Database for Comparative Investigation of Geodynamic

Transcription

Database for Comparative Investigation of Geodynamic
Database for Comparative Investigation of Geodynamic
Processes in the Solar System
Europlanet
A Joint Research Activity
R. Jaumann, T. Roatsch
DLR, Institute of Planetary Research
Katlenburg-Lindau, May 2-4, 2007
Folie 1
R. Jaumann, Inst. of Planetary Res.
- Exploration of the planets, their satellites and the small bodies (comets, asteroids)
geology, geodesy, and morphology
structure, composition and age
- Study and modelling of geological,
physical and chemical processes
and the evolution of the planets
- Comparative planetology:
what can we learn from
other planets about the
evolution of the Earth?
Folie 2
R. Jaumann, Inst. of Planetary Res.
Present and Future
Deep Space Projects
- Mars Express (ESA) Launch 2003
- Cassini/Huygens (NASA/ESA) Launch 1995
Saturn and its satellites
- Rosetta (ESA) Launch 2004
Comet 67P/Chruyumov-Gerasimenko
- Venus Express (ESA) Launch 2005
- Dawn (NASA) Launch 30. Juni 2007
Asteroiden Ceres und Vesta
• Exomars (ESA) Launch 2013
• BepiColombo to Mercury (ESA) Launch 2014
• Moon (DLR) Launch 2013
Folie 3
R. Jaumann, Inst. of Planetary Res.
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Folie 4
R. Jaumann, Inst. of Planetary Res.
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Folie 5
R. Jaumann, Inst. of Planetary Res.
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Folie 6
R. Jaumann, Inst. of Planetary Res.
Planetary surfaces are boundary layers characterized by a set of
endogenic and exogenic processes that alter and remodel their
shape and composition.
Major geodynamic processes:
cosmic collisions,
volcanism,
tectonism
erosion.
Zur Anzeige wird der QuickTime™
Dekompressor „H.264“
benötigt.
As a boundary layer, surfaces record the results of all internal
and external interactions and are thus the witness of planetary
evolution
Folie 7
R. Jaumann, Inst. of Planetary Res.
Overall Objectives for FP7
- Build a major planetary geo-information system that will provide a
comprehensive data base of planetary surface features based on the results
of past and ongoing space missions.
- Develop tools to mine the tremendous amount of information.
- Utilize the data base for various applications of geological and geophysical
evaluations and interpretations of the solar system.
- By comparing planetary geology with terrestrial geology these database
will also help to understand the origin and evolution of our Earth.
Folie 8
R. Jaumann, Inst. of Planetary Res.
First Step for N7 - precurser to FP7
- coordinate the thematic field of surfaces and interiors
- update the inventory of resources
- prepare user requirements
=>
develop a concept for a planetary geo-information system
and show an representative example
Folie 9
R. Jaumann, Inst. of Planetary Res.
Internal working projects
The internal working projects comprises the development of a classification system
and generation of a data base for the following main topics:
- impact cratering,
- volcanism,
- tectonism,
- erosion, material transport and deposition.
Access to all data of planetary surfaces is given via Regional Planetary Image
Facilities (RPIFs) and the Planetary Data System (PDS).
Folie 10
R. Jaumann, Inst. of Planetary Res.
Coordinating research institute and central node:
Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
also Regional and Planetary Image Facility (RPIF) site
Cooperations:
- Remote Sensing of the Earth and Planets, Free University, Berlin, Germany
- Institute of Planetology, University of Münster, Germany
- Universitá d' Annunzio, IRSPS, Pescara, Italy
- Istituto di Astrofisica Spaziale, Frascati, Italy, also RPIF site
- Lab. IDES-CNRS, Paris-Sud, Orsey, France, also RPIF site
- Labotatoire de Planétologie et Géodynamique Université, Nantes, France
- Institut de Physique du Globe de Paris, Departement de Géophysique Spatiale et
Planetaire, Paris, France
- IAS Institut d' Astrophysique Spatiale, Université de Paris-Sud, Orsey, France
- University of Oulu, Oulu, Finland, also RPIF site
- Brown University, Providence, Rhode Island, USA, also RPIF site
- Arizona State University, Tempe, USA, also RPIF site
- Collegium Budapest, Institute for Advanced Study, Budapest, Hungaria
Folie 11
R. Jaumann, Inst. of Planetary Res.
Overall Objectives for FP7
- Build a major planetary geo-information system that will provide a
comprehensive data base of planetary surface features based on the results
of past and ongoing space missions.
- Develop tools to mine the tremendous amount of information.
- Utilize the data base for various applications of geological and geophysical
evaluations and interpretations of the solar system.
- By comparing planetary geology with terrestrial geology these database
will also help to understand the origin and evolution of our Earth.
Folie 12
R. Jaumann, Inst. of Planetary Res.
Impact Crater
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Earth, Manicouagan crater, 72 km
Moon, Taruntius crater, 8.5 km
Mercury, Schubert crater, 160 km
Ganymed, Neith crater, 150 km
Mars, crater in Arabia Terra, 9.5 km
Folie 13
R. Jaumann, Inst. of Planetary Res.
Volcanism
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Earth, Mount St. Helens
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Venus, Maat Mons
Enceladus, South pole
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Mars, Apollinaris Paters
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Moon, Hadley Rille
Folie 14
R. Jaumann, Inst. of Planetary Res.
Tectonism
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Mars, Acheron Fossae
Moon, graben
Mercury,
Discovery
Scarp
Europa
Ganymed
Callisto
Folie 15
R. Jaumann, Inst. of Planetary Res.
Erosion 1
Mars
Earth
Titan
Folie 16
R. Jaumann, Inst. of Planetary Res.
Erosion 2
Folie 17
R. Jaumann, Inst. of Planetary Res.
Erosion 3
Mars
Titan
Mars
100 km
Folie 18
R. Jaumann, Inst. of Planetary Res.
Sedimentation
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Mars
Earth
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Titan
Mars
Folie 19
R. Jaumann, Inst. of Planetary Res.
Complex interaction of processes
Folie 20
R. Jaumann, Inst. of Planetary Res.
Complex interaction of processes
Folie 21
R. Jaumann, Inst. of Planetary Res.
Complex interaction of processes
Folie 22
R. Jaumann, Inst. of Planetary Res.
Tyras Vallis
Folie 23
R. Jaumann, Inst. of Planetary Res.
Elysium Mons
Folie 24
R. Jaumann, Inst. of Planetary Res.
Cartography
Sample Map from HRSC on Mars Express
Folie 25
R. Jaumann, Inst. of Planetary Res.
Data Mining
Folie 26
R. Jaumann, Inst. of Planetary Res.
Improving data by filtering the
attributes
E.g. TES data over the caldera of Olympus Mons
A
HRSC Image for orientation
B
Raw unfiltered TES information - The color shows surface temperature
C
Filtered by the “quality” attribute
D
Improved data with quality attributes better than zero and recorded
between 1 am and 5 am.
Folie 27
R. Jaumann, Inst. of Planetary Res.
TES and
MOLA
Folie 28
R. Jaumann, Inst. of Planetary Res.
Geodynamic Processes
Rift Flank Uplift and Heat Flow
¾ Shape of the rift flank uplift
indicates high heat flow and low
elastic thickness for early Mars,
Te ~10 km
(Grott, Hauber, Werner, Kronberg and Neukum, GRL, 2005)
Folie 29
R. Jaumann, Inst. of Planetary Res.
Geodynamic Processes
Martian Seismicity
¾
¾
¾
Seismic modeling based on thermo-elastic stresses
Resulting seismic moment budget distributed over mapped surface faults
Predict the distribution and strength of Mars-quakes
(Knapmeyer, Oberst, Hauber, Wählisch, Deuchler and Wagner, JGR, 2006)
Folie 30
R. Jaumann, Inst. of Planetary Res.
Geodynamic Processes
Cryovolcanism
fractured and
ridges plains
heavily cratered
plains
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
„tectonically deformed
regions („tiger stripes“
increasing particle size
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
100km
Folie 31
R. Jaumann, Inst. of Planetary Res.
Geodynamic Processes
Cryovolcanism
Temperature [K]
¾
¾
¾
Degree-one convection
may explain geologic
dichotomy
Requires:
ƒ
Core radius less
than 120 km
ƒ
Energy input at a
rate of 3.0 – 5.5 GW
Consistent with
observed SPT heat flow
(Grott, Sohl, Hussmann, Icarus, submitted)
Folie 32
R. Jaumann, Inst. of Planetary Res.
Zur Anzeige wird der QuickTime™
Dekompressor „TIFF (Unkomprimiert)“
benötigt.
Folie 33
R. Jaumann, Inst. of Planetary Res.
Data base on cometary chemistry:
107 comets (up to 12/2004)
Production rates:
CN, C3, C2, NH2, NH, CH, O, CO, CO2, OH, H2O, as well as Afrho, with rh and Delta.
Planned completion with
HCN, HNC, CS, H2S, H2CO, CH3OH, CH3CN, C2H2 und C2H6
=> Heike Rauer
Folie 34
R. Jaumann, Inst. of Planetary Res.
#3696 residual ice in crater, 89°E/78°N
25 km
Folie 35
R. Jaumann, Inst. of Planetary Res.
Hesperia Planum - »Butterfly« Impact Crater
Science Case:
Dating Planetary Surfaces
Folie 36
R. Jaumann, Inst. of Planetary Res.
Geological Activity
Folie 37
R. Jaumann, Inst. of Planetary Res.
Superposition
Moon Delisle (De,25 km)
und Diophantus (Di,
18 km)
Sequence
1: Ejecta Imbrium
2: Mare
3: Ejekta Crater Delisle
4: younger mare
5: Ejekta Crater Diophantus
Sample 15455 (Spur Crater (rim); Station 7, Apollo 15)
Impact melt (?)
(Imbrium basin)
Pre-nectarian
anorthositic Norit
Radiometric dating
Basaltic Volcanism Study Project (1981)
Crater Density
Ganymed (Galileo G28: Nicholson Regio)
High crater density = older
Ganymed (Galileo G28: Harpagia Sulcus)
Low crater density = younger
Merkur:
Relative Sequence (older younger:
Tolstoj - Pushkin - Caloris
Moon: Reference for crater density age
estimation
(Hartmann, 1983; Neukum 1983;
Neukum & Ivanov, 1994;
Neukum et al., 2001)
Polynom 11. Order
Absolut calibration
1) Radiometric ages
2) Distribution of asteroids and comets
Relative crater distribution on Moon
Rel. Distribution of Asteroids
Similar shape --> Asteroids are amin impactors on the Moon
Absoluter ages of the Moon by sample calibration
Zeitstratigraphische Systeme und Perioden des Erdmondes und ihre
zugeordneten Kraterhäufigkeiten und Modellalter
Geomorphologische Kartierung und Altersbestimmung
Folie 47
R. Jaumann, Inst. of Planetary Res.
Absolut ages by impact probabilities
Estimation of the
Distribution of Earth crossing
objects
-> Impact probabilitiy
-> Crater density
-> age
Transformation of crater density distribution
to other objects
e.g. Merkur
Same shape -> same impactor family
- > Asteroids
-> scale to object specific parameters
Merkur:
Impact basins
Relative sequence (older younger):
Tolstoj - Pushkin - Caloris
Absolute ages are model dependent
Merkur: Model chronology
Model chronology of Mars: Hartmann & Neukum, 2001
Impact distribution in the outer solar system
Satellites of Jupiter
Two Models:
Neukum et al., 1998:
Shape similar to inner solar system
-> asteroids
-> lunar like distribution
Zahnle et al., 1998, 2003:
Different from inner solar system
-> ecliptic comets
-> constant impact rate
Basin ages on Callisto
Neukum-Model:
Lofn =
Valhalla =
Asgard =
3.86 Ga
3.98 Ga
4.19 Ga
Zahnle-Model:
Lofn =
Valhalla =
Asgard =
1.26 Ga
2.30 Ga
4.30 Ga
Folie 57
R. Jaumann, Inst. of Planetary Res.
Action Items:
Make a proposal for combined science cases:
8) Dating planetary surfaces from cratering
processes (Coustenis)
9) Quantifying the martian geochemical
reservoirs (Toplis)
as an example of “Sedimentary deposits on
Mars”
Folie 58
R. Jaumann, Inst. of Planetary Res.