +49 (0)2 11 / 15 91-2 16 Britta Wingartz Phone: +49 (0) 2 11 / 15 91-2 18 E-Mail: iris.jansen@dvs-hg.de E-Mail: britta.wingartz@dvs-hg.de Subscription: Expert Fachmedien GmbH Alexander Werum Reader service Große Hub 10, D-65344 Eltville Tel.: +49 (0) 61 23 / 92 38-1 51, Fax: +49 (0) 61 23 / 92 38-1 39 E-Mail: a.werum@vertriebsunion.de / keramischezeitschrift@vuservice.de Subscription charges 6 magazines: Print: 233,– € + shipping costs 21,– € (Germany), 233,– € + shipping costs 27,– € (foreign countries) Print + Online: 277,– € + shipping costs 21,– € (Germany) 277,– € + shipping costs 27,– € (foreign countries) Online: 144,50 € Single issue: 42,50 € + shipping costs © Copyright 2013 Expert Fachmedien GmbH D-40223 Düsseldorf, Germany ISSN: 0020-5214 "INTERCERAM – International Ceramic Review" and its special edition "INTERCERAM – Refractories Manual" as well as the contributions, figures and tables included in these journals are protected by copyright. With the exception of the statutorily authorised cases, any utilisation without the consent of Expert Fachmedien GmbH is punishable. We do not accept any liability for manuscripts submitted without solicitation. When the work is accepted for publication, the author transfers to the publishing house the exclusive publishing rights for the period until the copyright expires. This transfer of rights relates, in particular, to the rights of the publishing house to reproduce the work for commercial purposes as a copy (microfilm, photocopy, CD-ROM or other processes) and/or to include it in electronic or other databases. Fracking: Boon or Bane? Dear Readers, For energy producers, fracking is a magic word that promises a golden age, especially in the USA. Due to progress made in recent years with this production method, shale gas fields can be developed that were previously not economically viable. With fracking, drilling is first done vertically down to the clay shale and is then further extended horizontally within the formation – over distances as far as 1–2 kilometres. In the next step water, chemical solvents and sand are injected under high pressure into the well bore in order to break up the clay shale. This produces cracks in the rock, through which methane flows to the well bore and then to the surface. Production forecasts are coming thick and fast, and it is estimated that the USA could satisfy its demand for gas for 200 years with this technique. According to the International Energy Agency (IEA), underground natural gas resources are so big that by 2020 the USA could overtake Russia and Saudi Arabia as the largest producer of energy and possibly become import-independent. However, the environmental consequences of this method have not been researched extensively, and critics are worried, for example, about contamination and depletion of drinking water sources. For a borehole in shale gas, approximately 10,000 m3 of water, 300 m3 proppant and 50 metric tons of chemicals are needed. For 300 holes this potentially adds up to 3 million m3 of water, 90,000 m3 proppant and 15,000 metric tons of chemicals. The water used for fracking, as well as deep groundwater coming to the surface, must be collected and cleaned. Deep groundwater may contain salt, heavy metals, hydrocarbons and radioactive isotopes, as well as – after the fracking procedure – part of the fracking fluid. Thus, it is no wonder that fracking is controversially discussed all over the world. Proponents of fracking technology argue that many coal-fired power plants in the USA have been shut down and replaced by gas-fired plants, which has led to decreases of about 400 million tons in CO2 emissions per year from fossil fuels over the past 7–8 years. Would worldwide promotion of fracking then have a positive effect on the atmosphere and block global warming? A recently published article in “National Geographic Germany” pointed out that methane is an even more potent greenhouse gas than CO2, which is of great concern to climate researchers. Since 2006, measurements have shown that the methane content in the atmosphere is on the rise. Many experts are of the opinion that this is also a consequence of strongly intensified drilling of shale gas reserves. Thus, the development and use of any fossil fuel – be it methane, coal or oil – unfortunately still appears to contribute to a global rise in temperature. Against this background, discussions about the pros and cons of each delivery method, while of value, may divert us from solving one of our most pressing problems: limiting global warming. The real solution will come through developing and implementing effective sustainable technologies for energy production, coupled with energy-efficient industrial processes. All other paths will inexorably lead to failure and possible disaster! Dr. Hubert Pelc redaktion-keramik@dvs-hg.de ,17(5&(5$0 &217(176 '(&(0%(5 CERAMICS FORUM Anorthite (CaO·Al2O3·2SiO2) exhibits a low thermal expansion coefficient and dielectric constant as well as good wear resistance. These properties nominate anorthite to be a promising material for substrate applications, e.g. in the electronics industry. Filter cake produced from the processing of juice purification during the production of sugar from sugar-beet is a solid waste containing pulp, carbonate, lime residue and molasses. This is a major problem unless it is not utilized. The article starting on page 426 reports the suitability of sugar-beet filter cake as a novel starting material in the preparation of anorthite bodies. RAW MATERIALS WORLDWIDE HIGH-PERFORMANCE CERAMICS Laterites and lateritic soils are readily available in tropical and subtropical areas. The degree of induration of these materials varies, ranging from an almost loose, coherent mass with very poor mechanical properties to the most dense and hardened blocks. The objective of the study presented on page 430 was to investigate the potential use of indurated laterites as effective structural building and construction materials. Since the development of an economic technology to produce construction materials in tropical areas enhance the building practices, this work was sponsored by “The Academy of Sciences for the Third World”. Composite systems are becoming more and more popular in biomedical applications because of the effective combination of the desired properties of their constituents. From this perspective, inorganic bioactive glass fillers and biocompatible polymer matrices are one of the mostly developed systems for orthopaedic and dental applications. The research report starting on page 444 describes the fabrication of a biocomposite scaffolds loaded with ciprofloxacin. All the results of the study suggest that this composite system can serve as an appropriate bioactive matrix for tissue regeneration. T R A D E FA I R S & C O N V E N T I O N S H I G H - P E RFO R M A N C E C E RA M I C S 418 Refractories Colloquium Reflects European Industries Resurgence 444 Bioactivity and Drug Delivering Ability of a Chitosan/46S6 Melted Bioactive Glass Biocomposite Scaffold 419 Serbian Ceramic Society Second Annual Meeting 2013 M. Mabrouk, A.A. Mostafa, H. Oudadesse, A.A. Mahmoud, M. I. El-Gohary 419 COMPOSITES EUROPE 2013 with Strong Growth Spurt 420 Most Important Event for the Powder and Bulk Industries in China R E G U L A R F E AT U R E S 421 International Ceramics Industry Exhibition in India 415 Imprint 421 International Conference “Refractories for Industry – 2014” in Moscow 415 Editorial 416 Contents 443 Index of Advertisers C E RA M I C S FO RU M 422 Company News 423 Silver-doped Bioactive Glasses: What Remains Unanswered? M. Mozafari, F. Moztarzadeh IBC Meeting Diary B UYE RS ’ G U I D E 453 Ceramic Industry Suppliers Guide 426 Utilization of Sugar-Beet Industry By-Products for the Production of Anorthite H.F. El-Maghraby, A.A. Aly, S.M. Naga R A W M AT E R I A L S W O R L D W I D E 430 Induration of Laterites in Tropical Areas: Assessment for Potential Structural Applications E. Kamseu, A. Nzeukou, P. Lemougna, N. Billong, U.C. Melo, C. Leonelli 438 Utilization of Granite Found in the Umm Had Area, Central Eastern Desert (Egypt), as Fluxing Material in the Preparation of Ceramic Recipes S.E. Ahmed, S.H. Abd El Rahim, D.A. Abdel Aziz, N.I. Abd El Ghaffar E XC LU S I V E FO R S U B S C RI B E RS 1–4 Recycling of Glazed Floor Tile Industry Scrap in Masonry Mortar J.S. Costa, C.A. Martins, W. Libardi, J.B. Baldo 2014 22nd-26th September 2014 - Rimini, Italy ORGANISE D BY RIMINI FIE R A - I N C OOP E R AT I ON WI T H ACI MAC www.tecnargilla.it omniadvert.com 24th International Exhibition of Technologies and Supplies for the Ceramic and Brick Industries ,17(5&(5$0 75$'()$,56&219(17,216 Refractories Colloquium Reflects European Industries Resurgence Brüssel, and was entitled “Paving the way to 2050 – the ceramic industry roadmap” which was an initiative developed by the European ceramic community to advance environmental and economic benefits for the companies and the countries that they are based in. Details of the contents of this lengthy but important document were issued by PRE earlier this year (available at: www.cerameunie.eu). D.A. Jarvis* Main topic: Refractories for industrials The magnificent facilities afforded by the Eurogress Congress Centre Aachen (Germany) was once more the backdrop to a successful meeting of the worlds refractories community. ECREF, the European Centre for Refractories based in Höhr-Grenzhausen (German) organised the 56th annual international colloquium in this popular venue. The meeting was held September 25–26, 2013 and welcomed over 380 delegates from all over the world. Each year the meeting alternates between featuring papers mainly on iron and steel and other more general topics. This year’s theme was “Refractories for Industrials”. As usual the meeting opened with a general session and then was divided into different technical topics running concurrently in the two main lecture theatres with simultaneous translation between the two main conference languages German and English. The venue: Eurogress Congress Centre Aachen In the opening session all of the delegates were welcomed by Thomas Seger, Association of the German Refractories Industry, Höhr-Grenzhausen. Mr Seger was accompanied and supported by a number of other figures in the European refractories industry including Francois Wanec, PRE Fédération Européenne des Fabricants de Produits Réfractaires, Brüssel, Prof. Rainer Telle, Institut für Gesteinshüttenkunde, RWTH Aachen, Prof. Christos G. Aneziris and Prof. Ernst Schlegel of the Institut für Keramik, Glasund Baustofftechnik, Technische Universität Bergakademie Freiberg. Also in attendance were Gangolf Stegh, DGFS-Deutsche Gesellschaft Feuerfest- und Schornsteinbau e.V., Bonn, Dr. Ulrich Roger, Deutsche Glastechnische Gesellschaft e.V. (DGG), Martin Roth, Bundesverband der Deutschen Ziegelindustrie e.V., Bonn, and Dr. Detlev Nicklas, Deutsche Keramische Gesellschaft e.V., Köln. The keynote lecture was presented by Astrid Volckaert, PRE Fédération Européenne des Fabricants de Produits Réfractaires, Technical sessions Before lunch the programme featured the presentation of the Gustav Eirich Award given each year for an award winning paper on refractories technology chosen by a panel of judges. Immediately after lunch two technical sessions on “Processing of Ceramics” and the “Testing of Refractories” started in both main lecture halls. The papers on ceramic processing covered diverse topics, but with several strong references to the production and use of low thermal mass bricks and monolithics. These have clear advantages of the ability to allow the construction of lightweight structures while at the same time saving significant amounts of energy and money. The presentations on testing emphasised the necessity to be able to replicate and compare test results from different sources. They also touched on the importance of specialised procedures such as for carbon monoxide resistance and the development of new tests in areas like ultrasonics which can be used in non destructive testing of samples and, in some cases, also structures. The session on monolithic refractories featured new developments in the chemistry, granulometry and bonding systems of castable materials to further enhance their performance in service and lower the unit cost in operation. The papers on raw materials developed the theme that without detailed planning and preparation there may be future problems in the availability of high quality raw materials produced using lower energy levels to higher environmental standards. The next day of the meeting saw major sessions on monolithic refractories and on installation techniques, equipment and applications. Concurrently topics on testing were covered. Additionally a number of individual detailed company papers were presented. Some of the newer – less usual – applications covered were the development and use of refractories for vessels engaged in coal gasification and the need for them to resist very aggressive slags. There were also presentations on refractories used in biomass and hazardous waste treatments and in titanium chlorinator vessels. Papers on refractories for the production of non ferrous metals were also featured as were instances of refractories used in the cement and in the glass industries. Exhibition area * David A. Jarvis, Industry Consultant, E-Mail: dajarvis@btopenworld.com ,17(5&(5$0 75$'()$,56&219(17,216 Exhibition In the area situated next to the entrance foyer was also a well attended exhibition with more than twenty companies showcasing their products, capabilities and services. The DIFK Deutsches Institut für Feuerfest und Keramik GmbH, Höhr-Grenzhausen (Germany), featured a stand from which they offered information on their constituent refractories companies based in Germany. Several acadamic bodies such as the Institut für Gesteinshüttenkunde of RWTH Aachen, Hochschule Koblenz (Germany), and the Institut für Keramik, Glas- u. Baustofftechnik, Freiberg (Germany) were exhibiting and also contributing many of the technical presentation in the colloquium. Serbian Ceramic Society Second Annual Meeting 2013 D.A. Jarvis* The Serbian Academy of Sciences and Arts (SASA) has held a very successful annual technical meeting from September 30 to October 1, 2013, in Belgrade. It was entitled “Advanced Ceramics and Application II: New Frontiers in Multifunctional Material Science and Processing.” The Society was the lead organizer in partnership with the Institute of Chemistry, Technology and Metallurgy, the Institute for Technology of Nuclear and other Raw Mineral Materials, the Institute for Testing of Materials, and the Archeological Institute of SASA. nomical and for Societal Needs – 2025” by Marcel H. Van de Voorde, Delft University of Technology (Netherlands). This was followed by presentations on the synthesis of nano ceramics while in the second Plenary Session the presentations featured five technical papers ranging from “Silicon Carbide Composites” by Rainer Gadow, Institute for Manufacturing Technologies of Ceramic Components and Composites, Stuttgart (Germany) to “Powder Materials as Fractal Objects” by Ljubiša M. Kocić of, University of Niš (Serbia). Plenary Session III featured three papers including “Ceramics and its Dimensions – Heritage, Creativity, Visions for Ceramics in a Multicultural Europe” by W. Siemen of Deutsches Porzellanmuseum, Hohenberg (Germany) to “Plasma Devices and Preparing of Nonconductive Materials” by researchers from Serbian and Bulgarian Institutes. The invited session opened with a paper on “Sintering and Measuring Conditions –Effects on the Dielectric Properties of TTB Ceramic Materials” by Andrei Rotaru, University of St Andrews (UK), with input from INFLPR Bucharest – National Institute for Laser, Plasma and Radiation Physics Laser Department, and The Central and Eastern European Committee for Thermal Analysis and Calorimetry. Four other presentations from Serbian and Bulgarian institutes were also given. There were two other sessions featuring more than sixteen papers on a wide range of subjects. The poster session covered almost fifty presentations on ceramic related topics. COMPOSITES EUROPE 2013 with Strong Growth Spurt Poster presentation (courtesy of Prof. Vojislav Mitić) More than 100 delegates from both – the scientific and artistic – ceramic communities in Canada, Brazil, Bulgaria, France, Germany, Japan, Poland, Romania, Serbia, Slovenia and the UK attended the event. Co-chaired by Prof. Vojislav Mitić, President of the Serbian Ceramic Society and Prof. Olivera Milošević, President of the Serbian Ceramic Society Assembly, the conference was organized around the twin themes of opening up new frontiers for designing advanced ceramic materials and preservation of cultural heritage and divided up into three plenary sessions – a session on invited papers and a large poster session. The individual technical sessions covered very widely ranging topics related to research and more directly to practical applications in the fields of energy conservation. The meeting opened in Plenary Session I with a paper on the “European Roadmap for Nanotechnology: Directions for Eco- Lightweight construction is today’s priority, and composite materials are the necessary key technology. The impending boom of these innovative materials was also reflected at COMPOSITES EUROPE 2013 which set new records with a clear increase in exhibitor (26 %) and visitor figures (30 %). 406 exhibitors (previous event in Stuttgart 2011: 322) from 28 countries and 9,171 visitors (2011: 7,080) came to the Stuttgart exhibition Centre from September 17–19, 2013. “With these figures, COMPOSITES EUROPE has now definitely established a firm position for itself among European lightweight construction fairs”, says Hans-Joachim Erbel, CEO with trade fair organizer Reed Exhibitions Germany. The leading producers and processors of composite materials, mechanical engineering companies and research institutions had come to Stuttgart for the eight edition. The focus of the trade fair, the lecture programme and the accompanying conference of AVK (Federation of Reinforced Plastics, Germany) this year were new materials systems, integrated production technologies and innovations for the application markets. “Composites are a key technology for Germany as an industrial location. That is also evident at COMPOSITES EUROPE”, says AVK Chairman Dr. Michael Effing. The significance of Germany as a location for the composites industry and its application sectors is ,17(5&(5$0 75$'()$,56&219(17,216 also reflected in the strong participation of international key players in the trade fair. The large national pavilions with leading companies from France, Italy, the Netherlands, the USA and China emphasize the international importance of COMPOSITES EUROPE. Being held at the trade fair location Stuttgart – in the heart of Southern Germany, Europe’s largest market for lightweight construction – COMPOSITES EUROPE is closer to its application markets than any other event. One in two trade fair visitors came from the automotive sector, followed by the aviation and mechanical engineering segments. Composites market continues to pick up speed The mood at COMPOSITES EUROPE demonstrated: The sales markets for composite materials continue to pick up speed. The future prospects for the industry, while varying according to sector, are generally good. This is evident from the Composites Market Report 2013 published jointly by AVK and the Association of Carbon Composites (CCeV). In the largest segment – glass-fibre reinforced plastics – experts expect a growth in Europe. With respectable increases, Germany is the largest market and driving force in this field and has now for the first time become the largest producer in Europe. Prospects for the CRP (carbon fiber reinforced plastics) market are promising, according to the market report: here the experts of the CCeV industry network see a sound market with minimum annual growth rates of 13 %. Currently, the potential for growth is in the large mass segments of wind power plants, aerospace and sports, as well as in the automotive segment which is considered the strongest driving force with the highest potential. As a result, companies have a positive view of the future. When asked about the perspective for business developments in their industry, 80 % of the exhibitors expressed the expectation of a light to strong upward trend in the market. Advances in automation Automation of processes for the mass production of composite components continues to be the precondition for the success of composite materials in the application industries. At COMPOSITES EUROPE, composite application markets such as automotive, aviation, wind power as well as the building sector were the primary focus of the fair. The growing number of exhibitors from the mechanical engineering segment confirms the increasing significance of COMPOSITES EUROPE: “Most of the exhibiting VDMA (German Engineering Association) member companies are highly satisfied and express gratification at the increasingly internationality of trade visitors“, says Dr. Walter Begemann of the VDMA Forum Composite Technology. “We see fibre-reinforced composites as having great potential. We therefore feel that we are in the right place at COMPOSITES EUROPE”, adds Krauss Maffei’s Sebastian Schmidhuber. The next COMPOSITES EUROPE will take place from 7 to 9 October 2014 in Duesseldorf (Germany) – at the same time as the ALUMINIUM World Trade Fair. According to schedule, COMPOSITES EUROPE will then return to Stuttgart in 2015, where it will again be accompanied by HYBRID Expo. Contact and further information: Dr. Mike Seidensticker, Press Office, phone: +49 (0) 21 19 01 91-2 21, E-Mail: mike.seidensticker@reedexpo.de, Website: www.composites-europe.com Most Important Event for the Powder and Bulk Industries in China The 11th International Powder & Bulk Solids Processing Conference & Exhibition (IPB) (October 15 to 17, 2013, Shanghai) has come to a fruitful close. 166 exhibitors from 11 countries showcased the latest technologies for processing powder, granules, and bulk solids in a display venue of more than 2,349 m2. During the three-day show, IPB 2013 attracted 6,446 visitors from 24 countries and regions. Visitors came from a wide variety of industries, among them the chemical industry (30 %), mechanical and plant engineering (12 %), the pharmaceutical industry (10 %), food and feed manufacturing (9 %), and the mining industry (6 %). Approximately 350 visitors at the parallel U.K./China International Particle Technology Forum discussed recent advances and identified future research directions in particle science and technology. The conference is held every two years, either in the U.K. or China. This year’s attendees included engineers and scientists who were also key buyers at IPB. NürnbergMesse China and the Chinese Society of Particuology jointly organize China’s annual “one-stop-shop” trade show for all industries focusing on mixing, conveying, milling, screening, and granulating. Over the past eleven years, IPB has become the most important international platform for the powder and bulk sector in China. Almost every fifth exhibitor was international: The top exhibiting nations after China were Germany, Japan, and the United States. The products on display included basic mechanical processing and nano particle technologies, measurement and control systems, and many more. According to a trade show survey, 80 % of the exhibitors were satisfied with the professional qualifications and competence of the trade visitors: 91 % explained that they were able to reach their most important target groups at IPB 2013. Every 9th exhibitor expected follow-up business due to contacts made during the trade show. Informative supporting program The high-quality exhibition was complemented by an edifying supporting program. BS&B Safety System Asia Pacific hosted the workshop “Industrial dust explosion risk management”. Zhangjiagang Fanchang Machinery organized a seminar on the topic “Mixing, measurement, and transport of powder materials.” Another highlight at IPB 2013 was the workshop “Optimizing dry powder measurements” held by HORIBA Trading. The next IPB will take place from October 14 to 16, 2014, at the INTEX, Shanghai. More Information: Evian Gu, Project Manager, phone: +86 (0) 21 60 36-12 20, E-Mail: evian.gu@nm-china.com.cn, Website: www.ipbexpo.com/en ,17(5&(5$0 75$'()$,56&219(17,216 International Ceramics Industry Exhibition in India Ceramics Asia 2013 will be held from December 18–20, 2013 in Gujarat University Exhibition Center, Ahmedabad (India). This event is designed to cater to the growing markets in the Asian region and its potential for the ceramic industry in particular. Ceramic industry in India The ceramic industry in India is more than 100 years old. It comprises mainly of ceramic tiles, sanitaryware, tableware and – more recently – technical ceramics. The heavy clay industry in India offers a big market. State-of-the-art ceramic goods are being manufactured in the country and the technology adopted by the organized sector within Indian ceramic industry is of international standard. Ceramic tile industry in India Today ceramic tile throughout the world is not hand-made or hand-painted for the most part. Automated manufacturing techniques are used and the human hand does not enter into the picture until it is time to install the tile. Most modern houses throughout use ceramic tiles for their bathrooms and kitchens and in every vital area of the premises. Ceramic tiles are also the choice of industries, where walls and floors must resist chemicals. And the space shuttle never leaves earth without its protective jacket of high-tech, heat resistant tiles. A major change that took over ceramic tiles industry was the introduction of vitrified and porcelain tiles. These entrant tiles are said to be the future tiles which account for 50 % of total tile sales by value. Ceramic tiles as a product segment has grown to a sizable chunk today at approximately 600 million m2 production per annum. The key drives for the ceramic tiles in India are the boom in housing sector coupled by government policies fuelling strong growth in housing sector. The investment in the last 5 years has been to the tune of approx € 725 Million. The industry also enjoys the unique distinction of being highly indigenous with an abundance of raw materials, technical skills, infrastructural facilities despite being fairly capital intensive. A total of over 550,000 people are employed in the sector. Sanitaryware industry in India The sanitaryware industry in India is divided into two sectors, the organized and unorganized sectors. In the unorganized sector around 250 companies produce basic sanitaryware under various brand names. Their production capacity totals 500.000 Mio t/year. The industry has been growing by about 15–18 % over the last two years. Goods are exported to East and West Asia, Africa, Europe and Canada. The sanitaryware industry in India has shown dramatic growth over the last 5 years, with major players doubling their production capacity. The manufacturers have adapted better technologies, like battery casting, beam casting, and imported fast-firing cycle kiln technology. Indian tableware industry India is exporting bone china tableware to Europe, Canada, Australia, etc. At present, production capacity of bone china tableware in India is 200 t/day – and nearly 25 % of total production is exported. New bone china units in India are using the latest technology and equipment and even the old stoneware industry has come a long way. Technical ceramics The global market for advanced ceramics is estimated at € 19 Billion, the Indian market at about € 40 Million. A combination of special raw materials and superior manufacturing techniques deliver products with unique resistances to temperature, corrosion and wear for use in the electronics, automotive and aerospace industries. The per unit realization from advanced ceramics products is much higher than margins on regular products and Indian Export Promotion Council India (Capexil) is likely to plan a roadmap for the development of exports of advanced ceramics products under a Market Access Initiative (MAI) scheme. The industry is expected to grow at a rate of 10 % in the future. Major growth drivers in this industry The key driver for the ceramic tiles and sanitaryware in India is the boom in housing sector coupled by government policies fuelling strong growth in housing sector. The retail boom in the Indian economy has also influenced the demand for higher end products. Overall the bullish growth estimates in the Indian economy has significantly influenced the growth of the Indian ceramic industry. Contact: Michael Wong, phone: +86 (0) 20 83 27 63 69, E-Mail: ceramicsasia@unifair.com, Website: www.ceramicsasia.net International Conference “Refractories for Industry – 2014” in Moscow Experts of different ministers, federal services, leading Russian and foreign engineering companies, developers, institutes, refractory and metallurgy companies will take part in The XXIII Annual International Conference from February 04-05, 2014 in Moscow in the Conference Hall of the Warsaw Hotel. Conference topics Raw materials: Raw materials used for modern refractory production; problems of raw materials quality increase; methods of decreasing admixtures in raw materials; primary ore preparation of raw materials; analysis of Russian and foreign raw material deposits Equipment: Equipment utilization experience in different refractory productions; problems of reconstruction and exploitation of equipment; new equipment supplied by foreign companies for refractory production Unshaped: New technologies in modern refractory production; composition and raw material preparation demands; properties of refractory products; problems of refractory quality increase Pig iron/steel: Experience of different refractory applications in units of ferrous metallurgy; refractory stability; comparison of different manufactures refractory products Steel casting: New researches of refractories in steel casting units Foundry, cement, glass: Application of refractories in the foundry, cement and glass industries; ceramics; new requirements of industry and manufactures offers Investment, technical & sales management, markets: Analysis of Russian refractory market for 2013 and long-term development; investment projects of technical reconstruction of enterprises; technical and sales management of refractory enterprises; investigation of refractory enterprises and production on the basis of information and analytical systems. The conference languages are Russian and English (simultaneous interpretation. More information and registration: Andrey G. Borisov, phone: +7 (499) 1 29-37-09, E-Mail: borisov@gol.ru ,17(5&(5$0 &(5$0,&6)2580 Company News Determination of Carbon and Sulfur in Organic and Inorganic Solids When using conventional elemental analyzers for carbon and sulfur determination in solids, the user has to decide whether to use a resistance furnace to analyze organic compounds or an induction furnace for inorganic compounds. Not with ELTRA’s unique CS-2000 analyzer which combines both techniques! Thus the user only needs one analyzer to examine organic matrices (such as fuels, oils, chemicals) and inorganic matrices (such as steel, ores, ceramics, glass) for their carbon and sulfur content directly without cumbersome sample preparation. The analysis time of the CS-2000 is very short: analysis of steel, for example, only takes about 50 seconds; for coal it is about 90 seconds. RHI: Problems in Norway Strain Earnings Situation In the third quarter of 2013, revenues fell to € 427.4 million, down 4.0 % on the previous quarter. While the revenues of the Steel Division declined by 3.6 % because business in Europe was weaker than expected, the Industrial Division’s revenues fell by 4.7 % especially due to the postponement of projects in the business unit glass. The operating result in the past quarter amounted to € 32.2 million and is burdened by technical problems in the newly constructed fusion plant in Norway totaling roughly € 12 million, and by negative currency effects. Compared to the operating result of the second quarter of 2013, which was adversely affected by negative one-off effects of € 11 million, this corresponds to an increase by 18.4 %. The operating result margin rose from 6.1 % to 7.5 %. EBIT amounted to € 30.7 million in the third quarter of 2013 and was influenced by write-offs of € 1.9 million in China resulting from product and process enhancements. The decline in EBIT compared to the previous quarter is primarily attributable to the positive effects from the termination of the US Chapter 11 proceedings recorded in the second quarter of 2013. Contact and more information: Simon Kuchelbacher, Investor Relations, phone: +43 (0) 5 02 13-66 76, E-Mail: simon.kuchelbacher@rhi-ag.com, Website: www.rhi-ag.com Taking Responsibility for the Community and Environment CS-2000 analyzer (©ELTRA) Carbon and sulfur are measured simultaneously with an accurate infrared detection system. Up to four measuring cells can be customized according to the user’s requirements. Dual infrared detectors for C and S allow reliable detection of both parameters from sensitive, low levels to high ranges. The CS-2000 analyzer is a robust, maintenance-friendly and flexible instrument for carbon and sulfur determination in organic and inorganic samples which is unique in the market. Benefits: • Analysis of organic and inorganic samples, • individual measuring ranges for C and S from low ppm levels to high percentages, • up to 100 % CS determination, depending on sample weight, • very short analysis time, • automated sample feeding (option), • robust design for use both in production and lab. Further information: Ute Vedder, phone: +49 (0)21 04 23 33-1 55, E-Mail: u.vedder@verder-scientific.com, Website: www.eltra.org The alumina produced by Alteo is used to make a very wide range of products that are an intrinsic part of everyday life: tiling, LCD screens, fireproofing material used in carpets, pollution control systems for automobiles, DIY abrasives (sandpaper…). The production plants are located close to urban communities, providing the driving force behind Alteo’s determination to perform in an exemplary manner in terms of environmental protection and sustainable development. This philosophy is shared by the whole Group workforce and results in constant striving to minimize the impact of the business on the environment. Alteo has adopted a proactive approach towards environmental protection, and employee health and safety for many years. Alteo is very much an industrial player working closely with the local community. Consequently it has a communication policy firmly focused on complete transparency in order to maintain the dialogue concerning issues related to health and safety as well as sustainable development. An example of this is the decision made by the Gardanne factory management to sign the Charte Responsible Care® (Responsible Care Charter) of the Union des Industries Chimiques (Chemical Industries Union) which is consistent with this approach. Alteo was awarded a trophy at the “Trophées Responsible Care de Méditerranée” (“Mediterranean Responsible Care Awards”) in 2011. More Information: Amélie Ranger, Communication Manager, phone: +33 (0) 4 42 65 22 16, E-Mail: amelie.ranger@alteo-alumina.com, Website: www.alteo-alumina.com ,17(5&(5$0 &(5$0,&6)2580 M. Mozafari 1, 2, 3, F. Moztarzadeh 4 Silver-doped Bioactive Glasses: What Remains Unanswered? 7+($87+256 Masoud Mozafari earned his Ph.D. degree with honors on Biomedical Engineering-Biomaterials from Amirkabir University of Technology (Tehran Polytechnic), 2013. During 2012–2013, he joined Oklahoma State University and Pennsylvania State University as a research associate and research visiting scholar, respectively. Dr. Mozafari’s research interests involve the understanding of whole field of biomaterials with respect to biological interactions, and also delivery systems for potentially useful stem cell and genetic purposes. He has over 150 pre-reviewed publications as chapter books, conference and journal papers. Dr. Mozafari has received several awards including “Top 10 National Outstanding Scientific Authors” (2011). Dr. Mozafari is currently an assistant professor and head of “Bioengineering Research Group” in Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran. E-Mail: mozafari.masoud@gmail.com Fathollah Moztarzadeh is a faculty member of Amirkabir University of Technology (Tehran Polytechnic) and distinguished professor of biomedical engineering. He obtained his Ph.D. in 1976 from Technische Universitat Clausthal, Germany, with specialization on Materials Science and Engineering. Prof. Moztarzadeh has been the director of Commission for Industry of National Research Council, research deputy and research consultant of Ministery of culture and higher Education of Iran, and director of highly regarded Materials and Energy Research Center (MERC). Prof. Moztarzadeh has also received many national and international awards such as ECO award in the field of Natural Sciences (1993), Iran’s selected academic lecturer of the year and Iran’s selected researcher of the year (1992), and the Lasting Personalities Award of 2007, Iran. He is currently member of basic science group, the Academy of Sciences of Iran. $%675$&7 .(<:25'6 A critical issue in orthopaedic and dental implant surgery is the development of infections due to bacterial colonization in the surrounding sites. The potential of bioactive glass materials has clearly been confirmed for tissue engineering. To prevent infections, it would be reasonable to synthesize ideal bioactive glasses containing antibacterial elements. There have been several attempts to introduce silver into bioactive glass structures to take advantage of its strong antibacterial activity against microorganisms. It has been speculated that this idea and the advent of modern biomaterials could result in significant future advances. However, there is considerable evidence that silver ions also have cytotoxic and genotoxic effects in higher organisms, which causes concern about its harmful impacts. Undoubtedly, this strategy needs further investigation and many critical questions have to be answered before it can be successfully advanced. 1 Introduction The development of infection and bacterial colonization after implantation of bioactive materials is a critical issue in orthopaedic and dental surgery [1]. The ensuing use of antibiotics and antibacterial strategies has shed light on alternate strategies for minimizing the danger of infection, risk of implant failure, and even avoiding patient death [2–3]. Since the 1800’s, silver has frequently been used for medical applications due to its effective antibacterial activity, but its antimicrobial mechanism is not fully understood [4–5]. Some studies have suggested that silver ions can potentially interact with bacterial cells by binding sulfhydryl groups of bacteria enzymes, binding to microbial DNA to prevent bacteria replication, inhibiting 1 Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran (Iran) 2 Helmerich Advanced Technology Research Center, School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 74106 (USA) 3 Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (USA) 4 Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, P.O. Box: 15875-4413, Tehran (Iran) bioactive glass, silver, tissue engineering Interceram 62 (2013) [6] cell respiration, and restricting transport of vital substances within cells [6–8]. Since bioactive glass materials have been extensively used as orthopaedic and dental grafting materials, silver-containing bioactive glasses have recently been developed to induce inhibitory effects on bacterial growth [9–12]. Many studies have reported on introduction of silver oxide into bioactive glass structures with the aim of potentially minimizing the risk of microbial contamination through the antimicrobial activity of silver ions [13–14]. Releasing silver ions as dissolution products from silver-containing bioactive glasses is proven to inhibit growth of different bacterial strains (such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus) without compromising the bioactivity of the glass [15]. This idea that cells can mechanistically protect themselves by progressively pumping out silver ions [16] or binding silver ions to suitable molecules like metallothioneins [17] makes the class of silver-containing bioactive glasses promising biomaterials with anti-inflammatory properties. As can be seen from the growing number of publications in the field (trend-line of Fig. 1), there has been heightened interest in the incorporation of silver into bioactive glass structures over the last decade. ,17(5&(5$0 &(5$0,&6)2580 Fig. 1 • Number of papers published per year in the field of silver-containing bioactive glasses, compiled from a literature search in the Scopus database [TITLE-ABS-KEY-AUTH (silver bioactive glass)] 1 2 Issues and challenges Like any other novel medical therapy, a number of critical challenges and opportunities have yet to be considered. Although doping with added metal ions seems to be a promising approach to enhance the anti-bacterial characteristics of bioactive glasses, more detailed analyses of the biological response of cells exposed to silver-containing bioactive glasses are needed to confirm the exact effects of silver ions in the human body. While the concept of using silver in bioactive glasses is exciting, there are critical obstacles that may take several years to overcome. Among issues that will determine the practicality of the approach are: • Bacterial resistance to silver. Even after extensive experience in medical applications of silver, there are still concerns that overuse of silver may lead to resistance among bacteria strains. Resistance to silver by bacterial plasmids has been observed by researchers in the field of molecular genetics [18]. This resistance to antimicrobial agents reportedly occurs via different mechanisms directly related to changes in the nature of the bacterial cell wall. The cell boundary may act as a permeability barrier, reducing uptake of the compound [19–21]. • Disruption of cell biochemistry. Since silver ions are a kind of soft Lewis acid with an affinity to sulfur and nitrogen, it is possible for them to disturb biochemical processes by interaction with thiol and amino groups of proteins, nucleic acids and cell membranes [22–23]. In addition, depending on involved cell type, reactive oxygen species could form when silver ions are released from bioactive glasses [24–27]. These molecules can subsequently react with various biological macromolecules, resulting in DNA damage, oxidation of amino acids and oxidative inactivation of specific enzymes. • Toxicity of silver. The degree of silver toxicity is associated with the volume of released ions. Besides the release behaviour of bioactive glasses, cellular uptake kinetics can play a significant role in the bioavailability of these silver-containing materials [28–31]. When high concentrations of silver are present, there is danger of silver distribution in the bloodstream and accumulation in different tissues and organs. The ions are then able to form harmful complexes with widely separated biomolecules. Unfortunately, published results on the silver release behaviour of bioactive glasses are not strictly comparable due to their use of different glass compositions and experimental conditions. • Unknown effects of free silver ions. Silver-containing bioactive glass releases silver ions that act as biochemically active agents. As there are various ways for silver ions to disrupt biological processes, it is not possible to formulate general and simple rules about the origins, toxic actions, and ultimate effects of the released ions. The actual functions of many different mechanisms have yet to be properly researched and understood. • Biodegradation and dissolution of implants. The addition of silver can also affect the structural and textural properties of bioactive glasses and raise their biodegradation and dissolution rates. Increasing silver content makes glass structure very complex. It is expected that the breakdown behaviour of this class of materials will be greatly affected. Since silver ions are monovalent, replacing silver by calcium in the glass structure could reduce the number of non-bridging oxygen groups and decrease the glass dissolution rate [32]. This suggests that more detailed studies on the structural properties of bioactive glasses are needed to design better glasses that achieve controlled release behaviour by manipulating silver content. ,17(5&(5$0 &(5$0,&6)2580 3 Prospects Although there are still major issues to overcome, the proponents of this strategy are optimistic that silver-containing bioactive glasses will be an effective approach to minimize the risk of infection in implanted sites and will have an increasing impact on clinical applications. Extended research in materials science and the cellular biology aspects of this class of materials need to be conducted to fully understand the processes involved in the antimicrobial properties of silver. In addition, future in vivo and in vitro studies should systematically assess the various effects of silver on bioactive glasses. Interdisciplinary researches and effective collaborations can potentially overcome the major issues related to bioactive silver use and make this treatment a viable option in the near future. References [1] Campoccia, D, Montanaro, L, Arciola, C.R.: The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27 (2006) 2331–2339 [2] Hook, A.L., Chang, C.-Y., Yang, J., Luckett, J., Cockayne, A., Atkinson, S., et al.: Combinatorial discovery of polymers resistant to bacterial attachment, Nat. Biotech. 30 (2012) 868–875 [3] Li, P., Poon, Y.F., Li, W., Zhu, H.-Y., Yeap, S.H., Cao, Y., et al.: A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 10 (2011) 149–156 [4] McHugh, G.L., Moellering, R.C., Hopkins, C.C., Swartz, M.N,: Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin: A new threat in burn units? Lancet 305 (1975) 235–240 [5] Hendry, A.T, Stewart, I.O.: Auxanographic grouping and typing of Neisseria gonorrhoeae. Can. J. Microbiol. 25 (1979) 515–521 [6] Politano, A.D., Campbell, K.T., Rosenberger, L.H., Sawyer, R.G.: Use of silver in the prevention and treatment of infections: silver review. Surg Infect (Larchmt) 14 (2013) 8–20 [7] Vitale-Brovarone, C., Miola, M,, Balagna, C., Vern´e, E.: 3D-glass–ceramic scaffolds with antibacterial properties for bone grafting. Chem. Engi. J. 137 (2008) 129–136 [8] Chen, W., Liu, Y., Courtney, H.S., Bettenga, M., Agrawal, C.M., Bumgardner, J.D., Ong, J.L.: In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomater. 27 (2006) 5512–5517 [9] Blaker, J.J., Nazhat, S.N., Boccaccini, A.R.: Development and characterisation of silver-doped bioactive glasscoated sutures for tissue engineering and wound healing applications. Biomater. 25 (2004) 1319–1329 [10] Kawashita, M., Tsuneyama, S., Miyaji, F., Kokubo, T., Kozuka, H., Yamamoto, K.: Antibacterial silver-containing silica glass prepared by sol-gel method. Biomater. 21 (2000) 393–398 [11] Vernè, E., Nunzio, S.D., Bosetti, M., Appendino, P., Vitale Brovarone, C., Maina, G., et al.: Surface characterization of silver-doped bioactive glass. Biomater. 26(25) (2005) 5111–5119 [12] Di Nunzio, S., Vitale Brovarone, C., Spriano, S., Milanese, D., Verné, E., Bergo, V., et al.: Silver containing bioactive glasses prepared by molten salt ionexchange. J. Europ. Ceram. Soc. 24 (2004) 2935–2942 [13] Bellantone, M., Coleman, N.J., Hench, L.L.: Bacteriostatic action of a novel fourcomponent bioactive glass. J Biomed. Mater. Res. 51 (2000) 484–490 [14] Clupper, D.C., Hench, L.L.: Bioactive response of Ag-doped tape cast Bioglasss 45S5 following heat treatment. J Mater. Sci. Mater. Med. 12 (2001) 917–921 [15] Bellantone, M., Williams, H.D., Hench, L.L.: Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46 (2002) 1940–1945 [16] Silver, S.: Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. Fems Microbiol. Rev. 27 (2003) 341–353 [17] Luther, E.M., Schmidt, M.M., Diendorf, J., Epple, M., Dringen, R.: Upregulation of Metallothioneins After Exposure of Cultured Primary Astrocytes to Silver Nanoparticles. Neurochem. Res. 37 (2012) 1639–1648 [18] Silver, S.: Bacterial resistance to toxic metal ions. Gene 179 (1996) 9–19 [19] Svitlana, Ch., Matthias, E.: Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem. Internat. Edi. 52 (2013) 1636–1653 [20] McDonnell, G., Russell. A.D.: Antiseptics and disinfectants: activity, action and resistance. Clin Microbiol Rev. 12 (1999) 147–179 [21] Russell, A.D.: Plasmids and bacterial resistance to biocides. J. Appl. Microbiol. 83 (1997) 155–165 [22] Silver, S., Gupta, A., Matsui, K., Lo, J.F.: Resistance to Ag(I) cations in bacteria: Environments, genes and proteins. Met.-Based Drugs 6 (1999) 315–320 [23] Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N., Kim, J.O.: A mechanistic study of the anti-bacterial effect of silver ions on Esherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. Part A 52 (2000) 662–668 [24] Liu, W., Wu, Y.A., Wang, C., Li, H.C., Wang, T., Liao, C.Y., et al.: Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology 4 (2010) 319–330 [25] Valodkar, M., Jadeja, R.N., Thounaojam, M.C., Devkar, R.V., Thakore, S.: In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater. Sci. Eng. C31 (2011) 1723–1728 [26] Foldbjerg, R., Dang, D.A., Autrup, H.: Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line. Arch. Toxicol. 85 (2011) 743–750 [27] Greulich, C., Diendorf, J., Geßmann, J., Simon, T., Habijan, T., Eggeler, G., Schildhauer, T.A., Epple, M., Kçller, M.: Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater. 7 (2011) 3505–3514 [28] Limbach, L.K., Li, Y.C., Grass, R.N., Brunner, T.J., Hintermann, M.A., Muller, M., Gunther, D., Stark, W.J.: Oxide Nanoparticle Uptake in Human Lung Fibroblasts: Effect of Particle Size, Agglomeration and Diffusion at Low Concentration. Environ. Sci. Technol. 39 (2005) 9370–9376 [29] Teeguarden, J.G., Hinderliter, P.M., Orr, G., Thrall, B.D., Pounds, J.G.: Toxicol. Sci. 95 (2007) 300 [30] Stark, W.J.: Nanoparticles in biological systems. Angew. Chem. Internat. Edi. 50 (2011) 1242–1258 [31] Cutting, K., White, R., Edmonds, M.: The safety and efficacy of dressings with silverd addressing clinical concerns. Internat. Wound J. 4 (2007) 177–184 [32] El-Kady, A.M., Ali, A.F., Rizk, R.A., Ahmed, M.M.: Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceramics Internat. 38 (2012) 177–188 Received: 10.08.2013 ,17(5&(5$0 &(5$0,&6)2580 H.F. El-Maghraby, A.A. Aly, S.M. Naga Utilization of Sugar-Beet Industry By-Products for the Production of Anorthite 7+($87+25 The corresponding author, Dr. Hesham F. El-Maghraby, earned his Ph.D. from Institute of Chemical Technology (ICT), Prague (Czech Republic) in 2008. He is currently researcher in the area of Ceramic Chemistry and Technology at the National Research Centre (NRC), Cairo (Egypt). E-Mail: hf_elmaghraby@yahoo.com $%675$&7 .(<:25'6 The filter cake produced from the processing of juice purification during the production of sugar from sugar-beet is a solid waste, which represents a major problem unless it is utilized. Accordingly, the aim of the present work is to study the suitability of sugar-beet filter cake as a novel starting material in the preparation of anorthite bodies. To synthesize anorthite bodies, El-Tieh kaolin (Al2O3·SiO2·2H2O) from Sinai, Egypt, was used as a source of alumina and SiO2, while the filter cake was used as a source of CaO. A predominant anorthite phase was found to be present on sintering the anorthite batches at 1200 °C and up to 1350 °C for 1 h. The prepared bodies possess a bending strength of 25.23 MPa and a relative density of 64.5 %. 1 Introduction Anorthite (CaO·Al2O3·2SiO2) exhibits low thermal expansion coefficient of 4.8·10–6·K–1, low dielectric constant of 6.2 at 1 MHz [1], and good wear resistance [2]. These properties nominate anorthite to be a promising material for substrate applications in the electronics industry. The theoretical composition of anorthite is 20.2 % CaO, 36.6 % Al2O3, and 43.2 % SiO2 on weight basis. The natural anorthite mineral has triclinic symmetry with Ca2+ ions residing in the interstices of the (Si-Al)-O tetrahedral framework [3]. The synthesis of anorthite was studied by using different methods, such as sintering of mixtures of calcium carbonate, kaolinite, alumina and aluminium hydroxide in addition to mechanochemical treatment or employing different sintering aids [2, 4–8). On the other hand, Borglum et al. [9] and Tulyaganov [10] synthesized anorthite either via hydrothermal processing of monocalcium aluminate and quartz at 200 °C or via the crystallization of glass having a stoichiometric anorthite composition. The utilization of some industrial waste in the manufacture of anorthite has been studied recently by many authors. Kurama and Ozel [11] used marble and gypsum moulded waste as a source of CaO in the production of anorthite. They reported that anorthite could be produced as the main phase above 1200 °C with a maximum density of 80 %. El-Maghraby et al. [12] stated in their study that the gabbro plagioclase fraction concentrated from Egyptian gabbro can be used as a raw material in the fabrication of anorthite ceramics. They showed that an increase of the plagioclase fraction content up to 70.75 mass-% leads to lowering the vitrification temperature of the bodies produced to 1175 °C. Sutcu and Akkurt [13] produced porous anorthite ceramics from mixtures of paper processing residues and clay of different sources. Their results indicated that anorthite formation was quite successful in samples with 30–40 mass-% of paper residues fired at 1300 °C. The samples produced were composed of anorthite as the major phase together with some minor secondary phases such as mullite or gehlenite, depending on the calcite to clay ratio. Sugar from sugar beet is produced in about 50 countries worldwide. The by-products of a beet-sugar factory are: pulp, carbonation, lime residue and molasses. Calcium hydroxide is used in sugar factories beet-sugar manufacture, anorthite, mechanical properties, microstructure Interceram 62 (2013) [6] in the juice-purification station to improve the quality of the beet juice. After lime has been used, the juice is mixed with CO2, which again precipitates lime in the form of calcium carbonate. The calcium carbonate is then concentrated using cake filters to produce carbonation-lime residue. The calcium carbonate residue stockpiled in the factory can take up space. Therefore, the sugar industry has been trying to find different uses for this material [14]. Delta sugar factories in El-Hamoul, Kafer El-Sheikh governorate, Egypt, produce about 150,000 t of filter cake each year. During the processing season the filter cake is pumped out of the factory to storage regions which occupy about 80 feddan outside the factory and which are considered as an environmental pollutant. The aim of the present study is to evaluate the possibility of using the sugar-beet industry filter cake by-product in the production of anorthite bodies. The physical and mechanical properties of the resultant bodies were investigated together with their microstructure and phase composition. 2 Materials and methods 2.1 Materials and processing Filter cake obtained as a by-product from the sugar beet industry was used as a source of CaO to fabricate anorthite (CaO·Al2O3·2SiO2) while, El-Tieh kaolin (Al2O3·2SiO2·2H2O) from Sinai Egypt, was used as a source of Al2O3 and SiO2 (Table 1) Both filter cake and kaolin were mixed in proper amounts to get a 1 : 1 : 2 stoichiometric anorthite mixture. A very small deficiency in the alumina stoichiometry was overcome by the addition of small amount of fine grade calcined alumina (provided by Almatis GmbH Ludwigshafen, Germany). For complete homogeneity, the stoichiometric anorthite mixture was treated by a roller tank at 500 rounds per minute for 3 h. The mixed component was moulded under a specific force of 60 kN/cm2. Discs of 2.5 cm diameter and 0.5 cm thickness, as well as prisms of 5.0 cm × 1.0 cm × 1.0 cm were pressed to measure the physicomechanical properties. Samples were dried at 110 °C overnight before firing at 1150 to 1350 °C with a firing interval of 50 °C. The firing temperature was raised at a rate of 5 °C/min, followed by a soaking time of 1 h at the peak temperature. ,17(5&(5$0 &(5$0,&6)2580 1 2 ;LTWLYH[\YL* Fig. 2 • DTA curve of the anorthite batch 3 ;.THZZ Fig. 1 • XRD of the crystalline phases observed; A – anorthite, M – mullite, Q – quartz, Cr – cristobalite, C – corundum 2.2 Characterization Qualitative X-ray diffraction using a Philips X-ray diffractometer (PW 1840) and Cu-K_ radiation were the tools used to identify the crystalline phases appearing in the fired specimens. The bulk density was evaluated using the Archimedes method (ASTM C-20) with water as the liquid medium. The three-point bending strength of the fired samples was determined using a universal testing machine (model 4204, Instron Corp., Danvers, Mass, USA) at a crosshead speed of 1 mm/min. At least 10 specimens were measured. The microstructure of the samples was investigated via SEM (model XL 30, Philips, Eindhoven, The Netherlands). Table 1 • Chemical analysis of the starting materials Oxide Calcined sugar cane refinement waste / mass-% El-Tieh kaolin / mass-% SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O [SO3]2– TiO2 P2O5 MnO Cl– LOI 2.04 0.53 0.44 88.00 5.92 0.04 0.13 1.73 0.04 1.14 – – – 50.59 33.08 1.49 0.15 0.01 0.09 0.10 0.02 2.11 – 0.01 0.06 11.90 ;LTWLYH[\YL* Fig. 3 • TG curve of the anorthite batch 3 Results The chemical analyses of the filter cake and El-Tieh kaolin used are given in Table 1. The table shows that the filter cake is composed mainly of calcium oxide together with minor amounts of SiO2 and MgO. The dependence of anorthite phase crystallization on firing temperature was reflected in XRD patterns (Fig. 1). The patterns showed that all samples contain anorthite as the major phase irrespective of the firing temperature Samples fired at 1150 °C showed the presence of mullite, cristobalite, quartz and corundum phases. At 1200 °C the XRD pattern shows anorthite and a minor amount of quartz, while samples fired over 1200 °C and up to 1350 °C clearly indicated a predominant anorthite phase. The DTA and TG curves of the anorthite batch are shown in Figs. 2–3. Two endothermic peaks and three exothermic peaks are observed at 506.9, 704.9, 173.9, 397.2 and about 860 °C, respectively. The first endothermic peak results from the dehydroxylation of Table 2 • Physical and mechanical properties of the anorthite bodies fired at 1300 °C/1 h Sample Anorthite Bulk density / g/cm3 Relative density / % Bending strength / MPa Apparent porosity / % 1.78 64.50 25.23 30.80 ,17(5&(5$0 &(5$0,&6)2580 4 5 (b) (a) Fig. 4 • TEM micrograph of (a) sugar-beet filter cake and (b) El-Tieh kaolin 7 (a) 6 (b) Fig. 7 • SEM micrograph of (a) fine grain matrix of samples sintered at 1150 °C and (b) samples sintered at 1350 °C with lamellar crystals of anorthite kaolinite to metakaolinite, while the second arises from the decomposition of the Ca compounds. The third exothermic peak is attributed to the crystallization of calcium aluminium silicate, similarly to the crystallization of spinel phase from metakaolinite [15]. The first and second exothermic peaks are due to the dehydration of the filter cake. The TG curve shows a two-step reaction, with steep weight losses at 550, and 700 °C corresponding to the dehydroxylation of kaolinite and decomposition of Ca compounds. It is widely recognized that the particle size of a ceramic body has a significant impact on the packing efficiency, which in turn, influences the size and shape of pores, the shrinkage behaviour and microstructure development [16]. The TEM micrograph (Fig. 4 a); of the sugar-beet cake shows that it possess a fine particle size with a diameter ranging between 14.6 and 51 nm. On the other hand, the El-Tieh kaolin particle size ranges between 253 and 544 nm (Fig. 4 b). Table 2 summarizes the physical and mechanical properties of a fired anorthite body fired at 1300 °C/1 h. It shows that the samples possess a relative density of 64.5 %, calculated from the true density 2.76 g/cm3 of triclinic anorthite. The samples’ three-point bending strength was found to be 25.23 MPa. SEM images of the fracture surface of the fired samples fired at 1350 °C are shown in Fig. 5, which illustrates randomly oriented tabular and layered anorthite crystals with different geometric shapes and sizes. Figure 6 shows the microstructure of the bodies fired at 1150 °C and indicates the formation of mullite phase. Relatively small size mullite grains were formed on the surface of the quartz grains. Samples fired at 1150 °C generally, revealed a fine grained matrix of crystals (Fig. 7 a). On the other hand, samples fired at 1350 °C were characterized by cuboids or lamellar crystals of anorthite (Fig. 7 b). Fig. 5 • SEM micrograph of the anorthite samples sintered at 1350 °C/1 h; randomly oriented tabular and layered anorthite crystals with different geometric shapes and sizes are illustrated Fig. 6 • SEM micrograph of the anorthite samples sintered at 1150 °C/1 h; the formation of mullite phase is indicated 4 Conclusions • Results showed that the filter cake, obtained as a by-product of beet-sugar manufacture can be used successfully as a CaO source in the production of anorthite. • XRD patterns showed that all samples composed of filter cake, obtained as a by-product of beet-sugar manufacture and ElTieh kaolin contain anorthite as the major phase, irrespective of firing temperature. Samples fired at 1150 °C contained anorthite as major phase and also minor secondary phases such as mullite, cristobalite, quartz and corundum phases. Firing over 1200 up to 1350 °C clearly indicated a predominant anorthite phase. • The three-point bending strength of the samples was found to be 25.23 MPa. The reason for this low bending strength is the low density and high porosity of the samples. References [1] Gdula, R.A.: Anorthite ceramics dielectric. Amer. Ceram. Soc. Bull. 50 (1971) [6] 555–557 [2] Kobayashi, Y., Kato, E.: Low-temperature fabrication of Anorthite ceramics. J. Amer. Ceram. Soc. 77 (1994) [3] 833–834 [3] Donny, G.: Hexagonal CaAl2Si2O8. Acta Crystal. 5 (1952) 153 [4] Mergen, A., Aslanoğlu, Z.: Low-temperature fabrication of anorthite ceramics from kaolinite and calcium carbonate with boron oxide addition. Ceram. Internat. 29 (2003) 667–670 [5] Kavalci, S., Yalamaç, E., Akkurt, S.: Effects of boron addition and intensive grinding on synthesis of anorthite ceramics. Ceram. Internat. 34 (2008) 1629–1635 [6] Okada, K., Watanabe, N.,Jha, K.V., Kameshima, Y., Yasumori, A., MacKenzie, K.J.D.: Effects of grinding and firing conditions on CaAl2Si2O8 phase formation by solid-state reaction of kaolinite with CaCO3. Appl. Clay Sci. 23 (2003) 329–336 [7] Traoré, K., Kabré, T.S., Blanchart, P.: Gehlenite and anorthite crystallization from kaolinite and calcite mix. Ceram. Internat. 29 (2003) 377–383 [8] Tai, W.-P., Kimura, K., Jinnai, K.: A new approach to anorthite porcelain bodies using nonplastic raw materials. J. Europ. Ceram. Soc. 22 (2002) 463–470 [9] Borglum, B.P., Bukowski, J.M., Young, J.F.: Low-temperature synthesis of hexagonal anorthite via hydrothermal processing. J. Amer. Ceram. Soc. 76 [5] (1993) 1354–1356 [10] Tulyaganov, D.U.: Phase equilibrium in the fluorapatite–anorthite–diopside system. J. Amer. Ceram. Soc. 83 (2000) [12] 1–7 [11] Kurama, S., Ozel, E.: The influence of different CaO source in the production of anorthite ceramics. Ceram. Internat. 35 (2009) 827–830 [12] El-Maghraby, A., Mobarak, H.A., Bakr, I., Mörtel, H., Naga, S.M.: Anorthite ceramics based on plagioclases concentrated from gabbro. CIMTEC 2002, 10th International Ceramics Congress & 3rd Forum on New Materials, Italy, 14–18 July (2002) [13] Sutcu, M., Akkurt, S.: Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics. J. Europ. Ceram. Soc. 30 (2010) 1785–1793 [14] Asadi, M.: Beet – sugar handbook. Wiley – Interscience, A John Wiley & Sons, Inc., Publication, (2007) [15] Okada, K., Otsuka, N., Ossaka, J.: Characterization of the spinel phase formed in the kaolinite – mullite thermal sequence. J. Amer. Ceram. Soc. 69 (1986) C 251–253 [16] Taskiran, M.U., Demirkol, N., Capoglu, A.: A new porcelainised stoneware material based on anorthite. J. Europ. Ceram. Soc. 25 (2005) 293–300 Received: 14.09.2013 ˗ڎڎᬅᬝၬషᜉܬ ԣथናᬝၬӼၷฝЦֶ̗࡙͘ &KLQD,QHUQDWLRQDO&HUDPLFV7HFKQRORJ\(TXLSPHQW %XLOGLQJ&HUDPLFV6DQLWDU\ZDUH([KLELWLRQ May 21-24, 2014 China Import and Export Fair Pazhou Complex · Guangzhou 7KH:RUOG¶V/DUJHVW([KLELWLRQLQ&HUDPLF,QGXVWU\ 6TXDUH0HWHUV 3URIHVVLRQDO9LVLWRUV ([KLELWRUV 0HFKDQLFDO(TXLSPHQWV &RQWDFW 2UJDQL]HU $$1*5#VJMEJOH.BUFSJBMT4VC$PVODJM 4BO-J)F3E#BJXBO[IVBOH #FJKJOH$IJOB .S0OFBM,BOH.T %JEP-JV 5FM 'BY &NBJMJOGP!DFSBNJDTDIJOBOFU 8FCXXXDFSBNJDTDIJOBOFU $IJOB#VJMEJOH.BUFSJBMT'FEFSBUJPO $IJOB#VJMEJOH$FSBNJDT4BOJUBSZXBSF"TTPDJBUJPO $$1*5#VJMEJOH.BUFSJBMT4VC$PVODJM 6SRQVRU #.&5$P-UE ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( E. Kamseu1, 2, A. Nzeukou1, P. Lemougna1, N. Billong 1, U.C. Melo1, C. Leonelli 2 Induration of Laterites in Tropical Areas: Assessment for Potential Structural Applications 7+($87+25 $%675$&7 .(<:25'6 The corresponding author, Dr. Elie Kamseu, is Senior Researcher at the Local Materials Promotion Authority (MIPROMALO) in Cameroon. Over recent years he has conducted projects in the areas of inorganic polymer cements, refractories, ceramics and glass in collaboration with the Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Italy. His special research interest focuses on phases evolution, mechanical properties and microstructure in sintering and cold chemical synthesis. He has authored more than 40 articles in international journals in the fields of valorization of mineral resources, engineering materials and quality control. He has been honored by the TWAS (Academy of science for the third World) with prize and research grant. E-Mail: kamseuelie2001@yahoo.fr Indurated lateritic blocks (yellow-brown and red) were collected from two deposits in Yaoundé, Cameroon for investigation as structural building and construction materials. Dimensioned blocks were characterized using XRD, DTA/TGA, mechanical compression, water absorption and porosity tests, and examination by optical and electron microscope. Water absorption values, pore size distribution and cumulative pore volume were used to compare indurated laterites with fired clay-based bricks. Atmospheric exposure of the test specimens resulted in progressive strengthening of the matrix and transformation of yellow areas to a browner colour. This confirms other observations in the literature which describe induration as the transformation of goethite to hematite with red matrix as the end step and most stable laterite form. Presence of larger size pores and significant pore-to-surface area ratio negatively affect the material’s compressive strength. However, due to stability in water, blocks with significant phase distribution and amorphous interlinking are suitable as structural building and construction materials. 1 Introduction Laterites and lateritic soils are readily available in tropical and subtropical areas of the world (38 % of the world’s land surface). The name laterite is derived from the Latin term “later”, meaning brick. The degree of induration of the materials varies, ranging from an almost loose, coherent mass with very poor mechanical properties to the most dense and hardened blocks. The hardness of laterites is a function of its content in iron oxides or hydroxides and the degree of dehydration/desiccation of iron-based minerals and other hydroxides [1–5]. Our objective was to investigate the use of indurated materials as effective structural products or raw materials for engineering and to identify suitable applications for looser laterite masses. In this first part we characterize indurated laterites physicomechanically and present some basic conclusions on their suitability for building and construction. To understand the induration of laterites requires consideration of a complex chemical system: Fe2O3–Al2O3–SiO2–H2O. A major role is attributed to accumulation of iron via dissolution and precipitation. Two important constituent laterite profiles [6–7] are involved: goethite-diaspore and hematitecorundum. Both are solid solutions of crystallized iron-rich oxihydroxides. Nuclide nodule concretions with high concentration of iron always form within a kaolinite soil matrix. Al-hematite and Al-goethite displace clay through an epigenetic process. The distribution of the Fe3+-kaolinite, Al3+goethite and Al3+-hematite as well as iron and aluminium content is controlled by silica activity [6–7]. Goethite precipitates in large pores in contact with quartz grains, while hematite forms in the smallest pores of kaolinite. In natural and synthetic goethite, substitutions of Al3+ for Fe3+ range from 0 to 33 mol-% of AlO(OH) [8–11]. In natural and synthetic hematite, substitution consumes between 0 and 15 mol-% of Al2O3 [11–15]. Various authors have shown that an increasing substitution of iron by aluminium in kaolinite induces a diminution of crystallinity and an increase in disordering [15–18]. The degree of substitution of Al3+ for Fe3+ in goethite or hematite and corresponding degree of substitution of Fe3+ for Al3+ in kaolinite is highly variable under natural conditions. These substitutions affect the crystallinity and solubility of the goethite, hematite and kaolinite minerals present in laterites. The highest aluminium content in hematite form is found together 1 Local Materials Promotion Authority/MIPROMALO, P. Box: 2396 Yaoundé (Cameroon) 2 Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905/A, 41125 Modena (Italy) lateritic blocks, goethite, hematite, porosity, structural materials Interceram 62 (2013) [6] with maximum development of nodules and maximum dissolution of kaolinite. High aluminium content in goethite is found accompanying the first stage of rehydration of Al-hematite together with a dismantling of nodular horizon. Presence of alkalis and formation of disordered kaolinite and amorphous phases enhance polycondensation and formation of films with binder properties that are able to induce induration. Factors controlling the formation of indurated laterite matrices include grain size, precipitation kinetics and equilibrium conditions involving water activity. In the first steps of the induration, very small sized mottles and concretions form that are mostly hematite and goethite. Tiny particles of size about 100 Å suggest the significant influence of water action and dehydration. During the last steps, goethite appears in quite well-formed crystals with size about 1 μm, Schwertmann et al. [13] and Maignien [16] found that rapid release of Fe and low concentration of organic compounds favours hematite formation, while high organic compound concentration promotes goethite. For kinetic reasons, goethite is more common than hematite, but after hematite is created, it does not rehydrate to form coarse goethite. In tropical areas, kaolinite generally contains quartz sand. During induration, iron accumulation is ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( essentially due to leaching of iron from sand to clay. The driving force of the migration and accumulation of iron is suggested to be differences in the size of pores, which tends to be accentuated as concretion proceeds [6]. Because of its porosity, kaolinite will normally fix water much more readily than quartz. When the pressure of water is higher, water-filled pores of quartz become important. The details of each situation affect the formation of nodules and concretions. Schellmann’s chemical and mineralogical results [17] show that the primary minerals are generally not fully dissolved but are partially transformed into secondary minerals that are more stable. In this work we collected metastable laterite samples with high goethite content and a stable matrix with high hematite concentration from two different deposits in Cameroon (Yaoundé). We studied the series of samples for their suitability as structural matrices for building applications. The suitability of lateritic concretions as materials for building structures is dependent on the stability of the Al-goethite and its progressive replacement by hematite under the influence of temperature, atmosphere and humidity. As induration proceeds, structural strength is enhanced. The interaction of goethite mottles and high water content (in a tropical zone) results in hardened matrix over time, through loss of water and progressive transformation of goethite to hematite. During building block use, this transformation does not reverse. 2 Petrology of Yaoundé region (Cameroon) In the region of Yaoundé, thick plates appear on the Precambrian lateritic land profile, mainly composed of migmatitic and gneiss bedrock. These rocks have undergone significant weathering in the humid tropical climate and the final stage of laterization of the soil is reflected in the crustal horizon or “duricrust”. Laterite is generally observed in the “median horizon” of the weathering profile. This hardened horizon is red or yellow with a vacuolar texture. Its thickness and hardness are variable and often includes a mixed-clay fraction. Geological work on the plates in the Yaoundé area [18–19] shows that the different stages of their formation can be understood through examination of the weathering profile, as follows, from bottom to top: • In the alteration layer, there is a fragmentation and dispersion of quartz veins containing microscopic crystallites of kaolinite. The matrix, saturated with kaolinite through a system of fine porosity micro- pores, is the site of accumulation of iron as goethite. • The median layer contains brown goethitic deposits, highly substituted for alumina, together with gibbsite nodules containing abundant garnets surrounded by aluminium oxides. Inside the nodules and kaolinite crystals, goethite is transformed into fine crystals of hematite [4]. The microporosity of kaolinite enhances accumulation of iron. Kaolinite will not dissolve or dissolves very slowly where quartz remains in the matrix [2, 4]. As iron content increases, a “duricrusting” mechanism progresses if and only if the hematite content is able to outweigh the goethite [4]. • In the red surface layer, we observe a redistribution of iron in the bleached region around micro-cracks, and significant loss results in wide micro-cracks. This induces a growing illuviation of clay toward the surface. When iron content is high and the quartz fraction is low by weight (less than 10 mass-%), replacement of kaolinite and hematite by aluminous goethite seems to be triggered. Widespread change occurs as disappearing “host attractive iron” (hematite) in the kaolinite causes a loss of stability in the structure of nodules [2, 4]. A system that previously tended toward closure (nodulation) passes to a system that is open (destruction of nodules). This opening process is enhanced as the surface horizon becomes waterlogged in the rainy season. Hydration promotes transformation of hematite to goethite and kaolinite to gibbsite, marked by a concentric pattern of goethite observed around nodules [19]. It ultimately leads to degradation of the formerly sharply-defined nodules and the integrity of the massive plate. Iron and aluminium freed from the upper profile later migrate downwards during favourable climatic conditions to participate in the duricrusting mechanism [2, 4, 18]. Even if iron content is high, the ferruginous accumulation is not extensive, since the iron is in the form of goethite [2, 4]. The stability of indurated structures seems be ensured if a threshold amount of kaolinite remains inside the nodules. If the kaolinite is hydrated and then replaced by aluminium goethite or gibbsite nodules, stability is no longer guaranteed [2, 4]. Hydration and disintegration take over, preventing dehydration and encrustation. Goethite appears as a identifying marker or may be an agent in the dismantling of the plates [3, 7]. Mottled clay at the base of the surface profile and the horizon gravel, and sensitivity to climatic fluctuations are the two Achilles heels of encrustation. Quartz favours creation of leaching structures while aluminium promotes kaolinite abundance and provides a facility for the accumulation of iron. 3 Materials and experimental 3.1 Materials The two studied laterite formations were located at Yaoundé, in quarries exploited for the production of construction gravel. The geographical coordinates for collection of red and yellow samples were: N03°50.138’, E011°28.665’ and N03°52.781’, E011°25.161’ at altitudes of 748 m and 761 m. The two quarries are both situated in high hills with indurated laterites available throughout their entire volume. The geological profile at the sites consists of three levels of superficial lateritic material overlaid above migmatitic rock. Classical materials are observed from the base to the top: an isalteritic layer; an iron nodular layer with blocks of duricrust, currently being dismantled; and a surface clayey layer. Two colours of duricrust were sampled, red and yellow. The red duricrust contained very hard nodules >50 mm in diameter, while crumbly nodules (0.5 and 1 mm in diameter) were in the yellow duricrust. The samples were labelled RG (red duricrust) and YW (yellow duricrust). Rectangular block specimens (16 cm × 4 cm × 4 cm) were made by sawing the samples using a Clipper device. Very small samples (2 cm × 1 cm × 1 cm) from homogeneous highly-indurated areas of the sample material were also prepared to assess the continuity of the matrices. 3.2 Experimental 3.2.1 Water absorption, density, porosity and compressive strength The two laterite samples were physically characterized by measuring their apparent density, water absorption, compressive strength, structure and porosity. Water absorption and bulk density were measured on sectioned samples using Archimedes’ principle. The final values were an average of measurements for three specimens of each indurated laterite. An AutoPore IV 9500 mercury intrusion porosimeter (MIP) with two low-pressure ports and a high-pressure chamber was used, covering a pore diameter range from approximately 360 to 0.005 μm. Specimens of ~ 1 cm3 volume from mechanical test samples were used. The measurement involved: (1) a low-pressure test with a penetrometer (from 0 to 50 psia/345 kpa, resolution 0.01psi, with pore diameter 360 to 3.6 μm and transducer accuracy of +1 of ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 1 (a) (b) Fig. 1 • Stereomicrographical features of the Hematite (a) and Goethite (b) based indurated laterites from Yaoundé, Cameroon: HN – Hematite nodule, GN – Goethite nodule, mn – micro-nodule matrix, y – yellow fringe, h – red fringes, v – voids 2 (a) (b) Fig. 2 • Full dense area of the indurated matrix of a) hematite-rich and b) goethite-rich laterite full scale) and (2) a high-pressure step (resolution 0.1 psi from atmospheric pressure to 3000 psia, and 0.2 psi from 3000 to 33000 psia/228 MPa, with pore diameter 6 to 0.005 μm and transducer accuracy of +1 of full scale). After sample weight, analysis conditions, penetrometer properties and report options are set, the AutoPore software automatically records the porosity data measurements. Mercury porosimetry is based on a capillary law governing liquid penetration into small pores. This law, in the case of a non-wetting liquid like mercury and cylindrical pores, is expressed by the Washburn equation: 冢冣 1 D=– 4 acos p where D is pore diameter, p the applied pressure, a the surface tension, and is contact angle, all in consistent units. The surface tension of mercury varies with its purity. The generally recommended value used for the test was 485 dynes/cm. The contact angle between mercury and the test solid containing pores varies depending on solid composition. A value of 130 ° is recommended in the absence of specific information to the contrary. The volume of mercury V penetrating the pores is measured directly as a function of applied pressure. This p-V information serves as a unique characterization of pore structure. Equation (1) uses a specialized model that assumes pores are cylindrical in shape. As this is rarely the case for real materials, the model may not accurately represent actual pores, but its use is generally accepted as a practical means for treating what would otherwise be a most complex problem. Mercury extrusion from pores upon reduction of pressure is also in general accord with equation (1), but it tends to overestimate the size of pore diameters. Mercury extrudes at pressures lower than those at which the pores were filled. This is usually attributed to receding contact angles being less than advancing ones. It is also commonly observed that actual pores always trap some of the mercury. This is likely due to pore irregularities giving rise to enlarged internal chambers and “inkwell” structures. These two phenomena give rise to hysteresis behaviour in plotted P-V curves, i.e. distinct intrusion and extrusion paths. The concept of tortuosity can be used to describe compaction of the structural matrix in materials. For semi-vitrified bodies, it refers to the ratio of diffusivity in free space to diffusivity in the porous medium. Tortuosity can be quantified by the use of 3D reconstructions, where the sum of distances between intermediate centroids of the pore is divided by the Euclidean length of the pore. The compressive strength of the samples was measured with a “Perrier” compression testing machine with a displacement of 1 mm/ min for larger samples of dimensions 5 cm × 5 cm × 14 cm. An MTS 810 material testing machine was used for small samples (1 cm × 1 cm × 2 cm) selected from material having homogeneous area with high densification and low inclusions. Both compressive tests were done under maximum loading of 5000 kN. The results shown here are averages from tests on three similar specimens. Mineralogical analyses were carried out with a Philips Model PW 3710 X-ray powder diffractometer (XRD; Cu-K_, Ni-filtered radiation). The XRD testing was performed on finely-ground RG and YW powder samples. Differential thermal analysis (DTA/TGA) was performed on the two samples, using a Netzsch STA 429 CD unit in air atmosphere. The analysis was carried out on ground powders at a heating rate of 10 °C/min in platinum-rhodium crucibles using calcined alumina as reference. 3.2.2 Stereomicroscopy and scanning electronic microscope analysis Pieces of size 1 cm × 1 cm × 0.3 cm fractured by mechanical testing were polished (using diamond paste after grinding with silicon carbide powders and water) for surface observations with an Olympus SZX10 DFPlan stereoscope. The polished surfaces were washed with acetone, dried and gold-coated for image analysis using SEM. A scanning electron microscope equipped with an EDS detector (operating at 20 kV) was used for microstructural examination of the specimens with secondary electron images (SEI) and back scattered images (BSI). Microanalysis for phase identification and distribution was performed using the embedded EDS digital controller and control software. 4 Results 4.1 Phases, structure and microstructure of indurated laterites Typical morphology for the indurated laterite matrices is shown in Fig. 1 a for the RG sample and in Fig. 1 b for YW. Both materials have structural concretions in which various amounts of kaolinite fill pores and micro-cracks. The matrices are heterogeneous where components can be identified. The images show: • Porous, high ferruginous areas with open cavities of relatively large size for hematite (Fig. 1 a) and goethite nodules (Fig. 1 b) • Compact and dense regions having significant hardness and very low porosity. ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( These areas are completely red in the hematite-based indurated laterites and yellow in the goethite-based indurated specimens (Fig. 2) • Micro-nodule matrix transitions between yellow and red matrix where there is a mix of hematite and goethite nodules of size smaller than completely mature nodules • Areas of yellow non-porous matrix mass essentially rich in kaolinite. The different areas are cemented together but show evidence of discontinuity in their engineering properties (e.g. hardness, density, porosity). The phenomenon of induration generates this coarse structure and enhances porosity within specimen samples. Figure 3 shows selected micrographs illustrating the microstructural features of the RG (Figs. 3 a–b) and YW samples (Figs. 3 c–d). The RG matrix has high iron concentration (XRD in Fig. 4 a). The iron crust here has a sheet structure, although in isolated areas a globular iron structure is dominant. The spectrum of the YW matrix (Fig. 4 b) shows higher concentrations of alumina and silica compared to RG. This high alumina and silica content comes from kaolinite. Microstructural investigations have demonstrated that YW is dominated by the typical situation displayed in Fig. 3 c, a matrix with three distinct areas. In the first region (K), iron accumulation is advanced, with a mixture of iron in sheet structure and globular form, as can be observed under high magnification (Fig. 3 d). In this area, the kaolinite that has already resisted dissolution and transformation is visible within the iron crust and is completely dehydrated. The second area (FN) is dominated by a significant concentration of iron-rich nuclide nodules. In this region, the nuclide nodules are still mixed with clay in a compact structure leaving few voids. Figure 3 c shows the direction of transformation of matrix to iron crust through arrows situated in the third, transitional area between the kaolinite-rich and nuclide nodule regions. These results demonstrate that the YW sample has not reached its final step of laterite transformation as indicated in the literature. The YW sample is essentially made up of goethite. In this case, additional weathering would eventually result in a hematite-based iron crust end-product with low kaolinite inclusion as in the RG sample. Further analysis of the iron crusts in the two samples shows that those from the sample RG (Fig. 5 a) can be described as mostly homogeneous Fe2O3-based sheet structure matrix in which some FeOOH globular structures are dispersed (Fig. 5 b). As evi- 3 Fig. 3 • Selected micrographs illustrating the microstructural features of the indurated laterites RG (a and b) and YW (c and d): M – Matrix, FS – iron sheets, FG – globular iron, v – voids, q – quartz, K – kaolinite-rich area adjacent to nodule matrix, FN – area of high concentration of nuclide nodules 4 Fig. 4 • Spectra illustrating the chemical composition of the indurated laterites RG (a), YW (b) and high concentration of iron crust in RG (c) and YW (d) denced by EDS analysis, the iron crust in RG is dominated by hematite with atomic ratio 2 : 3 between iron and oxygen. Sample YW contains a mix between goethite and hematite in a complex geometry with high heterogeneity. XRD patterns of the two indurated laterites (RG and YW) are shown superimposed in Figs. 6 a–b. The minerals present in the two materials, kaolinite, quartz, goethite, hem- atite, anatase, and ilmenite, are very similar. Larger magnification (Fig. 6 b) shows significant amorphous phase, quartz and hematite present in the RG sample. The amorphous phase can be attributed to silica accumulated during induration. The presence of amorphous silica and quartz is generally at the expense of kaolinite. According to Tardy et al. [2, 4, 6], dissolution of kaolinite precedes laterite iron-accumu- ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 2 FeOOH A Fe2O3 + H2O 5 D E F G Fig. 5 • Micrographs of iron crust in RG (a and b) and YW (c and d) matrices lation. The indurated laterite RG contained higher goethite and kaolinite content compared to YW. The difference in colour of the two studied plates (red for RG and yellow for YW) likely arises from the more predominant proportion of goethite in RG and hematite in YW [18–21]. The two samples were collected from deposits already under exploitation, so it is difficult to assess the effect of atmospheric air exposure at each location. However, the large volume of previously excavated blocks indurated enough to be considered for structural use indicates that the deposit formed and hardened many years ago. Lecomte-Nana [22] and many other authors that studied Yaoundé region deposits suggest that progressive accumulation of iron with dissolution of kaolinite is the mechanism for formation of indurated matrices in tropical humid climates. This mechanism can be adopted for the Yaoundé deposits investigated in this study. The laterite samples studied by Lecomte-Nana [22] had similar mineralogy, also containing kaolinite, quartz, hematite and goethite. The indurated samples in our work had less kaolinite and greater goethite/hematite content. As observed by Schellmann [17], the primary minerals are generally not fully dissolved but are partially transformed into secondary minerals that are more stable under intensive weathering. Figures 7 a–b shows the thermochemical transformation of the two laterites under increasing temperature. From the DTA curves of Fig. 7 a, a very small endothermic peak is observed before 200 °C for both goethite and hematite-based indurated laterites. This is confirmed by a mass loss on ignition of less than 2 mass-% (Fig. 7 b). The endothermic peak at 345 °C corresponds to transformation of goethite to hematite following the equation: (2) The intensity of the peak is greater for YW than for RG. At this stage, the total weight loss is 4.2 mass-% for RG and 5.4 mass-% for the YW sample. These results are consistent with mineralogical observations that goethite content is higher when kaolinite is still present and that transformation of goethite to hematite is linked to reduction of kaolinite. At temperatures of 529 °C and 532 °C, a significant endothermic peak characterizes the departure of structural water from the kaolinite in the indurated RG and YW laterites. The intensity of the RG endothermic peak is a consequence of its high kaolinite content, as noted previously. The weight loss corresponding to dehydroxylation of RG was 4.1 mass-% and the value for YW was 9.08 mass-%. The small endothermic peak at 577 °C observed for laterite RG is attributed to transformation of _-quartz to `-quartz. The absence of this feature in the YW sample suggests that its quartz content was comparatively low. These observations are in agreement with XRD patterns. The exothermic peaks present at 974 °C are similar to the paired endothermic peaks at 529 and 532 °C. They indicate formation of spinel (SiO2·Al2O3) or mullite (2SiO2·3Al2O3). In the study materials, decomposition of kaolinite and formation of mullite or spinel takes place at relatively low temperatures. In standard kaolinite, decomposition generally occurs at 575 °C and mullite forms at temperatures >980 °C. The accumulated iron affects the kaolinite structure, reducing crystallinity [6–10] and enhancing the kinetics of decomposition. 4.2 Porosity, densification and mechanical properties The two indurated materials have porous structure. The cumulative pore volumes of 0.160 ml/g for RG and 0.110 ml/g for YW (Fig. 8) are close to that of fired bricks or Table 1 • Physico-mechanical properties of the indurated laterites RG and YW Samples RG YW Color Reddish Yellowish Compressive strength / MPa Random samples 5 cm × 5 cm × 14 cm Indurated homogeneous 5 cm × 5 cm × 14 cm 3.46 (1.52) 2.30 (1.10) 12.4 (0.9) 8.9 (1.2) Water absorption / mass-% Bulk density / g/cm3 10.96 (1.96) 13.38 (0.76) 2.38 (0.29) 2.27 (0.13) Table 2 • Porosity parameters of the indurated laterites RG and YW RG YW Cumulative pore volume / ml/g Total porosity / vol.-% Total pore area / m2/g Stem volume / vol.-% Permeability / mdarcy Tortuosity / unit 0.16 0.11 45.97 18.57 14.49 9.86 43 34 63.45 11.24 7.71 16.58 ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 6a 6b e e Fig. 6 b • High magnification of the XRD patterns with evidence of amorphous materials 7a 7b +:*=TN ;.THZZ Fig. 6 a • XRD patterns of the two indurated laterites: K – Kaolinite, Q – quartz, Go – Goethite, He – Hematite, An – Anatase, Il – Ilmenite ;LTWLYH[\YL* ;LTWLYH[\YL* Fig. 7 a • DTA curves of the indurated laterites RG and YW concrete cement [22]. From Fig. 8 b, the mean pore size is concentrated between 0.01 and 0.1 μm. Large pores are randomly dispersed in both matrices (Figs. 9 a–b) and in some cases are larger than the range of measurement of the mercury intrusion porosimeter used in the study. Large pores (q >300 μm) are commonly observed in goethite and hematite-based indurated laterites. The fraction of pores with diameter >363 μm was 2.14 vol.-% for both samples. 24.30 vol.-% (RG) and 30 vol.-% (YW) of pores have diameter >7.6 μm. RG has 55 vol.-% of pores with diameter <0.1 μm while YW has 43.5 vol.-%. Figure 9 shows that the pores with diameter >1 μm have highly variable size and this can explain why no clear peaks are observed in the interval between 1 and 363 μm in Fig. 8 b. The variations in observed pore size reflect the heterogeneous nature of the two matrices. For sample RG pores with size less than 0.1 μm, a volume peak is observed at 0.05 μm to- Fig. 7 b • TGA curves of the indurated laterites RG and YW gether with others at 0.07, 0.044, 0.039, 0.035, 0.033, 0.01 and 0.006 μm. Over the same size interval, sample YW has a significant peak at 0.0062 μm, together with lesser peaks at 0.028 and 0.01 μm. Water absorption after 24 h immersion was 11 % for sample RG and 13.5 % for YW. Bulk density was 2.38 g/cm3 for RG and 2.27 g/cm3 for YW (Table 1). Compressive strength was measured as 3.46 MPa for randomly chosen RG samples and 2.30 MPa for YW, increasing to 12.4 MPa and 8.9 MPa, respectively, when well-indurated homogeneous samples were tested. In general, RG had lower water absorption, higher compressive strength, more cumulative pore volume and greater total porosity than YW (Tables 1–2). The total pore area is also higher for RG than YW (14.49 m2/g compared to 9.85 m2/g). Finally, the tortuosity of sample YW was 16.58 and 7.70 for RG. These observations show that the RG sample had a relatively more porous structure than YW, which might be due to the fact that the final step of induration removes water and kaolinite which, when present, interfere with fine-scale porosity and increase tortuosity. Although it has lower cumulative pore volume and total porosity and greater tortuosity, the YW sample has less compressive strength and lower density. This is explained by the fact that a significant portion of the kaolinite present in the laterite matrix is loosely linked to the structure and does not provide enough bonding strength to enhance matrix integrity. The induration of the YW samples also appears to be less extensive. It is reasonable to suppose, as stated in the literature, that the YW deposit has made less progress in transformation to a more hardened form through replacement of goethite by hematite. Moreover, the formation of indurated hematite-based lateritic concretes takes place in the context of a relative absence of water. This results in desiccation, volume contraction, formation ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 8b +PMMLYLU[PHSPU[Y\ZPVUT3NT *\T\SH[P]LWVYL]VS\TLT3N 8a 7VYLKPHTL[LYT 7VYLKPHTL[LYT Fig. 8 a • Cumulative pore volume (mL/g) of the two indurated laterites of micro-cracks and creation of voids that affect the porosity values measured by mercury intrusion porosimetry. The compressive mechanical strength of indurated laterites was found to be essentially a function of its heterogeneity and porosity. This was clearly demonstrated by the compressive strength differences measured between the large and small test samples. While it is possible to have small volumes of coherent, homogeneous laterite matrix, it is difficult to have continuity across larger-scale structures and phases. When multiplicities of small integrated volumes occur, the connections between them are generally of heterogeneous character. This study provides evidence implicating the role of local heterogeneities in the failure process of indurated laterites. This heterogeneity and variations in porosity and pore size distribution, act to diminish the high connectivity and compressive strength of the isolated, small-sized, coherent and homogeneous indurated matrix components. Interactions between phases are common in indurated laterites because they normally contain various minerals (of coarsening structure), pores and microfractures which can be fluid or kaolinitefilled. Digitized stereoscope microstructure image data can be used to measure the characteristics of these different minerals, pores and micro-fractures and quantify the degree of heterogeneity. 5 Discussion and conclusions Efficient and economic utilization of laterite-based materials for various structural applications is a necessity and a challenge for the tropical and subtropical areas of the world. It is more common for people living in these areas to have exploitable laterite Fig. 8 b • Pore size distribution in the indurated laterites RG and YW 9 (a) (b) Fig. 9 • Stereomicrograph features of the Hematite (a) and Goethite (b) based indurated laterites showing larger size pores than clay. These lateritic soils have unique properties and can be developed into new materials for building and construction. Even where deposits are not directly exposed in readily-accessible matrices of appropriate strength, mottled areas can be exposed to the atmosphere and sun and selfindurate, resulting in hardened blocks and a simple, efficient production cycle for creation of structural materials. This investigation of material from two indurated lateritic Yaoundé deposits examined matrices with relatively high porosity, including large size pores. In the case of the YW deposit, these pores were partly filled with kaolinite, inducing a decrease in cumulative pore volume and an increase in tortuosity. We conclude with the following summary remarks about our results: • The two studied indurated laterite deposits contained kaolinite, quartz and ilmenite as common minerals. The RG sample contained more hematite than goethite iron minerals, while YW showed the presence of greater goethite content than hematite. The iron phases in RG were pre- dominately in sheet structure form and YW had more globular iron. • Local heterogeneity couples with variations in porosity and pore size distribution to bring down the compressive strength of indurated matrices and compromise the connectivity and strength of isolated coherent and homogeneous component volumes. Interactions that promote failure between phases are common in indurated laterites due to the presence of various coarse minerals, pores, and micro fractures that can be fluid or kaolinite-filled. • Digitized stereoscope and scanning electron microscope (SEM) image data of laterite microstructure, such as the characteristics of different minerals, pores and micro-fractures, can be used to quantify the level of heterogeneity. • Better understanding of the mechanisms and capacity of laterite matrices to form hardened body structures is important and crucial for potential expanded use of the materials. Improved exploitation of laterite matrices is certainly possible. ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( Laterite phases were found to be connected by cement-like material identified as amorphous silica. It is suggested that as substitution of iron in kaolinite occurs, its crystallinity is diminished and disordering increases [15–18]. This disorder directly affects dissolution and polycondensation of the kaolinite matrix. Singh and Gilkes [23] attributed the induration of kaolinitebased laterites to the presence of amorphous silica from organic matter. Wetting and drying cycles induce growth of a silica layer deposited by the dissolution of embedded organic matter. The deposited silica is absorbed on the kaolinite surface and eventually welds adjacent laterite phases at their points of contact [23]. Even less than 5 mass-% silica content is sufficient to bind the whole matrix without filling pore space to a significant extent. This is in agreement with microstructural observations of the mineralogy of the two indurated laterites under study. Major amorphous silica phase was identified in RG, the more hardened of the two samples. It provides strength and connectivity between coarse phases, allowing the matrices to remain porous with transformed iron sheet-based structures. The laterite concretes have micro-, mesoand macro-pores which negatively affect the final mechanical properties and limit many potential uses of the materials. However, when use is appropriate for an application, the materials are a promising alternative to many conventional building and construction materials otherwise produced at the expense of the environment [24, 25]. Houses, internal structures, bridges, roads, and other constructions can be built using indurated laterites which display high density, low water absorption and good long-term stability. Their integrity is insured by the cement-like amorphous filler materials that hold the laterite structure together. The results of this study add to understanding of hardened lateritic concretes and can be important in drawing a protocol for production and preparation of dimensioned laterite blocks for structural applications. Natural pieces, easily dimensioned, when used for building and construction are economically suitable, energy-efficient and environmentally friendly. Their physical properties (water absorption between 11 and 13.5 mass-%, density ~2 g/cm3, stability in water, and the intrinsic strength of the interconnections between coarse phases) allows their classification as alternative hollow bricks. Through intelligent and economical utilization of this technology and related products, the countries of tropical areas, and particularly Cameroon, can produce construction materials and enhance building practices, while helping to save nature and the environment. Acknowledgment The authors of this article wish to acknowledge a contribution from The Academy of Sciences for the Third World (TWAS): Grant No.: 11-024 RG/CHE/AF/AC-G; UNESCO FR:3240262695. References [1] Trolard, F., Tardy, Y.: A model of Fe3+-Kaolinite, Al3+Goethite, Al3+-Hematite equilibria in laterites. Clay Minerals 24 (1989) 1–21 [2] Tardy, Y., Trolard, F., Roquin, C., Novikoff, A.: Distribution of hydrated and dehydrated minerals in lateritic profiles and landscapes, Geochemistry of the earth’s surface and of mineral formation, 2nd Internat. Symposium, July, 2–8, Aix en Provence, France, (1990) 133–136 [3] Nahon, D.: Curasses ferrugineuses et encroûtements calcaires au Sénégal Occidental et en Mauritanie, Systèmes évolutifs: Géochimie, structures, relais et coexistence. Sci. Geol. Mém. 44 (1976) 232 pp [4] Tardy, Y., Novikoff, A.: Activité de l’eau et déplacement des équilibres gibbsite-kaolinite dans les profils latéritiques. C.R. Acad. Sci., Paris, 306, serie II, (1988) 39–44 [5] Beauvais, A., Tardy, Y.: Degradation and dismanting of iron crusts under climatic changes in Central Africa. Cehmical geology 107 (1993) 277–280 [6] Tardy, Y., Nahon, D.: Geochemistry of laterites, stability of Al-goethite, Al-Hemtaite, and Fe3+-Kaolinite in Bauxites and Ferrites: An approach to the mechanism of concretion formation. Amer. J. of Sci. 285 (1985) 865–903 [7] Nahon, D., Janot, C., Karpoff, A.M., Paquet, H., Tardy, Y.: Mineralogy, petrography and structures of iron crusts (ferrites) developed on sandstones in the western part of Senegal. Geoderma 19 (1977) 263–277 [8] Beneslavsky, S.I.: New aluminum-bearing minerals in bauxites: Akad. Nauk SSSR, Doklady 113 (1957) 367–369 [9] Simon, A., Lang, M., Seidel, M.: Substitutions dans les hydroxydes FeOOH et AlOOH : Chem. Zvesti 13 (1959) 733–736 [10] Janot, C., Gilbert, H., de Grammont, X., Biais: Etude des substitutions Al-Fe dans des roches latéritques. Soc. Française Minéralogie Cristallographie bull. 90 (1971) 213–223 [11] Janot, C., Gilbert, H., Tobias, C.: Caracterisation de kaolinite ferrifères par stechiométrie Mossbauer. Soc. Francaise Minéralogie Crystallographie bull. 90 (1973) 281–291 [12] Schwertmann, U., Murad, E.: Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals 31 (1983) 277–284 [13] Schwertmann, U., Friedl, J., Stanjek, H.: From Fe(III) ions to ferrihydrite and then to hematite. J. of Colloid and Interface Sci. 209 (1999) 215–223 [14] Schwertmann, U., Stanjek, H., Becher, H.-H.: Longterm in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25 °C. Clay Minerals 39 (2004) 433–438 [15] Kamgang, K.B.V., Ekodeck, G.E., Njilah I.K.: Evolution géochimique des formations latéritiques dans l’écosystème périforestier du sud-est cameroun: le site de kandara. African J. of Sci. and Technology (AJST) Science and Engineering Series 2 (2001) 19–32 [16] Maignien, R.: Review of research on latérites. UNESCO. Natural resources research IV. Printed by Vaillant-Carmanne, Liège, (1966) 136 p. [17] Schellmann, U., Schulze, D.G., Murad, E.: Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Mossbauer spectroscopy. Soil Sci. Soc. Amer. J. 46 (1982) 869–875 [18] Yongue, F.R.: Contribution à l’étude pétrologique de l’alatération et des faciès de cuirassement ferrugineux des gneiss migmatitiques de la région de Yaoundé. These de doctorat 3ème cycle de l’Université de Yaoundé, (1986) 209 p. [19] Onguene Mala: Différenciations pédologiques dans la région deYaoundé (Cameroun): Transformation d’un sol rouge ferra,lIitique en sol à horizonjaune et relation avec l’évolution du modelé. These de doctorat l’Université de Paris VI, (1993) 294 p. [20] Laplante, A.: Les sols rouges latéritiques formes sur les basaltes anciens au Cameroun. Actes et Comptes Rendus du Vème Congrès Internat. de la Science du Sol, Léopoldville,16–21 août 1954, IV (1954) 140–143 [21] Maignien, R.: Differents processus de cuirassement en A. O. F. Centre de Pédologie de Hann. Extrait des Comptes Rendus de la 2e Conférence lnterafricaine des Sols, Léopoldville, 9–14 août 1954, document 116 (1954) 1469–1486. [22] Lecomte, G.L., Lesueur, E., Bonnet, J.P., Lecomte, G.: Characterization of a lateritic geomaterial and its elaboration through a chemical route. Construction and Building Mater. 23 (2009) [2] 1126–1132 [23] Singh, B., Gilkes, R.J.: The recognition of amorphous silica in indurated soil profiles. Clay Minerals 28 (1993) 461–474 [24] Patrick, N., Lemougna, Melo, U.C., Kamseu, E., Tchamba, A.B.: Laterite Based Stabilized Products for Sustainable Building Applications in Tropical Countries: Review and Prospects for the Case of Cameroon. Sustainability 3 (2011) 293–305 [25] Kasthurba, A.K., Santhanam, M., Mathews, M.S.: Investigation of laterite stones for building purpose from Malabar region, Kerela state, SW IndiaPart 1: Field studies and profile characterization. Construction and Building Mater. 21 (2007) 73–82 Received: 27.05.2013 ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( S.E. Ahmed*, S.H. Abd El Rahim**, D.A. Abdel Aziz*, N.I. Abd El Ghaffar** Utilization of Granite Found in the Umm Had Area, Central Eastern Desert (Egypt), as Fluxing Material in the Preparation of Ceramic Recipes 7+($87+25 $%675$&7 .(<:25'6 The corresponding author, Prof. Doaa A. Abdel Aziz, earned her B.Sc. in chemistry from Ain Shams University (1981), her M.Sc. in inorganic chemistry from Cairo University (1992) and her Ph.D. in applied inorganic chemistry from Zazieg University (1997). Since 2011 she has been Professor in the Ceramic, Refractories and Building Materials Department of the National Research Centre, Egypt. She was awarded a scientific grant for six months at the Department of Engineering Materials, Sheffield University (UK), where she did research in the field of microwave dielectric ceramic materials. Her research interests include electrical insulators properties of conventional ceramics and dielectric materials based on perovskite structure – especially microwave dielectric materials. E-Mail: doaa_ziz@hotmail.com The Umm Had area is easily accessible following the Qusier-Qift asphalt road. Microscopically and petrochemically, Umm Had granitic rocks are classified into monzogranite, syenogranite and alkali feldspar granite. Granite represents a good source for the alkali oxides (K2O + Na2O) contained in the potash feldspar minerals (orthoclase and microcline) and the sodic plagioclase feldspar mineral (albite). These alkali feldspar minerals represent the main fluxing materials in ceramic recipes. A series of ceramic recipes was prepared by adding 30, 50, 60 and 70 mass-% of granite from Umm Had area, Central Eastern Desert, Egypt into the batch compositions. The sintering behaviour and degrees of densification of the ceramic bodies were evaluated by determining their physico-mechanical properties and characterizing them by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Samples with 30, 50 and 60 mass-% granite fired at 1150 °C for 1 h showed a higher bulk density ()2.47g/cm3) and bending strength (30 and 36 MPa). However, the G70 sample fired at 1100 °C for 1 h showed a slightly decreased density value (2.40 g/cm3) and bending strength (25 MPa). The increased physico-mechanical properties were mainly due to lower water adsorption ()0.87%), in addition to the major crystalline phases and glassy matrix formed during the firing process. These results illustrate the possibility of utilizing granite in ceramic tile production. 1 Introduction The Umm Had area is a part of the Central Eastern Desert of Egypt. The area is easily accessible from the east following the Red Sea highway along the coast to Quseir city (Fig. 1). The Qusier-Qift asphalt road leads to the area in the south and connects the River Nile with the Red Sea coast. The easy accessibility and the fact that granite is to be found there may encourage the construction of ceramic factories as well as the sustainable development and civilization in the Central Eastern Desert of Egypt. The geological, petrological, mineralogical, geochemical, petrochemical, geochronological “age dating” and geotectonics studies; assessment of ornamental stones, as well as the remote sensing and geographic information system (GIS) techniques in the Umm Had area have attracted the attention of many authors, e.g. [1–9]. The most used raw materials in traditional ceramic industries can be basically divided into three categories: plastic components (clay), fluxing components (feldspars) and inert components (quartz, sand). Many authors have demonstrated the possibility of a successful substitution of feldspars (flux) by other natural resource rocks with comparable chemical composition, such as zeolites [10], volcanic rocks and others in the production of ceramic bodies [11–15]. Fluxes are raw materials with a high amount of alkaline oxides, mainly K2O and Na2O which in reaction with silica and alumina, promote liquid phase formation that facilitates the densification. The liquid phase surrounds the solid particles and by surface tension enables the approach of particles, closing the porosity [16, 17]. The substitution of feldspars by other rocks can be used in the range of 15–75 mass-% for both conventional and fast firing regimes. Previous work reported that the granite could be used to * Ceramic Department, National Research Centre, 12622 Dokki, Cairo (Egypt) ** Geological Sciences Department, National Research Centre, 12622 Dokki, Cairo (Egypt) ceramic, granite, physico-mechanical properties, utilization Interceram 62 (2013) [6] improve the mechanical properties, workability and chemical resistance of conventional concrete mixtures. Moreover, granite was also investigated and found to be suitable as a feldspathic raw material that forms a glassy matrix at lower temperatures for the manufacture of floor tiles [18–20], porcelainized stoneware and tiles [21, 22], redclay ceramics [23], bricks [24], glass [25] and glass-ceramics [26], and glaze [27, 28]. The use of granite in ceramic bodies industries after detecting its potentialities is today considered as an activity to diversify products, decrease final costs as well as to provide alternative raw materials to a series of industrial sectors. Therefore, the aim of this work is the chemical and mineralogical characterization of granite from the Umm Had area, Central Eastern Desert (Egypt) for their utilization in the formulation of new stoneware ceramic bodies. Also, the effects of granite flux (30–70 mass-%) on the densification properties, crystalline phases and microstructure of the prepared bodies were investigated. ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 2 Materials and methods The geologic map of Umm Had area has modified using the Remote Sensing and the Geographic Information System (GIS) techniques. The mineralogical composition and petrographic study of the granite were accomplished in thin sections using Research Polarizing Microscope and some polished surfaces of the granite were also studied using Research Ore Microscope for their opaque minerals content. 2.1 Geological setting The Umm Had area lies in the Central Eastern Desert of Egypt between latitudes 26°00’–26°06’ N and longitudes 33°27’– 33°36’ E (Fig. 2). The studied area covered the following rock varieties: metasediments (amphibolites), serpentinite, metavolcanics, Hammamat sediments, Dokhan volcanics, post-Hammamat felsite, Umm Had younger granites (monzogranite, syenogranite and alkali feldspar granite) and Nubian sandstone. The field observations of the granite are shown in Figs. 3a, b, and c. 2.2 Processing The main raw materials used to formulate the various experimental mixtures include Tieh clay (from Sinai, Egypt) and granite (from the Umm Had area, Central Eastern Desert, Egypt). Chemical analyses of the raw materials (Table 1) were carried out at the National Research Centre in Egypt using an XRF wavelength dispersive spectrometer (Axios Advanced, PANalytical 2005). Table 2 illustrates the batch composition of the four formulations processed in the present work. Granite was added at the cost of Tieh clay with 30, 50, 60 and 70 mass-%. These batches are referred to in the text as G30, G50, G60 and G70, respectively. The mass fractions required for the various formulations were wet mixed in a ball mill for 1 h. The dried powders were processed in the form of discs 2.5 cm in diameter and 0.3 cm in thickness under a pressure of 20 kN. These discs were used to determine the physical properties. The specimens were dried at 110 °C and fired between 1000 and 1200 °C for 1 h. The firing schedule comprised heating, soaking at maximum temperature for 1 h and cooling to room temperature in 2 h. Physical properties in terms of bulk density, 1 ^ƚƵĚLJĂƌĞĂ hŵŵ ĨĨĞŝŶ hŵŵ ,ĂĚ YƵƐĞŝƌͲYŝĨƚ ƌŽĂĚ ϮϬŬŵ ďƵŝƌĂŶ &ĂǁĂŬŚŝƌ Fig. 1 • Landsat image showing the location of the area under study 2 Fig. 2 • Geologic map of the Umm Had area (Fowler, 2001; modified by Abd El Ghaffar, 2010) water absorption, and apparent porosity were determined by using the Archimedes water displacement method, as specified by the ISO 10545-3 Standard. Linear shrinkage was determined according to ASTM C356-03. Bars with dimension (1 × 1 × 7 cm) were processed under the same conditions and fired at selected maturing temperatures to measure the modulus of rupture by a threepoint method using the Instron Machine type 1128 Universal Testing. The micro- structure of the fired bodies was examined by using an electron-probe microanalyzer (EPMA, model: JEOL-JAX-840A, Japan) under operating conditions of 30 kV, attached to an EDAX unit for microanalysis. Specimens were mechanically polished, chemically etched by 20 % hydrofluoric acid solution for 30 s, thoroughly washed, dried and gold sputtered. The crystalline phases were identified by XRD analysis using Bruker apparatus, Axs, D8-ADVANCE (Germany, 2001). Table 1 • Chemical analysis of the raw materials used Constituents / mass-% SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO SrO Na2O K 2O P2O3 SO3 ZrO2 L.O.I. Tieh clay 47.27 1.51 35.01 0.38 – 0.02 0.29 0.37 0.01 0.05 0.62 0.02 0.11 12.40 Granite 74.22 0.02 14.26 1.07 0.03 0.10 0.69 – 3.63 5.13 0.02 0.04 – 0.90 ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 3 Fig. 3 • Field observations and microscopical investigations of Umm Had granite: (A) distant view showing low lying masses of granite – (B) close-up view showing an aplite dyke cutting the granite – (C) close-up view showing jointed pink blocks of granite with dimensions suitable for quarrying as ornamental stones – (D) photomicrograph showing orthoclase-perthite exhibiting a patchy type of perthitic texture (40x) – (E) photomicrograph showing orthoclase-perthite exhibiting a flame type perthitic texture (40x) – (F) Photomicrograph showing martite pseudomorphs after magnetite, later corroded by the gangues (200x) 3 Results and discussion 3.1 Characterization of the raw materials 3.1.1 Microscopical investigations Migascopically, Umm Had granitic rocks are hard and massive; they exhibit medium to coarse grains with pink and buff colours. Microscopically, Umm Had granitic rocks are divided into monzogranite, syenogranite and alkali feldspar granite. The granite represents a good source for the alkali oxides (K2O + Na2O) contained in potash feldspar minerals (orthoclase and microcline) and Table 2 • Calculated chemical composition of the mixtures investigated – G: granite (mass-%), K: clay (mass-%) Constituents / mass-% SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO SrO Na2O K2O P2O3 SO3 ZrO2 30G/70K 55.36 1.07 28.79 0.59 0.01 0.04 0.38 0.26 1.07 1.58 0.44 0.03 0.08 Batch compositions 50G/50K 60G/40K 60.75 63.44 0.77 0.62 24.64 22.56 0.73 0.80 0.02 0.02 0.06 0.07 0.44 0.47 0.19 0.15 1.77 2.12 2.59 3.10 0.32 0.26 0.03 0.03 0.06 0.04 70G/30K 66.14 0.47 20.49 0.87 0.02 0.08 0.50 0.11 2.48 3.61 0.20 0.03 0.03 the sodic plagioclase feldspar mineral (albite). These alkali feldspar minerals represent the main fluxing materials in the ceramic industries. The granite is holocrystalline, coarse-grained, non-porphyritic with subhedral-granular and perthitic textures (Figs. 3d, e). The essential minerals are composed of potash feldspars (orthoclase and microcline), quartz, sodic plagioclase feldspar (albite) and biotite. The accessory minerals include sphene, apatite and opaques “martite” (Fig. 3f). The secondary minerals (alteration products) are represented by sericite, muscovite and chlorite. • Orthoclase (K,Na) AlSi3O8 occurs as colourless allotriomorphic equigranular crystals. Albite is commonly intergrown with orthoclase to form orthoclaseperthite, which exhibits a perthitic texture (Figs. 3d, e). Sometimes, orthoclase is sericitized (altered) to sericite. Sericite is a minutely crystalline variety of muscovite. • Microcline (KAlSi3O8) occurs as colourless subidiomorphic to allotriomorphic equigranular crystals. Albite is commonly intergrown with microcline to form microcline-perthite, which exhibits perthitic texture. Microcline exhibits polysynthetic twinning. Sometimes, microcline is sericitized (altered) to sericite. • Albite (NaAlSi3O8) occurs as colourless idiomorphic to subidiomorphic equigranular crystals, which exhibit a subhedralgranular texture. It is distinguished by its albite-type lamellar twinning. Sometimes, albite is also sericitized (altered) to sericite. • Biotite K2(Mg,Fe)2(OH)2(AlSi3O10) forms brown pleochroic subidiomorphic equigranular crystals. Sometimes, biotite is altered to chlorite associated with opaques. • Quartz (SiO2) occurs as colourless allotriomorphic equigranular crystals. The mineral corrodes orthoclase, microcline, albite, biotite and opaques. • Opaques are mainly represented by martite (Fe2O3), which occurs as allotriomorphic aggregates pseudomorphs after magnetite (Fe3O4). It contains a few relics of pre-existing magnetite. The mineral is highly corroded and can be replaced by silicate gangue minerals (Fig. 3f). 3.1.2 Chemical and mineralogical analyses Figure 4 shows the XRD patterns of Tieh clay and granite. It can be seen that the clay contains kaolinite and quartz. The granite contains quartz, together with feldspar minerals such as microcline (KAlSi3O8) and minor amounts of albite (NaAlSi3O8). The minerals identified by XRD are in agreement with the results obtained by XRF (Table 1). ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 4 5 ;ĂͿ ϮϬђŵ ;ĐͿ ϮϬђŵ Fig. 4 • XRD of raw materials granite and Tieh clay ;ďͿ ϮϬђŵ ;ĚͿ ϮϬђŵ Fig. 5 • Microphotograph of SEM of fired bodies containing different proportions of granite: (a) 30 mass-%, (b) 50 mass-%, (c) 60 mass-%, (d) 70 mass-% 6 ume fraction and the extremely small size. This might prove to be evidence of the formation of a primary mullite that did not develop sufficiently at lower temperatures. It is well known that at a temperature of 650 °C decomposition of kaolinite with the formation of metakaolinite becomes thermodynamically possible: Al2O3·2SiO2·2H2O A Al2O3·2SiO2 + 2H2O The transformation of metakaolinite to mullite becomes thermodynamically favourable at temperatures above 962 °C: Fig. 6 • XRD analysis of fired granite bodies 3.2 Characterization of the fired bodies 3.2.1 Scanning electron micrograph SEM of polished and etched samples G30, G50, G60 fired at 1150 °C and G70 fired at 1100 °C are shown in Fig. 5a–d. A study of the microstructural reveals that all samples contain patches of acicular mullite crystallites phase embedded in the glassy matrix; large undissolved quartz grains remained at the core of mullite clusters. However, raising the percentage of granite from 30 to 70 mass-% led to the development of a more aggressive liquid phase content, as can be seen in Fig. 5d. 3.2.2 X-ray diffraction analysis Figure 6 represents the results of XRD analysis of fired samples. It can be seen that the main crystalline phases are mullite and unreacted quartz, in addition to trace amount orthoclase phases. The frequency of the crystalline phases is greatly affected by the granite content. The quantity of remaining unreacted quartz increases from G30 to G70 with an increase in the amount of granite. This is mainly due to the higher content of quartz in the original granite sample, as can be seen in Table 2. G30 and G50 show relatively higher proportions of mullite when fired at 1150 °C for 1 h, as evident from the intensity of the peaks in Fig. 6 and Table 2. However, raising the percentage of granite from 60 to 70 mass-% led to the development of a more liquid phase content that favoured the dissolution of primary mullite formed from clay after firing in G60 at 1150 °C and G70 at 1100 °C. The silica-rich glassy phase favours the recrystallization of secondary mullite needles. The weakest of the peaks belonged to the mullite phase in the samples with high content of granite. Probably, a small amount of tiny mullite was formed in the samples by the reaction of the metakaolinite caused by the dehydroxylation process of kaolin. However, this mullite phase was difficult to detect due to the vol- Al2O3·2SiO2 A (1/3) 3Al2O3·2SiO2 + (2/3) SiO2 So, mullite begins crystallizing at around 1000 °C. Meanwhile, the crystalline phases identified by XRD are confirmed by the results of the SEM in Fig. 5. 3.3 Physical properties Fig. 7a–c shows the changes in water absorption, apparent density and linear shrinkage of the sintered specimens as a function of the sintering temperatures and the granite content, respectively. The linear shrinkage increased with sintering temperature increase (due to dehydroxylation and containing metakaolinite then formation of new crystalline phases). The body becomes richer with the glassy phase, which helps to fill up the inter-particle spacing, as a result of which volume is reduced. The water absorption values decrease significantly at 1100 and 1150 °C. This behaviour is related to the lower viscosity of the liquid phase and the consequent improvement of the densification process produced at these temperatures. The temperature effect on the apparent density is similar to that observed for the water absorption. The best bulk density ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 7 Fig. 7 • Physical properties of bodies containing granite at different firing temperatures: (a) linear shrinkage, (b) bulk density, (c) water absorption, (d) apparent porosity granite, the amount of crystalline phases and the microstructure of the fired bodies, as shown in Fig. 8. In principle, due to densification, one would expect an increase in the bending strength varying between 30 and 36 MPa, with granite addition up to 60 mass-%. However, the reduction in BS with 70 mass-% granite addition can be explained by the higher amount of quartz content (Table 2). Quartz can promote the appearance of micro-cracks due to their volumetric variation at 573 °C. These micro-cracks are known to act as stress raisers, contributing to reducing the mechanical strength [29, 30]. 8 Fig. 8 • Bending strength of fired bodies containing different proportions of granite: G 30 mass-%, G 50 mass-%, G 60 mass-%, G 70 mass-% values of )2.48 g/cm3 were obtained with bodies containing granite G30, G50 and G60 fired at 1150 °C for 1h. However, the G70 sample fired at 1100 °C for 1 h showed a slight decrease in the density value (2.40 g/cm3). The low bulk density value of bodies containing 70 mass-% granite, attributed to the relatively high proportion of the glassy phase at the expense of the crystalline phase, is evident in Fig. 7d. The addition of granite from 30 up to 60 mass-% had a significant effect on increasing the bulk density values and lower water absorption up to ()0.87%). The bending strength (BS) is a property that is strongly dependent on the amount of 4 Conclusions The results presented and discussed in this work enable us to draw the following conclusions: 1. Granite is composed of quartz, orthoclase, microcline and albite. According to its characteristics, granite is a nonplastic ceramic material and, therefore, can be beneficially used in the production of stoneware ceramic bodies. 2. Samples with 30 and 50 mass-% granite show higher bulk densities, bending strengths and lower water adsorption, which is mainly due to the major crystalline phases and glassy matrix formed during the firing process. ,17(5&(5$0 5$:0$7(5,$/6:25/':,'( 3. XRD analysis indicates that no significant effect on mullitization was observed as a result of the granite addition. However, a gradual increase in the residual quartz content was observed with a progressive increase in the granite addition. 4. The ceramic bodies prepared by utilizing the granite meet the requirements for ceramic floor tiles according to the Standard specification for ceramic floor tiles (SABS no.1449-1989). References [1] Abd El Ghaffar, N.I.: Geological and petrological studies of some granitic rocks in the Central Eastern Desert, Egypt, and their economic aspects using remote sensing and GIS techniques. Ph.D. Thesis, Fac. Sci., Ain Shams Univ., Cairo (2010) [2] Akaad, M.K., Noweir, A.M., Kotb, H.: Geology and petrochemistry of granite association of the Arabian desert orogenic belt between lat. 25°35v and 26°30v N. Delta J. Sci. 3 (1979) 107–151 [3] El-Sayed, M.M.: Tectonic setting and petrogenesis of the Kadbora pluton. A late proterozoic anorogenic A-type younger granitoid in the Egyptian shield. Chemie der Erde 58 (1998) 38–63 [4] Fowler, T.: Pan African granite emplacement mechanisms in the eastern desert, Egypt. J. African Earth Sci. 32 (2001) [1] 61–86 [5] Greenberg, J.K.: Characteristics and origin of Egyptian younger granites. Summary. Geolog. Soc. Am. Bull. Part I 92 (1981) 224–232 [6] Mohamed, F.H.: Geochemistry of Bir Um Hibal complex: Alkaline syenites and granites from the eastern desert of Egypt. Chemie der Erde 56 (1996) 45–64 [7] Mohamed, F.H., Kanisawi, S.: The Pan African intrusive complex of Ghorabat area, southern Egypt: Geochemical and mineralogical constraint on arc related and anorogenic magmatism. Chemie der Erde 59 (1999) 259–286 [8] Osman, A.F., El-Alfy, Z.S., Abd El Rahim, S.H., Abd El Ghaffar, N.I.: Discriminations of neoproterozoic granitic phases in the Central Eastern Desert of Egypt, using enhanced thematic mapper data with field and petrographic studies.Egypt. J. Geology 54 (2010) 96–113 [9] Stern, R.J., Hedge, C.: Geochronological and isotopic constrains on late precambrian crustal evolution in the eastern desert Egypt. Am. J. Sci. 285 (1985) 97–172 [10] Gennaro, R., Cappelletti, P., Cerri, G., Gennaro, M., Dondi, M., Guarini, G.: Influence of zeolites on the sintering and technological properties of porcelain stoneware tiles. J. Eur. Ceram. Soc. 23 (2003) 2237–2245 [11] Ibrahim, D.M., Sallam, E.H., Khalil, A.A., Naga, S.M.: Nepheline syenite-talc low temperature vitrified bodies. Ceram. Inter. 7 (1981) 69–72 [12] Burat, F., Kangal, O., Onal, G.: An alternative mineral in the glass and ceramic industry: nepheline syenite. Miner. Eng. 19 (2006) 370–371 [13] Salem, A., Jazayeri, S.H., Rastelli, E., Timellini, G.: Dilatometric study of shrinkage during sintering process for porcelain stoneware body in presence of nepheline syenite. J Mater. Process Technol. 209 (2009) 1240–1246 [14] Ryshchenko, M.I., Shchukina, L.P., Fedorenko, E.Y., Firsov, K.N.: Possibility of obtaining ceramogranite using quartz-feldspar raw material from Ukraine. Glass Ceram. 65 (2008) [1–2] 23–26 [15] Tereshchenko, I.M., Pun’Ko, G.N., Serikova, L.V.: Optimization of ceramic granite composite compositions. Glass Ceram. 57 (2000) [11–12] 435–437 [16] Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to Ceramics. 2nd ed., Wiley, New York (1975) 495 [17] Emiliani, G.P., Corbara, F.: Tecnología Cerámica: La Lavorazione. Gruppo Editoriale Faenza Editrice, Faenza (1999) 97 [18] Naga, S.M., Sallam, E.H., Abdel Aziz, D.A.: Verified heavy-duty floor tiles from Egyptian raw materials. cfi-Ber.DKG 70 (1993) 10 [19] Segadães, A.M., Carvalho, M.A., Acchar, W.: Using marble and granite rejects to enhance the processing of clay products. Appl. Clay Sci. 30 (2005) 42–52 [20] Torres, P., Manjate, R.S., Cuaresma, S., Fernández, H.R., Ferreira, J.M.F.: Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 27 (2007) 4649–4655 [21] Hernández-Crespo, M.S., Rincón, J.M.: New porcelainized stoneware materials obtained by recycling of MSW incinerator fly ashes and granite sawing residues. Ceram. Inter. 27 (2001) 713–720. [22] Torres, P., Fernandes, H.R., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F.: Incorporation of granite cutting sludge in industrial porcelain tile formulations. J. Eur. Ceram. Soc. 24 (2004) 3177–3185 [23] Acchar, W., Vieira, F.A., Hotza, D.: Effect of marble and granite sludge in clay materials. Mater. Sci. Eng. A 419 (2006) 306–309 [24] Menezes, R.R., Ferreira, H.S., Neves, G.A., Lira, H.L., Ferreira, H.C.: Use of granite sawing wastes in the production of ceramic bricks and tiles. J. Eur. Ceram. Soc. 25 (2005) 1149–1158 [25] Hojamberdiev, M., Eminov, Ash., Yunhua, Xu.: Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceram. Inter. 37 (2011) 871–876 [26] Pisciella, P., Crisucci, S., Karamanov, A., Pelino, M.: Chemical durability of glasses obtained by vitrification of industrial wastes. Waste Manage 21 (2001) 1–9 [27] Marabini, A.M., Plescia, P., Maccari, D., Burragato, F., Pelino, M.: New materials from industrial and mining wastes: Glass-ceramics and glass and rockwool fiber. Int. J. Miner. Process 53 (1998)121–134 [28] Romero, M., Rincón, J.M., Acosta, A.: Crystallisation of a zirconium based glaze for ceramic tile coatings. J. Eur. Ceram. Soc. 23 (2003) 1629–1635 [29] Pavlov, V.F., Mitrokhin, V.S.: Formation of mullite in clay firing and its connection with the properties of products. Trudy lnstituta NIlstroikeramika 32 (1979) 53–75 [30] Vieira, C.M.F., Soares, T.M., Sánchez, R., Monteiro, S.N.: Incorporation of granite waste in red ceramics. Mater. Sci. and Eng. A 373 (2004) 115–121 Received: 03.06.2013 IN D EX O F ADV E RT I S E RS Ceramics China 2014 Eltra GmbH GiMA International Exhibition Group GmbH Rimini Fiera S.p.A. Unifair Exhibition Service Co. Ltd. CN-Guangzhou D-Haan D-Hamburg I-Rimini CN-Guangzhou 429 FC BC 417 IFC ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 M. Mabrouk1,2, A.A. Mostafa1,2, H. Oudadesse1, A.A. Mahmoud3, M. I. El-Gohary 4 Bioactivity and Drug Delivering Ability of a Chitosan/46S6 Melted Bioactive Glass Biocomposite Scaffold 7+($87+25 The corresponding author, Mostafa Mabrouk, is Researcher at the Biomaterials Department, National Research Centre, Cairo (Egypt). His research interests include the synthesis and characterization of biomaterials and nanomaterials. E-Mail: owka_05@yahoo.com 1 Introduction Polymeric scaffolds have been demonstrated to have great potential for tissue engineering, for they serve to support, reinforce, and in some cases organize tissue regeneration. Chitosan is natural polymer made of glucosamine and N-acetylglucosamine units linked by 1–4 glycosidic bonds and has been proven to be biologically renewable, biodegradable, biocompatible, nonantigenic, nontoxic, and biofunctional [1]. The use of chitosan for tissue engineering as a scaffold material has been reported, and porous chitosan matrix has been suggested as a potential candidate for bone regeneration due to its proper biological and physical properties [2]. Chitosan and some of its complexes have also been studied for use in a number 1 Université de Rennes 1, UMR CNRS 6226, 263 av. du Général Leclerc, 35042 Rennes Cedex (France) 2 Biomaterials Department, National Research Centre, Cairo (Egypt) 3 Pharmaceutical Technology Department, National Research Centre, Cairo (Egypt) 4 Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt) $%675$&7 .(<:25'6 Macroporous chitosan scaffolds (Ch) reinforced by quaternary bioactive glass with the 46S6 system of 46 mass-% SiO2, 24 mass-% CaO, 24 mass-% Na2O, 6 mass-% P2O5 prepared by a melting technique (MB) loaded with ciprofloxacin (Cip) were prepared by a lyophilization technique. Theses porous composite materials were especially designed as both a drug carrier for controlled drug release and a scaffold for bone regeneration. The biodegradation rate and in-vitro mineralization of the prepared scaffolds were performed by soaking the scaffolds in simulated body fluid (SBF). Phase identification, microstructure, porosity, bioactivity, mechanical properties and drug release ability in phosphate buffer solution (PBS) were characterized by XRD, FTIR, mercury porosimeter, SEM coupled with EDS, ICP-OES, a universal testing machine and a UV-spectrophotometer. The addition of bioactive glass resulted in the formation of an appetite layer on the scaffolds surfaces. The fracture toughness (KIc) of Ch is enhanced by incorporation of glass, as the glass content increases the KIc increase. Incorporation of Cip up to 20 mass-% into Ch/MB scaffolds was successfully achieved during the preparation procedure. The morphology, structure and release behaviour of the loaded scaffolds were found to be highly dependable on the glass content and drug concentrations. of biomedical applications, among which their use as drug carriers in drug-delivery systemsis especially noteworthy [3–5]. In tissue engineering, it is highly desirable that macroporous chitosan scaffolds can be used for bone implantation and drug delivery synergistically. The porous structure can provide a scaffold for bone cells to grow in and its degradability allows the drugs to be released to implantation sites. However, as a drug carrier, pure chitosan is pH sensitive, which makes it difficult to control the drugrelease behaviour under various pH values of the internal human organs. Over-release of the drug may induce harmful effects on the human body. Furthermore, as a scaffold, pure chitosan is mechanically weak and lacks osteoconductivity, which hinders its use as a bone implant. Bioactive glass has many applications in bone tissue engineering because of its known ability to bond strongly to bone and promote bone growth upon in vivo implantation [6]. When implanted in the body, bioactive glass induces an interfacial bioactive response. By contrast (in vitro) it has been documented that the ionic products bone tissue engineering, Ch/MB scaffolds, ciprofloxacin, sustained release, freeze-drying Interceram 62 (2013) [6] from the dissolution of bioactive glass actually enhance osteoblast attachment, proliferation, differentiation and mineralization [7–9], as well as induce the differentiation of bone marrow stromal cells into mature extracellular producing osteoblasts [10]. Furthermore, the dissolution products of bioactive glass exert control over genetic factors of bone growth [11]. Nevertheless, bioactive glass, as compared to cortical and cancellous bone forms, tends to have weaker mechanical properties, especially in porous form. This fact restricts the use of these materials in a wide range of applications. Composite systems are becoming more popular in biomedical applications because of the effective combination of the desired properties of their constituents. From this perspective, inorganic bioactive glass fillers and biocompatible polymer matrices are one of the mostly developed systems for orthopaedic and dental applications. These systems have osteoconductive and osteoinductive properties, as well as good mechanical strength of bioactive glass and high biocompatibility and processability of polymers [12]. ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 Local application of antibiotic release systems is important for hard tissue engineering, because of both poor vascularity inbone tissue for oral or intravascular therapy and easiness of microbial attack in dental sites where it is an area open to the environment [13, 14]. Composite scaffolds could be used as drugdelivery systems for the antibiotic treatment of osteomylitis, a common bone disease caused by bacterial infection of the bone medullary cavity, cortex, and/or periosteum upon implantation. These systems have the advantage that no second surgical procedure is required for implant removal. Ciprofloxacin (1-cyclopropyl-6-fluro-1, 4-dihydro4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid) is a fluoroquinolone derivative, which is widely used in osteomyelitis because of its favourable penetration and bactericidal effect on all the probable osteomyelitis pathogens. Ciprofloxacin acts by inhibiting the bacterial enzymes DNA gyrase [15]. Hence the aim of this work is to prepare a scaffold with controlled release properties for water-soluble drugs; the incorporated Ch scaffolds with MB particles containing ciprofloxacin without the use of possibly toxic surfactants are prepared in this research. The effect of MB content and the drug percentage on the development of tailored medicated scaffolds during freezedrying has also been investigated. The chemical, morphological and release properties of ciprofloxacin loaded Ch/MB scaffolds are also investigated. 2 Materials and methods 2.1 Fabrication of Ch/MB–Cip scaffolds 2.1.1 Synthesis of bioactive glass by a melting technique 46s6 bioactive glass powder was synthesized by a melting technique. The materials used were calcium silicate (Alfa Aesar, molecular weight = 233−250, Germany), trisodium trimetaphosphate (Molecular weight = 305.9, Sigma, Germany) and sodium meta silicate pentahydrate (Molecular weight = 212.1, Sigma, Germany); the latter was heated at 200 °C / 2 h before the starting materials were mixed by mechanical mixer for 1 h The batch was melted in an Rh-Pt crucible through the following firing regime [16]: heating to 900 °C / 1 h at a rate of 10 K/min, firing at 1350 °C / 3 h at a rate of 20 K/min. The melted glass was poured into a preheated die at 500 °C near the glass transition temperature. The resulting bioactive glass was crushed and ground in a mechanical agate mortar and sieved to a grain size of less than 63 μm; the glass was given the code MB for simplicity. Fig. 1 • Biocomposite scaffold preparation method 1 2.1.2 Composite preparation Ch/MB-Cip composite scaffolds were prepared by employing freeze-drying as demonstrated in Fig. 1. Firstly, Ch (ALDRICH, medium molecular weight, Germany) was dissolved in acidified water using acetic acid (Analar Normapur, Molecular weight = 60.05, Germany) at room temperature for 3 h using a polymer concentration of 3 mass-%. The dissolved Ch was normalized by the addition of a few droplets of sodium hydroxide solution until white precipitate was achieved. After removal of this precipitate, three different concentrations of MB, 33.5, 50 and 66.5 mass-%, were added to the Ch solution and continuously stirred overnight using a magnetic stirrer in order to break the MB agglomerates and ensure a better (homogenous) distribution of MB particles in the composite scaffolds. Three different concentrations of ciprofloxacin, 5, 10 and 20 mass-%, were added to the above mixture continue stirred for 1 h (scaffolds with the same composition were prepared without drug loading as a control). Scaffolds were casted in 24 well plates and kept at –18 °C overnight and freeze dried for 24 h. Then the scaffolds were removed from the well plates and kept in the desecrator for further analysis as mentioned below. 2.2 Morphological and microstructural properties The microarchitecture of these scaffolds was assessed qualitatively by use of scanning electron microscopy (SEM) and quantitatively by use of mercury intrusion porosimetry (MIP) and the liquid displacement method. 2.2.1 SEM SEM analyses were performed on a thin piece of scaffold sheared from the centre using a sharp razor blade after soaking in liquid nitrogen for 2 min. Scaffolds were observed through the use of SEM (max. 20 kV) with a gold palladium coating to avoid beam damage of the polymer, something which can be prominent on scaffolds having a very fine microstructure. 2.2.2 MIP MIP was performed using (PORESIZER 9320 V2.08) to determine the median pore diameter, skeletal density and percent porosity. 2.2.3 Liquid displacement method Scaffold samples were submersed in cyclohexane for 1 h. The volume of a scaffold immersed in the fluid is equal to the volume of the displaced fluid, and we can calculate the porosity from Equation (1): P / % = [(W1-W3)/ (W2-W3)] x 100 (1) where W1 is the weight of the scaffold before immersion, W2 the weight of the scaffold after immersion and W3 the weight after drying by this method, from which we can obtain the porosity percentage (P / %). 2.3 Mechanical properties of the prepared scaffolds Fracture mechanics provide the appropriate methodology to quantify the fracture resistance of biocomposite scaffolds. Under linear elastic conditions, fracture instability is ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 reached when the stress intensity of preexisting crack exceeds the fracture toughness, KIc, of the scaffold: K=Ymapp (a)1/2= KIc (2) where mapp is the applied stress, a is the crack length, and Y is the function of geometry, crack size and shape. A fracture toughness test was machined from semi-circulars discs that have been cut from the scaffolds (without drugs). After machining, specimens were dry polished up to 1200 grit finish. The specimens used had a width of R ~ 5.5–9 and a thickness of B ~ 4–7. The initial portion of the notch was carefully machined using a slow speed saw, with the final portion being introduced through the use of a fine blade under an optical microscope; the length of this notch was determined by the following equation: a=0.32 (2R), and mapp was calculated by using Equation (3): mapp =P/2RB on the principle of electron-matter interactions. To allow surface conduction, the scaffolds were metalized by a gold-palladium layer (a few μm thick) before being introduced into the analysis room. Semiquantitative chemical analysis on scaffold surfaces after immersion in SBF, covered by gold-palladium layer to allow surface conduction, was performed by energy dispersive spectroscopy (EDS) in Jeol JSM 6400. 2.4.4 ICP-OES The concentrations of Ca, p and Si elements after each soaking time in SBF were measured by using inductively coupled plasmaoptical-emission spectrometry (ICP-OES). This method offers high sensitivity, less than 1μg/g depending on the matrix analyzed and offers a high accuracy. The principle is based on the determination of the amount of each element present in solution by analyzing the intensity of the radiation emitted at the specific elemental frequency after the nebulization of atoms. of the release medium were taken, and the drug concentration was determined spectrophotometrically at 277 nm (Jenway 6705 UV/Vis, UK). The samples were replaced with fresh buffer in order to keep the medium at a constant volume. All experiments were carried out in triplicate. Ciprofloxacin release was monitored for 360 h. 2.6.1 Mechanism of ciprofloxacin release The Korsmeyer-Peppas model [20] was used to find out the mechanism of drug release from the scaffolds investigated: Mt / M'= Ktn (5) where Mt / M' is the fraction of drug released at time t, k is the rate constant and n is the release exponent of the Korsmeyer– Peppas model. In the case of quasi-Fickian diffusion, the value of n < 0.5, Fickian diffusion n = 0.5, non-Fickian or anomalous transport n = 0.5–1.0 and case II transport n = 1.0. (3) 2.4 Bioactivity 2.4.1 Phase analysis by x-ray diffraction (XRD) The X-ray diffraction (XRD) technique (Philips X’Pert-MPD system with a CuKa wavelength of 1.5418 Å) was used to analyze the structure of the prepared MB and Ch/ MB composite scaffolds. The diffractometer was operated at 40 kV and 30 mA at a 2e range of 10–70 °, with a step size of 0.058/s. 2.4.2 Infrared studies Fourier transformed infrared analysis (FTIR; Nicolet Magna-IR 550 spectrometer, Madison, Wisconsin) was performed to identify the nature of the chemical bonds between atoms. The samples were small pellets, of 0.5 cm diameter, obtained by pressing the scaffold powder with KBr. 2.4.3 SEM coupled with EDS The morphology of the surfaces of scaffolds was studied by SEM (Jeol JSM 6301). This is a technique of morphological analysis based 2.5 In vitro degradation studies The degradation pattern of the composite scaffold was studied in SBF medium at 37 °C. Groups of scaffolds (three scaffolds in each) were immersed in SBF and incubated for up to 30 days. After each period of time one of the scaffolds was washed twice with distilled water to remove any ions adsorbed on the surface and was dried. The initial weight of the scaffold was noted as Wo and the dry weight as Wt. The degradation of scaffolds was calculated with Equation (4): Degradation / % = (Wo – Wt)/Wo × 100 (4) 2.6 Ciprofloxacin release behaviour Drug incorporation into the scaffolds was investigated by means of XRD, FTIR and SEM coupled with EDS. Phosphate buffer solution (PBS), pH 7.4 (10 ml), previously heated at 37 °C, was added to test tubes containing the freshly prepared scaffolds. The tubes were kept at 37 °C with shaking (50 oscillations min–1) and, at pre-established times, 1 ml samples Table1 • Porosity percentage and pore diameter measured by MIP and liquid displacement Sample name Skeletal density / g/ml Ch 3 % 0.9161 Pore diameter range (4V/A) Porosity / % μm nm Porosimeter Liquid displacement 150.07 6 85.91 95 2Ch:1MB 0.9923 163 6 88.12 72.56 1Ch:1MB 2.4470 165.6 11 85.91 67.45 1Ch:2MB 2.9919 177.08 6 84.65 60.84 3 Results and discussion 3.1 Morphological and microstructural properties The morphology of the prepared scaffolds is presented in Fig. 2. It can be observed that all the prepared scaffolds have wide range of interconnected pores including macro, micro and nanopores, as was also confirmed by a mercury porosimeter. By increasing the MB concentration, the pore size in the scaffolds also increased. The average pore size of the scaffolds fabricated was increased from 150 ± 5 μm to 170 ± 24 μm by increasing the concentration of MB from 0 mass-% to 66.5 mass-%. The wide range of pores sizes for all the scaffolds fabricated with different MB concentration indicated that pores in all the scaffolds were interconnected and seeded cells would be proliferated throughout the 3D structure of the scaffold. The pore size was found to be in the range of 100–200 μm, suitable for tissue engineering applications [18]. Pores are essential for the migration and proliferation of the cells, nutrient supply and vascularization [19]. The surface of the chitosan control scaffold was found to be smooth compared to the Ch/MB composite scaffold. This may be due to the incorporation of MB that significantly increases the surface area of the scaffolds, further enhancing the bioactivity of the scaffolds [20, 21]. The porosity percentage for the prepared scaffolds was determined by MIP and liquid displacement methods, and there was no significant difference between the two methods, as demonstrated in Table 1. ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 2 3 Fig. 3 • Fracture toughness of prepared Ch/MB Scaffolds with reference to Ch alon 3.2 Mechanical properties The mechanical behaviour of the prepared scaffolds was characterized by determining the fracture toughness KIc. Ch alone exhibits low fracture toughness, as shown in Fig. 3. In the Ch/MB scaffolds a marked change could be observed: as the amount of glass increased the fracture toughness increased. Table 1 shows the skeletal density of the Ch and Ch/MB composite scaffolds measured by MIP. It was also observed that the density of the scaffolds increased with increasing concentration of glass, as reported earlier [22, 23]. A combination of high strength and high toughness could be achieved by incorporating microparticles of MB into the Ch matrix. 3.3 Bioactivity Figures 4 and 5 represent XRD and FTIR, respectively, of the prepared Ch/MB composite scaffolds with MB and Ch as references before immersion in SBF. Fig. 2 • SEM images for (a) chitosan scaffold, (b) 2Ch:1MB scaffold, (c) 1Ch:1MB and (d) 1Ch:2MB scaffold with magnifications of X300 and X1000 4 3.3.1 XRD analysis and FTIR before immersion in SBF The XRD patterns from both samples of pure Ch showed some diffraction bands. Hence, it has been identified as a semi-crystalline 5 O Fig. 4 • XRD of the prepared scaffolds before immersion in SBF with reference to MB :DYHQXPEHUFP± Fig. 5 • FTIR of the prepared scaffolds before immersion in SBF with reference to MB ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 6 7 O O O Fig. 6 • (a) XRD of 2Ch:1MB, (b) XRD of 1Ch:1MB, (c) XRD of 1Ch:2MB – in all cases after soaking in SBF structure due to the superior concentration of hydroxyl groups. On the other hand, XRD studies confirmed that the prepared glass generally existed in an amorphous state and no diffraction peaks could be observed except a broad band between 15° and 40° (2e) [25]. For the Ch/MB scaffold five peaks can be noted; at an approximately crystalline peak at 2e of 21.23° (001), 26.08° (022), 27.34° due to glass polymer combination, 39.59° (131), and 47.81° (444). This indicates some degree of crystallinity on the biopolymer network, which diminishes with an increase of the glass content. This would be a typical XRD pattern for the scaffold showing contribution from all components in the system [26]. FTIR before immersion in SBF showed a strong interaction between MB and Ch. Vibration bands were observed at 467 and a :DYHQXPEHUFP± :DYHQXPEHUFP± :DYHQXPEHUFP± Fig. 7 • (a) FTIR of 2Ch:1MB, (b) FTIR of 1Ch:1MB, (c) FTIR of 1Ch:2MB – all after soaking in SBF shoulder at 1200 cm–1, which are assigned to the Si–O–Si bending mode. The vibration band at 1070 cm–1 and a double peak at 607 and 567cm–1 are due to the stretching vibration of phosphate groups [25]. The peaks at 2889 and 1637 cm–1 are attributed to CH stretching and C=O bending vibration band of Ch. This indicates that Ch is present on the surface of scaffold particles [27, 28]. The FTIR spectrum of the Ch scaffold shows a peak at 1580 cm–1, which corresponds to the primary amide groups of chitosan, this peak diminishes with increasing glass content. The peak at 1030 cm–1, which is attributed to phosphate groups, was present in Ch/BG scaffold, while the peak at 1070 cm–1 was observed in Ch, which was absent in Ch/BG, and was assigned to C–O stretching of chitosan [29]. 3.3.2 XRD analysis and FTIR after immersion in SBF The XRD of the prepared scaffolds after soaking in SBF for different time intervals is demonstrated in Fig. 6. XRD spectra of Ch/ MB composite scaffolds showed sharp peaks, 25.88°, 31.8°, 39.89° and 46.7° (2e) attributed to 022, 211, 221 and 222 reticular planes of HA [30, 31]. The increase in the intensity of peaks from 2 days to 30 days was indicative of the increase in the deposition of HA. It also confirmed that the presence of MB increased the deposition of HA on the scaffolds [32] (Fig. 6). The IR spectrum of synthetic hydroxy apatite was used as references to evaluate the structural evolution and the bioactivities of the prepared scaffolds [33]. After soaking in SBF solution, the initial characteristic bands of the Ch/MB biocomposite are modified strongly because of the interfacial reactions between scaffolds and the SBF. Consequently, the spectra of these biomaterials reveal new bands as demonstrated in Fig. 7. In detail, the spectrum of Ch/MB biocomposite shows three new, well-defined phosphate bands at 565, 603 and 1039 cm–1 after 2 days of soaking in physiological solution for Ch/MB scaffolds. They are assigned to stretching vibrations of the PO43– group in phosphate crystalline phases. This result confirms the formation of a calcium phosphate layer; this spectrum is quite similar to that of hydroxyl apatite except for the two bands located at 1620 and 3423 cm–1. These bands are characteristic of the presence of water related to the hygroscopic feature of the apatite formed. In addition, the carbonate band at 1420 cm–1 is also observed. This band attributes to a stretching vibration of the C−O liaisons in carbonate groups. The presence of carbonate bands indicates the formation of a layer of carbonated hydroxyl apatite on the surface of Ch/MB biocomposite. The results obtained highlight the rapid formation of the apatite layer on the surface of the Ch/MB biocomposite. In addition, Ch/MB scaffolds reveal three Si–O–Si bands at 470 cm–1 (bending vibration), 799 cm–1 (bending vibration) and 1075 cm–1 (stretching vibration). These confirm the presence of a silica gel [34]. The appearance of apatite mineral and a silica gel indicate the interactions between the scaffolds and SBF as described by Hench et al. [35]. The results obtained confirm the bioactivity of the Ch/MB biocomposite. 3.3.3 SEM with EDS after immersion in SBF The bioactive character of the composite scaffolds was tested in vitro by analyzing the ability to form apatite at their surface after ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 8 Fig. 8 • (a) Ch SEM with EDS, (b) 1Ch:2MB SEM – all after 3 weeks of immersion in SBF 9 Fig. 9 • (a) Ca ion concentrations, (b) P ion concentrations, (c) Si ion concentrations – after soaking of Ch Scaffolds in SBF at different time intervals being immersed in SBF. Two compositions of the prepared scaffolds were investigated by SEM coupled with EDS (Fig. 8) to evaluate their surface changes after soaking in SBF for 21 days. The 1Ch:2MB sample was chosen with reference to Ch alone due to the high MB content, which induces a much better formation of the Ca–P layer on their surfaces, as confirmed by XRD and FTIR. A marked apatite formation can be seen on the surface of Ch/MB scaffolds, which is distributed over their entire surface. The precipitated layer formed above the entire surface could be identified as calcium phosphate once it had formed a dense precipitate with the typical cauliflower morphology. A close inspection of layer deposits in the interior of the material indicated that the scaffold could induce calcification beyond the surface of the scaffold. The precipitated layer also appeared to be well-connected to the biopolymer fraction and tended to its fibrillar structure. The EDS spectra revealed that the elements present in the control sample before immersion in SBF were those composition of the MB bioactive glass beside C, N and O that related to chitosan polymer. The presence of Ca, P, Na and Cl elements on the surface of the prepared composite scaffolds were determined by EDS. After 21 days of immersion in SBF the phosphocalcic ratio Ca/P was nearly equal to the stoichiometric apatite [36–41]. This study obviously indicates that the MB microparticles introduced in the Ch/MB scaffold promote the formation in vitro of bone-like apatite, which could induce a positive contact with surrounding tissue after implantation in a bone defect. We suggest that the osteoconductive properties of the scaffold could be more relevant for longterm implantation. Bone regeneration is expected to follow its own process while Ch is progressively degraded. 3.3.4 Evaluation of elemental concentrations in SBF The change of ion concentrations in SBF is demonstrated in Fig. 9. For P and Si ions they have the same behaviour for all the prepared scaffolds, with little difference in their amount in the SBF. This is due to the variation of MB concentration in the prepared scaffolds which result in different integration limit between MB and Ch polymer. The ion concentration of Ca was found to be completely different for each scaffold composition. This is believed to be due to the glass content in the scaffolds of the MB used, as they in turn change the porosity and the degradation rate in the SBF [37–40, 42–44]. ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 10 11 O Fig. 10 • Biodegradation rate of the scaffolds prepared in SBF 3.4 Degradation The biodegradation rate of the prepared scaffolds was investigated in SBF at different time intervals with Ch alone as the control, as shown in Fig. 10. The in vitro biodegradation of scaffolds after 1 month of immersion in SBF showed a significant difference in the degradation rate of composite scaffolds compared to Ch scaffolds. Ch/MB composite scaffolds showed a significant decline in the degradation rate compared to chitosan scaffolds. Degradation of chitosan can result in acidic degradation products, which may be neutralized by alkali groups leaching out from MB, thus reducing the degradation rate [23]. 3.5 Ciprofloxacin incorporation The success of the incorporation of the ciprofloxacin drug into Ch and Ch/MB scaffolds during the preparation procedure was confirmed by XRD, FTIR and SEM coupled with EDS. 3.5.1 XRD XRD confirmed the presence of the ciprofloxacin drug in the Ch and Ch/MB scaffolds as shown in Fig. 11a. Ciprofloxacin has specific sharp crystal peaks and Ch has a specific broad peak, while a halopattern was recorded for Ch/MB loaded with ciprofloxacin, demonstrating their amorphous state. When ciprofloxacin was entrapped into the Ch matrix, its sharp crystal peaks overlapped with the noise of the coated polymer and the disappearing ciprofloxacin was completely and successfully entrapped into the matrix of the Ch polymer. This indicates that Ch loaded with ciprofloxacin shows three identification peaks at 2e of 12.67°, 20.05° and 25.85° due the presence of the drug because of its close molecular packing and regular crystallization. However, for Ch/MB scaffolds loaded with ciprofloxacin there are three peaks 11.79°, 21.12° Fig. 11 • (a) XRD and (b) FT-IR of 1Ch:2MB scaffold incorporated with 20 % ciprofloxacin :DYHQXPEHUFP± and 29.44°, due to the presence of MB particles [45–49]. 3.5.2 FTIR The ciprofloxacin loaded scaffolds’ FTIR is shown in Fig. 11b. The FTIR spectrum of ciprofloxacin showed the presence of the following bands: at 3098.08 cm–1 due to the stretching vibration of the –NH group, at 1644.98 cm–1 due to the stretching vibration of the C=O group in the primary amide and at 1593.88 cm–1 due to the bending vibration of N–H group in the secondary amide. The stretching vibration of the O=S=O group appeared at 1148.40 cm–1, aromatic CH stretching vibration appeared at 3064.33 cm–1 and the –CH aromatic ring bending appeared at 828.277 cm–1. The Ch scaffolds loaded with drugs indicated the presence of new bands at 3522, 1637, 798.67 and 1473.52 cm–1 due to the presence of the ciprofloxacin drug. These bands were also indicated for Ch/MB scaffolds loaded with ciprofloxacin, in addition to another two bands at 1088 and 463.23 cm–1, with higher intensity due to the combination of drugs with glass particles in the polymer matrix. A shorter band appeared in the region 1500–1200 cm–1, which was ascribed to the hydrated bonds with ciprofloxacin molecules. Another large band assigned to the C–O–C stretching vibration occurred between 1200 and 1030 cm–1, which shifted from 1047 cm–1 for scaffolds without drugs to 1083 cm–1 for scaffolds with drugs [47–55]. The FTIR spectra indicate that although an interaction occurs with both Ch/MB scaffolds, this is probably because Ch/MB has a greater content of pendant hydroxyl groups that are more accessible for establishing hydrogen bonds [47]. 3.5.3 SEM coupled with EDS The SEM image of the drug shows a rod shape and its EDS indicates the presence of F and Cl elements, which are the main components of the drug. SEM of the incorporated scaffolds with ciprofloxacin indicates of a rod shape in the scaffolds [48, 52]; moreover, the EDS confirms the presence of these elements. XRD, FTIR and SEM coupled with EDS indicate and confirm the success of the incorporation of ciprofloxacin into Ch and Ch/MB scaffolds, as shown in Fig. 12. ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 12 Fig. 12 • SEM of (a) ciprofloxacin, (b) Ch scaffold loaded with 20 % ciprofloxacin, (c) 1Ch:2MB scaffold loaded with 20 % ciprofloxacin 13 3.6 Release behaviour of ciprofloxacin The release behaviour of ciprofloxacin from the prepared scaffolds is presented in Figs. 13a and b. Ciprofloxacin, as expected, exhibits a burst release from the system investigated. Moreover, a sustained drug release profile was observed from the figures investigated with a quasi-Fickian diffusion mechanism (n-values less than 0.5). This mechanism indicates that the polymer is hydrated, swells and then the drug diffuses through the swollen matrix system, which ultimately slows down the kinetic release. The drug release rate increases with an increase of the drug concentration, which is due to the higher deference between the scaffold and the surrounding medium in the PBS solution. Incorporation of MB into the scaffold matrix affected the ciprofloxacin release behaviour, decreased the burst effect due to the porosity decreasing by the incorporation of glass particles into the Ch matrix [53–55]. 4 Conclusions In this study, Ch/MB biocomposite scaffolds loaded with ciprofloxacin with a well-interconnected pore structure were fabricated via a freeze-drying technique. The degradation rate, fracture toughness and physicochemical properties of the scaffold prepared by freeze-drying for tissue engineering could be controlled by controlling the glass concentration. The pore size achieved is suitable for cell activation and tissue regeneration. Drug loaded scaffolds with ciprofloxacin exhibit a good drug delivery system with sustained drug release. The intimate interaction between the bioactive glass 46s6 and chitosan chains has the potential to combine bone bonding and bioactive ion release and controlled degradation. The results of controlled release tests showed that the amount of ciprofloxacin released decreased with an increase in the proportion of glass content and increased as the amount of drug loaded in the scaffold increased. All these results suggest that the Ch/MB composite scaffold can serve as an appropriate bioactive matrix for tissue regeneration and treatment of osteomylitis. References Fig. 13 • Cumulative ciprofloxacin release of (a) Ch scaffolds in PBS, (b) 1Ch:2MB scaffolds in PBS [1] Aydelotte, M., Schumacher, B., Kuettnerk, K.: Heterogeneity of articular chondrocytes. In: Kuettner, K., Schleyerbach, R., Peyron, J., Hascall, V., (ed.) Articular cartilage and osteoarthritis. Raven Press, New York (1992) 237–249, ISBN 978-088167-862-8 [2] Madihally, S.V., Matthew, H.W.T.: Porous chitosan scaffolds for tissue engineering. Biomater. 20 (1999) 1133–1142 ,17(5&(5$0 +,*+3(5)250$1&(&(5$0,&6 [3] Aiedeh, K., Gianasi, E., Orienti, I., Zecchi, V.: Chitosan microcapsules as controlled release systems for insulin. J. Microencapsul. 14 (1997) 567–576 [4] Miyazaki, S., Yamaguchi, H., Takada, M., Hou, W.M., Takeichi, Y., Yasubuchi, H.: Pharmaceutical application of biomedical polymers. 29. Preliminary study on film dosage form prepared from chitosan for oral drug delivery. Acta Pharm. Nord. 2 (1990) 401–406 [5] Muzzarelli, R., Biagini, G., Pugnaloni, A., Filippini, O., Baldassarre, V., Castaldini, C., Rizzoli C.: Reconstruction of parodontal tissue with chitosan. Biomater. 10 (1989) 598–603 [6] Hench, L.L.: Genetic design of bioactive glass. J. Eur. Ceram. Soc. 7 (2009) 1257–1265 [7] Kaufmann, E.E., Ducheyne, P., Shapiro, I.: Effect of varying physical properties of porous, surface modified bioactive glass 45s5 on osteoblast proliferation and maturation. J. Biomed. Mater. Res. 52 (2000) 783–796 [8] Jones, J.R., Tsigkou, O., Coates, E.E.: Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomater. 28 (2007) 1653–1663 [9] Valerio, P., Pereira, M.M., Goes, A.M.: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomater. 25 (2004) 2941–2848 [10] Radin, S., Reilly, G., Bhargave, G.: Osteogenic effects of bioactive glass on bone marrow stromal cells. J. Biomed. Mater. Res. A73 (2005) 21–29 [11] Xynos, I.D., Buttery, L.D., Hench L.L.: Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce IGF II m RNA expression and protein synthesis. Biochem. Biophys. Res. Communication 276 (2000) 461–465 [12] Azevedo, L., Gomes, J.C., Stringheta, P.C., Gontijo, M.M.C., Padovani, C.R., Ribeiro, L.R. et al.: Black bean ( Phaseolus vulgaris L.) as a protective agent against DNA damage in mice. Food and Chemical Toxicology 41 (2003) 1671–1676 [13] Mouriño, V., Boccaccini, A.R.: Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds, J. R. Soc. Interface 7 (2010) 209 [14] Yildirim, M. S., Hasanreisoglu, U., Hasirci, N., Sultan, N.J: Oral Rehabil. 32 (2005) 518 [15] Nayak, A.K., Sen, K.K.: Hydroxyapatite-ciprofloxacin minipellets for bone-implant delivery: Preparation, characterization, in-vitro drug adsorption and dissolution studies. Int. J. Drug. Dev. Res. 1 (2009) 47–59 [16] Dietrich, E., Oudadesse, H., Lucas-Girot, A., Mami, M.: In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J. Biomed. Mater. Res. 88 (2009) 1087–1096 [17] Korsmeyer, R.W., Gurny, R. et al.: Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 15 (1983) 25–35 [18] Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomat. 26 (2005) 5474–5491 [19] Peter, M., Binulal, N.S., Nair, S.V., Selvamurugan, N., Tamura, H., Jayakumar, R.: Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J. 158 (2010) 353–361 [20] Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., Mano, J.F.: Polymer/bioactive glass nanocomposites for biomedical applications: A review. Comp. Sci. and Tech. 70 (2010) [13] 1764–1776 [21] Misra, S.K., Nazhat, S.N., Valappil, S.P.: Fabrication and characterization of biodegradable poly(3-hydroxybutyrate) composite containing bioglass. Biomacromolecules 8 (2007) 2112–2119 [22] Mao, J.S., Zhao, L.G., Yin, Y.J., Yao, K.D.: Structure and properties of bilayer chitosan–gelatin scaffolds. Biomater. 24 (2003) 1067–1074 [23] Peter, M., Binulala, N.S., Nair, S.V., Selvamurugan, N., Tamura, H., Jayakumar, R.: Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohyd. Polymer. 79 (2010) 284–289 [24] Saiz, E., Zimmermann, E.A., Lee, J.S., Wegst, U.G.K., Tomsia, A.P.: Perspectives on the role of nanotechnology in bone tissue Engineering. Dent. Mater. 29 (2013) 103–115 [25] Xia, W., Chang, J.: Preparation and characterization of nano- bioactive-glasses (NBG) by a quick alkalimediated sol–gel method. Mater. Lett. 61 (2007) 3251–3253 [26] Zheng, J.P., Wang, C.Z., Wang, X.X., Wang, H.Y., Zhuang, H., Yao, K.D.: Preparation of biomimetic three-dimensional gelatin/montmorillonite-chitosan scaffolds for tissue engineering. React. Funct. Polymer. 67 (2007) 780–788 [27] Mansur, H., Costa, H.: Nanostructured poly(vinyl alcohol)/bioactive glass and poly (vinylalcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem. Eng. J. 137 (2008) 72–83 [28] Petrova, S., Miloshev, S., Mateva, R., Illev, I.: Synthesis of amphiphilic PEG–PCL–PEG triblock copolymer. J. Univ. Chem. Technol. Metall. 43 (2008) 199– 204 [29] Li, J., Dou, Y., Yang, J., Yin, Y., Zhang, H., Yao, F., Wang, H., Yao, Y.: Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan–gelatin network films. Mater. Sci. Eng. C29 (2009) 1207–1215 [30] Chai, C., Nissan, B.B., Pyke, S., Evans, L.: Sol-gel derived hydroxylapatite coatings for biomedical applications. Mater. and Manufact. Proc. 10 (1995) 205–216 [31] Tan, H., Kacey, G.M.: Injectable biodegradable hydrogels for tissue engineering applications. Mater. 3 (2010) 1746–1767 [32] Kokubo, T., Kim, H.M., Kawashita, M.: Novel bioactive materials with different mechanical properties. Biomat. 24 (2003) 2161–2175 [33] Misra, S.K., Mohn, D., Brunner,T.J.: Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/bioglass composites. Biomat. 29 (2008) 1750–1761 [34] Dietrich, E., Oudadesse, H., Lucas-Girot, A., Mami, M.: In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J. Biomed. Mater. Res. 88 (2009) 1087–1096 [35] Hench, L.L.: The story of bioglass. J. Mater Sci: Mater. Med. 17 (2006) 967–978 [36] Yazdanpanah, A., Reza, K., Moztarzadeh, F.: Enhancement of the fracture toughness in bioactive glass-based nanocomposites with nanocrystalline forsterite as advanced biomaterials for bone tissue engineering applications. Ceram. Inter. 38 (2012) 5007–5014 [37] Mami, M., Oudadesse, H., Doebez-Sridi, R.: Synthesis and in-vitro characterization of melt derived 47S CaO-P2O5-SiO2-Na2O bioactive glass. Ceram. Silik. 52 (2008) [3] 121–129 [38] Oudadesse, H., Bui, X.V., Yann, L.: Chitosan Effects on Bioactive Glass for Application as Biocopmosite Biomaterial. Int .J. Biolog. and Biomed. Eng. 5 (2011) 49–56 [39] Oudadesse, H., Mostafa, A., Bui, X.V.: Physicochemical assessment of biomimetic nano-hydroxyapatite/polymer matrix for use in bony surgery. Int. J. Biolog. and Biomed. Eng. 5 (2011) 103–110 [40] Mami, M., Lucas-Girot, A., Oudadesse, H.: Investigation of the surface reactivity of a sol–gel derived glass in the ternary system SiO2-CaO-P2O5. App. Surf. Sci. 54 (2008) 7386–7393 [41] Bellucci, D., Cannillo, V., Sola, A.: Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceram. Int. 37 (2011) 1575–1585 [42] Julian, R.J.: New trends in bioactive scaffolds: The importance of nanostructure. J. Eur. Ceram. Soc. 29 (2009) 1275–1281 [43] Oudadesse, H., Mami, M., Doebez-Sridi, R.: Study of the bioactivity of various mineral compositions of bioactive glasses. Bioceram. Develop. and App. 1 (2011), Article ID D110151 [44] Oudadesse, H., Mami, M., Doebez-Sridi, R., Pellen, P., Perez, F., Jeanne, S., Chauvel-Lebret, D., Mostafa, A., Cathelineau. G.: Study of various mineral compositions and their bioactivity of bioactive glasses. Bioceram. 22 (2009) 379–382 [45] Peter, M., Binulal, N.S., Nair, S.V.: Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem. Eng. J. 158 (2010) 353–361 [46] Unnithan, A.R., Barakat, N.A.M., Tirupathi Pichiah, P.B.: Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohyd. Polymer. 90 (2012) 1786–1793 [47] Sahoo, S., Charkaborti, C.K., Behera, P.K.: Qualitativ analysis of a ciprofloxacin / HPMC mucoadhesive suspension. Int. J. Pharm. and Bio. Sci. 3 (2012) 558–576 [48] Rodríguez-Tenreiro, C., Alvarez-Lorenzo, C., Concheiro, A., Torres-Labandeira, J.J.: Characterization of cyclodextrin-carbopol interactions by DSC and FTIR. J. Therm. An. Calorim. 77 (2004) 403–411 [49] Nayak, A.K., Laha, B., Sen, K.K.: Development of hydroxyapatite-ciprofloxacin bone-implants using quality by design. Acta Pharm. 61 (2011) 25–36 [50] Sunitha, A., Kumar, S.: Study on the effect of polymers on the release rate of drug from ciprofloxacin hydrochloride microspheres. J. Pharm. Cosmetol. 1 (2010) [1] 1–8 [51] Kesavan, S., Alamelu Bai, S.: Effect of surfactant on the release of ciprofloxacin from gelatin microspheres. J. Ars. Pharm. 51 (2010) [1] 1–16 [52] Thakre, Y.M., Choudhary, M.D.: Synthesis, characterization and evaluation of derivative of Ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-[4-(phenyl carbonyl) piperazin-1-yl]-1, 4-dihydroquinoline-3carboxylic acid) and their complexes. J. Chem. Pharm. Res. 3 (2011) [5] 390–398 [53] Wang, Q., Zedong, D.Y., Kennedy, J.: Controlled release of ciprofloxacin hydrochloride from chitosan/ polyethylene glycol blend films. Carbohyd. Polymer .69 (2007) 336–343 [54] Sunitha, A., Kumar, S.: Study on effect of solvents & nonsolvents on microspheres of ciprofloxacin: Coacervation Phase Separation. J. Adv. Sci. Res. 1 (2010 ) [2] 24–33 [55] Puga, A.M., Rey-Rico, A., Magariños, B.: Hot melt poly-e- caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomater. 8 (2012) 1507–1501 Received: 29.07.2013 B U Y E R S‘ G U I D E INTERCERAM 6/2013 Ceramic Industry Suppliers Guide Publication in: KERAMISCHE ZEITSCHRIFT and INTERCERAM 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Plant Construction — Plant Consulting Preparation Firing Refractories Shaping Glazing — Decorating Laboratory Equipment Measuring — Controlling Raw Materials — Bodies Advanced Ceramics — Semi Finished — Finished Products Advanced Ceramics — Semi Finished — Finished Products Drying Consumables Environmental — Labour Protection Various Systems Final Treatment — Sorting Services — Trading — Second-Hand Machinery — Consulting © Expert Fachmedien GmbH Aachener Straße 172 D-40223 Düsseldorf Phone: +49 211 1591-152 Fax: +49 211 1591-150 453 INTERCERAM 6/2013 K 454 Plant Construction Plant Consulting 01 and heavy clay ceramics 01012 Beralmar Tecnologic S.A. E-08227 Terrassa +34/93/7312200 Schönbeck GmbH & Co. KG Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt +49 (0)5721/9800026-28, ¬ +49 (0)5721/81433 e-mail: info@schoenbeck-maschinen.de Internet: www.schoenbeck-maschinen.de Preparation 02 Żclassifiers 02006 Allgaier Process Technology GmbH Ulmer Straße 75, D-73066 Uhingen +49 (0)7161/301-0, ¬ +49 (0)7161/32452 e-mail: info@allgaier.de, Internet: www.allgaier.de Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de Żcomminution plants 02064 A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de Żcrushers: roller crushers 02011 Ludwig Wery GmbH Maschinenfabrik Kaiserstraße 58-60, D-66482 Zweibrücken +49 (0)6332/3345, ¬ +49 (0)6332/17506 e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de Żdry grinding plants 02018 Maschinenfabrik Gustav Eirich GmbH & Co. KG Walldürner Straße 50, D-74736 Hardheim +49 (0)6283/51-0 e-mail: eirich@eirich.de, Internet: www.eirich.com Żmagnetic separators 02019 Allgaier Process Technology GmbH Ulmer Straße 75, D-73066 Uhingen +49 (0)7161/301-0, ¬ +49 (0)7161/32452 e-mail: info@allgaier.de, Internet: www.allgaier.de Eriez Magnetics Europe Ltd. GB-Caerphilly CF83 8YG +44 (029)/20868501, ¬ +44 (029)/20851314 Eriez Magnetics Vertriebs GmbH D-85737 Ismaning +49 (0)89/966540, ¬ +49 (0)89/963534 Goudsmit Magnetic Systems BV Postfach 18, Petunialaan 19 , NL-5580 AA Waalre +31/(0)40/2213283, ¬ +31/(0)40/2217325 e-mail: info@goudsmit-magnetics.nl Internet: www.goudsmit-magnetics.nl STEINERT Elektromagnetbau GmbH Widdersdorfer Straße 329, D-50933 Köln +49 (0)221/4984-0, ¬ +49 (0)221/4984-102 e-mail: sales@steinert.de, Internet: www.steinert.de 02082 NEUMAN & ESSER GmbH Mahl- u. Sichtsysteme Werkstraße, D-52531 Übach-Palenberg +49 (0)2451/481-02, ¬ +49 (0)2451/481-200 e-mail: neagmbh@neuman-esser.de Internet: www.neuman-esser.com Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de 02073 Ludwig Wery GmbH Maschinenfabrik Kaiserstraße 58-60, D-66482 Zweibrücken +49 (0)6332/3345, ¬ +49 (0)6332/17506 e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de 02005 Ludwig Wery GmbH Maschinenfabrik Kaiserstraße 58-60, D-66482 Zweibrücken +49 (0)6332/3345, ¬ +49 (0)6332/17506 e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH D-58300 Wetter-Wengern +49 (0)2335/9799-0, ¬ +49 (0)2335/9799-29 e-mail: fries@naescher-snv.de Internet: www.naescher-snv.de Żmills: dry ball mills 02025 Hosokawa Alpine Aktiengesellschaft Peter-Dörfler-Straße 13-25, D-86199 Augsburg +49 (0)821/5906-279, ¬ +49 (0)821/5906-610 e-mail: mineral@alpine.hosokawa.com Internet: www.alpinehosokawa.com Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de 02026 Hosokawa Alpine Aktiengesellschaft Peter-Dörfler-Straße 13-25, D-86199 Augsburg +49 (0)821/5906-279, ¬ +49 (0)821/5906-610 e-mail: mineral@alpine.hosokawa.com Internet: www.alpinehosokawa.com NEUMAN & ESSER GmbH Mahl- u. Sichtsysteme Werkstraße, D-52531 Übach-Palenberg +49 (0)2451/481-02, ¬ +49 (0)2451/481-200 e-mail: neagmbh@neuman-esser.de Internet: www.neuman-esser.com Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de SWECO EUROPE S.A. Rue de la Recherche 8, B-140 Nivelles +32 67/893434, ¬ +32 67/893428 e-mail: europe@sweco.com, Internet: www.sewco.com Żmills: hammer mills 02027 Eriez Magnetics Europe Ltd. GB-Caerphilly CF83 8YG +44 (029)/20868501, ¬ +44 (029)/20851314 Eriez Magnetics Vertriebs GmbH D-85737 Ismaning +49 (0)89/966540, ¬ +49 (0)89/963534 ALFA Maschinen GmbH Benzstraße 2, D-84056 Rottenburg a. d. Laaber +49 (0)8781/2022790, ¬ +49 (0)8781/20227931 e-mail: info@alfa-maschinen.de Internet: www.alfa-maschinen.de Ludwig Wery GmbH Maschinenfabrik Kaiserstraße 58-60, D-66482 Zweibrücken +49 (0)6332/3345, ¬ +49 (0)6332/17506 e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de Żmetal detectors Żmills: impact mills Żmagnets: superconducting magnets 02065 02020 Eriez Magnetics Europe Ltd. GB-Caerphilly CF83 8YG +44 (029)/20868501, ¬ +44 (029)/20851314 Eriez Magnetics Vertriebs GmbH D-85737 Ismaning +49 (0)89/966540, ¬ +49 (0)89/963534 Żmills: agitator ball mills 02012 02024 Żmills: fine grinding mills Allgaier Process Technology GmbH Ulmer Straße 75, D-73066 Uhingen +49 (0)7161/301-0, ¬ +49 (0)7161/32452 e-mail: info@allgaier.de, Internet: www.allgaier.de 02083 Żmills: corundum disc mills Hacke Maschinenbau, Inh. Klaus Gillessen Deutschherrenstraße 1, D-56179 Vallendar +49 (0)261/62095, ¬ +49 (0)261/69746 e-mail: info@hacke-engoben.com Internet: www.hacke-engoben.com Żmagnets: permanent magnets Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de Żfeeders: box feeders feeders: high-capacity feeders Żkneaders Żplants for the production of building Żfeeders B U Y E R S‘ G U I D E Żmills: jar mills 02084 Willy A. Bachofen AG Maschinenfabrik Junkermattstraße 11, CH-4132 Muttenz +41 61/6867100, ¬ +41 61/6867110 e-mail: wab@wab.ch, Internet: www.wab.ch Maschinenfabrik Gustav Eirich GmbH & Co. KG Walldürner Straße 50, D-74736 Hardheim +49 (0)6283/51-0 e-mail: eirich@eirich.de, Internet: www.eirich.com Żmills: ball mills 02028 Ludwig Wery GmbH Maschinenfabrik Kaiserstraße 58-60, D-66482 Zweibrücken +49 (0)6332/3345, ¬ +49 (0)6332/17506 e-mail: info@wery-gmbh.de, Internet: www.wery-gmbh.de Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de# Żmills: roller mills 02022 Hosokawa Alpine Aktiengesellschaft Peter-Dörfler-Straße 13-25, D-86199 Augsburg +49 (0)821/5906-279, ¬ +49 (0)821/5906-610 e-mail: mineral@alpine.hosokawa.com Internet: www.alpinehosokawa.com Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de 02047 02066 NEUMAN & ESSER GmbH Mahl- u. Sichtsysteme Werkstraße, D-52531 Übach-Palenberg +49 (0)2451/481-02, ¬ +49 (0)2451/481-200 e-mail: neagmbh@neuman-esser.de Internet: www.neuman-esser.com Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de Żscreening machines 02043 Allgaier Process Technology GmbH Ulmer Straße 75, D-73066 Uhingen +49 (0)7161/301-0, ¬ +49 (0)7161/32452 e-mail: info@allgaier.de, Internet: www.allgaier.de SWECO EUROPE S.A. Rue de la Recherche 8, B-140 Nivelles +32 67/893434, ¬ +32 67/893428 e-mail: europe@sweco.com, Internet: www.sewco.com B U Y E R S‘ G U I D E INTERCERAM 6/2013 Żsifters: air sifters 02077 Hosokawa Alpine Aktiengesellschaft Peter-Dörfler-Straße 13-25, D-86199 Augsburg +49 (0)821/5906-279, ¬ +49 (0)821/5906-610 e-mail: mineral@alpine.hosokawa.com Internet: www.alpinehosokawa.com Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de Żweighing devices 02046 SENSOR CONTROL Ges. f. Sensorik u. Automation mbH Robert-Bosch-Straße 5, D-56566 Neuwied +49 (0)2631/964000, ¬ +49 (0)2631/964040 Firing 03 Żburners: gas burners 03004 Beralmar Tecnologic S.A. E-08227 Terrassa +34/93/7312200 Żburner plants 03001 A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de Żcalcining plants A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de SILCA GmbH Auf dem Hüls 6, D-40822 Mettmann +49 (0)2104/97270, ¬ +49 (0)2104/76902 Internet: www.silca-online.de 03016 CTB GmbH Industriestraße 16, D-12099 Berlin +49 (0)30/340956-0, ¬ +49 (0)30/340956-99 e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de LINN-High-Therm GmbH Heinrich-Hertz-Platz 1, D-92275 Eschenfelden +49(0)9665/91400, ¬ +49(0)9665/1720 e-Mail: info@linn.de, Internet: www.linn.de Żkilns: conveyor-typer kilns 03017 Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-231 e-mail: mail@riedhammer.de Internet: www.riedhammer.de Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żkilns: decorating kilns 03018 WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com 03043 Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de Żkiln cars 03014 Cervice D-04155 Leipzig +49 (0)341/5640883 CTB GmbH Industriestraße 16, D-12099 Berlin +49 (0)30/340956-0, ¬ +49 (0)30/340956-99 e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de Keramischer OFENBAU GmbH Gropiusstraße 7, D-31137 Hildesheim +49 (0)5121/747400, ¬ +49 (0)5121/747474 e-mail: info@keramischerofenbau.de Internet: www.keramischerofenbau.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-231 e-mail: mail@riedhammer.de Internet: www.riedhammer.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żkilns: chamber kilns 03003 Beralmar Tecnologic S.A. E-08227 Terrassa +34/93/7312200 Eclipse Combustion GmbH Profilstraße 13, D-58093 Hagen/Westf. +49 (0)2331/958600 e-mail: hagen@eclipsecombustion.com Internet: www.eclipsenet.com Elster Kromschröder GmbH Postfach 2809, D-49018 Osnabrück Strotheweg 1, D-49504 Lotte +49 (0)541/1214-0, ¬ +49 (0)541/1214-370 e-mail: info@kromschroeder.com Internet: www.kromschroeder.com NOXMAT GmbH Ringstraße, D-09569 Oederan +49 (0)37292/65030, ¬ +49 (0)37292/4207 Internet: www.noxmat.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żburners: oil burners Żkilns 455 03013 Żkilns: electric kilns 03019 Carbolite GmbH Upstadter Straße 28, D-76698 Ubstadt-Weiher +49 (0)7251/962286, ¬ +49 (0)7251/962285 e-mail: info-de@carbolite.com Internet: www.carbolite.com Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żkilns: elevator kilns KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de 03020 Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de Żkilns: fast firing kilns 03027 A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-231 e-mail: mail@riedhammer.de Internet: www.riedhammer.de Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de Żkilns: gas/vacuum-tight high temperature kilns 03022 FCT Anlagenbau GmbH Hönbacher Straße 10, D-96515 Sonneberg +49 (0)3675/7484-0, ¬ +49 (0)3675/7484-44 e-Mail: fct-anlagenbau@fct-anlagenbau.de Internet: www.fct-anlagenbau.de KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de LINN-High-Therm GmbH Heinrich-Hertz-Platz 1, D-92275 Eschenfelden +49(0)9665/91400, ¬ +49(0)9665/1720 e-Mail: info@linn.de, Internet: www.linn.de MUT ADVANCED HEATING GmbH Fritz-Winkler-Straße 1-2, D-07749 Jena +49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11 e-mail: mut@mut-jena.de, Internet: www.mut-jena.de Żkilns: gas/vacuum-tight rotary kilns 03058 Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de Żkilns: high temperature kilns 03021 Carbolite GmbH Upstadter Straße 28, D-76698 Ubstadt-Weiher +49 (0)7251/962286, ¬ +49 (0)7251/962285 e-mail: info-de@carbolite.com Internet: www.carbolite.com CTB GmbH Industriestraße 16, D-12099 Berlin +49 (0)30/340956-0, ¬ +49 (0)30/340956-99 e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de LINN-High-Therm GmbH Heinrich-Hertz-Platz 1, D-92275 Eschenfelden +49(0)9665/91400, ¬ +49(0)9665/1720 e-mail: info@linn.de, Internet: www.linn.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com INTERCERAM 6/2013 456 Żkilns: laboratory kilns 03039 Carbolite GmbH Upstadter Straße 28, D-76698 Ubstadt-Weiher +49 (0)7251/962286, ¬ +49 (0)7251/962285 e-mail: info-de@carbolite.com Internet: www.carbolite.com CTB GmbH Industriestraße 16, D-12099 Berlin +49 (0)30/340956-0, ¬ +49 (0)30/340956-99 e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de Grothe Rohstoffe GmbH & Co. KG Postfach 1169, D-31667 Bückeburg +49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60 e-mail: info@grothe.net, Internet: www.grothe.net KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de LINN-High-Therm GmbH Heinrich-Hertz-Platz 1, D-92275 Eschenfelden +49(0)9665/91400, ¬ +49(0)9665/1720 e-Mail: info@linn.de, Internet: www.linn.de MUT ADVANCED HEATING GmbH Fritz-Winkler-Straße 1-2, D-07749 Jena +49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11 e-mail: mut@mut-jena.de, Internet: www.mut-jena.de Żkilns: microwave kilns 03049 LINN-High-Therm GmbH Heinrich-Hertz-Platz 1, D-92275 Eschenfelden +49(0)9665/91400, ¬ +49(0)9665/1720 e-Mail: info@linn.de, Internet: www.linn.de Vötsch Industrietechnik GmbH Umweltsimulation-Wärmetechnik Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth +49 (0)6408/8473, ¬ +49 (0)6408/848747 e-mail: info-wt@v-it.com, Internet: www.v-it.com Żkilns: muffle kilns 03040 Carbolite GmbH Upstadter Straße 28, D-76698 Ubstadt-Weiher +49 (0)7251/962286, ¬ +49 (0)7251/962285 e-mail: info-de@carbolite.com Internet: www.carbolite.com KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de Żkilns: periodic kilns KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żkilns: potter‘s kilns Żkilns: roller kilns 03025 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de LINN-High-Therm GmbH Heinrich-Hertz-Platz 1, D-92275 Eschenfelden +49(0)9665/91400, ¬ +49(0)9665/1720 e-Mail: info@linn.de, Internet: www.linn.de Żkilns: rotary kilns Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de 03026 03046 HORN Glass Industries AG Bergstraße 2, D-95703 Plößberg +49 (0)9636/9204-35, ¬ +49 (0)9636/9204-10 e-mail: kunz@hornglas.de, Internet: www.hornglas.de MUT ADVANCED HEATING GmbH Fritz-Winkler-Straße 1-2, D-07749 Jena +49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11 e-mail: mut@mut-jena.de, Internet: www.mut-jena.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de 03030 CTB GmbH Industriestraße 16, D-12099 Berlin +49 (0)30/340956-0, ¬ +49 (0)30/340956-99 e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de Keramischer OFENBAU GmbH Gropiusstraße 7, D-31137 Hildesheim +49 (0)5121/747400, ¬ +49 (0)5121/747474 e-mail: info@keramischerofenbau.de Internet: www.keramischerofenbau.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żkilns: sintering kilns Żkilns: pusher-type kilns 03028 KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de Internet: www.riedhammer.de Keramischer OFENBAU GmbH Gropiusstraße 7, D-31137 Hildesheim +49 (0)5121/747400, ¬ +49 (0)5121/747474 e-mail: info@keramischerofenbau.de Internet: www.keramischerofenbau.de MUT ADVANCED HEATING GmbH Fritz-Winkler-Straße 1-2, D-07749 Jena +49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11 e-mail: mut@mut-jena.de, Internet: www.mut-jena.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żkilns: shuttle kilns 03024 B U Y E R S‘ G U I D E K KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de MUT ADVANCED HEATING GmbH Fritz-Winkler-Straße 1-2, D-07749 Jena +49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11 e-mail: mut@mut-jena.de, Internet: www.mut-jena.de 03045 Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de Żkilns: tempering kilns 03031 Carbolite GmbH Upstadter Straße 28, D-76698 Ubstadt-Weiher +49 (0)7251/962286, ¬ +49 (0)7251/962285 e-mail: info-de@carbolite.com Internet: www.carbolite.com Żkilns: top hat kilns 03032 CTB GmbH Industriestraße 16, D-12099 Berlin +49 (0)30/340956-0, ¬ +49 (0)30/340956-99 e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de HORN Glass Industries AG Bergstraße 2, D-95703 Plößberg +49 (0)9636/9204-35, ¬ +49 (0)9636/9204-10 e-mail: kunz@hornglas.de, Internet: www.hornglas.de KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de MUT ADVANCED HEATING GmbH Fritz-Winkler-Straße 1-2, D-07749 Jena +49 (0)3641/5656-0, ¬ +49 (0)3641/5656-11 e-mail: mut@mut-jena.de, Internet: www.mut-jena.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żkilns: tunnel kilns 03033 Beralmar Tecnologic S.A. E-08227 Terrassa +34/93/7312200 CTB GmbH Industriestrasse 16, D-12099 Berlin +49 (0)30/340956-0, ¬ +49 (0)30/340956-99 e-mail: mail@ctb-berlin.de, Internet: www.ctb-berlin.de A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de Keramischer OFENBAU GmbH Gropiusstraße 7, D-31137 Hildesheim +49 (0)5121/747400, ¬ +49 (0)5121/747474 e-mail: info@keramischerofenbau.de Internet: www.keramischerofenbau.de Riedhammer GmbH Klingenhofstraße 72, D-90411 Nürnberg +49 (0)911/5218-0, ¬ +49 (0)911/5218-0 e-mail: mail@riedhammer.de Internet: www.riedhammer.de Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de WISTRA GmbH Zum Mühlengraben 16-18, D-52355 Düren +49 (0)2421/277302-0, ¬ +49 (0)2421/277302-79 e-mail: info@wistra.com, Internet: www.wistra.com Żkilns: vacuum sintering kilns FCT Anlagenbau GmbH Hönbacher Straße 10, D-96515 Sonneberg +49 (0)3675/7484-0, ¬ +49 (0)3675/7484-44 e-Mail: fct-anlagenbau@fct-anlagenbau.de Internet: www.fct-anlagenbau.de KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de 03057 B U Y E R S‘ G U I D E INTERCERAM 6/2013 Refractories 04 457 Żfibres: ceramic 04099 General Insulation Europe Johannespfad 7, D-57223 Kreuztal +49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15 e-mail: europe@general-insulation-ltd.com Internet: www.general-insulation-ltd.com Żfibres: steel fibres Żasbestos substituting materials 04001 Promat GmbH High Performance Insulation Scheifenkamp 16, D-40878 Ratingen +49 (0)2102/493473, ¬ +49 (0)2102/493115 e-mail: bl@promat.de, Internet: www.promat.de Żcassettes for roofing tiles Refratechnik Ceramics GmbH Barkhausener Straße 55, D-49328 Melle/Buer +49 (0)5427/81-117, ¬ +49 (0)5427/81-191 e-mail: iris.niermann@refra.com, Internet: www.refra.com Żcassettes: H-cassettes 04003 Refratechnik Ceramics GmbH Barkhausener Straße 55, D-49328 Melle/Buer +49 (0)5427/81-117, ¬ +49 (0)5427/81-191 e-mail: iris.niermann@refra.com, Internet: www.refra.com Żcassettes: U-cassettes 04033 Refratechnik Ceramics GmbH Barkhausener Straße 55, D-49328 Melle/Buer +49 (0)5427/81-117, ¬ +49 (0)5427/81-191 e-mail: iris.niermann@refra.com, Internet: www.refra.com Żcomponents: ceramic fibre freeproducts, vacuum-shaped 04071 General Insulation Europe Johannespfad 7, D-57223 Kreuztal +49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15 e-mail: europe@general-insulation-ltd.com Internet: www.general-insulation-ltd.com Żcomponents: special shapes for handmade-stoves 04068 General Insulation Europe Johannespfad 7, D-57223 Kreuztal +49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15 e-mail: europe@general-insulation-ltd.com Internet: www.general-insulation-ltd.com Żfibre linings 04006 Promat GmbH High Performance Insulation Scheifenkamp 16, D-40878 Ratingen +49 (0)2102/493473, ¬ +49 (0)2102/493115 e-mail: bl@promat.de, Internet: www.promat.de SILCA GmbH Auf dem Hüls 6, D-40822 Mettmann +49 (0)2104/97270, ¬ +49 (0)2104/76902 Internet: www.silca-online.de Żfibre-products: vacuum shaped 04007 04036 S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de 04108 Rath Aktiengesellschaft Walfischgasse 14, A-1010 Wien +43 (1)5134427-0, ¬ +43 (1)5134427-87 e-mail: info@rath-group.com Internet: www.rath-group.com Żhigh temperature insulation wool: Vacuum shaped 04109 Żinsulating materials: calcium silicate plates General Insulation Europe Johannespfad 7, D-57223 Kreuztal +49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15 e-mail: europe@general-insulation-ltd.com Internet: www.general-insulation-ltd.com Promat GmbH High Performance Insulation Scheifenkamp 16, D-40878 Ratingen +49 (0)2102/493473, ¬ +49 (0)2102/493115 e-mail: bl@promat.de, Internet: www.promat.de SILCA GmbH Auf dem Hüls 6, D-40822 Mettmann +49 (0)2104/97270, ¬ +49 (0)2104/76902 Internet: www.silca-online.de Żinsulating materials: high-temperature insulating materials Żkiln furniture: SiSiC and SSiC 04005 Promat GmbH High Performance Insulation Scheifenkamp 16, D-40878 Ratingen +49 (0)2102/493473, ¬ +49 (0)2102/493115 e-mail: bl@promat.de, Internet: www.promat.de SILCA GmbH Auf dem Hüls 6, D-40822 Mettmann +49 (0)2104/97270, ¬ +49 (0)2104/76902 Internet: www.silca-online.de 04050 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com 04107 Rath Aktiengesellschaft Walfischgasse 14, A-1010 Wien +43 (1)5134427-0, ¬ +43 (1)5134427-87 e-mail: info@rath-group.com Internet: www.rath-group.com Żrefractories: anchors 04075 04010 Refratechnik Ceramics GmbH Barkhausener Straße 55, D-49328 Melle/Buer +49 (0)5427/81-117, ¬ +49 (0)5427/81-191 e-mail: iris.niermann@refra.com, Internet: www.refra.com Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de VGT-DYKO GmbH Grossalmeroder Str.18, D-37247 Grossalmerode +49 (0)5604/934-0, ¬ +49 (0)5604/934-289 e-mail: info@vgt-dyko.com, Internet: www.vgt-dyko.com Żlinings: high temperature insulation wool Rath Aktiengesellschaft Walfischgasse 14, A-1010 Wien +43 (1)5134427-0, ¬ +43 (1)5134427-87 e-mail: info@rath-group.com Internet: www.rath-group.com Żinsulating materials: microporous insulating SILCA GmbH Auf dem Hüls 6, D-40822 Mettmann +49 (0)2104/97270, ¬ +49 (0)2104/76902 Internet: www.silca-online.de Żfibres Silicon Refractory Anchoring Systems BV Monsterseweg 2, NL-2291 PB Wateringen +31 174/225522, ¬ +31 174/225529 e-mail: info@silicon-tif.nl, Internet: www.silicon-tif.nl Żhigh temperature insulation wool: 04044 04102 Żkiln furniture 04059 Silicon Refractory Anchoring Systems BV Monsterseweg 2, NL-2291 PB Wateringen +31 174/225522, ¬ +31 174/225529 e-mail: info@silicon-tif.nl, Internet: www.silicon-tif.nl Żrefractories: binders 04012 Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żrefractories: calcium aluminate cement 04070 Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com Ceske Lupkove Zavosy a.s. P.O. Box 1171, CZ-27101 Nove Straseci +4 20/313574084, ¬ +4 20/313572131 e-mail: refracer@refracer.cz, Internet: www.cluz.cz 04055 Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com General Insulation Europe Johannespfad 7, D-57223 Kreuztal +49 (0)2732/55979-0, ¬ +49 (0)2732/55979-15 e-mail: europe@general-insulation-ltd.com Internet: www.general-insulation-ltd.com Promat GmbH High Performance Insulation Scheifenkamp 16, D-40878 Ratingen +49 (0)2102/493473, ¬ +49 (0)2102/493115 e-mail: bl@promat.de, Internet: www.promat.de SILCA GmbH Auf dem Hüls 6, D-40822 Mettmann +49 (0)2104/97270, ¬ +49 (0)2104/76902 Internet: www.silca-online.de Żrefractories: insulating bricks 04021 CBF GmbH Gewerbepark Stadlhof 7, A-8772 Traboch +43 (0)3843/35778, ¬ +43 (0)3843/35778-20 e-mail: info@cb-feuerfest.com Internet: www.cb-feuerfest.com Insulating Fired Brick Route de Vendoeuvres, F-36500 Buzancais +33 (0)254/022525, ¬ +33 (0)254/841320 e-mail: contact@ifbgroup.fr, Internet: www.ifbgroup.fr Promat GmbH High Performance Insulation Scheifenkamp 16, D-40878 Ratingen +49 (0)2102/493473, ¬ +49 (0)2102/493115 e-mail: bl@promat.de, Internet: www.promat.de Rath Aktiengesellschaft Walfischgasse 14, A-1010 Wien +43 (1)5134427-0, ¬ +43 (1)5134427-87 e-mail: info@rath-group.com Internet: www.rath-group.com SILCA GmbH Auf dem Hüls 6, D-40822 Mettmann +49 (0)2104/97270, ¬ +49 (0)2104/76902 Internet: www.silca-online.de INTERCERAM 6/2013 458 VGT-DYKO GmbH Grossalmeroder Str.18, D-37247 Grossalmerode +49 (0)5604/934-0, ¬ +49 (0)5604/934-289 e-mail: info@vgt-dyko.com, Internet: www.vgt-dyko.com Żrefractories: kiln car linings 04008 Refratechnik Ceramics GmbH Barkhausener Straße 55, D-49328 Melle/Buer +49 (0)5427/81-117, ¬ +49 (0)5427/81-191 e-mail: iris.niermann@refra.com, Internet: www.refra.com VGT-DYKO GmbH Grossalmeroder Str.18, D-37247 Grossalmerode +49 (0)5604/934-0, ¬ +49 (0)5604/934-289 e-mail: info@vgt-dyko.com, Internet: www.vgt-dyko.com Żrefractories: linings 04023 Promat GmbH High Performance Insulation Scheifenkamp 16, D-40878 Ratingen +49 (0)2102/493473, ¬ +49 (0)2102/493115 e-mail: bl@promat.de, Internet: www.promat.de SILCA GmbH Auf dem Hüls 6, D-40822 Mettmann +49 (0)2104/97270, ¬ +49 (0)2104/76902 Internet: www.silca-online.de Żrefractories: spinel (magnesium aluminate) 04028 Refratechnik Ceramics GmbH Barkhausener Straße 55, D-49328 Melle/Buer +49 (0)5427/81-117, ¬ +49 (0)5427/81-191 e-mail: iris.niermann@refra.com, Internet: www.refra.com Shaping 05 ___ 05042 05004 05022 Massform, Industrieproduktedesign GmbH Hauptstraße 52, D-56424 Mogendorf +49 (0)2623/2514, ¬ +49 (0)2623/2419 e-mail:massform@t-online.de, Internet: www.massform.de 05012 Żmoulds, models, design 05066 Atelier für moderne Formgestaltung Helmut Hartenfels Krugbäckerstraße 14, D-56235 Ransbach-Baumbach +49 (0)2623/1202, ¬ +49 (0)2623/80189 e-mail: modellbau-hartenfels@t-online.de Internet: www.hartenfels-gipsformen.de Massform, Industrieproduktedesign GmbH Hauptstraße 52, D-56424 Mogendorf +49 (0)2623/2514, ¬ +49 (0)2623/2419 e-mail:massform@t-online.de, Internet: www.massform.de Żplastics for mould making 05024 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de 05025 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de 05010 LOOMIS PRODUCTS Kahlefeld GmbH Stockwiesen 3, D-67659 Kaiserslautern +49 (0)6301/7999970, ¬ +49 (0)6301/7999992 e-mail: info@loomis-gmbh.de Internet: www.loomis-gmbh.de Żpresses: hydraulic presses EPSI NV (Engineered Pressure Systems Int. NV) Walgoedstraat 19, B-9140 Temse +32 3/7112464, ¬ +32 3/7111870 e-mail: epsi@epsi.be Internet: www.epsi-highpressure.com KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de LOOMIS PRODUCTS Kahlefeld GmbH Stockwiesen 3, D-67659 Kaiserslautern +49 (0)6301/7999970, ¬ +49 (0)6301/7999992 e-mail: info@loomis-gmbh.de Internet: www.loomis-gmbh.de Żpresses: extruders 05008 LOOMIS PRODUCTS Kahlefeld GmbH Stockwiesen 3, D-67659 Kaiserslautern +49 (0)6301/7999970, ¬ +49 (0)6301/7999992 e-mail: info@loomis-gmbh.de Internet: www.loomis-gmbh.de Żpresses: hot isostatic presses EPSI NV (Engineered Pressure Systems Int. NV) Walgoedstraat 19, B-9140 Temse +32 3/7112464, ¬ +32 3/7111870 e-mail: epsi@epsi.be Internet: www.epsi-highpressure.com 05031 05030 KOMAGE Gellner Maschinenfabrik KG Dr.-Hermann-Gellner-Straße 1, D-54427 Kell am See +49 (0)6589/9142-0, ¬ +49 (0)6589/9142-19 e-mail: info@komage.de, Internet: www.komage.de OSTERWALDER AG Industriering 4, CH-3250 Lyss +41 32/3871400, ¬ +41 32/3871404 e-mail: info@osterwalder-ag.ch Internet: www.osterwalder.com Viebahn Pressen Systeme GmbH Hammerwiese 4, D-51647 Gummersbach +49 (0)2261/9183-0, ¬ +49 (0)2261/9183-21 e-mail: info@viebahn-pressen.de, Internet: www.viebahn-pressen.de Żpresses: mechanical presses 05063 KOMAGE Gellner Maschinenfabrik KG Dr.-Hermann-Gellner-Straße 1, D-54427 Kell am See +49 (0)6589/9142-0, ¬ +49 (0)6589/9142-19 e-mail: info@komage.de, Internet: www.komage.de Żpresses: mechanical-hydraulic presses 05052 OSTERWALDER AG Industriering 4, CH-3250 Lyss +41 32/3871400, ¬ +41 32/3871404 e-mail: info@osterwalder-ag.ch Internet: www.osterwalder.com Żpresses: pot presses 05032 VSM Transport Weg 70, NL-2421 LS Nieuwkoop +31 172/573839, ¬ +31 172/574653 e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl Żpresses: tableware presses 05035 VSM Transport Weg 70, NL-2421 LS Nieuwkoop +31 172/573839, ¬ +31 172/574653 e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl Żpunching plants 05038 KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de Żrubber and PU-bags 05046 05005 MECO THE MANUFACTURERS EQUIPMENT COMPANY 35 Enterprise Drive, USA-Middletown, OH 45044 +001 513/424-3573, ¬ +001 513/424-3576 e-mail: dfm@meco-wires.com Żextruders: vacuum extruders Żmoulds: plastic moulds Żpresses: cold isostatic presses Ets ROCHET Zone Industrielle 69 avenue de la Rijole F-09100 Pamiers +33/534013500, ¬ +33/534013501 e-mail: contact@rochetsa.com Internet: www.coupeur-rochet.fr Żcutting wires 05021 Massform, Industrieproduktedesign GmbH Hauptstraße 52, D-56424 Mogendorf +49 (0)2623/2514, ¬ +49 (0)2623/2419 e-mail:massform@t-online.de, Internet: www.massform.de Żpotters‘ wheels KARO Electronics Vertriebs GmbH Algasinger Weg 14, D-84405 Dorfen +49 (0)8081/957450, ¬ +49 (0)8081/957469 e-mail: info@karoelectronics.de Internet: www.karoelectronics.de Żcutters Żmoulds: plaster moulds Massform, Industrieproduktedesign GmbH Hauptstraße 52, D-56424 Mogendorf +49 (0)2623/2514, ¬ +49 (0)2623/2419 e-mail:massform@t-online.de, Internet: www.massform.de Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com casting plants: tape casting plants 05020 VSM Transport Weg 70, NL-2421 LS Nieuwkoop +31 172/573839, ¬ +31 172/574653 e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl Żmoulds: pressure casting moulds 04069 Żsuspended roofs Żmoulds: metal moulds B U Y E R S‘ G U I D E 05050 LOOMIS PRODUCTS Kahlefeld GmbH Stockwiesen 3, D-67659 Kaiserslautern +49 (0)6301/7999970, ¬ +49 (0)6301/7999992 e-mail: info@loomis-gmbh.de Internet: www.loomis-gmbh.de Żsponge belt stripes (plain or corrugated) 05040 Michael Zervos D-86911 Diessen/Ammersee +49 (0)8807/8417 + 1704 ¬ +49 (0)8807/5054 + 8792 Żsponges: hand-sponges (sponge materials) 05077 Michael Zervos D-86911 Diessen/Ammersee +49 (0)8807/8417 + 1704 ¬ +49 (0)8807/5054 + 8792 Żsponge rollers Michael Zervos D-86911 Diessen/Ammersee +49 (0)8807/8417 + 1704 ¬ +49 (0)8807/5054 + 8792 05041 B U Y E R S‘ G U I D E INTERCERAM 6/2013 Żtexturing wires 05043 MECO THE MANUFACTURERS EQUIPMENT COMPANY 35 Enterprise Drive, USA-Middletown, OH 45044 +001 513/424-3573, ¬ +001 513/424-3576 e-mail: dfm@meco-wires.com Żtools: modelling tools 05018 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żtools: pressing tools 05044 LOOMIS PRODUCTS Kahlefeld GmbH Stockwiesen 3, D-67659 Kaiserslautern +49 (0)6301/7999970, ¬ +49 (0)6301/7999992 e-mail: info@loomis-gmbh.de Internet: www.loomis-gmbh.de Glazing - Decorating 06 Żauxiliary agents for decoartion 06008 ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żcolour spraying plants 06002 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żcolours: ceramic colours 06003 W.C. Heraeus GmbH Business Unit Precious Colours Heraeusstraße 12-14, D-63450 Hanau +49 (0)6181/354420, ¬ +49 (0)6181/359637 e-Mail: preciouscolours@heraeus.com Internet: www.heraeus-preciouscolours.com + www.heraeus-ccd.com Johnson Matthey CT Fregatweg 38, NL-6222 NZ Maastricht +31 (0)43/3525400, ¬ +31 (0)43/3525444 e-mail: sales@matthey.com Internet: www.colour.matthey.com REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, D-51149 Köln +49 (0)2203/89850, ¬ +49 (0)2203/8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Żcolours: decorating colours 06004 Michael Zervos D-86911 Diessen/Ammersee +49 (0)8807/8417 + 1704 ¬ +49 (0)8807/5054 + 8792 06011 06071 Stempelspirale D-35440 Linden +49 (0)6403/5777, ¬ +49 (0)6403/925838 e-mail: info@stempelspirale.de Internet: www.stempelspirale.de Żengobes Żfettling wheels Żglaze auxiliary agents: binders 06060 ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com 06013 Chem. Fabrik Mineralmahlwerk Kurt Hacke GmbH Deutschherrenstraße 1, D-56179 Vallendar +49 (0)261/62095, ¬ +49 (0)261/69746 e-mail: info@hacke-engoben.com Internet: www.hacke-engoben.com Emailleschmelze und Glasurenfabrikation Josef Opavsky und Sohn Inh. Dipl.-Ing. (FH) Heinz Kropp GmbH Hillscheider Straße 11, D-56179 Vallendar +49 (0)261/96344-0, ¬ +49 (0)261/96344-22 e-mail: info@opavsky-glasuren.de Internet: www.opavsky-glasuren.de Grothe Rohstoffe GmbH & Co. KG P.O. Box 1169, D-31667 Bückeburg +49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60 e-mail: info@grothe.net, Internet: www.grothe.net Johnson Matthey CT Fregatweg 38, NL-6222 NZ Maastricht +31 (0)43/3525400, ¬ +31 (0)43/3525444 e-mail: sales@matthey.com Internet: www.colour.matthey.com Prince Minerals GmbH Tauberstrasse 32, 97922 Lauda-Königshofen +49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29 e-Mail: sales@princeminerals.com Internet: www.princeminerals.com Rheinische Email– und Glasurenfabrik Mondré und Manz GmbH Steinackerstraße 51, D-53840 Troisdorf +49 (0)2241/75015/16, ¬ +49 (0)2241/83234 e-mail: mondreundmanz@t-online.de WENDEL GmbH Email– und Glasurenfabrik Am Güterbahnhof 30, D-35683 Dillenburg +49 (0)2771/906-0, ¬ +49 (0)2771/906-160 e-Mail:info@wendel-email.de Internet: www.wendel-email.de 06016 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żfrits Johnson Matthey CT Fregatweg 38, NL-6222 NZ Maastricht +31 (0)43/3525400, ¬ +31 (0)43/3525444 e-mail: sales@matthey.com Internet: www.colour.matthey.com REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, D-51149 Köln +49 (0)2203/89850, ¬ +49 (0)2203/8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Żdecorating sponges (natural) Żdecorating stamps and rubber stamps 459 06017 Emailleschmelze und Glasurenfabrikation Josef Opavsky und Sohn Inh. Dipl.-Ing. (FH) Heinz Kropp GmbH Hillscheider Straße 11, D-56179 Vallendar +49 (0)261/96344-0, ¬ +49 (0)261/96344-22 e-mail: info@opavsky-glasuren.de Internet: www.opavsky-glasuren.de Johnson Matthey CT Fregatweg 38, NL-6222 NZ Maastricht +31 (0)43/3525400, ¬ +31 (0)43/3525444 e-mail: sales@matthey.com Internet: www.colour.matthey.com REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, D-51149 Köln +49 (0)2203/89850, ¬ +49 (0)2203/8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Rheinische Email– und Glasurenfabrik Mondré und Manz GmbH Steinackerstraße 51, D-53840 Troisdorf +49 (0)2241/75015/16, ¬ +49 (0)2241/83234 e-mail: mondreundmanz@t-online.de WENDEL GmbH Email– und Glasurenfabrik Am Güterbahnhof 30, D-35683 Dillenburg +49 (0)2771/906-0, ¬ +49 (0)2771/906-160 e-Mail: info@wendel-email.de Internet: www.wendel-email.de Żglaze auxiliary agents: rheological binders 06061 ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żglaze auxiliary agents: suspending agents 06046 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żglazes 06023 Chem. Fabrik Mineralmahlwerk Kurt Hacke GmbH Deutschherrenstraße 1, D-56179 Vallendar +49 (0)261/62095, ¬ +49 (0)261/69746 e-mail: info@hacke-engoben.com Internet: www.hacke-engoben.com Emailleschmelze und Glasurenfabrikation Josef Opavsky und Sohn Inh. Dipl.-Ing. (FH) Heinz Kropp GmbH Hillscheider Straße 11, D-56179 Vallendar +49 (0)261/96344-0, ¬ +49 (0)261/96344-22 e-mail: info@opavsky-glasuren.de Internet: www.opavsky-glasuren.de Grothe Rohstoffe GmbH & Co. KG P.O. Box 1169, D-31667 Bückeburg +49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60 e-mail: info@grothe.net, Internet: www.grothe.net Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Johnson Matthey CT Fregatweg 38, NL-6222 NZ Maastricht +31 (0)43/3525400, ¬ +31 (0)43/3525444 e-mail: sales@matthey.com Internet: www.colour.matthey.com Prince Minerals GmbH Tauberstrasse 32, 97922 Lauda-Königshofen +49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29 e-Mail: sales@princeminerals.com Internet: www.princeminerals.com REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, D-51149 Köln +49 (0)2203/89850, ¬ +49 (0)2203/8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Rheinische Email– und Glasurenfabrik Mondré und Manz GmbH Steinackerstraße 51, D-53840 Troisdorf +49 (0)2241/75015/16, ¬ +49 (0)2241/83234 e-mail: mondreundmanz@t-online.de WENDEL GmbH Email– und Glasurenfabrik Am Güterbahnhof 30, D-35683 Dillenburg +49 (0)2771/906-0, ¬ +49 (0)2771/906-160 e-Mail: info@wendel-email.de Internet: www.wendel-email.de Żglaze spraying equipment 06055 Schönbeck GmbH & Co. KG Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt +49 (0)5721/9800026-28, ¬ +49 (0)5721/81433 e-mail: info@schoenbeck-maschinen.de Internet: www.schoenbeck-maschinen.de VSM Transport Weg 70, NL-2421 LS Nieuwkoop +31 172/573839, ¬ +31 172/574653 e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl INTERCERAM 6/2013 K 460 Żglazing plants: automatic 06053 Schönbeck GmbH & Co. KG Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt +49 (0)5721/9800026-28, ¬ +49 (0)5721/81433 e-mail: info@schoenbeck-maschinen.de Internet: www.schoenbeck-maschinen.de VSM Transport Weg 70, NL-2421 LS Nieuwkoop +31 172/573839, ¬ +31 172/574653 e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl Żgold erasers 06069 Stempelspirale D-35440 Linden +49 (0)6403/5777, ¬ +49 (0)6403/925838 e-mail: info@stempelspirale.de Internet: www.stempelspirale.de Żprecious metal preparations 06027 07 Żdifferential scanning calorimeter Żdifferential thermal analysers 06070 06029 Johnson Matthey CT Fregatweg 38, NL-6222 NZ Maastricht +31 (0)43/3525400, ¬ +31 (0)43/3525444 e-mail: sales@matthey.com Internet: www.colour.matthey.com ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żsponge rubber belts for glaze removal 06020 06041 06043 VSM Transport Weg 70, NL-2421 LS Nieuwkoop +31 172/573839, ¬ +31 172/574653 e-mail: vspeet@vsmmetaal.nl, Internet: www.vsmmetaal.nl Żdispersion-stability-analysers 07005 07035 07031 BÄHR Thermoanalyse GmbH Altendorfstraße 12, D-32603 Hüllhorst +49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90 e-mail: info@baehr-thermo.de Internet: www.baehr-thermo.de 07029 POROTEC GmbH Niederhofheimer Straße 55a, D-65719 Hofheim +49 (0)6192/2069034 ¬ +49 (0)6192/2069035 e-mail: info@porotec.de, Internet: www.porotec.de 07028 POROTEC GmbH Niederhofheimer Straße 55a, D-65719 Hofheim +49 (0)6192/2069034 ¬ +49 (0)6192/2069035 e-mail: info@porotec.de, Internet: www.porotec.de 07030 POROTEC GmbH Niederhofheimer Straße 55a, D-65719 Hofheim +49 (0)6192/2069034 ¬ +49 (0)6192/2069035 e-mail: info@porotec.de, Internet: www.porotec.de 07013 LOOMIS PRODUCTS Kahlefeld GmbH Stockwiesen 3, D-67659 Kaiserslautern +49 (0)6301/7999970, ¬ +49 (0)6301/7999992 e-mail: info@loomis-gmbh.de Internet: www.loomis-gmbh.de 07021 BÄHR Thermoanalyse GmbH Altendorfstraße 12, D-32603 Hüllhorst +49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90 e-mail: info@baehr-thermo.de Internet: www.baehr-thermo.de Żultrasonic NDC systems 07025 Proceq SA Ringstraße 2, CH-8603 Schwerzenbach +41 (0)43/3553800, ¬ +41 (0)43/3553812 07007 Żviscosimeters: high temperature BÄHR Thermoanalyse GmbH Altendorfstraße 12, D-32603 Hüllhorst +49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90 e-mail: info@baehr-thermo.de Internet: www.baehr-thermo.de Żgrain size-/particle size analysators Żload testing devices Żthermogravimetric devices 07018 07014 LOOMIS PRODUCTS Kahlefeld GmbH Stockwiesen 3, D-67659 Kaiserslautern +49 (0)6301/7999970, ¬ +49 (0)6301/7999992 e-mail: info@loomis-gmbh.de Internet: www.loomis-gmbh.de Żpresses: laboratory presses, isostatic L.U.M. GmbH Rudower Chaussee 29, D-12489 Berlin +49 (0)30/67806030, ¬ +49 (0)30/67806058 e-mail: info@lum-gmbh.de, Internet: www.lum-gmbh.com Żglaze tension testers Żlaboratory vacuum extruders Żporosity measuring devices BÄHR Thermoanalyse GmbH Altendorfstraße 12, D-32603 Hüllhorst +49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90 e-mail: info@baehr-thermo.de Internet: www.baehr-thermo.de Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żspraying robots 07004 07045 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Żmeasuring devices: surface measuring devices BÄHR Thermoanalyse GmbH Altendorfstraße 12, D-32603 Hüllhorst +49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90 e-mail: info@baehr-thermo.de Internet: www.baehr-thermo.de Żdilatometers: optical Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Stempelspirale D-35440 Linden +49 (0)6403/5777, ¬ +49 (0)6403/925838 e-mail: info@stempelspirale.de Internet: www.stempelspirale.de Żspraying guns 07003 BÄHR Thermoanalyse GmbH Altendorfstraße 12, D-32603 Hüllhorst +49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90 e-mail: info@baehr-thermo.de Internet: www.baehr-thermo.de Żdilatometers Żkiln furniture for laborytory kilns Żmeasuring devices: density measuring devices BÄHR Thermoanalyse GmbH Altendorfstraße 12, D-32603 Hüllhorst +49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90 e-mail: info@baehr-thermo.de Internet: www.baehr-thermo.de Stempelspirale D-35440 Linden +49 (0)6403/5777, ¬ +49 (0)6403/925838 e-mail: info@stempelspirale.de Internet: www.stempelspirale.de Żscreen printing media 06044 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Johnson Matthey CT Fregatweg 38, NL-6222 NZ Maastricht +31 (0)43/3525400, ¬ +31 (0)43/3525444 e-mail: sales@matthey.com Internet: www.colour.matthey.com REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, D-51149 Köln +49 (0)2203/89850, ¬ +49 (0)2203/8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Laboratory Equipment W.C. Heraeus GmbH Business Unit Precious Colours Heraeusstraße 12-14, D-63450 Hanau +49 (0)6181/354420, ¬ +49 (0)6181/359637 e-Mail: preciouscolours@heraeus.com Internet: www.heraeus-preciouscolours.com + www.heraeus-ccd.com Johnson Matthey CT Fregatweg 38, NL-6222 NZ Maastricht +31 (0)43/3525400, ¬ +31 (0)43/3525444 e-mail: sales@matthey.com Internet: www.colour.matthey.com REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, 51149 Köln +49 2203 898500, ¬ +49 2203 8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Żrubber squeegees Żstains B U Y E R S‘ G U I D E 07008 L.U.M. GmbH Rudower Chaussee 29, D-12489 Berlin +49 (0)30/67806030, ¬ +49 (0)30/67806058 e-mail: info@lum-gmbh.de, Internet: www.lum-gmbh.com POROTEC GmbH Niederhofheimer Straße 55a, D-65719 Hofheim +49 (0)6192/2069034 ¬ +49 (0)6192/2069035 e-mail: info@porotec.de, Internet: www.porotec.de 07023 BÄHR Thermoanalyse GmbH Altendorfstraße 12, D-32603 Hüllhorst +49 (0)5744/9302-0, ¬ +49 (0)5744/9302-90 e-mail: info@baehr-thermo.de Internet: www.baehr-thermo.de +49 (0)2631/964000, ¬ +49 (0)2631/964040 Żzeta potential measuring devices 07041 POROTEC GmbH Niederhofheimer Straße 55a, D-65719 Hofheim +49 (0)6192/2069034 ¬ +49 (0)6192/2069035 e-mail: info@porotec.de, Internet: www.porotec.de B U Y E R S‘ G U I D E INTERCERAM 6/2013 Measuring - Controlling 08 Żrecorders 08027 Eurotherm Deutschland GmbH Ottostraße 1, D-65549 Limburg +49 (0)6431/298-0, ¬ +49 (0)6431/298-119 e-mail: info.de@eurotherm.com Internet: www.eurotherm.com Żflow meters 08001 08006 SENSOR CONTROL Ges. f. Sensorik u. Automation mbH Robert-Bosch-Straße 5, D-56566 Neuwied +49 (0)2631/964000, ¬ +49 (0)2631/964040 Żmeasuring and controlling devices 08008 Eurotherm Deutschland GmbH Ottostraße 1, D-65549 Limburg +49 (0)6431/298-0, ¬ +49 (0)6431/298-119 e-mail: info.de@eurotherm.com Internet: www.eurotherm.com SENSOR CONTROL Ges. f. Sensorik u. Automation mbH Robert-Bosch-Straße 5, D-56566 Neuwied +49 (0)2631/964000, ¬ +49 (0)2631/964040 Żmoisture measuring devices 08010 ACO Automation Components Industriestraße 2, D-79793 Wutöschingen +49 (0)7746/91316, ¬ +49 (0)7746/91317 e-mail: info@acoweb.de, Internet www.acoweb.de SENSOR CONTROL Ges. f. Sensorik u. Automation mbH Robert-Bosch-Straße 5, D-56566 Neuwied +49 (0)2631/964000, ¬ +49 (0)2631/964040 Żoxygen sensors 08029 Albion 30/31 Station Close, GB-Potters Bar, Herts EN6 3HE +44 1707/607230, ¬ +44 1707/607235 e-mail: gfenner@albiongroup.co.uk Internet: www.oxygen-analyser.com Żprocess automation equipment 08021 08014 A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de Eurotherm Deutschland GmbH Ottostraße 1, D-65549 Limburg +49 (0)6431/298-0, ¬ +49 (0)6431/298-119 e-mail: info.de@eurotherm.com Internet: www.eurotherm.com Internet: www.laborofen.com SENSOR CONTROL Ges. f. Sensorik u. Automation mbH Robert-Bosch-Straße 5, D-56566 Neuwied +49 (0)2631/964000, ¬ +49 (0)2631/964040 09 09001 Electro Abrasives Ortwin Rave, Produkte + Dienstleistungen Bachweg 8, D-56072 Koblenz +49 (0)261/9114408, ¬ +49 (0)261/9114248 e-mail: info@rave-minerals.com ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, 51149 Köln +49 2203 898500, ¬ +49 2203 8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Żadditives: deflocculants and dispersing agents ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com 09291 ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żalumina: calcined 09003 Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com Martinswerk GmbH Kölner Straße 110, D-50127 Bergheim +49 (0)2271/9020, ¬ +49 (0)2271/902710 Internet: www.martinswerk.de Nabaltec AG P.O.Box 1860, D-92409 Schwandorf +49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57 e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de Żalumina: general Żalumina: tabular alumina 09002 09006 Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com 09294 Żaluminium hydroxide 09007 Nabaltec AG P.O.Box 1860, D-92409 Schwandorf +49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57 e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de Żaluminium nitride 09292 ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żadditives: pressing- and stamping oils 09170 Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com Martinswerk GmbH Kölner Straße 110, D-50127 Bergheim +49 (0)2271/9020, ¬ +49 (0)2271/902710 Internet: www.martinswerk.de Nabaltec AG P.O.Box 1860, D-92409 Schwandorf +49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57 e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żadditives: plasticisers Żadditives: tape casting additives Żadditives: wetting agents Raw Material - Bodies Żadditives 09290 ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com SENSOR CONTROL Ges. f. Sensorik u. Automation mbH Robert-Bosch-Straße 5, D-56566 Neuwied +49 (0)2631/964000, ¬ +49 (0)2631/964040 Ibea GmbH Kleine Bahnstraße 8, D-22525 Hamburg +49 (0)40/689887-0, ¬ +49 (0)40/689887-29 e-mail: info@ibea.de Internet: www.ibea.de Żlevel gauges 08020 Datapaq GmbH Deutsche Niederlassung Valdorfer Straße 100, D-32602 Vlotho +49 (0)5733/18433, ¬ +49 (0)5733/18432 e-mail: sales@datapaq.de Eurotherm Deutschland GmbH Ottostraße 1, D-65549 Limburg +49 (0)6431/298-0, ¬ +49 (0)6431/298-119 e-mail: info.de@eurotherm.com Internet: www.eurotherm.com Żtemperature measuring devices Żadditives: pressure casting auxiliary agents ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com 08004 SCHMIDT Technology Feldbergstraße 1, D-78112 St. Georgen +49 (0)7724/8990, ¬ +49 (0)7724/899101 e-mail: info@schmidttechnology.de Internet: www.schmidttechnology.de Żinspetion systems 08018 Eurotherm Deutschland GmbH Ottostraße 1, D-65549 Limburg +49 (0)6431/298-0, ¬ +49 (0)6431/298-119 e-mail: info.de@eurotherm.com Internet: www.eurotherm.com Żtemperature controllers Żcontrol systems: electronic 461 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żbarium carbonate 09293 09008 09010 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Prince Minerals GmbH Tauberstrasse 32, 97922 Lauda-Königshofen +49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29 e-Mail: sales@princeminerals.com Internet: www.princeminerals.com INTERCERAM 6/2013 462 S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de Żbauxite 09014 S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de Żbentonite 09015 Clariant Produkte (Deutschland) GmbH Ostenriederstraße 15, D-85368 Moosburg +49 (0)8761/82645, ¬ +49 (0)8761/82512 e-mail: albert.stuetze@clariant.com Internet: www.clariant.com Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de S&B Industrial Minerals GmbH Schmielenfeldstraße 78, D-45772 Marl +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: spezialbentonit@ikominerals.com Internet: www.ikominerals.com Żbinders: chemical binders 09182 ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żbinders: temporary binders 09289 ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com Żbinders: thermoplastic injection moulding binders Żbodies: casting slips 09152 09027 Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żbodies: ceramic bodies Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com INMATEC Technologies GmbH Heerstraßenbenden 10, D-53359 Rheinbach +49 (0)2226/9087-0, ¬ +49 (0)2226/9087-10 e-mail: info@inmatec-gmbh.com Internet: www.inmatec-gmbh.com Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Nabaltec AG P.O.Box 1860, D-92409 Schwandorf +49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57 e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de Quarzsandwerke Weissenbrunn Bauer & Co. P.O. Box 144, D-96369 Weissenbrunn +49 (0)9261/628030, ¬ +49 (0)9261/52224 e-mail: info@qsw-weissenbrunn.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żbodies: do-it-yourself bodies Żbodies: earthenware bodies 09144 09143 09019 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de 09194 Żboron carbide 09022 Electro Abrasives Ortwin Rave, Produkte + Dienstleistungen Bachweg 8, D-56072 Koblenz +49 (0)261/9114408, ¬ +49 (0)261/9114248 e-mail: info@rave-minerals.com Sintec Keramik GmbH Romantische Straße 18, D-87642 Halblech +49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30 e-mail: info@sintec-keramik.com 09139 Żboron carbide: fine-powdered 09278 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żboron: crystalline 09016 Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com Quarzsandwerke Weissenbrunn Bauer & Co. P.O. Box 144, D-96369 Weissenbrunn +49 (0)9261/628030, ¬ +49 (0)9261/52224 e-mail: info@qsw-weissenbrunn.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żbone ash H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com Quarzsandwerke Weissenbrunn Bauer & Co. P.O. Box 144, D-96369 Weissenbrunn +49 (0)9261/628030, ¬ +49 (0)9261/52224 e-mail: info@qsw-weissenbrunn.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żbodies: stoneware bodies 09147 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żboron: amorphous Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żbodies: ready-made-bodies Żbodies: stove tile bodies 09017 Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żbodies: general ZSCHIMMER & SCHWARZ GmbH & Co KG Max-Schwarz-Straße 3-5, D-56112 Lahnstein +49 (0)2621/12485, ¬ +49 (0)2621/12403 e-mail: keramik@zschimmer-schwarz.com Internet: www.zschimmer-schwarz.com B U Y E R S‘ G U I D E 09195 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żboron nitride 09023 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Sintec Keramik GmbH Romantische Straße 18, D-87642 Halblech +49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30 e-mail: info@sintec-keramik.com Internet: www.sintec-keramik.com 09146 Żbrownstone 09024 Grothe Rohstoffe GmbH & Co. KG P.O. Box 1169, D-31667 Bückeburg +49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60 e-mail: info@grothe.net, Internet: www.grothe.net Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de B U Y E R S‘ G U I D E INTERCERAM 6/2013 Żcalcite 09025 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żcalcium carbonate 09026 Magnesia GmbH Max-Jenne-Straße 2-4, D-21337 Lüneburg +49 (0)4131/8710-0, ¬ + 49 (0)4131/8710-55 e-mail: info@magnesia.de, Internet: www.magnesia.de Eduard Merkle GmbH & Co. KG Kalk- u. Steinmahlwerke D-89143 Blaubeuren-Altental +49 (0)7344/9601-0, ¬ +49 (0)7344/9601-11 e-mail: vertrieb@eduard-merkle.de Internet: www.eduard-merkle.de Żchromite ore & chromite ore sand, chromite 09032 Grothe Rohstoffe GmbH & Co. KG P.O. Box 1169, D-31667 Bückeburg +49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60 e-mail: info@grothe.net, Internet: www.grothe.net Żclays: ball clays 09034 Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de Tonwerk der Stadt Klingenberg a. Main Wilhelmstraße 107, D-63911 Klingenberg a. Main +49 (0)9372/2438, ¬ +49 (0)9372/921059 e-mail: tonwerk@klingenberg-main.de Internet: www.tonwerk-klingenberg.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: casting clays 09035 Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: flint clays Tonwerk der Stadt Klingenberg a. Main Wilhelmstraße 107, D-63911 Klingenberg a. Main +49 (0)9372/2438, ¬ +49 (0)9372/921059 e-mail: tonwerk@klingenberg-main.de Internet: www.tonwerk-klingenberg.de 09280 Żclays: general 463 09033 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de Walderdorff´sche Tongruben & Herz GmbH & Co. D-56412 Boden +49 (0)2602/927013, ¬ +49 (0)2602/80437 e-mail: wth-ton@wth-ton.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: ground 09136 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de Internet: www.tonbergbau.de THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de Teublitzer Ton GmbH Industriestraße 27, D-93142 Maxhütte-Haidhof +49 (0)94 71/30 26 13, ¬ +49 (0)94 71/30 26 25 Tonwerk der Stadt Klingenberg a. Main Wilhelmstraße 107, D-63911 Klingenberg a. Main +49 (0)9372/2438, ¬ +49 (0)9372/921059 e-mail: tonwerk@klingenberg-main.de Internet: www.tonwerk-klingenberg.de Walderdorff´sche Tongruben & Herz GmbH & Co. D-56412 Boden +49 (0)2602/927013, ¬ +49 (0)2602/80437 e-mail: wth-ton@wth-ton.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: light firing 09036 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de Walderdorff´sche Tongruben & Herz GmbH & Co. D-56412 Boden +49 (0)2602/927013, ¬ +49 (0)2602/80437 e-mail: wth-ton@wth-ton.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: red firing 09125 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de Walderdorff´sche Tongruben & Herz GmbH & Co. D-56412 Boden +49 (0)2602/927013, ¬ +49 (0)2602/80437 e-mail: wth-ton@wth-ton.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: refractory clays 09037 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de Rohstoffgesellschaft mbH PONHOLZ Industriestraße 27, D-93142 Maxhütte-Haidhof +49 (0)9471/3026-0, ¬ +49 (0)9471/3026-25 Walderdorff´sche Tongruben & Herz GmbH & Co. D-56412 Boden +49 (0)2602/927013, ¬ +49 (0)2602/80437 e-mail: wth-ton@wth-ton.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: shaly clays 09038 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: special clays 09056 Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de Tonwerk der Stadt Klingenberg a. Main Wilhelmstraße 107, D-63911 Klingenberg a. Main +49 (0)9372/2438, ¬ +49 (0)9372/921059 e-mail: tonwerk@klingenberg-main.de Internet: www.tonwerk-klingenberg.de Walderdorff´sche Tongruben & Herz GmbH & Co. D-56412 Boden +49 (0)2602/927013, ¬ +49 (0)2602/80437 e-mail: wth-ton@wth-ton.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: white firing Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de 09126 INTERCERAM 6/2013 464 Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de, Internet: www.tonbergbau.de Walderdorff´sche Tongruben & Herz GmbH & Co. D-56412 Boden +49 (0)2602/927013, ¬ +49 (0)2602/80437 e-mail: wth-ton@wth-ton.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żclays: yellow firing 09039 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Walderdorff´sche Tongruben & Herz GmbH & Co. D-56412 Boden +49 (0)2602/927013, ¬ +49 (0)2602/80437 e-mail: wth-ton@wth-ton.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żcobalt compounds 09040 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żcopper oxide 09043 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, D-51149 Köln +49 (0)2203/89850, ¬ +49 (0)2203/8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Żcordierite 09044 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Ceske Lupkove Zavody a.s. P.O. Box c.p. 1171, CZ-27101 Nove Straseci +420/313 57 4084, ¬ +420/572131 e-mail: refracer@refracer.cz, Internet: www.cluz.cz Żcorundum 09045 09046 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de 09049 Gottfried Feldspat GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com Max Schmidt Feldspatwerk „Silbergrube“ Silbergrube 1, D-92726 Waidhaus +49 (0)9652/230, ¬ +49 (0)9652/1532 e-mail: silbergrube@t-online.de Sibelco Deutschland GmbH, Standort Brake Am Binnenhafen, D-26919 Brake +49 (0)4401/9383-0, ¬ +49 (0)4401/93873-72 e-mail: kontakt@sibelco.de, Internet: www.sibelco.de S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de Saarfeldspatwerke H. Huppert GmbH & Co. KG Kobenhüttenweg 51, D-66123 Saarbrücken +49 (0)681/968790, ¬ +49 (0)681/62296 e-mail: info@saarfeldspat.de Internet: www.saarfeldspat.de Żfeldspar sands: Al2 O3 -and K2 O-rich 09226 Gottfried Feldspat GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Quarzsandwerk Wellmersdorf GmbH & Co. KG Brennereistraße 20, D-96465 Neustadt +49 (0)9568/2350, ¬ +49 (0)9568/86166 e-mail: info-qsw@cemex.com.de Internet: www.quarzsande.com Żfeldspar: ceramic feldspar sands Żfeldspar: glass feldspar sands 09228 09227 09050 09051 Gottfried Feldspat GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de 09190 THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de Żfillers: light coloured 09295 Ceske Lupkove Zavody a.s. P.O. Box c.p. 1171, CZ-27101 Nove Straseci +420/313 57 4084, ¬ +420/572131 e-mail: refracer@refracer.cz, Internet: www.cluz.cz Żglass powder 09140 Dennert Poraver GmbH Mozartweg 1, D-96132 Schlüsselfeld +49 (0)9552/92977-0, ¬ +49 (0)9552/92977-26 e-Mail: info@poraver.de, Internet: www.poraver.de Ernst Letschert KG - Mahlwerk Mühlenweg 19, D-56235 Ransbach-Baumbach +49 (0)2623/2209, ¬ +49 (0)2623/1620 e-mail: info@letschert-kg.de Internet: www.letschert-kg.de Żgranulates for powder injection moulding (CIM and MIM) 09273 09054 Dennert Poraver GmbH Mozartweg 1, D-96132 Schlüsselfeld +49 (0)9552/92977-0, ¬ +49 (0)9552/92977-26 e-Mail: info@poraver.de, Internet: www.poraver.de 09058 GEORG H. LUH GMBH Schöne Aussicht 39, D-65396 Walluf +49 (0)6123/798-0, ¬ +49 (0)6123/798-44 e-mail: office@luh.de, Internet: www.luh.de Żgrog Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żfillers: general Żgeopolymer Żgraphite Quarzsandwerk Wellmersdorf GmbH & Co. KG Brennereistraße 20, D-96465 Neustadt +49 (0)9568/2350, ¬ +49 (0)9568/86166 e-mail: info-qsw@cemex.com.de Internet: www.quarzsande.com Żfeldspar: sodium feldspar GEORG H. LUH GMBH Schöne Aussicht 39, D-65396 Walluf +49 (0)6123/798-0, ¬ +49 (0)6123/798-44 e-mail: office@luh.de, Internet: www.luh.de THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de INMATEC Technologies GmbH Heerstraßenbenden 10, D-53359 Rheinbach +49 (0)2226/9087-0, ¬ +49 (0)2226/9087-10 e-mail: info@inmatec-gmbh.com Internet: www.inmatec-gmbh.com Gottfried Feldspat GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Quarzsandwerk Wellmersdorf GmbH & Co. KG Brennereistraße 20, D-96465 Neustadt +49 (0)9568/2350, ¬ +49 (0)9568/86166 e-mail: info-qsw@cemex.com.de Internet: www.quarzsande.com Żfeldspar: scandinavian Almatis GmbH Lyoner Straße 9, D-60528 Frankfurt a.M. +49 (0)69/957341-0, ¬ +49 (0)69/957341-13 Internet: www.almatis.com S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de Żdolomite Żfeldspar B U Y E R S‘ G U I D E 09029 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Ernst Letschert KG - Mahlwerk Mühlenweg 19, D-56235 Ransbach-Baumbach +49 (0)2623/2209, ¬ +49 (0)2623/1620 e-mail: info@letschert-kg.de Internet: www.letschert-kg.de S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żgrog: bulk grog 09060 Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Ernst Letschert KG - Mahlwerk Mühlenweg 19, D-56235 Ransbach-Baumbach +49 (0)2623/2209, ¬ +49 (0)2623/1620 e-mail: info@letschert-kg.de Internet: www.letschert-kg.de Żgrog: granulated grog Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Ernst Letschert KG - Mahlwerk Mühlenweg 19, D-56235 Ransbach-Baumbach +49 (0)2623/2209, ¬ +49 (0)2623/1620 e-mail: info@letschert-kg.de Internet: www.letschert-kg.de 09061 B U Y E R S‘ G U I D E INTERCERAM 6/2013 Żgrog: ground grog (grains) 09062 Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Ceske Lupkove Zavody a.s. P.O. Box c.p. 1171, CZ-27101 Nove Straseci +420/313 57 4084, ¬ +420/572131 e-mail: refracer@refracer.cz, Internet: www.cluz.cz Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Ernst Letschert KG - Mahlwerk Mühlenweg 19, D-56235 Ransbach-Baumbach +49 (0)2623/2209, ¬ +49 (0)2623/1620 e-mail: info@letschert-kg.de Internet: www.letschert-kg.de Rohstoffgesellschaft mbH PONHOLZ Industriestraße 27, D-93142 Maxhütte-Haidhof +49 (0)9471/3026-0, ¬ +49 (0)9471/3026-25 Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żgrog: lightweight grog 09065 Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 09203 Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de 09174 THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żkaolin: metakaolin Żiron oxide 09191 Prince Minerals GmbH Tauberstrasse 32, 97922 Lauda-Königshofen +49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29 e-Mail: sales@princeminerals.com Internet: www.princeminerals.com Żkaolin chamotte Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Ceske Lupkove Zavody a.s. P.O. Box c.p. 1171, CZ-27101 Nove Straseci +420/313 57 4084, ¬ +420/572131 e-mail: refracer@refracer.cz, Internet: www.cluz.cz Goerg & Schneider GmbH & Co. KG P.O. Box 1261, D-56425 Siershahn +49 (0)2623/604-0, ¬ +49 (0)2623/604-40 e-mail: info@goerg-schneider.de Internet: www.goerg-schneider.de Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com GEORG H. LUH GMBH Schöne Aussicht 39, D-65396 Walluf +49 (0)6123/798-0, ¬ +49 (0)6123/798-44 e-mail: office@luh.de, Internet: www.luh.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 09200 09080 Grothe Rohstoffe GmbH & Co. KG P.O. Box 1169, D-31667 Bückeburg +49 (0)5722/9513-0, ¬ +49 (0)5722/9513-60 e-mail: info@grothe.net, Internet: www.grothe.net Żmolybdenum disilicide 09201 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żmullite, sintered 09155 Nabaltec AG P.O.Box 1860, D-92409 Schwandorf +49 (0)9431/53-234/-460, ¬ +49 (0)9431/615 57 e-mail: ceramics@nabaltec.de, Internet: www.nabaltec.de Żnepheline syenite 09087 Sibelco Deutschland GmbH, Standort Brake Am Binnenhafen, D-26919 Brake +49 (0)4401/9383-0, ¬ +49 (0)4401/93873-72 e-mail: kontakt@sibelco.de, Internet: www.sibelco.de 09175 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de 09069 09074 Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 Lassmann Kommandite Bahnhofstraße 41, D-56422 Wirges P.O. Box 1147, D-56418 Wirges +49 (0)2602/9439-0, ¬ +49 (0)2602/9439-39 e-mail: info@tonbergbau.de Internet: www.tonbergbau.de THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żmagnesia Żmanganese compounds Żnickel carbonate S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de Żloam sand 09128 Magnesia GmbH Max-Jenne-Straße 2-4, D-21337 Lüneburg +49 (0)4131/8710-0, ¬ + 49 (0)4131/8710-55 e-mail: info@magnesia.de, Internet: www.magnesia.de 09066 Kaolin- u. Tonwerke Salzmünde GmbH Ziegelei 13, D-06198 Salzmünde +49 (0)34609/20267, ¬ +49 (0)34609/20220 Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żkyanite: crude 09030 Żkaolin: containing feldspar 09109 Ceske Lupkove Zavody a.s. P.O. Box c.p. 1171, CZ-27101 Nove Straseci +420/313 57 4084, ¬ +420/572131 e-mail: refracer@refracer.cz, Internet: www.cluz.cz Dennert Poraver GmbH Mozartweg 1, D-96132 Schlüsselfeld +49 (0)9552/92977-0, ¬ +49 (0)9552/92977-26 e-Mail: info@poraver.de, Internet: www.poraver.de Żkaolin: purified 09064 09078 Żmagnesium hydroxide Żkaolin: crude, white firing Żkaolin: ground Żmagnesium fluoride Magnesia GmbH Max-Jenne-Straße 2-4, D-21337 Lüneburg +49 (0)4131/8710-0, ¬ + 49 (0)4131/8710-55 e-mail: info@magnesia.de, Internet: www.magnesia.de 09028 Rohstoffgesellschaft mbH PONHOLZ Industriestraße 27, D-93142 Maxhütte-Haidhof +49 (0)9471/3026-0, ¬ +49 (0)9471/3026-25 Żkaolin: china-clay Żkaolin: crude 465 09075 Magnesia GmbH Max-Jenne-Straße 2-4, D-21337 Lüneburg +49 (0)4131/8710-0, ¬ + 49 (0)4131/8710-55 e-mail: info@magnesia.de, Internet: www.magnesia.de Żolivine 09214 Prince Minerals GmbH Tauberstrasse 32, 97922 Lauda-Königshofen +49 (0)9343/6000-0, ¬ +49 (0)9343/6000-29 e-Mail: sales@princeminerals.com Internet: www.princeminerals.com Sibelco Deutschland GmbH, Standort Brake Am Binnenhafen, D-26919 Brake +49 (0)4401/9383-0, ¬ +49 (0)4401/93873-72 e-mail: kontakt@sibelco.de, Internet: www.sibelco.de Żpegmatite 09088 Gottfried Feldspat GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com Żplaster 09090 BK Giulini GmbH P.O. Box 217251, D-67072 Ludwigshafen +49 (0)621/5709-415, ¬ +49 (0)621/5709-443 e-mail: pcg@bk-giulini.com Saint-Gobain Formula GmbH Kutzhütte, D-37445 Walkenried +49 (0)5525/2030, ¬ +49 (0)5525/551 e-mail: info@bpbformula.com Internet: www.bpbformula.com INTERCERAM K 6/2013 466 Żplaster: moulding plaster 09084 Żsilicon powder BK Giulini GmbH P.O. Box 217251, D-67072 Ludwigshafen +49 (0)621/5709-415, ¬ +49 (0)621/5709-443 e-mail: pcg@bk-giulini.com Saint-Gobain Formula GmbH Kutzhütte, D-37445 Walkenried +49 (0)5525/2030, ¬ +49 (0)5525/551 e-mail: info@bpbformula.com Internet: www.bpbformula.com KEYVEST SA Rue de la Bureautique 2-4 B-4460 Grâce-Hollogne +32 4/2390746, ¬ +32 4/2390748 e-mail: info@keyvestbelgium.be Internet: www.keyvestbelgium.be Żplaster: synthetic plaster Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com 09092 BK Giulini GmbH P.O. Box 217251, D-67072 Ludwigshafen +49 (0)621/5709-415, ¬ +49 (0)621/5709-443 e-mail: pcg@bk-giulini.com Żplastic material: porous 09180 BK Giulini GmbH P.O. Box 217251, D-67072 Ludwigshafen +49 (0)621/5709-415, ¬ +49 (0)621/5709-443 e-mail: pcg@bk-giulini.com Żsilica sand 09101 Quarzsand GmbH Nudersdorf Kirchstraße 8, D-06889 Lutherstadt Wittenberg +49 (0)34929/20244, ¬ +49 (0)34929/20248 e-mail: info@qsnudersdorf.de Internet: www.qsnudersdorf.de Żsilicon carbide 09102 09103 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żsilicon carbide: fine powdered 09105 09106 09107 09223 S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de 09110 Imerys Tableware Deutschland GmbH Ludwigsmühle 13, D-95100 Selb +49 (0)9287/731312, ¬ +49 (0)9287/731313 e-Mail: info@imerys-ceramics.com Internet: www.imerys-ceramics.com Żtin oxide 09111 09187 09104 AlzChem Trostberg GmbH Dr. Albert-Frank-Straße 32, D-83303 Trostberg +49 (0)8621/86-2219,¬ +49 (0)8621/86-502219 e-mail: werner.gross@alzchem.com H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com 09196 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żtitanium carbonnitride 09199 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żtitanium diboride Żyttrium oxide 09114 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com 09116 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de Żtitanium carbide 09113 GEORG H. LUH GMBH Schöne Aussicht 39, D-65396 Walluf +49 (0)6123/798-0, ¬ +49 (0)6123/798-44 e-mail: office@luh.de, Internet: www.luh.de Sibelco Deutschland GmbH, Standort Brake Am Binnenhafen, D-26919 Brake +49 (0)4401/9383-0, ¬ +49 (0)4401/93873-72 e-mail: kontakt@sibelco.de, Internet: www.sibelco.de S&B Industrial Minerals GmbH Otavi Minerals Bockholtstraße 129, D-41460 Neuss +49 (0)2131/950543, ¬ +49 (0)2131/950555 e-mail: otavi-minerals@otavi.de, Internet: www.otavi.de Żzinc oxide Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żtitania 09198 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żwollastonite Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Żtalc Sintec Keramik GmbH Romantische Straße 18, D-87642 Halblech +49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30 e-mail: info@sintec-keramik.com Internet: www.sintec-keramik.com Żtitanium nitride 09279 Electro Abrasives Ortwin Rave, Produkte + Dienstleistungen Bachweg 8, D-56072 Koblenz +49 (0)261/9114408, ¬ +49 (0)261/9114248 e-mail: info@rave-minerals.com H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żsilicon nitrides Żsoapstone: calcined Żspodumen Electro Abrasives Ortwin Rave, Produkte + Dienstleistungen Bachweg 8, D-56072 Koblenz +49 (0)261/9114408, ¬ +49 (0)261/9114248 e-mail: info@rave-minerals.com ESK-SIC GmbH Günter-Wiebke-Straße 1, D-50226 Frechen +49 (0)2234/512-0, ¬ +49 (0)2234/512-100 e-mail: info@esk-sic.com, Internet: www.esk-sic.com H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Żsilicon carbide: Ȗ-type Żsoapstone B U Y E R S‘ G U I D E 09112 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żzircon flour 09118 Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Żzirconia powder: high purity 09186 Tosoh Europe BV Crown Building-South; Hullenbergweg 359 NL-1101 CP Amsterdam +31/20/5650014, ¬ +31/20/6915458 e-mail: duin@tosoheur.com, Internet: www.tosoh.com UCM Advanced Ceramics GmbH Ferroweg 1,, D-79725 Laufenburg +49 (0)7763/933-500, ¬ +49 (0)7763/933-489 e-mail: gordon.bennett@ucm-fm.com Żzirconium carbide 09197 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Żzirconium diboride 09121 H.C. Starck GmbH Im Schleeke 78-91, D-38642 Goslar P.O. Box 2540, D-38615 Goslar +49 (0)5321/7513145, ¬ +49 (0)5321/7514145 e-mail: bettina.essmann@hcstarck.com Internet: www.hcstarck.com Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de B U Y E R S‘ G U I D E INTERCERAM 6/2013 Żzirconium opacifiers 09119 Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Żzircon sand 09120 Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Żzircon silicate 09122 09117 UCM Advanced Ceramics GmbH Ferroweg 1,, D-79725 Laufenburg +49 (0)7763/933-500, ¬ +49 (0)7763/933-489 e-mail: gordon.bennett@ucm-fm.com Żzirconia: fused zirconia 09158 UCM Advanced Ceramics GmbH Ferroweg 1,, D-79725 Laufenburg +49 (0)7763/933-500, ¬ +49 (0)7763/933-489 e-mail: gordon.bennett@ucm-fm.com Advanced Ceramics Semi Finished - Finished Products 10 Żalumina parts 10001 DOCERAM GmbH Heßlingsweg 65-67, D-44309 Dortmund +49 (0)231/925025-0, ¬ +49 (0)231/925025-70 e-mail: info@doceram.com, Internet: www.doceram.com H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com DOCERAM GmbH Heßlingsweg 65-67, D-44309 Dortmund +49 (0)231/925025-0, ¬ +49 (0)231/925025-70 e-mail: info@doceram.com, Internet: www.doceram.com H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Żcomposites: : carbon fibres/ carbon composites Żnon-oxide ceramics 10016 10013 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com 10007 DOCERAM GmbH Heßlingsweg 65-67, D-44309 Dortmund +49 (0)231/925025-0, ¬ +49 (0)231/925025-70 e-mail: info@doceram.com, Internet: www.doceram.com H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Żprecision injection-moulded parts 10017 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Żsliding rings 10012 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH D-58300 Wetter-Wengern +49 (0)2335/9799-0, ¬ +49 (0)2335/9799-29 e-mail: fries@naescher-snv.de Internet: www.naescher-snv.de Transport - Conveying Packaging - Storage 11 Żconveying systems: general H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Żoxide ceramic ŻSiC components with coatings 10002 Sintec Keramik GmbH Romantische Straße 18, D-87642 Halblech +49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30 e-mail: info@sintec-keramik.com Internet: www.sintec-keramik.com 10015 DOCERAM GmbH Heßlingsweg 65-67, D-44309 Dortmund +49 (0)231/925025-0, ¬ +49 (0)231/925025-70 e-mail: info@doceram.com, Internet: www.doceram.com H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com SPT Roth Ltd. Werkstraße 28, CH-3250 Lyss +41 (0)32/3878080 ¬ +41 (0)32/3878088 e-mail: cim@sptroth.com Internet: www.smallprecisiontools.com ŻSiC components Żbearings 10004 09157 UCM Advanced Ceramics GmbH Ferroweg 1,, D-79725 Laufenburg +49 (0)7763/933-500, ¬ +49 (0)7763/933-489 e-mail: gordon.bennett@ucm-fm.com Żzirconia: partially stabilized 10003 DOCERAM GmbH Heßlingsweg 65-67, D-44309 Dortmund +49 (0)231/925025-0, ¬ +49 (0)231/925025-70 e-mail: info@doceram.com, Internet: www.doceram.com H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Sintec Keramik GmbH Romantische Straße 18, D-87642 Halblech +49 (0)8368/9101-0, ¬ +49 (0)8368/9101-30 e-mail: info@sintec-keramik.com Internet: www.sintec-keramik.com Żceramic components: wear resistant Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, D-51149 Köln +49 (0)2203/89850, ¬ +49 (0)2203/8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Żzirconia Żceramic components 467 10014 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com 11060 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com Żconveying systems: mechanical 11005 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com Schönbeck GmbH & Co. KG Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt +49 (0)5721/9800026-28, ¬ +49 (0)5721/81433 e-mail: info@schoenbeck-maschinen.de Internet: www.schoenbeck-maschinen.de Żconveying systems: pneumatic 11006 Hensel GmbH Eisenhüttenstraße 26, D-57074 Siegen +49 (0)271/6612335, ¬ +49 (0)271/61866 e-mail: info@hensel-giessereitechnik.de Internet: www.hensel-giessereitechnik.de Żconveyor belts 11007 VHV Anlagenbau GmbH Dornierstraße 9, D-48477 Hörstel +49 (0)5459/9338-0, ¬ +49 (0)5459/9338-80 e-mail: info@vhv-anlagenbau.de Internet: www.vhv-anlagenbau.de Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH D-58300 Wetter-Wengern +49 (0)2335/9799-0, ¬ +49 (0)2335/9799-29 e-mail: fries@naescher-snv.de Internet: www.naescher-snv.de Żconveyors: screw conveyors 11010 RUSSIG Fördertechnik GmbH & Co. KG D-59269 Beckum +49 (0)2521/14091, ¬ +49 (0)2521/13621 e-mail: info@russig.de, Internet: www.russig.de Żconveyors: steel-plate conveyors Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH D-58300 Wetter-Wengern +49 (0)2335/9799-0, ¬ +49 (0)2335/9799-29 e-mail: fries@naescher-snv.de Internet: www.naescher-snv.de 11011 INTERCERAM K 6/2013 468 Żhandling and storage systems 11018 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com Schönbeck GmbH & Co. KG Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt +49 (0)5721/9800026-28, ¬ +49 (0)5721/81433 e-mail: info@schoenbeck-maschinen.de Internet: www.schoenbeck-maschinen.de 11021 A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com Żsetting plants 11035 A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de Schönbeck GmbH & Co. KG Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt +49 (0)5721/9800026-28, ¬ +49 (0)5721/81433 e-mail: info@schoenbeck-maschinen.de Internet: www.schoenbeck-maschinen.de Żtransfer cars 11039 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com Żunloading plants: automatic ROTHO Robert Thomas Metall- und Elektrowerke GmbH & Co. KG Hellerstraße 6, D-57290 Neunkirchen +49 (0)2735/788-543, ¬ +49 (0)2735/788-559 e-mail: m-eisel@rotho.de Internet: www.rotho.de Vötsch Industrietechnik GmbH Umweltsimulation-Wärmetechnik Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth +49 (0)6408/8473, ¬ +49 (0)6408/848747 e-mail: info-wt@v-it.com, Internet: www.v-it.com Żdryers: continuous dryers Żkiln-car transport systems 11014 A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de Schönbeck GmbH & Co. KG Wilhelm-Wiegmannstraße 7, D-31688 Nienstädt +49 (0)5721/9800026-28, ¬ +49 (0)5721/81433 e-mail: info@schoenbeck-maschinen.de Internet: www.schoenbeck-maschinen.de Drying Żdryers: belt dryers 12003 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de Żdryers: chamber dryers 12004 Beralmar Tecnologic S.A. E-08227 Terrassa +34/93/7312200 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com 12020 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de Vötsch Industrietechnik GmbH Umweltsimulation-Wärmetechnik Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth +49 (0)6408/8473, ¬ +49 (0)6408/848747 e-mail: info-wt@v-it.com, Internet: www.v-it.com Żdryers: drum dryers 12005 Allgaier Process Technology GmbH Ulmer Straße 75, D-73066 Uhingen +49 (0)4103/8042-0, ¬ +49 (0)4103/8042-40 e-mail: info@allgaier.de, Internet: www.allgaier.de Gebr. Pfeiffer SE Barbarossastraße 50-54, D-67655 Kaiserslautern +49 (0)631/4161-0, ¬ +49 (0)631/4161-290 e-mail: kv-p@gpse.de, Internet: www.gpse.de Vötsch Industrietechnik GmbH Umweltsimulation-Wärmetechnik Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth +49 (0)6408/8473, ¬ +49 (0)6408/848747 e-mail: info-wt@v-it.com, Internet: www.v-it.com Żdryers: fast dryers 12009 ROTHO Robert Thomas Metall- und Elektrowerke GmbH & Co. KG Hellerstraße 6, D-57290 Neunkirchen +49 (0)2735/788-543, ¬ +49 (0)2735/788-559 e-mail: m-eisel@rotho.de Internet: www.rotho.de Żdryers: tunnel dryers 12006 Allgaier Process Technology GmbH Ulmer Straße 75, D-73066 Uhingen +49 (0)4103/8042-0, ¬ +49 (0)4103/8042-40 e-mail: info@allgaier.de, Internet: www.allgaier.de 12002 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com ROTHO Robert Thomas Metall- und Elektrowerke GmbH & Co. KG Hellerstraße 6, D-57290 Neunkirchen +49 (0)2735/788-543, ¬ +49 (0)2735/788-559 e-mail: m-eisel@rotho.de Internet: www.rotho.de Vötsch Industrietechnik GmbH Umweltsimulation-Wärmetechnik Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth +49 (0)6408/8473, ¬ +49 (0)6408/848747 e-mail: info-wt@v-it.com, Internet: www.v-it.com Żdryers: special dryers 12010 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com 12011 Beralmar Tecnologic S.A. E-08227 Terrassa +34/93/7312200 Żdryers trays 12018 ROTHO Robert Thomas Metall- und Elektrowerke GmbH & Co. KG Hellerstraße 6, D-57290 Neunkirchen +49 (0)2735/788-543, ¬ +49 (0)2735/788-559 e-mail: m-eisel@rotho.de Internet: www.rotho.de Żdrying plants 12013 Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com ROTHO Robert Thomas Metall- und Elektrowerke GmbH & Co. KG Hellerstraße 6, D-57290 Neunkirchen +49 (0)2735/788-543, ¬ +49 (0)2735/788-559 e-mail: m-eisel@rotho.de Internet: www.rotho.de Vötsch Industrietechnik GmbH Umweltsimulation-Wärmetechnik Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth +49 (0)6408/8473, ¬ +49 (0)6408/848747 e-mail: info-wt@v-it.com, Internet: www.v-it.com Consumables 13 Żcones: pyrometric 13023 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de Żgrinding media Żdryers: fluidized dryers Żdryers: general 12 B U Y E R S‘ G U I D E 13006 Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Tosoh Europe BV Crown Building-South; Hullenbergweg 359 NL-1101 CP Amsterdam +31 20/5650014, ¬ +31 20/6915458 e-mail: duin@tosoheur.com, Internet: www.tosoh.com Żpebbles, grinding balls 13015 Sigmund Lindner GmbH Oberwarmensteinacher Straße 38 D-95485 Warmensteinach +49 (0)9277/99410, ¬ +49 (0)9277/99499 e-mail: sili@sigmund-lindner.com Internet: www.sigmund-lindner.com REIMBOLD & STRICK Handels- und Entwicklungsgesellschaft für chemisch-keramische Produkte mbH Hansestraße 70, 51149 Köln +49 2203 898500, ¬ +49 2203 8985260 e-mail: info@reimbold-und-strick.de Internet: www.reimbold-und-strick.de Żmill linings 13018 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com B U Y E R S‘ G U I D E INTERCERAM 6/2013 Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Żsponges: natural sponges Żwaste gas purification devices 13020 13021 Michael Zervos D-86911 Diessen/Ammersee +49 (0)8807/8417 + 1704 ¬ +49 (0)8807/5054 + 8792 Żwear resistant parts 13031 Environmental Labour Protection 14 Hellmich GmbH & Co. KG Holtkampweg 13, D-32278 Kirchlengern +49 (0)5223/75770, ¬ +49 (0)5223/75730 e-mail: info@hellmich.com, Internet: www.helmich.com HF Absorb - Ing. Büro Medau Arbeitsgemeinschaft Ing. Büro Medau & Ing. Büro Rittmann Hauensteinstraße 64, D-79713 Bad Säckingen +49 (0)7761/50500, ¬ +49 (0)7761/5534443 e-mail: ing.buero@medau.de, Internet: www.medau.de Żthermal and catalytic afterburning plants 14009 A. Hässler Anlagenbau GmbH Jahnstraße 45, D-89155 Erbach +49 (0)7305/8060, ¬ +49 (0)7305/22382 e-mail: haessler-anlagenbau@t-online.de Tridelta Thermprozess GmbH Marie-Curie-Straße 14, D-07629 Hermsdorf +49 (0)36601/9389-0, ¬ +49 (0)36601/9389-99 e-mail: info@tridelta-thermprozess.de Internet: www.tridelta-thermprozess.de Żvacuum cleaners: stationary 15006 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Hellmich GmbH & Co. KG Holtkampweg 13, D-32278 Kirchlengern +49 (0)5223/75770, ¬ +49 (0)5223/75730 e-mail: info@hellmich.com, Internet: www.helmich.com Żpottery accessories 14017 Hellmich GmbH & Co. KG Holtkampweg 13, D-32278 Kirchlengern +49 (0)5223/75770, ¬ +49 (0)5223/75730 e-mail: info@hellmich.com, Internet: www.helmich.com 17 Carl Jäger GmbH D-56206 Hilgert +49 (0)2624/94169-0, ¬ +49 (0)2624/94169-29 e-mail: info@carl-jaeger.de, Internet: www.carl-jaeger.de 16 Żcrack detection plants: acoustic 16002 RTE Akustik + Prüftechnik GmbH Gewerbestraße 26, D-76327 Pfinztal +49 (0)721/94650-0, ¬ +49 (0)721/94650-50 e-mail: info@rte.de, Internet: www.rte.de Żsifter wheels 16017 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Żsorting systems: opto-electronic 16016 STEINERT Elektromagnetbau GmbH Widdersdorfer Straße 329, D-50933 Köln +49 (0)221/4984-0, ¬ +49 (0)221/4984-102 e-mail: sales@steinert.de, Internet: www.steinert.de Żsorting systems: roentgenographic STEINERT Elektromagnetbau GmbH Widdersdorfer Straße 329, D-50933 Köln +49 (0)221/4984-0, ¬ +49 (0)221/4984-102 e-mail: sales@steinert.de, Internet: www.steinert.de 17001 Freiberger Silicium– und Targetbearbeitung GmbH Gewerbepark „Schwarze Kiefern“, Zoxy-Platz 1, D-09633 Halsbrücke +49 (0)3731/774070, ¬ +49 (0)3731/7740711 e-mail: info@fst-freiberg.de, Internet: www.fst-freiberg.de Żceramic product realisation 17022 Keramik-Institut GmbH Ossietzkystraße 37 a, D-01662 Meißen +49 (0)3521/463515, ¬ +49 (0)3521/463516 e-mail: info@keramikinstitut.de Internet: www.keramikinstitut.de Żceramic to metal sealings 15004 14001 14007 Services - Trading Second-Hand Machinery -Consulting Żceramic machining (advanced ceramics) 15 Final Treatment Sorting Hellmich GmbH & Co. KG Holtkampweg 13, D-32278 Kirchlengern +49 (0)5223/75770, ¬ +49 (0)5223/75730 e-mail: info@hellmich.com, Internet: www.helmich.com Keller Lufttechnik GmbH + Co. KG Neue Weilheimer Straße 30 D-73230 Kircheim unter Teck +49 (0)7021/574-0, ¬ +49 (0)7021/52430 e-mail: info@keller-lufttechnik.de Internet: www.keller-lufttechnik.de Bernd Münstermann GmbH & Co. KG Lengericher Straße 22, D-48291 Telgte-Westbevern +49 (0)2504/9800-13, ¬ +49 (0)2504/9800-92 e-mail: info@muenstermann.com Internet: www.muenstermann.com Żfluor absorption systems Various Systems Żheat exchangers H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Żdedusting plants 14012 Hellmich GmbH & Co. KG Holtkampweg 13, D-32278 Kirchlengern +49 (0)5223/75770, ¬ +49 (0)5223/75730 e-mail: info@hellmich.com, Internet: www.helmich.com Michael Zervos D-86911 Diessen/Ammersee +49 (0)8807/8417 + 1704 ¬ +49 (0)8807/5054 + 8792 Żsponges: synthetic sponges 469 16019 17002 H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Żcommission processing 17005 Freiberger Silicium– und Targetbearbeitung GmbH Gewerbepark „Schwarze Kiefern“, Zoxy-Platz 1, D-09633 Halsbrücke +49 (0)3731/774070, ¬ +49 (0)3731/7740711 e-mail: info@fst-freiberg.de, Internet: www.fst-freiberg.de Keramik-Institut GmbH Ossietzkystraße 37 a, D-01662 Meißen +49 (0)3521/463515, ¬ +49 (0)3521/463516 e-mail: info@keramikinstitut.de Internet: www.keramikinstitut.de Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Arno Witgert D-56414 Herschbach/Oww. +49 (0)6435/9223-0, ¬ +49 (0)6435/9223-33 Żconsultancy / expertises 17003 IS Sachverständigenbüro Gernandt - Osterkamp - Stengert Sachverständige für Maschinen, Anlagen und Produkte der Keramikindustrie Kleinenbremer Straße 16, D-32457 Porta Westfalica +49 (0)5722/91290-0, ¬ +49 (0)5722/91290-99 e-mail: info@experts-gos.de Internet: www.experts-gos.de Keramik-Institut GmbH Ossietzkystraße 37 a, D-01662 Meißen +49 (0)3521/463515, ¬ +49 (0)3521/463516 e-mail: info@keramikinstitut.de Internet: www.keramikinstitut.de Żgrinding on commission Adolf Gottfried Tonwerke GmbH Tonwerkstraße 3, D-96269 Großheirath +49 (0)9565/7970, ¬ +49 (0)9565/79735 e-mail: info@gottfried.de, Internet: www.gottfried.de Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Kürzeder & März Stalleringer Straße 3, D-85457 Hörlkofen +49 (0)8122/85922, ¬ +49 (0)8122/86122 e-mail: rudolf.maerz@maerkur.com Internet: www.maerkur.com 17026 INTERCERAM K 6/2013 470 Ernst Letschert KG - Mahlwerk Mühlenweg 19, D-56235 Ransbach-Baumbach +49 (0)2623/2209, ¬ +49 (0)2623/1620 e-mail: info@letschert-kg.de Internet: www.letschert-kg.de THEODOR STEPHAN KG GmbH & Co. KG Liebenscheider Straße 40, D-57299 Burbach +49 (0)2736/509749-0, ¬ +49 (0)2736/509749-90 e-mail: info@stephan-tonbergbau.de Internet: www.stephan-tonbergbau.de Żkiln/dryer activation 17035 Keramik-Institut GmbH Ossietzkystraße 37 a, D-01662 Meißen +49 (0)3521/463515, ¬ +49 (0)3521/463516 e-mail: info@keramikinstitut.de Internet: www.keramikinstitut.de Żkiln repairs 17006 Cervice D-04155 Leipzig +49 (0)341/5640883 Żlaboratory services 17031 ESA Eidam & Seiferling Analytik GmbH Heinrich-Hertz-Straße 10, D-07629 Hermsdorf +49 (0)36601/903500, ¬ +49 (0)36601/903501 e-mail: info@esahermsdorf.de Internet: www.esahermsdorf.de H.C. Starck Ceramics GmbH & Co. KG Lorenz-Hutschenreuther-Straße 81, D-95100 Selb +49 (0)9287/807-152, ¬ +49 (0)9287/807-483 e-mail: monrad.joseph@hcstarck.com Internet: www.hcstarck-ceramics.com Johann-Friedrich-Böttger-Institut Prüf– und Entwicklungslabor Weißenbacher Straße 60, D-95100 Selb +49 (0)9287/88277-00, ¬ +49 (0)9287/88277-119 Keramik-Institut GmbH Ossietzkystraße 37 a, D-01662 Meißen +49 (0)3521/463515, ¬ +49 (0)3521/463516 e-mail: info@keramikinstitut.de Internet: www.keramikinstitut.de Żmicronizing 17007 Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de Żmixture on commission: dry/pasty/fluid 17028 LOOP GmbH Am Nordturm 5, D-46562 Voerde +49 (0)281/83135, ¬ +49 (0)281/83137 e-mail:mail@loop-gmbh.de Żprecision machining 17024 Freiberger Silicium– und Targetbearbeitung GmbH Gewerbepark „Schwarze Kiefern“, Zoxy-Platz 1, D-09633 Halsbrücke +49 (0)3731/774070, ¬ +49 (0)3731/7740711 e-mail: info@fst-freiberg.de, Internet: www.fst-freiberg.de Żprocess analyses 17023 Keramik-Institut GmbH Ossietzkystraße 37 a, D-01662 Meißen +49 (0)3521/463515, ¬ +49 (0)3521/463516 e-mail: info@keramikinstitut.de Internet: www.keramikinstitut.de Żresearch and development services Keramik-Institut GmbH Ossietzkystraße 37 a, D-01662 Meißen +49 (0)3521/463515, ¬ +49 (0)3521/463516 e-mail: info@keramikinstitut.de Internet: www.keramikinstitut.de 17010 sawing on commission B U Y E R S‘ G U I D E 17017 Freiberger Silicium– und Targetbearbeitung GmbH Gewerbepark „Schwarze Kiefern“, Zoxy-Platz 1, D-09633 Halsbrücke +49 (0)3731/774070, ¬ +49 (0)3731/7740711 e-mail: info@fst-freiberg.de, Internet: www.fst-freiberg.de Żsecond-hand machinery 17011 ABIS GmbH Falkenstraße 1, D-90596 Schwanstetten +49 (0)9170/97835, ¬ +49 (0)9170/97834 e-mail: info@abis-gmbh.com, Internet: www.abis.info HEUTZ-HOMBURG AG An der Follmühle 2-4, B-4730 Hauset +32 (0)87/659140, ¬ +32 (0)87/653092 Dieter Liphardt GmbH & Co. KG D-37247 Großalmerode +49 (0)5604/93390, ¬ +49 (0)5604/933926 e-Mail: info@colisit.de Rumke Keramikmaschinen, Engineering & Handel GmbH Bleikaule 5, D-59929 Brilon +49 (0)2961/4000, ¬ +49 (0)2961/1228 e-mail: Rumke-GmbH@t-online.de Żspray drying Keramik-Institut GmbH Ossietzkystraße 37 a, D-01662 Meißen +49 (0)3521/463515, ¬ +49 (0)3521/463516 e-mail: info@keramikinstitut.de Internet: www.keramikinstitut.de Helmut Kreutz Mahlwerke GmbH Mahlwerke-Kreutz-Straße D-35708 Haiger +49 (0)2773/9441-0; ¬ +49 (0)2773/9441-60 e-mail: info@kreutz-mahlwerke.de Internet: www.kreutz-mahlwerke.de 17013 B U Y E R S‘ G U I D E Company INTERCERAM 6/2013 471 Product ACO Automation Components ................................................................................... 08010 Adolf Gottfried Tonwerke GmbH ..................................... 09029, 09033, 09036, 09037, 09038, 09039, 09044, 09061, 09062, 09064, 09106, 09107, 09125, 09136, 09144, 09147, 17026 Albion .......................................................................................................................... 08029 ALFA Maschinen …………………………………………………………………………………….…..… 02027 Allgaier Process Technology GmbH ………….................................. 02006, 02019, 02043, 02073, 12005, 12006 Almatis GmbH .................................................................. 04012, 04055, 04069, 04070, 09002, 09003, 09006, 09045, 09294 AlzChem Hart GmbH .................................................................................................. 09104 Willy A. Bachofen AG .................................................................................................. 02084 BÄHR Thermoanalyse GmbH .......................................... 07003, 07004, 07005, 07007, 07021, 07023, 07031, 07035 Beralmar Tecnologic S.A. ................................................ 01012, 03003, 03004, 03033, 12004,12011 BK Giulini Chemie GmbH & Co. OHG ............................... 09084, 09090, 09092, 09180 Johann-Friedrich-Böttger-Institut .............................................................................. 17031 Carbolite GmbH ............................................................... 03019, 03021, 03031, 03039, 03040 Cervice .......................................................................................................... 03014, 17006 Ceske Lupkove Zavody a.s. ...........................................................04070, 09044, 09062, 09064, 09109, 09295 Chemische Fabrik Mineralwerk Kurt Hacke GmbH.................................... 06013, 06023 Clariant Produkte (Deutschland) GmbH.................................................................... 09015 CNS Farnell Limited ................................................................................................... 07025 CTB GmbH ........................................................................ 03014, 03016, 03021, 03030, 03032, 03033, 03039 Dennert Poraver GmbH …………………………………………………...…… 09054, 09109, 09140 DOCERAM GmbH ........................................................................... 10001, 10003, 10004, 10007, 10015 Eclipse Combustion GmbH ........................................................................................ 03003 Electro Abrasives .............................................................. 09001, 09022, 09102, 09279 Elster Kromschröder GmbH ...................................................................................... 03003 Emailleschmelze und Glasurenfabrikation Josef Opavsky & Sohn .................................................................... 06013, 06017, 06023 EPSI NV ......................................................................................................... 05031, 05046 Eriez Magnetics Europe Ltd. .......................................................... 02019, 02020, 02065 Eriez Magnetics Vertriebs GmbH ................................................... 02019, 02020, 02065 ESA Eidam & Seiferling Analytik GmbH ………………………………………………………….. 17031 ESK-SIC GmbH ........................................................................................................... 09102 Eurotherm Deutschland GmbH .................................................... 08008, 08014, 08018, 08020, 08027 FCT Anlagenbau GmbH …………….………………………………………………………. 03022, 03057 Freiberger Silicium– und Targetbearbeitung GmbH …………………………… 17001, 17005, 17017, 17024 Gernandt - Osterkamp - Stengert .............................................................................. 17003 2043 Goerg & Schneider GmbH & Co. KG ............................... 09016, 09017, 09027, 09034, 09035, 09036, 09060, 09062, 09064, 09065, 09126, 09136, 09143, 09146, 09147 Gottfried Feldspat GmbH ................................................ 09049, 09051, 09088, 09226, 09228 Goudsmit Magnetic Systems BV................................................................................ 02019 Grothe Rohstoffe GmbH & Co. KG .................................. 03039, 06013, 06023, 09024, 09032, 09080 Hacke Maschinenbau ................................................................................................ 02024 A. Hässler Anlagenbau GmbH.......................................... 02064, 03001, 03013, 03027, 03030, 03033, 08014, 11014, 11021, 11035, 14009 Atelier für moderne Formgestaltung Helmut Hartenfels ..................................................................................................... 05066 H. C. Starck GmbH ........................................................... 09008, 09023, 09103, 09104, 09112, 09114, 09121, 09194, 09195, 09196, 09197, 09198, 09199, 09201, 09278, 09279 Hellmich GmbH & Co. KG ................................................ 14001, 14007, 14012, 14017, 15006 Hensel GmbH ............................................................................................................. 11006 Company Product W.C. Heraeus GmbH .................................................................................... 06003, 06027 HEUTZ-HOMBURG AG ................................................................................................ 17011 HF Absorb - Ing. Büro Medau………...……………………………………………………………….. 14007 HORN Glass Industries AG 03032, 03046 Hosokawa Alpine AG ..........................................02006, 02022, 02025, 02026, 02027, 02028, 02066, 02077, 02082, 02084, 07008 Imerys Tableware Deutschland GmbH ……………………… 09016, 09027, 09030, 09049, 09064, 09088, 09106, 09110, 09139, 09144 INMATEC Technologies mbH ....................................................................... 09144, 09273 Insulating Fired Brick ................................................................................................. 04021 Carl Jäger GmbH .............................................................. 02047, 03025, 04010, 05018, 05024, 05025, 06002, 06016, 06020, 06023, 06041, 06044, 06046, 09010, 09015, 09019, 09024, 09025, 09027, 09030, 09035, 09036, 09040, 09043, 09046, 09050, 09062, 09111, 09116, 09122, 09125, 09136, 09144, 09175, 13023, 15004 Johnson Matthey CT ........................................................ 06003, 06004, 06013, 06017, 06023, 06027, 06029, 06044 Kaolin- u. Tonwerke Salzmünde GmbH ........................ 09033, 09034, 09035, 09056, 09066, 09074, 09126, 09136, 09200, 09203 KARO Electronics Vertriebs GmbH ................................. 03014, 03016, 03020, 03021, 03022, 030248 03024, 03030, 03032, 03033, 03039, 03040, 03045, 03057, 05038, 05042, 05046 Keller Lufttechnik GmbH + Co. KG ........................................................................... 14001 Keramik-Institut GmbH .................................................... 17003, 17005, 17010, 17013, 17022, 17023, 17031, 17035 Keramischer OFENBAU GmbH ......................................... 03014, 03028, 03030, 03033 KEYVEST SA …............................................................................................................. 09105 KOMAGE Gellner Maschinenfabrik KG ....................................................... 05030, 05063 Kürzeder & März ........................................................................................................ 17026 Lassmann Kommandite .................................................. 09033, 09034, 09035, 09036, 09037, 09074, 09125, 09126, 09136 Ernst Letschert KG - Mahlwerk ………………………………..…...……... 09029, 09060, 09061, 09062, 09140, 17026 Sigmund Lindner GmbH ............................................................................................ 13015 LINN-High-Therm GmbH .................................................. 03016, 03021, 03022, 03025, 03030, 03039, 03049 Dieter Liphardt GmbH & Co. KG................................................................................ 17011 LOOMIS PRODUCTS Kahlefeld GmbH ............................. 05008, 05010, 05044, 05046 05050, 07013, 07014 LOOP GmbH …………………...…………………………………………………………..……………….. 17028 GEORG H. LUH GMBH .................................................................... 09030, 09058, 09113 L.U.M. GmbH ................................................................................................ 07008, 07018 Magnesia GmbH ............................................................... 09026, 09075, 09078, 09128 Helmut Kreutz Mahlwerke GmbH ................................................. 09118, 09119, 09120, 09122, 10007, 13006, 13018, 17005, 17007, 17013, 17026 Martinswerk GmbH .......................................................................................09002, 09003 Maschinenfabrik Gustav Eirich GmbH & Co. KG …………………..…………… 02018, 02084 Massform Industrieproduktedesign GmbH ................... 05012, 05021, 05022, 05066 MECO THE MANUFACTURERS EQUIPMENT COMPANY …………………………………………..………………..……….. 05005, 05043 Eduard Merkle GmbH & Co.KG ................................................................................. 09026 Bernd Münstermann GmbH & Co. KG ......................... 11005, 110039, 11060, 12002, 12003, 12004, 12010, 12013, 12020, 14001 MUT ADVANCED HEATING GmbH ................................... 03022, 03028, 03032, 03039, 03045, 03046 Nabaltec AG...................................................................... 09002, 09003, 09007, 09144, 09155 NETZSCH Grinding & Dispersing ……………….……………… 02006, 02026, 02029, 02040, 02077, 02082, 02083, 02084, 07009, 17007, 17026 Neuman & Esser GmbH ................................................................. 02026, 02066, 02082 OSTERWALDER AG ....................................................................................... 05030, 05052 S&B Industrial Minerals GmbH OTAVI Minerals ................................................................. 04012, 04036, 09010, 09014, 09029, 09043, 09045, 09049, 09069, 09113, 09187, 09223 472 Company INTERCERAM 6/2013 Product Gebr. Pfeiffer SE ………………………………………...……………………….. 02006, 02022, 02025, 02026, 02066, 02077, 02082, 02083, 12005, 12020 POROTEC GmbH ............................................................................ 07008, 07028, 07029, 07030, 07041 Prince Minerals GmbH ……………………………………………………….... 06013, 06023, 09010, 09191, 09214 Promat GmbH …………………............................................. 04001, 04005, 04006, 04021, 04023, 04055, 04075 Quarzsand GmbH Nudersdorf ................................................................................... 09101 Quarzsandwerke Weissenbrunn ................................................... 09016, 09139, 09144 Quarzsandwerk Wellmersdorf GmbH & Co. KG .............................................................................. 09226, 09227, 09228 Rath Aktiengesellschaft ................................................... 04021, 04107, 04108, 04109 Rau GmbH .................................................................................................................. 17011 Refratechnik Ceramics GmbH....................................................... 04003, 04008, 04010, 04028, 04033, 04044 REIMBOLD & STRICK ....................................................... 06003, 06004, 06017, 06023, 06044, 09043, 09122 Rheinische Email– und Glasurenfabrik Mondré & Manz GmbH .................................................................. 06013, 06017, 06023 Riedhammer GmbH ..........................................................03014, 03017, 03019, 03020, 03021, 03024, 03026, 03027, 03028, 03030, 03032, 03033, 03045, 03046 ETS ROCHET ............................................................................................................... 05004 Rohstoffgesellschaft mbH PONHOLZ ............................................ 09028, 09037, 09062 ROTHO Robert Thomas Metall– u. Elektrowerke GmbH + Co. KG .................................... 12002, 12004, 12009, 12013, 12018 RTE Akustik + Prüftechnik GmbH ............................................................................ 16002 Rumke Keramikmaschinen, Engineering & Handel GmbH .................................................................................... 17011 S&B Industrial Minerals GmbH ................................................................................ 09015 Saarfeldspatwerke H. Huppert GmbH & Co. KG ...................................................................................... 09049 Saint-Gobain Formula GmbH ...................................................................... 09084, 09090 SCHMIDT Technology ………………………..……………………………….…………………...….… 08004 Schönbeck GmbH & Co. KG …………………………………..... 01012, 06053, 06055, 11005, 11014, 11018, 11035 SENSOR CONTROL Ges. f. Sensorik u. Automation mbH ........................................... 02046, 08006, 08008, 08010 08014, 08021 Sibelco Deutschland GmbH ............................................. 09049, 09087, 09113, 09214 Silicon BV ...................................................................................................... 04059, 04102 SILCA GmbH .................................................................... .03013, 04005, 04006, 04007, 04021, 04023, 04055, 04075 Sintec Keramik GmbH .........................................09022, 09023, 09112,.10002, 10003 SPT Roth Ltd ............................................................................................................... 10015 STEINERT Elektromagnetbau GmbH ............................................. 02019, 16016, 16019 Stempelspirale .................................................................. 06020, 06069, 06070, 06071 THEODOR STEPHAN KG GmbH & Co. KG..................................... 09035, 09038, 09054, 09056, 09074, 09136, 09174, 09190, 09203, 17026 SWECO EUROPE S.A. ................................................................................... 02026, 02043 Teublitzer Ton GmbH ................................................................................................ 09136 Tonwerk der Stadt Klingenberg a. Main ..........................09034, 09056, 09136, 09280 Tosoh Europe BV ......................................................................................... 09186, 13006 Tridelta Thermprozess GmbH ………………………………..… 03017, 03020, 03027, 03030, 03033, 03043, 03046, 03058, 12003, 14009 UCM Advanced Ceramics GmbH………………………………… 09117, 09157, 09158, 09186 VGT-DYKO GmbH..............................................................................04008, 04010, 04021 VHV Anlagenbau GmbH ............................................................................................. 11007 Viebahn Pressen Systeme GmbH ............................................................................. 05030 Vötsch Industrietechnik GmbH ...................................... .03049, 12002, 12004, 12005, 12013, 12020 VSM .................................................................................. 05020, 05032, 05035, 06043, 06053, 06055 Walderdorff´sche Tongruben & Herz GmbH & Co. ............................................................. 09033, 09036, 09037, 09039, 09056, 09125, 09126, 09136 WENDEL GmbH .............................................................................. 06013, 06017, 06023 Ludwig Wery GmbH ....................................................................... 02005, 02011, 02012, 02027, 02028 Company B U Y E R S‘ G U I D E Product WISTRA GmbH ................................................................. 03003, 03014, 03017, 03018, 03019, 03021, 03024, 03028, 03030, 03032, 03033 Arno Witgert ..................................................................... 09016, 09017, 09027, 09029, 09030, 09033, 09034, 09035, 09036, 09037, 09038, 09039, 09056, 09062, 09065, 09066, 09074, 09125, 09126, 09136, 09139, 09143, 09144, 09146, 09147, 09174, 17005 Witte-Löhmer vertreten durch NÄSCHER-SNV GmbH …............... 02005, 11007, 11011 Michael Zervos ................................................................. 05040, 05041, 05077, 06011, 13020, 13021 ZSCHIMMER & SCHWARZ GmbH & Co KG .................................. 04012, 06008, 06029, 06046, 06060, 06061, 09001, 09152, 09170, 09182, 09289, 09290, 09291, 09292, 09293, 09294 12013, 12020 LIST OF PRODUCTS INTERCERAM 6/2013 ɼ Plant Construction — Plant Consulting 01 010 01 018 01 019 01 012 01 003 01 006 01 014 01 015 01 017 01 013 01 016 01 009 flower pot production lines frit melting plants microwave plants plants for the production of building and heavy clay ceramics plants for the production of ceramics plants for the production of expanded clay plants for the production of refractories plants for the production of sand-lime bricks plants for the production of stoneware pipes plants for the production of tableware plants for the production of tiles project engineering ɼ Preparation 02 001 02 053 02 003 02 004 02 067 02 079 02 006 02 007 02 062 02 083 02 008 02 055 02 010 02 011 02 009 02 060 02 049 02 082 02 012 02 005 02 013 02 064 02 014 02 015 02 016 02 075 02 057 02 017 02 048 02 018 02 058 02 019 02 071 02 070 02 072 02 059 02 073 02 065 02 020 02 002 02 084 02 021 02 022 02 023 02 024 02 033 02 056 02 025 02 026 02 040 02 050 02 027 02 028 02 047 02 029 02 042 02 031 02 066 02 032 02 061 02 076 02 034 02 051 02 035 02 036 02 052 02 030 02 037 02 081 02 080 02 078 02 068 02 038 02 039 02 041 agitators agitators: propeller agitators blungers: general blungers: propeller blungers bowl mills briquetting plants classifiers classifiers: cyclones clay purifier comminution plants crushers crushers: breakers crushers: jaw crushers crushers: roller crushers crushers: single-toggle jaw crushers crushers: wet crushers cyclones dry grinding plants feeders feeders: box feeders feeders: circular feeders feeders: high-capacity feeders feeders: screen circular feeders feeders: vibratory feeders filter presses flat slide valves grain heaters granulators, pelletizers heating drums kneaders kneaders: screen kneaders magnetic separators magnetic separators: magnetic drums magnetic separators: magnetic filters magnetic separators: magnetic grates magnetic separators for wet and dry preparation magnets: permanent magnets magnets: superconducting magnets metal detectors metering units mills: agitator ball mills mills: annular gap mills mills: ball mills mills: centrifugal mills mills: corundum disc mills mills: disc mills mills: drum mills mills: dry ball mills mills: fine grinding mills mills: frit mills mills: grinding mills mills: hammer mills mills: impact mills mills: jar mills mills: jet impact mills mills: pendulum mills mills: ring-roll mills mills: roller mills mills: roller press mills mills: vibrating ball mills mills: vibratory mills mixers: continuous mixers mixers: de-airing plaster mixers mixers: double shaft mixers mixers: periodic mixers mixers: plaster mixers pan mills pelletizing tables plants for the production of grinding wheels powder feeding and mixing units preparation plants pressure heads pugmills roll turning devices rotary vane feeders 02 043 02 054 02 044 02 074 02 077 02 045 02 063 02 046 screening machines screening machines: ultrasonic-supported screens: oscillating screens screens: vibratory screens sifters: air-sifters spray driers waste chopper weighing devices ɼ Firing 03 048 03 001 03 003 03 037 03 004 03 002 03 043 03 006 03 007 03 009 03 008 03 063 03 031 03 010 03 061 03 034 03 054 03 012 03 038 03 013 03 014 03 015 03 053 03 016 03 017 03 018 03 019 03 020 03 027 03 062 03 022 03 058 03 021 03 039 03 052 03 049 03 040 03 047 03 024 03 025 03 056 03 026 03 028 03 046 03 055 03 029 03 030 03 045 03 051 03 032 03 033 03 057 03 042 03 005 03 041 03 036 03 060 03 044 autoclaves for hardening of sand-lime bricks burner plants burners: gas burners burners: infrared burners burners: oil burners burners: solid fuel burners calcining plants chimneys: brick chimneys chimneys: concrete chimneys chimneys: refractory chimneys chimneys: steel chimneys crystal growing systems furnaces: annealing furnaces furnaces: pit furnaces furnaces: tube furnaces gas generators graphite components heating conductors kiln baskets kiln cars kilns kilns: annealing kilns kilns: braziers kilns: chamber kilns kilns: conveyor-type kilns kilns: decorating kilns kilns: electric kilns kilns: elevator kilns kilns: fast firing kilns kilns: fibre drawing kilns kilns: gas/vacuum-tight high temperature kilns kilns: gas/vacuum-tight rotary kilns kilns: high temperature kilns kilns: laboratory kilns kilns: microwave conveyor-belt kilns kilns: microwave kilns kilns: muffle kilns kilns: pendulum kilns kilns: periodic kilns kilns: potters’ kilns kilns: pressure sintering kilns kilns: pusher-type kilns kilns: roller kilns kilns: rotary kilns kilns: rotary pusher kilns kilns: shaft kilns kilns: shuttle kilns kilns: sintering kilns kilns: temperature gradient kilns kilns: top hat kilns kilns: tunnel kilns kilns: vacuum sintering kilns process firing systems rollers and tubes: ceramic rollers and tubes: fused silica rollers and tubes: metallic rollers and tubes: RSiC rollers and tubes: SiSiC ɼ Refractories 04 001 04 045 04 049 04 003 04 033 04 044 04 004 04 046 04 071 04 052 04 106 04 067 04 068 04 042 04 006 04 007 04 099 04 036 04 072 04 102 asbestos substituting materials burners: SiSiC burner nozzles burners: SSiC burner nozzles cassettes: H-cassettes cassettes: U-cassettes cassettes for roofing tiles cassettes for tiles ceramic fibre textiles components: ceramic fibre-free-products, vacuum shaped components: ceramic vacuum shaped products components: chamotte moulded parts components: plasma-sprayed components: special shapes for hand-made-stoves corrosion-resistant agents fibre linings fibre-products: vacuum shaped fibres: ceramic fibres: general fibres: polypropylene fibres fibres: steel fibres 473 04 027 04 103 04 062 04 063 04 108 04 109 04 075 04 005 04 064 04 040 04 055 04 010 04 018 04 011 04 057 04 056 04 050 04 107 04 054 04 013 04 034 04 059 04 014 04 002 04 012 04 073 04 074 04 077 04 076 04 048 04 070 04 065 04 015 04 039 04 105 04 025 04 047 04 019 04 058 04 066 04 037 04 020 04 016 04 021 04 043 04 051 04 022 04 008 04 009 04 017 04 023 04 079 04 078 04 024 04 038 04 026 04 101 04 035 04 069 04 029 04 053 04 030 04 041 04 031 04 032 04 060 04 028 fibres: up to 1800 °C filters for aluminum foundries heat protective materials: general heat protective materials: up to 1600 °C high temperature insulation wool high temperature insulation wool: vacuum shaped insulating materials: calcium silicate plates insulating materials: high-temperature insulating materials insulating materials: insulating fibre products insulating materials: low temperature insulating materials: microporous insulating kiln furniture kiln furniture: honeycomb ceramic kiln furniture: low mass kiln furniture: NSiC kiln furniture: RSiC kiln furniture: SiSiC and SSiC linings: high temperature insulation wool refractories for stove-fitters refractories: acidic bricks refractories: alumina bricks refractories: anchors refractories: basic bricks refractories: bats refractories: binders refractories: binders, liquid refractories: binders, pulverized refractories: bricks based on Al2O3 refractories: bricks based on SiC refractories: building materials refractories: calcium aluminate cement refractories: carbon/graphite refractories: castables, concretes refractories: cement refractories: chamotte bricks and panels refractories: chrome-alumina refractories refractories: fibre-free refractories: fused silica refractories: fused magnesia-chromite refractories: fused spinel refractories: furnace insulating assemblies refractories: gunning mixes refractories: high alumina concretes refractories: insulating bricks refractories: insulating bricks refractories: insulating materials refractories: insulating seals refractories: kiln car linings refractories: kiln car sealings refractories: lightweight concretes refractories: linings refractories: mixes based on Al2O3 refractories: mixes based on SiC refractories: mortars refractories: putties refractories: ramming mixes refractories: repairing mixes refractories: silica bricks refractories: spinel (magnesium aluminate) saggars: alumina saggars saggars: high alumina saggars for high temperature applications saggars: mullite saggars saggars: SiC saggars saggars for plates saggars for tiles soldering and welding devices suspended roofs ɼ Shaping 05 001 05 002 05 042 05 003 05 004 05 005 05 006 05 081 05 079 05 007 05 054 05 008 05 009 05 010 05 055 05 065 05 011 05 014 05 045 05 015 05 017 casting benches casting machines: automatic casting plants: tape casting plants cup jolleying machines cutters cutting wires de-airing plants for plaster, slips die changing devices die cleaning devices dies (extruders) enjection moulding machines extruders extruders: pipe extruders extruders: vacuum extruders extruders: vacuum screw extruders extruders for stoneware pipes fettling and sponging machines insulator copying machines jar ramming machines jiggering spindles marking devices INTERCERAM 6/2013 474 05 016 05 067 05 071 05 020 05 021 05 022 05 012 05 069 05 068 05 023 05 070 05 066 05 072 05 019 05 024 05 025 05 046 05 026 05 027 05 053 05 031 05 029 05 030 05 047 05 052 05 063 05 080 05 032 05 051 05 048 05 033 05 034 05 035 05 036 05 013 05 028 05 062 05 064 05 037 05 038 05 050 05 057 05 058 05 039 05 040 05 076 05 061 05 060 05 077 05 059 05 074 05 075 05 041 05 073 05 049 05 043 05 018 05 044 05 056 05 078 moulding machines: low pressure moulds: casting moulds moulds: do-it-yourself moulds moulds: metal moulds moulds: plaster moulds moulds: plastic moulds moulds: pressure casting moulds moulds: RAM-squeeze moulds moulds: roller moulds moulds: soft mud moulds moulds: for stove tiles moulds, models, design moulds & models: CNC processed plaster mould making plants plastics for mould making potters’ wheels presses: cold isostatic presses presses: dry presses presses: excenter presses presses: friction presses presses: hot isostatic presses presses: hot presses presses: hydraulic presses presses: hydraulic presses for the production of asymmetric articles presses: mechanical-hydraulic presses presses: mechanical presses presses: piston presses presses: pot presses presses: presses for refractories presses: presses for roofing tiles presses: soft mud presses presses: special shape presses presses: tableware presses presses: turntable presses presses for grinding wheel production presses for hollow ware presses for heat insulating materials presses for sand-lime bricks pressure casting machines punching plants rubber and PU bags sawing machines saws: disc saws sponge belts sponge belt stripes (plain or corrugated) sponge materials (synthetic) sponge plates (sheets) sponge-tuft belts for finishing brims sponges: hand-sponges (sponge materials) sponges: hand-sponges synth. (spec. foam materials) sponges: oval hand sponges sponges: printing sponges sponge rollers sponges: sheets sponges sponges for manual finishing texturing wires tools: modelling tools tools: pressing tools turntables with vibrating device velour belts ɼ Glazing — Decorating 06 008 06 048 06 001 06 002 06 003 06 004 06 085 06 058 06 005 06 064 06 006 06 073 06 074 06 007 06 009 06 010 06 011 06 071 06 012 06 019 06 051 06 013 06 014 06 015 06 016 06 017 06 018 06 086 auxiliary agents for decoration chamois leather colour resists colour spraying plants colours: ceramic colours colours: decorating colours colours: glaze colours colours: leadless and cadmium-free colours colours: leadless colours colours: organic colours: thermoplastic colours decal cutting machines decal positioning machines decals and transfers decorating machines decorating media decorating sponges (natural) decorating stamps & rubber stamps dipping devices dry glazing machines enamels: jewellery enamels engobes engobing plants exhaust booths fettling wheels frits frits: granulated frits: ground 06 049 06 052 06 060 06 059 06 025 06 061 06 046 06 056 06 050 06 022 06 021 06 062 06 055 06 057 06 023 06 024 06 053 06 069 06 065 06 026 06 077 06 075 06 076 06 083 06 027 06 028 06 070 06 031 06 030 06 032 06 067 06 033 06 029 06 084 06 087 06 020 06 054 06 063 06 040 06 041 06 042 06 043 06 044 06 068 06 066 06 072 06 045 06 047 frits: pelletized glaze auxiliary agents glaze auxiliary agents: binders glaze auxiliary agents: deflocculants glaze auxiliary agents: opacifiers glaze auxiliary agents: rheological binders glaze auxiliary agents: suspending agents glaze dipping devices glaze fettling devices glaze pumps glaze sponging devices glaze spraying cubicles glaze spraying equipment glaze spraying plants glazes glazing lines glazing plants, automatic gold eraser metal-complex-salt solutions pigments pigments: colouring pigments pigments: inclusion pigments pigments: inorganic pigments: pearly lustre pigments precious metal preparations pressure vessels rubber squeegees screen printing accessories screen printing fabrics screen printing gauzes screen printing glazes screen printing machines screen printing media sliptrailer special glasses for specific purposes sponge rubber belts for glaze removal sponges: viscose sponges spraying chambers spraying devices spraying guns spraying plants spraying robots stains stains: crystallized granulated stains: granulated stains: red firing stamping machines transfer applying machines ɼ Laboratory Equipment 07 017 07 036 07 024 07 038 07 001 07 002 07 029 07 033 07 003 07 004 07 005 07 035 07 018 07 007 07 008 07 032 07 045 07 037 07 009 07 011 07 012 07 013 07 015 07 014 07 031 07 016 07 040 07 042 07 046 07 030 07 043 07 039 07 006 07 027 07 044 07 010 07 028 07 026 07 034 07 019 07 020 07 021 bending strength testers brick-height metering units brick testing devices bulk density measuring devices calorimeters: heat-flow differential calorimeters crucibles density measuring devices dicing saws differential scanning calorimeter differential thermal analysers dilatometers dilatometers: optical dispersion-stability-analysers glaze tension testers grain size - / particle size analysers hot-bending strength testing devices kiln furniture for laboratory kilns laboratory disc saws laboratory mills laboratory porcelain laboratory preparation plants laboratory presses: isostatic laboratory pumps laboratory vacuum extruders load testing devices measuring instruments: general microscopes microscopes: heating microscopes microscopes: thermionic microscopes porosity measuring devices R.U.L. apparatus sample preparation equipment scales screens single-granule testing devices spectrometers surface measuring devices testing devices testing devices: dielectric properties thermal conductivity measuring devices thermoanalysers thermogravimetric devices LIST OF PRODUCTS 07 025 07 022 07 023 07 041 ultrasonic NDC systems viscosimeters viscosimeters: high temperature zeta potential measuring devices ɼ Measuring — Controlling 08 039 08 048 08 027 08 003 08 041 08 004 08 025 08 005 08 043 08 001 08 038 08 006 08 007 08 008 08 030 08 009 08 010 08 042 08 011 08 029 08 013 08 014 08 015 08 016 08 018 08 047 08 044 08 019 08 020 08 021 08 022 08 040 CO measuring devices compression strength testing machines control systems: electronic dust measuring instruments equipment for automation of industrial furnaces flow meters flue gas analysers hygrometers image processing equipment, industrial inspection systems lambda sensors level gauges material flow controllers measuring and controlling devices measuring cars: wireless micro processor controllers moisture measuring devices optical inspection systems for tile sorting oxygen probes oxygen sensors plasticity measuring devices process automation equipment process controllers pyrometers: optical recorders solids flow measuring systems surface inspection systems switch boards temperature controllers temperature measuring devices thermocouples zirconium oxide probes ɼ Raw Materials — Bodies 09 001 09 294 09 181 09 192 09 292 09 293 09 290 09 170 09 291 09 159 09 204 09 003 09 004 09 002 09 005 09 006 09 221 09 007 09 008 09 124 09 009 09 160 09 010 09 011 09 012 09 013 09 142 09 014 09 215 09 015 09 182 09 183 09 168 09 289 09 152 09 161 09 027 09 144 09 017 09 143 09 139 09 016 09 145 09 146 09 147 09 019 09 020 09 148 09 021 09 149 09 194 additives additives: deflocculants and dispersing agents additives: deflocculants for bodies additives: microsilica additives: plasticizers additives: pressing and stamping agents addititves: pressure casting auxiliary agents additives: tapee casting additives additives: wetting agents additives for dehydration alumina alumina: calcined alumina: fused alumina alumina: general alumina: high purity alumina: tabular alumina alumina: white fused aluminium hydroxide aluminium nitride aluminium titanate andalusite antimony oxide barium carbonate barium compounds barium fluoride barium sulfate barium titanate bauxite bauxite: raw bauxite bentonite binders: chemical binders binders: evolatile binders for bodies binders: organic binders binders: temporary binders binders: thermoplastic injection moulding binders bismuth oxide bodies: casting slips bodies: ceramic bodies bodies: do-it-yourself bodies bodies: earthenware bodies bodies: general bodies: ready-made bodies bodies: special bodies bodies: stoneware bodies bodies: stove tile bodies bone ash bones: calcined borax boric acid boric oxide boron: amorphous LIST OF PRODUCTS 09 195 09 022 09 278 09 150 09 023 09 024 09 025 09 026 09 162 09 172 09 213 09 177 09 189 09 032 09 163 09 034 09 035 09 280 09 033 09 136 09 036 09 125 09 037 09 038 09 056 09 126 09 039 09 040 09 127 09 151 09 153 09 041 09 042 09 043 09 044 09 045 09 048 09 222 09 221 09 276 09 067 09 046 09 218 09 047 09 049 09 228 09 227 09 050 09 051 09 226 09 052 09 053 09 208 09 171 09 202 09 190 09 054 09 055 09 209 09 281 09 140 09 184 09 273 09 058 09 059 09 141 09 224 09 029 09 060 09 061 09 062 09 028 09 283 09 185 09 063 09 191 09 216 09 030 09 064 09 030 09 200 09 065 09 203 09 031 09 109 09 174 09 066 09 068 09 069 09 070 09 071 09 072 09 164 boron: crystalline boron carbide boron carbide: fine-powdered boron compounds boron nitride brownstone calcite calcium carbonate calcium fluoride calcium zirconate cement clinker cerium oxide chrome corundum chromite ore & chromite ore sand chromium oxide clays: ball clays clays: casting clays clays: flint clay clays: general clays: ground clays: light firing clays: red firing clays: refractory clays clays: shaly clays clays: special clays clays: white firing clays: yellow firing cobalt compounds cobalt metal powder cobalt oxide cobalt salts colemanite colouring agents for bodies/glazes copper oxide cordierite corundum corundum: fused cast corundum: fused recycled corundum: pure cristobalite cryolite: synthetic dolomite dolomite: sintered dolomitic talcum feldspar feldspar: ceramic feldspar sands feldspar: glass feldspar sands feldspar: scandinavian feldspar: sodium feldspar feldspar sands: Al2O3 -and K2O-rich ferrite powders ferrosilicon metal ferrosilicon nitride fillers: cenospheres fillers: fillite fillers: general fillers: light coloured fluorspar fluorspar: acid grade garnet glass powder glues granulates for powder injection moulding (CIM and MIM) graphite graphite powder graphite: pyrolytic graphite grit stone: Thiviers grit stone grog grog: bulk grog grog: granulated grog grog: ground grog (grains) grog: lightweight grog ilmenite impregnating agents iron ore iron oxide iron oxide: red kaolin kaolin chamotte kaolin: china clay kaolin: containing feldspar kaolin: crude kaolin: crude, white firing kaolin: english kaolin: metakaolin kaolin: ground kaolin: washed kyanite: calcined kyanite: crude kyanite: scandinavian lead oxide lead silicate lithium carbonate INTERCERAM 6/2013 09 138 09 073 09 074 09 075 09 076 09 207 09 077 09 079 09 078 09 128 09 080 09 274 09 129 09 082 09 154 09 083 09 201 09 085 09 156 09 155 09 086 09 178 09 087 09 134 09 175 09 135 09 214 09 288 09 081 09 088 09 173 09 091 09 130 09 089 09 131 09 090 09 285 09 284 09 084 09 092 09 180 09 093 09 169 09 094 09 095 09 179 09 096 09 167 09 097 09 231 09 176 09 098 09 225 09 099 09 277 09 100 09 101 09 102 09 103 09 279 09 217 09 104 09 105 09 282 09 057 09 106 09 107 09 286 09 287 09 133 09 219 09 223 09 018 09 232 09 108 09 110 09 188 09 111 09 187 09 196 09 199 09 112 09 198 09 132 09 166 09 165 09 123 09 137 09 113 09 114 09 115 09 116 09 118 09 120 lithium minerals lithium salts loam sand magnesia magnesia: calcined magnesia: dead-burned magnesia: fused magnesite magnesium fluoride magnesium hydroxide manganese compounds manganese oxide mica mineral products molochite molten products (special) molybdenum disilicide mullite mullite: electrofused mullite: sintered mullite fireclay neodymium oxide nepheline syenite nepheline: synthetic nickel carbonate nickel oxide olivine opening material: natural quartz: micronized pegmatite perlite petalite petroleum coke phonolithe plasma-spray powders plaster plaster: hard moulding plaster plaster: modelling plaster plaster: moulding plaster plaster: synthetic plaster plastics: porous platelets porcelain shards potassium fluorosilicate potassium silicate praseodymium oxide precursors: organo-metallic pyrite pyrophyllite quartz: fused rare earths resins: epoxy resins resins: furan resins resins: phenolic resins rutile silica flour silica sand silicon carbide silicon carbide: ȕ-type silicon carbide: fine-powdered silicon metal silicon nitride silicon powder sillimanite sintering powder soapstone soapstone: calcined spinel: magnesia-alumina spinel spinel: magnesia-chrome spinel spinel: refractory spinel: sintered spodumene stains for bodies strontium carbonate strontium compounds talc Thiviers sandstone tin oxide titania titanium carbide titanium carbonnitride titanium diboride titanium nitride tungsten powder vanadates vanadium oxides vermiculite whiskers wollastonite yttrium oxide zeolite zinc oxide zircon flour zircon sand 475 09 120 09 122 09 117 09 157 09 158 09 186 09 197 09 121 09 119 zircon sand zircon silicate zirconia zirconia: fused zirconia zirconia: partially stabilized zirconia powder, high purity zirconium carbide zirconium diboride zirconium opacifiers ɼ Advanced Ceramics — Semi Finished — Finished Products 10 026 10 001 10 013 10 023 10 003 10 004 10 011 10 002 10 028 10 018 10 019 10 005 10 020 10 027 10 016 10 006 10 007 10 008 10 009 10 015 10 014 10 017 10 012 abrasives alumina parts bearings cermets ceramic components ceramic components: wear resistant ceramic composites: whisker reinforced composites: carbon fibres/carbon composites composites: ceramic metal electro ceramics: thermistors electro ceramics: varistors glass ceramics high-temperature superconductors honeycomb ceramics (cordierite) non-oxide ceramics nuclear ceramics oxide ceramics piezo-electric ceramics plasma ceramics precision injection-moulded parts SiC components SiC components with coatings sliding rings ɼ Transport — Conveying — Packaging — Storage 11 058 11 059 11 003 11 060 11 005 11 006 11 007 11 008 11 045 11 050 11 009 11 010 11 011 11 012 11 013 11 015 11 065 11 016 11 062 11 017 11 044 11 018 11 019 11 020 11 021 11 022 11 001 11 024 11 023 11 025 11 026 11 053 11 027 11 028 11 029 11 074 11 046 11 031 11 076 11 030 11 042 11 077 11 047 11 075 11 073 11 032 11 033 11 034 11 063 11 064 11 051 11 035 big-bag-handling bottling plants bucket elevators conveying systems: general conveying systems: mechanical conveying systems: pneumatic conveyor belts conveyor belts: metal conveyor belts: textile, asbestos-free conveyor belts: up/down curving conveyors: chain conveyors conveyors: screw conveyors conveyors: steel-plate conveyors conveyors: vibratory conveyors conveyors: wire-mesh conveyors elevators elevators: nylon buckets for elevators feeding belts foil wrapping equipment fork lift trucks handling and conveyor systems handling and storage systems handling plants for pipes handling plants for refractories kiln car transport systems lath stackers linkage equipment loading/unloading devices for flatware loading/unloading devices: general loading/unloading devices for tiles packaging machines pallets pallet-returning systems palletizing plants pumps pumps: compressed-air diaphragm pumps pumps: diaphragm-piston pumps pumps: diaphragm pumps pumps: disc pumps pumps: dosing pumps pumps: excentric worm pumps pumps: gear pumps pumps: hose-diaphragm-piston pumps pumps: rotary lobe pumps pumps: rotary-piston pumps pumps: slurry pumps pumps: squeeze pumps pumps: suction pumps pumps for filter presses rack-type cars robotised plants setting plants INTERCERAM 6/2013 476 11 041 11 036 11 037 11 004 11 038 11 048 11 052 11 061 11 039 11 002 11 014 11 049 shrink wrapping equipment silo discharge devices silos silo transports stackers: automatic storage systems strapping equipment for transportation stretch-wrapping plants transfer cars transport systems unloading plants: automatic wheels and axles ɼ Drying 12 001 12 026 12 025 12 030 12 023 12 018 12 003 12 004 12 028 12 020 12 005 12 009 12 006 12 002 12 007 12 017 12 008 12 019 12 010 12 029 12 011 12 022 12 015 12 012 12 027 12 013 12 024 12 021 12 014 12 016 12 031 dryer cars and stillages dryer constructions in modular systems dryer doors dryer laths dryer stellages dryer trays dryers: belt dryers dryers: chamber dryers dryers: channel dryers dryers: continuous dryers dryers: drum dryers dryers: fast dryers dryers: fluidized bed dryers dryers: general dryers: infrared dryers dryers: nozzle dryers dryers: microwave dryers dryers: rotary dryers dryers: special dryers dryers: spray dryers dryers: tunnel dryers dryers: vacuum dryers dryers for tiles dryers for wet tiles dryers and coolers drying plants drying support units pallets: metal pallets pallets: plastic pallets pallets: wooden pallets plaster moulds - drying fans ɼ Consumables 13 034 13 001 13 023 13 004 13 028 13 003 13 005 13 026 13 010 13 002 13 006 13 008 13 007 13 027 13 018 13 009 13 015 13 011 13 012 13 013 13 014 13 022 13 030 13 025 13 016 13 029 13 017 13 020 13 021 13 033 13 031 bristles brushes cones: pyrometric cones filtering cloths filtering fabrics filter media filters fixing systems flint gold burn brushes and discs grinding media high temperature lubricants lubricants mill lining blocks mill linings moulding oil pebbles, grinding balls pebbles: silex plates: perforated punching oils pyrometer tubes pyrometric protection tubes release agents / mould lubricants roller shells screen wire-clothes Seger cones sponges sponges: natural sponges sponges: synthetic sponges temperature measuring rings, ceramic buller rings wear-resistant parts ɼ Environmental — Labour Protection 14 015 14 001 14 016 14 013 14 004 14 005 14 006 14 014 14 007 bleeding-off systems dedusting plants emission measuring devices environmental plants filters: ceramic filters filters: filter tubes, filter hoses filters: hot air filters up to 850 °C flue gas purification systems fluor absorption systems 14 003 14 019 14 008 14 009 14 010 14 017 14 012 14 011 protective clothing sewage treatment plants silo overflow protection devices thermal and catalytic afterburning plants vacuum cleaners vacuum cleaners: stationary waste gas purification systems waste water purification systems ɼ Various Systems 15 001 15 002 15 010 15 003 15 005 15 006 15 008 15 004 15 007 15 009 air heaters and circulaters biscuit ware cleaning plants blasting media compressors fans heat exchangers magnets pottery accessories roll doors special machinery ɼ Final Treatment — Sorting 16 014 16 001 16 005 16 013 16 011 16 015 16 004 16 003 16 006 16 012 16 018 16 017 16 007 16 016 16 019 16 008 16 009 16 010 cutting-off machines diamond tools diamond wire saws disc sawing machines equipment for finishing of refractory bricks etc. flat grinding machines grinding and polishing machines grinding machines for finished products grinding wheel finishing equipment metallization of electroceramics: Ag/Pd pastes positioning systems sifter wheels sorting plants sorting systems: opto-electronic sorting systems: roentgenographic splitters: automatic ultrasonic erosion machines ultrasonic machining devices ɼ Services — Trading — Second- Hand Machinery — Consulting 17 032 17 001 17 022 17 002 17 004 17 005 17 003 17 018 17 027 17 026 17 037 17 038 17 019 17 035 17 036 17 006 17 034 17 031 17 021 17 016 17 020 17 025 17 007 17 028 17 008 17 024 17 023 17 009 17 015 17 010 1 7017 17 011 17 012 17 033 17 013 17 014 09 120 09 122 09 117 09 157 09 158 09 186 09 197 09 121 09 119 burner/heating plant service ceramic machining (advanced ceramics) ceramic product realisation ceramic to metal sealings chimney inspection and repair commission processing consultancy/expertises factory automation machinery graining on commission grinding on commission industrial data logging industry representations ISO 9000 certification kiln/dryer activation kiln/dryer control kiln repairs know-how for the production of grinding wheels laboratory services laser machining & ultrasonic machining machining centres management consultancies marketing & communication micronizing mixture in commission: dry/pasty plasma spraying precision machining process analyses quality control repair of mill linings research and development services sawing on commission second-hand machinery sintering plants software spray drying wear resistant coatings zircon sand zircon silicate zirconia zirconia: fused zirconia zirconia: partially stabilized zirconia powder, high purity zirconium carbide zirconium diboride zirconium opacifiers LIST OF PRODUCTS PRICE LIST INTERCERAM 6/2013 477 Ceramic Industry Suppliers Guide Publication in: KERAMISCHE ZEITSCHRIFT: circulation: 5,000 copies frequency: 6 x annual language: German INTERCERAM: circulation: 5,000 copies frequency: 6 x annual language: English You can reach with your entry engineers, managers, suppliers etc. involved in the development, manufacture and appliction of ceramic products or with plant engineering. The advantages at a glance: x Organised topically into 17 main groups with key words for a wide range of products in the whitewares and heavy clay industries x Monthly update of your company’s address and products possible x Complete listing of your entries in German and English x Opportunity to develop new international contacts x Your entry appears additional in the Internet (www.interceram-review.info) with a link to your homepage Prices: number of key-words costs per annum in EUR number of key-words costs per annum in EUR 1 105 6 423 2 210 7 476 3 264 8 529 4 317 9 582 5 370 10 635 For any other key-word we will charge you EUR 53.- Contact person: Boris Hanisch Phone: +49 (0) 211/1591-152 Fax: +49 (0) 211/1591-150 e-mail: boris.hanisch@dvs-hg.de INTERCERAM 6/2013 K 478 ORDER FORM Order Form Expert Fachmedien GmbH c/o Boris Hanisch Entry: ____________________________________________________________________________________ Company VAT no. ____________________________________________________________________________________ Street Address resp. P.O. Box ____________________________________________________________________________________ Postal Code, City ____________________________________________________________________________________ Phone Fax: ____________________________________________________________________________________ e-mail: Internet: Alphabetical classification under letter: (please mark with a cross) A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z under the following key-words: Code-No.: (you can find the code-no. in the list of products at the previous page) 1. ____________ 6.___________ 11. 2. ____________ 7.___________ 12. 3. ____________ 8.___________ 13. 4. ____________ 9.___________ 14. 5. ____________ 10. __________ 15. __________ __________ __________ __________ __________ 16. __________ 17. __________ 18. __________ 19. __________ 20. __________ 21. ___________26. ___________ 22. ___________27. ___________ 23. ___________28. ___________ 24. ___________29. ___________ 25. ___________30. ___________ Contac person: ____________________________________________________________________ Oder sign: ____________________________________________________________________ Date: __________________ Signature: ____________________________________________ The entries in the Buyers guide take place in each case with a term of 12 month until canceled. Discontinuation will be accepted at the end of a subscription year considering 6 weeks notice. Deadline is the 15th of each month. Meeting Diary December 18–20, 2013 Ahmedabad (IND) Ceramics Asia 2013. www.ceramicsasia.net January 26–31, 2014 Daytona Beach, FL (USA) ICACC’14 38th International Conference and Expo on Advanced Ceramics and Composites. www.ceramics.org/meetings/acers-meetings February 04–05, 2014 Warsaw (PL) Refractories for Industry 2014, The XXIII Annual International Conference. borisov@gol.ru February 11–14, 2014 Valencia (E) Cevisama. cevisama.feriavalencia.com February 17–18, 2014 Castellon (E) Qualicer XIII World Congress on Ceramic Tile Quality. www.qualicer.org February 26–28, 2014 Ahmedabad (IND) Indian Ceramics 2014. www.indian-ceramics.com March 11–14, 2014 São Paolo (BR) Revestir 2014. www.exporevestir.com.br March 24–26, 2014 Clausthal-Zellerfeld (D) DKG Annual Meeting & Symposium on High Performance Ceramics. www.jahrestagung2014.dkg.de April 1–4, 2014 April 15–18, 2014 Moskau (RU) Mosbuild 2014. www.mosbuild.com April 7–11, 2014 Hannover (D) Hannover Messe. www.hannovermesse.de May 6–8, 2014 Karlsruhe (D) European Symposium on Friction Wear and Wear Protection. www.dgm.de May 13–14, 2014 Prague (CZ) 18. Conference on Refractories and HITHERM Prague 2014. sis@csvts.cz May 21–24, 2014 Guangzhou (CN) Ceramics China 2014. www.ceramicschina.net May 25–30, 2014 Aachen (D) 1st Joint Meeting of DGG – ACerS GOMD. www.dgg-gomd.org June 3–5, 2014 Nürnberg (D) Sensor + Test 2014. www.sensor-test.de June 8–13, 2014 Montecatini Terme (I) CIMTEC 2014, 13th Internationals Ceramic Congress & 6th Forum on New Materials. www.cimtec-congress.org August 17–21, 2014 Beijing (CN) 5th International Congress on Ceramics. www.icc-5.com September 22–26, 2014 Rimini (I) Tecnargilla 2014. www.tecnargilla.it September 24–25, 2014 Aachen (D) 57th International Colloquium on Refractories. Sept. 30–Oct. 2, 2014 Nürnberg (D) Powtech. www.powtech.de October 5–10, 2014 Hernstein (A) International Conference on Electrophoretic Deposition V: Fundamentals and Applications (EPD 2014). www.engconf.org October 7–9, 2014 Düsseldorf (D) Aluminium 2014. www.aluminium-messe.com October 12–16, 2014 Pittsburgh, PA (USA) MS&T’14: Materials Science & Technology Conference and Exhibition with ACerS 116th Annual Meeting. www.ceramics.org/meetings/acers-meeting October 21–23, 2014 München (D) Materialica 2014. www.materialica.de October 22–24, 2014 Dresden (D) Cellular Materials, CellMAT 2014. www.dgm.de Cersanex (SSZLJ[VYZ! ·*LYHTPJH·:[VUL_·;LJOUVJLYHTPJH ·)H[OYVVTZ·7VVS·:H\UH·:WH *LYHTPJZ:[VUL)H[OYVVTZ ò(WYPS ,_WVJLU[YL4VZJV^ -VYTVYLPUMVYTH[PVUWSLHZL]PZP[[OL^LIZP[L `LHYZVM4VZ)\PSK¶ I\PSKPUN[OLM\[\YL [VNL[OLY 9\ZZPH»ZSLHKPUNI\PSKPUN HUKPU[LYPVYZL_OPIP[PVU (YJOP[LJ[\YL·*VUZ[Y\J[PVU·+LZPNU·+LJVY 4HPUI\ZPULZZUL^ZWHWLY! 6MÄJPHSPUMVYTH[PVUWHY[ULY! ,UX\PYPLZ! ;! ,!I\PSKPUN'NPTHKL :\WWVY[LKI`!