Terapia por Ondas de Choque

Transcription

Terapia por Ondas de Choque
Terapia por Ondas de Choque
www.dolorclast.com.br
Representante:
Ecomed Com. de Prods. Médicos Ltda.
Eng. Alec Flinte
CREA/RJ 2001106273
1
Versão 1.0
Fabricante e
Desenvolvimento do
Produto:
CONTEÚDO
Descrição
Pág.
História da Onda de Choque e Sociedades
3
Ondas de Choque
4
Características da Onda de Choque
5
Fenômeno da Cavitação
6
Propagação da Ondas de Choque Radial, Focal e Não-Focal
Fontes Geradoras
7-8
8
Equipamentos Swiss DolorClast MASTER & CLASSIC
9 - 10
Equipamento Swiss PiezoClast
11
Equipamento Swiss DuoClast
12
Nível de Energia
13
Efeito Biológico da Onda de Choque
14
Critérios de Inclusão e Exclusão, e Efeitos Colaterais
15 - 16
Método de Aplicação
16
Principais Indicações no Sistema Músculo-esquelético
17
Exemplo de Aplicações e Procedimentos em Partes Moles
18
Casos Tratamento em Partes Ósseas
19 - 20
Casos Tratamento em Calcificação do Ombro
21 - 22
Uso das Ondas de Choque Radial no Tratamento das Úlceras de Pele
23 - 27
Medicina Esportiva
28 - 32
Uso das Ondas de Choque no Tratamento de Trigger Points
33 - 35
Uso das Ondas de Choque no Tratamento de Celulites
36 - 37
Anexos
38
Estudos Científicos publicados em literatura Internacional e alto nível de evidência
39 - 45
Estudos Científicos Apresentados em Berlin Out 2010 pela ATRAD
46 - 50
Estudos Científicos Apresentados em Kiel Junho 20111 pela ISMST
50 - 55
Estudo Científicos sobre Úlcera em Pé Diabético
56 - 57
Estudo de Linfedema
58
Estudo sobre Trigger Points – Pontos Miofascal
59
Tabela de Energia
60 - 61
Protocolo de Aplicação
62 - 63
Tabela da CBHPM
64 – 65
Folder do 15° Cong. International de Terapia por Ondas de Choque – ISMST
66
Números dos Registros de Produto ANVISA, FDA, CE
67
2
História do Desenvolvimento da Onda de Choque para benefício à saúde
humana
Durante a última Guerra Mundial, foi observado que náufragos que permaneceram na
água na proximidade de explosões de bombas apresentavam danos pulmonares letais ao
serem resgatados, sem que fosse encontrada nenhuma lesão externa. Esses achados
despertaram o interesse militar alemão a fim de formar mais uma arma de guerra.
Porém, estudos demonstraram que seria uma arma bélica sem grande uso fora do meio
líquido, e os métodos da época supriam com maior facilidade e economia.
Mas o interesse continuou, devido às evidências causadas e documentadas pelo efeito da
Onda de Choque nos tecidos humanos. Em 1950 foram realizadas investigações
sistemáticas para o uso de Ondas de Choque na medicina, e nos Estados Unidos foi aceita
a primeira patente de um gerador de Ondas de Choque eletro-hidráulico. De 1968 até
1971, a interação entre Ondas de Choque e tecido biológico em animais foi investigada
pelo Dep. de Defesa da Alemanha. O resultado mostrou que Ondas de Choque causam
efeitos no organismo. Particularmente, os efeitos nas interfaces do corpo foram
investigados, assim como as diferenças de dissipação das Ondas de Choque através do
tecido vivo.
Em 1974, o Dep. de Pesquisa e Ciência da Alemanha financiou o programa de pesquisa
“Aplicação de Ondas de Choque Extracorpóreas”. O procedimento foi desenvolvido pela
companhia Dornier, da Alemanha. Pela primeira vez, em Fevereiro de 1980, um paciente
com cálculo renal foi tratado com sucesso, em Munique, com um equipamento protótipo
chamado Lithotripter HM1.
Estudos sucessivos deram continuidade à pesquisa:
1986: 1ª aplicação em osso de cobaias (Haupt);
1988: 1º tratamento pseudoartrose em humano (Valchanov);
1992: 1º tratamento tendinose calcárea no ombro (Dahmen / Loew).
Em 2001, a Sociedade Brasileira de Terapia por Ondas de Choque – SBTOC foi fundada e
promove atualmente diversos cursos e palestras pelo Brasil.
Principais Sociedades no mundo:
Association for Radial Pain Therapy – ATRAD – www.atrad.ch
International Society for Medical Shockwave Therapy – ISMST – www.ismst.com
Sociedade Brasileira de Terapia por Ondas de Choque – SBTOC – www.sbotc.org.br
3
ONDAS DE CHOQUE
A Onda de Choque é o resultado de um fenômeno que cria uma intensa troca de pressão
entre os meios. Ela aparece na atmosfera em eventos explosivos, quando um material
explosivo é detonado, nos relâmpagos ou quando aviões quebram a barreira do som.
Também se fala em Ondas Acústicas que se caracterizam por um pulso de alta pressão
em um curto tempo (mili – nanosegundos). Essa intensa troca de pressão produz ondas
fortes que se propagam pelo meio. A propagação difere-se pela densidade e se o meio é
líquido, ar ou outros.
A – Objeto em pressão natural
B – Objeto na fase da tensão
C – Objeto na fase de dilatação
D – Fase de liberação da energia
Fig. 1A Tensão – dilatação – liberação de energia
Fig. 2A Ilustração da Implosão da
bolha pelo jato
Na visão da propagação da Onda de Choque:
Fase de Dilatação
(pressão negativa)
Fase da tensão
(pressão positiva)
Fig. 2 Propagação da Onda de Choque no meio.
4
CARACTERÍSTICAS:
Uma Onda de Choque é uma onda acústica de alta energia com as seguintes
características:
 Tempo de elevação rápido (Tr)
 Pressão máxima alta (P+)
e-
 Queda exponencial da pressão (e-)
 Pressão negativa (P-)
Fig. 4
ED + é Densidade Positiva do Fluxo Energético; unidade de medição: mJ / mm² (mili
Joules por mm quadrado)
Apesar de sua relação com o ultrassom, as Ondas de Choque tem características
diferentes. O ultrassom é uma onda senoidal, de baixa amplitude e alta freqüência
(>1kHz).
Fig. 3 - Imagem das Ondas de Choque (azul) e ultrassom (laranja)
5
CAVITAÇÃO
As Ondas de Choque produzem dois efeitos básicos: um direto (primário) de geração da
força mecânica, e um outro efeito indireto (secundário) de força mecânica chamada de
cavitação. Durante a fase tênsil, as forças de tensão da onda excedem a resistência à
tração dinâmica da água (ou fluido intersticial) gerando bolhas de cavitação. As bolhas de
cavitação aumentam e diminuem de volume e entram em colapso liberando grande
quantidade de energia armazenada na forma de jatos de água. Nos líquidos muito
viscosos, o fenômeno de cavitação é dramaticamente suprimido.
Abaixo o fenômeno da Cavitação na Onda de Choque Radial e na Onda de Choque Focal
Ondas de Choque Focal
Ondas de Choque Radial
< - Ponto Focal
< - Cavitação
< - Ondas de
Choque Secundária
< - Onda de
Choque Radial
< - Ondas de
Choque
Secundária
< - Cavitação
Fig. 5
Fig. 6
Na Onda de Choque Radial (Fig.5) a cavitação ocorre nas proximidades do aplicador.
Na Onda de Choque Focal (Fig. 6) a cavitação ocorre na área do ponto focal.
6
PROPAGAÇÃO DAS ONDAS DE CHOQUE RADIAL E FOCAL
RADIAL
A Onda de Choque Radial tem a característica de se propagar radialmente a partir do
aplicador (Fig.8) e à medida que penetra no tecido há uma perda de energia equivalente
a 1/r2 . Seu tempo de elevação Tr é µs (micro-segundos). O nível de energia pode ser de
baixa energia até alta energia. Seu principal uso é para patologias proximais (tendões,...)
Fig. 8 – Propagação das Ondas de Choque Radiais quebrando um pedaço de gesso
FOCAL
A Onda de Choque Focal concentra em um ponto distante da fonte geradora, toda
energia gerada. Esse ponto focal, em formato de “charuto”, tem seu pico de energia que
pode variar de baixa até alta energia. Após esse encontro das Ondas, continua a
propagação de forma Radial. Com a tecnologia Focal permite-se tratar tecido profundos.
Sua principal aplicação é para partes ósseas, dores musculares, calcificações de ombro e
outras. Também pode ser usado em tendinopatias. Seu tempo de elevação tR é ns (nanosegundos).
3D Ondas de Choque FOCAL
Representação em 3D gerada pelo Swiss
PiezoClast:
Pelo menos 50% da extremidade
positiva P+ (-6dB isobar) é alcançada na
região através do ponto focal. O eixo fx,
fy e fz demonstram um elipsóide do
ponto focal
Fonte Geradora
Menor nível de energia a Swiss
PiezoClast gera ( P+ = 11,5MPa), fx = fy
= 2,8mm e fz = 13,6mm.
Fig. 9
Campo da Ondas de Choque
-6dB isobar define a área no foco no qual pelo menos 50% da parte positiva é
Maior nível de energia, (P+ = 82,2 MPa
fx = fy = 1,2mm e fz = 4,8mm
alcançada.
5 MPa isobar define a área na qual pelo menos 5 MPa é alcançado
Abaixo a Onda de Choque Focalizada quebrando um pedaço de gesso
10
Fig. 10
NÃO-FOCAL (DESFOCALIZADO)
7
No caso da Não-Focalizada ou também chamado de Onda Desfocalizada, as ondas são
amplas, não tem ponto focal nem se propagam radialmente. Elas são ideais para
tratamentos bem superficial, como úlceras de pele, celulites e outras.
Aplicador: Planar ø36 mm
Energia Máxima: 0,07 mJ/mm²
Profundidade Máxima: 25 mm
Fig. 11
Concentração de
Energia; onde ocorre a
cavitação
A proximidade de zonas limites com diferentes impedâncias acústicas(densidades
diferentes), por colapso das bolhas de cavitação, fica alterada e os microjatos são
direcionados para essas zonas de interface (tendão-osso). Os efeitos biológicos são
esperados nesses locais onde as Ondas de Choque são aplicadas.
FONTES GERADORAS DE ONDAS DE CHOQUE
Existem quatros principais tipos de fontes geradoras Fig. 12, cada uma com suas
características e engenharias próprias conforme cada fabricante desenvolve.
- Geração por tecnologia ELETRO-HIDRÁULICA
- Geração por tecnologia ELETRO-MAGNÉTICA
- Geração por tecnologia PIEZO-ELÉTRICA
Piezo-elétrico
- Geração por tecnologia ELETRO-PNEUMÁTICA
Eletro-Pneumático
Fig. 12
As três primeiras tecnologias se desenvolveram na tecnologia Focal, direcionando toda
energia em um ponto. Já a tecnologia Eletro-pneumático foi desenvolvida pelas E.M.S. é
radial, e é utilizada para o tratamento de patologias proximais até no máximo 4 cm já que
perde energia à medida que se aprofunda.
8
EQUIPAMENTOS PARA TERAPIA POR ONDAS DE CHOQUE
SWISS DOLORCLAST MASTER e CLASSIC
Os equipamentos Swiss DolorClast MASTER ou CLASSIC (Fig. 13) são
equipamentos que geram a Onda de Choque pelo sistema ELETROPNEUMÁTICO, que como grande vantagem tem o baixo ruído no
momento da geração das Ondas de Choque, o NÃO uso de anestesia
local e um sistema que gera baixa, média e alta energia dependendo
do Gerador usado. Utiliza-se este sistema para tratar patologia do
sistema músculo-esquelético, partes moles, partes ósseas proximais,
Medicina Esportiva, Calcificações, Pontos Miofasciais (Trigger
Points), úlceras de Pele, celulites entre outras.
Fig. 13 SDC MASTER & CLASSIC
PRINCÍPIO DA GERAÇÃO DAS ONDAS DE CHOQUE PELO SISTEMA ELETRO-PNEUMÁTICO
Nos equipamentos Swiss DolorClast MASTER ou CLASSIC as Ondas de Choque são geradas
por sistema ELETRO-PNEUMÁTICO. Esta fonte de geração utiliza a energia cinética
armazenada em um compressor de ar comprimido e energia elétrica. Por um circuito
eletrônico impulsos são gerenciados conforme a necessidade do usuário. O princípio se
baseia na 3ª Lei de Newton (ação e reação), convertendo a energia cinética em energia
acústica de alta energia. A onda de choque é transmitida pelo aplicador no corpo
humano e se propaga radialmente (diverge) a partir do aplicador. Neste caso é usada
para tratar a área e é indicado para patologias proximais.
Em ambos os equipamentos, são fornecidos dois geradores; RADIAL (Fig. 16) que gera até
baixa-média energia. E o POWER + (Fig. 17) que gera até alta energia. O nível de energia
também depende do aplicador utilizado;
Fig. 14 Kit de Aplicadores do POWER +
Fig. 15 Kit de Aplicadores RADIAL
9
O Gerador RADIAL - Ondas de Choques Radial
Gerador RADIAL
 Energia: ED+ : 0,06 – 0,18 mJ/mm
Fig. 16 Gerador RADIAL
Área a
Tratar
Gerador POWER + - Ondas de Choques Radial com POWER+
Gerador POWER +  Energia ED+ : 0,06 – 0,40 mJ/mm²
(ED+ 0,55mJ/mm² com aplicador F15)
Fig. 17 Gerador POWER +
Área a
Tratar
Obs.: Junto com o equipamento Swiss DolorClast é fornecida a Tabela de Energia com os indicadores de
nível de energia.
OPCIONAIS PARA O SWISS DOLORCLAST MASTER E
CLASSIC
O aparelho pode se tornar unidade móvel, adquirindo
uma maleta de transporte para unidade principal e o
gerador RADIAL, assim como o compressor de ar móvel
para facilitar o transporte.
Fig. 18 Maleta e Compressor Móvel
10
SWISS PIEZOCLAST
O modelo Swiss PiezoClast (Fig. 19) usa como fonte
geradora das Ondas de Choque o sistema Piezoelétrico. Este sistema visa em focar todas as Ondas
de Choque produzidas em um ponto à frente do
Gerador. A intenção é alcançar maior profundidade
e energia (mJ/mm²). Este sistema é usado
principalmente para partes ósseas, calcificações e
pontos miofasciais (Trigger Points), mas também
pode ser usado nas tendinopatias crônicas.
Fig. 19 Swiss PiezoClast
PRINCÍPIO DE GERAÇÃO DAS ONDAS DE CHOQUE COM O SISTEMA PIEZO-ELÉTRICO
No equipamento Swiss PiezoClast, as Ondas de Choque são geradas pelo sistema PIEZOELÉTRICO. Nesta fonte vários elementos chamados de cristais se encontram numa
geometria côncava e através de um circuito eletrônico recebem um impulso elétrico
numa seqüência especial. O cristal transforma um impulso elétrico em uma Onda de
Choque. Um ponto localizado à frente da Fonte Geradora. Este ponto concentrará o
somatório das várias Ondas de Choque. Aqui o ponto é tratado.
Área
pequena
Alta energia
Área larga
(ED)
baixa energia
(ED)
Fig. 20 Elementos de Cristais
Fig. 21 Intensidade de energia
Gerador FOCAL - Ondas de Choque FOCAL
Ponto Focal - Local
onde as Ondas de
Choque se
concentram
Fig. 22 Gerador PIEZO  Energia ED+ : 0,03 – 0,40 mJ/mm²
11
SWISS DUOCLAST
O SWISS DUOCLAST (fig. 23) é a combinação do Swiss PiezoClast e o Swiss DolorClast
CLASSIC. Tem a grande benefício do usuário possuir ambas tecnologias radial, e focal.
Segundo estudiosos e médicos profissionais, a possibilidade do uso combinado no
tratamento para Pontos Miofaciais das Ondas de Choque Radial e Focal tem melhor
efeito e conseqüentemente melhor sucesso para o paciente. Há também a possibilidade
se caso um paciente não ficar 100% satisfeito com o tratamento, utiliza-se a outra
tecnologia.
Os aparelhos são separáveis para melhor aproveitamento do equipamento, sendo que
um colega de ombro por exemplo pode utilizar um módulo Swiss PiezoClast e o outro
colega pode tratar fascites plantar com o Swiss DolorClast.
Fig. 23
THINK RADIAL, FOCUS YOUR TARGET !
12
NÍVEL DE ENERGIA
No início, todo o sistema de geração de Ondas de Choque era com alta energia e focal,
devido à necessidade de bombardear as Ondas em um ponto para quebrar e fragmentar
o cálculo renal. Muitos fabricantes se direcionaram para essa tecnologia, já a Electro
Medical Systems – E.M.S., desenvolveu o primeiro sistema para Terapia por Ondas de
Choque Radial pois a grande maioria das patologias necessita apenas de baixa energia.
Tal tecnologia de Ondas de Choque Radiais é bastante favorável para o tratamento de
patologias proximais até 0,5 – 35 mm de profundidade no tecido. A Onda de Choque
Radial se propaga divergindo a partir de um ponto, e à medida que penetram perdem
energia na forma de 1/r².
As Ondas de Choque Focais se convergem em um ponto, podendo assim concentrar
energia com maior profundidade.
O nível de energia (mJ/mm²) é importante para os diferentes tipos de patologias.
Considera-se baixo nível de energia 0,08 – 0,17 mJ/mm² , média energia de 0,18 – 0,32
mJ/mm²; e alta energia até 0,6 mJ/mm². A partir deste nível, há o risco de necrose
tecidual.
Dr. Rompe visualiza os níveis:
Baixa Energia
Fig. 24
Baixa energia para tratamento de pele, tendinopatias, trigger points.
Média energia tendinopatias e calcificações.
Alta energia para partes ósseas.
O uso das Ondas de Choque também tem um efeito osteogênico, quando aplicada em
pacientes que tiveram fraturas de difícil consolidação, além de outras indicações.
13
EFEITO BIOLÓGICO DAS ONDAS DE CHOQUE
Muitos estudos recentes de ciência básica demonstram que a aplicação de ondas de
Choque produz uma resposta biológica, a nível tecidual, incluindo a indução de
neovascularização associada ao aumento da expressão dos fatores de crescimento
(eNOS, VEGF, PCNA e BMP, etc.) no tendão e no osso, e na interface tendão-osso.
Constatou-se o aumento da síntese de óxido nítrico endotelial (eNOS) e fatores de
crescimento endotelial (VEGF), antígeno nuclear de proliferação celular (PCNA),
refletindo na proliferação de células endoteliais, proteína óssea morfogenética (BMP-2)
entre outros, mudando o conceito de atuação baseada em mecanismo puramente
mecânico. Essa revascularização induzida pelas Ondas de Choque aumenta a suplência
vascular proporcionando a cicatrização do tendão ou a consolidação óssea.
Os resultados preliminares de recentes estudos em animais demonstram a liberação de
radicais livres de óxido nítrico e apoptose celular pela alteração das moléculas de
proteínas WNT e DKK-1 (inibidores de proteossomos) a nível agora subcelular.
Os efeitos das Ondas de Choque nos tecidos músculo-esqueléticos parecem ser tempo e
dose-dependentes, conforme trabalhos recentes do Dr. Rompe da Alemanha e
colaboradores causando uma sequência de resposta biológica nos tendões, ossos e
interfaces tendão-osso.
Wang e colaboradores demonstraram que com o tratamento por Ondas de Choque
houve um aumento da massa óssea dose-dependente e da força do calo ósseo após
fratura do fêmur.
Fig. 25 Efeitos biológicos causados pela energia física das Ondas de Choque
14
Ondas de Choque são aplicadas com sucesso para aumentar a circulação de sangue local,
assim como a atividade celular do metabolismo, embora o mecanismo de funcionamento
biológico ainda não seja completamente elucidado. A cicatrização e regeneração tecidual
são consideradas decorrentes desses efeitos das Ondas de Choque. Baseadas nessas
novas descobertas, novas indicações foram sendo relatadas incluindo o tratamento das
lesões crônicas de pele, úlceras em pés diabéticos, osteonecrose (cabeça femoral, joelho
e tornozelo) e cardiopatia isquêmica estável.
CRITÉRIOS DE INCLUSÃO E EXCLUSÃO
Alguns critérios são utilizados na indicação do tratamento da Terapia por Ondas de
Choque. São recomendados e utilizados pela Sociedade International e Brasileira de
Terapia por Ondas de Choque.
Critérios de Inclusão:
 Insucesso no tratamento cirúrgico
 Dor por um período de 6 meses
 Insucesso no tratamento conservador mínimo de 3 meses
 Ter realizado as seguintes medidas conservadoras:
 Medicação;
 Infiltração;
 Cinesioterapia;
 Eletroterapia;
 Ultrassom;
 Termoterapia;
 Acupuntura;
 Terapia neural;
 Palmilha com apoio do arco (fascite plantar)
15
Critério de exclusão (contra-indicações):
 Doenças da coagulação
 Gravidez
 Infecção aguda de tecidos moles e osso
 Marca-passo cardíaco se a Fonte geradora é Eletro-hidráulica, Eletro-Magnética
e Piezo-Elétrica
 Regiões: cérebro, medula espinhal, pulmão, (costelas), grandes nervos no foco
 Placa fisária no local da aplicação
 Doença maligna primária
EFEITOS COLATERIAS
A Terapia por Ondas de Choque não apresenta complicações significativas, podendo
alguns pacientes eventualmente apresentarem após a aplicação, edema, petéquias,
equimose ou hematomas.
MÉTODO DA APLICAÇÃO
A aplicação da Terapia por Ondas de Choque pode seguir protocolos diferentes de acordo
com a tecnologia e o gerador de Ondas de Choque utilizado no tratamento. O número de
impulsos, freqüência dos impulsos (Hz) e energia também varia com a patologia. No caso
do Swiss DolorClast MASTER ou CLASSIC, o protocolo (pág. 44) descreve com melhor
efeito três sessões cada com 2.000 impulsos com intervalo de uma semana. A freqüência
varia entre 6 – 12 Hz. Já a energia, inicialmente começa-se com baixa, 0,06 – 0,10
mJ/mm² (2 – 2,5 bar). Após os primeiros 500 impulsos aumenta-se a energia (indicado
pelo manômetro do aparelho na unidade “bar”). Trabalha-se sempre no limite do
desconforto do paciente.
No Swiss PiezoClast pode-se usar o protocolo de uma a três sessões, dependendo do
nível de energia e número de impulsos.
Em ambas as tecnologias, não se recomenda o uso da anestesia local. Em geral o nível de
energia para partes moles fica entre 0,06 – 0,23 mJ/mm² . Em partes ósseas 0,24 – 0,5
mJ/mm².
16
Principais Indicações no Sistema Músculo-Esquelético
Aparelho
Recomendado Swiss
DolorClast®
Ondas de
Choque
Radial
Indicação
1. Epicondilite
do Tenista Epicondylitis
humeri radialis
Swiss
PiezoClast®
Ondas de
Choque
Focal
Swiss
DuoClast®
Ondas de
Choque
combinado
Recomendado
em casos
individuais
2. Tendinite
do Ombro
Calcificado
3. Epicondilite
do Golfista Epicondylitis
humeri ulnaris
Recomendado
em casos
individuais
4. Tratamento
do Trigger
point
Altamente
Recomendável
5. Pseudoatrose
6. Bursites
Trocantérica Greater
trochanteric
pain syndrome
7. Tendinite
Patelar Patella tip
syndrome
8. Síndrome
da Tibia
Medial Medial
tibial stress
syndrome
9.Fascites
Plantar Plantar
fasciopathy
10. Tendinite
Aquiliana Achilles
tendinopathy
Eficácia comprovada em Estudos Científicos com alto nível de Evidência
Eficácia demonstrada em apresentações científicas
Eficácia comprovada em estudos e diversos casos tratados em clínicas
17
Exemplo de Indicações e Procedimento para Aplicação
FASCITES PLANTAR
Localização da Dor e Marcação
Aplicar Gel de Contato
Aplicação das Ondas de Choque
3 SESSÕES; INTERVALO DE 1 SEMANA ; 2000 ONDAS ; 2,5 – 4 BAR ; 6 – 10 HZ
TENDINITE COM OU SEM CALCIFICAÇÃO DO OMBRO
Localização da Dor e Marcação
Aplicar Gel de Contato
Aplicação das Ondas de Choque
3 SESSÕES; INTERVALO DE 1 SEMANA ; 2000 ONDAS ; 2,5 – 4 BAR ; 4 – 8 HZ
BURSITES TROCANTÉRICA
Localização da Dor e Marcação
Aplicar Gel de Contato
Aplicação das Ondas de Choque
3 SESSÕES; INTERVALO DE 1 SEMANA ; 2000 ONDAS ; 2,5 – 4 BAR ; 4 – 8 HZ
18
Casos Tratados em Partes Ósseas
1° CASOS METATARSO - DR. JOSÉ EID
Nov/08 – Início da ESWT
Consolidação
Jan/09 após 3 sessões c/PiezoClast
Mai/09 -
2° PSEUDO-ARTROSE DO FEMUR – DR. ROBERTO ANDROSONI - IFOR
Set/09 – Início da ESWT
Consolidação
Mar/10 após 6 sessões
Consolidação em Processo
19
Jun/10 –
Consolidação Avançada
3° PSEUDO-ARTROSE DO ANTE-BRAÇO – DR. ELSON MIRANDA
Fev/09 Início do Tratamento
Abr/10
4° PSEUDO-ARTROSE DE TÍBIA – DR. PAULO KERTZMAN
Sessões feitas com Ondas de Choque Radial
20
Casos Tratados de Calcificação do Ombro
21
22
Uso da Terapia por Ondas de Choque RADIAL no Tratamento
de Úlceras de Pele – Resumo da Literatura
APLICAÇÃO DAS ONDAS DE CHOQUE EM ÚLCERA DE PELE
Recomendações na literatura: (Autor: Zoech, 2009)
1) Utilize a Terapia por Ondas de Choque Radiais - RSWT - em feridas
crônicas (ou seja, sem cura dentro de seis semanas)
2) Realize a limpeza padrão da ferida e desbridamento antes da RSWT
> Feridas necróticas e infectadas não devem ser tratados com ondas de
choque
3) Aplique Gel de contato na superfície do aplicador e revestir o Gerador
com preservativo ou luva. Outra opção, coloque a folha de plástico estéril
sobre a ferida e do tecido circundante (A folha de plástico devem sobrepor as
bordas da ferida em pelo menos 5 centímetros). Não aplicar o gel de contato
entre o ferimento e a luva ou preservativo ou folha de plástico.
4) Protocolo do autor
> Dois tratamentos por semana; > Total de seis a oito sessões; > 1.000
impulsos por cm2 e sessão de tratamento; > Densidade de fluxo de energia
(EFD) = 0,07 mJ/mm2 ; > Aplique as Ondas de Choque Radiais sobre a ferida
5) Limpar com solução salina estéril a ferida
6) Aplicar curativo de acordo com a fase individual de ferida
Os seguintes ferimentos crônicos são tratados com o Swiss DolorClast:
 Tipos Armstrong 0A, 1A, 2ª
 Armstrong Graus 0C, 1C e 2C se não houver tecido necrótico
Tem uma taxa de sucesso de aproximadamente 75% de acordo com
Zoech (2009)
 Pode ser feita facilmente quando feito como descrito
 Deve ser considerada uma opção terapêutica aditivo na ferida
de gestão.
23
1° CASO - Dr. Luiz Fernando Antunes (ORTOPEDISTA) – Bauru – SP
• Idade do Paciente: 68 anos; Sexo: masculino
• Úlcera medial perna na área da incisão cirúrgica há 04 meses. Cirurgia tinha mais
de 02 anos.
• Estase linfática
• Gerador Radial ; aplicador 15mm ; 3 sessões ; 800 impulsos cada sessão ; 2,5 bar e
6Hz
Início do Tratamento
35 dias após 1° sessão
46 dias após 1° sessão
24
2° CASO - Dra. Ana Lúcia T. Mourão (FISIATRA) – Rio de Janeiro - RJ
• Idade do Paciente: > 80 anos ; Sexo: feminino
• Gerador Power + ; aplicador Planar ; 8 sessões ; 2.000 impulsos cada sessão ; 2,5 –
3,0 bar e 6 – 8 Hz.
Aplicar Gel na superfície do aplicador e vestir o Gerador com preservativo ou luva. Aplicar
as Ondas de Choque sobre o local da feriada.
25
3° CASO - Dra. Ana Lúcia T. Mourão (FISIATRA) – Rio de Janeiro - RJ
• Idade do Paciente: > 80 anos ; Sexo: feminino
• Gerador Power + ; aplicador Planar ; 6 sessões ; 2.000 impulsos cada sessão ; 2,5 –
3,0 bar e 6 – 8 Hz.
26
4° CASO - Dr. Elson Miranda (ORTOPEDISTA) – Natal – RN
• Idade do Paciente: não revelado ; Sexo: masculino
• Gerador Radial ; aplicador 15mm ; 6 sessões ; 2.000 impulsos cada sessão ; 3,0 bar
e 8 Hz.
27
Uso da Terapia por Ondas de Choque RADIAL na
Medicina Esportiva
Terapia por Ondas de Choque no Esporte de Primeira Classe
28
Mito ou Evidência?
Dr.med. Mark Henne, Clínica Ortopédica, Fürstenfeldbruck
Prof. Dr.med. Christoph Schmitz, Instituto de Anatomia, Universidade Ludwig-Maximilians em Munique
Durante muito tempo, discutiu-se, apenas às portas fechadas, sobre o tratamento de atletas de primeira classe
pela Terapia por Ondas de Choque; não são encontrados estudos na literatura. O esquiador profissional
norueguês Aksel Lund Svindal foi o primeiro a divulgar publicamente o sucesso de sua Terapia por Ondas de
Choque, que lhe permitiu curar-se completamente de uma lesão grave no outono de 2009 muito antes do
esperado, tornando-o, enfim, um dos atletas mais bem sucedidos nos jogos olímpicos de inverno de 2010 em
Vancouver. Além disso, existem relatórios diretamente acessíveis ao público do Dr. Paco Biosca (antigo Diretor do
Departamento de Medicina e Adaptação ao Esporte do FC Shakhtar Donetsk/Ucrânia; atualmente Diretor Médico
do FC Chelsea em Londres) sobre a utilização bem sucedida por ondas de choque no futebol profissional.
Fazemos, a seguir, uma breve avaliação da situação.
Com base em mais de 10 estudos prospectivos,
1
randomizados e controlados na literatura especializada
internacional analisada por peritos, a terapia por ondas de
choque moderna admitiu, atualmente, o seu o ponto mais
forte no tratamento da fascite plantar, tendinopatias do
tendão de Aquiles, sinovite do cotovelo, ombro calcáreo,
síndrome da dor do trocanter maior, pseudoartrose e outras
indicações para musculatura esquelética e sistema
locomotor (toda a literatura dos respectivos autores). Para
tanto, contribuíram ainda, de forma significativa, o início do
esclarecimento dos mecanismos de efeitos moleculares e
celulares das ondas de choque na musculatura esquelética
2
e sistema locomotor. De acordo com sistema de
compensação específico dos países e com os métodos de
tratamento aplicados individualmente, a terapia por ondas
de choque é administrada, dependendo do caso, com mais
facilidade nos casos crônicos ou nos casos agudos. Na
Alemanha, essa terapia é frequentemente utilizada nos
casos crônicos nos quais uma terapia inicial conservadora
não obteve sucesso. Em contrapartida, utiliza-se, por
exemplo, na Malásia, o tratamento por ondas de choque
com grande êxito primariamente nos pacientes com
3
sintomas agudos. Neste sentido são relevantes dois
aspectos econômicos da saúde, que desempenharam um
papel significativo nesse desenvolvimento da Malásia: (i)
Qualquer tratamento com médico estabelecido deverá ser
pago pelo próprio paciente; e (ii) não existe uma
continuação de pagamento de salário em caso de doença
(para maiores informações, consultar os autores).
Entretanto, desses fatos surgem duas dificuldades:
(i) abreviação máxima do tempo de reconvalesça já no
estado agudo; e (ii) minimização dos riscos de tratamento.
E exatamente essas propriedades, que são cumpridas na
terapia por ondas de choque devido à sua eficácia e seu
caráter não invasivo, tornaram o tratamento interessante
para o esporte de primeira classe. Alguns relatórios de
tempos recentes, disponibilizados gratuitamente ao público,
revelam uma situação interessante do que acontecia nessa
área até o momento, sobretudo, às portas fechadas.
fisioterapeutas de Aksel Lund Svindal (após consultoria
médico-científica conosco [C.S.]) decidiram-se por um
4
tratamento com ondas de choque focadas. O tratamento
obteve tanto sucesso que Aksel Lund Svindal pôde reiniciar
o treinamento muito antes do que se esperava e, poucos
meses depois, tornou-se um dos atletas mais bem sucedido
5
nos jogos olímpicos internacionais de 2010 em Vancouver.
Depois que a televisão norueguesa divulgou as notícias
6
sobre o seu tratamento com ondas de choque, outros
esportistas de primeira classe noruegueses também
decidiram submeter-se a um tratamento com ondas de
choque (também após consultoria médico-científica
individual conosco [C.S.]). O público tomou conhecimento
do tratamento bem sucedido da esquiadora cross-country
Kristin Størmer Steira, que também ganhou uma medalha
de ouro, como Aksel Lund Svindal, nos jogos olímpicos de
7
inverno de 2010 em Vancouver.
Shaktjar Donetsk
O Dr. Paco Biosca (antigo diretor do Departamento de
Medicina e Adaptação ao Esporte do FC Shakhtar
Donetsk/Ucrânia; atualmente Diretor Médico do FC Chelsea
8
em Londres) apresentou uma exposição, no 2º Congresso
9
Internacional da Sociedade de Terapia Radial contra a Dor
realizado no mês de outubro de 2010, em Berlim, sobre sua
experiência com a terapia radial por ondas de choque no
10
futebol profissional. Antes de sua atuação no Shakhtar
Donetsk, o Dr. Biosca trabalhou, entre outros, como
Presidente da European Federation of Orthopaedic Sports
Traumatology (EFOST) e na Spanish Association of
Football Club Doctors (AEMEF). Segundo o Dr. Biosca, os
critérios para saber se uma determinada terapia é indicada
ou não a jogadores de futebol profissionais, são
simplesmente: "The treatment was good if the player returns
to his maximum performance level without missing
competitions (or missing only a small number of them; and
the treatment was bad if the player cannot play or needs
10
more time to recover than established on average." O Dr.
Biosca relatou sobre os bons resultados no tratamento de
dores na área da espinha lombar, fascite plantar e diversas
tendinopatias com ondas de choque radial, sendo que
foram tomadas por base as tendinopatias de inserção
proximal dos músculos adutores (de acordo com o UEFA
Aksel Lund Svindal e Kristin Størmer Steira
Após uma lesão muscular grave ocorrida em uma queda
em Saas Fee no mês de Outubro de 2009, os médicos e
29
Injury Study uma indicação muito frequente em jogadores
11
de futebol profissionais) . As experiências do Dr. Biosca
coincidem bem com as manifestações de Caccio et al.
12,
,
(2011)
que revelam brevemente em um estudo
prospectivo, randomizado e controlado envolvendo um total
de 40 atletas profissionais (entre eles, 9 jogadores de
futebol profissionais), mostra as vantagens da terapia por
ondas de choque radial em relação à terapia conservadora
tradicional para tendinopatias de isenção proximal do
conjunto de tendão isquiátrico.
total de n=131 atletas de diversas modalidades esportivas
com diferentes sintomas (Tabela 1; medida de 2,12
tratamentos por atleta). Verificamos o sucesso terapêutico
uma semana após o último tratamento em comparação à
situação antes do primeiro tratamento com a escala
análago-visual (VAS), bem como com as escalas RolesMaudsley
modificados.
As
escala
médias
VAS
apresentaram uma melhora de 8,53 ± 0,09 (valor médio ±
falha padrão do valor médio) antes do primeiro tratamento
para 4,15 ± 0,28 uma semana após o último tratamento, e
as escalas medidas Roles-Maudsley de 3,57 ± 0,04 para
2,07 ± 0,08 (figura 1). Essas alterações foram significativas
2
quanto ao aspecto estatístico (teste bilateral do X ; p <
0,001).
Jogos Olímpicos de Versão de 2004 e 2008
Nos jogos olímpicos de verão de 2004 em Atenas e em
2008 em Pequim, tratamos (M.H.) na policlínica oficial da
respectiva vila olímpica, com ondas de choque radiais, um
Tabela 1: Modalidades esportivas e lesões dos n=131 atletas, que foram tratados por nós (M.H.) durante os jogos olímpicos de
verão de 2004 e 2008 com ondas de choque radiais.
Modalidade esportiva
n
Lesão
n
Atleta de pista e campo
86
Muscular (aguda)
34
Taekwando
8
Aquilodinia
27
Handebol
6
Muscular (crônica)
22
Judô
5
Fascite plantar
16
Levantamento de peso
4
Síndrome do vértice patelar
12
Tênis
4
Tendinite no ombro
8
Voleibol
3
Epicondilite radial/ulnar
7
Box
3
Tendinite do tendão quadríceps
3
Luta livre
3
Bursite trocatérica
2
Badminton
2
Esgrima
2
Triátlon
2
Tiro ao Alvo
2
Pentatlo
1
Figura 1: Escalas VAS (esquerda) e Escalas Roles-Maudsley (direita) dos n=131 atletas, que foram tratados por nós (M.H.)
durante os jogos olímpicos de verão de 2004 e 2008 com ondas de choque radiais (vermelho: escalas antes do primeiro
tratamento; verde: escalas uma semana após o último tratamento). Escalas VAS: 0 – sem dor; 10 – dores intoleráveis. Escalas
Roles-Maudsley: 1 – excelente qualidade de vida; sem dores; 4 – sintomas muito fortes; impossível participação no
campeonato mundial.
30
[Legenda: Anzahl Athleten = Quantidade de Atletas; VAS Score = Escala VAS; Roles-Maudsley Score = Escala RolesMaudsley]
Referências:
Terapia por ondas de choque individualmente ou em
combinação?
1
2
Recomendamos basicamente a combinação da terapia por
ondas de choque com outras formas de tratamento médicoesportivo, com base na experiência individual do terapeuta
do quadro sintomático individual do atleta (fisioterapia,
inclusive intervenções osteopáticas e quiroterapêuticas,
crioterapia e termoterapia, terapia de ultra-som e
eletroterapia, infiltrações antiinflamatórias locais com o
medicamento homeopático Traumeel®, Kinésio-Taping,
acupuntura, etc.). Mais detalhes iriam extrapolar os limites
deste artigo; maiores informação serão disponibilizadas
pelos autores.
3
4
5
6
7
Resumo
A moderna terapia por ondas de choque na musculatura
esquelética e sistema locomotor também teve sucesso no
tratamento de esportistas de primeira classe – sobretudo,
com base nos (i) rápidos êxitos terapêuticos com o mínimo
de riscos de tratamento, (ii) quando administrado de forma
adequada, praticamente isento de todos os efeitos
colaterais indesejados, (iii) no método não-invasivo, e (iv)
na compatibilidade com as normas doping. O
desenvolvimento de aparelhos de ondas de choque
pequenos e móveis também permite atualmente a aplicação
em competições ou jogos externos. Com base em nossa
compreensão atual dos mecanismos de efeito moleculares
e celulares, foi iniciada uma pesquisa pré-clínica e clínica
intensa para combinar a terapia por ondas de choque com
outras formas terapêuticas (como por exemplo, a injeção de
plasma rico em plaquetas plasma, PRP), com a intenção de
continuar aumentando a efetividade da moderna terapia por
ondas de choque nos esportes de primeira classe.
31
Entre outros. im American Journal of Sports Medicine,
American Journal of Bone and Joint Surgery, Foot & Ankle
International, etc.
Veja, por exemplo, Schmitz und DePace, Urol Res
2009;37:231–234 e em especial a literatura citada nessa
obra)
Veja, por exemplo,
http://thestar.com.my/health/story.asp?file=/2011/2/6/healt
h/7867544&sec=health
www.aksellundsvindal.com/blog_cms/arkiv/2009/11//?intOf
fset=1
Veja também www.emscompany.com/media/Images%202/100331_Aksel%20Lund
%20Svindal_Flyer_EN_wc.pdf
www.nrk.no/nett-tv/arkivert/117123/
www.ems-company.com/media/PDF%20NEW/KristinStormer-Steiral_Flyer.pdf
8
www.chelseafc.com/page/TheManagement/0,,10268~2393
769,00.html
9
www.atrad.ch
10
www.atrad.ch/images/stories/pdf/abstract%20booklet_fa386_en_2010.pdf
11
Compare Werner et al., Br J Sports Med 2009;43:10361040
12
Am J Sports Med 2011;39:146-153
Artigo da empresa Enimed sobre o sucesso no tratamento do esquiador profissional, Aksel Lund
Svindal, da Noruega.
O tratamento com o Swiss PiezoClast e a Equipe nas Olimpiadas de Inverno em Fevereiro 2010
PONTOS MIOFASCIAL – TRIGGER POINTS
O que é ?
A síndrome Miofascial é uma área fibrosa dentro do músculo que é encurtada
ou engrossada parcialmente ou permanentemente. Também chamado de Ponto
Gatilho, essa área freqüentemente é carregada por postura incorreta do corpo,
exercícios ou esforços excessivos entre outros.
Como é Tratada ?
O diagnóstico é feita geralmente por médico profissional na área, por palpação,
avaliação clínica e alguns métodos de imagem (U-S colorido). Após o diagnóstico
pode-se iniciar o tratamento com o Swiss DolorClast logo em seguida. É o
médico quem decide da quantidade de sessões, mas geralmente se tem uma
boa resposta com 6 (seis) a 10 (dez) sessões com intervalos 2 a 3 dias. O número
de impulsos varia entre 500 – 600 por ponto e dependendo do músculo são
mais do que um ponto. A sessão leva em torno de 10 – 15 minutos. Pontos de
Acupuntura também são indicados com o uso das Ondas de Choque. O novo
método da combinação das Ondas de Choque Radial e Ondas de Choque Focal
está em estudo e os primeiras avaliação do uso combinado é excelente!
Como Funciona ?
O(s) equipamento(s) Swiss DolorClast e Swiss PiezoClast, utilizando o método
Trigger Shockwave Therapy – TST que é muito usado na Europa, é um
tratamento que desativa os pontos gatilhos de forma eficaz, imediata e acima
de tudo segura.
www.dolorclast.com.br
33
Tratamento de Trigger Points – Músculos Superiores (ombro)
e Epicondilites Lateral e Umeral
www.dolorclast.com.br
34
Tratamento de Trigger Points – Região Lombar e Aquileana / Fascites
Plantar
www.dolorclast.com.br
35
Uso da Terapia por Ondas de Choque RADIAL no Tratamento de
Celulites – Estudo Piloto
1° - A área é analisada
2° - Avaliação do Grau
3° - Aplica-se ESWT gel como meio de contato e com o Gerador POWER +,
emite-se as Ondas de Choque sobre a área a ser tratada.
Protocolo: 3.000 – 4.000 Ondas; Área 20 X 30 cm (200 – 300 ondas por cm²);
8 - 20Hz ; Gerador POWER+ ; Aplicador Planar; Intensidade 3,0 – 4,0 bar; 2 vezes
por semana (intervalo de 2-3 dias) durante 3 semanas de forma de aplicação
metade dos impulsos em movimentos na vertical e outra metade em
movimento horizontal
Aplicação de Gel e
em seguida a varredura
vertical e horizontal
www.dolorclast.com.br
36
Estudo Piloto de Celulites
Body
Mass
Index
(BMI)
Pain
(VAS
score)
Comfort
during
treatment
Satis-faction
about
treatment
Cellulite
Stage
before
treatment
Cellulite
Stage after
treatment
Cellulite
Stage difference
34
21.8
3.5
7
5
2.5
1
1.5
2
35
20.8
3
5
6
2.5
1.5
1
3
38
24.6
9 (c)
-- (c)
-- (c)
-- (c)
-- (c)
-- (c)
4
55
20.3
1
7
7
2
1.5
0.5
5
48
21.9
4
5
7
2.5
1.5
1
6
51
22.9
3
5
8
2.5
0.5
2
7
29
32.9
2
5
5
3
1.5
1.5
8
23
31.6
3
8
3
2.75
2.75
0
9
57
19.7
3
5
7
3
2.5
0.5
10
51
22.2
5
5
6
2.75
1.5
1.25
11
29
20.8
2
5
1
2
1.5
0.5
12
43
20.4
3
5
7
2.5
1.5
1
13
51
24.2
3
7
7
2.5
1.5
1
14
4
19.6
3
8
6
2.5
1.5
1
15
43
18.7
4
6
1
2
1.75
0.25
Average:
41.8
22.8
3.0
5.9
5.4
2.5
1.57
0.9
Patient
#
Age
1
(a)
(b)
(b)
Conclusão
O Tratamento para celullites com o Swiss Dolorclast é:
 Seguro
 Eficiente em pacientes com celullites grau 2 e 3
 Capacidade de reduzir o grau de celullites de um nível para o próximo menor em
média
Obs.:
O Resultado pós Tratamento independe da idade, peso, e BMI
O Resultado não é permamente mas permanece por vários meses.
www.dolorclast.com.br
37
ANEXOS
 Estudos Científicos Publicados em Literatura International........pág. 39 - 45
 Estudos Científicos Cong. International ATRAD (Assoc. for Radial
Shockwave Therapy) Out 2010 – Berlin, Alemanha ...................pág. 46 - 50
 Estudos Apresentados no 14th Cong. International da ISMST......pág. 50 - 55
 Estudo Científico - Terapia por Ondas de Choque em
lesões no pé causada por Diabétes – Publicação JATROS
Jan 2009 – Dr. G. Zöch, Vienna Austria ...................................... pág. 56 - 57
 Estudo sobre LINFEDEMA ............................................................
pág. 58
 Trigger ESWT Basics – Dr. Martin Kosub / Jörg Thieme –
Estudo apresentado no 1° Congresso International em Berlin
pela ATRAD sobre Ondas de Choque Radial em Trigger Points .........pág. 59
 Tabela de Energia Swiss DolorClast – Relação “bar” com mJ/mm² ....pág. 60
 Tabela de Energia Swiss PiezoClast – Relação “Intensidade”
com mJ/mm²...................................................................................... pág. 61
 Protocolo de Aplicação do Swiss DolorClast...................................... pág. 62
 Protocolo de Aplicação do Swiss PiezoClast .................................... pág. 63
 Tabela da CBHPM 5° edição ...................................................... pág. 64 – 65
 Folder do 15° Cong. International em Cartagenas – Columbia ........ pág. 66
 Finalização e Certificados ................................................................. pág. 67
www.dolorclast.com.br
38
Clinical trials published in the international peer-reviewed literature1
demonstrating efficacy and safety of treatment with the EMS Swiss
Dolorclast® according to Evidence Based Medicine criteria2:
Plantar fasciitis:
Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic
recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter
study.
Am J Sports Med 2008;36:2100-2109
Gerdesmeyer L, Frey C, Vester J, Maier M, Weil L Jr, Weil L Sr, Russlies M, Stienstra J, Scurran B, Fedder
K, Diehl P, Lohrer H, Henne M, Gollwitzer H.
BACKGROUND: Radial extracorporeal shock wave therapy is an effective treatment for chronic plantar fasciitis that
can be administered to outpatients without anesthesia but has not yet been evaluated in controlled trials.
HYPOTHESIS: There is no difference in effectiveness between radial extracorporeal shock wave therapy and placebo
in the treatment of chronic plantar fasciitis. STUDY DESIGN: Randomized, controlled trial; Level of evidence, 1.
METHODS: Three interventions of radial extracorporeal shock wave therapy (0.16 mJ/mm(2); 2000 impulses)
compared with placebo were studied in 245 patients with chronic plantar fasciitis. Primary endpoints were changes in
visual analog scale composite score from baseline to 12 weeks' follow-up, overall success rates, and success rates of
the single visual analog scale scores (heel pain at first steps in the morning, during daily activities, during standardized
pressure force). Secondary endpoints were single changes in visual analog scale scores, success rates, Roles and
Maudsley score, SF-36, and patients' and investigators' global judgment of effectiveness 12 weeks and 12 months
after extracorporeal shock wave therapy. RESULTS: Radial extracorporeal shock wave therapy proved significantly
superior to placebo with a reduction of the visual analog scale composite score of 72.1% compared with 44.7% (P =
.0220), and an overall success rate of 61.0% compared with 42.2% in the placebo group (P = .0020) at 12 weeks.
Superiority was even more pronounced at 12 months, and all secondary outcome measures supported radial
extracorporeal shock wave therapy to be significantly superior to placebo (P < .025, 1-sided). No relevant side effects
were observed. CONCLUSION: Radial extracorporeal shock wave therapy significantly improves pain, function, and
quality of life compared with placebo in patients with recalcitrant plantar fasciitis.
1
2
As of September 1, 2009
The term Evidence Based Medicine refers to the demonstration of efficacy and safety of therapeutic interventions in
prospective, randomized, controlled clinical trials. According to the U.S. Preventive Services Task Force (USPSTF),
Level 1 evidence is reached when efficacy and safety is demonstrated in at least one properly designed randomized
controlled trial. All clinical trials listed here fulfil the criteria of Level 1 Evidence, except of the studies by Furia et al.
(2009) on greater trochanteric pain syndrome and Rompe et al. (2009) on medial tibial stress syndrome. These
studies reached Level 3 evidence (nonrandomized concurrent cohort comparisons between contemporaneous
patients).
www.dolorclast.com.br
39
Achilles tendinopathy:
Eccentric loading versus eccentric loading plus shock-wave treatment for midportion achilles
tendinopathy: a randomized controlled trial.
Rompe JD, Furia J, Maffulli N.
Am J Sports Med 2009;37:463-470
BACKGROUND: Results of a previous randomized controlled trial have shown comparable effectiveness of a
standardized eccentric loading training and of repetitive low-energy shock-wave treatment (SWT) in patients suffering
from chronic midportion Achilles tendinopathy. No randomized controlled trials have tested whether a combined
approach might lead to even better results. PURPOSE: To compare the effectiveness of 2 management strategies-group 1: eccentric loading and group 2: eccentric loading plus repetitive low-energy shock-wave therapy. STUDY
DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: Sixty-eight patients with a chronic recalcitrant
(>6 months) noninsertional Achilles tendinopathy were enrolled in a randomized controlled study. All patients had
received unsuccessful management for >3 months, including at least (1) peritendinous local injections, (2)
nonsteroidal anti-inflammatory drugs, and (3) physiotherapy. A computerized random-number generator was used to
draw up an allocation schedule. Analysis was on an intention-to-treat basis. RESULTS: At 4 months from baseline, the
VISA-A score increased in both groups, from 50 to 73 points in group 1 (eccentric loading) and from 51 to 87 points in
group 2 (eccentric loading plus shock-wave treatment). Pain rating decreased in both groups, from 7 to 4 points in
group 1 and from 7 to 2 points in group 2. Nineteen of 34 patients in group 1 (56%) and 28 of 34 patients in group 2
(82%) reported a Likert scale of 1 or 2 points ("completely recovered" or "much improved"). For all outcome measures,
groups 1 and 2 differed significantly in favor of the combined approach at the 4-month follow-up. At 1 year from
baseline, there was no difference any longer, with 15 failed patients of group 1 opting for having the combined therapy
as cross-over and with 6 failed patients of group 2 having undergone surgery. CONCLUSION: At 4-month follow-up,
eccentric loading alone was less effective when compared with a combination of eccentric loading and repetitive lowenergy shock-wave treatment.
Eccentric loading compared with shock wave treatment for chronic insertional achilles
tendinopathy. A randomized, controlled trial.
Rompe JD, Furia J, Maffulli N.
J Bone Joint Surg Am 2008;90:52-61
BACKGROUND: Nonoperative management of chronic tendinopathy of the Achilles tendon insertion has been poorly
studied. With the recently demonstrated effectiveness of eccentric loading and of repetitive low-energy shock wave
therapy in patients with midsubstance Achilles tendinopathy, the aim of the present randomized, controlled trial was to
verify the effectiveness of both procedures exclusively in patients with insertional Achilles tendinopathy. Level of
evidence, 1. METHODS: Fifty patients with chronic (six months or more) recalcitrant insertional Achilles tendinopathy
were enrolled in a randomized, controlled study. All patients had received treatment, including local injections of an
anesthetic and/or corticosteroids, a prescription of nonsteroidal anti-inflammatory drugs, and physiotherapy, without
success for at least three months. A computerized random-number generator was used to draw up an allocation
schedule. Twenty-five patients were allocated to receive eccentric loading (Group 1), and twenty-five patients were
allocated to treatment with repetitive low-energy shock wave therapy (Group 2). Analysis was on an intention-to-treat
basis. Primary follow-up was at four months, and afterward patients were allowed to cross over. The last follow-up
evaluation was at one year after completion of the initial treatment. The patients were assessed for pain, function, and
activity with use of a validated questionnaire (the Victorian Institute of Sport Assessment-Achilles [VISA-A]
questionnaire). RESULTS: At four months from baseline, the mean VISA-A score had increased in both groups, from
53 to 63 points in Group 1 and from 53 to 80 points in Group 2. The mean pain rating decreased from 7 to 5 points in
Group 1 and from 7 to 3 points in Group 2. Seven patients (28%) in Group 1 and sixteen patients (64%) in Group 2
www.dolorclast.com.br
40
reported that they were completely recovered or much improved. For all outcome measures, the group that received
shock wave therapy showed significantly more favorable results than the group treated with eccentric loading (p =
0.002 through p = 0.04). At four months, eighteen of the twenty-five patients from Group I had opted to cross over, as
did eight of the twenty-five patients from Group 2. The favorable results after shock wave therapy at four months were
stable at the one-year follow-up evaluation. CONCLUSIONS: Eccentric loading as applied in the present study
showed inferior results to low-energy shock wave therapy as applied in patients with chronic recalcitrant tendinopathy
of the insertion of the Achilles tendon at four months of follow-up. Further research is warranted to better define the
indications for this treatment modality.
Eccentric loading, shock-wave treatment, or a wait-and-see policy for tendinopathy of the main
body of tendo Achillis: a randomized controlled trial.
Rompe JD, Nafe B, Furia JP, Maffulli N
Am J Sports Med 2007;35:374-383
BACKGROUND: Few randomized controlled trials compare different methods of management in chronic tendinopathy
of the main body of tendo Achillis. PURPOSE: To compare the effectiveness of 3 management strategies-group 1,
eccentric loading; group 2, repetitive low-energy shock-wave therapy (SWT); and group 3, wait and see-in patients
with chronic tendinopathy of the main body of tendo Achillis. STUDY DESIGN: Randomized controlled trial; Level of
evidence, 1. METHODS: Seventy-five patients with a chronic recalcitrant (>6 months) noninsertional Achilles
tendinopathy were enrolled in a randomized controlled study. All patients had received unsuccessful management for
>3 months, including at least (1) peritendinous local injections, (2) nonsteroidal anti-inflammatory drugs, and (3)
physiotherapy. A computerized random-number generator was used to draw up an allocation schedule. Analysis was
on intention-to-treat basis. RESULTS: At 4 months from baseline, the Victorian Institute of Sport Assessment (VISA)-A
score increased in all groups, from 51 to 76 points in group 1 (eccentric loading), from 50 to 70 points in group 2
(repetitive low-energy SWT), and from 48 to 55 points in group 3 (wait and see). Pain rating decreased in all groups,
from 7 to 4 points in group 1, from 7 to 4 points in group 2, and from 8 to 6 points in group 3. Fifteen of 25 patients in
group 1 (60%), 13 of 25 patients in group 2 (52%), and 6 of 25 patients in Group 3 (24%) reported a Likert scale of 1
or 2 points ("completely recovered" or "much improved"). For all outcome measures, groups 1 and 2 did not differ
significantly. For all outcome measures, groups 1 and 2 showed significantly better results than group 3.
CONCLUSION: At 4-month follow-up, eccentric loading and low-energy SWT showed comparable results. The waitand-see strategy was ineffective for the management of chronic recalcitrant tendinopathy of the main body of the
Achilles tendon.
www.dolorclast.com.br
41
Medial tibial stress syndrome:
Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic
recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter
study.
Am J Sports Med 2009: in press
Rompe JD, Caccio A, Furia JP, Maffulli N.
BACKGROUND: Medial tibial stress syndrome (MTSS) is a pain syndrome along the tibial origin of the tibialis
posterior or soleus muscle. Extracorporeal shock wave therapy (SWT) is effective in numerous types of insertional
pain syndromes. HYPOTHESIS: Shock wave therapy is an effective treatment for chronic MTSS. STUDY DESIGN:
Case control study; Level of evidence, 3. METHODS: Forty-seven consecutive subjects with chronic recalcitrant
MTSS underwent a standardized home training program, and received repetitive low-energy radial SWT (2000
shocks; 2.5 bars of pressure, which is equal to 0.1 mJ/mm2; total energy flux density, 200 mJ/mm2; no local
anesthesia) (treatment group). Forty-seven subjects with chronic recalcitrant MTSS were not treated with SWT, but
underwent a standardized home training program only (control group). Evaluation was by change in numeric rating
scale. Degree of recovery was measured on a 6-point Likert scale (subjects with a rating of completely recovered or
much improved were rated as treatment success). RESULTS: One month, 4 months, and 15 months from baseline,
success rates for the control and treatment groups according to the Likert scale were 13% and 30% (P < .001), 30%
and 64% (P < .001), and 37% and 76% (P < .001), respectively. One month, 4 months, and 15 months from baseline,
the mean numeric rating scale for the control and treatment groups were 7.3 and 5.8 (P < .001), 6.9 and 3.8 (P <
.001), and 5.3 and 2.7 (P < .001), respectively. At 15 months from baseline, 40 of the 47 subjects in the treatment
group had been able to return to their preferred sport at their preinjury level, as had 22 of the 47 control subjects.
CONCLUSION: Radial SWT as applied was an effective treatment for MTSS.
www.dolorclast.com.br
42
Greater trochanteric pain syndrome:
Home training, local corticosteroid injection, or radial shock wave therapy for greater trochanter
pain syndrome.
Rompe JD, Segal NA, Cacchio A, Furia JP, Morral A, Maffulli N.
Am J Sports Med 2009 May 13 [Epub ahead of print]
BACKGROUND: There are no controlled studies testing the efficacy of various nonoperative strategies for treatment
of greater trochanter pain syndrome. HYPOTHESIS: The null hypothesis was that local corticosteroid injection, home
training, and repetitive low-energy shock wave therapy produce equivalent outcomes 4 months from baseline. STUDY
DESIGN: Randomized controlled clinical trial; Level of evidence, 2. METHODS: Two hundred twenty-nine patients
with refractory unilateral greater trochanter pain syndrome were assigned sequentially to a home training program, a
single local corticosteroid injection (25 mg prednisolone), or a repetitive low-energy radial shock wave treatment.
Subjects underwent outcome assessments at baseline and at 1, 4, and 15 months. Primary outcome measures were
degree of recovery, measured on a 6-point Likert scale (subjects with rating completely recovered or much improved
were rated as treatment success), and severity of pain over the past week (0-10 points) at 4-month follow-up.
RESULTS: One month from baseline, results after corticosteroid injection (success rate, 75%; pain rating, 2.2 points)
were significantly better than those after home training (7%; 5.9 points) or shock wave therapy (13%; 5.6 points).
Regarding treatment success at 4 months, radial shock wave therapy led to significantly better results (68%; 3.1
points) than did home training (41%; 5.2 points) and corticosteroid injection (51%; 4.5 points). The null hypothesis was
rejected. Fifteen months from baseline, radial shock wave therapy (74%; 2.4 points) and home training (80%; 2.7
points) were significantly more successful than was corticosteroid injection (48%; 5.3 points). CONCLUSION: The role
of corticosteroid injection for greater trochanter pain syndrome needs to be reconsidered. Subjects should be properly
informed about the advantages and disadvantages of the treatment options, including the economic burden. The
significant short-term superiority of a single corticosteroid injection over home training and shock wave therapy
declined after 1 month. Both corticosteroid injection and home training were significantly less successful than was
shock wave therapy at 4-month follow-up. Corticosteroid injection was significantly less successful than was home
training or shock wave therapy at 15-month follow-up.
Low-energy extracorporeal shock wave therapy as a treatment for greater trochanteric pain
syndrome.
Furia JP, Rompe JD, Maffulli N.
Am J Sports Med 2009 May 13 [Epub ahead of print]
BACKGROUND: Greater trochanteric pain syndrome is often a manifestation of underlying gluteal tendinopathy.
Extracorporeal shock wave therapy is effective in numerous types of tendinopathies. HYPOTHESIS: Shock wave
therapy is an effective treatment for chronic greater trochanteric pain syndrome. STUDY DESIGN: Case control study;
Level of evidence, 3. METHODS: Thirty-three patients with chronic greater trochanteric pain syndrome received lowenergy shock wave therapy (2000 shocks; 4 bars of pressure, equal to 0.18 mJ/mm(2); total energy flux density, 360
mJ/mm(2)). Thirty-three patients with chronic greater trochanteric pain syndrome were not treated with shock wave
therapy but received additional forms of nonoperative therapy (control). All shock wave therapy procedures were
performed without anesthesia. Evaluation was by change in visual analog score, Harris hip score, and Roles and
Maudsley score. RESULTS: Mean pretreatment visual analog scores for the control and shock wave therapy groups
were 8.5 and 8.5, respectively. One, 3, and 12 months after treatment, the mean visual analog score for the control
and shock wave therapy groups were 7.6 and 5.1 (P < .001), 7 and 3.7 (P < .001), and 6.3 and 2.7 (P < .001),
respectively. One, 3, and 12 months after treatment, mean Harris hip scores for the control and shock wave therapy
groups were 54.4 and 69.8 (P < .001), 56.9 and 74.8 (P < .001), and 57.6 and 79.9 (P < .001), respectively. At final
follow-up, the number of excellent, good, fair, and poor results for the shock wave therapy and control groups were 10
and 0 (P < .001), 16 and 12 (P < .001), 4 and 13 (P < .001), and 3 and 8 (P < .001), respectively. Chi-square analysis
showed the percentage of patients with excellent (1) or good (2) Roles and Maudsley scores (ie, successful results)
12 months after treatment was statistically greater in the shock wave therapy than in the control group (P < .001).
CONCLUSION: Shock wave therapy is an effective treatment for greater trochanteric pain syndrome.
www.dolorclast.com.br
43
Shockwave Therapy for the Treatment of Chronic Proximal Hamstring
Tendinopathy in Professional Athletes:
Angelo Cacchio,*yz MD, Jan D. Rompe,§ MD, John P. Furia,|| MD, Piero Susi,z MD,
Valter Santilli,y MD, and Fosco De Paulis, MD
Investigation performed at Sciuba Diagnostic Imaging and Rehabilitation Center, Sulmona, Italy
Background: Chronic proximal hamstring tendinopathy is an overuse syndrome that is usually managed by
nonoperative methods. Shockwave therapy has proved to be effective in many tendinopathies.
Hypothesis: Shockwave therapy may be more effective than other nonoperative treatments for chronic proximal
hamstring tendinopathy.
Study Design: Randomized controlled clinical study; Level of evidence, 1.
Methods: Forty professional athletes with chronic proximal hamstring tendinopathy were enrolled between February
1, 2004, and September 30, 2006. Patients were randomly assigned to receive either shockwave therapy, consisting
of 2500 impulses per session at a 0.18 mJ/mm2 energy flux density without anesthesia, for 4 weeks (SWT group, n =
20), or traditional conservative treatment consisting of nonsteroidal anti-inflammatory drugs, physiotherapy, and an
exercise program for hamstring muscles (TCT group, n = 20). Patients were evaluated before treatment, and 1 week
and 3, 6, and 12 months after the end of treatment. The visual analog scale (VAS) score for pain and Nirschl phase
rating scale (NPRS) were used as primary outcome measures.
Results: The patients were observed for a mean of 10.7 months (range, 1-12 months). Six patients were lost to
follow-up because they underwent a surgical intervention: 3 (all in TCT group) were lost at 3 months; 2 (1 in each
group), at 6 months; and 1 (in the TCT group), at 12 months. Primary follow-up was at 3 months after the beginning of
treatment. The VAS scores in the SWT and TCT groups were 7 points before treatment (P = .84), and 2 points and 5
points, respectively, 3 months after treatment (P\.001). The NPRS scores in the SWT and TCT groups were 5 points
in either group before treatment (P = .48), and 2 points and 6 points, respectively, 3 months after treatment (P\.001).
At 3 months after treatment, 17 of the 20 patients (85%) in the SWT group and 2 of the 20 patients (10%) in the TCT
group achieved a reduction of at least 50% in pain (P\.001). There were no serious complications in the SWT group.
Conclusion: Shockwave therapy is a safe and effective treatment for patients with chronic proximal hamstring
tendinopathy.
Keywords: shockwave; hamstring; tendinopathy; proximal hamstring tendinopathy; tendon
www.dolorclast.com.br
44
www.dolorclast.com.br
45
Outubro de 2011 tivemos cinco médicos brasileiros participando do II Cong. da ATRAD
Alec Flinte, Antonio D´Almeida, Dr. Ernani Taunay, Paulo Kertzman, Eduardo Fukugava, Dr. Carlos Leal, Jean-Yves Lefort
www.atrad.ch
www.dolorclast.com.br
46
Radial shockwave therapy for sport in juries of professional soccer players
Paco Biosca , Sharkhtar Donetsk , Ukraine
Injuries of professional soccer players have their own special characteristics.
There is more complexity around the injury than in the injury itself. Radial shockwaves can play an
important role in an integrated treatment concept in cases of tendon pathology.
Sport injuries of professional soccer players
> The UEFA performed an injury study, starting in the season 2001/02, that included 17 European soccer clubs who
participated in the season 2009/10, with eight of them participating in the quarter finals of the Champions League.
Half of the training months had 21.4 days and 6.1 matches per month, without taking into account selections.
Among all injuries that were reported, 32.7% were due to overuse. 18.5% of those injuries that prevented players
from training for more than four weeks were related to tendons (adductor tendon pain: 9.5%, pubalgy: 3.0%,
peroneal tendinopathy: 2.4%, Achilles tendinopathy: 1.8%, and patella tendinopathy: 1.8%). These (and other cases)
are potential indications for radial shock wave therapy.
Value proposition of RSWT for sport in juries of professional soccer players
> Because of the lack of universally applied standards in medical services of professional soccer teams, there are only
a few publications on the results of injury treatment in professional soccer. In general, the evaluation of treatment
success is pretty straightforward: the treatment was good if the player returns to his maximum performance level
without missing competitions (or missing only a small number of them; and the treatment was bad if the player
cannot play or needs more time to recover than established on average. We have used RSWT for several years to
treat tendinoses and insertion pathologies, especially pathologies of the insertion of the adductor muscles which is
our principle indication. In addition, we used RSWT for many years during the last phase of rehabilitation for
proximal insertion pathologies of the medial knee ligament, but now we apply another method (PRGF). We have
used this technique also with good results to treat lumbar vertebrae in posterior joints.
Finally, we had good results in treating plantar fasciitis, where we treated about 73 cases.
Radial shock wave therapy to treat pain associated with unilateral compart mental
osteoarthritis of the knee
Nick Boden , Kuala Lumpur, Malaysia
> Radial shock wave therapy (RSWT) is a safe and efficient adjunct treatment for pain associated with unilateral
osteoarthritis of the knee, when applied as part of a biomechanical bracing protocol using the Unloader knee brace.
Unilateral compart mental osteoarthritis of the knee
> A recent study in Malaysia (called Community Oriented Program for the Control of Rheumatic Diseases; COPCORD)
revealed that knee pain is the most common joint complaint (64%), while half of these patients showed clinical signs
of knee osteoarthritis. The same study showed that 9.3% of adult Malaysians complained of knee pain, with a sharp
increase in pain rate to 23% in those over 55 years of age, and 39% in those over 65 years. This may be due to
various reasons including, but not limited to, lifestyle factors, foot biomechanics, BMI, injury, dietary deficiencies,
excessive loading of the knee joint in a flexed position due to prayer position (Muslims), and excessive squatting
(cultural habits). Existing primary care approaches involving NSAIDs and physiotherapy do not appear to significantly
alter the course of the osteoarthritis, or have any significant impact on function and quality of life of
these patients.
Evidence of efficacy and safety of radial shock wave therapy (RSWT) to treat pain related to unilateral osteoarthritis
of the knee
> Our own clinical experience showed no serious adverse incidents related to the treatment of knee pain with RSWT.
A 2010 study showed that application of extracorporeal shock waves to the subchondral bone of the medial tibia
condyle results in regression of osteoarthritis of the knees in rats. Furthermore, by unloading the knee and allowing
www.dolorclast.com.br
47
normal biomechanics, the joint surfaces are able to heal, while RSWT may accelerate this healing process
through previously demonstrated effects on bone morphological proteins and other molecular effects.
Value proposition of RSWT for knee pain related to unilateral osteoarthritis as part of a bio mechanical
unloading protocol
> We describe a protocol of intervention in these cases by providing a mechanical unloading of the knee using an
Ossur Unloader knee brace, coupled with (i) RSWT treatment of the painful areas of the knee and (ii) muscular
strengthening and rehabilitation through relevant physiotherapy exercises, to augment the effects of the brace.
Clinical data from our centers show promise with this approach, compared to more traditional approaches. Early
intervention seems to be beneficial.
Study design : Treatment of idiopathic cervical pain with shock waves or a multi modal
therapy approach
Dirk Rompe , Mainz, Germany
> Prospective randomized action needs to be taken to assess the potential benefit of shock wave therapy for chronic
nonspecific muscle pain in the neck region.
Idiopathic cervical pain
> Non-specific neck pain is a common musculoskeletal problem, and most people suffer from it at some point in
their lives. Precise diagnosis by clinical examination is problematic, because signs and symptoms are frequently nonspecific, with poor reproducibility.
Evidence of efficacy and safety of radial shock wave therapy (RSWT) and other therapy approaches for idiopathic
cervical pain
> In a systematic search for relevant literature published from 1980 through 2006 on the use, effectiveness, and
safety of non-invasive interventions for neck pain, 170 (47%) were accepted as scientifically admissible, and 139 of
these related to noninvasive interventions (Hurwitz et al., Spine 2008;33:S123-S152). The evidence suggests that
manual therapy, supervised exercise interventions (Griffiths et al., J Rheumatol 2009;36:390-397), low-level laser
therapy, and acupuncture (Fu et al., J Altern Complement Med 2009;15:133-145) are more effective than no
treatment, sham, or alternative interventions. However, none of the active treatments was clearly superior to any
other in either the short- or long-term. There are only anecdotal reports on the use of focused or radial shock waves
for muscle-related pain syndromes. Nevertheless, current guidelines of the German-speaking International Society
for Extracorporeal Shock Wave Therapy (Deutschsprachige Internationale Gesellschaft für Extrakorporale
Stoßwellentherapie; DIGEST) give precise instructions on the use of shock waves in the management of musclerelated pain syndromes (see also Gleitz, Abstracts 10th International Congress of the International Society for
Musculoskeletal Shock wave Therapy, Vancouver, Canada, 2007, p. 48.). According to these guidelines, points of
maximum tenderness (PMT) are identified using application of focused low-energy shock waves, then 400 impulses
per PMT are applied (energy flux density ~0.15 mJ/mm², repetition frequency 4 Hz). Afterwards, the muscles are
treated as a whole, smoothing them out using radial shock waves (500 impulses per muscle, energy flux density
~0.15 mJ/mm², repetition frequency 10 Hz). Eight 15-minute treatment sessions shall be given (two sessions per
week, over four weeks) No local anesthesia is applied to allow patient-guided application.
Value proposition of shock wave therapy or a multi modal therapy approach for idiopathic cervical pain
> Our null hypothesis is that shock wave therapy, supervised exercise therapy, and acupuncture will do comparably
at four months from baseline.
www.dolorclast.com.br
48
Radial shock wave therapy to treat cellulite
Kai-Uwe Schlaudraff, Concept -Clinic , Geneva , Switzerland
> Radial shock wave therapy (RSWT) has shown promising early results in treating cellulite as a multifactorial
pathology.
Cellulite
> Gynoid lipodystrophy - better known as cellulite - is the most common lipodystrophic disease, and is found in 8590% of post-adolescent women. It develops in the thigh area, buttocks, abdomen, and upper arms, and becomes
visible through its ‘orange peel’ appearance – an irregular, dimpled skin surface with thinning of the
epidermis/dermis and nodular clusters of fat cells. Cellulite represents not only a cosmetic concern for millions of
women, but often becomes a major psychological problem impairing sports activities, clothing, and social
interaction. The pathophysiology of cellulite is related to various predisposing factors like biotype, heredity,
race, body weight, and age, as well as hormonal changes. Four principal factors have emerged: (i) a different
anatomy of the subcutaneous tissue in women compared to men; (ii) changes of the biomechanical properties of
epidermal/dermal tissues; (iii) excessive hydrophilia of the extracellular matrix, increasing interstitious pressure and
causing edema; and (iv) alterations of both microvascular and lymphatic circulation, resulting in the protrusion of
subcutaneous adipose tissue into the lower reticular dermis, as well as in the distinctive mattress-like surface
irregularities.
Evidence of efficacy and safety of RSWT to treat cellulite
> RSWT has been successfully used in plastic surgery for chronic diabetic foot ulcers, and in an experimental setting
to improve skin flap survival. The present pilot study on n=30 women suffering from cellulite showed a beneficial
treatment effect for RSWT with regard to blood perfusion, edema, and cellulite stage, as well as a decrease of
surface irregularities. An ongoing study will show the impact of RSWT for cellulite on skin elasticity and the duration
of its positive effects.
Molecular and cellular mechanisms of radial shock wave therapy
Christoph Schmitz, Nyon , Switzerland
> The current knowledge about the molecular and cellular mechanisms of action of radial and focused shock waves
can serve as basis to develop innovative treatment strategies for various diseases of the musculoskeletal system, the
skin, and other organs in the near future.
Current knowledge about molecular and cellular mechanisms of radial shock wave therapy (RSWT)
> The molecular and cellular mechanisms of RSWT are still largely unknown. However, a recent study on transgenic
mice showed that RSWT can induce the formation of new capillaries and increase the functional vessel density in
injured tissue. These effects are known to be mediated by (focused) extracorporeal shock wave therapy (ESWT) as
well. It is therefore hypothesized that RSWT and ESWT share key molecular and cellular mechanisms of action in
tissue. This is most probably due to the fact that both radial and focused shock waves can produce (inertial)
cavitation (at least in experimental settings in water).
Current knowledge about molecular and cellular mechanisms of extracorporeal shock wave therapy in general
> For ESWT, several molecular and cellular mechanisms of action were reported in the international peer-reviewed
literature. Among them, the most important are (i) depletion of substance P from free nerve endings, (ii) increased
production and release of growth factors such as bone morphogenetic protein (BMP), vascular endothelial growth
factor (VEGF) and proliferating cell nuclear antigen (PCNA), (iii) stimulation of angiogenesis and promotion of
capillarization, (iv) proliferation of adult stem cells, (v) new bone formation, and (vi) tissue regeneration. Very
recently, ESWT-induced expression of lubricin in tendons and septa was reported.
Value proposition of improved knowledge about molecular and cellular mechanisms of RSWT
www.dolorclast.com.br
49
> Detailed knowledge about the molecular and cellular mechanisms of action of RSWT in tissue can serve as
the basis to develop innovative treatment strategies for various diseases of the musculoskeletal system, the
skin, and other organs.
For example, the treatment of insertion tendinopathies with both platelet-rich plasma injections and RSWT
appears promising from a theoretical point of view, and first clinical trials have been started in this regard.
14th INTERNATIONAL CONGRESS OF THE ISMST – JUNY 2011 – KIEL, GERMANY – MAINS
ABSTRACTS
Low Energy Extracorporeal Shock Therapy as a Treatment for Chronic Patellar
Tendinopathy
John Patrick Furia(1), Jan Dirk Rompe(2), Angelo Cacchio(3), Nicola Maffulli(4)
Institution:
1 SUN Orthopedics and Sports Medicine, Lewisburg, PA, USA
2 OrthoTrauma Evaluation Center, Mainz, Germany
3 Dept. of Physical Medicine and Rehabilitation, University of Rome “La Sapienza”, Italy
4 Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary
University of London, London, Great Britain
Device and producing company: Swiss DolorClast, EMS
Introduction: The pathologic changes seen in chronic patellar tendinopathy are similar to those of other overuse
injuries of tendons. Extracorporeal Shockwave Therapy (SWT) is an effective treatment for many tendinopathic
conditions.
Methods: Thirty-three patients with chronic patellar tendinopathy received low-energy SWT (2000 shocks; 4 bars of
pressure, total energy flux density, 360 mJ/mm2). Thirty-three patients with chronic patellar tendinopathy were
treated with additional forms of non-operative therapy (control group). Evaluation was by change in visual analog
score (VAS), Victoria Institute Sport Assessment Score (VISA), and by Roles and Maudsley (RM) score.
Results: Mean pre-treatment VAS scores for the control and SWT groups were 7.5 and 7.8, respectively. One month,
3 months, and 12 months after treatment, mean VAS for control and SWT groups were 6.7 and 4.3 (pp001), and 54.9
and 74.5 (p the number of excellent, good, fair, and poor results for SWT and control groups were 8 and 3 (psis
showed that the percentage of patients with excellent (“1”) or good (“2”) RM scores (successful results) 12 months
after treatment was greater in the SWT group compared to the control group.
Discussion: Traditional treatment of chronic patellar tendinopathy is generally lengthy, associated with frequent
recurrences, and in many cases, results in an unacceptable degree of improvement. This study demonstrates that
low energy, radial SWT is safe and effective, that it can be used to treat patients with chronic patellar tendinopathy,
and that satisfactory improvement is maintained for at least one year.
Conclusion: SWT is an effective treatment for chronic patellar tendinopathy.
www.dolorclast.com.br
50
ESWT in Chronic Proximal Plantar Fasciitis – 9 years of experience
José Eid
Institution: Clinica Ortopedica Sao Paulo, Brasil
Device and producing company: Swiss DolorClast - EMS; Epos Ultra – Dornier
Introduction: Compare the efficacy of ESWT in Proximal Plantar Fasciitis between two different generators with
similar levels of energy and number of sessions.
Methods: Between January 1999 and January 2008 we performed 717 sessions of ESWT in 239 patients.
Criteria for inclusion and exclusion are well known and based in ISMST protocol.
An electromagnetic generator (EMSE) was used on 90 patients between 1999 to 2005, and an electropneumatic
device was used on 149 patients between 2004 to 2008. Exclusion criteria included the inability to follow up. We
excluded 48 patients (35 in the EMSE group and 13 in the electropneumatic group) therefore this study was
completed on 191 patients.
The age variation was between 20 and 80 years (average: 52.8 years), 115 patients were female (59.8%), 76 were
male (40.2%), and there was no significant prevalence between right (55%) and left (45%) sides.
Method: The electromagnetic generator was a Dornier Epos ultra (frequency of 7.5 Mhz), where the therapy head
was positioned on the medial side tangential to the point of pain. The electropneumatic device was an EMS Swiss
DolorClast that was applied directly on the painful point. The energy applied with the EMSE and Electropneumatic
devices was 0.22 mJ/mm2 and 0.18 mJ/mm2, respectively. We applied 2000 SWs without anesthesia at intervals of
10 days regardless of the device.
Results: The criterion was the Visual Analogue Scale, with follow up of 6 weeks, 12 weeks, 6 months, and 12 months.
The efficacy was 85.2 % for the electromagnetic device and 84% for the electropneumatic device. There was
moderate and transitory pain during the treatment. No patients presented with hematoma or petechia after
application of ESWT. There are no complications or side effects with this method.
Discussion: The results show good to excellent efficacy with both devices, using the same energy levels and number
of SWs. Although the discussion of focal or radial device exists, it seems that there are only differences in the
physical principles; the biological and clinical response seems to be the same.
Conclusion: ESWT is an effective treatment method for CPPF. The therapy head, whether positioned in-line or
tangentially, shows the same results as when SWs are applied directly to the point of pain.
ESWT should be considered a real method of choice. This study shows relevant clinical evidence independent of the
type of SW generator.
Ultrasound Elastography, a Novel Method for the Diagnosis of Trigger Points and a Tool to
Evaluate the Efficacy of Shockwaves in the Treatment of Myofascial Pain Syndroms
Wolfgang Bauermeister
Institution: None
Device and producing company: Swiss DoloClast, EMS; Piezoson 100, Wolf: ARiES, Dornier MedTech; Ultrasonix
Tablet, Ultrasonix
Introduction: Trigger Points (TPs) are the pain generators in Myofascial Pain Syndrome (MPS). TPs cannot be
visualized by X-Ray, MRI or conventional ultrasound. Ultrasound Elastography (USE) can visualize TPs as small areas
of reduced strain.
Methods: TPs were diagnosed using USE and treated with radial, piezoelectric sharply focused and electromagnetic
shockwaves with a focus channel. After the treatment a follow-up USE examination was done.
Results: Radial shockwaves exert effects on superficial TPs, but have little or no effect on deeper structures.
Piezoelectric shockwaves reach small areas because of their particular focus. Shockwaves with a channel-like focus
exert their effect in several tissue layers simultaneously.
Discussion: USE can visualize areas of reduced strain like prostate, breast or liver tumors. Shockwaves vary regarding
their depths of penetration and focus characteristics and may have very different effects on TPs.
www.dolorclast.com.br
51
Conclusion: This study demonstrates the capability to visualize TPs with USE in a clinical setting as a
routine procedure. USE is a valid tool to diagnose TPs in MPS and can help evaluate the effects and
efficacy of different types of shockwaves. The focus geometry and depth of penetration of
shockwaves can result in significantly different clinical outcomes and be the deciding factor in the
treatment’s success and failure.
ESWT for athletic injuries during competition
Paulo Kertzman, Mauro Moreira
Institution: Instituto Ortopedia Campo Belo Sao Paulo, Brasil
Device and producing company: Swiss Dolorclast, EMS
Introduction: At the Olympic Games in Athens and Beijing and at the Pan American Games on Rio de Janeiro some
athletes were treated at the Medical Center with ESWT. We performed ESWT treatments during the Brazilian
Athletics Meeting in 2009 on tendons and muscle injuries with the view to relieve pain and muscle contracture.
Methods: Most athletes experience pain during training and competitions. They use anti-inflammatory drugs and
physiotherapy techniques daily along with ice, massage and stretching in order to relieve pain. We offered ESWT as a
new option for pain treatment. Initially only 3 subjects asked for ESWT but on the second day of competition 16
athletes chose ESWT treatment. We treated muscle contracture at the adductor, hamstring, soleus, gastrocnemius,
lumbar and dorsal areas and tendons.
Results: All the subjects underwent traditional physiotherapeutic techniques as well as ESWT, and at the end of the
competition all were satisfied and very thankful.
Discussion: We know that patients feel an immediate sensation of pain relief and muscle relaxation after ESWT
treatment. However, we do not know why this happens. In these particular patients we employed ESWT as a pain
treatment, not a definitive solution for pathologies.
Conclusion: ESWT is an option for pain treatment.
The Importance of Total Energy Emitted in the Results of ESWT
Maria Cristina Ottone, Filippo Fagnani, Emanuela Maria Roldi
Institution: ASLAL - Distretto di Tortona - Via Milazzo,1 - Tortona, Italia
Device and producing company: [Piezoson 300, Wolf]* * = Swiss PiezoClast
Introduction: We aim to verify the efficacy of total energy emitted comparing the results of different numbers of
sessions and different number of pulses per session.
Methods: The treatment was carried out using a Piezoson 300 from WOLF, a focused piezoelectric generator with
three different focal dimensions. We used the large focus and low energy density (0.06 mJ/mm2) with a total energy
of 6.8 J.
This study includes 250 patients:
Group A: 150 patients, 4 applications, 2000 shock waves/session
Group B: 100 patients, 3 applications, 2700 shock waves/session
Results: The follow-up is ongoing and we will present the results during the meeting.
Discussion: Two years ago we compared different protocols varying the focus dimension and energy density with a
stable value of total mJ emitted. We obtained the same results in both groups, confirming a strong link between the
efficacy of ESWT and the total energy emitted. Now we want to verify the results using the same total energy
distributed in three sessions. If the results are similar, it may further confirm that the most important factor in
Shockwave Therapy is the total energy emitted.
Conclusion: If the results confirm the efficacy of treatment using the same total energy but with a reduction of
sessions, it means that we can achieve the same efficacy with a shorter course of treatment. This is important
because it is less expensive: more patients are treated and less working days are lost. We are currently evaluating
the patients in order to obtain final data to draw final conclusions that will be presented at the Congress.
www.dolorclast.com.br
52
Treatment of Frozen Shoulder with Focused ESWT
Ayman Elwy Balabel, Fasial Al-Kandary, Sahar Othman
Institution: Ahmadi Hospital, Kuwait Oil Company, Kuwait
Device and producing company: [Piezoson 300, Wolf]*
Introduction: Frozen shoulder, also called adhesive capsulitis, is a chronic, inflammatory disorder of the shoulder and
surrounding soft tissues. This condition is frequently caused by injury, leading to pain and lack of use. As the joint
becomes progressively tighter and stiffer, simple movements such as raising the arm become difficult. If
inflammation occurs within the capsule itself, the shoulder bones are unable to move within the joint. In some
instances, the patient may be unable to move the shoulder at all. This condition rarely appears in people under age
40. An arthrogram may be needed to confirm the diagnosis. Treatment can include non-steroidal anti-inflammatory
medications (NSAID’s) and physical therapy. However, it may take up to a year to see improvement. Arthroscopic
surgery and shoulder manipulation
under anesthesia may be necessary in more severe cases.
Methods: The study includes 20 patients with frozen shoulder problems, age 40-58 years, pain VAS rating of 8-10
with pain so severe at night they had X-rays when initially diagnosed to exclude Type I ACJ arthritis. They underwent
different types of conservative treatment (such as NSAID’s, local injection with hydrocortisone, and physiotherapy
and exercises) for more than 6-8 months with no significant improvement. We performed the treatment as an
outpatient procedure without anesthesia in 3 Focused ESWT sessions (3000 pulses, 0.7- 11mJ/mm2, frequency 4,
intensity level 8-10) at two-week intervals. Mobilizing and stretching exercises were performed 3 weeks after final
treatment to reduce muscle contracture and regain elasticity of the capsule (structures and ligaments). Also ROM
strengthening exercises were started gradually and progressively for 3 months to restore the rotator cuff.
Results: 6 Months; We found that 80% of the patients showed significant clinical improvement, pain had been
reduced to VAS 3-4 and range of motion had significantly improved, while 20% of patients were slightly better.
Discussion: Focused Shockwave Therapy produces significant relief of pain, improves ROM and decreases physical
incapacity produced by frozen shoulder.
Conclusion: F ESWT is effective, noninvasive, with no complications or side effects, therefore shock waves must be
considered a valuable treatment option for frozen shoulder. Although this technique reduces the recovery time and
increases the clinical success rate, physiotherapy remains the main treatment for this indication.
[Piezoson 300, Wolf]* = Swiss PiezoClast
High Energy Shock Waves and 5-Aminolevulinic Acid for Sonodynamic Therapy:
Effects on SK-N-BE and SH-SY5Y Neuroblastoma Cell Lines
Roberto Frairia(1), Loredana Serpe(2), Roberto Canaparo(3), Gian Paolo Zara(3), Mario Eandi(3), Laura Berta(1)
Institution:1 Dept. of Clinical Pathophysiology
2 Dept. of Drug Science and Technology
3 Dept. of Anatomy, Pharmacology and Forensic Medicine, University of Torino, School of Medicine, Torino, Italy
Device and producing company: [Piezoson 100, Richard Wolf]*
Introduction: An appealing form of treatment for solid tumors is sonodynamic therapy based on the ability of
ultrasound to generate acoustic cavitation and to activate a tumor-localizing sonosensitizer agent (such as porphyrin
compounds) like 5-aminolevulinic acid (ALA). High Energy Shock Waves (HESW), generated by a piezoelectric device,
are able to induce acoustic cavitation, which results in a concentration of energy sufficient to generate a
sonoluminescent emission, which is able to cause electronic excitation of porphyrins by energy transfer and to
initiate a photochemical process resulting in cytotoxic reactive oxygen species (ROS). For this reason, we have
investigated the ability of HESW to activate ALA in human neuroblastoma SK-N-BE and SH-SY5Y cell lines.
Methods: SK-N-BE and SH-SY5Y cells were exposed to ALA (50-300 ìg/ml) for 24 h and then to HESWs (0.22- 0.43
mJ/mm2; 500-1000 pulses): viable cell growth was determined at days 1, 3 and 7 after HESW treatment. Cell
cytotoxicity was measured with WST-1 proliferation assay and cell death was evaluated by flow cytometric analysis.
www.dolorclast.com.br
53
The relationship between sonodynamic treatment and production of ROS was evaluated by flow
cytometric analysis with dichlorofluorescein diacetate. Furthermore, mRNA expression of different
genes involved in apoptosis through ROS production was evaluated by quantitative SYBR Green real
time RT-PCR, and fluorescence microscopic examination was carried out to highlight ROS production
and cell death.
Results: Sonodynamic treatment was able to induce a significant decrease in cell growth compared to untreated cells
at 72 h in both SK-N-BE and SH-SY5Y cells: up to 35% and 50%, respectively. Exposure of ALA pre-incubated cells to
HESW significantly increased ROS production with different onset and extent in SK-N-BE and SH-SY5Y cells, and the
apoptotic rate was significantly increased at 24 h in both cell lines.
Discussion: We have identified different treatment schedules of ALA and HESW to produce the best cytotoxic rate in
the two cell lines studied. These findings are in agreement with our previous reports, indicating that shock waves
have a sudden effect in enhancing cytotoxic activities of compounds defined as sonosensitizers in different cell lines.
Conclusion: Our results show that HESW are able to activate porphyrin compounds in neuroblastoma cell lines by
acoustic cavitation obtaining significant in vitro cytotoxicity through ROS production.
[Piezoson 100, Richard Wolf]*= Swiss PiezoClast
Investigation of the correlation between shockwave induced mechanical stress and
biological response
Matias de la Fuente(1), Yifei Long(1), Marc Hein(2), Anna Röhl(2), Michael Becker(3), Klaus Radermacher(1)
Institution:
1 Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Germany
2 Department of Anaesthesiology, RWTH Aachen University Hospital, Germany
3 Department of Cardiology, RWTH Aachen University Hospital, Germany
Device and producing company: Piezoson 100 plus, Richard Wolf
Introduction: Physical reasons for the destructive characteristics of shockwaves have been studied over the last few
decades. However, the cause for the therapeutic characteristics remains unclear. Depending on the shockwave
device used (method of shock-wave generation) and the device settings, different mechanical stimuli act on the
target tissue. Therefore it is difficult both to compare studies of different authors and to set treatment-specific
shockwave parameters.
Methods: A simulation model of non-linear shockwave propagation has been implemented as well as two simplified
models for shockwave treatment – one for cell culture flasks and one for isolated rat hearts. During simulation the
normal and shear strain and stress caused by the shockwave can be calculated at each time point.
Results: Non-linear shockwave propagation in water can be validated by comparing it to measurement data at the
surface of the shockwave device as well as in the focal area.
Preliminary results of the simulation of mechanical stress at isolated rat hearts show a correlation between the local
distribution of the maximum stress and the histological findings.
Discussion: Information regarding the correlation between the mechanical strain/stress caused by the shock wave
and the biological response could make new target-oriented treatments possible. The mechanical stress model
implemented so far represents the basis for our ongoing experimental evaluation and optimization of the simulation.
Conclusion: Shockwave simulation may be a means to better understand the cause-effect relation of shockwaves
and biological responses. To achieve this, the model must be further validated and then correlated to verified
biological findings.
[Piezoson 100, Richard Wolf]*= Swiss PiezoClast
www.dolorclast.com.br
54
Interactions of extracorporeal shock waves with pathogenic bacteria in vitro
and in vivo
Hans Gollwitzer, Carsten Horn, Ludger Gerdesmeyer
Institution: Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, TU München The aim of the present
study was to investigate interactions of extracorporeal shock wave therapy (ESWT) with pathogenic bacteria.
Direct effects of ESWT on bacterial growth were investigated with different pathogenic bacteria (Staphylococcus
aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Enterococcus faecium) in vitro. ESWT resulted in an
energydependent reduction of bacterial viability, with significant inhibition of bacterial growth after increase of both
energy flux density and impulse counts. Antibacterial effectiveness of ESWT proved dependent on treatment
temperature and growth medium. ESWT performed on bacteria suspended in growth medium at 35°C showed
significantly reduced antibacterial effectiveness compared to ESWT at 20°C in normal saline. Low-energy ESWT on
bacteria in tryptic soy broth at 35°C even resulted in stimulation of bacterial growth. Additional experiments
performed to reveal the antibacterial mechanisms of ESWT demonstrated energy-dependent increase of bacterial
cell wall permeability, whereas damage of bacterial DNA was not observed. Synergistic effects of ESWT and
additionally applied antibiotics could not be shown.
Furthermore, safety and effectiveness of ESWT was investigated in chronic osteomyelitis in the rabbit. Chronic bone
infections were established in the tibia 12 New Zealand White rabbits with S. aureus. Two interventions of planar
ESWT were applied at 4 and 5 weeks after establishement of infection. Non-treated animals served as control. A
significant reduction of soft tissue abscesses and reduced histopathologic infection score were observed in the ESWT
group at study endpoint at 8 weeks. Furthermore, ESWT proved safe without postinterventionell bacteremia or
sepsis. However, healing of the chronic bone infection did not occur.
Shockwave Treatment for Orthopaedic Infections
Richard Coombs, Moustafa Hafez, Milad Hanna, Nikki Horwood, Vipin Asopa
Introduction: Initial experimental studies have been carried out to assess the potential for shockwave treatment
eliminating bacterial infection. These studies have now been extended to include Gram-negative organisms.
Methods: Twelve standardised pieces of lamb meat 7 x 5 x 5 cm were cut from fresh ovine leg muscle. Each piece
was partially sliced across approximately 2 cm from the top. A 2 cm cube of muscle was cut from the centre of each
sample and was discarded. A radio-opaque lead marker was placed at the bottom of each cavity and 1 ml of sterile
liquid 1.2% Agar maintained at 42 °C was added to fill the cube completely. The top of each sample was then closed
by covering with the partially cut slice of meat. Experimental samples were treated with shockwaves and were
compared with untreated controls. All samples were diluted with brain heart infusion broth and counts of viable
organisms were estimated after incubating the broth. Serial dilutions were used to assess the bacterial counts. The
numbers of viable bacterial colonies were counted in the treated samples and were compared to the untreated controls.
Results: In an initial ten samples there was a statistically significant kill rate for E.coli bacteria. Some changes were
noted in the muscle tissue in the treated samples. This situation does not reflect the clinical condition. Part of the
damage may be related to heat necrosis which would be reduced in the living patient with normal muscle blood
flow. In the clinical situation, petechial haemorrhages and minor haematomas have been reported in the literature
following the treatment of soft tissue problems with shockwaves. In our own clinical series of nearly 400 patients,
we have so far not experienced this complication. Further experiments will be carried out with E-coli bacteria
inserted into an intraosseous position. In addition, experiments will be carried out to assess the minimum level of
shockwave energy which is required to have a significant effect on bacteria in the in vitro situation.
Discussion: Initial studies have shown that shockwave treatment in an appropriate experimental model can kill up to
99% of bacteria. Additional studies have been carried out with Gram-positive organisms, specifically Staphylococci
including MRSA and also fungi. These studies have now been extended to include Gram-negative organisms which
are also killed by shockwaves in an experimental preparation using sheep muscle.
Conclusion: Shockwave treatment may be extremely helpful in treating superficial and deep orthopaedic infections.
www.dolorclast.com.br
55
www.dolorclast.com.br
56
www.dolorclast.com.br
57
www.dolorclast.com.br
58
Martin Kosub/Jörg Thieme
Trigger ESWT – Basics
Mar tin Kosub /Jörg Thi eme
Orthopaedics common practise, ''Dr. Kosub & Dr. Thieme'', Hattingen, Germany
Introduction: The skeletal muscles represent together the largest organ in the
human body and in this respect a source of multiple pathologies. Yet chronic pain
originating in the muscles is often not recognised, although it is of great sociomedical
relevance.
Methods and Results: Muscle pain leads to biomolecular, neuroanatomical and
electrophysiological changes. The release of ATP and proton (low pH value) activates
nociceptors and, via changes to the milieu, causes muscle pain with muscular
imbalances, taut bands and trigger points. Trigger point development is provoked by
a damaged neuromuscular end-plate. On a spinal level this leads to over agitation
(central sensitisation) which probably explains the referred pain.
Clinically, myofascial pain patterns develop, affecting the torso as pain in the neck
and back areas and the limbs as pain in the shoulder, hip or knee areas. It is necessary
to locate the trigger points by means of a thorough examination of the related muscle
groups, taking into consideration loss of strength, reduced extension capacity, tonus
changes and taut bands. In addition to classic trigger point treatment (manual
techniques,
neurophysiological approaches, needling, infiltration) the shockwave presents
an important widening of the therapy spectrum.
Fundamental research shows that shockwaves have many more than only one effect
on tissue. ESWT leads to changes in the concentration of numerous neurotransmitters
and inflammation mediators which play a role in the above mentioned milieu of
a chronically algetic muscle. It can be assumed that the trigger ESWT also acts via
neuromuscular spindles and the gamma-loop.
Using the clinical picture trochantertendinosis, the relevant muscles which arise from
the functional anatomy and physiology are presented, the examination is carried out
exemplarily on one muscle and the trigger-ESWT demonstrated.
Conclusion: The application of the trigger-ESWT for myofascial pain syndromes
together with a few operator observations demonstrate the therapeutic success.
Clinical studies are, however, long overdue, in order to provide appropriate scientific
evidence for this form of therapy.
www.dolorclast.com.br
59
Tabela de Energia SWISS DOLORCLAST®
Gerador POWER +
Aplicador Planar de ø R36mm
Bar
mJ / mm² [ED+]
2
0,035
2,5
0,04
3
0,05
3,5
0,06
4
0,07
Aplicador RADIAL de ø R15mm
Bar
mJ / mm² [ED+]
2
0,095
2,5
0,17
3
0,25
3,5
0,32
4
0,40
Outros dados técnicos da POWER + :
Profundidade de penetração: 0 – 40 mm
Níveis de energia: baixa, média e ALTA.
Fluxo de densidade de energia: 0,01 – 0,55mJ/mm²
Seleção de freqüência: 1 – 20 Hz (modelo Classic)
Peso : 0,9kg
FONTE: ELECTRO MEDICAL SYSTEM
Gerador RADIAL
Aplicador RADIAL de ø R15mm
Bar
mJ / mm² [ED+]
2
0,06
2,5
0,11
3
0,13
3,5
0,16
4
0,18
www.dolorclast.com.br
60
Tabela de Energia SWISS PIEZOCLAST®
Gerador PIEZO
Intensidade
P + in MPa
ED + mJ / mm² [ED+]
1
11,5
0,03
2
12,7
0,04
3
14,5
0,05
4
16,1
0,06
5
18,0
0,07
6
20,2
0,08
7
21,7
0,09
8
24,1
0,10
9
27,1
0,12
10
30,5
0,13
11
31,5
0,15
12
35,6
0,17
13
38,3
0,19
14
40,7
0,20
15
50,1
0,24
16
50,3
0,27
17
53,4
0,28
18
60,2
0,32
19
69,3
0,35
20
82,2
0,40
ED+ : Densidade Positiva do Fluxo Energético. Unidade mJ/mm²
P+ : Pico de Pressão Positiva. Unidade MPa (mega pascal)
Indicador de
Intensidade
Ajuste do
Nível de
Intensidade
Indicador de
Impulsos
Indicador de
Frequência
Ajuste do Nível
de Intensidade
www.dolorclast.com.br
61
Protocolo de Aplicação – Swiss DolorClast Master & Classic
www.dolorclast.com.br
62
Protocolo de Aplicação – Swiss PiezoClast
www.dolorclast.com.br
63
Tabela da CBHPM 2010 – 6° edição
516,00
209,00
12,67 * 60 = 760,20 + 516,00 = 1.276,20 => 1° Aplicação
12,67 * 60 = 760,20 + 209,00 = 969,20 => Reaplicações
www.dolorclast.com.br
64
www.dolorclast.com.br
65
www.dolorclast.com.br
66
Swiss DolorClast & Swiss DuoClast,
FDA # P 050004
EC : # 50081-16-03
Registro na ANVISA
10337850032
Ecomed empresa membra da Soc. Bras. De
Terapia por Ondas de Choque - SBTOC
Electro Medical Systems – E.M.S. member of
Association for Radial Shockwave Therapy – ATRAD
ECOMED, representante exclusivo da Electro Medical System - EMS
(21) 9648-5110 - Eng. Alec Flinte – dolorclast@dolorclast.com.br
www.dolorclast.com.br
67