Terapia por Ondas de Choque
Transcription
Terapia por Ondas de Choque
Terapia por Ondas de Choque www.dolorclast.com.br Representante: Ecomed Com. de Prods. Médicos Ltda. Eng. Alec Flinte CREA/RJ 2001106273 1 Versão 1.0 Fabricante e Desenvolvimento do Produto: CONTEÚDO Descrição Pág. História da Onda de Choque e Sociedades 3 Ondas de Choque 4 Características da Onda de Choque 5 Fenômeno da Cavitação 6 Propagação da Ondas de Choque Radial, Focal e Não-Focal Fontes Geradoras 7-8 8 Equipamentos Swiss DolorClast MASTER & CLASSIC 9 - 10 Equipamento Swiss PiezoClast 11 Equipamento Swiss DuoClast 12 Nível de Energia 13 Efeito Biológico da Onda de Choque 14 Critérios de Inclusão e Exclusão, e Efeitos Colaterais 15 - 16 Método de Aplicação 16 Principais Indicações no Sistema Músculo-esquelético 17 Exemplo de Aplicações e Procedimentos em Partes Moles 18 Casos Tratamento em Partes Ósseas 19 - 20 Casos Tratamento em Calcificação do Ombro 21 - 22 Uso das Ondas de Choque Radial no Tratamento das Úlceras de Pele 23 - 27 Medicina Esportiva 28 - 32 Uso das Ondas de Choque no Tratamento de Trigger Points 33 - 35 Uso das Ondas de Choque no Tratamento de Celulites 36 - 37 Anexos 38 Estudos Científicos publicados em literatura Internacional e alto nível de evidência 39 - 45 Estudos Científicos Apresentados em Berlin Out 2010 pela ATRAD 46 - 50 Estudos Científicos Apresentados em Kiel Junho 20111 pela ISMST 50 - 55 Estudo Científicos sobre Úlcera em Pé Diabético 56 - 57 Estudo de Linfedema 58 Estudo sobre Trigger Points – Pontos Miofascal 59 Tabela de Energia 60 - 61 Protocolo de Aplicação 62 - 63 Tabela da CBHPM 64 – 65 Folder do 15° Cong. International de Terapia por Ondas de Choque – ISMST 66 Números dos Registros de Produto ANVISA, FDA, CE 67 2 História do Desenvolvimento da Onda de Choque para benefício à saúde humana Durante a última Guerra Mundial, foi observado que náufragos que permaneceram na água na proximidade de explosões de bombas apresentavam danos pulmonares letais ao serem resgatados, sem que fosse encontrada nenhuma lesão externa. Esses achados despertaram o interesse militar alemão a fim de formar mais uma arma de guerra. Porém, estudos demonstraram que seria uma arma bélica sem grande uso fora do meio líquido, e os métodos da época supriam com maior facilidade e economia. Mas o interesse continuou, devido às evidências causadas e documentadas pelo efeito da Onda de Choque nos tecidos humanos. Em 1950 foram realizadas investigações sistemáticas para o uso de Ondas de Choque na medicina, e nos Estados Unidos foi aceita a primeira patente de um gerador de Ondas de Choque eletro-hidráulico. De 1968 até 1971, a interação entre Ondas de Choque e tecido biológico em animais foi investigada pelo Dep. de Defesa da Alemanha. O resultado mostrou que Ondas de Choque causam efeitos no organismo. Particularmente, os efeitos nas interfaces do corpo foram investigados, assim como as diferenças de dissipação das Ondas de Choque através do tecido vivo. Em 1974, o Dep. de Pesquisa e Ciência da Alemanha financiou o programa de pesquisa “Aplicação de Ondas de Choque Extracorpóreas”. O procedimento foi desenvolvido pela companhia Dornier, da Alemanha. Pela primeira vez, em Fevereiro de 1980, um paciente com cálculo renal foi tratado com sucesso, em Munique, com um equipamento protótipo chamado Lithotripter HM1. Estudos sucessivos deram continuidade à pesquisa: 1986: 1ª aplicação em osso de cobaias (Haupt); 1988: 1º tratamento pseudoartrose em humano (Valchanov); 1992: 1º tratamento tendinose calcárea no ombro (Dahmen / Loew). Em 2001, a Sociedade Brasileira de Terapia por Ondas de Choque – SBTOC foi fundada e promove atualmente diversos cursos e palestras pelo Brasil. Principais Sociedades no mundo: Association for Radial Pain Therapy – ATRAD – www.atrad.ch International Society for Medical Shockwave Therapy – ISMST – www.ismst.com Sociedade Brasileira de Terapia por Ondas de Choque – SBTOC – www.sbotc.org.br 3 ONDAS DE CHOQUE A Onda de Choque é o resultado de um fenômeno que cria uma intensa troca de pressão entre os meios. Ela aparece na atmosfera em eventos explosivos, quando um material explosivo é detonado, nos relâmpagos ou quando aviões quebram a barreira do som. Também se fala em Ondas Acústicas que se caracterizam por um pulso de alta pressão em um curto tempo (mili – nanosegundos). Essa intensa troca de pressão produz ondas fortes que se propagam pelo meio. A propagação difere-se pela densidade e se o meio é líquido, ar ou outros. A – Objeto em pressão natural B – Objeto na fase da tensão C – Objeto na fase de dilatação D – Fase de liberação da energia Fig. 1A Tensão – dilatação – liberação de energia Fig. 2A Ilustração da Implosão da bolha pelo jato Na visão da propagação da Onda de Choque: Fase de Dilatação (pressão negativa) Fase da tensão (pressão positiva) Fig. 2 Propagação da Onda de Choque no meio. 4 CARACTERÍSTICAS: Uma Onda de Choque é uma onda acústica de alta energia com as seguintes características: Tempo de elevação rápido (Tr) Pressão máxima alta (P+) e- Queda exponencial da pressão (e-) Pressão negativa (P-) Fig. 4 ED + é Densidade Positiva do Fluxo Energético; unidade de medição: mJ / mm² (mili Joules por mm quadrado) Apesar de sua relação com o ultrassom, as Ondas de Choque tem características diferentes. O ultrassom é uma onda senoidal, de baixa amplitude e alta freqüência (>1kHz). Fig. 3 - Imagem das Ondas de Choque (azul) e ultrassom (laranja) 5 CAVITAÇÃO As Ondas de Choque produzem dois efeitos básicos: um direto (primário) de geração da força mecânica, e um outro efeito indireto (secundário) de força mecânica chamada de cavitação. Durante a fase tênsil, as forças de tensão da onda excedem a resistência à tração dinâmica da água (ou fluido intersticial) gerando bolhas de cavitação. As bolhas de cavitação aumentam e diminuem de volume e entram em colapso liberando grande quantidade de energia armazenada na forma de jatos de água. Nos líquidos muito viscosos, o fenômeno de cavitação é dramaticamente suprimido. Abaixo o fenômeno da Cavitação na Onda de Choque Radial e na Onda de Choque Focal Ondas de Choque Focal Ondas de Choque Radial < - Ponto Focal < - Cavitação < - Ondas de Choque Secundária < - Onda de Choque Radial < - Ondas de Choque Secundária < - Cavitação Fig. 5 Fig. 6 Na Onda de Choque Radial (Fig.5) a cavitação ocorre nas proximidades do aplicador. Na Onda de Choque Focal (Fig. 6) a cavitação ocorre na área do ponto focal. 6 PROPAGAÇÃO DAS ONDAS DE CHOQUE RADIAL E FOCAL RADIAL A Onda de Choque Radial tem a característica de se propagar radialmente a partir do aplicador (Fig.8) e à medida que penetra no tecido há uma perda de energia equivalente a 1/r2 . Seu tempo de elevação Tr é µs (micro-segundos). O nível de energia pode ser de baixa energia até alta energia. Seu principal uso é para patologias proximais (tendões,...) Fig. 8 – Propagação das Ondas de Choque Radiais quebrando um pedaço de gesso FOCAL A Onda de Choque Focal concentra em um ponto distante da fonte geradora, toda energia gerada. Esse ponto focal, em formato de “charuto”, tem seu pico de energia que pode variar de baixa até alta energia. Após esse encontro das Ondas, continua a propagação de forma Radial. Com a tecnologia Focal permite-se tratar tecido profundos. Sua principal aplicação é para partes ósseas, dores musculares, calcificações de ombro e outras. Também pode ser usado em tendinopatias. Seu tempo de elevação tR é ns (nanosegundos). 3D Ondas de Choque FOCAL Representação em 3D gerada pelo Swiss PiezoClast: Pelo menos 50% da extremidade positiva P+ (-6dB isobar) é alcançada na região através do ponto focal. O eixo fx, fy e fz demonstram um elipsóide do ponto focal Fonte Geradora Menor nível de energia a Swiss PiezoClast gera ( P+ = 11,5MPa), fx = fy = 2,8mm e fz = 13,6mm. Fig. 9 Campo da Ondas de Choque -6dB isobar define a área no foco no qual pelo menos 50% da parte positiva é Maior nível de energia, (P+ = 82,2 MPa fx = fy = 1,2mm e fz = 4,8mm alcançada. 5 MPa isobar define a área na qual pelo menos 5 MPa é alcançado Abaixo a Onda de Choque Focalizada quebrando um pedaço de gesso 10 Fig. 10 NÃO-FOCAL (DESFOCALIZADO) 7 No caso da Não-Focalizada ou também chamado de Onda Desfocalizada, as ondas são amplas, não tem ponto focal nem se propagam radialmente. Elas são ideais para tratamentos bem superficial, como úlceras de pele, celulites e outras. Aplicador: Planar ø36 mm Energia Máxima: 0,07 mJ/mm² Profundidade Máxima: 25 mm Fig. 11 Concentração de Energia; onde ocorre a cavitação A proximidade de zonas limites com diferentes impedâncias acústicas(densidades diferentes), por colapso das bolhas de cavitação, fica alterada e os microjatos são direcionados para essas zonas de interface (tendão-osso). Os efeitos biológicos são esperados nesses locais onde as Ondas de Choque são aplicadas. FONTES GERADORAS DE ONDAS DE CHOQUE Existem quatros principais tipos de fontes geradoras Fig. 12, cada uma com suas características e engenharias próprias conforme cada fabricante desenvolve. - Geração por tecnologia ELETRO-HIDRÁULICA - Geração por tecnologia ELETRO-MAGNÉTICA - Geração por tecnologia PIEZO-ELÉTRICA Piezo-elétrico - Geração por tecnologia ELETRO-PNEUMÁTICA Eletro-Pneumático Fig. 12 As três primeiras tecnologias se desenvolveram na tecnologia Focal, direcionando toda energia em um ponto. Já a tecnologia Eletro-pneumático foi desenvolvida pelas E.M.S. é radial, e é utilizada para o tratamento de patologias proximais até no máximo 4 cm já que perde energia à medida que se aprofunda. 8 EQUIPAMENTOS PARA TERAPIA POR ONDAS DE CHOQUE SWISS DOLORCLAST MASTER e CLASSIC Os equipamentos Swiss DolorClast MASTER ou CLASSIC (Fig. 13) são equipamentos que geram a Onda de Choque pelo sistema ELETROPNEUMÁTICO, que como grande vantagem tem o baixo ruído no momento da geração das Ondas de Choque, o NÃO uso de anestesia local e um sistema que gera baixa, média e alta energia dependendo do Gerador usado. Utiliza-se este sistema para tratar patologia do sistema músculo-esquelético, partes moles, partes ósseas proximais, Medicina Esportiva, Calcificações, Pontos Miofasciais (Trigger Points), úlceras de Pele, celulites entre outras. Fig. 13 SDC MASTER & CLASSIC PRINCÍPIO DA GERAÇÃO DAS ONDAS DE CHOQUE PELO SISTEMA ELETRO-PNEUMÁTICO Nos equipamentos Swiss DolorClast MASTER ou CLASSIC as Ondas de Choque são geradas por sistema ELETRO-PNEUMÁTICO. Esta fonte de geração utiliza a energia cinética armazenada em um compressor de ar comprimido e energia elétrica. Por um circuito eletrônico impulsos são gerenciados conforme a necessidade do usuário. O princípio se baseia na 3ª Lei de Newton (ação e reação), convertendo a energia cinética em energia acústica de alta energia. A onda de choque é transmitida pelo aplicador no corpo humano e se propaga radialmente (diverge) a partir do aplicador. Neste caso é usada para tratar a área e é indicado para patologias proximais. Em ambos os equipamentos, são fornecidos dois geradores; RADIAL (Fig. 16) que gera até baixa-média energia. E o POWER + (Fig. 17) que gera até alta energia. O nível de energia também depende do aplicador utilizado; Fig. 14 Kit de Aplicadores do POWER + Fig. 15 Kit de Aplicadores RADIAL 9 O Gerador RADIAL - Ondas de Choques Radial Gerador RADIAL Energia: ED+ : 0,06 – 0,18 mJ/mm Fig. 16 Gerador RADIAL Área a Tratar Gerador POWER + - Ondas de Choques Radial com POWER+ Gerador POWER + Energia ED+ : 0,06 – 0,40 mJ/mm² (ED+ 0,55mJ/mm² com aplicador F15) Fig. 17 Gerador POWER + Área a Tratar Obs.: Junto com o equipamento Swiss DolorClast é fornecida a Tabela de Energia com os indicadores de nível de energia. OPCIONAIS PARA O SWISS DOLORCLAST MASTER E CLASSIC O aparelho pode se tornar unidade móvel, adquirindo uma maleta de transporte para unidade principal e o gerador RADIAL, assim como o compressor de ar móvel para facilitar o transporte. Fig. 18 Maleta e Compressor Móvel 10 SWISS PIEZOCLAST O modelo Swiss PiezoClast (Fig. 19) usa como fonte geradora das Ondas de Choque o sistema Piezoelétrico. Este sistema visa em focar todas as Ondas de Choque produzidas em um ponto à frente do Gerador. A intenção é alcançar maior profundidade e energia (mJ/mm²). Este sistema é usado principalmente para partes ósseas, calcificações e pontos miofasciais (Trigger Points), mas também pode ser usado nas tendinopatias crônicas. Fig. 19 Swiss PiezoClast PRINCÍPIO DE GERAÇÃO DAS ONDAS DE CHOQUE COM O SISTEMA PIEZO-ELÉTRICO No equipamento Swiss PiezoClast, as Ondas de Choque são geradas pelo sistema PIEZOELÉTRICO. Nesta fonte vários elementos chamados de cristais se encontram numa geometria côncava e através de um circuito eletrônico recebem um impulso elétrico numa seqüência especial. O cristal transforma um impulso elétrico em uma Onda de Choque. Um ponto localizado à frente da Fonte Geradora. Este ponto concentrará o somatório das várias Ondas de Choque. Aqui o ponto é tratado. Área pequena Alta energia Área larga (ED) baixa energia (ED) Fig. 20 Elementos de Cristais Fig. 21 Intensidade de energia Gerador FOCAL - Ondas de Choque FOCAL Ponto Focal - Local onde as Ondas de Choque se concentram Fig. 22 Gerador PIEZO Energia ED+ : 0,03 – 0,40 mJ/mm² 11 SWISS DUOCLAST O SWISS DUOCLAST (fig. 23) é a combinação do Swiss PiezoClast e o Swiss DolorClast CLASSIC. Tem a grande benefício do usuário possuir ambas tecnologias radial, e focal. Segundo estudiosos e médicos profissionais, a possibilidade do uso combinado no tratamento para Pontos Miofaciais das Ondas de Choque Radial e Focal tem melhor efeito e conseqüentemente melhor sucesso para o paciente. Há também a possibilidade se caso um paciente não ficar 100% satisfeito com o tratamento, utiliza-se a outra tecnologia. Os aparelhos são separáveis para melhor aproveitamento do equipamento, sendo que um colega de ombro por exemplo pode utilizar um módulo Swiss PiezoClast e o outro colega pode tratar fascites plantar com o Swiss DolorClast. Fig. 23 THINK RADIAL, FOCUS YOUR TARGET ! 12 NÍVEL DE ENERGIA No início, todo o sistema de geração de Ondas de Choque era com alta energia e focal, devido à necessidade de bombardear as Ondas em um ponto para quebrar e fragmentar o cálculo renal. Muitos fabricantes se direcionaram para essa tecnologia, já a Electro Medical Systems – E.M.S., desenvolveu o primeiro sistema para Terapia por Ondas de Choque Radial pois a grande maioria das patologias necessita apenas de baixa energia. Tal tecnologia de Ondas de Choque Radiais é bastante favorável para o tratamento de patologias proximais até 0,5 – 35 mm de profundidade no tecido. A Onda de Choque Radial se propaga divergindo a partir de um ponto, e à medida que penetram perdem energia na forma de 1/r². As Ondas de Choque Focais se convergem em um ponto, podendo assim concentrar energia com maior profundidade. O nível de energia (mJ/mm²) é importante para os diferentes tipos de patologias. Considera-se baixo nível de energia 0,08 – 0,17 mJ/mm² , média energia de 0,18 – 0,32 mJ/mm²; e alta energia até 0,6 mJ/mm². A partir deste nível, há o risco de necrose tecidual. Dr. Rompe visualiza os níveis: Baixa Energia Fig. 24 Baixa energia para tratamento de pele, tendinopatias, trigger points. Média energia tendinopatias e calcificações. Alta energia para partes ósseas. O uso das Ondas de Choque também tem um efeito osteogênico, quando aplicada em pacientes que tiveram fraturas de difícil consolidação, além de outras indicações. 13 EFEITO BIOLÓGICO DAS ONDAS DE CHOQUE Muitos estudos recentes de ciência básica demonstram que a aplicação de ondas de Choque produz uma resposta biológica, a nível tecidual, incluindo a indução de neovascularização associada ao aumento da expressão dos fatores de crescimento (eNOS, VEGF, PCNA e BMP, etc.) no tendão e no osso, e na interface tendão-osso. Constatou-se o aumento da síntese de óxido nítrico endotelial (eNOS) e fatores de crescimento endotelial (VEGF), antígeno nuclear de proliferação celular (PCNA), refletindo na proliferação de células endoteliais, proteína óssea morfogenética (BMP-2) entre outros, mudando o conceito de atuação baseada em mecanismo puramente mecânico. Essa revascularização induzida pelas Ondas de Choque aumenta a suplência vascular proporcionando a cicatrização do tendão ou a consolidação óssea. Os resultados preliminares de recentes estudos em animais demonstram a liberação de radicais livres de óxido nítrico e apoptose celular pela alteração das moléculas de proteínas WNT e DKK-1 (inibidores de proteossomos) a nível agora subcelular. Os efeitos das Ondas de Choque nos tecidos músculo-esqueléticos parecem ser tempo e dose-dependentes, conforme trabalhos recentes do Dr. Rompe da Alemanha e colaboradores causando uma sequência de resposta biológica nos tendões, ossos e interfaces tendão-osso. Wang e colaboradores demonstraram que com o tratamento por Ondas de Choque houve um aumento da massa óssea dose-dependente e da força do calo ósseo após fratura do fêmur. Fig. 25 Efeitos biológicos causados pela energia física das Ondas de Choque 14 Ondas de Choque são aplicadas com sucesso para aumentar a circulação de sangue local, assim como a atividade celular do metabolismo, embora o mecanismo de funcionamento biológico ainda não seja completamente elucidado. A cicatrização e regeneração tecidual são consideradas decorrentes desses efeitos das Ondas de Choque. Baseadas nessas novas descobertas, novas indicações foram sendo relatadas incluindo o tratamento das lesões crônicas de pele, úlceras em pés diabéticos, osteonecrose (cabeça femoral, joelho e tornozelo) e cardiopatia isquêmica estável. CRITÉRIOS DE INCLUSÃO E EXCLUSÃO Alguns critérios são utilizados na indicação do tratamento da Terapia por Ondas de Choque. São recomendados e utilizados pela Sociedade International e Brasileira de Terapia por Ondas de Choque. Critérios de Inclusão: Insucesso no tratamento cirúrgico Dor por um período de 6 meses Insucesso no tratamento conservador mínimo de 3 meses Ter realizado as seguintes medidas conservadoras: Medicação; Infiltração; Cinesioterapia; Eletroterapia; Ultrassom; Termoterapia; Acupuntura; Terapia neural; Palmilha com apoio do arco (fascite plantar) 15 Critério de exclusão (contra-indicações): Doenças da coagulação Gravidez Infecção aguda de tecidos moles e osso Marca-passo cardíaco se a Fonte geradora é Eletro-hidráulica, Eletro-Magnética e Piezo-Elétrica Regiões: cérebro, medula espinhal, pulmão, (costelas), grandes nervos no foco Placa fisária no local da aplicação Doença maligna primária EFEITOS COLATERIAS A Terapia por Ondas de Choque não apresenta complicações significativas, podendo alguns pacientes eventualmente apresentarem após a aplicação, edema, petéquias, equimose ou hematomas. MÉTODO DA APLICAÇÃO A aplicação da Terapia por Ondas de Choque pode seguir protocolos diferentes de acordo com a tecnologia e o gerador de Ondas de Choque utilizado no tratamento. O número de impulsos, freqüência dos impulsos (Hz) e energia também varia com a patologia. No caso do Swiss DolorClast MASTER ou CLASSIC, o protocolo (pág. 44) descreve com melhor efeito três sessões cada com 2.000 impulsos com intervalo de uma semana. A freqüência varia entre 6 – 12 Hz. Já a energia, inicialmente começa-se com baixa, 0,06 – 0,10 mJ/mm² (2 – 2,5 bar). Após os primeiros 500 impulsos aumenta-se a energia (indicado pelo manômetro do aparelho na unidade “bar”). Trabalha-se sempre no limite do desconforto do paciente. No Swiss PiezoClast pode-se usar o protocolo de uma a três sessões, dependendo do nível de energia e número de impulsos. Em ambas as tecnologias, não se recomenda o uso da anestesia local. Em geral o nível de energia para partes moles fica entre 0,06 – 0,23 mJ/mm² . Em partes ósseas 0,24 – 0,5 mJ/mm². 16 Principais Indicações no Sistema Músculo-Esquelético Aparelho Recomendado Swiss DolorClast® Ondas de Choque Radial Indicação 1. Epicondilite do Tenista Epicondylitis humeri radialis Swiss PiezoClast® Ondas de Choque Focal Swiss DuoClast® Ondas de Choque combinado Recomendado em casos individuais 2. Tendinite do Ombro Calcificado 3. Epicondilite do Golfista Epicondylitis humeri ulnaris Recomendado em casos individuais 4. Tratamento do Trigger point Altamente Recomendável 5. Pseudoatrose 6. Bursites Trocantérica Greater trochanteric pain syndrome 7. Tendinite Patelar Patella tip syndrome 8. Síndrome da Tibia Medial Medial tibial stress syndrome 9.Fascites Plantar Plantar fasciopathy 10. Tendinite Aquiliana Achilles tendinopathy Eficácia comprovada em Estudos Científicos com alto nível de Evidência Eficácia demonstrada em apresentações científicas Eficácia comprovada em estudos e diversos casos tratados em clínicas 17 Exemplo de Indicações e Procedimento para Aplicação FASCITES PLANTAR Localização da Dor e Marcação Aplicar Gel de Contato Aplicação das Ondas de Choque 3 SESSÕES; INTERVALO DE 1 SEMANA ; 2000 ONDAS ; 2,5 – 4 BAR ; 6 – 10 HZ TENDINITE COM OU SEM CALCIFICAÇÃO DO OMBRO Localização da Dor e Marcação Aplicar Gel de Contato Aplicação das Ondas de Choque 3 SESSÕES; INTERVALO DE 1 SEMANA ; 2000 ONDAS ; 2,5 – 4 BAR ; 4 – 8 HZ BURSITES TROCANTÉRICA Localização da Dor e Marcação Aplicar Gel de Contato Aplicação das Ondas de Choque 3 SESSÕES; INTERVALO DE 1 SEMANA ; 2000 ONDAS ; 2,5 – 4 BAR ; 4 – 8 HZ 18 Casos Tratados em Partes Ósseas 1° CASOS METATARSO - DR. JOSÉ EID Nov/08 – Início da ESWT Consolidação Jan/09 após 3 sessões c/PiezoClast Mai/09 - 2° PSEUDO-ARTROSE DO FEMUR – DR. ROBERTO ANDROSONI - IFOR Set/09 – Início da ESWT Consolidação Mar/10 após 6 sessões Consolidação em Processo 19 Jun/10 – Consolidação Avançada 3° PSEUDO-ARTROSE DO ANTE-BRAÇO – DR. ELSON MIRANDA Fev/09 Início do Tratamento Abr/10 4° PSEUDO-ARTROSE DE TÍBIA – DR. PAULO KERTZMAN Sessões feitas com Ondas de Choque Radial 20 Casos Tratados de Calcificação do Ombro 21 22 Uso da Terapia por Ondas de Choque RADIAL no Tratamento de Úlceras de Pele – Resumo da Literatura APLICAÇÃO DAS ONDAS DE CHOQUE EM ÚLCERA DE PELE Recomendações na literatura: (Autor: Zoech, 2009) 1) Utilize a Terapia por Ondas de Choque Radiais - RSWT - em feridas crônicas (ou seja, sem cura dentro de seis semanas) 2) Realize a limpeza padrão da ferida e desbridamento antes da RSWT > Feridas necróticas e infectadas não devem ser tratados com ondas de choque 3) Aplique Gel de contato na superfície do aplicador e revestir o Gerador com preservativo ou luva. Outra opção, coloque a folha de plástico estéril sobre a ferida e do tecido circundante (A folha de plástico devem sobrepor as bordas da ferida em pelo menos 5 centímetros). Não aplicar o gel de contato entre o ferimento e a luva ou preservativo ou folha de plástico. 4) Protocolo do autor > Dois tratamentos por semana; > Total de seis a oito sessões; > 1.000 impulsos por cm2 e sessão de tratamento; > Densidade de fluxo de energia (EFD) = 0,07 mJ/mm2 ; > Aplique as Ondas de Choque Radiais sobre a ferida 5) Limpar com solução salina estéril a ferida 6) Aplicar curativo de acordo com a fase individual de ferida Os seguintes ferimentos crônicos são tratados com o Swiss DolorClast: Tipos Armstrong 0A, 1A, 2ª Armstrong Graus 0C, 1C e 2C se não houver tecido necrótico Tem uma taxa de sucesso de aproximadamente 75% de acordo com Zoech (2009) Pode ser feita facilmente quando feito como descrito Deve ser considerada uma opção terapêutica aditivo na ferida de gestão. 23 1° CASO - Dr. Luiz Fernando Antunes (ORTOPEDISTA) – Bauru – SP • Idade do Paciente: 68 anos; Sexo: masculino • Úlcera medial perna na área da incisão cirúrgica há 04 meses. Cirurgia tinha mais de 02 anos. • Estase linfática • Gerador Radial ; aplicador 15mm ; 3 sessões ; 800 impulsos cada sessão ; 2,5 bar e 6Hz Início do Tratamento 35 dias após 1° sessão 46 dias após 1° sessão 24 2° CASO - Dra. Ana Lúcia T. Mourão (FISIATRA) – Rio de Janeiro - RJ • Idade do Paciente: > 80 anos ; Sexo: feminino • Gerador Power + ; aplicador Planar ; 8 sessões ; 2.000 impulsos cada sessão ; 2,5 – 3,0 bar e 6 – 8 Hz. Aplicar Gel na superfície do aplicador e vestir o Gerador com preservativo ou luva. Aplicar as Ondas de Choque sobre o local da feriada. 25 3° CASO - Dra. Ana Lúcia T. Mourão (FISIATRA) – Rio de Janeiro - RJ • Idade do Paciente: > 80 anos ; Sexo: feminino • Gerador Power + ; aplicador Planar ; 6 sessões ; 2.000 impulsos cada sessão ; 2,5 – 3,0 bar e 6 – 8 Hz. 26 4° CASO - Dr. Elson Miranda (ORTOPEDISTA) – Natal – RN • Idade do Paciente: não revelado ; Sexo: masculino • Gerador Radial ; aplicador 15mm ; 6 sessões ; 2.000 impulsos cada sessão ; 3,0 bar e 8 Hz. 27 Uso da Terapia por Ondas de Choque RADIAL na Medicina Esportiva Terapia por Ondas de Choque no Esporte de Primeira Classe 28 Mito ou Evidência? Dr.med. Mark Henne, Clínica Ortopédica, Fürstenfeldbruck Prof. Dr.med. Christoph Schmitz, Instituto de Anatomia, Universidade Ludwig-Maximilians em Munique Durante muito tempo, discutiu-se, apenas às portas fechadas, sobre o tratamento de atletas de primeira classe pela Terapia por Ondas de Choque; não são encontrados estudos na literatura. O esquiador profissional norueguês Aksel Lund Svindal foi o primeiro a divulgar publicamente o sucesso de sua Terapia por Ondas de Choque, que lhe permitiu curar-se completamente de uma lesão grave no outono de 2009 muito antes do esperado, tornando-o, enfim, um dos atletas mais bem sucedidos nos jogos olímpicos de inverno de 2010 em Vancouver. Além disso, existem relatórios diretamente acessíveis ao público do Dr. Paco Biosca (antigo Diretor do Departamento de Medicina e Adaptação ao Esporte do FC Shakhtar Donetsk/Ucrânia; atualmente Diretor Médico do FC Chelsea em Londres) sobre a utilização bem sucedida por ondas de choque no futebol profissional. Fazemos, a seguir, uma breve avaliação da situação. Com base em mais de 10 estudos prospectivos, 1 randomizados e controlados na literatura especializada internacional analisada por peritos, a terapia por ondas de choque moderna admitiu, atualmente, o seu o ponto mais forte no tratamento da fascite plantar, tendinopatias do tendão de Aquiles, sinovite do cotovelo, ombro calcáreo, síndrome da dor do trocanter maior, pseudoartrose e outras indicações para musculatura esquelética e sistema locomotor (toda a literatura dos respectivos autores). Para tanto, contribuíram ainda, de forma significativa, o início do esclarecimento dos mecanismos de efeitos moleculares e celulares das ondas de choque na musculatura esquelética 2 e sistema locomotor. De acordo com sistema de compensação específico dos países e com os métodos de tratamento aplicados individualmente, a terapia por ondas de choque é administrada, dependendo do caso, com mais facilidade nos casos crônicos ou nos casos agudos. Na Alemanha, essa terapia é frequentemente utilizada nos casos crônicos nos quais uma terapia inicial conservadora não obteve sucesso. Em contrapartida, utiliza-se, por exemplo, na Malásia, o tratamento por ondas de choque com grande êxito primariamente nos pacientes com 3 sintomas agudos. Neste sentido são relevantes dois aspectos econômicos da saúde, que desempenharam um papel significativo nesse desenvolvimento da Malásia: (i) Qualquer tratamento com médico estabelecido deverá ser pago pelo próprio paciente; e (ii) não existe uma continuação de pagamento de salário em caso de doença (para maiores informações, consultar os autores). Entretanto, desses fatos surgem duas dificuldades: (i) abreviação máxima do tempo de reconvalesça já no estado agudo; e (ii) minimização dos riscos de tratamento. E exatamente essas propriedades, que são cumpridas na terapia por ondas de choque devido à sua eficácia e seu caráter não invasivo, tornaram o tratamento interessante para o esporte de primeira classe. Alguns relatórios de tempos recentes, disponibilizados gratuitamente ao público, revelam uma situação interessante do que acontecia nessa área até o momento, sobretudo, às portas fechadas. fisioterapeutas de Aksel Lund Svindal (após consultoria médico-científica conosco [C.S.]) decidiram-se por um 4 tratamento com ondas de choque focadas. O tratamento obteve tanto sucesso que Aksel Lund Svindal pôde reiniciar o treinamento muito antes do que se esperava e, poucos meses depois, tornou-se um dos atletas mais bem sucedido 5 nos jogos olímpicos internacionais de 2010 em Vancouver. Depois que a televisão norueguesa divulgou as notícias 6 sobre o seu tratamento com ondas de choque, outros esportistas de primeira classe noruegueses também decidiram submeter-se a um tratamento com ondas de choque (também após consultoria médico-científica individual conosco [C.S.]). O público tomou conhecimento do tratamento bem sucedido da esquiadora cross-country Kristin Størmer Steira, que também ganhou uma medalha de ouro, como Aksel Lund Svindal, nos jogos olímpicos de 7 inverno de 2010 em Vancouver. Shaktjar Donetsk O Dr. Paco Biosca (antigo diretor do Departamento de Medicina e Adaptação ao Esporte do FC Shakhtar Donetsk/Ucrânia; atualmente Diretor Médico do FC Chelsea 8 em Londres) apresentou uma exposição, no 2º Congresso 9 Internacional da Sociedade de Terapia Radial contra a Dor realizado no mês de outubro de 2010, em Berlim, sobre sua experiência com a terapia radial por ondas de choque no 10 futebol profissional. Antes de sua atuação no Shakhtar Donetsk, o Dr. Biosca trabalhou, entre outros, como Presidente da European Federation of Orthopaedic Sports Traumatology (EFOST) e na Spanish Association of Football Club Doctors (AEMEF). Segundo o Dr. Biosca, os critérios para saber se uma determinada terapia é indicada ou não a jogadores de futebol profissionais, são simplesmente: "The treatment was good if the player returns to his maximum performance level without missing competitions (or missing only a small number of them; and the treatment was bad if the player cannot play or needs 10 more time to recover than established on average." O Dr. Biosca relatou sobre os bons resultados no tratamento de dores na área da espinha lombar, fascite plantar e diversas tendinopatias com ondas de choque radial, sendo que foram tomadas por base as tendinopatias de inserção proximal dos músculos adutores (de acordo com o UEFA Aksel Lund Svindal e Kristin Størmer Steira Após uma lesão muscular grave ocorrida em uma queda em Saas Fee no mês de Outubro de 2009, os médicos e 29 Injury Study uma indicação muito frequente em jogadores 11 de futebol profissionais) . As experiências do Dr. Biosca coincidem bem com as manifestações de Caccio et al. 12, , (2011) que revelam brevemente em um estudo prospectivo, randomizado e controlado envolvendo um total de 40 atletas profissionais (entre eles, 9 jogadores de futebol profissionais), mostra as vantagens da terapia por ondas de choque radial em relação à terapia conservadora tradicional para tendinopatias de isenção proximal do conjunto de tendão isquiátrico. total de n=131 atletas de diversas modalidades esportivas com diferentes sintomas (Tabela 1; medida de 2,12 tratamentos por atleta). Verificamos o sucesso terapêutico uma semana após o último tratamento em comparação à situação antes do primeiro tratamento com a escala análago-visual (VAS), bem como com as escalas RolesMaudsley modificados. As escala médias VAS apresentaram uma melhora de 8,53 ± 0,09 (valor médio ± falha padrão do valor médio) antes do primeiro tratamento para 4,15 ± 0,28 uma semana após o último tratamento, e as escalas medidas Roles-Maudsley de 3,57 ± 0,04 para 2,07 ± 0,08 (figura 1). Essas alterações foram significativas 2 quanto ao aspecto estatístico (teste bilateral do X ; p < 0,001). Jogos Olímpicos de Versão de 2004 e 2008 Nos jogos olímpicos de verão de 2004 em Atenas e em 2008 em Pequim, tratamos (M.H.) na policlínica oficial da respectiva vila olímpica, com ondas de choque radiais, um Tabela 1: Modalidades esportivas e lesões dos n=131 atletas, que foram tratados por nós (M.H.) durante os jogos olímpicos de verão de 2004 e 2008 com ondas de choque radiais. Modalidade esportiva n Lesão n Atleta de pista e campo 86 Muscular (aguda) 34 Taekwando 8 Aquilodinia 27 Handebol 6 Muscular (crônica) 22 Judô 5 Fascite plantar 16 Levantamento de peso 4 Síndrome do vértice patelar 12 Tênis 4 Tendinite no ombro 8 Voleibol 3 Epicondilite radial/ulnar 7 Box 3 Tendinite do tendão quadríceps 3 Luta livre 3 Bursite trocatérica 2 Badminton 2 Esgrima 2 Triátlon 2 Tiro ao Alvo 2 Pentatlo 1 Figura 1: Escalas VAS (esquerda) e Escalas Roles-Maudsley (direita) dos n=131 atletas, que foram tratados por nós (M.H.) durante os jogos olímpicos de verão de 2004 e 2008 com ondas de choque radiais (vermelho: escalas antes do primeiro tratamento; verde: escalas uma semana após o último tratamento). Escalas VAS: 0 – sem dor; 10 – dores intoleráveis. Escalas Roles-Maudsley: 1 – excelente qualidade de vida; sem dores; 4 – sintomas muito fortes; impossível participação no campeonato mundial. 30 [Legenda: Anzahl Athleten = Quantidade de Atletas; VAS Score = Escala VAS; Roles-Maudsley Score = Escala RolesMaudsley] Referências: Terapia por ondas de choque individualmente ou em combinação? 1 2 Recomendamos basicamente a combinação da terapia por ondas de choque com outras formas de tratamento médicoesportivo, com base na experiência individual do terapeuta do quadro sintomático individual do atleta (fisioterapia, inclusive intervenções osteopáticas e quiroterapêuticas, crioterapia e termoterapia, terapia de ultra-som e eletroterapia, infiltrações antiinflamatórias locais com o medicamento homeopático Traumeel®, Kinésio-Taping, acupuntura, etc.). Mais detalhes iriam extrapolar os limites deste artigo; maiores informação serão disponibilizadas pelos autores. 3 4 5 6 7 Resumo A moderna terapia por ondas de choque na musculatura esquelética e sistema locomotor também teve sucesso no tratamento de esportistas de primeira classe – sobretudo, com base nos (i) rápidos êxitos terapêuticos com o mínimo de riscos de tratamento, (ii) quando administrado de forma adequada, praticamente isento de todos os efeitos colaterais indesejados, (iii) no método não-invasivo, e (iv) na compatibilidade com as normas doping. O desenvolvimento de aparelhos de ondas de choque pequenos e móveis também permite atualmente a aplicação em competições ou jogos externos. Com base em nossa compreensão atual dos mecanismos de efeito moleculares e celulares, foi iniciada uma pesquisa pré-clínica e clínica intensa para combinar a terapia por ondas de choque com outras formas terapêuticas (como por exemplo, a injeção de plasma rico em plaquetas plasma, PRP), com a intenção de continuar aumentando a efetividade da moderna terapia por ondas de choque nos esportes de primeira classe. 31 Entre outros. im American Journal of Sports Medicine, American Journal of Bone and Joint Surgery, Foot & Ankle International, etc. Veja, por exemplo, Schmitz und DePace, Urol Res 2009;37:231–234 e em especial a literatura citada nessa obra) Veja, por exemplo, http://thestar.com.my/health/story.asp?file=/2011/2/6/healt h/7867544&sec=health www.aksellundsvindal.com/blog_cms/arkiv/2009/11//?intOf fset=1 Veja também www.emscompany.com/media/Images%202/100331_Aksel%20Lund %20Svindal_Flyer_EN_wc.pdf www.nrk.no/nett-tv/arkivert/117123/ www.ems-company.com/media/PDF%20NEW/KristinStormer-Steiral_Flyer.pdf 8 www.chelseafc.com/page/TheManagement/0,,10268~2393 769,00.html 9 www.atrad.ch 10 www.atrad.ch/images/stories/pdf/abstract%20booklet_fa386_en_2010.pdf 11 Compare Werner et al., Br J Sports Med 2009;43:10361040 12 Am J Sports Med 2011;39:146-153 Artigo da empresa Enimed sobre o sucesso no tratamento do esquiador profissional, Aksel Lund Svindal, da Noruega. O tratamento com o Swiss PiezoClast e a Equipe nas Olimpiadas de Inverno em Fevereiro 2010 PONTOS MIOFASCIAL – TRIGGER POINTS O que é ? A síndrome Miofascial é uma área fibrosa dentro do músculo que é encurtada ou engrossada parcialmente ou permanentemente. Também chamado de Ponto Gatilho, essa área freqüentemente é carregada por postura incorreta do corpo, exercícios ou esforços excessivos entre outros. Como é Tratada ? O diagnóstico é feita geralmente por médico profissional na área, por palpação, avaliação clínica e alguns métodos de imagem (U-S colorido). Após o diagnóstico pode-se iniciar o tratamento com o Swiss DolorClast logo em seguida. É o médico quem decide da quantidade de sessões, mas geralmente se tem uma boa resposta com 6 (seis) a 10 (dez) sessões com intervalos 2 a 3 dias. O número de impulsos varia entre 500 – 600 por ponto e dependendo do músculo são mais do que um ponto. A sessão leva em torno de 10 – 15 minutos. Pontos de Acupuntura também são indicados com o uso das Ondas de Choque. O novo método da combinação das Ondas de Choque Radial e Ondas de Choque Focal está em estudo e os primeiras avaliação do uso combinado é excelente! Como Funciona ? O(s) equipamento(s) Swiss DolorClast e Swiss PiezoClast, utilizando o método Trigger Shockwave Therapy – TST que é muito usado na Europa, é um tratamento que desativa os pontos gatilhos de forma eficaz, imediata e acima de tudo segura. www.dolorclast.com.br 33 Tratamento de Trigger Points – Músculos Superiores (ombro) e Epicondilites Lateral e Umeral www.dolorclast.com.br 34 Tratamento de Trigger Points – Região Lombar e Aquileana / Fascites Plantar www.dolorclast.com.br 35 Uso da Terapia por Ondas de Choque RADIAL no Tratamento de Celulites – Estudo Piloto 1° - A área é analisada 2° - Avaliação do Grau 3° - Aplica-se ESWT gel como meio de contato e com o Gerador POWER +, emite-se as Ondas de Choque sobre a área a ser tratada. Protocolo: 3.000 – 4.000 Ondas; Área 20 X 30 cm (200 – 300 ondas por cm²); 8 - 20Hz ; Gerador POWER+ ; Aplicador Planar; Intensidade 3,0 – 4,0 bar; 2 vezes por semana (intervalo de 2-3 dias) durante 3 semanas de forma de aplicação metade dos impulsos em movimentos na vertical e outra metade em movimento horizontal Aplicação de Gel e em seguida a varredura vertical e horizontal www.dolorclast.com.br 36 Estudo Piloto de Celulites Body Mass Index (BMI) Pain (VAS score) Comfort during treatment Satis-faction about treatment Cellulite Stage before treatment Cellulite Stage after treatment Cellulite Stage difference 34 21.8 3.5 7 5 2.5 1 1.5 2 35 20.8 3 5 6 2.5 1.5 1 3 38 24.6 9 (c) -- (c) -- (c) -- (c) -- (c) -- (c) 4 55 20.3 1 7 7 2 1.5 0.5 5 48 21.9 4 5 7 2.5 1.5 1 6 51 22.9 3 5 8 2.5 0.5 2 7 29 32.9 2 5 5 3 1.5 1.5 8 23 31.6 3 8 3 2.75 2.75 0 9 57 19.7 3 5 7 3 2.5 0.5 10 51 22.2 5 5 6 2.75 1.5 1.25 11 29 20.8 2 5 1 2 1.5 0.5 12 43 20.4 3 5 7 2.5 1.5 1 13 51 24.2 3 7 7 2.5 1.5 1 14 4 19.6 3 8 6 2.5 1.5 1 15 43 18.7 4 6 1 2 1.75 0.25 Average: 41.8 22.8 3.0 5.9 5.4 2.5 1.57 0.9 Patient # Age 1 (a) (b) (b) Conclusão O Tratamento para celullites com o Swiss Dolorclast é: Seguro Eficiente em pacientes com celullites grau 2 e 3 Capacidade de reduzir o grau de celullites de um nível para o próximo menor em média Obs.: O Resultado pós Tratamento independe da idade, peso, e BMI O Resultado não é permamente mas permanece por vários meses. www.dolorclast.com.br 37 ANEXOS Estudos Científicos Publicados em Literatura International........pág. 39 - 45 Estudos Científicos Cong. International ATRAD (Assoc. for Radial Shockwave Therapy) Out 2010 – Berlin, Alemanha ...................pág. 46 - 50 Estudos Apresentados no 14th Cong. International da ISMST......pág. 50 - 55 Estudo Científico - Terapia por Ondas de Choque em lesões no pé causada por Diabétes – Publicação JATROS Jan 2009 – Dr. G. Zöch, Vienna Austria ...................................... pág. 56 - 57 Estudo sobre LINFEDEMA ............................................................ pág. 58 Trigger ESWT Basics – Dr. Martin Kosub / Jörg Thieme – Estudo apresentado no 1° Congresso International em Berlin pela ATRAD sobre Ondas de Choque Radial em Trigger Points .........pág. 59 Tabela de Energia Swiss DolorClast – Relação “bar” com mJ/mm² ....pág. 60 Tabela de Energia Swiss PiezoClast – Relação “Intensidade” com mJ/mm²...................................................................................... pág. 61 Protocolo de Aplicação do Swiss DolorClast...................................... pág. 62 Protocolo de Aplicação do Swiss PiezoClast .................................... pág. 63 Tabela da CBHPM 5° edição ...................................................... pág. 64 – 65 Folder do 15° Cong. International em Cartagenas – Columbia ........ pág. 66 Finalização e Certificados ................................................................. pág. 67 www.dolorclast.com.br 38 Clinical trials published in the international peer-reviewed literature1 demonstrating efficacy and safety of treatment with the EMS Swiss Dolorclast® according to Evidence Based Medicine criteria2: Plantar fasciitis: Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter study. Am J Sports Med 2008;36:2100-2109 Gerdesmeyer L, Frey C, Vester J, Maier M, Weil L Jr, Weil L Sr, Russlies M, Stienstra J, Scurran B, Fedder K, Diehl P, Lohrer H, Henne M, Gollwitzer H. BACKGROUND: Radial extracorporeal shock wave therapy is an effective treatment for chronic plantar fasciitis that can be administered to outpatients without anesthesia but has not yet been evaluated in controlled trials. HYPOTHESIS: There is no difference in effectiveness between radial extracorporeal shock wave therapy and placebo in the treatment of chronic plantar fasciitis. STUDY DESIGN: Randomized, controlled trial; Level of evidence, 1. METHODS: Three interventions of radial extracorporeal shock wave therapy (0.16 mJ/mm(2); 2000 impulses) compared with placebo were studied in 245 patients with chronic plantar fasciitis. Primary endpoints were changes in visual analog scale composite score from baseline to 12 weeks' follow-up, overall success rates, and success rates of the single visual analog scale scores (heel pain at first steps in the morning, during daily activities, during standardized pressure force). Secondary endpoints were single changes in visual analog scale scores, success rates, Roles and Maudsley score, SF-36, and patients' and investigators' global judgment of effectiveness 12 weeks and 12 months after extracorporeal shock wave therapy. RESULTS: Radial extracorporeal shock wave therapy proved significantly superior to placebo with a reduction of the visual analog scale composite score of 72.1% compared with 44.7% (P = .0220), and an overall success rate of 61.0% compared with 42.2% in the placebo group (P = .0020) at 12 weeks. Superiority was even more pronounced at 12 months, and all secondary outcome measures supported radial extracorporeal shock wave therapy to be significantly superior to placebo (P < .025, 1-sided). No relevant side effects were observed. CONCLUSION: Radial extracorporeal shock wave therapy significantly improves pain, function, and quality of life compared with placebo in patients with recalcitrant plantar fasciitis. 1 2 As of September 1, 2009 The term Evidence Based Medicine refers to the demonstration of efficacy and safety of therapeutic interventions in prospective, randomized, controlled clinical trials. According to the U.S. Preventive Services Task Force (USPSTF), Level 1 evidence is reached when efficacy and safety is demonstrated in at least one properly designed randomized controlled trial. All clinical trials listed here fulfil the criteria of Level 1 Evidence, except of the studies by Furia et al. (2009) on greater trochanteric pain syndrome and Rompe et al. (2009) on medial tibial stress syndrome. These studies reached Level 3 evidence (nonrandomized concurrent cohort comparisons between contemporaneous patients). www.dolorclast.com.br 39 Achilles tendinopathy: Eccentric loading versus eccentric loading plus shock-wave treatment for midportion achilles tendinopathy: a randomized controlled trial. Rompe JD, Furia J, Maffulli N. Am J Sports Med 2009;37:463-470 BACKGROUND: Results of a previous randomized controlled trial have shown comparable effectiveness of a standardized eccentric loading training and of repetitive low-energy shock-wave treatment (SWT) in patients suffering from chronic midportion Achilles tendinopathy. No randomized controlled trials have tested whether a combined approach might lead to even better results. PURPOSE: To compare the effectiveness of 2 management strategies-group 1: eccentric loading and group 2: eccentric loading plus repetitive low-energy shock-wave therapy. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: Sixty-eight patients with a chronic recalcitrant (>6 months) noninsertional Achilles tendinopathy were enrolled in a randomized controlled study. All patients had received unsuccessful management for >3 months, including at least (1) peritendinous local injections, (2) nonsteroidal anti-inflammatory drugs, and (3) physiotherapy. A computerized random-number generator was used to draw up an allocation schedule. Analysis was on an intention-to-treat basis. RESULTS: At 4 months from baseline, the VISA-A score increased in both groups, from 50 to 73 points in group 1 (eccentric loading) and from 51 to 87 points in group 2 (eccentric loading plus shock-wave treatment). Pain rating decreased in both groups, from 7 to 4 points in group 1 and from 7 to 2 points in group 2. Nineteen of 34 patients in group 1 (56%) and 28 of 34 patients in group 2 (82%) reported a Likert scale of 1 or 2 points ("completely recovered" or "much improved"). For all outcome measures, groups 1 and 2 differed significantly in favor of the combined approach at the 4-month follow-up. At 1 year from baseline, there was no difference any longer, with 15 failed patients of group 1 opting for having the combined therapy as cross-over and with 6 failed patients of group 2 having undergone surgery. CONCLUSION: At 4-month follow-up, eccentric loading alone was less effective when compared with a combination of eccentric loading and repetitive lowenergy shock-wave treatment. Eccentric loading compared with shock wave treatment for chronic insertional achilles tendinopathy. A randomized, controlled trial. Rompe JD, Furia J, Maffulli N. J Bone Joint Surg Am 2008;90:52-61 BACKGROUND: Nonoperative management of chronic tendinopathy of the Achilles tendon insertion has been poorly studied. With the recently demonstrated effectiveness of eccentric loading and of repetitive low-energy shock wave therapy in patients with midsubstance Achilles tendinopathy, the aim of the present randomized, controlled trial was to verify the effectiveness of both procedures exclusively in patients with insertional Achilles tendinopathy. Level of evidence, 1. METHODS: Fifty patients with chronic (six months or more) recalcitrant insertional Achilles tendinopathy were enrolled in a randomized, controlled study. All patients had received treatment, including local injections of an anesthetic and/or corticosteroids, a prescription of nonsteroidal anti-inflammatory drugs, and physiotherapy, without success for at least three months. A computerized random-number generator was used to draw up an allocation schedule. Twenty-five patients were allocated to receive eccentric loading (Group 1), and twenty-five patients were allocated to treatment with repetitive low-energy shock wave therapy (Group 2). Analysis was on an intention-to-treat basis. Primary follow-up was at four months, and afterward patients were allowed to cross over. The last follow-up evaluation was at one year after completion of the initial treatment. The patients were assessed for pain, function, and activity with use of a validated questionnaire (the Victorian Institute of Sport Assessment-Achilles [VISA-A] questionnaire). RESULTS: At four months from baseline, the mean VISA-A score had increased in both groups, from 53 to 63 points in Group 1 and from 53 to 80 points in Group 2. The mean pain rating decreased from 7 to 5 points in Group 1 and from 7 to 3 points in Group 2. Seven patients (28%) in Group 1 and sixteen patients (64%) in Group 2 www.dolorclast.com.br 40 reported that they were completely recovered or much improved. For all outcome measures, the group that received shock wave therapy showed significantly more favorable results than the group treated with eccentric loading (p = 0.002 through p = 0.04). At four months, eighteen of the twenty-five patients from Group I had opted to cross over, as did eight of the twenty-five patients from Group 2. The favorable results after shock wave therapy at four months were stable at the one-year follow-up evaluation. CONCLUSIONS: Eccentric loading as applied in the present study showed inferior results to low-energy shock wave therapy as applied in patients with chronic recalcitrant tendinopathy of the insertion of the Achilles tendon at four months of follow-up. Further research is warranted to better define the indications for this treatment modality. Eccentric loading, shock-wave treatment, or a wait-and-see policy for tendinopathy of the main body of tendo Achillis: a randomized controlled trial. Rompe JD, Nafe B, Furia JP, Maffulli N Am J Sports Med 2007;35:374-383 BACKGROUND: Few randomized controlled trials compare different methods of management in chronic tendinopathy of the main body of tendo Achillis. PURPOSE: To compare the effectiveness of 3 management strategies-group 1, eccentric loading; group 2, repetitive low-energy shock-wave therapy (SWT); and group 3, wait and see-in patients with chronic tendinopathy of the main body of tendo Achillis. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: Seventy-five patients with a chronic recalcitrant (>6 months) noninsertional Achilles tendinopathy were enrolled in a randomized controlled study. All patients had received unsuccessful management for >3 months, including at least (1) peritendinous local injections, (2) nonsteroidal anti-inflammatory drugs, and (3) physiotherapy. A computerized random-number generator was used to draw up an allocation schedule. Analysis was on intention-to-treat basis. RESULTS: At 4 months from baseline, the Victorian Institute of Sport Assessment (VISA)-A score increased in all groups, from 51 to 76 points in group 1 (eccentric loading), from 50 to 70 points in group 2 (repetitive low-energy SWT), and from 48 to 55 points in group 3 (wait and see). Pain rating decreased in all groups, from 7 to 4 points in group 1, from 7 to 4 points in group 2, and from 8 to 6 points in group 3. Fifteen of 25 patients in group 1 (60%), 13 of 25 patients in group 2 (52%), and 6 of 25 patients in Group 3 (24%) reported a Likert scale of 1 or 2 points ("completely recovered" or "much improved"). For all outcome measures, groups 1 and 2 did not differ significantly. For all outcome measures, groups 1 and 2 showed significantly better results than group 3. CONCLUSION: At 4-month follow-up, eccentric loading and low-energy SWT showed comparable results. The waitand-see strategy was ineffective for the management of chronic recalcitrant tendinopathy of the main body of the Achilles tendon. www.dolorclast.com.br 41 Medial tibial stress syndrome: Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter study. Am J Sports Med 2009: in press Rompe JD, Caccio A, Furia JP, Maffulli N. BACKGROUND: Medial tibial stress syndrome (MTSS) is a pain syndrome along the tibial origin of the tibialis posterior or soleus muscle. Extracorporeal shock wave therapy (SWT) is effective in numerous types of insertional pain syndromes. HYPOTHESIS: Shock wave therapy is an effective treatment for chronic MTSS. STUDY DESIGN: Case control study; Level of evidence, 3. METHODS: Forty-seven consecutive subjects with chronic recalcitrant MTSS underwent a standardized home training program, and received repetitive low-energy radial SWT (2000 shocks; 2.5 bars of pressure, which is equal to 0.1 mJ/mm2; total energy flux density, 200 mJ/mm2; no local anesthesia) (treatment group). Forty-seven subjects with chronic recalcitrant MTSS were not treated with SWT, but underwent a standardized home training program only (control group). Evaluation was by change in numeric rating scale. Degree of recovery was measured on a 6-point Likert scale (subjects with a rating of completely recovered or much improved were rated as treatment success). RESULTS: One month, 4 months, and 15 months from baseline, success rates for the control and treatment groups according to the Likert scale were 13% and 30% (P < .001), 30% and 64% (P < .001), and 37% and 76% (P < .001), respectively. One month, 4 months, and 15 months from baseline, the mean numeric rating scale for the control and treatment groups were 7.3 and 5.8 (P < .001), 6.9 and 3.8 (P < .001), and 5.3 and 2.7 (P < .001), respectively. At 15 months from baseline, 40 of the 47 subjects in the treatment group had been able to return to their preferred sport at their preinjury level, as had 22 of the 47 control subjects. CONCLUSION: Radial SWT as applied was an effective treatment for MTSS. www.dolorclast.com.br 42 Greater trochanteric pain syndrome: Home training, local corticosteroid injection, or radial shock wave therapy for greater trochanter pain syndrome. Rompe JD, Segal NA, Cacchio A, Furia JP, Morral A, Maffulli N. Am J Sports Med 2009 May 13 [Epub ahead of print] BACKGROUND: There are no controlled studies testing the efficacy of various nonoperative strategies for treatment of greater trochanter pain syndrome. HYPOTHESIS: The null hypothesis was that local corticosteroid injection, home training, and repetitive low-energy shock wave therapy produce equivalent outcomes 4 months from baseline. STUDY DESIGN: Randomized controlled clinical trial; Level of evidence, 2. METHODS: Two hundred twenty-nine patients with refractory unilateral greater trochanter pain syndrome were assigned sequentially to a home training program, a single local corticosteroid injection (25 mg prednisolone), or a repetitive low-energy radial shock wave treatment. Subjects underwent outcome assessments at baseline and at 1, 4, and 15 months. Primary outcome measures were degree of recovery, measured on a 6-point Likert scale (subjects with rating completely recovered or much improved were rated as treatment success), and severity of pain over the past week (0-10 points) at 4-month follow-up. RESULTS: One month from baseline, results after corticosteroid injection (success rate, 75%; pain rating, 2.2 points) were significantly better than those after home training (7%; 5.9 points) or shock wave therapy (13%; 5.6 points). Regarding treatment success at 4 months, radial shock wave therapy led to significantly better results (68%; 3.1 points) than did home training (41%; 5.2 points) and corticosteroid injection (51%; 4.5 points). The null hypothesis was rejected. Fifteen months from baseline, radial shock wave therapy (74%; 2.4 points) and home training (80%; 2.7 points) were significantly more successful than was corticosteroid injection (48%; 5.3 points). CONCLUSION: The role of corticosteroid injection for greater trochanter pain syndrome needs to be reconsidered. Subjects should be properly informed about the advantages and disadvantages of the treatment options, including the economic burden. The significant short-term superiority of a single corticosteroid injection over home training and shock wave therapy declined after 1 month. Both corticosteroid injection and home training were significantly less successful than was shock wave therapy at 4-month follow-up. Corticosteroid injection was significantly less successful than was home training or shock wave therapy at 15-month follow-up. Low-energy extracorporeal shock wave therapy as a treatment for greater trochanteric pain syndrome. Furia JP, Rompe JD, Maffulli N. Am J Sports Med 2009 May 13 [Epub ahead of print] BACKGROUND: Greater trochanteric pain syndrome is often a manifestation of underlying gluteal tendinopathy. Extracorporeal shock wave therapy is effective in numerous types of tendinopathies. HYPOTHESIS: Shock wave therapy is an effective treatment for chronic greater trochanteric pain syndrome. STUDY DESIGN: Case control study; Level of evidence, 3. METHODS: Thirty-three patients with chronic greater trochanteric pain syndrome received lowenergy shock wave therapy (2000 shocks; 4 bars of pressure, equal to 0.18 mJ/mm(2); total energy flux density, 360 mJ/mm(2)). Thirty-three patients with chronic greater trochanteric pain syndrome were not treated with shock wave therapy but received additional forms of nonoperative therapy (control). All shock wave therapy procedures were performed without anesthesia. Evaluation was by change in visual analog score, Harris hip score, and Roles and Maudsley score. RESULTS: Mean pretreatment visual analog scores for the control and shock wave therapy groups were 8.5 and 8.5, respectively. One, 3, and 12 months after treatment, the mean visual analog score for the control and shock wave therapy groups were 7.6 and 5.1 (P < .001), 7 and 3.7 (P < .001), and 6.3 and 2.7 (P < .001), respectively. One, 3, and 12 months after treatment, mean Harris hip scores for the control and shock wave therapy groups were 54.4 and 69.8 (P < .001), 56.9 and 74.8 (P < .001), and 57.6 and 79.9 (P < .001), respectively. At final follow-up, the number of excellent, good, fair, and poor results for the shock wave therapy and control groups were 10 and 0 (P < .001), 16 and 12 (P < .001), 4 and 13 (P < .001), and 3 and 8 (P < .001), respectively. Chi-square analysis showed the percentage of patients with excellent (1) or good (2) Roles and Maudsley scores (ie, successful results) 12 months after treatment was statistically greater in the shock wave therapy than in the control group (P < .001). CONCLUSION: Shock wave therapy is an effective treatment for greater trochanteric pain syndrome. www.dolorclast.com.br 43 Shockwave Therapy for the Treatment of Chronic Proximal Hamstring Tendinopathy in Professional Athletes: Angelo Cacchio,*yz MD, Jan D. Rompe,§ MD, John P. Furia,|| MD, Piero Susi,z MD, Valter Santilli,y MD, and Fosco De Paulis, MD Investigation performed at Sciuba Diagnostic Imaging and Rehabilitation Center, Sulmona, Italy Background: Chronic proximal hamstring tendinopathy is an overuse syndrome that is usually managed by nonoperative methods. Shockwave therapy has proved to be effective in many tendinopathies. Hypothesis: Shockwave therapy may be more effective than other nonoperative treatments for chronic proximal hamstring tendinopathy. Study Design: Randomized controlled clinical study; Level of evidence, 1. Methods: Forty professional athletes with chronic proximal hamstring tendinopathy were enrolled between February 1, 2004, and September 30, 2006. Patients were randomly assigned to receive either shockwave therapy, consisting of 2500 impulses per session at a 0.18 mJ/mm2 energy flux density without anesthesia, for 4 weeks (SWT group, n = 20), or traditional conservative treatment consisting of nonsteroidal anti-inflammatory drugs, physiotherapy, and an exercise program for hamstring muscles (TCT group, n = 20). Patients were evaluated before treatment, and 1 week and 3, 6, and 12 months after the end of treatment. The visual analog scale (VAS) score for pain and Nirschl phase rating scale (NPRS) were used as primary outcome measures. Results: The patients were observed for a mean of 10.7 months (range, 1-12 months). Six patients were lost to follow-up because they underwent a surgical intervention: 3 (all in TCT group) were lost at 3 months; 2 (1 in each group), at 6 months; and 1 (in the TCT group), at 12 months. Primary follow-up was at 3 months after the beginning of treatment. The VAS scores in the SWT and TCT groups were 7 points before treatment (P = .84), and 2 points and 5 points, respectively, 3 months after treatment (P\.001). The NPRS scores in the SWT and TCT groups were 5 points in either group before treatment (P = .48), and 2 points and 6 points, respectively, 3 months after treatment (P\.001). At 3 months after treatment, 17 of the 20 patients (85%) in the SWT group and 2 of the 20 patients (10%) in the TCT group achieved a reduction of at least 50% in pain (P\.001). There were no serious complications in the SWT group. Conclusion: Shockwave therapy is a safe and effective treatment for patients with chronic proximal hamstring tendinopathy. Keywords: shockwave; hamstring; tendinopathy; proximal hamstring tendinopathy; tendon www.dolorclast.com.br 44 www.dolorclast.com.br 45 Outubro de 2011 tivemos cinco médicos brasileiros participando do II Cong. da ATRAD Alec Flinte, Antonio D´Almeida, Dr. Ernani Taunay, Paulo Kertzman, Eduardo Fukugava, Dr. Carlos Leal, Jean-Yves Lefort www.atrad.ch www.dolorclast.com.br 46 Radial shockwave therapy for sport in juries of professional soccer players Paco Biosca , Sharkhtar Donetsk , Ukraine Injuries of professional soccer players have their own special characteristics. There is more complexity around the injury than in the injury itself. Radial shockwaves can play an important role in an integrated treatment concept in cases of tendon pathology. Sport injuries of professional soccer players > The UEFA performed an injury study, starting in the season 2001/02, that included 17 European soccer clubs who participated in the season 2009/10, with eight of them participating in the quarter finals of the Champions League. Half of the training months had 21.4 days and 6.1 matches per month, without taking into account selections. Among all injuries that were reported, 32.7% were due to overuse. 18.5% of those injuries that prevented players from training for more than four weeks were related to tendons (adductor tendon pain: 9.5%, pubalgy: 3.0%, peroneal tendinopathy: 2.4%, Achilles tendinopathy: 1.8%, and patella tendinopathy: 1.8%). These (and other cases) are potential indications for radial shock wave therapy. Value proposition of RSWT for sport in juries of professional soccer players > Because of the lack of universally applied standards in medical services of professional soccer teams, there are only a few publications on the results of injury treatment in professional soccer. In general, the evaluation of treatment success is pretty straightforward: the treatment was good if the player returns to his maximum performance level without missing competitions (or missing only a small number of them; and the treatment was bad if the player cannot play or needs more time to recover than established on average. We have used RSWT for several years to treat tendinoses and insertion pathologies, especially pathologies of the insertion of the adductor muscles which is our principle indication. In addition, we used RSWT for many years during the last phase of rehabilitation for proximal insertion pathologies of the medial knee ligament, but now we apply another method (PRGF). We have used this technique also with good results to treat lumbar vertebrae in posterior joints. Finally, we had good results in treating plantar fasciitis, where we treated about 73 cases. Radial shock wave therapy to treat pain associated with unilateral compart mental osteoarthritis of the knee Nick Boden , Kuala Lumpur, Malaysia > Radial shock wave therapy (RSWT) is a safe and efficient adjunct treatment for pain associated with unilateral osteoarthritis of the knee, when applied as part of a biomechanical bracing protocol using the Unloader knee brace. Unilateral compart mental osteoarthritis of the knee > A recent study in Malaysia (called Community Oriented Program for the Control of Rheumatic Diseases; COPCORD) revealed that knee pain is the most common joint complaint (64%), while half of these patients showed clinical signs of knee osteoarthritis. The same study showed that 9.3% of adult Malaysians complained of knee pain, with a sharp increase in pain rate to 23% in those over 55 years of age, and 39% in those over 65 years. This may be due to various reasons including, but not limited to, lifestyle factors, foot biomechanics, BMI, injury, dietary deficiencies, excessive loading of the knee joint in a flexed position due to prayer position (Muslims), and excessive squatting (cultural habits). Existing primary care approaches involving NSAIDs and physiotherapy do not appear to significantly alter the course of the osteoarthritis, or have any significant impact on function and quality of life of these patients. Evidence of efficacy and safety of radial shock wave therapy (RSWT) to treat pain related to unilateral osteoarthritis of the knee > Our own clinical experience showed no serious adverse incidents related to the treatment of knee pain with RSWT. A 2010 study showed that application of extracorporeal shock waves to the subchondral bone of the medial tibia condyle results in regression of osteoarthritis of the knees in rats. Furthermore, by unloading the knee and allowing www.dolorclast.com.br 47 normal biomechanics, the joint surfaces are able to heal, while RSWT may accelerate this healing process through previously demonstrated effects on bone morphological proteins and other molecular effects. Value proposition of RSWT for knee pain related to unilateral osteoarthritis as part of a bio mechanical unloading protocol > We describe a protocol of intervention in these cases by providing a mechanical unloading of the knee using an Ossur Unloader knee brace, coupled with (i) RSWT treatment of the painful areas of the knee and (ii) muscular strengthening and rehabilitation through relevant physiotherapy exercises, to augment the effects of the brace. Clinical data from our centers show promise with this approach, compared to more traditional approaches. Early intervention seems to be beneficial. Study design : Treatment of idiopathic cervical pain with shock waves or a multi modal therapy approach Dirk Rompe , Mainz, Germany > Prospective randomized action needs to be taken to assess the potential benefit of shock wave therapy for chronic nonspecific muscle pain in the neck region. Idiopathic cervical pain > Non-specific neck pain is a common musculoskeletal problem, and most people suffer from it at some point in their lives. Precise diagnosis by clinical examination is problematic, because signs and symptoms are frequently nonspecific, with poor reproducibility. Evidence of efficacy and safety of radial shock wave therapy (RSWT) and other therapy approaches for idiopathic cervical pain > In a systematic search for relevant literature published from 1980 through 2006 on the use, effectiveness, and safety of non-invasive interventions for neck pain, 170 (47%) were accepted as scientifically admissible, and 139 of these related to noninvasive interventions (Hurwitz et al., Spine 2008;33:S123-S152). The evidence suggests that manual therapy, supervised exercise interventions (Griffiths et al., J Rheumatol 2009;36:390-397), low-level laser therapy, and acupuncture (Fu et al., J Altern Complement Med 2009;15:133-145) are more effective than no treatment, sham, or alternative interventions. However, none of the active treatments was clearly superior to any other in either the short- or long-term. There are only anecdotal reports on the use of focused or radial shock waves for muscle-related pain syndromes. Nevertheless, current guidelines of the German-speaking International Society for Extracorporeal Shock Wave Therapy (Deutschsprachige Internationale Gesellschaft für Extrakorporale Stoßwellentherapie; DIGEST) give precise instructions on the use of shock waves in the management of musclerelated pain syndromes (see also Gleitz, Abstracts 10th International Congress of the International Society for Musculoskeletal Shock wave Therapy, Vancouver, Canada, 2007, p. 48.). According to these guidelines, points of maximum tenderness (PMT) are identified using application of focused low-energy shock waves, then 400 impulses per PMT are applied (energy flux density ~0.15 mJ/mm², repetition frequency 4 Hz). Afterwards, the muscles are treated as a whole, smoothing them out using radial shock waves (500 impulses per muscle, energy flux density ~0.15 mJ/mm², repetition frequency 10 Hz). Eight 15-minute treatment sessions shall be given (two sessions per week, over four weeks) No local anesthesia is applied to allow patient-guided application. Value proposition of shock wave therapy or a multi modal therapy approach for idiopathic cervical pain > Our null hypothesis is that shock wave therapy, supervised exercise therapy, and acupuncture will do comparably at four months from baseline. www.dolorclast.com.br 48 Radial shock wave therapy to treat cellulite Kai-Uwe Schlaudraff, Concept -Clinic , Geneva , Switzerland > Radial shock wave therapy (RSWT) has shown promising early results in treating cellulite as a multifactorial pathology. Cellulite > Gynoid lipodystrophy - better known as cellulite - is the most common lipodystrophic disease, and is found in 8590% of post-adolescent women. It develops in the thigh area, buttocks, abdomen, and upper arms, and becomes visible through its ‘orange peel’ appearance – an irregular, dimpled skin surface with thinning of the epidermis/dermis and nodular clusters of fat cells. Cellulite represents not only a cosmetic concern for millions of women, but often becomes a major psychological problem impairing sports activities, clothing, and social interaction. The pathophysiology of cellulite is related to various predisposing factors like biotype, heredity, race, body weight, and age, as well as hormonal changes. Four principal factors have emerged: (i) a different anatomy of the subcutaneous tissue in women compared to men; (ii) changes of the biomechanical properties of epidermal/dermal tissues; (iii) excessive hydrophilia of the extracellular matrix, increasing interstitious pressure and causing edema; and (iv) alterations of both microvascular and lymphatic circulation, resulting in the protrusion of subcutaneous adipose tissue into the lower reticular dermis, as well as in the distinctive mattress-like surface irregularities. Evidence of efficacy and safety of RSWT to treat cellulite > RSWT has been successfully used in plastic surgery for chronic diabetic foot ulcers, and in an experimental setting to improve skin flap survival. The present pilot study on n=30 women suffering from cellulite showed a beneficial treatment effect for RSWT with regard to blood perfusion, edema, and cellulite stage, as well as a decrease of surface irregularities. An ongoing study will show the impact of RSWT for cellulite on skin elasticity and the duration of its positive effects. Molecular and cellular mechanisms of radial shock wave therapy Christoph Schmitz, Nyon , Switzerland > The current knowledge about the molecular and cellular mechanisms of action of radial and focused shock waves can serve as basis to develop innovative treatment strategies for various diseases of the musculoskeletal system, the skin, and other organs in the near future. Current knowledge about molecular and cellular mechanisms of radial shock wave therapy (RSWT) > The molecular and cellular mechanisms of RSWT are still largely unknown. However, a recent study on transgenic mice showed that RSWT can induce the formation of new capillaries and increase the functional vessel density in injured tissue. These effects are known to be mediated by (focused) extracorporeal shock wave therapy (ESWT) as well. It is therefore hypothesized that RSWT and ESWT share key molecular and cellular mechanisms of action in tissue. This is most probably due to the fact that both radial and focused shock waves can produce (inertial) cavitation (at least in experimental settings in water). Current knowledge about molecular and cellular mechanisms of extracorporeal shock wave therapy in general > For ESWT, several molecular and cellular mechanisms of action were reported in the international peer-reviewed literature. Among them, the most important are (i) depletion of substance P from free nerve endings, (ii) increased production and release of growth factors such as bone morphogenetic protein (BMP), vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA), (iii) stimulation of angiogenesis and promotion of capillarization, (iv) proliferation of adult stem cells, (v) new bone formation, and (vi) tissue regeneration. Very recently, ESWT-induced expression of lubricin in tendons and septa was reported. Value proposition of improved knowledge about molecular and cellular mechanisms of RSWT www.dolorclast.com.br 49 > Detailed knowledge about the molecular and cellular mechanisms of action of RSWT in tissue can serve as the basis to develop innovative treatment strategies for various diseases of the musculoskeletal system, the skin, and other organs. For example, the treatment of insertion tendinopathies with both platelet-rich plasma injections and RSWT appears promising from a theoretical point of view, and first clinical trials have been started in this regard. 14th INTERNATIONAL CONGRESS OF THE ISMST – JUNY 2011 – KIEL, GERMANY – MAINS ABSTRACTS Low Energy Extracorporeal Shock Therapy as a Treatment for Chronic Patellar Tendinopathy John Patrick Furia(1), Jan Dirk Rompe(2), Angelo Cacchio(3), Nicola Maffulli(4) Institution: 1 SUN Orthopedics and Sports Medicine, Lewisburg, PA, USA 2 OrthoTrauma Evaluation Center, Mainz, Germany 3 Dept. of Physical Medicine and Rehabilitation, University of Rome “La Sapienza”, Italy 4 Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, Great Britain Device and producing company: Swiss DolorClast, EMS Introduction: The pathologic changes seen in chronic patellar tendinopathy are similar to those of other overuse injuries of tendons. Extracorporeal Shockwave Therapy (SWT) is an effective treatment for many tendinopathic conditions. Methods: Thirty-three patients with chronic patellar tendinopathy received low-energy SWT (2000 shocks; 4 bars of pressure, total energy flux density, 360 mJ/mm2). Thirty-three patients with chronic patellar tendinopathy were treated with additional forms of non-operative therapy (control group). Evaluation was by change in visual analog score (VAS), Victoria Institute Sport Assessment Score (VISA), and by Roles and Maudsley (RM) score. Results: Mean pre-treatment VAS scores for the control and SWT groups were 7.5 and 7.8, respectively. One month, 3 months, and 12 months after treatment, mean VAS for control and SWT groups were 6.7 and 4.3 (pp001), and 54.9 and 74.5 (p the number of excellent, good, fair, and poor results for SWT and control groups were 8 and 3 (psis showed that the percentage of patients with excellent (“1”) or good (“2”) RM scores (successful results) 12 months after treatment was greater in the SWT group compared to the control group. Discussion: Traditional treatment of chronic patellar tendinopathy is generally lengthy, associated with frequent recurrences, and in many cases, results in an unacceptable degree of improvement. This study demonstrates that low energy, radial SWT is safe and effective, that it can be used to treat patients with chronic patellar tendinopathy, and that satisfactory improvement is maintained for at least one year. Conclusion: SWT is an effective treatment for chronic patellar tendinopathy. www.dolorclast.com.br 50 ESWT in Chronic Proximal Plantar Fasciitis – 9 years of experience José Eid Institution: Clinica Ortopedica Sao Paulo, Brasil Device and producing company: Swiss DolorClast - EMS; Epos Ultra – Dornier Introduction: Compare the efficacy of ESWT in Proximal Plantar Fasciitis between two different generators with similar levels of energy and number of sessions. Methods: Between January 1999 and January 2008 we performed 717 sessions of ESWT in 239 patients. Criteria for inclusion and exclusion are well known and based in ISMST protocol. An electromagnetic generator (EMSE) was used on 90 patients between 1999 to 2005, and an electropneumatic device was used on 149 patients between 2004 to 2008. Exclusion criteria included the inability to follow up. We excluded 48 patients (35 in the EMSE group and 13 in the electropneumatic group) therefore this study was completed on 191 patients. The age variation was between 20 and 80 years (average: 52.8 years), 115 patients were female (59.8%), 76 were male (40.2%), and there was no significant prevalence between right (55%) and left (45%) sides. Method: The electromagnetic generator was a Dornier Epos ultra (frequency of 7.5 Mhz), where the therapy head was positioned on the medial side tangential to the point of pain. The electropneumatic device was an EMS Swiss DolorClast that was applied directly on the painful point. The energy applied with the EMSE and Electropneumatic devices was 0.22 mJ/mm2 and 0.18 mJ/mm2, respectively. We applied 2000 SWs without anesthesia at intervals of 10 days regardless of the device. Results: The criterion was the Visual Analogue Scale, with follow up of 6 weeks, 12 weeks, 6 months, and 12 months. The efficacy was 85.2 % for the electromagnetic device and 84% for the electropneumatic device. There was moderate and transitory pain during the treatment. No patients presented with hematoma or petechia after application of ESWT. There are no complications or side effects with this method. Discussion: The results show good to excellent efficacy with both devices, using the same energy levels and number of SWs. Although the discussion of focal or radial device exists, it seems that there are only differences in the physical principles; the biological and clinical response seems to be the same. Conclusion: ESWT is an effective treatment method for CPPF. The therapy head, whether positioned in-line or tangentially, shows the same results as when SWs are applied directly to the point of pain. ESWT should be considered a real method of choice. This study shows relevant clinical evidence independent of the type of SW generator. Ultrasound Elastography, a Novel Method for the Diagnosis of Trigger Points and a Tool to Evaluate the Efficacy of Shockwaves in the Treatment of Myofascial Pain Syndroms Wolfgang Bauermeister Institution: None Device and producing company: Swiss DoloClast, EMS; Piezoson 100, Wolf: ARiES, Dornier MedTech; Ultrasonix Tablet, Ultrasonix Introduction: Trigger Points (TPs) are the pain generators in Myofascial Pain Syndrome (MPS). TPs cannot be visualized by X-Ray, MRI or conventional ultrasound. Ultrasound Elastography (USE) can visualize TPs as small areas of reduced strain. Methods: TPs were diagnosed using USE and treated with radial, piezoelectric sharply focused and electromagnetic shockwaves with a focus channel. After the treatment a follow-up USE examination was done. Results: Radial shockwaves exert effects on superficial TPs, but have little or no effect on deeper structures. Piezoelectric shockwaves reach small areas because of their particular focus. Shockwaves with a channel-like focus exert their effect in several tissue layers simultaneously. Discussion: USE can visualize areas of reduced strain like prostate, breast or liver tumors. Shockwaves vary regarding their depths of penetration and focus characteristics and may have very different effects on TPs. www.dolorclast.com.br 51 Conclusion: This study demonstrates the capability to visualize TPs with USE in a clinical setting as a routine procedure. USE is a valid tool to diagnose TPs in MPS and can help evaluate the effects and efficacy of different types of shockwaves. The focus geometry and depth of penetration of shockwaves can result in significantly different clinical outcomes and be the deciding factor in the treatment’s success and failure. ESWT for athletic injuries during competition Paulo Kertzman, Mauro Moreira Institution: Instituto Ortopedia Campo Belo Sao Paulo, Brasil Device and producing company: Swiss Dolorclast, EMS Introduction: At the Olympic Games in Athens and Beijing and at the Pan American Games on Rio de Janeiro some athletes were treated at the Medical Center with ESWT. We performed ESWT treatments during the Brazilian Athletics Meeting in 2009 on tendons and muscle injuries with the view to relieve pain and muscle contracture. Methods: Most athletes experience pain during training and competitions. They use anti-inflammatory drugs and physiotherapy techniques daily along with ice, massage and stretching in order to relieve pain. We offered ESWT as a new option for pain treatment. Initially only 3 subjects asked for ESWT but on the second day of competition 16 athletes chose ESWT treatment. We treated muscle contracture at the adductor, hamstring, soleus, gastrocnemius, lumbar and dorsal areas and tendons. Results: All the subjects underwent traditional physiotherapeutic techniques as well as ESWT, and at the end of the competition all were satisfied and very thankful. Discussion: We know that patients feel an immediate sensation of pain relief and muscle relaxation after ESWT treatment. However, we do not know why this happens. In these particular patients we employed ESWT as a pain treatment, not a definitive solution for pathologies. Conclusion: ESWT is an option for pain treatment. The Importance of Total Energy Emitted in the Results of ESWT Maria Cristina Ottone, Filippo Fagnani, Emanuela Maria Roldi Institution: ASLAL - Distretto di Tortona - Via Milazzo,1 - Tortona, Italia Device and producing company: [Piezoson 300, Wolf]* * = Swiss PiezoClast Introduction: We aim to verify the efficacy of total energy emitted comparing the results of different numbers of sessions and different number of pulses per session. Methods: The treatment was carried out using a Piezoson 300 from WOLF, a focused piezoelectric generator with three different focal dimensions. We used the large focus and low energy density (0.06 mJ/mm2) with a total energy of 6.8 J. This study includes 250 patients: Group A: 150 patients, 4 applications, 2000 shock waves/session Group B: 100 patients, 3 applications, 2700 shock waves/session Results: The follow-up is ongoing and we will present the results during the meeting. Discussion: Two years ago we compared different protocols varying the focus dimension and energy density with a stable value of total mJ emitted. We obtained the same results in both groups, confirming a strong link between the efficacy of ESWT and the total energy emitted. Now we want to verify the results using the same total energy distributed in three sessions. If the results are similar, it may further confirm that the most important factor in Shockwave Therapy is the total energy emitted. Conclusion: If the results confirm the efficacy of treatment using the same total energy but with a reduction of sessions, it means that we can achieve the same efficacy with a shorter course of treatment. This is important because it is less expensive: more patients are treated and less working days are lost. We are currently evaluating the patients in order to obtain final data to draw final conclusions that will be presented at the Congress. www.dolorclast.com.br 52 Treatment of Frozen Shoulder with Focused ESWT Ayman Elwy Balabel, Fasial Al-Kandary, Sahar Othman Institution: Ahmadi Hospital, Kuwait Oil Company, Kuwait Device and producing company: [Piezoson 300, Wolf]* Introduction: Frozen shoulder, also called adhesive capsulitis, is a chronic, inflammatory disorder of the shoulder and surrounding soft tissues. This condition is frequently caused by injury, leading to pain and lack of use. As the joint becomes progressively tighter and stiffer, simple movements such as raising the arm become difficult. If inflammation occurs within the capsule itself, the shoulder bones are unable to move within the joint. In some instances, the patient may be unable to move the shoulder at all. This condition rarely appears in people under age 40. An arthrogram may be needed to confirm the diagnosis. Treatment can include non-steroidal anti-inflammatory medications (NSAID’s) and physical therapy. However, it may take up to a year to see improvement. Arthroscopic surgery and shoulder manipulation under anesthesia may be necessary in more severe cases. Methods: The study includes 20 patients with frozen shoulder problems, age 40-58 years, pain VAS rating of 8-10 with pain so severe at night they had X-rays when initially diagnosed to exclude Type I ACJ arthritis. They underwent different types of conservative treatment (such as NSAID’s, local injection with hydrocortisone, and physiotherapy and exercises) for more than 6-8 months with no significant improvement. We performed the treatment as an outpatient procedure without anesthesia in 3 Focused ESWT sessions (3000 pulses, 0.7- 11mJ/mm2, frequency 4, intensity level 8-10) at two-week intervals. Mobilizing and stretching exercises were performed 3 weeks after final treatment to reduce muscle contracture and regain elasticity of the capsule (structures and ligaments). Also ROM strengthening exercises were started gradually and progressively for 3 months to restore the rotator cuff. Results: 6 Months; We found that 80% of the patients showed significant clinical improvement, pain had been reduced to VAS 3-4 and range of motion had significantly improved, while 20% of patients were slightly better. Discussion: Focused Shockwave Therapy produces significant relief of pain, improves ROM and decreases physical incapacity produced by frozen shoulder. Conclusion: F ESWT is effective, noninvasive, with no complications or side effects, therefore shock waves must be considered a valuable treatment option for frozen shoulder. Although this technique reduces the recovery time and increases the clinical success rate, physiotherapy remains the main treatment for this indication. [Piezoson 300, Wolf]* = Swiss PiezoClast High Energy Shock Waves and 5-Aminolevulinic Acid for Sonodynamic Therapy: Effects on SK-N-BE and SH-SY5Y Neuroblastoma Cell Lines Roberto Frairia(1), Loredana Serpe(2), Roberto Canaparo(3), Gian Paolo Zara(3), Mario Eandi(3), Laura Berta(1) Institution:1 Dept. of Clinical Pathophysiology 2 Dept. of Drug Science and Technology 3 Dept. of Anatomy, Pharmacology and Forensic Medicine, University of Torino, School of Medicine, Torino, Italy Device and producing company: [Piezoson 100, Richard Wolf]* Introduction: An appealing form of treatment for solid tumors is sonodynamic therapy based on the ability of ultrasound to generate acoustic cavitation and to activate a tumor-localizing sonosensitizer agent (such as porphyrin compounds) like 5-aminolevulinic acid (ALA). High Energy Shock Waves (HESW), generated by a piezoelectric device, are able to induce acoustic cavitation, which results in a concentration of energy sufficient to generate a sonoluminescent emission, which is able to cause electronic excitation of porphyrins by energy transfer and to initiate a photochemical process resulting in cytotoxic reactive oxygen species (ROS). For this reason, we have investigated the ability of HESW to activate ALA in human neuroblastoma SK-N-BE and SH-SY5Y cell lines. Methods: SK-N-BE and SH-SY5Y cells were exposed to ALA (50-300 ìg/ml) for 24 h and then to HESWs (0.22- 0.43 mJ/mm2; 500-1000 pulses): viable cell growth was determined at days 1, 3 and 7 after HESW treatment. Cell cytotoxicity was measured with WST-1 proliferation assay and cell death was evaluated by flow cytometric analysis. www.dolorclast.com.br 53 The relationship between sonodynamic treatment and production of ROS was evaluated by flow cytometric analysis with dichlorofluorescein diacetate. Furthermore, mRNA expression of different genes involved in apoptosis through ROS production was evaluated by quantitative SYBR Green real time RT-PCR, and fluorescence microscopic examination was carried out to highlight ROS production and cell death. Results: Sonodynamic treatment was able to induce a significant decrease in cell growth compared to untreated cells at 72 h in both SK-N-BE and SH-SY5Y cells: up to 35% and 50%, respectively. Exposure of ALA pre-incubated cells to HESW significantly increased ROS production with different onset and extent in SK-N-BE and SH-SY5Y cells, and the apoptotic rate was significantly increased at 24 h in both cell lines. Discussion: We have identified different treatment schedules of ALA and HESW to produce the best cytotoxic rate in the two cell lines studied. These findings are in agreement with our previous reports, indicating that shock waves have a sudden effect in enhancing cytotoxic activities of compounds defined as sonosensitizers in different cell lines. Conclusion: Our results show that HESW are able to activate porphyrin compounds in neuroblastoma cell lines by acoustic cavitation obtaining significant in vitro cytotoxicity through ROS production. [Piezoson 100, Richard Wolf]*= Swiss PiezoClast Investigation of the correlation between shockwave induced mechanical stress and biological response Matias de la Fuente(1), Yifei Long(1), Marc Hein(2), Anna Röhl(2), Michael Becker(3), Klaus Radermacher(1) Institution: 1 Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Germany 2 Department of Anaesthesiology, RWTH Aachen University Hospital, Germany 3 Department of Cardiology, RWTH Aachen University Hospital, Germany Device and producing company: Piezoson 100 plus, Richard Wolf Introduction: Physical reasons for the destructive characteristics of shockwaves have been studied over the last few decades. However, the cause for the therapeutic characteristics remains unclear. Depending on the shockwave device used (method of shock-wave generation) and the device settings, different mechanical stimuli act on the target tissue. Therefore it is difficult both to compare studies of different authors and to set treatment-specific shockwave parameters. Methods: A simulation model of non-linear shockwave propagation has been implemented as well as two simplified models for shockwave treatment – one for cell culture flasks and one for isolated rat hearts. During simulation the normal and shear strain and stress caused by the shockwave can be calculated at each time point. Results: Non-linear shockwave propagation in water can be validated by comparing it to measurement data at the surface of the shockwave device as well as in the focal area. Preliminary results of the simulation of mechanical stress at isolated rat hearts show a correlation between the local distribution of the maximum stress and the histological findings. Discussion: Information regarding the correlation between the mechanical strain/stress caused by the shock wave and the biological response could make new target-oriented treatments possible. The mechanical stress model implemented so far represents the basis for our ongoing experimental evaluation and optimization of the simulation. Conclusion: Shockwave simulation may be a means to better understand the cause-effect relation of shockwaves and biological responses. To achieve this, the model must be further validated and then correlated to verified biological findings. [Piezoson 100, Richard Wolf]*= Swiss PiezoClast www.dolorclast.com.br 54 Interactions of extracorporeal shock waves with pathogenic bacteria in vitro and in vivo Hans Gollwitzer, Carsten Horn, Ludger Gerdesmeyer Institution: Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, TU München The aim of the present study was to investigate interactions of extracorporeal shock wave therapy (ESWT) with pathogenic bacteria. Direct effects of ESWT on bacterial growth were investigated with different pathogenic bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Enterococcus faecium) in vitro. ESWT resulted in an energydependent reduction of bacterial viability, with significant inhibition of bacterial growth after increase of both energy flux density and impulse counts. Antibacterial effectiveness of ESWT proved dependent on treatment temperature and growth medium. ESWT performed on bacteria suspended in growth medium at 35°C showed significantly reduced antibacterial effectiveness compared to ESWT at 20°C in normal saline. Low-energy ESWT on bacteria in tryptic soy broth at 35°C even resulted in stimulation of bacterial growth. Additional experiments performed to reveal the antibacterial mechanisms of ESWT demonstrated energy-dependent increase of bacterial cell wall permeability, whereas damage of bacterial DNA was not observed. Synergistic effects of ESWT and additionally applied antibiotics could not be shown. Furthermore, safety and effectiveness of ESWT was investigated in chronic osteomyelitis in the rabbit. Chronic bone infections were established in the tibia 12 New Zealand White rabbits with S. aureus. Two interventions of planar ESWT were applied at 4 and 5 weeks after establishement of infection. Non-treated animals served as control. A significant reduction of soft tissue abscesses and reduced histopathologic infection score were observed in the ESWT group at study endpoint at 8 weeks. Furthermore, ESWT proved safe without postinterventionell bacteremia or sepsis. However, healing of the chronic bone infection did not occur. Shockwave Treatment for Orthopaedic Infections Richard Coombs, Moustafa Hafez, Milad Hanna, Nikki Horwood, Vipin Asopa Introduction: Initial experimental studies have been carried out to assess the potential for shockwave treatment eliminating bacterial infection. These studies have now been extended to include Gram-negative organisms. Methods: Twelve standardised pieces of lamb meat 7 x 5 x 5 cm were cut from fresh ovine leg muscle. Each piece was partially sliced across approximately 2 cm from the top. A 2 cm cube of muscle was cut from the centre of each sample and was discarded. A radio-opaque lead marker was placed at the bottom of each cavity and 1 ml of sterile liquid 1.2% Agar maintained at 42 °C was added to fill the cube completely. The top of each sample was then closed by covering with the partially cut slice of meat. Experimental samples were treated with shockwaves and were compared with untreated controls. All samples were diluted with brain heart infusion broth and counts of viable organisms were estimated after incubating the broth. Serial dilutions were used to assess the bacterial counts. The numbers of viable bacterial colonies were counted in the treated samples and were compared to the untreated controls. Results: In an initial ten samples there was a statistically significant kill rate for E.coli bacteria. Some changes were noted in the muscle tissue in the treated samples. This situation does not reflect the clinical condition. Part of the damage may be related to heat necrosis which would be reduced in the living patient with normal muscle blood flow. In the clinical situation, petechial haemorrhages and minor haematomas have been reported in the literature following the treatment of soft tissue problems with shockwaves. In our own clinical series of nearly 400 patients, we have so far not experienced this complication. Further experiments will be carried out with E-coli bacteria inserted into an intraosseous position. In addition, experiments will be carried out to assess the minimum level of shockwave energy which is required to have a significant effect on bacteria in the in vitro situation. Discussion: Initial studies have shown that shockwave treatment in an appropriate experimental model can kill up to 99% of bacteria. Additional studies have been carried out with Gram-positive organisms, specifically Staphylococci including MRSA and also fungi. These studies have now been extended to include Gram-negative organisms which are also killed by shockwaves in an experimental preparation using sheep muscle. Conclusion: Shockwave treatment may be extremely helpful in treating superficial and deep orthopaedic infections. www.dolorclast.com.br 55 www.dolorclast.com.br 56 www.dolorclast.com.br 57 www.dolorclast.com.br 58 Martin Kosub/Jörg Thieme Trigger ESWT – Basics Mar tin Kosub /Jörg Thi eme Orthopaedics common practise, ''Dr. Kosub & Dr. Thieme'', Hattingen, Germany Introduction: The skeletal muscles represent together the largest organ in the human body and in this respect a source of multiple pathologies. Yet chronic pain originating in the muscles is often not recognised, although it is of great sociomedical relevance. Methods and Results: Muscle pain leads to biomolecular, neuroanatomical and electrophysiological changes. The release of ATP and proton (low pH value) activates nociceptors and, via changes to the milieu, causes muscle pain with muscular imbalances, taut bands and trigger points. Trigger point development is provoked by a damaged neuromuscular end-plate. On a spinal level this leads to over agitation (central sensitisation) which probably explains the referred pain. Clinically, myofascial pain patterns develop, affecting the torso as pain in the neck and back areas and the limbs as pain in the shoulder, hip or knee areas. It is necessary to locate the trigger points by means of a thorough examination of the related muscle groups, taking into consideration loss of strength, reduced extension capacity, tonus changes and taut bands. In addition to classic trigger point treatment (manual techniques, neurophysiological approaches, needling, infiltration) the shockwave presents an important widening of the therapy spectrum. Fundamental research shows that shockwaves have many more than only one effect on tissue. ESWT leads to changes in the concentration of numerous neurotransmitters and inflammation mediators which play a role in the above mentioned milieu of a chronically algetic muscle. It can be assumed that the trigger ESWT also acts via neuromuscular spindles and the gamma-loop. Using the clinical picture trochantertendinosis, the relevant muscles which arise from the functional anatomy and physiology are presented, the examination is carried out exemplarily on one muscle and the trigger-ESWT demonstrated. Conclusion: The application of the trigger-ESWT for myofascial pain syndromes together with a few operator observations demonstrate the therapeutic success. Clinical studies are, however, long overdue, in order to provide appropriate scientific evidence for this form of therapy. www.dolorclast.com.br 59 Tabela de Energia SWISS DOLORCLAST® Gerador POWER + Aplicador Planar de ø R36mm Bar mJ / mm² [ED+] 2 0,035 2,5 0,04 3 0,05 3,5 0,06 4 0,07 Aplicador RADIAL de ø R15mm Bar mJ / mm² [ED+] 2 0,095 2,5 0,17 3 0,25 3,5 0,32 4 0,40 Outros dados técnicos da POWER + : Profundidade de penetração: 0 – 40 mm Níveis de energia: baixa, média e ALTA. Fluxo de densidade de energia: 0,01 – 0,55mJ/mm² Seleção de freqüência: 1 – 20 Hz (modelo Classic) Peso : 0,9kg FONTE: ELECTRO MEDICAL SYSTEM Gerador RADIAL Aplicador RADIAL de ø R15mm Bar mJ / mm² [ED+] 2 0,06 2,5 0,11 3 0,13 3,5 0,16 4 0,18 www.dolorclast.com.br 60 Tabela de Energia SWISS PIEZOCLAST® Gerador PIEZO Intensidade P + in MPa ED + mJ / mm² [ED+] 1 11,5 0,03 2 12,7 0,04 3 14,5 0,05 4 16,1 0,06 5 18,0 0,07 6 20,2 0,08 7 21,7 0,09 8 24,1 0,10 9 27,1 0,12 10 30,5 0,13 11 31,5 0,15 12 35,6 0,17 13 38,3 0,19 14 40,7 0,20 15 50,1 0,24 16 50,3 0,27 17 53,4 0,28 18 60,2 0,32 19 69,3 0,35 20 82,2 0,40 ED+ : Densidade Positiva do Fluxo Energético. Unidade mJ/mm² P+ : Pico de Pressão Positiva. Unidade MPa (mega pascal) Indicador de Intensidade Ajuste do Nível de Intensidade Indicador de Impulsos Indicador de Frequência Ajuste do Nível de Intensidade www.dolorclast.com.br 61 Protocolo de Aplicação – Swiss DolorClast Master & Classic www.dolorclast.com.br 62 Protocolo de Aplicação – Swiss PiezoClast www.dolorclast.com.br 63 Tabela da CBHPM 2010 – 6° edição 516,00 209,00 12,67 * 60 = 760,20 + 516,00 = 1.276,20 => 1° Aplicação 12,67 * 60 = 760,20 + 209,00 = 969,20 => Reaplicações www.dolorclast.com.br 64 www.dolorclast.com.br 65 www.dolorclast.com.br 66 Swiss DolorClast & Swiss DuoClast, FDA # P 050004 EC : # 50081-16-03 Registro na ANVISA 10337850032 Ecomed empresa membra da Soc. Bras. De Terapia por Ondas de Choque - SBTOC Electro Medical Systems – E.M.S. member of Association for Radial Shockwave Therapy – ATRAD ECOMED, representante exclusivo da Electro Medical System - EMS (21) 9648-5110 - Eng. Alec Flinte – dolorclast@dolorclast.com.br www.dolorclast.com.br 67