Molekulare Grundlagen der Regeneration des Skeletts

Transcription

Molekulare Grundlagen der Regeneration des Skeletts
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Molekulare Grundlagen
der
Regeneration des Skeletts
Stefan Mundlos
BCRT
Institut für Medizinische Genetik, Charité
Max-Planck-Institut für Molekulare Genetik
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Wednesday, 30 April 2008
The man who grew a finger
By Matthew Price
BBC News, Ohio
How? Well that's the truly remarkable part. It wasn't a transplant. Mr
Spievak re-grew his finger tip. He used a powder - or pixie dust as he
sometimes refers to it while telling his story.
"There are all sorts of signals in the body," explains Dr Badylak.
"I think that within ten years that we will have strategies that will re-grow the
bones, and promote the growth of functional tissue around those bones. And
that is a major step towards eventually doing the entire limb."
That kind of talk has got the US military interested.
They are just about to start trials to re-grow parts of the fingers of injured soldiers.
1
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Phasen der Knochenheilung
Thrombozyten
Hämatom und Entzündung
Bildung von neuer Knochenmatrix und Mineralisation
Knochen nach „remodeling“
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
monocytic
Progenitors
Signalmoleküle
Signalmoleküle
mesenchymal
Progenitors
crosstalk
KnochenHomöostase
lining cells
osteocyte
Reso
rpti
on
old bone
Activation
new bone
Resorption
Formation
Mineralization
2
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Komplexe Struktur von trabekulärem Knochen
Interaktion von genetischen Programm mit Umwelt
- insbesondere mechanische Belastung -
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Biologische Signalmoleküle
3
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Screen for Genes that Control Bone and Cartilage Formation
1)
wt
2)
3)
4)
ko
Compare wt vs
mutant mouse
Identify regulatory
networks
Identify genes
Identify
in callus formation disease genes
Bioinformatic analysis of genes and functional testing
in vivo
chick
in vitro
mouse
Test positive candidates in disease models
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Runx2 Knock out Mouse
total absence of bone
affected cell types:
-osteoblasts
-osteoclasts
-hypertrophic chondrocytes
Wt
Runx2 -/-
Runx2 essential factor for osteoblast differentiation
4
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Regulation of Transcription
Chromatin immunoprecipitation
and deep sequencing
Identify targets
Define regulatory network
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Screen for Genes that Control Bone and Cartilage Formation
1)
wt
2)
3)
4)
ko
Compare wt vs
mutant mouse
Identify regulatory
networks
Identify genes
Identify
in callus formation disease genes
Bioinformatic analysis of genes and functional testing
in vitro
in vivo
chick
mouse
Test positive candidates in disease models
5
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Vorteil: Biomechanik
Nachteil: Keine Sequenzen
Modellorganismus
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Untersuchung der Frakturheilung am Schaf
cDNA-Banken liefern:
- Sequenzinformationen
- Identifikation aller im Kallus exprimierten Gene
6
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Cluster der qRT-PCR-Ergebnisse
Cluster A: 6 von 8 Angiogenese-Genen
Cluster B: 13 von 15 ribosomalen Genen
Cluster E:
3 der 5 Gene sind Osteoklastenmarker
ca. 60% der Kandidaten bisher ohne bekannte
spezifische Funktion im Knochen
Dr. Peter N. Robinson, Sebastian Bauer
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Screen for Genes that Control Bone and Cartilage Formation
1)
wt
2)
3)
4)
ko
Compare wt vs
mutant mouse
Identify regulatory
networks
Identify genes
Identify
in callus formation disease genes
Bioinformatic analysis of genes and functional testing
in vitro
in vivo
chick
mouse
Test positive candidates in disease models
7
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Mutationen in BMPs verursachen
humane Erkrankungen
SYM1
SYNS1
GDF5 R438L
GDF5 N445T
Symphalangismus - Gelenkfusionen
BMPs kontrollieren Entwicklung und Aufbau von Knochen
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Therapeutische Anwendung von BMPs
1. Kieferaufbau
vor Zahn-Implantation
2. Spinalfusionen
bei Bandscheiben-Vorfällen
3. Regeneration
bei Knochenbrüchen
8
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Moleküle mit optimierten Eigenschaften:
– erhöhte Stabilität
– Resistenz gegen Inhibitoren
– höhere biologische Aktivität
– veränderte Rezeptor-Spezifität
Natürlich vorkommende Mutationen identifizieren wichtige
funktionelle Domänen und Wirkmechanismen
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
Aktivierende Mutationen
• vermehrte Rezeptorbindung
micromass analysis
• geringere Inhibierbarkeit
Mutant B
• andere Rezeptoraffinität
Mutant A
Mutant B
9
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
GDF5 and its receptor BMPR1B
Max Planck Institute
for Molecular Genetics
Berlin-Brandenburg Center for
Regenerative Therapies
It looks like a simple process,
but of course the science is complex.
10