Database for Comparative Investigation of Geodynamic
Transcription
Database for Comparative Investigation of Geodynamic
Database for Comparative Investigation of Geodynamic Processes in the Solar System Europlanet A Joint Research Activity R. Jaumann, T. Roatsch DLR, Institute of Planetary Research Katlenburg-Lindau, May 2-4, 2007 Folie 1 R. Jaumann, Inst. of Planetary Res. - Exploration of the planets, their satellites and the small bodies (comets, asteroids) geology, geodesy, and morphology structure, composition and age - Study and modelling of geological, physical and chemical processes and the evolution of the planets - Comparative planetology: what can we learn from other planets about the evolution of the Earth? Folie 2 R. Jaumann, Inst. of Planetary Res. Present and Future Deep Space Projects - Mars Express (ESA) Launch 2003 - Cassini/Huygens (NASA/ESA) Launch 1995 Saturn and its satellites - Rosetta (ESA) Launch 2004 Comet 67P/Chruyumov-Gerasimenko - Venus Express (ESA) Launch 2005 - Dawn (NASA) Launch 30. Juni 2007 Asteroiden Ceres und Vesta • Exomars (ESA) Launch 2013 • BepiColombo to Mercury (ESA) Launch 2014 • Moon (DLR) Launch 2013 Folie 3 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Folie 4 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Folie 5 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Folie 6 R. Jaumann, Inst. of Planetary Res. Planetary surfaces are boundary layers characterized by a set of endogenic and exogenic processes that alter and remodel their shape and composition. Major geodynamic processes: cosmic collisions, volcanism, tectonism erosion. Zur Anzeige wird der QuickTime™ Dekompressor „H.264“ benötigt. As a boundary layer, surfaces record the results of all internal and external interactions and are thus the witness of planetary evolution Folie 7 R. Jaumann, Inst. of Planetary Res. Overall Objectives for FP7 - Build a major planetary geo-information system that will provide a comprehensive data base of planetary surface features based on the results of past and ongoing space missions. - Develop tools to mine the tremendous amount of information. - Utilize the data base for various applications of geological and geophysical evaluations and interpretations of the solar system. - By comparing planetary geology with terrestrial geology these database will also help to understand the origin and evolution of our Earth. Folie 8 R. Jaumann, Inst. of Planetary Res. First Step for N7 - precurser to FP7 - coordinate the thematic field of surfaces and interiors - update the inventory of resources - prepare user requirements => develop a concept for a planetary geo-information system and show an representative example Folie 9 R. Jaumann, Inst. of Planetary Res. Internal working projects The internal working projects comprises the development of a classification system and generation of a data base for the following main topics: - impact cratering, - volcanism, - tectonism, - erosion, material transport and deposition. Access to all data of planetary surfaces is given via Regional Planetary Image Facilities (RPIFs) and the Planetary Data System (PDS). Folie 10 R. Jaumann, Inst. of Planetary Res. Coordinating research institute and central node: Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany also Regional and Planetary Image Facility (RPIF) site Cooperations: - Remote Sensing of the Earth and Planets, Free University, Berlin, Germany - Institute of Planetology, University of Münster, Germany - Universitá d' Annunzio, IRSPS, Pescara, Italy - Istituto di Astrofisica Spaziale, Frascati, Italy, also RPIF site - Lab. IDES-CNRS, Paris-Sud, Orsey, France, also RPIF site - Labotatoire de Planétologie et Géodynamique Université, Nantes, France - Institut de Physique du Globe de Paris, Departement de Géophysique Spatiale et Planetaire, Paris, France - IAS Institut d' Astrophysique Spatiale, Université de Paris-Sud, Orsey, France - University of Oulu, Oulu, Finland, also RPIF site - Brown University, Providence, Rhode Island, USA, also RPIF site - Arizona State University, Tempe, USA, also RPIF site - Collegium Budapest, Institute for Advanced Study, Budapest, Hungaria Folie 11 R. Jaumann, Inst. of Planetary Res. Overall Objectives for FP7 - Build a major planetary geo-information system that will provide a comprehensive data base of planetary surface features based on the results of past and ongoing space missions. - Develop tools to mine the tremendous amount of information. - Utilize the data base for various applications of geological and geophysical evaluations and interpretations of the solar system. - By comparing planetary geology with terrestrial geology these database will also help to understand the origin and evolution of our Earth. Folie 12 R. Jaumann, Inst. of Planetary Res. Impact Crater Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Earth, Manicouagan crater, 72 km Moon, Taruntius crater, 8.5 km Mercury, Schubert crater, 160 km Ganymed, Neith crater, 150 km Mars, crater in Arabia Terra, 9.5 km Folie 13 R. Jaumann, Inst. of Planetary Res. Volcanism Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Earth, Mount St. Helens Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Venus, Maat Mons Enceladus, South pole Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Mars, Apollinaris Paters Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Moon, Hadley Rille Folie 14 R. Jaumann, Inst. of Planetary Res. Tectonism Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Mars, Acheron Fossae Moon, graben Mercury, Discovery Scarp Europa Ganymed Callisto Folie 15 R. Jaumann, Inst. of Planetary Res. Erosion 1 Mars Earth Titan Folie 16 R. Jaumann, Inst. of Planetary Res. Erosion 2 Folie 17 R. Jaumann, Inst. of Planetary Res. Erosion 3 Mars Titan Mars 100 km Folie 18 R. Jaumann, Inst. of Planetary Res. Sedimentation Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Mars Earth Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Titan Mars Folie 19 R. Jaumann, Inst. of Planetary Res. Complex interaction of processes Folie 20 R. Jaumann, Inst. of Planetary Res. Complex interaction of processes Folie 21 R. Jaumann, Inst. of Planetary Res. Complex interaction of processes Folie 22 R. Jaumann, Inst. of Planetary Res. Tyras Vallis Folie 23 R. Jaumann, Inst. of Planetary Res. Elysium Mons Folie 24 R. Jaumann, Inst. of Planetary Res. Cartography Sample Map from HRSC on Mars Express Folie 25 R. Jaumann, Inst. of Planetary Res. Data Mining Folie 26 R. Jaumann, Inst. of Planetary Res. Improving data by filtering the attributes E.g. TES data over the caldera of Olympus Mons A HRSC Image for orientation B Raw unfiltered TES information - The color shows surface temperature C Filtered by the “quality” attribute D Improved data with quality attributes better than zero and recorded between 1 am and 5 am. Folie 27 R. Jaumann, Inst. of Planetary Res. TES and MOLA Folie 28 R. Jaumann, Inst. of Planetary Res. Geodynamic Processes Rift Flank Uplift and Heat Flow ¾ Shape of the rift flank uplift indicates high heat flow and low elastic thickness for early Mars, Te ~10 km (Grott, Hauber, Werner, Kronberg and Neukum, GRL, 2005) Folie 29 R. Jaumann, Inst. of Planetary Res. Geodynamic Processes Martian Seismicity ¾ ¾ ¾ Seismic modeling based on thermo-elastic stresses Resulting seismic moment budget distributed over mapped surface faults Predict the distribution and strength of Mars-quakes (Knapmeyer, Oberst, Hauber, Wählisch, Deuchler and Wagner, JGR, 2006) Folie 30 R. Jaumann, Inst. of Planetary Res. Geodynamic Processes Cryovolcanism fractured and ridges plains heavily cratered plains Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. „tectonically deformed regions („tiger stripes“ increasing particle size Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. 100km Folie 31 R. Jaumann, Inst. of Planetary Res. Geodynamic Processes Cryovolcanism Temperature [K] ¾ ¾ ¾ Degree-one convection may explain geologic dichotomy Requires: Core radius less than 120 km Energy input at a rate of 3.0 – 5.5 GW Consistent with observed SPT heat flow (Grott, Sohl, Hussmann, Icarus, submitted) Folie 32 R. Jaumann, Inst. of Planetary Res. Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt. Folie 33 R. Jaumann, Inst. of Planetary Res. Data base on cometary chemistry: 107 comets (up to 12/2004) Production rates: CN, C3, C2, NH2, NH, CH, O, CO, CO2, OH, H2O, as well as Afrho, with rh and Delta. Planned completion with HCN, HNC, CS, H2S, H2CO, CH3OH, CH3CN, C2H2 und C2H6 => Heike Rauer Folie 34 R. Jaumann, Inst. of Planetary Res. #3696 residual ice in crater, 89°E/78°N 25 km Folie 35 R. Jaumann, Inst. of Planetary Res. Hesperia Planum - »Butterfly« Impact Crater Science Case: Dating Planetary Surfaces Folie 36 R. Jaumann, Inst. of Planetary Res. Geological Activity Folie 37 R. Jaumann, Inst. of Planetary Res. Superposition Moon Delisle (De,25 km) und Diophantus (Di, 18 km) Sequence 1: Ejecta Imbrium 2: Mare 3: Ejekta Crater Delisle 4: younger mare 5: Ejekta Crater Diophantus Sample 15455 (Spur Crater (rim); Station 7, Apollo 15) Impact melt (?) (Imbrium basin) Pre-nectarian anorthositic Norit Radiometric dating Basaltic Volcanism Study Project (1981) Crater Density Ganymed (Galileo G28: Nicholson Regio) High crater density = older Ganymed (Galileo G28: Harpagia Sulcus) Low crater density = younger Merkur: Relative Sequence (older younger: Tolstoj - Pushkin - Caloris Moon: Reference for crater density age estimation (Hartmann, 1983; Neukum 1983; Neukum & Ivanov, 1994; Neukum et al., 2001) Polynom 11. Order Absolut calibration 1) Radiometric ages 2) Distribution of asteroids and comets Relative crater distribution on Moon Rel. Distribution of Asteroids Similar shape --> Asteroids are amin impactors on the Moon Absoluter ages of the Moon by sample calibration Zeitstratigraphische Systeme und Perioden des Erdmondes und ihre zugeordneten Kraterhäufigkeiten und Modellalter Geomorphologische Kartierung und Altersbestimmung Folie 47 R. Jaumann, Inst. of Planetary Res. Absolut ages by impact probabilities Estimation of the Distribution of Earth crossing objects -> Impact probabilitiy -> Crater density -> age Transformation of crater density distribution to other objects e.g. Merkur Same shape -> same impactor family - > Asteroids -> scale to object specific parameters Merkur: Impact basins Relative sequence (older younger): Tolstoj - Pushkin - Caloris Absolute ages are model dependent Merkur: Model chronology Model chronology of Mars: Hartmann & Neukum, 2001 Impact distribution in the outer solar system Satellites of Jupiter Two Models: Neukum et al., 1998: Shape similar to inner solar system -> asteroids -> lunar like distribution Zahnle et al., 1998, 2003: Different from inner solar system -> ecliptic comets -> constant impact rate Basin ages on Callisto Neukum-Model: Lofn = Valhalla = Asgard = 3.86 Ga 3.98 Ga 4.19 Ga Zahnle-Model: Lofn = Valhalla = Asgard = 1.26 Ga 2.30 Ga 4.30 Ga Folie 57 R. Jaumann, Inst. of Planetary Res. Action Items: Make a proposal for combined science cases: 8) Dating planetary surfaces from cratering processes (Coustenis) 9) Quantifying the martian geochemical reservoirs (Toplis) as an example of “Sedimentary deposits on Mars” Folie 58 R. Jaumann, Inst. of Planetary Res.