Canine and feline viral dermatoses with a particular emphasis to
Transcription
Canine and feline viral dermatoses with a particular emphasis to
University of Zurich Zurich Open Repository and Archive Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2007 Canine and feline viral dermatoses with a particular emphasis to papillomavirus infections Favrot, C Favrot, C. Canine and feline viral dermatoses with a particular emphasis to papillomavirus infections. 2007, University of Zurich, Vetsuisse Faculty. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: University of Zurich, Vetsuisse Faculty, 2007. Vetsuisse-Fakultät- Universität Zürich Klinik für Kleintiermedizin (Direktorin: Prof. Dr. Claudia Reusch) Canine and feline viral dermatoses with a particular emphasis to papillomavirus infections (Virale Dermatosen bei Hunden und Katzen unter spezieller Berücksichtigung der PapillomavirusInfektionen) HABILITATIONSSCHRIFT Zur Erlangerung der Venia Legendi an der Vetsuisse-Fakultät der Universität Zürich vorgelegt von Dr. med.vet. Claude Favrot Diplomate, European College of Veterinary Dermatology Masters in Sciences Zürich, 2007 Chapter 1 General introduction - Aims and scope of the thesis Chapter 2 Virale Dermatosen bei Hunden und Katzen 11 Chapter 3 Parvovirus infection of keratinocytes as a cause of canine erythema multiforme 24 Chapter 4 Two cases of FeLV-associated dermatoses 28 Chapter 5 Evaluation of papillomaviruses associated with cyclosporine-induced hyperplastic verrucous lesions in dogs 35 Detection of novel papillomaviruses in canine mucosal, cutaneous and in situ squamous cell carcinomas 42 Detection of novel papillomavirus-like DNA sequences in paraffine embedded samples of feline invasive and in situ squamous cell carcinomas 52 Clinical, histological and immunohistochemical study of feline viral plaques and bowenoid in situ carcinomas 59 Chapter 9 Summarizing discussion and further studies 68 Chapter 10 Zusammenfassung und weitere Studien 76 Chapter 6 Chapter 7 Chapter 8 Acknowledgments The studies in this thesis were conducted at the University of Zurich, Switzerland and at the Clinique Vétérinaire de Ferrette, France. They were financially supported by these institutions as well as the Waltham Foundation and the European College of Veterinary Dermatology. 2 3 Chapter 1 General introduction Aims and scope of the thesis 3 Skin lesions are a predominant feature of many viral diseases in humans and large domestic mammals [1, 2]. In comparison, viral dermatoses are rarely described in dogs and cats [3]. However, they may be underdiagnosed due to the difficulty in detecting viruses. The development and increased availability of diagnostic techniques such as electron microscopy, immunohistochemistry, viral amplification (PCR) is making detection more routine [4]. To complement advances in diagnosis, several effective antiviral agents for treating at least some viral dermatoses have been developed in the last few years [1]. Consequently, making the correct diagnosis may actually have important consequences for therapy as well as for prognosis. Definition and classification: Viruses form a diverse group of non-cellular infectious agents that share a distinct composition and a unique mode of replication. These agents lack much of the enzymatic machinery necessary for their multiplication. They are consequently obligate intracellular parasites that multiply inside cells and use the synthetic apparatus of the host cell to produce their own components [1]. The animal viruses are divided in several families according to their shape, structure of virion and the type of nucleic acid within it [5-7]. In fact, in the virion, the genome of the virus consists of only one type of nucleic acid (DNA or RNA). The viral particle (virion) is made of the nucleic acid surrounded by a protective protein core called the capsid. Some viruses do additionally possess an envelope which play a major in the infection of host cells [5-7]. Viral Replication and host response: Viruses make use of the host-cell machinery to synthesize and assemble viral particles (replication) because they do not possess the required enzymes. Viruses encode for structural (capsid) proteins and non structural proteins that usually regulate the viral replication. Some 4 of these non-structural proteins (transforming proteins) are responsible of the oncogenic potential of tumour viruses, like high-risk papillomavirus [8, 9]. Some viruses, like papillomaviruses depend on epithelial cell differentiation for completion of their replication [10]. After an initial inoculation in the basal layer of the epithelium, non-structural (early) proteins are expressed in the suprabasal layers and in the stratum spinosum. Capsid (late) proteins are subsequently produced in the stratum spinosum and the viral particles assembled and released in the upper stratum granulousm and stratum corneum, respectively [10]. Epithelial host-cells are infected by papillomaviruses through inoculation but for most other epithelium-infecting viruses, the replication cycle begins with an attachment phase called adsorption [1, 11]. This attachment requires specific interaction between host-cell receptors and virus. Cells lacking virus-specific receptors are not susceptible to infection. Following adsorption and penetration, viral envelopes and capsids are destroyed (uncoating) and viral genome can therefore instruct the host-cell machinery to produce its own proteins. Viral particles of most viruses infecting epithelial cells (herpes, papillomavirus, poxvirus) are produced inside the cells and released after cell death or cytolysis [1]. Each virus has its own site of replication: Herpesviruses and papillomaviruses replicate in the nuclei whereas poxviruses multiply in the cytoplasm. Viral replication usually causes gross cytopathic changes and host-cells sometimes die. These cytopathic effects may be pathognomonic of one specific viral infection (viral inclusions and pseudo-inclusions, syncytium formation (herpesvirus, retrovirus, paramyxovirus), modified keratinisation process (papillomaviruses). Some viruses, like papillomaviruses or distemper virus, can however, at least in some instances, replicate without causing irreversible damage to the host keratinocytes (true commensality, chronic infections)[12-15]. Another form of non cytocydal infection is the latency (herpesviruses, papillomaviruses). In this instance, very few or no virion are produced in the infected cells but reactivation of the infection can occur at any moment. Last but not least, some viruses (papillomaviruses, retroviruses) are able to induce host-cell immortalization and neoplastic transformation. Most of the time, transformed host-cells loose their ability to sustain productive infection [8, 9]. 5 Viral infection and skin lesions: Virus-induced skin lesions are usually the direct consequence of the virus replication. Examples of these direct effects are wart formations associated with papillomaviruses infections, pock formation in poxviruses infections or vesiculation associated with herpesvirus infections. Some skin lesions are however due to the host response or to the interaction of replication and host response. Erythema multiforme, for example, are exanthematous skin lesions associated with herpesvirus infection in humans and cats and may be, with parvovirus infections in dogs [16-18]. This reaction is considered to be due to the destruction of infected keratinocytes by cytotoxic T-cells. Finally, viruses may also modify skin biology and cause indirect changes, like in the so-called “hard pad disease” [15, 19-21]. Diagnosis of viral infections: Several approaches are now available to diagnose viral infection: virus isolation and culture, microscopy, serology or detection of viral antigens or nucleic acids. As these techniques demonstrate increasing sensitivity, results should always be interpreted in the context of the clinical and histological setting. In fact, one must always keep in mind that virus infection can be fortuitous and unrelated to the disease. Cultivation of the virus and/or direct identification (pathognomonic cytopathic effects) from the clinical material represent the “gold standard” for viral diagnosis because they establish at the same time that the virus is present and actively replicates in the lesional sample. These techniques are however limited by the low sensitivity and the difficulty to cultivate some viruses like papillomaviruses. The recent development of techniques that allow the amplification and multiplication of viral nucleic acids (PCR) has dramatically increased the sensitivity of virus detection. The main pitfall of PCR is however its great sensitivity itself, as false-positive assays may result from the amplication of minute amount of nucleic acid of viruses unrelated to the disease. Electron microscopy and immunohistological identification of viral antigens in lesional samples are also available. As they detect productive infections, these techniques may be regarded as more specific. They are however less sensitive than PCR techniques. 6 Serologic studies to detect antiviral antibodies are important for epidemiological studies, to determine the prevalence of one specific virus in a population, and to detect individuals that have been previously affected by the condition or in contact with the virus. Aims and scope of the thesis: As mentioned above, viral dermatoses are rarely reported in domestic carnivores [3, 22]. The aim of this thesis was to report some unusual aspects of viral infections of the skin of domestic carnivores and to show that at least some of these viral cutaneous infections remained under-diagnosed. Furthermore we aimed to broaden our knowledge of the genetic diversity of carnivores papillomaviruses and to demonstrate that these latter viruses may contribute to the development of skin cancer in these species. We have first shown that canine parvovirus 2 is able to induce, in some instances, clinical and histological changes that mimic human erythema multiforme (EM) [17]. Similar changes have already been described in dogs but were, most of time, attributed to drug reactions [23]. On the contrary, true EM is virtually always associated in Man with herpesvirus infections and almost never with drug reaction [16]. Feline EM has also been shown to be due to herpesvirus infections [24]. The disclosure of canine EM associated with virus infection should encourage veterinary dermatologists to look for virus antigens or nucleic acids in skin samples of dogs affected by this condition. We have described and studied two cases of FeLV-induced skin conditions [25]. We have first shown that FeLV, like other retroviruses, is able to induce syncytium formation in the skin of infected cats. Similar cases have already been described but with a very different clinical phenotype [26]. More interestingly, FeLV antigens and nucleic acids were uncovered in cutaneous lymphoma samples in a serologically negative cat. These findings suggest that focal skin FeLV replication may occur in some instances. Dogs treated with cyclosporine A sometimes develop lichenoid plaques and warts of unknown origin. We have evaluated such lesions in nine affected dogs and demonstrated that the majority of these plaques are not papillomavirus-induced. Some however harbour papillomavirus DNA and antigens and are probably due to the reactivation of a latent PVinfection of the skin [27]. Anecdotal reports have suggested that PV could play a role in the development of skin squanous cell carcinomas in dogs and cats [28-33]. We have consequently tried to amplify 7 PV DNA from skin samples of canine and feline squamous cell carcinomas and demonstrated that nucleic acids of these viruses are present in a significant amount of such samples [34, 35]. Furthermore, amplified PV sequences revealed that these samples are infected by PV of great genetic diversity. These findings suggest that PV could play an active role in the development of such cancers in dogs and cats and that domestic carnivore, like humans, may be infected my numerous different PVs. A last study carried out on a subset of feline squamous cell carcinomas (Bowenoid in situ carcinomas: BISC) in situ has shown that BISC are often infected by PVs and that these viruses actively replicate in such lesion [36]. These results further suggest an active role of these viruses in the development of such lesions. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Lowy, D.R., Viral diseases: General considerations, in Fitzpatrick's Dermatology in General Medicine, I.M. Freedberg, et al., Editors. 2003, Mc Graw-Hill: New-York. p. 2035-2041. Scott, D.W., Viral diseases, in Large Animal Dermatology, D.W. Scott, Editor. 1988, W.B. Saunders: Philadelphia. p. 96-119. Scott, D.W., W.H. Miller, and C.E. Griffin, Viral, rickettsial and protozoal diseases, in Muller & Kirk's Small animal dermatology, D.W.M. Scott, W.H. Griffin, C.E., Editor. 2001, W.B. Saunders: Philadelphia. p. 517-542. Sellon, R.K., Update on molecular techniques for diagnostic testing of infectious disease. Vet Clin North Am Small Anim Pract, 2003. 33(4): p. 677-93. Condit, R.C., Principles of Virology, in Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2001, Lippincoot, Williams & Wilkins: Philadelphia. p. 19-51. Harrison, S.C., Principles of virus structure, in Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2001, Lippincott, Williams & Wilkins: Philadelphia. p. 53-85. Murphy, F.A., et al., The Nature of Viruses as Etiologic Agents of Veterinary and Zoonotic Diseases, in Veterinary Virology, F.A. Murphy, et al., Editors. 1999, Academic Press: San Diego. p. 3-22. Harwood, C.A. and C.M. Proby, Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis, 2002. 15(2): p. 101-114. zur Hausen, H., Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst, 2000. 92(9): p. 690-698. Doorbar, J., The papillomavirus life cycle. J Clin Virol, 2005. 32(Supplement 1): S7S15. Lowy, D.R. and P.M. Howley, Papillomaviruses, in Fields Virology, D.M.H. Knipe, P.M., Editor. 2001, Lippincott, Williams & Wilkins: Philadelphia. p. 2231-2264. Antonsson, A., et al., Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. J Gen Virol, 2003. 84(Pt 7): p. 1881-1886. Antonsson, A., et al., The ubiquity and impressive genomic diversity of human papillomavirus suggest a commensalic nature of the viruses. J Virol, 2000. 74(24): p. 11636-11641 8 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. Antonsson, A. and B.G. Hansson, Healthy skin of many animal species harbours papillomaviruses which are closely related to their human counterparts. J Virol, 2002. 76(24): p. 12537-12542. Haines, D.M., et al., Immunohistochemical detection of canine distemper virus in haired skin, nasal mucosa, and footpad epithelium: a method for antemortem diagnosis of infection. J Vet Diagn Invest, 1999. 11(5): p. 396-399. Assier, H., et al., Erythema multiforme with mucous membrane involvement and Stevens-Johnson syndrome are clinically different disorders with distinct causes. Arch Dermatol, 1995. 131(5): p. 539-543. Favrot, C., et al., Parvovirus infection of keratinocytes as a cause of canine erythema multiforme. Vet Pathol, 2000. 37(6): p. 647-649. Huff, J.C., Erythema multiforme. Dermatol Clin, 1985. 3(1): p. 141-152. Grone, A., M.G. Doherr, and A. Zurbriggen, Up-regulation of cytokeratin expression in canine distemper virus-infected canine footpad epidermis. Vet Dermatol, 2004. 15(3): p. 168-174. Grone, A., P. Engelhardt, and A. Zurbriggen, Canine distemper virus infection: Proliferation of canine footpad keratinocytes. Vet Pathol, 2003. 40(5): p. 574-578. Koutinas, A.F., et al., Histopathology and Immunohistochemistry of Canine Distemper Virus-induced Footpad Hyperkeratosis (Hard Pad Disease) in Dogs with Natural Canine Distemper. Vet Pathol, 2004. 41(1): p. 2-9. Favrot, C. and S. Wilhelm, Virale Dermatosen bei Hunden und Katzen. Tierärtzliche Praxis, 2006. 24 (K): p. 307-318 Scott, D.W. and W.H. Miller, Erythema multiforme in dogs and cats: literature review and case material from the Cornell University College of Veterinary Medicine (1988-1996). Vet Dermatol, 1999. 10: p. 297-309. Prost, C., A case of exfoliative erythema multiforme associated with herpesvirus 1 infection in a cat (abstract). Vet Dermatol, 2004. 15 (Suppl. 1): p. 51. Favrot, C., et al., Two cases of FeLV-associated dermatoses. Vet Dermatol, 2005. 16 (6): p. 407-412. Gross, T.L., et al., Giant cell dermatosis in FeLV-positive cats. Vet. Dermatol., 1993. 4(3): p. 117-122. Favrot, C., et al., Evaluation of papillomaviruses associated with cyclosporineinduced hyperplastic verrucous lesions in dogs. Am J Vet Res, 2005. 66(10): p. 17641769. LeClerc, S.M., E.G. Clark., and D.M. Haines,. papillomavirus infection in association with feline cutaneous squamous cell carcinoma in situ (Abstract). in AAVD/ACVD Meeting. 1997: p. 125-126. Schwegler, K., J.H. Walter, and R. Rudolph, Epithelial neoplasms of the skin, the cutaneous mucosa and the transitional epithelium in dogs: an immunolocalization study for papillomavirus antigen. Zentralbl Veterinarmed A, 1997. 44(2): p. 115-123. Sundberg, J.P., R.E. Junge, and W.D. Lancester, Immunoperoxidase localization of papillomaviruses in hyperplastic and neoplastic epithelial lesions in animals. Am J Vet Res, 1984. 45 (7): p. 1441-1446. Teifke, J.P., et al., Detection of papillomavirus-DNA in mesenchymal tumour cells and not in the hyperplastic epithelium of feline sarcoids. Vet Dermatol, 2003. 14(1): p. 47-56. Teifke, J.P., C.V. Lohr, and H. Shirasawa, Detection of canine oral papillomavirusDNA in canine oral squamous cell carcinomas and p53 overexpressing skin 9 33. 34. 35. 36. papillomas of the dog using the polymerase chain reaction and non-radioactive in situ hybridization. Vet Microbiol, 1998. 60(2-4): p. 119-130. Watrach, A.M., E. Small, and M.T. Case, Canine papilloma: progression of oral papilloma to carcinoma. J Nat Cancerol Inst, 1970. 45: p. 915-920. Nespeca, G., et al. Detection of novel papillomavirus-like sequences in paraffinembeddedspecimens oe invasive and in situ squamous cell carcinomafrom cats. Am J Vet Res, 2006. 26(12): 2036-2041 Zaugg, N., et al. Detection of novel papillomaviruses in canine mucosal, cutaneous and in situ squamous cell carcinomas. Vet Dermatol, 2005. 16(5): p. 290-298. Wilhelm, S. et al. Clinical, histological and immunohistochemical study of feline viral plaques and bowenoid in situ carcinomas. Vet Dermatol, 2006. 17: 424-431 10 Chapter 2 Virale Dermatosen bei Hunden und Katzen C. Favrot1, S. Wilhelm1 Tierärtzlich Praxis, 2006, 34 (5): 307-318 1 Klinik für Kleintiermedizin, Dermatologie, Vetsuisse-Fakultät der Universität Zürich, Schweiz 11 Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm Aus der Klinik für Kleintiermedizin, Dermatologie (Leiter: Dr. C. Favrot), Vetsuisse Fakultät, Universität Zürich, Schweiz Schlüsselwörter: Virus – Dermatose – Hund – Katze Zusammenfassung: Virale Dermatosen kommen bei Kleintieren nur selten vor und werden vermutlich auch häufig übersehen. Ziel dieser Übersichtsarbeit ist, die klinischen und histologischen Veränderungen viraler Dermatosen bei Hunden und Katzen darzustellen. Berücksichtigung finden insbesondere Veränderungen, die direkt oder indirekt von Viren der Gattungen und Familien Papillomavirus, Ortho- und Parapoxvirus, Herpesvirus, Retrovirus, Lentivirus, Morbillivirus und Parvovirus verursacht werden. Neueste Techniken wie DNA-Amplifikation machen den Nachweis kleinster viraler DNA- und RNA-Mengen möglich und vereinfachen so die Diagnosestellung. Allerdings darf nicht vergessen werden, dass der Nachweis viraler DNA in Hautläsionen noch keinen Beweis für das Vorliegen einer viralen Dermatose darstellt. Demzufolge ist es unerlässlich, zwischen Veränderungen, die direkt aufgrund einer Virusinfektion entstanden sind, und solchen, die mit viralen Erkrankungen nur assoziiert sind, zu unterscheiden. Auf Letztere wird im vorliegenden Artikel nur dann eingegangen, wenn besagte Assoziationen in der Literatur häufig erwähnt werden. Einige Dermatosen, die indirekt durch Viren verursacht werden, zeichnen sich durch veränderte Proliferisationseigenschaften oder Antigenität der Hautzellen aus. Solche Modifikationen können mit Kanzerogenese oder immunologischen Reaktionen, wie beispielsweise einem Erythema multiforme, einhergehen. Key words: Virus – dermatosis – dog – cat Summary: Viral dermatoses are considered rare in domestic animals but are probably often underdiagnosed. The purpose of this review is to present the clinical and histological features of viral dermatoses in domestic animals. It will focus on conditions directly or indirectly caused by viruses of the genera Papillomavirus, Orthoand Para-Poxvirus, Herpesvirus, Retrovirus, Lentivirus, Morbillivirus and Parvovirus. New techniques such as nucleic acid amplification enable the detection of minute amounts of viral DNA and RNA. Diagnoses have consequently been facilitated. However, one must keep in mind that detection of viral nucleic acid in skin lesions does not prove that the virus is the cause of the disease. It is mandatory to distinguish diseases that are directly caused by viruses and conditions that are sometimes associated with viruses. The latter will only be mentioned when they are frequently reported in the literature. Some dermatoses are caused indirectly by viruses that modify the proliferation properties or the antigenicity of skin cells. These modifications may be associated with cancerization or immunologic reactions such as erythema multiforme. Viral dermatoses of the dog and cat Einleitung Virale Dermatosen kommen bei Kleintieren selten vor (86). Da die Erreger schwer zu identifizieren sind, wurde diese Krankheitsbilder vermutlich lange übersehen. Durch bessere Nachweismethoden gelingt es häufiger, Viren nachzuweisen und mit dem bestehenden klinischen Bild in Verbindung zu bringen (89).Allerdings kann dadurch noch keine Kausalität bewiesen werden.Auch der Nachweis viraler Antigene oder Nukleinsäuren in der betroffenen Läsion ist kein ausreichender Beweis (18, 45). Üblicherweise wird die Diagnose mittels Histologie – dem Vorhandensein direkter zytopathischer Effekte – gestellt. Viren können das Gewebe aber auch indirekt schädigen. Dies geschieht vor allem in solchen Fällen, in denen die Viren die Antigenizität von Epidermalzellen modifizieren oder die Wachstumsrate der Hautzellen erhöhen. In ersterem Fall werden die Keratinozyten durch das Eingegangen: 07.04.2005; akzeptiert: 05.01.2006 lokale Immunsystem als fremd erkannt und es kommt zu einer Apoptoseinduktion (Erythema multiforme). Im zweiten Fall besteht bei der schnell wachsenden Epidermalzellpopulation die Gefahr einer karzinomatösen Entartung. Nicht zuletzt können Viren auch das lokale Immunsystem schädigen. In der folgenden Übersichtsarbeit liegt das Schwergewicht auf der klinischen Präsentation, der Histologie und den Behandlungsmöglichkeiten der häufigsten nachgewiesenen viralen Dermatosen bei Hunden und Katzen. Papillomaviren Ätiologie und Pathogenese Papillomaviren (PV) gehören zu den DNA-Viren und zeigen einen ausgeprägten Plattenepithel-Tropismus (52). Das Virus ist 12 307 HUND/KATZE © 2006 Schattauer GmbH Tierärztl Prax 2006; 34 (K): 307-18 HUND/KATZE 308 Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm normalerweise speziesspezifisch, ansteckend und wird oft durch Mikroläsionen übertragen (74). Bei Hunden wird die Mehrheit der Infektionen durch das kanine orale PV (COPV) verursacht. Allerdings ließen sich auch andere Stämme aus kaninen Hautläsionen isolieren (60, 103). Bei Katzen ist diese Krankheit selten und wird durch feline oder bovine Papillomaviren hervorgerufen (85, 98). Bisher konnte erst bei einem kaninen (COPV) und einem felinen (FdPV-1) Papillomavirus das Genom aufgeschlüsselt werden (99, 102). Die Replikation des Virus läuft parallel zur Differenzierung des Plattenepithels ab und kann in eine „Early Phase“ (E) und eine „Late Phase“ (L) unterteilt werden. Während der E-Phase im Stratum spinosum und der suprabasalen Schicht werden die viralen Proteine synthetisiert. Im Stratum granulosum findet während der L-Phase die Synthese der Kapsidproteine statt. Erst im oberen Bereich des Stratum granulosum wird das Kapsid zusammen- gebaut. Die Freisetzung des Virions erfolgt gleichzeitig mit der Desquamation (52). Papillomaviren induzieren auch die Synthese der so genannten transformierenden Proteine E6 und E7, die für die proliferativen und karzinogenen Eigenschaften des Virus verantwortlich sind (45). Eine Infektion durch ein unproduktives Papillomavirus ist ebenfalls möglich und wird mit der Entwicklung eines felinen Sarkoids oder eines Fibropapilloms assoziiert (85). Es wird angenommen, dass es sich hierbei um das Pendant des equinen Sarkoids handelt. In der Mehrzahl der Fälle gelang es, in solchen Läsionen PV-DNA nachzuweisen, wobei die Blast-Analyse der L1-Sequenz starke Homologien mit einem bovinen PV aufwies (42, 85, 105). Klinik Hund Abb. 1 Typische virale Warzen (kanine orale Papillomatose) Abb. 2 Persistierende Warzen am Schwanz einer erwachsenen Deutschen Dogge (Papillomatose des adulten Hundes) 13 Es existieren verschiedene klinische Präsentationen, die unterschiedlichen Viren zugeschrieben werden, deren komplettes Genom jedoch noch nicht entschlüsselt ist. Dennoch ist es möglich, dass jede einzelne klinische Präsentation (z. B. orale Infektion oder invertiertes Papillom) mit einem spezifischen PV assoziiert ist (9, 30). Kanine orale Papillomatose (COPV): Hierbei handelt es sich um die klassischste und auch häufigste transiente virale Hauterkrankung beim Hund. Betroffen sind meist junge Hunde. Eine Rassen- oder Geschlechtsprädisposition gibt es nicht. Die Läsionen befinden sich auf der Schleimhaut der Maulhöhle, der Lippen, des Planum nasale und/oder der Konjunktiven (87). Ausnahmsweise können auch die peribukkale Haut, die Augenlider oder der obere Gastrointestinaltrakt betroffen sein (Abb. 1). In der Regel sind es mehrere Läsionen, die durch ihre wuchernde, hyperplastische Struktur das Tier stören können. Der Durchmesser variiert von 2–3 mm bis zu über 3 cm. Ihr exophytisches Aussehen, ihre Größe, die blumenkohlartige Oberfläche und die Lokalisation der Läsionen lassen oft bereits eine klinische Diagnose zu (6). Kanine orale Papillome bilden sich in den meisten Fällen innerhalb von einem bis drei Monaten spontan zurück (14). Bei Vorliegen einer Immundefizienz wurden persistierende PapillomavirusInfektionen beschrieben (63, 73). Papillomatosen des adulten Hundes: Bei diesen Läsionen kommt es zu keiner spontanen Rückbildung. Hunde jeden Alters können betroffen sein. Die Veränderungen treten oftmals an mukokutanen Übergängen, vor allem in der Maulhöhle (hier am häufigsten und gravierendsten), dem Gesicht und zwischen den Zehen auf (Abb. 2). Es handelt sich um multiple typische Warzen, die mit einer dicken Keratinschicht bedeckt sein können (Abb. 3). In vielen Fällen sind die Läsionen pigmentiert, manchmal stehen sie dicht nebeneinander stehend und können bis in den Pharynx reichen (117), wo sie zu Schluckstörungen führen. Die Ätiologie ist noch ungeklärt, doch werden vielfach Immundefizienzen als Ursache angenommen (7, 63, 73, 75, 100, 117). Invertierte Papillome: Diese ungewöhnlichen Hautveränderungen treten vor allem am Abdomen und am Kinn junger adulter Hunde auf (Abb. 4). Eine Streuung über den gesamten Körper ist ebenfalls möglich. Die aufgewölbten Veränderungen weisen einen Durchmesser von 1–2 cm auf und besitzen im Zentrum eine Pore (9). Das ursächliche PV scheint sich vom COPV-1 zu unterscheiden (9). Multiple pigmentierte papillomatöse Plaques (Abb. 5): Sie sind selten, kommen jedoch bei einigen Rassen (z. B. Mops) häufiger vor und wurden mit immunsuppressiven Therapien in Zusammenhang gebracht (60, 72, 96, 111). In manchen Fällen ähneln diese Plaques klinisch und histopathologisch der humanen Epidermodysplasia verruciformis (72, 111).Andere dagegen weisen einzigartige histologische Strukturen mit eosinophilen zytoplasmatischen Granula auf (60). Bei nicht immunsupprimierten Hunden konnte eine spontane Abheilung beobachtet werden. Bei manchen Hunden führte das Absetzen der immunsuppressiven Therapie zur kompletten Abheilung, wiederum bei anderen kam es zu einer malignen Transformation (54, 72, 96, 111). Plattenepithelkarzinom (Abb. 6): In der Veterinärmedizin finden sich nur wenige Berichte über eine maligne Transformation von COPV-induzierten Veränderungen in Plattenepithelkarzinome (101, 104, 112). Bei einem Hund wird über ein multizentrisches Karzinom in situ (Bowen’s Disease) berichtet (35). Eine virale Ätiologie ist zwar anzunehmen, wurde bis dato aber nicht bestätigt. Bei den meisten Katzen äußert sich diese Krankheit in Form von schuppigen, pigmentierten Plaques (Abb. 7) (12, 20, 62, 98). Perserkatzen und immunsupprimierte Tiere sind prädisponiert. Bis heute wurde erst ein einziges katzenspezifisches PV entdeckt und sein Genom komplett entschlüsselt (FdPV-1) (102). Bei Katzen kommt es nur selten zu oralen Läsionen. Diese üblicherweise multifokalen, festsitzenden und durch leichte Erhebungen charakterisierten Veränderungen finden sich in der unteren Gesichtshälfte und auf der Zunge (98). Ansonsten existiert in der Literatur nur der Fallbericht einer Katze mit exophytischen Papillamovirus-induzierten Warzen an den Augenlidern (13). Abb. 3 Warze am Pfotenballen mit Hornbildung Abb. 4 Invertiertes Papillom (Abb.: D. Carlotti) Abb. 5 Papillomavirus-induzierte pigmentierte Plaques Abb. 6 Papillomavirus-induziertes Plattenepithelkarzinom in situ Katze 14 309 HUND/KATZE Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm HUND/KATZE 310 Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm Regelmäßig wird über Katzen mit multizentrischen Karzinomen in situ berichtet (Abb. 8) (2, 67). In einer diesbezüglichen Arbeit wurde PV bei bis zu 40% der untersuchten Proben nachgewiesen (59). Solche Veränderungen werden auch mit DemodexInfektionen in Zusammenhang gebracht (38). Die letzte Form der felinen PV-Hautinfektionen ist das Fibropapillom oder feline Sarkoid (42, 85, 105). Diese Läsionen im Gesicht oder an den Extremitäten bestehen aus festen Knoten in der Dermis,wahrscheinlichaufgrundeinernichtproduktivenPV-Infektion. Diagnosestellung Oft genügt bei jungen Hunden mit oraler Papillomatose bereits die klinische Untersuchung. In fraglichen Fällen und bei adulten Hunden unterscheidet die histologische Untersuchung zwischen einer echten Papillomatose und einer nichtviralen warzenähnlichen Läsion. Histopathologisch erkennt man eine papillomatöse epidermale Hyperplasie mit ballonierender Degenereration von Zellen im Stratum spinosum (Koilozytose). Zusätzlich kommt es zu einer Hypergranulose mit prominent verklumpten Keratohyalingranula (118). Eosinophile intranukleäre virale Einschlusskörperchen und basophiles intrazytoplasmatisches fibrilläres Material bestätigen die ätiologische Diagnose (118). Fehlen virale Einschlusskörperchen, kann eine virusinduzierte Papillomatose nicht ausgeschlossen werden. Zum Nachweis der Ätiologie sind auch immunhistochemische Techniken und DNA-Amplifikation nützlich. Epidermale Hypermelanose, unregelmäßige Akanthose und Hypergranulose mit verklumpten Keratohyalingranula werden normalerweise bei Vorliegen von kaninen multiplen pigmentierten papillomatösen Plaques gesehen (72, 96, 111). In einigen Fällen konnten virale Einschlusskörperchen nachgewiesen werden (60, 96). Bei Katzen liegen ähnliche histopathologische Veränderungen vor, wobei virale Einschlusskörperchen häufiger beobachtet werden (12, 20, 62, 98). Histologische Untersuchungen von felinen Sarkoiden ergaben eine pseudokarzinomatöse Akanthose und dicht gepackte mesenchymale Zellen, die Kollagenbündel umgaben (85, 105). Therapie Abb. 7 Feline Papillomavirus-induzierte pigmentierte Plaques (Abb.: C. Mege) Abb. 8 Felines Papillomavirus-induziertes Plattenepithelkarzinom in situ (Ohrgrund) 15 Es existieren verschiedene Therapievorschläge, deren Erfolg jedoch eher auf spontaner Regression als auf echter Heilung beruht (74). Bei starkem Verdacht auf eine spontan abheilende COPVEntzündung ist es durchaus vernünftig, als Erstes abzuwarten und die Läsionen zu beobachten (87). Am effektivsten erweist sich ein chirurgisches Vorgehen, besonders in Form von Kryochirurgie und Lasertherapie, doch wurde die chirurgische Vorgehensweise auch mit Resistenz und Rezidiven assoziiert (61). Zusätzlich gibt es Protokolle für Behandlungen mit Retinoiden und Interferon, über deren Wirkung bisher aber noch keine ausführlichen Studien publiziert wurden (114, 115). Beim Menschen, inklusive immunsupprimierten Patienten, werden vireninduzierte Neoplasien derzeitig mit Imiquimod und anderen Imidazoquinolonen therapiert (92). Diese Medikamente regen die Toll-like-Rezeptoren an und führen so zur Freisetzung von Zytokinen vom Typ Th1 und von Interferon-α. Über die erfolgreiche Anwendung von Imiquimod beim Hund liegen nur wenige anekdotische Berichte vor.Aufgrund seiner spezifischen antiviralenWirkung wird beim Menschen auch Cidofovir eingesetzt (79). Über einen möglichen Einsatz bei Hunden ist noch nichts bekannt. Aktuelle Fortschritte in der Prävention und der Immuntherapie der humanen Papillomatose, speziell beim Papillomavireninduzierten zervikalen Karzinom der Frau, könnten als Basis für immuntherapeutische Behandlungen von PV-Infektionen dienen (61). Bis dato wurde nicht über eine erfolgreiche Behandlung kaniner pigmentierter Plaques berichtet, doch kann eine spontane Regression auftreten. Zusätzlich empfiehlt es sich, die Ursache der Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm HUND/KATZE Immunsuppression bei nicht prädisponierten Rassen zu identifizieren, da es bei deren Therapie zur Abheilung der Hautläsionen kommen kann (96). Die übrigen Formen kaniner und feliner PapillomavirenInfektionen sollten chirurgisch behandelt werden. Pockenviren Ätiologie Pockenviren sind große DNA-Viren, die einen starken kutanen Tropismus aufweisen. Bis dato wurden Pockenviren-Infektionen bei zahlreichen Spezies beschrieben, einige davon scheinen zoonotisches Potenzial zu besitzen. Das Genus Orthopoxvirus umfasst verschiedene eng verwandte pathogene Erreger von Mensch und Tier. Einige von diesen (z. B. das Kuhpockenvirus) sind in der Lage, eine ganze Bandbreite an Spezies zu infizieren (Menschen, Wiederkäuer, Fleischfresser und Nagetiere) (66). Hunde sind nur selten betroffen. Bisher wurde auch noch kein hundespezifisches Poxvirus identifiziert. Mehrere Studien konnten bei Füchsen Anti-Orthopoxviren-Antikörper nachweisen, weshalb man auf die Existenz eines an Karnivoren adaptierten Poxvirus schloss (65, 69). Es sind nur zwei Fallberichte über Orthopoxviren-Infektionen beim Hund bekannt (88, 109). Im Gegensatz zu Hunden gibt es bei Katzen in den meisten europäischen Ländern diverse Fallberichte über Infektionen mit Kuhpockenviren (4, 10, 27, 37, 50, 76, 106, 108, 110). Auch in Deutschland scheint die Inzidenz relativ hoch zu sein, und in Norwegen waren bis zu 10% der getesteten Katzen positiv (78, 108). Über Zoonosen, die auf Kontakt mit einer infizierten Katze zurückzuführen waren, wurde sporadisch berichtet (17, 21, 47, 94). Über eine Parapoxviren-Infektion (Orf, Ecthyma contagiosum) beim Hund findet sich nur ein einziger Fallbericht (116). Pathogenität der Kuhpocken-Infektion Wildlebende Nagetiere scheinen diesem Erreger als Reservoir zu dienen und auch die meisten der infizierten Tiere halten vorher Kontakt zu Nagern oder Wiederkäuern (4, 10, 27, 37, 50, 76, 106, 109, 110). Die Ansteckung erfolgt üblicherweise über den perkutanen oder oralen Weg (27). Nach der Infektion beginnt das Virus mit der lokalen Replikation und produziert so eine primäre „Pockenläsion“ (Abb. 9). Anschließend verteilt es sich via Lymphe und führt zu multiplen Veränderungen (27). Klinik der Pockenviren-Infektion Hund Die mit Parapoxvirus infizierten Hunde wiesen sekundäre und unspezifische Läsionen (Ulzerationen, Krusten) auf. Die Diagnose wurde mithilfe von histopathologischen Untersuchungen ge- 311 Abb. 9 Feline Kuhpocken-Dermatitis (Abb.: O. Fischer) stellt (116). Zwei an einer Orthopoxviren-Infektion erkrankte Hunde zeigten knotige und ulzerierende Veränderungen im Gesicht. Bei beiden wurde eine Infektion aufgrund eines Kontakts mit infizierten Katzen oder Nagern vermutet. Bei einem Tier bildeten sich die Läsionen spontan zurück, beim anderen mussten sie chirurgisch entfernt werden (91, 109). Kuhpocken-Infektion bei Katzen Die Primärläsion besteht aus einem einzelnen Knoten auf dem Kopf, im Nacken oder an den Gliedmaßen. Bereits nach kurzer Zeit treten Ulzerationen auf. Innerhalb von sieben bis 12 Tagen entwickeln sich auf dem ganzen Körper sekundäre Papeln und Knötchen (4, 10, 27, 37, 50, 76, 106, 109, 110). Auch diese ulzerieren in der Regel rasch. Gelegentlich können systemische Anzeichen wie Anorexie und Fieber beobachtet werden. Teilweise treten Husten und Konjunktivitis als Begleiterscheinung auf. In wenigen Fällen wurde eine Involvierung der Schleimhäute beschrieben (27). Gewöhnlich heilen die Läsionen innerhalb weniger Wochen ab. Bei immunsupprimierten, hauptsächlich FeLVoder FIV-infizierten Katzen sind Fälle tödlich verlaufender Pneumonien bekannt (4, 5). Die Wahrscheinlichkeit einer humanen Infektion ist gering. Trotzdem sollten die Besitzer einer infizierten Katze über das Risiko, das für immunsupprimierte Personen besteht, informiert werden (47, 94). Diagnose von Pockenviren-Infektionen Üblicherweise reicht eine histologische Untersuchung von Hautbioptaten aus (76). Die typischen Kennzeichen umfassen eine hydropische Degeneration der Keratinozyten (inklusive derer der Haarfollikel), Präsenz großer intrazytoplasmatischer Einschlusskörperchen, Mikrovesikelformation und eventuell Nekrose. Die zytologische Untersuchung eines Feinnadelaspirats oder eines Abklatschpräparats kann eventuell pathognomonisch sein (Präsenz intrazytoplasmatischer Einschlusskörperchen) (76). Zur Bestätigung eines klinischen Verdachts kommen weiterhin Viruskulturen, serologische Tests und elektronenmikroskopische Untersuchungen in Betracht (76). 16 HUND/KATZE 312 Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm Therapie Eine spezifische Behandlung gibt es zwar nicht, doch heilen die Läsionen heilen meist innerhalb weniger Wochen ab. Immunsupprimierte Tiere können allerdings systemische Anzeichen entwickeln. Hin und wieder ist eine Behandlung sekundärer bakterieller Infektionen notwendig. Herpesviren-Infektionen Ätiologie Diese Erreger gehören zu den Doppelstrang-DNA-Viren, die bei zahlreichen Spezies die verschiedensten Erkrankungen hervorrufen können. Herpesviren zeigen einen Tropismus für Nervengewebe, Haut, lymphatische Zellen und respiratorisches Epithel sowie für Epithelien der Genitalregionen (81). Das Charakteristikum aller bekannten Herpesviren ist ihre Eigenschaft, latent in ihren Wirten zu verharren. In Zellen, die Viren im Latenzstadium beherbergen, werden nur wenige virale Gene exprimiert. Solche Viren behalten ihre Replikationsfähigkeit bei, wodurch es bei einer Reaktivierung zum Rezidiv kommen kann (81). Bei kaninen und felinen Herpesviren handelt es sich um α-Herpesviren. Beide weisen große genetische Homologien auf (11). Infizierte Hündinnen sind normalerweise asymptomatisch, doch kann es während der Trächtigkeit oder durch Immunsuppression zu einer Reaktivierung der latenten Infektion kommen. In der Folge wird das Virus über nasale, genitale, okuläre und orale Sekretion freigesetzt (11). Die primäre Replikation bei infizierten Welpen geschieht in den Epithelzellen der oronasalen Mukosa. Anschließend erfolgt die virämische Phase (in Makrophagen). Die Mehrheit der betroffenen Welpen, die durch maternale Antikörper geschützt werden, überlebt, bleibt aber chronisch infiziert. Bei ungeschützten Welpen werden durch das Virus nach und nach verschiedene Organe (z. B. Lymphknoten, Milz, Niere, Leber und Lungen) befallen. Die meisten Hunde überleben eine solche Infektion nicht (11). Infektionen mit dem felinen Herpesvirus (felines Rhinotracheitisvirus) geschehen durch den direkten Kontakt mit akut infizierten Tieren, mit latent infizierten Katzen während einer Reaktivierungsphase oder über die kontaminierte Umgebung. Die Infektionswege sind üblicherweise oral, nasal oder okulär und die Replikation erfolgt in der Mukosa der Nase und derTonsillen. Das Auftreten einer Virämie ist selten. Bei latent infizierten Tieren zieht sich das Virus in die Ganglien des Nervus trigeminus und auch in epitheliale Gewebe zurück (28). Kanine Herpesvirus-Infektion auf Haut und Schleimhaut Kanine Herpesviren zeigen einen ausgeprägten genitalen Tropismus. Nebst Abort, Unfruchtbarkeit und letalen neonatalen Septikämien können Herpesviren auch vesikulopapilläre Läsionen an den Genitalien, am Abdomen und auf der Maul- und Genitalschleimhaut hervorrufen (11, 46, 49). Aujeszky'sche Krankheit/Pseudotollwut Die Aujeszky’sche Krankheit wird durch ein um ein α-Herpesvirus verursacht, das einen Tropismus für Nervengewebe aufweist. Das Hauptreservoir dieses Virus sind Schweine. Hunde infizieren sich durch denVerzehr von kontaminiertem Schweinefleisch (86). Der Großteil der erkrankten Hunde weist einen intensiven Juckreiz im Gesicht auf, wobei es zu schweren selbst induzierten Läsionen kommt (51, 68). Zusätzliche Symptome sind Speicheln und neurologische Ausfälle. Die Krankheit führt unweigerlich zum Tod. Feline Herpesviren-Infektionen Das feline Herpesvirus 1 (FHV-1) verursacht bei Katzen Rhinotracheitis und Konjunktivitis (28). Nach einer Inkubationsperiode von üblicherweise weniger als einer Woche entwickeln die betroffenen Katzen eine schwere Apathie, Fieber, Augen- und Nasenausfluss. In der Folge treten Konjunktivitis und Rhinotracheitis auf (28). Im Gegensatz zu Calicivirus-Infektionen kommt es selten zu oralen Ulzerationen (24). Es wurden auch faziale erosive Dermatitiden beschrieben (Abb. 10) (25, 43). Bei durch FHV-1 bedingten Hauterkrankungen treten Vesikel, Erosionen, Ulzerationen, Krusten und Stomatitis auf. Histopathologisch ist neben den ulzerösen und verkrusteten Läsionen eine ausgeprägte eosinophile dermale Infiltration zu erkennen. Einige Keratinozyten weisen intranukleäre Einschlüsse auf (43, 44). Die Diagnose wird üblicherweise mittels Immunhistochemie und/oder PCR-Amplifikation der viralen DNA gestellt (97). Ebenso ist eine kulturelle Anzüchtung des Virus möglich (28). Abb. 10 Feline Herpesvirus-Dermatitis (Abb.: L. Beco) 17 Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm Felines Erythema multiforme bedingt durch Herpesviren Erythema multiforme ist eine immunologische Antwort auf die Präsenz von Fremdantigen in der Epidermis. Es tritt beim Menschen in der Regel wenige Tage nach einer Infektion mit Herpessimplex-Viren auf (54, 113). Bei Katzen wurden insgesamt zwei Fälle publiziert (Abb. 11) (77, 80). Ein paar Tage nach einer Rhinotracheitis entwickelten sich kutane Veränderungen in Form einer exfoliativen Dermatose. Histologische Untersuchungen zeigten eine typische lymphozytäre Interface-Dermatitis, lymphozytäre Exozytose, Apoptose und Satellitose. Im einen Fall führte eine Azyklovir-Therapie zu einer klinischen Verbesserung, im anderen kam es zu einer Spontanheilung (77, 80). Retroviren-Infektionen Ätiologie Diese häufigen Erkrankungen bei Katzen werden vor allem durch zwei Viren verursacht: das feline Leukämievirus (FeLV, Genus Gammaretrovirus) und das feline Immundefizienzvirus (FIV, Genus Lentivirus). FIV induziert eine Immundefizienz. Die meisten der FIV-assoziierten Hautveränderungen sind jedoch nicht spezifisch, weshalb diese Krankheit im vorliegenden Artikel nur kurz erwähnt wird. Im Gegensatz dazu wurde in der veterinärmedizinischen Literatur häufig über FeLV-assoziierte Dermatosen und Hauttumoren berichtet. Die meisten der folgenden Aussagen beziehen sich auf das FeLV-Virus. Infektion Die Übertragung des felinen Leukämievirus geschieht primär über den Speichel. Andere Körperflüssigkeiten können ebenfalls kontaminiert sein. Bei Katzenwelpen besteht zudem die Möglichkeit einer transplazentaren Infektion (16). Die ersten Symptome sind Fieber und Lymphadenopathie. Schafft es das Immunsystem HUND/KATZE Impfungen haben zu einer drastischen Abnahme der Prävalenz und der Schwere der felinen Herpesvirus-Infektion beigetragen.Trotzdem kann es zu Infektionen bei Katzenwelpen kommen, wenn sie entweder von einer Katze ohne Herpesvirus-spezifische Immunität geboren werden oder vor ihrer ersten Impfung keine maternalen Antikörper mehr haben (28). In Fällen akuter Infektion oder der Reaktivierung einer latenten Infektion sind Antibiotika zur Kontrolle der sekundären bakteriellen Infektion hilfreich. Antivirale Medikamente wie Azyklovir, Ganzyklovir, Penzyklovir oder Cidofivir sowie dieTherapie mit α- und ω-Interferon, L-Lysin und bovines Laktoferrin zeigten ihre Wirkung in In-vitro- oder in limitierten experimentellen Studien (3, 38, 64, 82, 83, 95). 313 Abb. 11 Felines Herpesvirus-induziertes Erythema multiforme (Abb.: C. Prost) nicht, diese Infektion zu beseitigen, kann das Virus das Knochenmark befallen und dort persistieren. Das betroffene Tier wird in der Folge über längere Zeit transient, permanent oder gar nicht virämisch, abhängig von der Reaktion des Immunsystems (16). Über die fokale Replikation bei virämischen oder aber auch bei nichtvirämischen Katzen in Milz, Knochenmark, Lymphknoten, Haut oder Dünndarm gibt es diverse Publikationen (24, 43, 58). Klinik (FeLV) Über FeLV-induziertes Lymphom, Leukämie und Knochenmarksuppression liegen ausführliche Berichte vor (16). Im vorliegenden Artikel werden diese Erkrankungen nicht näher besprochen. Retroviren-assoziierte Hautveränderungen bei Katzen Kutanes Lymphom. Bei bis zu 75% der Lymphome von Katzen konnte FeLV-Antigen oder -DNA nachgewiesen werden (56). Auch kutane T-Zell-Lymphome sind häufig FeLV-positiv (56, 87, 107). Interessanterweise gibt es auch Berichte über FeLV-positive Neoplasien bei serologisch FeLV-negativen Katzen (107). Da zumindest bei einem Teil dieser Tumoren virales Kapsidantigen entdeckt wurde, darf eine lokale kutane Replikation des Virus vermutet werden (24, 48). Latenten oder nicht produktive Infektionen können jedoch nicht ausgeschlossen werden (107). An kutanen Lymphomen erkranken normalerweise ältere Katzen. Die Läsionen können solitär oder multizentrisch auftreten (87, 107). Die klinische Symptomatik ist sehr variabel und umfasst erythematöse Plaques, Knoten und Ulzerationen (Abb. 12). Häufig treten auch systemische Symptome auf. Histologisch werden diese Neoplasien weiter in epitheliotrope und nichtepitheliotrope T- und B-Zell-Lymphome unterteilt. 18 Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm Hautveränderungen assoziiert mit hoher Rate an FeLV/FIV-positiven serologischen Befunden HUND/KATZE 314 Plasmazell-Pododermatitis. Bei dieser sehr schmerzhaften Erkrankung sind ein oder mehrere metakarpale oder metatarsale Pfotenballen betroffen. Neben einer Schwellung treten mit der Zeit auch Ulzera auf. Die Diagnose wird mittels zytologischer oder histologischer Untersuchung gestellt. Häufig sind FIV-positive Katzen betroffen (39, 88). Die Ursache ist bis heute unbekannt. Glukokortikoide, Doxycyclin (10 mg/kg KM/Tag) und auch chirurgische Eingriffe werden als Therapiemöglichkeiten vorgeschlagen (19, 39, 40, 84). Rezidivierende Plasmazell-Polychondritis. Hierbei handelt es sich um eine sehr seltene Krankheit, die durch eine asymmetrische Schwellung der Pinna, gefolgt von einer permanenten Eindrehung oder Deformation des Ohrknorpels charakterisiert wird (8, 29, 88). Auch diese Plasmazell-Polychondritis tritt häufig bei FeLV- oder FIV-positiven Katzen auf. Abb. 12 FeLV-induziertes kutanes Lymphom Hautveränderungen assoziiert mit Immundefizienz FIV-positive Katzen leiden häufig unter verschiedenen infektiösen Krankheiten wie zum Beispiel Abszesse, Pyodermien, Dermatophytosen, Kryptokokkose und Demodikose (86). Diagnose retroviraler Infektionen Die Diagnose einer FeLV-Infektion beruht auf dem Nachweis des FeLV-Kapsidproteins p27, normalerweise mittels ELISA. Virämische Katzen weisen ein positives Testergebnis auf. Bei transient virämischen oder latent infizierten Tieren kann das Resultat falsch negativ sein (16). Zusätzlich besteht die Möglichkeit, mit Gewebe von Katzen, einschließlich des vorher formalinfixierten und paraffinisierten, eine PCR durchzuführen (16). Abb. 13 FeLV-induzierte Riesenzell-Dermatitis Prävention und Therapie einer FeLV-Infektion Riesenzell-Dermatitis. Eine Riesenzell-Dermatitis wurde bei verschiedenen an FeLV erkrankten Katzen beschrieben (22, 36). Klinisch lagen Erosionen, Ulzerationen, Krusten, Schuppen und Alopezie vor (Abb. 13). Die Tiere zeigten Juckreiz, systemische Symptome (Fieber, Anorexie, Apathie) und auch hämatologische Veränderungen (Anämie).Alle betroffenen Katzen wurden euthanasiert oder starben innerhalb weniger Wochen. Das Auffälligste der histologischen Untersuchung waren ein KeratinozytenSynzytium und eine Dyskeratose. Bei allen beschriebenen Fällen konnte FeLV-Antigen oder -DNA nachgewiesen werden. Zurzeit ist noch ungeklärt, ob es sich bei dieser Synzytium-Formation um eine neoplastische Anordnung handelt. Kutane Hörner. Im Zusammenhang mit FeLV-Infektionen wurden auch kutane Hörner beschrieben. In der darunter liegenden Epidermis konnte virales Antigen nachgewiesen werden (86). 19 Zur Prävention einer FeLV-Infektion wurden verschiedene wirksame Impfstoffe entwickelt. Bei allen handelt es sich um Totoder Vektorvakzinen (basiert auf genetisch entwickeltem Protein gp70). Zur Behandlung von FeLV-induzierten Lymphomen und FeLV-induzierter Knochenmarksuppression existieren verschiedene Arbeiten, auf die im vorliegenden Artikel nicht weiter eingegangen wird. Staupe und “Hard Pad Disease” Ätiologie und Pathogenese Staupe wird durch ein RNA-Virus der Familie Paramyxoviridae verursacht (70). Der breite Einsatz von wirksamen Impfprogrammen hat zu einer drastischen Reduktion des Auftretens dieser Krankheit geführt. Nach wie vor ist es jedoch wichtig, auch die kutanen Manifestationen dieser Infektion zu erkennen. Die Ansteckung erfolgt in der Regel über den Respirationstrakt mit einer ersten viralen Replikation in den Lymphknoten der oberen Atemwege und den Tonsillen (70). Die Inkubation dauert zirka eine Woche, wobei es zu einer Verteilung des Virus in den gesamten primären und sekundären lymphatischen Organen sowie im Verdauungstrakt kommt (70). Der weitere Verlauf ist von der Synthese neutralisierender Antikörper abhängig. Bei deren Vorhandensein kann der Hund die Infektion kontrollieren, ohne dass Symptome auftreten (71). Fehlen diese Antikörper, kann das Virus sämtliche epitheliale Gewebe befallen: Respirationstrakt, Verdauungstrakt, Harnwege, Augen und Haut. Erst kürzlich ließ sich nachweisen, dass eine transiente Infektion der basalen Keratinozyten des Epithels für eine vorübergehende Proliferierung von Keratinozyten verantwortlich ist (33, 35). Der Befall von Nerven erfolgt später, jedoch nicht immer. Neurologische Symptome sind somit eine Spätfolge der Staupe (70). Abb. 14 Staupe beim Hund: nasale Hyperkeratose Klinik Die akute und subakute Form der Staupe ist durch Fieber, Apathie, Anorexie, Dehydratation, respiratorische Symptome (Husten, Bronchitis, Bronchopneumonie), gastrointestinale Symptome (Erbrechen, Durchfall), okuläre Symptome (Konjunktivitis, Iridozyklitis) und eventuell auch durch neurologische Symptome (Verhaltensänderungen, Krämpfe) gekennzeichnet (71). Bei Welpen kann sich die Infektion in Form eines Impetigo manifestieren. In vielen Fällen werden Papeln und Pusteln entdeckt; ein direkter Zusammenhang oder ein viraler zytopathischer Effekt konnte bisher nicht nachgewiesen werden. Mittels immunologischer Techniken wurde vor kurzem bestätigt, dass das Virus nahezu bei allen an Staupe erkrankten Hunden auch in der Haut vorkommt (41). Nach einiger Zeit, mit oder ohne Vorgeschichte von Staupe, können bei manchen Tieren neurologische („Old Dog Encephalitis“) und/oder dermatologische Symptome auftreten (71, 86). Bei den Hautveränderungen handelt es sich um Hyperkeratose des Planum nasale (Abb. 14) und der Pfotenballen (Hard Pad Disease, Abb. 15) (86). „Hard Pad Disease“ tritt auch bei Hunden auf, die bei einer Infektion mit dem Staupevirus über einen unvollständigen Impfschutz verfügen. Diagnose Ohne passende Anamnese kann die „Hard Pad Disease“ als Autoimmunkrankheit (Pemphigus, Lupus), Malnutrition (zinkresponsive Dermatitis), kongenitale Erkrankung (familiäre idiopathische nasodigitale Hyperkeratose), Papillomatose oder hepatokutanes Syndrom fehldiagnostiziert werden. Histopathologisch erkennt man eine deutliche ortho- oder parakeratotische Hyperkeratose des Pfotenballens und des Planum nasale mit azidophilen zytoplasmatischen und nur selten intranukleären Einschlüssen von variabler Größe und Form (Lentz Bodies) in den Keratinozyten auf follikulärer Ebene. Teilweise können auch synzytiale Riesenzellen beobachtet werden (119). Da virale Einschlüsse nicht im- 315 HUND/KATZE Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm Abb. 15 Staupe beim Hund: Hard Pad Disease mer vorhanden sind, werden auch andere Techniken wie RT-PCR zur Diagnosestellung herangezogen (26, 57). Staupeimpfungen Da im Fall einer akuten Infektion keine effektive Behandlung existiert und nur die Möglichkeit einer symptomatischen Therapie besteht, ist eine prophylaktische Impfung unumgänglich. Experimentelle Studien zeigten, dass eine Vakzinationen mit inaktivierten Viren den Hund nicht ausreichend schützen kann. Deshalb werden in den zurzeit verwendeten Produkten nur die Hüllproteine verwendet. Maternale Antikörper, die transplazentar oder mit dem Kolostrum vom Welpen aufgenommen werden, verhindern eine Immunisierung. Im Allgemeinen wird ein Welpe zur Grundimmunisierung zwischen der sechsten und 16. Lebenswoche zweimal im Abstand von vier Wochen geimpft. Parvovirose Bei einer zweimonatigen Dogge wurde im Zusammenhang mit Parvovirose vom Auftreten eines Erythema multiforme (EM) be- 20 Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm HUND/KATZE 316 Abb. 16 Kutane Parvovirose: Ulkus am Pfotenballen richtet (23). Bei EM werden die Antigene der Keratinozyten modifiziert, worauf durch eine anschließende Lymphozyteninfiltration eine selektive Apoptose induziert wird (1, 55). Neben den klassischen Symptomen einer Parvovirose zeigte der Welpe vesikulopapuläre kutane und mukokutane Veränderungen im Gesicht, Maul, an derVulva, an der ventralen Körperhälfte, den Pfoten (mit fokalen Ulzerationen an den Pfotenballen) und über den Knochenvorsprüngen (Abb. 16). Erythematöse Plaques waren am Kinn und Abdomen sichtbar (23). Da der Hund nicht überlebte, konnte die Entwicklung der Hautveränderungen nicht weiter beobachtet werden. Histopathologisch wurden eine regenerative nekrotisierende Enteritis, vereinbar mit Parvovirose, und kutane Läsionen ähnlich einem Erythema multiforme major beschrieben. Die Hautveränderungen setzten sich aus einer lymphozytären Interface-Dermatitis, Apoptose und Satellitose, verteilt über die gesamte Epidermis, sowie aus apoptotischen Keratinozyten mit intranukleären basophilen viralen Einschlüssen zusammen. Die immunhistochemische Untersuchung bestätigte das Vorhandensein von kaninem Parvovirus CPV-2 in der Haut und in den intestinalen Drüsen. Danksagung Wir danken Ingrid Wilhelm-Dotter herzlich für die Durchsicht des Manuskripts. Literatur 1. Assier H, Bastuji-Garin S, Revuz J, Roujeau JC. Erythema multiforme with mucous membrane involvement and Stevens-Johnson syndrome are clinically different disorders with distinct causes. Arch Dermatol 1995; 131 (5): 539–43. 2. Baer KE, Helton K. Multicentric squamous cell carcinoma in situ resembling Bowen's disease in cats. Vet Pathol 1993; 30 (6): 535–43. 3. Beaumont SL, Maggs DJ, Clarke HE. Effects of bovine lactoferrin on in vitro replication of feline herpesvirus. Vet Ophthalmol 2003; 6 (3): 245–50. 4. Bennett M, Gaskell CJ, Baxby D, Gaskell RM, Kelly DF, Nadoo J. Feline cowpox infection. J Small Anim Pract 1990; 31: 167–73. 5. Bennet L, Gaskell RM, Baxby D. Feline pox virus infection. In: Infectious Diseases of the Dog and Cat. Green CE, ed. Philadelphia: Saunders 1998; 110–1. 6. Bernays ME, Flemming D, Peiffer RL Jr. Primary corneal papilloma and squamous cell carcinoma associated with pigmentary keratitis in four dogs. J Am Vet Med Assoc 1999; 214 (2): 215–17. 7. Brooks-Mill A, Campbell KL. Concurrent hypothyroidism, IgM deficiency, impaired T cell mitogen response and multifocal cutaneous squamous papillomas in a dog. Can Pract 1992; 17: 15–21. 21 8. Bunge MM, Foil CS, Taylor HW, Glaze MB. Relapsing polychondritis in a cat. J Am Anim Hosp Assoc 1992; 28: 203–6. 9. Campbell KL, Sundberg JP, Goldschmidt MH, Knupp C, Reichmann ME. Cutaneous inverted papillomas in dogs. Vet Pathol 1988; 25 (1): 67–71. 10. Canese MG, Lavazza A, Massone A, Galeano F, Boldini M. Feline poxvirus infection. A case report. Schweiz Arch Tierheilk 1997; 139 (10): 454–7. 11. Carmichael LE, Greene CE. Canine herpesvirus infection. In: Infectious Diseases of the Dog and Cat. Green CE, ed. Philadelphia: Saunders 1998; 28–32. 12. Carney HC, England JJ, Hodgin EC, Whiteley HE, Adkison DL, Sundberg JP. Papillomavrius infection of aged Persian cats. J Vet Diagn Invest 1990; 2: 294–9. 13. Carpenter JL, Kreider JW, Alroy J, Schmidt GM. Cutaneous xanthogranuloma and viral papillom on a eyelid of a cat. Vet Dermatol 1992; 3 (4/5): 187–90. 14. Chambers VC, Evans CA. Canine oral papillomatosis. I. Virus assay and observations on the various stages of the experimental infection. Cancer Res 1959; 19: 1188–95. 15. Collier L, Collins BK. Excision and cryosurgical ablation of severe periocular papillomatosis in a dog. J Am Vet Med Assoc 1994; 204 (6): 881–3. 16. Cotter SM. Feline viral neoplasia. In: Infectious Diseases of the Dog and Cat. Green CE, ed. Philadelphia: Saunders 1998; 71–84. 17. Czerny CP, Eis-Hübingeer AM, Mayr A, Schneweiss KE. Pfeiff B: Animal poxviruses transmitted from cat to man: current event with lethal end. J Vet Med B 1991, 38: 421–31. 18. Denman AM, Rager-Zisman B. Viruses and autoimmune diseases – adapting Koch's postulates. Autoimmunity Rev 2004; 3 (5): 355–61. 19. Dias Pereira P, Faustino AMR. Feline plasma cell pododermatitis: a study of 8 cases. Vet Dermatol 2003; 14 (6): 333–7. 20. Egberink HF, Berrocal A, Bax HA, van den Ingh TS, Walter JH, Horzinek MC. Papillomavirus associated skin lesions in a cat seropositive for feline immunodeficiency virus. Vet Microbiol 1992; 31 (2–3): 117–25. 21. Eis-Hübinger AM, Gerritzen G, Schneweis KE, Pfeiff B, Pullmann H, Mayr A, Czerny CP. Fatal cowpox-like virus infection transmitted by cat. The Lancet 1990; 336: 880. 22. Favrot C, Grest P, Meli M, Kipar A, Wilhelm S, Zaugg N. P-32 Giant cell dermatosis in a FeLV-infected cat: detection of the virus in infected skin by immunohistology and PCR. Vet Dermatol 2004; 15 (s1): 50. 23. Favrot C, Olivry T, Dunston SM, Degorce-Rubiales F, Guy JS. Parvovirus infection of keratinocytes as a cause of canine erythema multiforme.Vet Pathol 2000; 37 (6): 647–9. 24. Favrot C, Wilhelm S, Mezler K, Grest P, Kipar A, Meli M. A case of FeLV positive cutaneous T-cell lymphoma in a serologically FeLV negative cat. Vet Derm 2005; (16): 196. 25. Flecknell PA, Orr CM Wright AI, Gaskell RM, Kelly DF. Skin ulceration associated with svirus infection in cats. Vet Rec 1979; 104 (14): 313–5. 26. Frisk AL, Konig M, Moritz A, Baumgartner W. Detection of canine distemper virus nucleoprotein RNA by reverse transcription-PCR using serum, whole blood, and cerebrospinal fluid from dogs with distemper. J Clin Microbiol 1999; 37 (11): 3634–43. 27. Gaskell RM, Gaskell CJ, Evans RJ, Dennis PE, Bennett AM, Udall ND, Voyle C, Hill TJ. Natural and experimental pox virus infection in the domestic cat. Vet Rec 1983; 112 (8): 164–70. 28. Gaskell RM, Dawson S. Feline respiratory disease. In: Infectious Diseases of the Dog and Cat. Green CE, ed. Philadelphia: Saunders 1998; 97–105. 29. Gerber B, Crottaz M, vonTscharner C, Scharer V. Feline relapsing polychondritis: two cases and a review of the literature. J Feline Med Surg 2002; 4 (4): 189–94. 30. Ghim S, Newsome J, Bell J, Sundberg JP, Schlegel R, Jenson AB. Spontaneously regressing oral papillomas induce systemic antibodies that neutralize canine oral papillomavirus. Exp Mol Pathol 2000; 68 (3): 147–51. 31. Godfrey DR, Blundell CJ, Essbauer S, Pfeffer M, Shearer DH, Rest JR, Baker JFM. Unusal presentations of cowpox infection in cats. J Small Anim Pract 2004; 45: 202–5. 32. Greene CE, Appel MJ. Canine distemper. In: Infectious Diseases of the Dog and Cat. Green CE, ed. Philadelphia: Saunders 1998; 9–22. 33. Gröne A, Engelhardt P, Zurbriggen A. Canine distemper virus infection: Proliferation of canine footpad keratinocytes. Vet Pathol 2003; 40 (5): 574–8. 34. Gröne A, Groeters S, Koutinas A, Saridomichelakis M, Baumgartner W. Non-cytocidal infection of keratinocytes by canine distemper virus in the socalled hard pad disease of canine distemper. Vet Microbiol 2003; 96 (2): 157–63. 35. Gross TL, Fau-Brimacomb BH. Multifocal intraepidermal carcinoma in a dog histologically resembling Bowen's disease in Man. Am J Dermatopathol 1986; 8 (6): 509–15. 36. Gross L, Clark EG, Hargis AM, Head LL, Haines DM. Giant cell dermatosis in FeLV-positive cats. Vet Dermatol 1993; 4 (3): 117–22. 37. Groux D, Degorce-Rubiales F, Capelli JL. Feline poxvirosis, a report concerning two cases. Prat Med Chir Anim Cie 1999; 34 (3): 215–29. 38. Guaguère E, Olivry T, Delverdier-PoujadeA, Denerolle P, Pages JP, Magnol JP. Demodex cati infestation in association with feline cutaneous squamous cell carcinoma in situ: a report of five cases. Vet Dermatol 1999; 10 (1): 61–7. 39. Guaguere E, Hubert B, Delabre C. Feline pododermatoses. Vet Dermatol 1992; 3 (1): 1–12. 40. Guaguere E, Prelaud P, Degorce-Rubiales F, MullerA, Hubert T, Lebon S. FC-23 Feline plasma cell pododermatitis: a retrospective study of 26 cases. Vet Dermatol 2004; 15 (s1): 27 41. Haines DM, Martin KM, Chelack BJ, Sargent RA, Outerbridge CA, Clark EG. Immunohistochemical detection of canine distemper virus in haired skin, nasal mucosa, and footpad epithelium: a method for antemortem diagnosis of infection. J Vet Diagn Invest 1999; 11 (5): 396–9. 42. Hanna PE, Dunn D. Cutaneous fibropapilloma in a cat (feline sarcoid). Can Vet J 2003; 44 (7): 601–2. 43. Hargis AM, Ginn PE, Mansell JEKL, Garber RL. Ulcerative facial and nasal dermatitis and stomatitis in cats associated with feline svirus 1. Vet Dermatol 1999; 10 (4): 267–74. 44. Hargis AM, Ginn PE. Feline svirus 1-associated facial and nasal dermatitis and stomatitis in domestic cats. Vet Clin North Am Small Anim Pract 1999; 29 (6): 1281–5. 45. Harwood CA, Proby CM. Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis 2002; 15 (2): 101–14. 46. Hashimoto A, Hirai K, Fukushi H, FujimotoY. The vaginal lesions of a bitch with a history of canine svirus infection. Japan J Vet Sci 1983; 45: 123–6. 47. Hawranek T, Tritscher M, Muss WH, Jecel J, Nowotny N, Kolodziejek J, Emberger, M, Schaeppi H, Hintner H. Feline orthopoxvirus infection transmitted from cat to human. J Am Acad Dermatol 2003; 49 (3): 513–8. 48. Hayes KA, Rojko JL, Mathes LE. Incidence of localized feline leukemia virus infection in cats. Am J Vet Res 1992; 53 (4): 604–7. 49. Hill H, Mare CJ. Genital disease in dogs caused by canine svirus. Am J Vet Res 1983; 35: 669–73. 50. Hoare CM, Gruffydd-Jones TJ, Bennett M, Gaskell RM, Baxby D. Cowpox in cats. Vet Rec 1984; 114 (1): 22. 51. Howard DR. Pseudorabies in dogs and cats. In: Current Veterinary Dermatology. Kirk, RW, ed. Philadelphia: Saunders 1986; 116–9. 52. Howley PL, Lowy DR. Papillomaviruses and their replication. In: Field's Virology. Knipe DM, ed. Philadelphia: Lippincott, Williams & Wilkins 2003; 2197–2264. 53. Hubert B, Magnol JP. Hepatozoon canis, a fortuitous or a pathogenic agent in canine dermatology. Vet Dermatol 2002; 13: 224–7. 54. Huff JC. Erythema multiforme. Dermatol Clin 1985; 3 (1): 141–52. 55. Huff JC, Weston WL, Tonnesen MG. Erythema multiforme: a critical review of characteristics, diagnostic criteria, and causes. J Am Acad Dermatol 1983; 8 (6): 763–75. 56. Jackson ML, Wood SL, Misra V, Haines DM. Immunohistochemical identification of B and T lymphocytes in formalin-fixed, paraffin-embedded feline lymphosarcomas: relation to feline leukemia virus status, tumor site, and patient age. Can J Vet Res 1996; 60 (3): 199–204. 57. Koutinas AF, Baumgartner W, Tontis D, Polizopoulou Z, Saridomichelakis MN, Lekkas S. Histopathology and immunohistochemistry of canine distemper virus-induced footpad hyperkeratosis (Hard Pad Disease) in dogs with natural canine distemper. Vet Pathol 2004; 41 (1): 2–9. 58. Kovacevic S, Kipar A, Kremendahl J, Teebken-Schuler D, Grant CK. Immunohistochemical diagnosis of feline leukemia virus infection in formalinfixed tissue. Eur J Vet Pathol 1997; 3 (1): 13–9. 59. LeClerc SM, Clark EG, Haines DM. papillomavirus infection in association with feline cutaneous squamous cell carcinoma in situ. In: AAVD/ACVD Meeting, 1997. 60. Le Net JL, Orth G, Sundberg JP, Cassonnet P, Poisson L, Masson MT, George C, Longeart L. Multiple pigmented cutaneous papules associated with a novel canine papillomavirus in an immunosuppressed dog. Vet Pathol 1997; 34 (1): 8–14. 61. Li J, Sun Y, Garen A. Immunization and immunotherapy for cancers involving infection by a human papillomavirus in a mouse model. Proc Natl Acad Sci U S A 2002; 99 (25):16232–6. 62. Lozano-Alarcon F, Lewis TP 2nd. Clark EG, Bradley GA, Shupe MR, Hargis AM. Persistent papillomavirus infection in a cat. J Am Anim Hosp Assoc 1996; 32 (5): 392–6. 63. Lucroy MD, Hill FI, Moore PF, Madewell BR. Cutaneous papillomatosis in a dog with malignant lymphoma following long-term chemotherapy. J Vet Diagn Invest 1998; 10 (4): 369–71. 64. Maggs DJ, Nasisse MP, Kass PH. Efficacy of oral supplementation with L-Lysine in cats latently infected with feline svirus. Am J Vet Res 2003; 64 (1): 37–42. 65. Mayr A, Lauer J, Czerny CP. Neue Fakten über die Verbreitung von Orthopoxvirusinfektionen. Prakt Tierarzt 1995; 7: 961–7. 66. Meyer H, Schay C, Mahnel H, Pfeffer M. Characterization of orthopoxviruses isolated from man and animals in Germany. Arch Virol 1999; 144 (3): 491–501. 67. Miller WH, Jr., Affolter VK, Scott DW, Suter MM. Multicentric squamous cell carcinomas in situ resembling Bowen's disease in five cats. Vet Dermatol 1992; 3 (4/5): 177–82. 68. Monroe WE. Clinical signs associated with pseudorabies in dogs. J Am Vet Med Assoc 1989; 195 (5): 599–602. 69. Muller T, Henning K, Kramer M, Czerny CP, Meyer H, Ziedler K. Seroprevalence of orthopox virus specific antibodies in red foxes (Vulpes vulpes) in the Federal State Brandenburg, Germany. J Wildl Dis 1996; 32 (2): 348–53. 70. Murphy FA, Gibbs EPJ, Horzinek MC, Studdert MJ. Pathogenesis of viral infection. In: Veterinary Virology. Murphy FA, Horzinek MC, Studdert MJ, eds. San Diego: Academic Press 1999; 167–9. 71. Murphy FA, Gibbs EPJ, Horzinek MC, Studdert MJ. Paramyxoviridae. In: Veterinary Virology. Murphy FA, Horzinek MC, Studdert MJ, eds. San Diego: Academic Press 1999; 423–5. 72. Nagata M, Nanko H, Moriyama A, Washizu T, Ishida T. Pigmented plaques associated with papillomavirus infection in dogs: is this epidermodysplasia verruciformis? Vet Dermatol 1995; 6: 179–86. 73. Nicholls PK, Klaunberg BA, Moore RA, Santos EB, Parry NR, Gough GW, Stanley MA. Naturally occurring, nonregressing canine oral papillomavirus infection: Host immunity, virus characterization, and experimental infection. Virol 1999; 265 (2): 365–74. 74. Nicholls PK, Stanley MA. The immunology of animal papillomaviruses. Vet Immunol Immunopathol 2000; 73 (2): 101–27. 75. Nicholls PK, Moore PF, Anderson DM, Moore RA, Parry NR, Gough GW, Stanley MA. Regression of canine oral papillomas is associated with infiltration of CD4+ and CD8+ lymphocytes. Virol 2001; 283 (1): 31–9. 76. Nowotny N, Fischer OW, Schilcher F, Schwendenwein I, Loupal G, Schwarzmann T, Meyer J, Hermanns W. Pockenvirusinfektionen bei Hauskatzen: klinische, pathologische, virologische und epidemiologische Untersuchungen. Wien Tierärztl Mschr 1994; 81: 362–9. 77. Olivry T. Newly recognized feline dermatoses: Selected topics. In: DVM Fall Seminar, 1997, Key West. 78. Pfeffer M, Pfleghaar S, von Bomhard D, Kaaden OR, Meyer H. Retrospective investigation of feline cowpox in Germany.Vet Rec 2002; 150 (2): 50–1. 79. Pransky SM, Albright JT, Magit AE. Long-term follow-up of pediatric recurrent respiratory papillomatosis managed with intralesional cidofovir. Laryngoscope 2003; 113 (9): 1583–7. 80. Prost C. A case of exfoliative erythema multiforme associated with svirus 1 infection in a cat (abstract). Vet Dermatol 2004; 15 (Suppl. 1). 81. Roizmann B, Pellett PE. The Family sviridae: a brief introduction: In: Field's Virology, Vol. 2, 4th ed. Knipe DM, Howley PM, eds. Philadelphia: Lippincott, Williams & Wilkins 2001; 2381–97. 82. Sandmeyer LS, Keller CB, Bienzle D. Effects of interferon-alpha on cytopathic changes and titers for feline herpesvirus-1 in primary cultures of feline corneal epithelial cells. Am J Vet Res 2005; 66 (2): 210–6. 83. Sandmeyer LS, Keller CB, Bienzle D. Effects of cidofovir on cell death and replication of feline herpesvirus-1 in cultured feline corneal epithelial cells. Am J Vet Res 2005; 66 (2): 217–22. 22 317 HUND/KATZE Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm HUND/KATZE 318 Virale Dermatosen bei Hund und Katze C. Favrot, S. Wilhelm 84. Scarampella F, Ordeix L. FC-22 Doxycycline therapy in 10 cases of feline plasma cell pododermatitis: clinical, haematological and serological evaluations. Vet Dermatol 2004; 15 (s1): 27 85. Schulman FY, Krafft AE, Janczewski T. Feline cutaneous fibropapillomas: Clinicopathologic findings and association with papillomavirus infection. Vet Pathol 2001; 38 (3): 291–296. 86. Scott DW, Miller WH, Griffin CE. Viral, rickettsial and protozoal diseases. In: Muller & Kirk's Small Animal Dermatology. Scott DW, Miller WH, Griffin CE, eds. Philadelphia: Saunders 2001; 517–42. 87. Scott DW, Miller WH, Griffin CE. Neoplastic and non-neoplastic tumors. In: Muller & Kirk's Small Animal Dermatology. Scott DW, Miller WH, Griffin CE, eds. Philadelphia: Saunders 2001; 1236–413. 88. Scott DW. Feline dermatology 1983–1985: „the secret sits“. JAmAnim Hosp Assoc 1986; 23: 255–74. 89. Sellon RK. Update on molecular techniques for diagnostic testing of infectious disease.Vet Clin NorthAm SmallAnim Pract 2003; 33 (4): 677–93. 90. Simon M, Horvath C, Pauley D, King N, Hunt R, Ringler D. Plasma cell pododermatitis in feline immunodeficiency virus-infected cats. Vet Pathol 1993; 30 (5): 477. 91. Smith KC, Bennett M, Garrett DC. Skin lesions caused by orthopoxvirus infection in a dog. J Small Anim Pract 1999; 40 (10): 495–7. 92. Stanley MA. Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 2002; 27 (7): 571–7. 93. Steffan J, Alexander, D, Brovedani F, Fisch RD. Comparison of cyclosporine A with methylprednisolone for treatment of canine atopic dermatitis: a parallel blinded randomized controlled trial. Vet Dermatol 2003; 14: 11–22. 94. Steinborn A, Essbauer S. Marsch W. Kuh-/Katzenpocken Infektion beim Mensch: Ein potenziell verkanntes Krankheitsbild. Dtsch Med Wschr 2003; 128 (12): 607–10. 95. Stiles J, Townsend WM, Rogers QR, Krohne SG. Effect of oral administration of L-lysine on conjunctivitis caused by feline herpesvirus in cats.Am JVet Res 2002; 63 (1): 99–103. 96. Stokking LB, Ehrhart EJ, Lichtensteiger CA, Campbell KL. Pigmented epidermal plaques in three dogs. JAmAnim HospAssoc 2004; 40 (5): 411–7. 97. Suchy A, Bauder B, Gelbmann W, Lohr CV, Teifke JP, Weissenbock H. Diagnosis of feline herpesvirus infection by immunohistochemistry, polymerase chain reaction, and in situ hybridization. J Vet Diagn Invest 2000; 12 (2): 186–91. 98. Sundberg JP, VanRanst M, Montali R, Homer BL, Miller WH, Rowland PH, Scott DW, England JJ, Dunstan RW, Mikaelian I, Jenson AB. Feline papillomas and papillomaviruses. Vet Pathol 2000; 37 (1): 1–10. 99. Sundberg JP, O'Banion MK, Schmidt-Didier E, Reichmann ME, Cloning and characterization of a canine oral papillomavirus. Am J Vet Res 1986; 47: 1142–4. 100. Sundberg JP, Smith EK, Herron AJ, Jenson AB, Burk RD, Van Ranst M. Involvement of canine oral papillomavirus in generalized oral and cutaneous verrucosis in a Chinese Shar Pei dog. Vet Pathol 1994; 31 (2): 183–7. 101. Sundberg JP, Junge RE, Lancester WD. Immunoperoxidase localization of papillomaviruses in hyperplastic and neoplastic epithelial lesions in animals. Am J Vet Res 1984; 45 (7): 1441–6. 102. Tachezy R, Duson G, RectorA, Jenson AB, Sundberg JP, Van Ranst M. Cloning and genomic characterization of Felis domesticus papillomavirus type 1. Virol 2002; 301 (2): 313–21. 103. Tanabe C, Kano R, Nagata M, NakamuraY, Watanabe S, Hasegawa A. Molecular characteristics of cutaneous papillomavirus from the canine pigmented epidermal nevus. J Vet Med Sci 2000; 62 (11): 1189–92. 23 104. Teifke JP, Lohr CV, Shirasawa H. Detection of canine oral papillomavirusDNA in canine oral squamous cell carcinomas and p53 overexpressing skin papillomas of the dog using the polymerase chain reaction and non-radioactive in situ hybridization. Vet Microbiol 1998; 60 (2–4): 119–30. 105. Teifke JP, Kidney BA, Lohr CV, Yager JA. Detection of papillomavirusDNA in mesenchymal tumour cells and not in the hyperplastic epithelium of feline sarcoids. Vet Dermatol 2003; 14 (1): 47–56. 106. Thomsett LR, Baxby D, Denham EM. Cowpox in the domestic cat. Vet Rec 1978; 103 (25): 567. 107. Tobey JC, Houston DM, Breur GJ, Jackson ML, Stubbington DA. Cutaneous T-cell lymphoma in a cat. J Am Vet Med Assoc 1994; 204 (4): 606–9. 108. Tryland M. Sandvik T, Holtet L, Nilsen H, Olsvik O, Traavik T. Antibodies to orthopoxvirus in domestic cats in Norway.Vet Rec 1998; 143 (4): 105–9. 109. von Bomhard D, Pflegehaar S, Mahnel H, Schneekloth-Ducker I. Fallbericht: Katzenpockeninfektion als Zoonose für Hund und Mensch. Kleintierprax 1991; 32: 511–4. 110. von Bomhard D, Pfleghaar S, Mahnel H. Zur Epidemiologie, Klinik, Pathologie und Virologie der Katzen-Pocken-Infektion. Kleintierprax 1992; 37 (4): 219–30. 111. Walder EJ. Malignant transformation of pigmented epidermal nevus in a dog (Abstract). Vet Pathol 1997; 34: 505. 112. Watrach AM, Small E, Case MT. Canine papilloma: progression of oral papilloma to carcinoma. J Nat Cancerol Instit 1970; 45: 915–20. 113. Weston WL, Morelli JG. Herpes simplex virus-associated erythema multiforme in prepubertal children. Arch Pediatr Adolesc Med 1997; 151 (10): 1014–6. 114. White SD. Newly introduced drugs in veterinary dermatology. In: Proc World Congress Vet Dermatol, Edinborough 1996. 115. White SD, Rosychuk RA, Scott KV, Trettien AL, Jonas L, Denerolle P. Use of isotretinoin and etretinate for the treatment of benign cutaneous neoplasia and cutaneous lymphoma in dogs. J Am Vet Med Assoc 1993; 202 (3): 387–91. 116. Wilkinson GT, Prydie J, Scarnell J. Possible „orf“ (contagious pustular dermatitis, contagious ecthyma of sheep) infection in the dog.Vet Rec 1970; 87 (25): 766–7. 117. Withrow SJ, Mac Ewen EG. Viral papillomatosis. In: Clinical Veterinary Oncology. Withrow SJ, Mac Ewen EG, eds. Philadelphia: Lippincott 1989. 118. Yager JA, Wilcock BP. Squamous papilloma. In: Color Atlas and Text of Surgical Pathology of the Dog and Cat. Dermatopathology and Skin Tumors. Yager JA, Wilcock BP, eds. London: Wolfe 1994; 251–2. 119. Yager JA, Wilcock BP. Perivascular dermatitis with diffuse orthokeratotic hyperkeratosis. In: Color Atlas and Text of Surgical Pathology of the Dog and Cat. Dermatopathology and Skin Tumors. Yager JA, Wilcock BP, eds. London: Wolfe 1994; 66–70. Claude Favrot, DVM, MsSc, Dip. ECVD Klinik für Kleintiermedizin, Dermatologie Vetsuisse Fakultät, Universität Zürich Winterthurerstrasse 260 CH-8057 Zürich E-Mail: cfavrot@vetclinics.unizh.ch Chapter 3 Parvovirus Infection of Keratinocytes as a Cause of Canine Erythema Multiforme C. Favrot1, T. Olivry2, S. M. Dunston2, F. DegorceRubiales3 and J. S. Guy2 Veterinary Pathology, 2000: 37 (6): 647-649 1 2 Clinique Vétérinaire de Ferrette, Ferrette, Haut-Rhin, France Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA 3 LAPVSO, Toulouse, France 24 Vet Pathol 37:647–649 (2000) BRIEF COMMUNICATIONS AND CASE REPORTS Parvovirus Infection of Keratinocytes as a Cause of Canine Erythema Multiforme C. Favrot, T. Olivry, S. M. Dunston, F. Degorce-Rubiales AND J. S. Guy Abstract. Erythema multiforme major was diagnosed in a dog with necrotizing parvoviral enteritis. Skin lesions consisted of ulceration of the footpads, pressure points, mouth, and vaginal mucosa; vesicles in the oral cavity; and erythematous patches on the abdomen and perivulvar skin. Microscopic examination of mucosal and haired skin specimens revealed lymphocyte-associated keratinocyte apoptosis at various levels of the epidermis. Basophilic cytoplasmic inclusions were seen in basal and suprabasal keratinocytes. Immunohistochemical staining, performed with canine parvovirus-2–specific monoclonal antibodies, confirmed the parvovirus nature of the inclusions in the nucleus and cytoplasm of oral and skin epithelial cells. This is the first case of canine erythema multiforme reported to be caused by a viral infection of keratinocytes. This case study indicates that the search for epitheliotropic viruses should be attempted in cases of erythema multiforme in which a drug cause cannot be identified. Key words: Canine parvovirus-2 (CPV-2); dog; immunology; infection; skin; virus. In humans, the classification of erythema multiforme (EM) variants recently has been revised with an emphasis on clinical manifestations.2 The relevance of this modified clinical nosology has been supported by subsequent epidemiologic and pathologic case studies. Dermatoses described clinically as EM minor and major most commonly seem to be caused by viral infections leading to lymphocyte-mediated keratinocyte apoptosis.1,3,6,7 Human EM generally is caused by herpes simplex virus,3,6,7 but it also can be triggered by other infectious agents such as parvovirus B19.8 In 1998, the consensus clinical classification used for human EM was adapted to the canine species.4 That case study established that, in contrast to previous reports,10 canine cases of EM (minor or major) rarely were associated with previous drug exposure.4 In non–drug-related cases, offending causes could not be determined but a viral etiology was considered plausible. The purpose of the present paper is to describe a canine case of EM major in which parvovirus infection of epidermal and mucosal keratinocytes led to lymphocyte-associated apoptosis and clinical signs of EM major. A 2-month-old female Great Dane puppy was presented, 3 days after adoption, with acute-onset diarrhea, vomiting, dehydration, and skin lesions. Because parvovirus enteritis had been diagnosed recently at the facility of the dog’s breeder, parvovirus was suspected as the cause of diarrhea. However, 6 days before the initial presentation, the dog had received a tetravalent vaccine (distemper, parvovirus, parainfluenza, and hepatitis). Dermatologic examination revealed well-demarcated ulceration of the footpads (Fig. 1) and pressure points, as well as mouth and vaginal mucosae. Vesicles were seen in the oral cavity. Erythematous patches were present on the abdomen and chin. In spite of fluid therapy and intravenous cephalexin and metoclopramide, the dog died 2 days after presentation. A necropsy was performed and necrotic lesions were seen throughout all intestinal sections. Histopathologic analysis of small intestine specimens consisted of severe segmental necrotizing enteritis suggestive of an acute infection due to canine parvovirus-2 (CPV-2). Viral inclusions were not identified in the intestinal specimens, presumably because of the severe necrosis of the digestive epithelium. Skin biopsy Fig. 1 ent. 647 25 Skin, footpad; dog. A sharp-edged ulcer is pres- 648 Brief Communications and Case Reports Vet Pathol 37:6, 2000 Fig. 2 Haired skin; dog. Clusters of lymphocytes (white arrowheads) are located in the immediate vicinity of apoptotic keratinocytes (black arrows). Viral inclusions are visible in an intracellular vacuole (black arrowhead). H.E. Scale bar 5 18 mm. Fig. 3 Haired skin; dog. A lymphocyte (white arrowhead) is situated near an apoptotic keratinocyte (black arrow) that contained viral inclusions (black arrowheads). H.E. Scale bar 5 4 mm. Fig. 4 Haired skin, abdomen; dog. Dark-staining viral inclusions fill the cytoplasm of basal and juxtabasal keratinocytes. Viral aggregates are occasionally present in the superficial dermis. Small inclusions are visible within keratinocyte nuclei (black arrow). Avidin–biotin–peroxidase immunohistochemistry, aminoethylcarbazole chromogen, hematoxylin counterstain, CPV2c2A parvovirus-specific monoclonal antibodies. Scale bar 5 11mm. specimens were obtained from lesional skin and oral mucosa. Focal mononuclear interface gingivitis was identified in biopsy samples collected from the gum. Additionally, confluent basal keratinocyte vacuolation progressing to vesiculation with epithelial ulceration and neutrophil accumulation was observed. Prominent lymphocyte exocytosis was present in preblistered mucosal epithelium. Keratinocyte apoptosis, often in close contact with lymphocytes (e.g., satellitosis), was observed at all levels of the epithelium. In some specimens, basophilic inclusions were observed in the cytoplasm of basal and suprabasal keratinocytes. Examination of haired skin specimens revealed varying degrees of the same pathologic process. The epidermis exhibited focal hyperplasia, crusting, and erosion. Lymphocyte exocytosis and keratino- cyte apoptosis with satellitosis were restricted to sites of epidermal hyperplasia (Figs. 2, 3). Numerous basophilic cytoplasmic inclusions were seen in the lower third of the hyperplastic epidermis (Figs. 2, 3). To verify the viral origin of cytoplasmic inclusions, a three-step avidin–biotin–peroxidase immunohistochemical technique was performed as previously described.9 Immunostaining of paraffin-embedded sections was done with two monoclonal antibodies specific for CPV-2 (CPV2c2A and CPV103B10A, 1 2,000 dilution, Mérial, Lyon, France). Examination of negative controls, consisting of sections immunostained with irrelevant monoclonal antibodies, was unremarkable. In mucosal specimens, multiple intracellular parvovirus inclusions were seen throughout the epithelium. 26 Vet Pathol 37:6, 2000 Brief Communications and Case Reports In haired skin samples, parvovirus inclusions were seen most commonly coalescing in basal and juxtabasal keratinocytes of hyperplastic epidermis (Fig. 4). The smallest viral inclusions were identified in the keratinocyte’s nucleus (Fig. 4). Inclusions further aggregated and filled-up the cytoplasm of epithelial cells leading to displacement of the nucleus to the cell’s periphery and subsequent cell degeneration. Immunostaining of digestive specimens similarly demonstrated CPV2 particles in the epithelial crypts of the small intestine. Furthermore, viral inclusions of skin and mucosal sections were negative when immunohistochemistry was performed using monoclonal antibodies specific for either distemper virus (1 : 50, Mérial, Lyon, France) or papillomavirus-group–specific antigens (AR087–5R, undiluted, Biogenex, San Ramon, CA). According to the recently proposed classification of canine EM, the skin lesions exhibited by this patient fit the criteria for a clinical diagnosis of EM major (erythematous patchy lesions with ulcerations on less than 10% of the body surface and with more than one mucosa affected).4 Our histologic and immunohistochemical investigations suggested CPV-2 infection of mucosal and epidermal keratinocytes as the primary cause of EM in this dog. Remarkably, most parvoviral inclusions were identified in the cytoplasm of keratinocytes, whereas only rare viral particles were seen in cell nuclei. However, these observations are identical to those described in glossal specimens of dogs naturally infected with CPV2.5 Indeed, viral replication initially occurs in the nucleus but large virion clusters appear as cytoplasmic aggregates. However, these inclusions still are surrounded by the nuclear membrane and should be referred to as pseudocytoplasmic.5 A viral infection of keratinocytes suggests a logical pathogenesis of EM lesions in this dog. We hypothesize that an infection of stem cells and transient amplifying keratinocytes most likely occurred following hematogenic dissemination of the parvovirus. Viral peptides could be presented by class I major histocompatibility complex molecules at the surface of epithelial cells. Recognition of viral antigens by T-lymphocytes, possibly sensitized by the previous parvovirus vaccination, would trigger these cytotoxic cells to induce the apoptosis of virus-infected keratinocytes. The present case study supports the concept that a viral etiology is possible in some forms of canine EM. We propose that a search for epitheliotropic viruses (e.g., distemper, papilloma-viruses, parvoviruses, and herpesviruses) should be attempted in cases of canine EM in which a causative drug cannot be clearly established. 649 Lyon, France) for providing distemper- and parvovirus-specific monoclonal antibodies. References ACKNOWLEDGEMENTS 1 Assier H, Bastuji-Garin S, Revuz J, Roujeau JC: Erythema multiforme with mucous membrane involvement and Stevens–Johnson syndrome are clinically different disorders with distinct causes. Arch Dermatol 131:539–543, 1995 2 Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, Roujeau J-C: Clinical classification of cases of toxic epidermal necrolysis, Stevens–Johnson syndrome and erythema multiforme. Arch Dermatol 129:92–96, 1993 3 Brice SL, Leahy MA, Ong L, Krecji S, Stockert SS, Huff JC, Weston WL: Examination of non-involved skin, previously involved skin, and peripheral blood for herpes simplex virus DNA in patients with recurrent herpesassociated erythema multiforme. J Cutan Pathol 21:408– 412, 1994 4 Hinn AC, Olivry T, Luther PB, Cannon AG, Yager JA: Erythema multiforme, Stevens–Johnson syndrome and toxic epidermal necrolysis in the dog: clinical classification, drug exposure and histopathological correlations. J Vet Allergy Clin Immunol 6:13–20, 1998 5 Hullinger GA, Hines ME, Styer EL, Frazier KS, Baldwin CA: Pseudocytoplasmic inclusions in tongue epithelium of dogs with canine parvovirus-2 infections. J Vet Diagn Invest 10:108–111, 1998 6 Imafuku S, Kokuba H, Aurelian L, Burnett J: Expression of herpes simplex virus DNA fragments located in epidermal keratinocytes and germinative cells is associated with the development of erythema multiforme lesions. J Invest Dermatol 109:550–556, 1997 7 Kokuba H, Imafuku S, Aurelian L, Burnett JW: Erythema multiforme lesions are associated with expression of a herpes simplex virus (HSV) gene and qualitative alterations in the HSV-specific T-cell response. Br J Dermatol 138:952–964, 1998 8 Lobkowicz F, Ring J, Schwarz TF, Roggendorf M: Erythema multiforme in a patient with acute human parvovirus B19 infection. J Am Acad Dermatol 20:849–850, 1989 9 Olivry T, Moore PF, Naydan DK, Puget BJ, Affolter VK, Kline AE: Antifollicular cell-mediated and humoral immunity in canine alopecia areata. Vet Dermatol 7:67–79, 1996 10 Scott DW, Miller WH: Erythema multiforme in dogs and cats: literature review and case material from the Cornell University College of Veterinary Medicine (1988–1996). Vet Dermatol 10:297–309, 1999 We thank Dr. Guaguère for his comments in the initial phase of the study and Drs. Latour and Soulier (Mérial, Request for Reprints from Dr. C. Favrot, Clinique Vétérinaire, 32 rue de Mulhouse, F-68300 St. Louis (France). 27 Chapter 4 Two cases of FeLV-associated dermatoses C. Favrot1, S. Wilhelm1, P. Grest2, M. L. Meli3, R. Hofmann-Lehmann3 and A. Kipar4 Veterinary Dermatology, 2005, 16:407-412 1 Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 2 Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 3 Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 4 Department of Veterinary Pathology, Faculty of Veterinary Science, University of Liverpool, Liverpool, UK 28 Veterinary Dermatology 2005, 16, 407– 412 Case report Blackwell Publishing Ltd Two cases of FeLV-associated dermatoses C. FAVROT*, S. WILHELM*, P. GREST†, M. L. MELI§, R. HOFMANN-LEHMANN§ and A. KIPAR‡ *Clinic for Small Animal Internal Medicine, Dermatology Unit, †Institute of Veterinary Pathology, and §Clinical Laboratory, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland, ‡Department of Veterinary Pathology, Faculty of Veterinary Science, University of Liverpool, Liverpool, UK (Received 25 July 2005; accepted 10 July 2005) Abstract Two cases of feline leukaemia virus (FeLV)-associated dermatosis are described. The first cat was affected by an ulcerative dermatitis identified as a giant-cell dermatosis. The second case was a cutaneous lymphoma. In both cases, FeLV antigens and FeLV genome were demonstrated in the affected skin immunologically and with polymerase chain reaction, respectively. The first case suggests that, like other retroviruses, at least some strains of FeLV can induce syncytium formation. As FeLV antigens and genome were demonstrated in a serologically negative cat, the second case suggests that focal skin FeLV replication may occur. FeLV-associated dermatoses are rare skin conditions that may be under-diagnosed. I N T RO D U C T I O N M AT E R I A L A N D M E T H O D S Feline leukaemia virus (FeLV), a member of the oncornavirus subfamily of retroviruses, occurs worldwide and replicates in many tissues including respiratory epithelium, salivary gland and bone marrow.1 It causes approximately one-third of feline lethal cancers and numerous cats die of anaemia or infectious diseases as a consequence of the immunosuppressive effects of the virus.1 FeLV infection has also been associated with numerous infectious dermatoses of fungal, parasitic and/or bacterial aetiology.2 A direct cytopathic effect of the virus in the skin, however, has been rarely demonstrated, but is associated with two different syndromes: giant-cell dermatosis and epidermal horns.3,4 Lymphoma accounts for about 90% of the haematopoietic tumours in cats and is often a consequence of FeLV infection.5 Cutaneous lymphomas, however, are rare and usually occur in older FeLV-negative cats.5 The purpose of this article is to present two new cases of FeLV-induced dermatoses with evidence of viral antigens and proviral sequences in the skin: one of T-cell lymphoma in a serologically negative cat and one case of giant-cell dermatosis in a serologically positive cat. Animals Two castrated domestic indoor–outdoor male cats (the first aged 3 and the second aged 15 years), in reduced general condition and with skin plaques and ulcerations, were presented at the Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, Zürich. Both cats were given clinical and dermatological examinations. Serological examination The presence of plasma FeLV p27 antigen as a measure for viraemia was determined using double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) as previously described.6 Plasma samples were tested for feline immunodeficiency virus (FIV) by ELISA, measuring antibodies against the FIV transmembrane protein.7 Histological and immunohistological examination Skin samples for histopathological examination were taken (during the first examination of both cats) by biopsy from the lesions with a 6-mm skin punch, fixed in 4% neutral buffered formalin and embedded in paraffin wax. Sections were cut and either stained with haematoxylin and eosin or used for immunohistological examination. Skin lesions were examined immunohistologically for FeLV antigens using a cocktail of mouse monoclonal antibodies against the FeLV envelope protein gp70 and the group-specific protein p27 (clones C11D82i and PF12J-10A; Custom Monoclonals, Sacramento, CA, USA). The peroxidase–antiperoxidase method Correspondence: Claude Favrot, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, Winterthurerstrasse 260, 8057 Zürich, Switzerland. E-mail: cfavrot@vetclinics.unizh.ch The clinical cases have been reported at the 5th World Congress of Veterinary Dermatology, Vienna, 25 –28 August 2004 (case 1) and 20th North America Veterinary Dermatology Forum, Sarasota, 6–10 April 2005 (Case 2). © 2005 European Society of Veterinary Dermatology 407 29 408 C Favrot et al. was applied as previously described.8 In case 2, the skin lesions were also stained for the pan-T-cell marker CD3 and the pan-B-cell marker CD45R as previously described.9 Real-time polymerase chain reaction (real-time PCR) for exogenous FeLV and feline herpesvirus-1 (FHV-1) Polymerase chain reaction (PCR) analysis was performed on skin with lesions after deparaffinization of two 20-µm thick sections of the same lesional tissues as mentioned previously and DNA extraction using the DNeasy tissue kita. FeLV provirus was detected by real-time PCR with primers that recognize the unique region (U3) of the long-terminal repeat (LTR) of exogenous FeLV-A,-B,-C as described previously.10,11 Examination for feline herpesvirus (FHV-1) sequences was undertaken as described elsewhere.12 R E S U LT S Case 1 The cat was presented with a pruritic dermatosis of 3 months’ duration and a previous history including vaccination for FeLV during the first year of life and booster injection in the second year. Physical examination revealed well-demarcated ulcerative lesions of the head, limbs and paws (Fig. 1). The cat was also depressed and febrile (39.7 °C). A staphylococcal infection was identified by cytological and bacteriological examination (Staphylococcus intermedius), but multiple skin scrapings were negative for parasites and fungal culture was negative. A nonregenerative normochrome normocytic anaemia (hematocrit: 18% (reference range: 33 – 45%) reticulocytes: 0.6%) was diagnosed. The ELISA for FeLV antigen was positive, whereas that for FIV antibodies was negative. The cat was started on cefalexin (25 mg kg−1 twice daily) therapy. Figure 2. Case 1. A skin lesion. Folliculitis (red arrow) and syncytium formation (black arrow) of epithelial cells of a hair follicle. Haematoxylin and eosin stain. Histological examination revealed an ulcerative dermatitis with folliculitis, dyskeratotic keratinocytes and syncytia formation within the epidermis and the sebaceous glands (Figs 2 and 3). The epidermis was acanthotic and hyperkeratotic. Multiple giant keratinocytes and scattered apoptotic cells were present in the superficial epidermis, sebaceous glands and hair follicles. In the dermis, a severe perifollicular to diffuse inflammatory infiltration with numerous lymphocytes, plasma cells and neutrophils was present. Immunohistological analyses revealed numerous epithelial cells that expressed viral proteins with variable intensity (Fig. 4) in the epidermis of the skin surface, hair follicles and sebaceous glands. Lymphocytes in the dermal infiltrates were often positive as well. A 131-bp long proviral FeLV DNA was amplified from skin samples of this cat. Skin samples evaluated for FHV-1 DNA were deemed negative. A diagnosis of FeLV-induced giant-cell dermatosis was made. Despite the treatment and a marked but temporary improvement of the skin lesions, the general condition deteriorated and the cat was euthanized. Necropsy was not permitted. Case 2 The cat was presented with a dermatosis of 2 months’ duration and weight loss. It had previously been treated with megestrol acetate and prednisolone (variable dosages) on the basis of a tentative diagnosis of eosinophilic plaques. The cat was depressed and febrile (39.6 °C). Physical examination of the skin revealed multiple nodules Figure 1. Case 1. Well-demarcated ulcerated lesion on the face. a QIAGEN, Hombrechtikon, Switzerland © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 407– 412 30 FeLV-induced dermatoses 409 Figure 5. Case 2. Ulcerated nodule on the carpus. Figure 3. Case 1. Sebaceous glands. Syncytium formation (black arrow) in epithelial cells. Haematoxylin and eosin stain. Figure 6. Case 2. Histology of the cutaneous nodule in Fig. 5. Superficial ulceration (black arrow) and diffuse infiltration of the dermis by neoplastic round cells (red arrow). Haematoxylin and eosin. Figure 4. Case 1. Epithelial cells in a hair follicle express FeLV antigen with variable intensity (arrows). Immunohistological demonstration of FeLV gp70, peroxidase antiperoxidase method, Papanicolaou’s haematoxylin counterstain. results a diagnosis of cutaneous non-epitheliotropic T-cell lymphoma was made. Immunohistology for FeLV antigen revealed variably intense viral protein expression by numerous neoplastic cells and weak expression by epidermal cells in all layers (Fig. 9). A 131-bp long proviral FeLV DNA fragment was amplified from skin samples of this cat. Despite Lomustine therapy (10 mg once daily) started after histological diagnosis, the cat’s general condition deteriorated and it was euthanized. Necropsy was not permitted so the nodular liver and pulmonary lesions could not be further evaluated. and ulcerated lesions that affected the face, feet and abdomen (Fig. 5). Multiple skin scrapings were negative for parasites. Additionally, the cat was anaemic (Ht. 23%) and lymphopenic (170 lymphocytes per microlitre). Serum ELISA tests for FeLV antigens and FIV antibodies were both negative. Radiographic examination of the thorax revealed a nodular opacity in the left lung. Sonographic examination of the abdomen showed the presence of a small nodule in the liver. Fine needle aspirates of pulmonary and liver nodules were, however, unremarkable. Histological examination of the skin lesions revealed extensive superficial ulceration and focally extensive dense dermal infiltration by pleomorphic round cells, resembling lymphoblasts with round to indented nuclei containing fine chromatin and one single medium-sized nucleolus (Fig. 6). Cellular atypia such as anisocytosis and anisocaryosis were observed, multiple large nucleoli and abnormal mitoses were also seen (Fig. 7). A large proportion of neoplastic cells exhibited peripheral and /or cytoplasmic CD3 expression (Fig. 8). Based on these DISCUSSION This report describes two FeLV-associated skin conditions in cats, presenting clinically as dermatoses with poor response to treatment: giant-cell dermatosis and cutaneous lymphoma. The presence of proviral FeLV sequences as well as FeLV antigens in the skin with © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 407–412 31 410 C Favrot et al. Figure 7. Case 2. The neoplastic infiltrate is composed of pleomorphic round cells, resembling lymphoblasts. They exhibit variably chromatin-dense nuclei (red arrows) and distinct nucleoli (black arrow). Haematoxylin and eosin. Figure 9. Case 2. Neoplastic cells (arrowheads) and epidermal keratinocytes (arrow) express FeLV antigens. Immunohistological demonstration of FeLV gp70 and p27, peroxidase antiperoxidase method, Papanicolaou’s haematoxylin counterstain. carcinoma), infectious (alpha-herpesvirus infections) and immunologic disorders such as lupus erythematosus, Hailey–Hailey disease and psoriasis.13 Retroviruses including human lentiviruses such as human immunodeficiency virus and feline gammaretroviruses (e.g. FeLV), possess fusion proteins and are sometimes seen to induce syncytium formation in lymphoid tissues.14–16 However syncytial keratinocytes are mainly observed in AIDS patients that are concomitantly infected with herpesvirus or papillomavirus.17,18 Gross and coworkers suggested that syncytium formation observed in feline cases is not a consequence of a direct cytopathic effect of the virus but of carcinomatous transformation of the epidermis.4 HIV-induced squamous cell carcinoma, however, has rarely been observed in humans.18 The oncogenic potential of FeLV is much greater than that of HIV but Rohn and coworkers have also demonstrated that FeLV variants do exhibit various pathogenic and cytopathic effects, including syncytium formation in one strain.16 It thus appears possible that FeLV-induced giant-cell dermatosis is the result of a specific and probably rare viral variant. Confirmation of this hypothesis needs further investigation. Lymphomas are frequent neoplasms in cats and often a consequence of FeLV infection.5 Cutaneous lymphomas, however, are rare and usually occur in older serologically FeLV-negative cats.5 Attempts to identify FeLV genomic sequences and antigens in epitheliotropic and nonepitheliotropic cutaneous Figure 8. Case 2. Neoplastic cells exhibit a variably intense peripheral and/or nuclear reaction for the pan T-cell marker CD3 (arrowheads). Blood vessels and hair follicles are negative. Peroxidase–antiperoxidase method, Papanicolaou’s haematoxylin counterstain. lesions of both cats was demonstrated by PCR and immunohistological analysis, respectively. So far, six cases of FeLV-induced giant-cell dermatosis have been described in the literature.4 Most presented as scaling and crusting dermatoses affecting mainly the face and the neck. Vesicular and ulcerative lesions were also reported with involvement of the footpads and mucous membranes.4 The clinical and histological presentation of this case was similar to those previously described, although more ulcerative and less hyperkeratotic. Mucous membranes were unremarkable. Affected cats usually decline quickly with death or euthanasia days to weeks after initial presentation. The histological hallmark of giant-cell dermatosis is the presence of syncytial keratinocytes and dyskeratotic cells. The former have also been observed in FeLV-infected cats in association with cutaneous horns.3 Multinucleated keratinocytes are observed in humans in association with neoplastic (squamous cell © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 407– 412 32 FeLV-induced dermatoses lymphomas are occasionally successful and confirm FeLV involvement in the development of at least some cutaneous lymphomas in cats.19,20 Tobey and coworkers suggested defective or latent infection as they did not detect FeLV antigens in the neoplastic cells of a cutaneous lymphoma.21 In the case reported here, both proviral genome and antigens were demonstrated. The presence of viral antigens in neoplastic cells and keratinocytes but not in the peripheral blood suggests focal productive infection of both cell types. As the greater sensitivity of RT-PCR detects proviral DNA in the serum of cats with undetectable antigenaemia, negative ELISA does not rule out generalized infection. Localized FeLV replication has been reported after experimental infection with viral antigens in the spleen, bone marrow, lymph nodes or small intestine.22 Restricted, localized FeLV replication was also shown in another study in naturally infected cats. The same organs were examined but no viral antigen was found.19 This case report supports the hypothesis that infections restricted to the skin may sometimes occur in cats and subsequently induce cutaneous lymphomas. As PCR assays and immunohistology for FeLV are not routinely carried out on cutaneous lymphomas, the frequency of this association is unknown and may be underestimated. It is possible, however, that FeLV tumorigenesis of dermal T cells is rare and caused of particular FeLV variants. A previous study failed to detect FeLV nucleic acid in a portion (20%) of feline lymphoma samples and suggested that FeLV lymphomagenesis can be associated with clearance of viral nucleic acids from cancer cells.23 This ‘hit and run’ mechanism has already been associated with other conditions induced by retroviruses.24 This study was, however, carried out with a single-round PCR system23 that has a lower diagnostic sensitivity than the more recently developed FeLVspecific nested and TaqMan PCR systems.10,11 As real-time TaqMan PCR can detect fewer nucleic acid copies compared to conventional PCR we may be able to detect FeLV in a larger portion of lymphosarcoma cases. In conclusion, this report suggests that FeLV-induced dermatoses are probably due to particular viral variants and their frequency might be underestimated. 411 2. Scott DW, Miller WH, Griffin CE. Viral, rickettsial and protozoal diseases. In: Muller and Kirk’s Small Animal Dermatology. Philadelphia: W.B. Saunders, 2001: 517–42. 3. Center SA, Scott DW, Scott FW. Multiple cutaneous horns on the foot pads of a cat. Feline Practice 1982; 12: 26–30. 4. Gross TL, Clark EG, Hargis AM et al. Giant cell dermatosis in FeLV-positive cats. Veterinary Dermatology 1993; 4: 117–22. 5. Vonderhaar MA, Morisson WB. Lymphosarcoma. In: Morisson WB ed. Cancer in Dogs and Cats. Jackson, Wyoming: Teton New Media, 2002: 641–70. 6. Lutz H, Pedersen NC, Durbin R et al. Monoclonal antibodies to three epitopic regions of feline leukemia virus p27 and their use in enzyme-linked immunosorbent assay of p27. Journal of Immunological Methods 1983; 56: 209–20. 7. Calzolari M, Young E, Cox D et al. Serological diagnosis of feline immunodeficiency virus infection using recombinant transmembrane glycoprotein. Veterinary Immunology and Immunopathology 1995; 46: 83– 92. 8. Kipar A, Kremendahl J, Grant CK et al. Expression of viral proteins in feline leukemia virus-associated enteritis. Veterinary Pathology 2000; 27: 129–36. 9. Kipar A, Bellmann S, Kremendahl J et al. Cellular composition, coronavirus antigen expression and production of specific antibodies in lesions in feline infectious peritonitis. Veterinary Immunology and Immunopathology 1998; 65: 243–57. 10. Tandon R, Cattori V, Gomes-Keller MA et al. Quantitation of feline leukaemia virus viral and proviral loads by TaqMan((R)) real-time polymerase chain reaction. Journal of Virological Methods 2005; 130(1–2): 124–32. 11. Hofmann-Lehmann R, Huder JB, Gruber S et al. Feline leukaemia provirus load during the course of experimental infection and in naturally infected cats. Journal of General Virology 2001; 82: 1589–96. 12. Vogtlin A, Fraefel C, Albini S et al. Quantification of feline herpesvirus 1 DNA in ocular fluid samples of clinically diseased cats by real-time TaqMan PCR. Journal of Clinical Microbiology 2002; 40: 519–23. 13. Kimura SK, Hatano H. Multinucleated epidermal cells in non-neoplastic dermatoses. British Journal of Dermatology 1978; 99: 485–9. 14. White JM. Membrane fusion. Science 1992; 258: 917–24. 15. Fenyo EM, Morfeldt-Manson L, Chiodi F et al. Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. Journal of Virology 1988; 62: 4414–9. 16. Rohn JL, Moser MS, Gwynn SR et al. In vivo evolution of a novel, syncytium-inducing feline leukemia virus variant. Journal of Virology 1998; 72: 2686–96. 17. Fagan WA, Collins PC, Pulitzer DR. Verrucous Herpes virus infection in human immunodeficiency virus patients. Archives of Pathology and Laboratory Medicine 1996; 120: 956–8. 18. Orem J, Otieno MW, Remick SC. AIDS-associated cancer in developing nations. Current Opinion in Oncology 2004; 16: 468–76. 19. Kovacevic S, Kipar A, Kremendahl J et al. Immunohistochemical diagnosis of feline leukemia virus infection in formalin-fixed tissue. European Journal of Veterinary Pathology 1997; 3: 13–9. AC K N OW L E D G E M E N T S Thanks to the Centre for Clinical Studies, the Vetsuisse Faculty of the University of Zürich for use of logistics and financial support from the Swiss National Science Foundation (31-65231). R.H.-L. is the recipient of a professorship from the Swiss National Science Foundation (PP00B-102866). REFERENCES 1. Cotter SM. Feline viral neoplasia. In: Green CG ed. Infectious Diseases of the Dog and Cat. Philadelphia: W.B. Saunders Co, 1998: 71– 84. © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 407–412 33 412 C Favrot et al. feline leukemia virus infection in cats. American Journal of Veterinary Research 1992; 53: 604–7. 23. Jackson ML, Haines DM, Meric SM et al. Feline leukemia virus detection by immunohistochemistry and polymerase chain reaction in formalin-fixed, paraffineembedded tissue of cats with lymphosarcoma. Canadian Journal of Veterinary Research 1993; 57: 269–76. 24. Nath A. Pathobiology of human immunodeficiency virus dementia. Journal of Biology and Chemotherapy 1999; 19: 113–27. 20. Jackson ML, Wood SL, Misra V et al. Immunohistochemical identification of B and T lymphocytes in formalin-fixed, paraffin-embedded feline lymphosarcomas: relation to feline leukemia virus status, tumor site, and patient age. Canadian Journal of Veterinary Research 1996; 60: 199 –204. 21. Tobey JC, Houston DM, Breur GJ et al. Cutaneous T-cell lymphoma in a cat. Journal of the American Veterinary Medical Association 1994; 204: 606 –9. 22. Hayes KA, Rojko JL, Mathes LE. Incidence of localized Résumé Deux cas de dermatoses associées au FeLV sont rapportées. Le premier chat présentait une dermatite ulcérative identifiée comme une dermatose à cellules géantes. Le second cas était un lymphome cutané. Dans les deux cas, des antigènes du FeLV et du génome ont été mis en évidence immunologiquement et par PCR respectivement. Le premier cas suggère que comme d’autres rétrovirus, au moins certaines souches de FeLV peuvent provoquer la formation de syncytium. Comme les antigènes et l’ADN du FeLV ont été retrouvés chez un chat séronégatif, le second cas suggère qu’une réplication focale du FelV peut se dérouler dans la peau. Les dermatoses associées au FeLV sont des dermatoses rares peut être sous diagnostiquées. Resumen Describimos dos casos de dermatosis en gatos asociados con la presencia del virus de la Leucemia Felina (FeLV). El primer gato presentó una dermatitis ulcerativa con presencia de células gigantes. El segundo caso fue un linfoma cutáneo. En ambos casos se demostró la presencia de antígeno de FeLV y del genoma de FeLV en la piel afectada, mediante una prueba inmunológica y con una reacción de polimerasa en cadena, respectivamente. Las características del primer caso sugieren que, al igual que otros retrovirus, al menos algunas variantes de FeLV pueden inducir la formación de células sincitiales. En el segundo caso, ya que tanto el antígeno como el genoma de FeLV fueron detectados en un gato serológicamente negativo, se sugiere que puede ocurrir una replicación local del virus de la Leucemia Felina. Las dermatosis asociadas con la presencia de FeLV son procesos raros, y tal vez no suficientemente reconocidos. Zusammenfassung Zwei Fälle einer FeLV-assoziierten Dermatose sind beschrieben. Die erste Katze hatte eine ulzerierende Dermatitis, die identifiziert wurde als eine Riesenzell-Dermatose. Der zweite Fall zeigte kutanes Lymphom. In beiden Fällen wurden FeLV Antigene immunologisch, sowie FeLV Genom mittels Polymerase Chain Reaction nachgewiesen. Der erste Fall lässt darauf schließen, dass zumindest einige FeLV Stämme, sowie andere Retroviren, eine Synzytium Formation induzieren können. Da FeLV Antigene und Genom auch in einer serologisch negativen Katze demonstriert wurden, weist der zweite Fall darauf hin, dass eine fokale FeLV Replikation in der Haut vorkommen kann. FeLV-assoziierte Dermatosen sind seltene Erkrankungen der Haut, die möglicherweise zu selten diagnostiziert werden. © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 407– 412 34 Chapter 5 Evaluation of papillomaviruses associated with cyclosporine-induced hyperplastic verrucous lesions in dogs C. Favrot 1, T. Olivry2, A.H. Werner3, G. Nespecca1, A. Utiger1, P. Grest4, M. Ackermann5 American Journal of Veterinary Research, 2005, 66; 10: 1764-1769 1 Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 2 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA 3 Valley Veterinary Speciality Services, Studio City, CA, USA 4 Pathology Institute, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 5 Virology Institute, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 35 04-12-0466r.qxp 9/14/2005 10:43 AM Page 1764 Evaluation of papillomaviruses associated with cyclosporine-induced hyperplastic verrucous lesions in dogs Claude Favrot, DrVet, MSc; Thierry Olivry, DrVet, PhD; Alexander H. Werner, DVM; Gilles Nespecca; Anna Utiger, DVM; Paula Grest, DVM; Mathias Ackermann, DVM, PhD helper T lymphocytes. In humans, cyclosporine A has been used for more than a decade to prevent transplant rejection and for treatment for dermatologic conditions that include severe psoriasis and atopic dermatitis.1 The usefulness of cyclosporine A in treatment for atopic dermatitis in dogs has been reported,2-6 and the drug has also been approved for treatment for immunemediated conditions such as perianal fistulae and sebaceous adenitis.7,8 Hyperplastic skin lesions are known adverse effects of long-term treatment with cyclosporine A in humans. Most lesions appear to be papillomavirusinduced verruca vulgaris, but malignant carcinomatous transformations are also possible.9 Similar lesions have also been described in dogs,10,11 but evidence for causative involvement by papillomavirus is lacking. Most lesions in dogs resemble those reported as psoriasiform lichenoid dermatosis, and skin nodules usually regress spontaneously or in response to antimicrobial treatment.10,11 Because papillomavirus has been detected in most cyclosporine A-induced hyperplastic skin lesions in humans, a similar role for papillomavirus in the development of similar lesions in dogs warrants investigation. We observed that these druginduced nodules appear to be heterogeneous in nature. Most lesions are numerous and resemble those of psoriasiform lichenoid dermatosis, with staphylococci in the stratum corneum and absence of detectable papillomavirus DNA and antigens. In 2 dogs, however, cyclosporine A administration was associated with the eruption of few skin nodules diagnosed as viral papillomas. The objective of this study was to determine whether cyclosporine A-induced hyperplastic skin lesions in dogs contained papillomavirus DNA and genus-specific structural antigens. Objective—To determine whether cyclosporine Ainduced hyperplastic skin lesions of dogs were associated with papillomavirus infections. Animals—9 dogs that were treated with cyclosporine A and developed hyperplastic skin lesions. Procedure—History and clinical and histopathologic data were collected. Paraffin-embedded skin biopsy specimens from hyperplastic skin lesions were immunostained for common papillomavirus genusspecific structural antigens by use of a polyclonal rabbit anti-bovine papillomavirus type 1 antiserum. Sections from each tissue block underwent DNA extraction, and polymerase chain reaction (PCR) assays were performed with several sets of primers to amplify a wide range of papillomavirus DNA from humans and other animals. Results—In 7 of 9 dogs, there were more than 10 hyperplastic skin lesions that microscopically resembled those of psoriasiform lichenoid dermatosis. In those dogs, results of testing for papillomavirus via immunohistochemical analyses and PCR assays were negative. In the other 2 dogs, there were only 1 and 3 verrucous lesions, and in those dogs, histologic evaluation revealed koilocytes and nuclear viral inclusions that were immunoreactive for papillomavirus antigens. Papillomavirus DNA was amplified from both dogs. One of the sequences was characteristic for the canine oral papillomavirus, whereas the other had similarities with the recently described canine papillomavirus 2. Conclusions and Clinical Relevance—In dogs, hyperplastic skin lesions occasionally develop during treatment with cyclosporine A. Most of the lesions resemble those of psoriasiform lichenoid dermatosis, although papillomavirus can be detected in some instances. (Am J Vet Res 2005;66:1764–1769) Materials and Methods C yclosporine A is a potent immunosuppressive agent that acts primarily by selectively inhibiting History and clinical information regarding 9 dogs that were treated with cyclosporine A and developed verrucous skin lesions were recorded retrospectively. Limited clinical and pathologic information regarding 1 of the dogs has already been published.2 Received December 16, 2004. Accepted February 2, 2005. From the Clinic for Small Animal Internal Medicine, Dermatology Unit (Favrot, Nespecca, Utiger), the Pathology Institute (Grest), and the Virology Institute (Ackermann), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH 8057 Zurich, Switzerland; the Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606 (Olivry); and Valley Veterinary Specialty Services, 13125 Ventura Blvd, Studio City, CA 91604 (Werner). Presented in part at the Annual Meeting of the American Academy of Veterinary Dermatology and American College of Veterinary Dermatology, Monterey, Calif, April 2003. Address correspondence to Dr. Favrot. Histologic and immunohistochemical evaluations— Punch biopsy specimens of the skin were obtained from dermatologic lesions of the 9 dogs. Biopsy specimens were fixed in formalin, embedded in paraffin, and processed routinely for histologic assessment. Five-micrometer-thick skin sections were stained with H&E and Gram stains by use of standard methods. For the detection of papillomavirus antigens, a 3-step immunohistochemical method was used. The primary immunoreagent was a polyclonal rabbit antiserum directed against chemically disrupted bovine papillomavirus type 1.a 1764 AJVR, Vol 66, No. 10, October 2005 36 04-12-0466r.qxp 9/14/2005 10:43 AM Page 1765 This reagent detects papillomavirus genus-specific common structural antigens regardless of the host species. The primary antiserum was used at a 1:200 dilution, and other reagents (ie, biotinylated goat anti-canine rabbit IgG and streptavidin peroxidaseb) were diluted at 1:40. Diaminobenzidine was used as a chromogen. The positive control consisted of paraffinembedded sections from a dog with canine oral papillomavirus (COPV)-induced oral papillomas, whereas the negative control antiserum consisted of normal rabbit serum. Skin sections stained with H&E, Gram stain, and immunostain for papillomavirus were coded and evaluated by an author (TO) who was unaware of the origins of the specimens. Sections stained with H&E were examined for changes typically associated with papillomavirus infection in dogs, and those changes were recorded as present or absent, including epidermal dysplasia, hypergranulosis, coalescing keratohyalin granules, koilocytes, intranuclear viral inclusions in the stratum spinosum and stratum granulosum, intrafollicular or intraepidermal pustules, and bacteria in the stratum corneum. Sections stained with Gram stain were evaluated for epidermal bacteria. Sections immunostained for papillomavirus group-specific antigens were evaluated for staining in keratinocytes of the stratum spinosum, stratum granulosum, and stratum corneum. Transmission electron microscopy was performed on the stratum corneum of 1 specimen. both genomes. The forward primer was 5’-ATGGCGGMTARAAAAGGTA-3' and the reverse primer was 5’-AACAGCTGYTTTTTARCYTTTTT-3'. Internal control was made by use of the same forward primer with the reverse primer PapE1 5’ACAGTTGCAGGGAAAGTC-3' to amplify an internal 184-bp fragment. The PCR reactions were performed in 30-µL volumes containing 1 µL of genomic DNA, 50mM KCl, 3mM KCl2, 200µM of each dNTP, 0.3µM each of consensus sense and antisense primers, and 2.5 units of DNA polymerase.e The amplification involved an initial denaturation at 95oC for 4 minutes and 30 cycles at 95oC for 1 minute, 50oC for 1 minute, and 74oC for 1 minute, with a final elongation step at 74oC for 5 minutes. Reaction mixture with no DNA served as a negative control, and COPV-positive papilloma DNA samples and feline papilloma-positive DNA samples were used as positive controls. The PCR products were resolved via electrophoresis in 2% agarose gel stained with ethidium bromide. Amplified DNA was sequenced by use of fluorescent sequencing and fluorescent dye terminator.f Detection of papillomavirus with CP4, C5P, and PPF1 primers—To amplify the DNA of as many different papillomaviruses as possible, the CP4, CP5, PPF1 primer set was selected because of its ability to detect the nucleic acids of up to 64 human papillomaviruses.12 The PCR reactions were performed in 30-µL volumes containing 1 µL of genomic DNA, 50mM KCl, 3mM KCl2, 200µM of each dNTP, 0.45µM of the CP4 and CP5 primers, 0.3µM of the PPF1 primer, and 2.5 units of DNA polymerase.d Amplification involved an initial denaturation at 95oC for 10 minutes and 40 cycles at 95oC Polymerase chain reaction assays—Amplification of papillomavirus DNA via polymerase chain reaction (PCR) assays was performed on formalin-fixed paraffin-embedded specimens. Thirty-micrometer-thick sections were cut from tissue blocks by use of a new disposable microtome blade for each block to avoid cross-contamination between samples. Each section was deparaffinized twice with 1.2 mL of xylene at 20oC for 10 minutes, washed with 100% ethanol, and air-dried. Desiccated samples were suspended in a lysis buffer (50mM Tris-HCl [pH, 8.5], 1mM EDTA, 2.8% sodium dodecylsulfate, and 20 mg of proteinase K/mL) and incubated for 10 hours at 56oC on a rocking platform. After lysis, samples were transferred to a spin columnc and centrifuged to reduce viscosity. Viral DNA was precipitated with absolute ethanol and extracted by use of a commercially available kit.d Phylogenetic studies have revealed that COPV and feline papillomavirus are closely related and that this group of viruses is closer Figure 1—Photomicrographs a section of an exophytic papilloma from a dog. Notice to some genera of human papillomavirus than hypergranulosis, koilocytes, and intranuclear viral inclusions (arrowheads) in kerto papillomaviruses in other animals, includ- atinocytes of the stratum spinosum, stratum granulosum, and lower stratum ing bovine papillomavirus. Therefore, 2 sets corneum. H&E stain; bar = 1 mm (A) and 25 µm (B). of primers were designed. The first set of primers (PapE1-forward and PapE1-reverse) amplified DNA from COPV and feline papillomavirus, whereas the second set of primers (CP4, CP5, and PPF1) amplified human papillomaviruses, including the oncogenic strains. To amplify genomic sequences of canine, feline, or closely related papillomaviruses in clinical samples, nucleotide sequences conserved among known canine and feline papillomaviruses were reviewed and sequences encoding the E1 early gene were found to be the most highly conserved. Therefore, E1 sequences of feline (LOCUS AF480454) and canine (LOCUS NC001619) Figure 2—Photomicrographs of a section of a papilloma in a dog. Notice papillomapapillomaviruses were aligned with the aim of tous epidermal hyperplasia with prominent koilocytosis and intranuclear viral includesigning consensus primer pairs able to sions (arrowheads) predominantly in the stratum spinosum. H&E stain; bar = amplify an approximate 341-bp fragment of 0.1 mm (A) and 25 µm (B). AJVR, Vol 66, No. 10, October 2005 1765 37 04-12-0466r.qxp 9/14/2005 10:43 AM Page 1766 Eight breeds were represented, and there were 2 West Highland White Terriers; 8 dogs were male, and 1 dog was female. Age at the time hyperplastic skin lesions developed ranged from 6 months to 9 years (median, 3 years). Two dogs (dogs 1 and 2) had 1 to 3 lesions with the typical appearance of a papilloma. The other dogs (dogs 3 to 9) had numerous variably pigmented, slightly raised verrucous papules on the trunk and limbs. In dog 1, the skin nodules were removed surgically. In 5 dogs, the lesions regressed after the dose of cyclosporine A was reduced and administration of antibimicrobials was instituted. In the remaining 3 dogs, lesions regressed spontaneously after cyclosporine A administration was discontinued or the dose was tapered. for 1 minute, 47oC for 1 minute, and 74oC for 1 minute, with a final elongation step at 75oC for 5 minutes. Reaction mixture with no DNA served as a negative control, and COPVpositive papilloma DNA samples and feline papilloma-positive DNA samples were used as positive controls. The PCR products were resolved via electrophoresis in 2% agarose gel stained with ethidium bromide. Amplified DNA was sequenced on an automated sequencer with fluorescent dye terminator,e and sequences were compared with those included in the GenBank database by use of alignment software.g Samples were considered to have positive results for detection of papillomavirus DNA if they had a band of the expected size after gel electrophoresis and if amplified DNA was sequenced and the protein encoded by the sequence had homology with the E1 protein of a previously established papillomavirus sequence. Comparisons were made with alignment software.f Histopathology—In dogs 1 and 2, examination of H&E-stained sections of biopsy specimens revealed severe focal epidermal hyperplasia and dysplasia, koilocytosis, and intranuclear viral inclusions with margination of chromatin (Figures 1 and 2). Focal hypergranulosis and coalescing keratohyalin granules also were observed in 1 of those dogs. Such changes were absent in sections from the other dog, suggesting that the differing cytopathic effects seen in the 2 dogs resulted from infection with different viruses.13 Among the remaining 7 dogs, microscopic findings in H&E-stained sections were similar. Findings included epidermal acanthosis without dysplasia, hypergranulosis, variable lymphocyte exocytosis, intraepidermal or intrafollicular pustules, and bacteria in the stratum corneum (Figure 3). The upper portion of the dermis contained bands of lymphocytes and plasma cells, although a true interface dermatitis was not detected. These features were considered similar to changes referred to as psoriasiform lichenoid dermatitis.14-16 Examination of stained sections revealed gramnegative rods in epidermal crypts in 1 dog and clusters of gram-positive cocci in the stratum corneum of hair follicle infundibula in dogs 3 to 9. Transmission electron microscopy revealed bacteria with features similar to those of staphylococci. Results Clinical information—In 8 of the 9 dogs, administration of cyclosporine A at the median dosage of 5 mg/kg every 24 hours was associated with the eruption of multiple hyperplastic and verrucous skin lesions. A single lesion developed in the other dog. The duration of treatment with cyclosporine A before development of lesions varied from 1 to 24 months (median, 4 months). Figure 3—Photomicrographs of a section of a hyperplastic verrucous skin lesion in a dog. Notice irregular epidermal hyperplasia with luminal (open arrowheads) and mural (solid arrowhead) folliculitis and a band of lymphocytes and plasma cells in the superficial portion of the dermis. Lymphocytes are also in the lower epidermal layers. H&E stain; bar = 0.1 mm (A) and 25 µm (B). Figure 4—Photomicrograph of a portion of an exophytic papilloma from a dog. Notice that intranuclear inclusions in keratinocytes in the stratum granulosum are immunohistochemically stained for papillomavirus group-specific antigens. Diaminobenzidine chromogen with hematoxylin counterstain; bar = 10 µm. 1766 AJVR, Vol 66, No. 10, October 2005 38 04-12-0466r.qxp 9/14/2005 10:43 AM Page 1767 Figure 5—Photomicrographs of a section of a hyperplastic verrucous skin lesion in a dog. Notice intracorneal clusters of bacteria immunohistochemically stained (inset [arrowheads]) with an antiserum specific for papillomavirus antigens (A) but not with irrelevant control rabbit serum (B). Diaminobenzidine chromogen with hematoxylin counterstain; bar = 0.1 mm. canine COPV E1 gene. In dog 1, papillomavirus DNA was amplified with the CP4, CP5, PPF1, and PapE1 primers (Figure 6). The amplified sequence was 98% homologous with that of COPV. In dog 2, papillomavirus DNA was amplified with the CP4, CP5, and PPF1 primers. The amplified sequence was 97% homologous with that of a recently described canine papillomavirus (GenBank No. AY725239). Moreover, this sequence was homologous at the predicted amino-acid level with E1 protein of human papillomavirus 63 (76% homology), bovine papillomavirus 3 (74% homology), and feline papillomavirus (72% homology). Papillomavirus DNA was not amplified from any other specimens from dogs 3 to 9. Discussion In humans, administration of cyclosporine A is often associated with numerous cutaneous adverse effects.9,17,18 Most of those changes are associated with the development of viral, bacterial, or fungal infections. Papillomaviruses are the most frequently reported virus detected in the associated infections, but herpes simplex and molluscum contagiosum virus infections also have been recorded.9,17,19 Noninfectious changes such as hyperpigmentation, skin tags, lichen simplex, acne, cysts, and sebaceous hyperplasia are reported less frequently.17,18,20 Follicular dystrophy, increased hair growth (hypertrichosis),21,22 and gingival hyperplasia are frequently recorded.23 Furthermore, compared with the general population, the incidence of squamous cell carcinoma is higher in human patients treated with cyclosporine A for longer than 2 years.24 In dogs, lesions resembling psoriasiform lichenoid dermatitis have been reported in association with administration of cyclosporine A.2,10,25 Gingival hyperplasia and hypertrichosis have been reported to be rare adverse drug events.7,11,25,26 Results of our study indicated that psoriasiform lichenoid dermatitis was the most common diagnosis for hyperplastic verrucous skin lesions in 9 dogs treated with cyclosporine A. It has Figure 6—Gel electrophoretogram of a polymerase chain reaction assay performed with CP4, CP5, and PPF1 primers for detection of papillomaviruses in verrucous skin lesions in 7 dogs. Notice a 450-bp amplicon that indicates papillomavirus DNA in extracts of skin biopsy specimens from 2 dogs (lane 3 [dog 1] and lane 4 [dog 2]) and a positive control specimen (pos [canine oral papillomavirus]). A similar amplicon is not evident in a negative control specimen (neg) or lanes 5 to 9 (dogs 3 to 7). Lanes 1 and 11 represent the ladder of molecular weight markers. Immunohistochemical analyses—In dogs 1 and 2, the results of immunohistochemical staining confirmed the intranuclear keratinocyte viral inclusions to be derived from papillomavirus. In dog 1, papillomavirus inclusions were in nuclei in the stratum granulosum and lower stratum corneum, whereas in dog 2, the inclusions were in cells from the stratum spinosum to the lower stratum corneum (Figure 4). In dogs 3 to 9, intrakeratinocyte staining with the papillomavirus-specific antiserum was not detected. However, there was bacterial uptake of stain in the stratum corneum (Figure 5). PCR assay—The PCR assay detected papillomavirus DNA from sections of the 3 positive controls with both sets of primers, and the sequence of amplicons was 99% homologous with that of the AJVR, Vol 66, No. 10, October 2005 1767 39 04-12-0466r.qxp 9/14/2005 10:43 AM Page 1768 cyclosporine A-induced skin lesions develop most frequently in humans and dogs treated with high doses, for extended periods of time, or with a combination of immunosuppressive drugs.1,25 Most of those changes regress after treatment is discontinued. Our results suggested that hyperplastic and verrucous skin lesions observed in dogs after cyclosporine A administration may have multiple causes. In most dogs, the lesions are typical of those characterized as lichenoid psoriasiform dermatosis, but infection by papillomaviruses may develop in some dogs. In all instances, decreasing or discontinuing administration of cyclosporine A, with or without concurrent administration of antimicrobials, resulted in regression of the lesions. been hypothesized10 that this reaction is induced by staphylococcal infection, a premise that was supported by the observation of cocci in 6 of 9 specimens in our study. However, in 3 of 8 dogs, all lesions regressed without the administration of antimicrobials after discontinuation or decreasing the administration of cyclosporine A. Immunohistochemical staining for papillomavirus with the polyclonal antiserum stained bacteria in the stratum corneum. In 1 dog with such bacteria, transmission electron microscopy revealed bacteria with features consistent with staphylococci in the stratum corneum but no papillomavirus. Thus, care must be taken in the interpretation of immunostaining for papillomavirus with this reagent. Several pharmacologic properties of cyclosporine A can explain the development of hyperplastic lesions in the skin of dogs and humans. Cyclosporine A modifies cytokine secretions in several cell types.27 In humans, development of gingival hyperplasia is caused by increased production of extracellular matrix in association with secretion of transforming growth factor-β.28 Moreover, inhibition by cyclosporine A of the calcineurin-nuclear factor of activated T-cell 1 pathway in follicular keratinocytes stimulates hair growth and induces hypertrichosis.21 Results of our study also suggested that cyclosporine A-induced verrucous skin lesions can sometimes be associated with infections with various papillomaviruses, for which emergence might be promoted by suppression of cell-mediated immunity. However, it is not known whether treatment with cyclosporine A favors recurrence of a latent infection or promotes de novo infection. In dog 1, clinical findings, histologic findings, and results of immunohistochemical and PCR testing were consistent with those typically associated with infection with COPV29 (LOCUS NC001619). In dog 2, results of histologic and immunohistochemical staining were different from those in dog 1, mainly with regard to koilocytes in the stratum spinosum and the absence of hypergranulosis or coalescing keratohyalin granules.13 These differences may have indicated infection with a virus other than COPV. Moreover, DNA from papillomavirus was only amplified by use of the CP4, CP5, PPF1 set of primers; the subsequent amplification indicated infection with a recently described papillomavirus (GenBank No. AY725239). In humans, the use of degenerated primers has broadened the spectrum of capability of PCR assays and enabled detection of unknown papillomaviruses.30 It is possible that the epidermis of affected dogs may be infected by papillomaviruses that are difficult to detect by use of traditional techniques that amplify COPV DNA. Likewise, it is possible that the cyclosporine A-induced hyperplastic skin lesions in dogs 3 to 9 might have been caused by papillomaviruses that were undetectable with available techniques. In humans, DNA of papillomavirus is often amplified from lesions of psoriasis, a dermatologic condition with similarities to canine psoriasiform lichenoid dermatosis. It has been hypothesized31 that papillomavirus induces autoimmune reactions in the epidermis and could play a role in the development of such lesions. Finally, it must be kept in mind that a. b. c. d. e. f. g. B0580, Dako Corp, Carpinteria, Calif. Biogenex, San Ramon, Calif. QIA shredder, Qiagen, Basel, Switzerland. QIAamp DNA mini kit, Qiagen, Basel, Switzerland. Pfu Turbo DNA polymerase, Stratagene, La Jolla, Calif. Applied Biosystems, Foster City, Calif. Blast, version 2.2.11. Available at: www.ncbi.nlm.gov/BLAST. Accessed Jan 15,0205. References 1. Gupta AK, Brown MD, Ellis CN, et al. Cyclosporine in dermatology. J Am Acad Dermatol 1989;21:1245–1256. 2. Olivry T, Rivierre C, Jackson HA, et al. Cyclosporine decreases skin lesions and pruritus in dogs with atopic dermatitis: a blinded randomized prednisolone-controlled trial. Vet Dermatol 2002;13:77–87. 3. Olivry T, Steffan J, Fisch RD, et al. Randomized controlled trial of the efficacy of cyclosporine in the treatment of atopic dermatitis in dogs. J Am Vet Med Assoc 2002;221:370–377. 4. Fontaine J, Olivry T. Treatment of canine atopic dermatitis with cyclosporine: a pilot clinical study. Vet Rec 2001;148:662–663. 5. Olivry T, Mueller RS. Evidence-based veterinary dermatology: a systematic review of the pharmacotherapy of canine atopic dermatitis. Vet Dermatol 2003;14:121–146. 6. Steffan J, Alexander D, Brovedani F, et al. Comparison of cyclosporine A with methylprednisolone for treatment of canine atopic dermatitis: a parallel, blinded, randomized controlled trial. Vet Dermatol 2003;14:11–22. 7. Mathews KA, Sukhiani HR. Randomized controlled trial of cyclosporine for treatment of perianal fistulas in dogs. J Am Vet Med Assoc 1997;211:1249–1253. 8. Linek M, Boss C, Haemmerling R. Effects of cyclosporine A on clinical and histological abnormalities in dogs with sebaceous adenitis. J Am Vet Med Assoc 2005;226:59–64. 9. Iraji F, Kiani A, Shahidi S, et al. Histopathology of skin lesions with warty appearance in renal allograft recipients. Am J Dermatopathol 2002;24:324–325. 10. Werner AH. Psoriasiform-lichenoid-like dermatosis in three dogs treated with microemulsified cyclosporine A. J Am Vet Med Assoc 2003;223:1013–1016. 11. Seibel W, Sundberg JP, Lesko LJ, et al. Cutaneous papillomatous hyperplasia in cyclosporine-A treated beagles. J Invest Dermatol 1989;93:224–230. 12. Iftner A, Klug SJ, Garbe C, et al. The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Res 2003;63:7515–7519. 13. Croissant O, Breitburd F, Orth G. Specificity of cytopathic effect of cutaneous human papillomaviruses. Clin Dermatol 1985;3:43–55. 14. Gross TL, Halliwell RE, McDougal BJ, et al. Psoriasiform lichenoid dermatitis in the springer spaniel. Vet Pathol 1986;23:76–78. 15. Mason KV, Halliwell RE, McDougal BJ. Characterization of lichenoid-psoriasiform dermatosis of springer spaniels. J Am Vet Med Assoc 1986;189:897–901. 1768 AJVR, Vol 66, No. 10, October 2005 40 04-12-0466r.qxp 9/14/2005 10:43 AM Page 1769 16. Yager JA, Wilcock BP. Interface dermatitis. In: Yager JA, Wilcock BP, eds. Color atlas and text of surgical pathology of the dog and cat dermatopathology and skin tumors. London: Mosby Year Book Inc, 1994;85–106. 17. Euvrard S, Kanitakis J, Cochat P, et al. Skin diseases in children with organ transplants. J Am Acad Dermatol 2001;44:932–939. 18. Lugo-Janer G, Sanchez JL, Santiago-Delpin E. Prevalence and clinical spectrum of skin diseases in kidney transplant recipients. J Am Acad Dermatol 1991;24:410–414. 19. Van der Leest RJ, Zachow KR, Ostrow RS, et al. Human papillomavirus heterogeneity in 36 renal transplant recipients. Arch Dermatol 1987;123:354–357. 20. Bencini PL, Montagnino G, Sala F, et al. Cutaneous lesions in 67 cyclosporin-treated renal transplant recipients. Dermatologica 1986;172:24–30. 21. Gafter-Gvili A, Sredni B, Gal R, et al. Cyclosporin Ainduced hair growth in mice is associated with inhibition of calcineurin-dependent activation of NFAT in follicular keratinocytes. Am J Physiol Cell Physiol 2003;284:C1593–C1603. 22. Heaphy MR Jr, Shamma HN, Hickmann M, et al. Cyclosporine-induced folliculodystrophy. J Am Acad Dermatol 2004;50:310–315. 23. Wysocki GP, Gretzinger HA, Laupacis A, et al. Fibrous hyperplasia of the gingiva: a side effect of cyclosporin A therapy. Oral Surg Oral Med Oral Pathol 1983;55:274–278. 24. Paul CF, Ho VC, McGeown C, et al. Risk of malignancies in psoriasis patients treated with cyclosporine: a 5 y cohort study. J Invest Dermatol 2003;120:211–216. 25. Rosenkrantz WS, Griffin CE, Barr RJ. Clinical evaluation of cyclosporine in animal models with cutaneous immune-mediated disease and epitheliotropic lymphoma. J Am Anim Hosp Assoc 1989;25:377–384. 26. Seibel W, Yahia NA, McCleary LB, et al. Cyclosporineinduced gingival overgrowth in beagle dogs. J Oral Pathol Med 1989; 18:240–245. 27. Esposito C, Fornoni A, Cornacchia F, et al. Cyclosporine induces different responses in human epithelial, endothelial and fibroblast cell cultures. Kidney Int 2000;58:123–130. 28. Stabellini G, Carinci F, Luigi Bedani P, et al. Cyclosporin A and transforming growth factor beta modify the pattern of extracellular glycosaminoglycans without causing cytoskeletal changes in human gingival fibroblasts. Transplantation 2002;73:1676–1679. 29. Yager JA, Wilcock BP. Squamous papilloma. In: Yager J,Wilcock BP, eds. Color atlas and text of surgical pathology of the dog and cat: dermatopathology and skin tumors. London: Mosby Year Book Inc, 1994;251–252. 30. Meyer T, Arndt R, Christophers E, et al. Importance of human papillomaviruses for the development of skin cancer. Cancer Detect Prev 2001;25:533–547. 31. Majewski S, Jablonska S, Favre M, et al. Papillomavirus and autoimmunity in psoriasis. Immunol Today 1999;20:475–476. AJVR, Vol 66, No. 10, October 2005 1769 41 Chapter 6 Detection of Novel Papillomaviruses in Canine Mucosal, Cutaneous and in situ Squamous Cell Carcinomas N. Zaugg1, G. Nespeca1, B. Hauser2, M. Ackermann3, C. Favrot1 Veterinary Dermatology, 2005; 16: 290-298 1 Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland. 2 Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 3 Virology Institute, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland The study has been funded by grants of the Waltham Foundation and The European Society of Veterinary Dermatology (ESVD) 42 Veterinary Dermatology 2005, 16, 290– 298 Detection of novel papillomaviruses in canine mucosal, cutaneous and in situ squamous cell carcinomas Blackwell Publishing, Ltd. N. ZAUGG*, G. NESPECA*, B. HAUSER†, M. ACKERMANN‡ and C. FAVROT* *Clinic for Small Animal Internal Medicine, Dermatology Unit, †Institute for Veterinary Pathology and ‡Institute for Virology, Vetsuisse Faculty, University of Zürich, Switzerland (Received 31 January 2005; accepted 20 May 2005) Abstract Papillomavirus (PV) DNA is frequently uncovered in samples of human skin squamous cell carcinomas (SCC). However, the role of these viruses in the development of such cancers in canine species remains controversial. While approximately 100 human PVs are known, only one single canine oral PV (COPV) has been identified and studied extensively. Therefore, we applied a narrow-range polymerase chain reaction (PCR) suitable for the detection of classical canine and feline PVs, as well as a broad-range PCR, which has been used for the detection of various novel PVs in humans, in order to analyse 42 paraffin-embedded samples, representing three different forms of canine SCCs. Ten samples of skin tissues with various non-neoplastic conditions served as controls. While none of the negative controls reacted positively, PV DNA was discovered in 21% of the tested SCC samples. Interestingly, the classical COPV was amplified from only one sample, while the other positive cases were associated with a variety of thus far unknown PVs. This study suggests that a fraction of canine SCC is infected with PVs and that a genetic variety of canine PVs exists. Therefore, these results will facilitate the future study of the role of PVs in the development of canine skin cancers. I N T RO D U C T I O N The aetiology of canine skin and mucous membrane SCC remains largely unknown, although environmental factors such as sunlight exposure or burns have been implicated.1,2 The role of papillomaviruses (PV) also remains unclear and very few reports have confirmed the association between PV and SCC in dogs.10–13 Additionally, the role of these viruses in the development of cancer has not been established and the genomes of potentially causative viruses have not yet been cloned and analysed. Similarly, the role of human PVs (HPV) in the development of human skin SCC remains controversial. HPV DNA is, however, frequently uncovered in at least three types of human skin SCCs: Epidermodysplasia verruciformis, Bowen’s disease and Bowenoid papulosis.7,9,14,15 Additionally, links between HPVs and cervical and anal human SCCs have been well demonstrated and the causality established.16–18 Papillomaviruses are host-specific epitheliotropic DNA viruses that infect skin and mucous membranes. The complete genome and the biological properties of only one canine papillomavirus are well known.19–21 However, the existence of up to six different types has been suggested.4,21–23 In contrast, classification of HPVs has recently been reviewed, and nearly 100 HPV types have been described based on isolation and sequencing of complete genomes.15 de Villiers has additionally proposed criteria to define genera, species, types, subtypes and variants within the papillomaviridae family.15 It has also recently been shown that phylogenetic classification based on the L1 gene of PVs correlates, at least partially, with the biological and pathological properties.15 Squamous cell carcinomas (SCC) are malignant tumours that arise from the squamous epithelium of the skin and the mucous membranes. Squamous cell carcinomas account for up to 5% of the skin tumours in dogs and are the most frequent malignant canine tumours of the digits, tongue and gingiva.1,2 Cutaneous SCCs may be either exophytic or ulcerative, whereas mucous membrane SCCs are usually exophytic.1,2 Aside from these two classical forms of invasive SCC, a case of multifocal in situ SCC arising from pigmented papules and plaques has been described in a dog.3 In this case, tumoral cells were confined to the epidermis, while the basal membrane remained unaffected. Furthermore, cases of canine multiple pigmented plaques that evolved into SCC have been reported.4,5 In humans, solar keratosis, Bowen’s disease and Bowenoid papulosis are regarded as forms of in situ SCC.6–9 Some of them subsequently develop into invasive SCCs. Mucosal forms of SCCs also affect the cervical, anal and oral mucous membranes. Furthermore, Epidermodysplasia verruciformis is a rare genetic predisposition to develop viral warts with high risk of carcinomatous transformation. The study has been funded by grants of the Waltham Foundation and The European Society of Veterinary Dermatology (ESVD). Correspondence: C. Favrot, Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland. E-mail: cfavrot@vetclinics.unizh.ch 290 © 2005 European Society of Veterinary Dermatology 43 Detection of novel papillomaviruses Papillomavirus infection may either be subclinical, or induce microlesions or benign neoplasias.14,15,24,25 Additionally, a subset of HPVs and animal PVs is clearly implicated in the development of cancer in humans and animals.14,18,26–28 In humans, these PVs cause mucosal carcinomas and are referred to as highrisk PVs.14 The nature and the biological properties of canine PVs, as well as the aetiology of canine SCC, remain largely unknown.2 As HPVs that induce benign warts in humans are usually different from those that induce cancer, it can be speculated that the well known canine oral PV (COPV) does not usually induce SCC in dogs and that some other unknown canine PVs, the canine counterparts of the high-risk HPVs, may be responsible or contribute to such development.21 The purpose of our study was therefore to detect a broad spectrum of PV DNAs in samples from three forms of canine SCC (cutaneous invasive, cutaneous in situ and mucosal invasive) and to sequence the amplified DNA. 291 to a QIA shredder column (Quiagen, Basel, Switzerland) and centrifuged in order to reduce viscosity. Desoxyribonucleic acid was precipitated with absolute ethanol and extracted with the QIAamp® DNA Mini Kit (Quiagen). Papillomavirus detection and sequencing Phylogenetic studies have shown that COPV and feline PV are closely related and that this group is closer to some human PVs, including oncogenic PVs, than to PV in other animals, such as bovine PV.15 The investigators consequently selected two sets of primers: the first one (PapE1-Forward, PapE1-Reverse) is designed to amplify specifically COPV and FdPV DNA and the second one (CP4, CP5, PPF1) is designed to amplify various HPV DNA, especially the oncogenic ones. Narrow-range PCR with PapE1 primers All samples were coded before being assayed. The sequences encoding E1 are most highly conserved amongst canine, feline or closely related PVs.29 Therefore, the E1 sequences of feline [LOCUS AF480454] and canine [LOCUS NC001619] papillomaviruses were aligned with the aim of designing degenerated consensus primer pairs able to amplify an estimated 341-bp fragment from both phylogenetically related genomes. The forward primer used was 5 ′ -ATGGCGGMTARAAAAGGTA-3′ and the reverse primer used was 5′-AACAGCTGYTTTTTARCYTTTTT-3′. To amplify an internal 184-bp fragment using the same forward primer, a second reverse primer 5′-GAAACAGTTGCAGGGAAAGTC-3′ was designed. The PCR reactions were performed in 30-µL volumes, containing 1 µL of genomic DNA, 50 m KCl,, 3 m KCl2, 200 µ of each dNTP, 0.3 µ each of consensus sense and antisense primers and 2.5 U of PfuTurboDNA polymerase (Stratagene, CA, USA). Polymerase chain reaction amplification involved an initial denaturation step at 95 °C for 4 min, followed by 30 cycles at 95 °C for 1 min, 50 °C for 1 min and 74 °C for 1 min, with a final elongation step at 74 °C for 5 min. Reaction mixture with no DNA served as negative control, and COPV-positive papilloma DNA samples and feline papilloma positive DNA samples were used as positive controls. The PCR products were resolved by electrophoresis in 2% agarose gel stained with ethidium bromide. Amplified DNA was sequenced using AB-3100-based fluorescent sequencing and BigDye terminator chemistry. M AT E R I A L S A N D M E T H O D S Materials Fifty-seven samples of paraffin-embedded skin were included in the study: • seventeen samples of canine invasive cutaneous SCC; • twenty-three samples of canine mucosal SCC; • two samples of canine in situ SCC; • ten samples of canine skin with various nontumoral conditions; • three samples of virus-induced canine wart; • one sample of virus-induced feline in situ SCC; and • one sample of virus-induced bovine fibropapilloma. Except for one case (#2 provided by Dr T. L. Gross), all samples were selected by one board-certified pathologist (BH) at the Institute of Veterinary Pathology of the University of Zürich, Switzerland. Methods The study was carried out using a PCR technique on formalin-fixed, paraffin-embedded samples. Thirty-µmthick sections of each sample were cut from each tissue block, using a new disposable microtome blade for each block. Rigorous precautions were taken in order to avoid cross-contamination between samples. Broad-range PCR with CP4, CP5 & PPF1 primers DNA extraction. Each section was deparaffinized twice with 1.2 mL xylene at room temperature for 10 min, washed with ethanol 100% and then dried. The desiccated samples were suspended in an ATL lysis buffer (50 m Tris-HCl, pH 8.5 1 m ethilenediaminetetraacetic acid, 2.8% sodium dodecylsulphate and 20 mg mL−1 Proteinase K) and incubated at 56 °C on the rocking platform overnight. After lysis, samples were transferred In order to amplify as many different PVs as possible, the CP4, CP5, PPF1 was selected, because of its ability to uncover up to 64 different HPVs.29 The PCR reactions were performed in 30-µL volumes, containing 1 µL of genomic DNA, 50 m KCl, 3 m KCl2, 200 µ of each dNTP, 0.45 µ of the CP4 and CP5 primers and 0.3 µ of the PPF1 primer, and 2.5 U of PfuTurboDNA polymerase (Stratagene). Polymerase chain reaction amplification involved an © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 290–298 44 292 N. Zaugg et al. initial denaturation step at 95 °C for 10 min, followed by 40 cycles at 95 °C for 1 min, 47 °C for 1 min and 74 °C for 1 min, with a final elongation step at 75 °C for 5 min. Reaction mixture with no DNA served as negative control, and COPV-positive papilloma DNA samples and feline papilloma positive DNA samples were used as positive controls. The PCR products were resolved by electrophoresis in 1% agarose gels stained with ethidium bromide. Amplified DNA was sequenced using AB-3100-based fluorescent sequencing and BigDye terminator chemistry, and obtained sequences were compared with entries in the GenBank database. Interpretation of the results and sequence analyses Samples were deemed positive if the two following criteria were fulfilled: • samples exhibited a band of the expected size after gel electrophoresis; • the amplified DNA exhibited a significant homology with DNA coding for the E1 protein of a previously established PV. Comparisons were made with the BLAST software (GenBank – National Center of Biotechnology Information: NCBI). Figure 2. Histological section from lesion in Fig. 1. H&E. Canine SCC in situ. Irregular acanthosis (white arrow), hyperpigmentation and pigmentary incontinence (blue arrow), follicular involvement (green arrow). The basement membrane is intact (yellow arrow). Bar: 200 µm. Sequences were subsequently compared to each other on the amino acid sequence level in order to establish their homology on the protein level. R E S U LT S Clinical and histological criteria Available SCC cases were assigned to clinical and histological groups according to the following criteria. Two dogs (cases 1 and 2) exhibited numerous hyperpigmented, scaly maculae, plaques and nodules. One of the plaques of case 1 ulcerated and was subsequently biopsied (Fig. 1). Case 2 exhibited several ulcerated nodules that were biopsied. Histopathological examination of the two cases revealed marked acanthosis, Figure 3. Histological section from lesion in Fig. 1. H&E. Canine in situ SCC. Proliferation of basaloid cells (red arrow). Clumped keratohyalin granules (white arrow), hyperpigmentation (blue arrow), anisocaryosis (double arrow). Bar: 50 µm. orthokeratotic hyperkeratosis and hypergranulosis (Fig. 2) with keratohyalin granule clumping (Fig. 3). The epidermis was disorganized, with numerous atypical cells and premature keratinization. Proliferation of basaloid cells was observed in some areas but most of the atypical cells were of the squamous type (Fig. 3). Atypia consisted of macrokaryosis, anisokaryosis (Fig. 3), hyperchromasia, prominent nucleoli, multinucleated cells and abnormal mitoses (Fig. 4). However, the basement membrane was intact and the dermis was not affected (Figs 2, 3 and 4). Therefore, these dogs Figure 1. In situ squamous cell carcinoma. Hyperpigmented plaque. Case 1. © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 290– 298 45 Detection of novel papillomaviruses Figure 4. Histological section from lesion in Fig. 1. H&E. Canine in situ SCC. Intact basement membrane (green arrow). Numerous atypias: giant tumour cells/abnormal mitosis (red arrow), prominent nucleoli (yellow arrow), multinucelated cells (blue arrow). Bar: 50 µm. 293 Figure 6. Histology from lesion in Fig. 5. H&E. Canine invasive SCC: cords (red arrow) of keratinocytes invade the dermis. The epidermis is ulcerated (left, white arrow) and hyperkeratotic (right, blue arrow). Horn pearls (green arrow). Bar: 200 µm. Figure 7. Histology from lesion in Fig. 5. H&E. Canine invasive SCC. Cords of atypical keratinocytes. Several malignancy criteria are present: numerous mitoses (white arrows), macrokaryosis (green arrow), prominent nucleoli (blue arrow). Bar: 50 µm. Figure 5. Invasive squamous cell carcinoma. Clawbed. were considered to represent cases of in situ SCC (Table 1). Seventeen additional cases represented the group of skin-derived invasive SCC. Some cases exhibited a proliferative, exophytic and invasive pattern (Fig. 5), whereas others were also invasive but more ulcerative (Table 1). Histologically, they all consisted of cords or islands of atypical cells that invaded the dermis (Fig. 6). Large nuclei with prominent nucleoli were present in all cases, as well as numerous mitoses (Fig. 7). Premature keratinization and intercellular bridges were also present in most of the samples. Finally, 23 cases of mucous membrane-derived invasive SCC were available, which histologically all exhibited similar changes as those described above for skinderived SCCs. Seventeen of the latter lesions arose from the gingiva, four from the tongue, one from the nasal mucosa and one from the lips. Three canine papillomas, one feline squamous cell carcinoma in situ and one bovine fibropapilloma were included as positive controls. The bovine fibropapilloma and the canine papillomas exhibited changes typical of papillomavirus infections, such as koilocytosis, clumping of the keratohyalin granules and viral inclusion bodies (data not shown). The feline in situ SCC (data not shown) had previously been shown by immunochemistry to react positively with papillomavirusspecific antibodies. PCR studies Papillomavirus DNA was detected in the positive control tissues but not in the negative control tissues. The narrow-range PCR, optimized to detect known feline and canine papillomaviruses, reacted positively with extracts from the canine papillomas as well as with the immunohistologically positive case of feline in situ SCC. In contrast, this set of primers was unable to discover bovine papillomavirus in extracts from the bovine fibropapilloma tissue. However, the broad-range PCR detected papillomavirus DNA in both carnivorous and bovine positive control tissues. © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 290–298 46 294 N. Zaugg et al. Table 1. Identification and properties of clinical SCC cases Case # Group Breed Sex Age (years) Localization 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 In situ In situ Skin Skin Skin Skin Skin Skin Skin Skin Skin Skin Skin Skin Skin Skin Skin Skin Skin Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Rhodesian ridgeback Retriever mixed German shepherd dog Flatcoat retriever Golden retriever Giant schnauzer Schnauzer Giant schnauzer Bernese mountain dog Weimaraner Golden retriever Flatcoat retriever Giant schnauzer Siberian husky Mongrel Giant schnauzer Mongrel Weimaraner Labrador retriever English cocker Yorkshire terrier Golden retriever Airedale terrier Standard poodle Standard poodle Yorkshire terrier Golden retriever Cocker spaniel Old English sheepdog Maltese Irish setter Irish wolfhound West Highland white terrier German Wachtelhund Pekingese Mongrel Golden retriever Pekingese Schnauzer Briard Appenzeller Golden retriever M F F F M F M F M M M M M F M F M M M M F M M F M M M M F F M F F F F M M F M M F M 4 5 13 12 13 10 Unknown 8 7 8 12 8 7 11 10 9 10 8 4 7 8 10 9 10 7 12 5 14 11 10 8 7 12 11 11 13 11 9 13 6 12 4 Diffuse Abdomen, limbs Limb Clawbed Nasal planum Clawbed Clawbed Clawbed Dorsum Flank Limb Limb Carpus Carpus Limb Clawbed Clawbed Face Clawbed Nose Gingiva Gingiva Gingiva Tongue Gingiva Tongue Gingiva Gingiva Gingiva Gingiva Gingiva Lips Gingiva Tongue Gingiva Gingiva Gingiva Gingiva Gingiva Gingiva Tongue Gingiva Table 2. Papillomavirus-positive cases Case # Group* Breed Sex Age Localization Related to† 1 2 11 18 20 33 36 40 42 In situ In situ Invasive skin Invasive skin Mucous membrane Mucous membrane Mucous membrane Mucous membrane Mucous membrane Rhodesian ridgeback Retriever mix Golden retriever Weimaraner Cocker West Highland white terrier Mongrel Briard Golden retriever M F M M M F M M M 4 5 12 8 7 12 13 6 4 Diffuse Abdomen, limbs Limb Face Nose Gingiva Gingiva Gingiva Gingiva HPV65‡ BPV1 HPV85 HPV59 COPV§ HPV65 HPV59 HPV65 HPV4 *Clinical SCC type; †closest relative detected by NCBI-BLAST analysis; ‡unless otherwise stated, detected exclusively by broad-range PCR; §detected by both narrow-range and broad-range PCR. The results of the test samples included in this study are presented in Table 2. Interestingly, the narrowrange PCR detected only one case of SCC associated with a papillomavirus infection, namely a mucous membrane-derived SCC (case 20). However, this case and eight additional cases were detected with the broad-range technique, including 2/2 samples from in situ SCC, 2/17 invasive skin SCCs, and 5/23 cases of mucous membrane-derived invasive SCC. Sequencing studies The above PCR results strongly suggested that thus far unknown papillomaviruses had been detected with the broad-range PCR. To address this issue, the nucleotide © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 290– 298 47 Detection of novel papillomaviruses 295 the use of formalin-fixed, paraffin-embedded tissue decreases the amplification rate of viral DNA.31 Our study demonstrates that COPV DNA is rarely present in SCC samples. The absence of PV DNA in the nontumoral skin in the present study suggests that dogs, unlike humans, are rarely affected by occult infections. This conclusion is corroborated by Antonnsson et al. who have uncovered PV DNA in the skin of various healthy animals but not in dogs and cats.24 Invasive skin SCCs appear to be infrequently infected by PVs (2/17: 12%). These results are in contrast with those of mucous membrane SCCs that appeared to be more frequently affected (5/23: 22%). Last but not least, the two cases of skin in situ SCC were deemed positive. The viral aetiology of this latter condition has already been suggested by two different case reports.4,5 However, the presence of PV DNA in the two tested samples of canine in situ SCC are not proof that these viruses are directly responsible for the development of these tumours. In fact, establishing causality between papillomaviruses and skin cancers remains problematic. Criteria for causality were first proposed by zur Hausen and have been modified by Harwood.16,17 According to these authors, epidemiological evidence that the viral infection represents a risk factor, regular presence of the viral nucleic acid, stimulation of proliferation upon cross-infection of the viral genome in tissue culture cells and demonstration that induction of proliferation depends on functions of the viral DNA are essential criteria to demonstrate causality. At the present time, not all these criteria are fulfilled by the canine in situ SCCs. The clinical relevance of the presence of PVs in invasive mucosal and skin SCC lesions is another important question. Assuming that PVs play a role in the development of canine SCC, the absence of PV DNA in numerous canine SCC can be explained by the ‘hit and run’ model, which postulates an initial transformation of the infected cell and a subsequent loss of PV-DNA.32 Interestingly, in a previous study in canines, a PV antigen-negative SCC arose from a PV antigenpositive Epidermodysplasia verruciformis-like lesion.4 This model, however, implies a deletion of viral genes during integration of the viral DNA in the host chromosomes. Such a deletion has only been demonstrated in humans with the E2 gene.33 As human high-risk papillomaviruses are genetically different from lowrisk HPVs one can postulate that canine high-risk PV (provided they do exist) should be genetically different from COPV. As we have only used sets of primers that were designed to uncover COPV DNA and high-risk HPV DNA, we cannot rule out that the DNA of some unknown canine PV remained undetectable. The amplified DNA sequences suggest the presence of several different PVs in the canine SCCs. Furthermore, eight out of nine positive samples were infected by these unknown PVs. Moreover, our findings confirm that dogs, as well as humans, can be infected with PVs of great genetic diversity. sequences of the amplification products of the individual PCRs were determined and compared by BLAST analysis to known papillomavirus sequences. If available (7/42 dogs), several independent samples from each dog were used for PCR and sequencing, and sequencing results were identical for different locations of the lesions from each individual dog. However, the sequences differed largely between different dogs. As expected, the sequence obtained from case 20 turned out to be closely related to the published sequence of canine oral papillomavirus.21 In contrast, the remaining eight positive cases were more closely related to other papillomaviruses, such as human and bovine papillomaviruses (Table 2). Although the classification of papillomavirus is based on the L1 sequences, these results strongly support that novel canine papillomaviruses were detected in canine SCCs throughout this study. However, 78% of the tested samples still remained negative, which indicated that either a large proportion of canine SCC is not associated to papillomavirus infection or that the corresponding virus strains are still more different, which would mean that the range of PCR detection would still need to be further enlarged. Breed, sex and age distribution These data are included in Tables 1 and 2. Although schnauzers appeared to be over-represented in the total sample, retrievers (flatcoated and golden) (19% of the sample but 33% of papillomavirus-positive individuals) emerged as a possible breed group with a tendency to SCC caused by papillomavirus. The total sex distribution resulted in 60% male and 40% female dogs. However, 70% of the papillomavirus-positive dogs were male. The average age of dogs with SCC was 9.25 years, with in situ SCC, 4.5 years, with invasive skin SCC, 9.38 years, and of dogs with mucous SCC, 9.57 years. The average age of papillomavirus-positive dogs with SCC was 7.89 years. DISCUSSION In this study, it was possible to uncover PV DNA in 9/42 samples of canine SCC (21.4%) with a broad-range PCR-assay and in 1/42 (2.3%) with a narrow-range PCR-assay designed to amplify DNA from COPV, FdPV and closely related PVs. Interestingly, the last figure is in line with that of the only other study which used a PCR technique:12 Teifke et al. used a narrowrange PCR and amplified COPV DNA in 3/53 SCC samples (6%). These numbers are, however, lower than those obtained in previously published immunohistochemistry studies. In one of these studies, PV antigens were demonstrated in 10/100 canine SCC samples, with 17 additional questionable positive results (10–27%).11 In the second one, PV antigens were uncovered with an immunoperoxidase technique in 6/20 (30%) samples.30 It is, however, important to consider that the PCR technique cannot amplify the DNA of all PVs and that © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 290–298 48 296 N. Zaugg et al. The detection of PV DNA in SCC tissues and not in normal skin or skin affected by other conditions might result from the increased replication of latent virus in response to tumoral cell cytokine secretions.34 Mitsuishi et al. have uncovered HPV DNA in 74 and 67% of the samples of human actinic keratosis and Bowen’s diseases, respectively.9 In the same study, no differences in p53, p21, Ki 67 and PCNA were found between HPV-positive and HPV-negative samples. This set of data suggests that HPVs probably play a role in the pathogenesis of both conditions but that the viruses alone are not able to induce cancer transformation. Human SCCs also occur many years after the initial infection, which usually has a benign course, even with oncogenic HPV types.14 Malignant transformation thus implies the presence of continuing infection and prolonged E6/E7 oncogene expression.35 Such chronic infections occur in human anal or cervical PV infections and Epidermodysplasia verruciformis but have not been demonstrated with canine PV infections.20 Although the present results cannot be regarded as sufficient proof for the carcinogenic potential of canine PVs, the detection of novel members of this large family of viruses is important for further research on this issue. Importantly, the novel papillomaviruses were uncovered in the two cases of SCC in situ. These two dogs were younger than the average age of the available dogs with SCC, which also favours a viral aetiology for this type of lesions. Indeed, the presence of PVs in such lesions has been established previously.4 Additionally, one of the lesions described by this author subsequently developed into invasive SCC and the similarities between these cases and the human Epidermodysplasia verruciformis has already been emphasized.4 The presence of specific oncogenic PVs in a significant number of such canine lesions consequently warrants further investigation. The study has also demonstrated the great diversity of the canine PVs. Cloning these new viruses will allow phylogenetic comparison with human commensal and high-risk PVs. These comparisons can eventually provide clues for the interpretation of past and future studies. 3. Gross TL, Fau-Brimacomb BH. Multifocal intraepidermal carcinoma in a dog histologically resembling Bowen’s disease. American Journal of Dermatopathology 1986; 8: 509–15. 4. Nagata M, Nanko H, Moriyama A et al. Pigmented plaques associated with papillomavirus infection in dogs: is this epidermodysplasia verruciformis? Veterinary Dermatology 1995; 6: 179–85. 5. Stokking LB, Ehrhart EJ, Lichtensteiger CA et al. Pigmented epidermal plaques in three dogs. Journal of the American Animal Hospital Association 2004; 40: 411–17. 6. Anwar J, Wrone DA, Kimyai-Asadi A et al. The development of actinic keratosis into invasive squamous cell carcinoma: evidence and evolving classification schemes. Clinical Dermatology 2004; 422: 189–96. 7. Arlette JP, Trotter MJ. Squamous cell carcinoma in situ of the skin: history, presentation, biology and treatment. Australasian Journal of Dermatology 2004; 45: 1– 11. 8. Cockerell CJ. Pathology and pathobiology of the actinic (solar) keratosis. British Journal of Dermatology 2003; 149: 34–6. 9. Mitsuishi T, Kawana S, Kato T et al. Human papillomavirus infection in actinic keratosis and Bowen’s disease: comparative study with expression of cell-cycle regulatory proteins p21waf1/cip1, 53, pcna, ki-67, and bcl-2 in positive and negative lesions*1. Human Pathology 2003; 34: 886–92. 10. Sundberg JP, Junge RE, Lancester WD. Immunoperoxidase localization of papillomaviruses in hyperplastic and neoplastic epithelial lesions in animals. American Journal of Veterinary Research 1984; 45: 1441–6. 11. Schwegler K, Walter JH, Rudolph R. Epithelial neoplasms of the skin, the cutaneous mucosa and the transitional epithelium in dogs: an immunolocalization study for papillomavirus antigen. Journal of Veterinary Medicine A 1997; 44: 115–23. 12. Teifke JP, Lohr CV, Shirasawa H. Detection of canine oral papillomavirus-DNA in canine oral squamous cell carcinomas and p53 overexpressing skin papillomas of the dog using the polymerase chain reaction and nonradioactive in situ hybridization. Veterinary Microbiology 1998; 60: 119–30. 13. Watrach AMSe, Case MT. Canine papilloma: progression of oral papilloma to carcinoma. Journal of National Cancerology Institute 1970; 45: 915–20. 14. Lowy DRH, Howley PM. Papillomaviruses. In: Knipe DM, Howley PM eds. Fields Virology, 4th edn. Philadelphia: Lippincott Williams & Wilkins, 2001: 2231–64. 15. de Villiers E-M, Fauquet C, Broker TR et al. Classification of papillomaviruses. Virology 2004; 324: 17–27. 16. Harwood CA, Proby CM. Human papillomaviruses and non-melanoma skin cancer. Current Opinion in Infectious Diseases 2002; 15: 101–14. 17. zur Hausen H. Papillomavirus infections – a major cause of human cancers. Biochimica et Biophysica Acta 1996; 1288: F55–78. 18. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. National Review of Cancer 2002; 2: 342–50. 19. Chambers VC, Evans CA. Canine oral papillomatosis. I. Virus assay and observations on the various stages of the experimental infection. Cancer Research 1959; 19: 1188– 95. AC K N OW L E D G E M E N T S The authors would like to acknowledge Dr Thelma Lee Gross who has provided one of the samples (case #2). REFERENCES 1. Morrison WB. Cancers of the head and neck. In: Morrison WB ed. Cancer in Dogs and Cats. Jackson: Teton New Media, 2002: 489 – 93. 2. Thomas RCF, Fox LE. Tumors of the skin and the subcutis. In: Morisson WB ed. Cancer in Dogs and Cats, 2nd edn. Jackson: Teton New Media, 2002: 473 – 88. © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 290– 298 49 Detection of novel papillomaviruses 20. Nicholls PK, Stanley MA. Canine papillomavirus – A centenary review. Journal of Comparative Pathology 1999; 120: 219 –33. 21. Sundberg JP, O’Banion MK, Schmidt-Didier E et al. Cloning and characterization of a canine oral papillomavirus. American Journal of Veterinary Research 1986; 47: 1142 – 4. 22. Le Net JL, Orth G, Sundberg JP et al. Multiple pigmented cutaneous papules associated with a novel canine papillomavirus in an immunosuppressed dog. Veterinary Pathology 1997; 34: 8 –14. 23. Campbell KL, Sundberg JP, Goldschmidt MH et al. Cutaneous inverted papillomas in dogs. Veterinary Pathology 1988; 25: 67 –71. 24. Antonsson A, Hansson BG. Healthy skin of many animal species harbours papillomaviruses which are closely related to their human counterparts. Journal of Virology 2002; 76: 12537 – 42. 25. Antonsson A, Erfurt C, Hazard K et al. Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. Journal of General Virology 2003; 84: 1881– 6. 26. Pfister H. Human papillomavirus and skin cancer. Journal of National Cancer Institute Monographs 2003: 52– 6. 27. Saveria Campo M. Animals models of papillomavirus pathogenesis. Virus Research 2002; 89: 249 – 61. 28. Smith KT, Campo MS. Papillomaviruses and their involvement in oncogenesis. Biomedical Pharmacotherapy 1985; 39: 405 –14. 29. Iftner A, Klug SJ, Garbe C et al. The prevalence of 30. 31. 32. 33. 34. 35. 297 human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Research 2003; 63: 7515–19. Sundberg JP, Smith EK, Herron AJ et al. Involvement of canine oral papillomavirus in generalized oral and cutaneous verrucosis in a Chinese Shar Pei dog. Veterinary Pathology 1994; 31: 183–7. Albini S, Zimmermann W, Neff F et al. Identification and quantification of ovine gammaherpesvirus 2 DNA in fresh and stored tissues of pigs with symptoms of porcine malignant catarrhal fever. Journal of Clinical Microbiology 2003; 41: 900–4. Smith KT, Campo MS. ‘Hit and run’ transformation of mouse C127 cells by bovine papillomavirus type 4: the viral DNA is required for the initiation but not for maintenance of the transformed phenotype. Virology 1988; 164: 39–47. Ordonez RM, Espinosa AM, Sanchez-Gonzalez DJ et al. Enhanced oncogenicity of Asian-American human papillomavirus 16 is associated with impaired E2 repression of E6/E7 oncogene transcription. Journal of General Virology 2004; 85: 1433–44. de Villiers EM, Ruhland A. Do specific human papillomavirus types cause psoriasis? Archives of Dermatology 2001; 137: 384. Duensing S, Münger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. International Journal of Cancerology 2004; 109: 157–62. Résumé L’ADN de papillomavirus (PV) est fréquemment retrouvé dans des achantillons de carcinome épidermoïde (SCC) chez l’homme. Cependant le rôle de ces virus dans le développement de ces cancers est controversé. Alors qu’environ une centaine de PV sont recensés chez l’homme, un seul PV canin oral (COPV) a été identifié et étudié. Nous avons utilisé une technique de PCR spécifique des PV canin et félin, ainsi qu’une technique de PCR utilisée pour la détection des nouveaux PV humains, afin d’analyser 42 biopsies paraffinées, représentant trois formes différentes de SCC canins. 10 échantillons de tissus affectés par des maladies non néoplasiques ont servi de contrôle. Aucun des témoins négatifs n’a réagi positivement, et de l’ADN de PV a été retrouvé cajs 21% des prélèvements testés de SCC. Le COPV classique n’a été amplifié qu’une seule fois, alors que les autres cas positifs étaient associés à la présence d’une variété inconnue de PV humain. Cette étude suggère qu’une fraction des SCC canins est infectée par le PV, et qu’il existe une variété génétique des PV canins. Ces résultats vont faciliter les études futures qui s’intéresseront au rôle des PV dans le développement des cancers cutanés du chien. Resumen El ADN del virus papiloma (PV) se descubre de forma frecuente en muestras de carcinoma de células escamosas (SCC) de la piel humana. Sin embargo, el papel de estos virus en el desarrollo de estas neoplasias en el perro es aún controvertido. Mientras que se conocen aproximadamente 100 virus papiloma en humanos, tan sólo un virus papiloma canino oral (COPV) ha sido identificado y estudiado de forma exhaustiva. Por ello, para analizar 42 muestras incluidas en parafina que representaban tres formas diferentes de carcinomas de células escamosas en perros, aplicamos una reacción de polimerasa en cadena (PCR) de estrecho rango, válida para detectar virus papiloma clásicos caninos y felinos; y también una PCR de amplio rango, que ha sido utilizada para la detección de nuevos virus papiloma en humanos. Diez muestras de piel con lesiones no neoplásicas se utilizaron como controles. Mientras que ninguno de los controles negativos dio resultado positivo, ADN de virus papiloma se encontró en un 21% de las muestras de carcinoma de células escamosas. Curiosamente, el clásico virus papiloma oral canino solo se amplificó de una muestra, mientras que los otros casos positivos se asociaron con variedades hasta ahora desconocidas de virus papiloma. Este estudio sugiere que una fracción de carcinomas de células escamosas caninos está infectada con el virus papiloma, y que existe una diversidad genética de virus papiloma caninos. Por lo tanto, estos resultados facilitarán futuros estudios sobre el papel del virus papiloma en el desarrollo de cáncer de piel en perros. Zusammenfassung Papillomavirus (PV) DNA wird häufig in Hautproben von Plattenepithelkarzinomen des Menschen gefunden. Beim Hund bleibt die Rolle dieser Viren bei der Entstehung derartiger Tumoren allerdings © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 290–298 50 298 N. Zaugg et al. umstritten. Während etwa 100 humane Papillomaviren bekannt sind, wurde erst ein einziges canines orales Papillomavirus (COPV) identifiziert und umfangreich untersucht. Daher haben wir eine ‘narrow-range’ Polymerase Chain Reaction (PCR) angewendet, die passend ist für den Nachweis von klassischen caninen und felinen Papillomaviren, sowie eine ‘broad-range’ PCR, die verwendet worden war für den Nachweis von verschiedenen neuen Papillomaviren beim Menschen, um 42 in Paraffin eingebettete Proben zu analysieren, die drei unterschiedliche Formen von caninem Plattenepithelkarzinom repräsentierten. Zehn Hautproben von verschiedenen nichtneoplastischen Zuständen dienten als Kontrollen. Während keine der Negativkontrollen positiv war, wurde PV DNA in 21% der untersuchten Proben der Plattenepithelkarzinome gefunden. Interessanterweise wurde das klassische COPV nur aus einer Probe isoliert, während die anderen positiven Fälle im Zusammenhang mit einer Variation von bisher unbekannten PVs gefunden wurden. Diese Studie weist darauf hin, dass ein Teil der caninen Plattenepithelkarzinome mit PV infiziert ist und dass eine genetische Variation der caninen Papillomaviren besteht. Daher werden diese Ergebnisse zukünftige Studien über die Rolle von Papillomaviren bei der Entstehung von caninen Hauttumoren erleichtern. © 2005 European Society of Veterinary Dermatology, Veterinary Dermatology, 16, 290– 298 51 Chapter 7 Detection of novel papillomavirus-like DNA sequences in paraffine-embedded samples of feline invasive and in situ squamous cell carcinomas G. Nespeca1, P. Grest2, W. S. Rosenkrantz3, M. Ackermann4, C. Favrot1 American Journal of Veterinary Research, 2006; 67 (12): 2036-2041 1 Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 2 Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 3 Animal Dermatology Clinic, San Diego, CA, USA 4 Virology Institute, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland Funded by grants from the Waltham Foundation and the European Society of Veterinary Dermatology 52 Detection of novel papillomaviruslike sequences in paraffin-embedded specimens of invasive and in situ squamous cell carcinomas from cats Gilles Nespeca, Med Vet; Paula Grest, DVM; Wayne S. Rosenkrantz, DVM; Mathias Ackermann, DVM, PhD; Claude Favrot, DrVet, MS Objective—To detect and partially characterize papillomavirus (PV) DNA in squamous cell carcinoma (SCC) tumor specimens from cats. Sample Population—54 formalin-fixed paraffinembedded skin biopsy specimens were examined. Specimens originated from Bowenoid in situ SCC (BISC; n = 21), invasive SCC (22), and skin affected by miscellaneous nonneoplastic conditions (11). Procedures—Samples from each tissue block underwent DNA extraction after deparaffinization, and PCR assays were performed. Two sets of primers derived from PV E1 were used. The first set of primers was designed for the narrow-range PCR assay and was able to generate amplification products of feline PV (FePV), canine oral PV, or closely related PVs. The second set of primers was selected for the broad-range PCR assay because of its ability to amplify DNA from 64 human PVs. Sequence analysis of each amplified DNA was performed. Results—1 of the 21 specimens of BISC was positive for PV DNA on the basis of narrow-range PCR assay results, whereas all the other specimens (BISC, invasive SCC, and controls) had negative results for PV DNA. In contrast, 5 of 21 BISC specimens and 4 of 22 invasive SCC specimens were positive for PV DNA on the basis of broad-range PCR assay results. Sequence analysis revealed that only 1 specimen was infected by a virus closely related to classic FePV. In the 8 other specimens positive for PV DNA, DNA of unknown PVs was uncovered. Conclusions and Clinical Relevance—Bowenoid in situ SCC and invasive SCC of cats may be associated with PVs of genetic diversity. (Am J Vet Res 2006;67:2036–2041) AK SCC PV HuPV FePV BISC CaPV BoPV ABBREVIATIONS Actinic keratosis Squamous cell carcinoma Papillomavirus Human PV Feline PV Bowenoid in situ SCC Canine PV Bovine PV AK, a precancerous skin growth associated with sun exposure.3 However, AK is often regarded as a form of SCC, which is confined to the epidermis; thus, AK is also referred to as in situ SCC.3-6 A second form of in situ SCC, precancerous dermatitis (termed Bowen’s disease), presents as 1 or more flat red scaly patches up to several centimeters wide, often found in large numbers.1,4,6 In situ SCC can persist as such; regress; or develop into a third, even more malignant form, invasive SCC. Similar skin cancers are also observed in veterinary medicine, specifically in cats.7 Squamous cell carcinoma has been linked to a variety of causative associations, which include exposure to UV or ionizing radiation; arsenic ingestion; toxic exposure to tars and oils; immunosuppression from drugs such as corticosteroids, azathioprine, and cyclosporine; and last but not least, to PV infection.1,8-10 Papillomaviruses are host-specific epitheliotropic DNA viruses that infect skin and mucous membranes. In general, PV infections are benign, result in a latent infection, or induce microlesions or benign neoplasias.11-14 However, a subset of HuPVs and other animal PVs is clearly implicated in the development of cancer.10, 14-17 Human PVs that cause mucosal and skin carcinomas in humans are referred to as high-risk PVs or epidermodysplasia verruciformis–associated HuPV types, respectively.14 Close to 100 HuPV types have been described on the basis of isolation of complete genomes.13 Knowledge on the combination of biological properties and sequence similarities led to the definition of new criteria to define genera, species, types, subtypes, and variants within the Papillomaviridae family.13 In contrast to the numerous HuPVs, only a single FePV has been identified.18 However, the existence of a few other FePVs has been suggested on the basis of findings from several clinical and immunohistochemical studies.19-22 Until now, little has been known about the presence of PVs in SCCs of cats. Investigators in 1 study23 S quamous cell carcinoma is, after basal cell carcinoma, the second most common cancer of the skin in humans.1,2 Squamous cell carcinoma involves cancerous changes to the cells of the middle portion of the epidermal skin layer. This cancer may begin in normal skin; in skin at the site of a burn, injury, or scar; or at a site of chronic inflammation.1 Most often, it originates from Received June 29, 2006. Accepted July 31, 2006. From the Clinic for Small Animal Internal Medicine, Dermatology Unit (Nespecca, Favrot), the Institute for Veterinary Pathology (Grest), and the Virology Institute (Ackermann), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, CH 8057 Zurich, Switzerland; and the Animal Dermatology Clinic, 5610 Kearny Mesa Rd, Ste B, San Diego, CA 92111 (Rosenkrantz). Supported by grants from the Waltham Foundation and the European Society of Veterinary Dermatology. Address correspondence to Dr. Favrot. 2036 AJVR, Vol 67, No. 12, December 2006 53 failed to uncover PV antigen in SCCs of cats, whereas findings in another study24 revealed the presence of PV antigens in 44% of tumor specimens of BISC from cats. Furthermore, PV DNA has been uncovered in tumor specimens from fibropapillomas, another type of cutaneous proliferative disease, of cats.25 Similar to the human disease types, 3 varieties of SCC have been described for cats, which are AK, BISC, and invasive SCC.26 Actinic keratosis usually occurs as a solitary lesion on sun-exposed, lightly haired areas, such as ear tips, external nares, or eyelids. White cats are predisposed for the development of such lesions. On the other hand, BISC is characterized usually by multiple well-circumscribed, hyperpigmented lesions that occur frequently on the face, neck, and limbs.27,28 To our knowledge, comparative studies of these 2 early forms of cancer have not been performed in cats. The purpose of the study reported here was to detect PV DNA in specimens representing the various types of SCC in cats and in specimens from feline skin with various nontumor conditions. We wanted to test whether tumor specimens from cats with SCC were more often infected by PVs than nontumor skin specimens. Two types of PCR assays, narrow and broad range, were applied to extend the range of targeted PVs as far as possible. AACAGCTGYTTTTTARCYTTTTT-3′) for narrow-range PCR assay, which is able to generate amplification products of approximately 341 bp of FePV, CaPV, or closely related PVs. The second set of primers (ie, CP4, CP5, and PPF1 primers), also derived from E1, was selected for broad-range PCR assay with the objective of amplifying as many PVs as possible. With this set of primers, up to 64 HuPVs are identifiable.30 The expected size of the PCR product was approximately 450 bp. PCR assay and agarose gel electrophoresis— Polymerase chain reaction conditions for PapF and PapR were performed. Volumes of 30 mL were used. Each reaction contained 1 µL of genomic DNA, 200µM of each deoxynucleoside triphosphate, 0.3µM of each of the sense and antisense primers, and 2.5 units of a DNA polymerase.c After an initial denaturation step at 95oC for 4 minutes, PCR assay was performed for 30 cycles at 95oC for 1 minute, 50oC for 1 minute, and 74oC for 1 minute, with a final elongation step at 74oC for 5 minutes. Deoxyribonucleic acid extracted from canine warts served as positive control, whereas DNA- and RNA-free water was used as negative control. The PCR mix with CP4, CP5, and PPF1 primers was identical to the mix for narrow-range PCR assay, except that 0.45µM of the CP4 and CP5 primers and 0.3µM of the PPF1 primer were used. The PCR assay consisted of a denaturation step at 95oC for 10 minutes, followed by 40 cycles at 95oC for 1 minute, 47oC for 1 minute, and 74oC for 1 minute, with a final elongation step at 75oC for 5 minutes. An extract from 1 bovine fibropapilloma served as an additional positive control. Polymerase chain reaction products were segregated by agarose gel electrophoresis, and bands were viewed under UV light after ethidium bromide staining. Bands on the gel were excised, and DNA was extracted with a gel extraction kit.d Amplified DNA was sequenced by use of fluorescent sequencing and terminator chemistry.e Materials and Methods Tissue specimens—Tissues were obtained from the collections of the Prairie Diagnostics Services, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; the Institut de Pathologie et de génétique, Loverval, Belgium; Rest associates, London; and, the Pathology Institute, Vetsuisse Faculty, University of Berne, Berne, Switzerland. Fifty-four formalin-fixed paraffinembedded skin biopsy specimens were examined. Specimens originated from BISC (n = 21), invasive SCC (22), and miscellaneous skin conditions other than skin cancers (eg, allergic dermatitis; 11) that were used as negative controls. Specimens from white cats or from locations typical for AK such as ear tips and eyelids were excluded from this study. Thirty-micrometer-thick sections were cut from each tissue block, with a new disposable microtome blade for each block, before DNA extraction. Two canine warts, which had histopathologic characteristics of typical PV-induced inclusion bodies, and 1 bovine fibropapilloma served as positive controls. Sequence analysis—Samples were considered positive for PV DNA if they met the following requirements: they had a band of the expected size after gel electrophoresis and the sequenced DNA had homology with E1 of previously sequenced PVs. Homologous DNA sequences were searched for by use of the National Center for Biotechnology Information GenBank via a BLAST search.f Sequence alignments and phylogenetic trees were made from the clustal algorithm obtained by use of a software program.g Results Macro- and microscopic analysis—A careful macroscopic selection and microscopic confirmation of affected specimens was a major prerequisite prior to the virologic analysis. Specimens representing invasive SCC had been resected from sun-exposed or white areas of 21 domestic shorthaired cats and 1 Persian cat (12 males and 10 females). Twenty-two specimens from ear tips (n = 11), nose (3), eyelids (3), digits (3), and lips (2) met criteria required for invasive SCC. These criteria included the macroscopic presence of scaly-to-crusty and erosive-to-plaquelike or ulcerative lesions (Figure 1). The growth process was always endophytic. Histologically, cords or islets of infiltrative cells were detected in all specimens. Furthermore, anisocytosis; anisokaryosis; large, hyperchromatic nuclei; prominent nucleoli; increased mitotic index; and abnormal mitoses were encountered in all specimens with variable intensity and in variable proportion. In addition, keratin pearls DNA extraction—The protocol of Albini et al29 was used for DNA extraction. Briefly, each section was deparaffinized twice with 1.2 mL of xylene at room temperature (approx 20oC) for 10 minutes, washed with 100% ethanol, and then dried at 37oC for 30 minutes. Desiccated samples were suspended in a tissue lysis buffer (50mM Tris-HCl [pH 8.5], 1mM ethilenediaminetetraacetic acid, and 2.8% sodium dodecylsulfate) and proteinase K (20 mg/mL) and incubated at 56oC on a rocking platform overnight. After lysis, samples were transferred to a columna and centrifuged to reduce viscosity. The DNA was precipitated with absolute ethanol and extracted with a commercial DNA kit.b Primers—Two sets of primers were used for the PCR assay. Because the sequences encoding E1 are highly conserved, the E1 regions of FePV (GenBank accession No. AF480454) and CaPV (GenBank accession No. NC001619) were aligned to design a set of consensus primers (ie, PapF, 5′-ATGGCGGGMTARAAAAGGTA-3′ and PapR, 5′AJVR, Vol 67, No. 12, December 2006 2037 54 BISC were available for virologic analysis by PCR assay and sequencing. and intercellular bridges were present in 16 and 12 specimens, respectively. A second group of 21 tumor specimens met the criteria for BISC. These specimens were obtained from the face (n = 16), neck (12), and limbs (3) or were scattered (2). Thirteen domestic shorthair cats, 3 domestic longhair cats, 2 Siamese, 1 Persian, 1 Himalayan, and 1 Cornish Rex were affected. Macroscopically, the lesions were squamous crustosus and grossly circular. Two lesions had a single center, but 19 were multicentric (Figure 1). Microscopically, the following criteria were met for BISC: moderate-tosevere parakeratotic hyperkeratosis, acanthosis with papillomatous hyperplasia (n = 1) or irregular hyperplasias (20), loss of polarity, and scattered dyskeratotic keratinocytes atypia in all layers of the epidermis and usually also in the infundibulum and reaching the isthmus. Furthermore, the following types of atypia were recorded: enlarged nuclei, anisokaryosis, monster cells (bizarre multinucleated giant cells), and abnormal mitotic figures. Hyperpigmentation was found in all but 3 specimens. Fifteen of the 21 specimens had clumped keratohyalin granules, which were considered as suggestive for PV infection. However, other signs such as koilocytosis and nuclear inclusion bodies were not detected. With the exception of the ulcerated lesions, the dermis of all samples was considered normal and not heavily inflamed (Figure 1). Thus, a total of 22 samples representing invasive SCC and 21 samples representing PCR assays—The narrow-range PCR assay amplified PV DNA extracted from canine warts but not DNA extracted from bovine fibropapilloma (Figure 2). In contrast, the broad-range PCR assay amplified PV DNA from canine warts and bovine fibropapilloma. It was concluded that both PCR assays were able to specifically amplify selected PV DNAs. The narrow-range PCR assay was applied to samples from invasive SCC and BISC specimens; 1 BISC sample (BISC sample No. 15; Appendix; Figure 3) had positive results for PV DNA, whereas the others had negative results. Next, the broad-range PCR assay was applied to the same samples. Interestingly, 5 of 21 BISC samples (BISC sample Nos. 2, 5, 6, 10, and 15) as well as 4 of 22 SCC samples (SCC sample Nos. 15, 24, 28, and 29) had positive results for PV DNA (Figure 2). One of the samples that had positive results for PV DNA on the broad-range PCR assay (BISC sample No. 15) also had positive results for PV DNA on the narrow-range PCR assay. These results suggested that the broad-range PCR assay was indeed able to uncover PVs that were different from the known FePV and CaPVs. 4c Figure 1—Macroscopic and microscopic lesions of SCCs in cats. A—Photograph of invasive SCC in a cat with ulceration of the eyelid. B—Photomicrograph of a section of the invasive SCC from panel A at low magnification. Notice invasive proliferation of atypical keratinocytes with pearl formation (white arrow) and the cornified layer (red arrow). The basal membrane is not discernible. The dermis (long arrow) is invaded by cords of atypical keratinocytes (short black arrow, pointing towards such an invasive site). H&E stain; bar = 200 µm. C—Photomicrograph of a section of the invasive SCC from panel A at high magnification. Notice islets of keratinocytes with features of malignancy, such as anisokaryosis, anisocytosis, multinucleated cells (short arrow), and abnormal mitosis (long arrow). H&E stain; bar = 50 µm. D—Photograph of BISC in a cat with circular, crusted, erosive, and hyperpigmented plaques (arrow). E—Photomicrograph of a section of the BISC from panel D at low magnification. The basal membrane (white arrow) is intact, and the dermis is not invaded. Irregular acanthosis (long black arrow) is obvious. Notice that hair follicles are affected (short arrow). H&E stain; bar = 200 µm. F—Photomicrograph of a section of the BISC from panel D at high magnification. Notice acanthosis, hyperpigmentation (brown cells), clumped keratohyalin granules (white arrow), loss of polarity, and anisokaryosis (branched arrow). H&E stain; bar = 50 µm. Figure 2—Establishment of broad-range and narrow-range PCR assays for detection of carnivore PVs. Polymerase chain reaction products were loaded on agarose gels and stained with ethidium bromide. A—Amplification of cloned DNA by either broadrange (450 bp) or narrow-range PCR assay (341 bp). Lane 1 = Water in place of DNA added to the reaction. Lane 2 = DNA from a commercially available phagemid.h Lane 3 = DNA from oral CaPV cloned into the phagemid.h Lane 4 = DNA from CPV3 (GenBank accession No. DQ295066) cloned into the phagemid.h M1 = Molecular weight marker (100-bp ladder). B—The DNA was extracted from tissues before being amplified by either the narrow range or the broad-range PCR assays. M2 = 1-kilobase ladder. M1 = 100-bp ladder. Lane 1 = Negative control with no DNA added to the reaction. Lane 2 = Extract from canine wart tissue, which had typical PV-induced inclusion bodies on histologic examination. Lane 3 = Extract from a tumor specimen of a cat with SCC (GenBank accession No. DQ085784). Lane 4 = Extract from SSC sample No. 39. 2038 AJVR, Vol 67, No. 12, December 2006 55 Discussion The purpose of our study was to detect and partially characterize PV DNA in samples representing in situ and invasive types of SCC in cats to learn more about PV variants in cats and about possible associations of these viruses with individual forms of SCC in cats. Two types of PCR-assays, a narrow range and a broad-range PCR, were applied to extend the range of targeted PVs as far as possible. Careful macroscopic selection and microscopic confirmation resulted in the identification of 22 samples representing invasive SCC and 21 samples representing BISC, which were available for virologic analysis by PCR assay. Papillomavirus DNA was detected in 4 of 22 samples representing invasive SCC and in 5 of 21 samples representing BISC, whereas all nontumor control samples had negative results for PV DNA. Only 1 (BISC sample No. 15) of the 9 viral DNAs had been revealed by the narrow-range PCR assay. However, the same narrow-range PCR assay amplified PV DNA extracted from canine warts, which was expected because the primers had been chosen for their homology with conserved sequences within E1 of FePV and CaPV. Yet, the restricted range of these primers was confirmed, as they proved unable to amplify DNA from the more distantly related bovine fibropapilloma virus. These results indicate that the remaining samples with positive results for PV DNA did not harbor conventional FePV or CaPV. Eight samples, which had negative results for PV DNA on narrow-range PCR assay, had positive results for PV DNA on broad-range PCR assay. The broadrange PCR assay made use of a second set of primers that were also derived from E1 but known to uncover a large variety of HuPVs.30 In our study, this second set of primers also amplified DNA from bovine fibropapilloma virus as well as viral DNA from canine warts. Sequencing of the amplification products obtained from the 8 samples revealed novel PV-related DNAs, although relations to HuPV, FePV, CaPV, rat PV, and BoPV were evident. A phylogenic tree drawn from the aligned sequences divided the new sequences into 4 clusters. Three of those clusters had close relationship to CaPV, FePV, and HuPV. Interestingly, the fourth cluster, represented by 6 amplification products, was clearly distinct from BoPV type 5 and from HuPV type 71, FePV, and CaPV. Judging from the limited sequence information available, it appeared as if this fourth cluster represented a novel group of FePVs that had not been detected previously and that may be associated with SCC in cats. Notably, all PVs detected in association with invasive SCC were found to belong to this novel cluster. This represents, to our knowledge, the first evidence of thus far unknown PV-like sequences associated with SCC in cats. Interestingly, some of the novel sequences were found in association with invasive SCC. Notably, previous attempts to detect conventional PV antigens in such lesions had failed,23 which led to the hypothesis that invasive carcinomas of cats are probably not virally induced, whereas instances of Bowen’s disease in cats are probably PV-induced.7 Our findings clearly challenge the former opinion, although Figure 3—Phylogenetic relationships of the newly detected PV sequences with known PV E1 sequences (ie, CaPV, FePV, HuPV, and BoPV are represented by GenBank accession Nos. D55633, AF377865, AY330623, and AJ620206, respectively). IS = BISC. SCC= Invasive SCC. Units indicate the number of substitution events (percentage of nucleotides), Sequence analysis—The nucleotide sequence of the amplified DNA was determined and the resulting sequences were compared to assess whether novel PVlike sequences had been detected. Indeed, use of the basic local alignment search toole revealed relatedness to PV E1 sequences for all 9 samples that were positive for PV DNA. Relation to HuPV, FePV, CaPV, rat PV, and BoPV was evident. Clustal alignmentsg revealed the various degrees of relationship of the newly determined sequences among each other as well as in comparison with known PVs. Overall, CaPVs and FePVs were most closely related to the newly detected viral sequences, with a relative amino acid identity of 56% to 71%. Among the HuPVs, types 4, 55, 63, 65, 71, and 74 were aligned most frequently but type 71 most often had the closest relationship to the new sequences with 58% to 61% amino acid identity. Among the BoPVs, type 5 was the closest relative, having 55% to 62% amino acid identity. A phylogenic tree drawn from the aligned sequences divided the new sequences into 4 clusters (Figure 3). In cluster 1, BISC sample No. 15 was situated most closely with CaPV and FePV. Cluster 2 was occupied by BISC sample No. 10 and was between FePV and HuPV type 71. Cluster 3 was represented by BISC sample No. 2 and found close to HuPV type 71. The remaining sequences (SCC sample Nos. 15, 24, 28, and 29 and BISC sample Nos. 5 and 6) represented a fourth cluster, which was clearly distinct from BoPV type 5 on the most distant side and HuPV type 71, FePV, and CaPV on the less distant side. These results suggested the presence of thus far unidentified PVs in tissues representing invasive SCC and BISC. Interestingly, sequences obtained from specimens of 3 cats with invasive SCC (SCC sample Nos. 15, 24, and 28) had identical sequences. Furthermore, it was observed that not a single sample from invasive SCC specimens had been associated with the more classic FePV and CaPV. However, because the classification of PVs is based on the sequence of L1, the exact taxonomic position of these novel PV-like sequences could not be assigned. AJVR, Vol 67, No. 12, December 2006 2039 56 a causative correlation between the disease and the novel PV strains has not yet been shown. Results of another study24 did reveal PV antigens in 44% of BISCs. Although the proportion of BISC samples with positive results for PV DNA in our study is lower (5 of 21 BISC samples), it should be kept in mind that the broadrange PCR assay may not be able to reveal all variants of FePVs. Furthermore, it is well-known that PCR detection of viral nucleic acids in formalin-fixed and paraffin-embedded tissues may be decreased in comparison to fresh tissue.29 Finally, the absence of PV DNA in SCC samples can also be explained by the socalled hit-and-run model, which postulates an initial transformation of the infected cell and a subsequent loss of PV DNA.31 Full proof of the existence of the novel PVs that are predicted through the results of our study still needs to be provided. However, we suggest that a great diversity of FePVs may exist that is in need of detection and characterization. The future use of the technique applied here will help in identifying more affected cats with papilloma-associated diseases. Virologic studies can be initiated with the aim to better characterize these novel viruses. Cloning and sequencing of the entire genomes of these viruses will allow phylogenetic comparisons with HuPVs as well as discrimination between benign and high-risk variants. Such studies can eventually provide insights into the molecular pathways underlying the pathogenesis of these viruses in cats. a. b. c. d. e. f. g. h. 7. Scott DW, Miller WH, Griffin CE. Neoplastic and non-neoplastic tumors. In: Scott DW, Miller WH, Griffin CE, eds. Muller and Kirk’s small animal dermatology. 6th ed. Philadelphia: WB Saunders Co, 2001;1236–1413. 8. Paul CF, Ho VC, McGeown CE, et al. Risk of malignancies in psoriasis patients treated with cyclosporine: a 5 y cohort study. J Invest Dermatol 2003;120:211–216. 9. zur Hausen H. Papillomavirus infections—a major cause of human cancers. Biochim Biophys Acta 1996;1288:F55–F78. 10. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002;2:342–350. 11. Antonsson A, Erfurt C, Hazard K, et al. Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. J Gen Virol 2003;84:1881–1886. 12. Antonsson A, Hansson BG. Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J Virol 2002;76:12537–12542. 13. de Villiers EM, Fauquet C, Broker TR, et al. Classification of papillomaviruses. Virology 2004;324:17–27. 14. Lowy DR, Howley PM. Papillomaviruses. In: Knipe DMH, Howley PM, Griffin DE, et al, eds. Fields’ virology. Vol 2. 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2001;2231–2264. 15. Pfister H. Chapter 8: human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 2003;(31):52–56. 16. Saveria-Campo M. Animal models of papillomavirus pathogenesis. Virus Res 2002;89:249–261. 17. Smith KT, Campo MS. Papillomaviruses and their involvement in oncogenesis. Biomed Pharmacother 1985;39:405–414. 18. Tachezy R, Duson G, Rector A, et al. Cloning and genomic characterization of Felis domesticus papillomavirus type 1. Virology 2002;301:313–321. 19. Carpenter JL, Kreider JW, Alroy J, et al. Cutaneous xanthogranuloma on an eyelid of a cat. Vet Dermatol 1992;3:187–190. 20. Egberink HF, Berrocal A, Bax HA, et al. Papillomavirus associated skin lesions in a cat seropositive for feline immunodeficiency virus. Vet Microbiol 1992;31:117–125. 21. Lozano-Alarcon F, Lewis TP II, Clark EG, et al. Persistent papillomavirus infection in a cat. J Am Anim Hosp Assoc 1996;32:392–396. 22. Sundberg JP, VanRanst M, Montali R, et al. Feline papillomas and papillomaviruses. Vet Pathol 2000;37:1–10. 23. Sundberg JP, Junge RE, Lancester WD. Immunoperoxidase localization of papillomaviruses in hyperplastic and neoplastic epithelial lesions in animals. Am J Vet Res 1984;45:1441–1446. 24. LeClerc SM, Clark EG, Haines DM. Papillomavirus infection in association with feline cutaneous squamous cell carcinoma in situ, in Proceedings. Am Assoc Vet Derm Am Coll Vet Derm 1997;13:125–126. 25. Schulman FY, Krafft AE, Janczewski T. Feline cutaneous fibropapillomas: clinicopathologic findings and association with papillomavirus infection. Vet Pathol 2001;38:291–296. 26. Gross TL, Ihrke PJ, Walder EJ, et al. Epidermal tumors. In: Gross TL, Ihrke PJ, Walder EJ, et al, eds. Skin diseases of the dog and cat: clinical and histopathological diagnosis. Oxford, England: Blackwell Publishing Ltd, 2005;562–577. 27. Baer KE, Helton K. Multicentric squamous cell carcinomas in situ resembling Bowen’s disease in cats. Vet Pathol 1993;30:535–543. 28. Miller WH, Affolter VK, Scott DW, et al. In situ resembling Bowen’s disease in five cats. Vet Dermatol 1992;3:177–182. 29. Albini S, Zimmermann W, Neff F, et al. Identification and quantification of ovine gammaherpesvirus 2 DNA in fresh and stored tissues of pigs with symptoms of porcine malignant catarrhal fever. J Clin Microbiol 2003;41:900–904. 30. Iftner A, Klug SJ, Garbe C, et al. The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Res 2003;63:7515–7519. 31. Smith KT, Campo MS. “Hit and run” transformation of mouse C127 cells by bovine papillomavirus type 4: the viral DNA is required for the initiation but not for maintenance of the transformed phenotype. Virology 1988;164:39–47. QIAshredderTM column b, Qiagen, Basel, Switzerland. QIAamp DNA Mini Kit, Qiagen, Basel, Switzerland. Pfu Turbo DNA polymerase, Stratagene, La Jolla, Calif. QIAquick gel extraction kit, Qiagen, Basel, Switzerland. AB-3100-based fluorescent sequencing and BigDye terminator chemistry, Synergene Biotech GmbH, Biotech Center Zurich, Schlieren, Switzerland. NCBI BLAST, National Center for Biotechnology Information, Bethesda, Md. Available at: www.ncbi.nlm.nih.gov/BLAST/. Accessed Oct 10, 2005. Lasergene Biocomputing Software for the Macintosh, version x.x, DNAStar Inc, Madison, Wis. pBluescript, Stratagene, La Jolla, Calif. References 1. Grossmann D, Leffell DJ. Squamous cell carcinoma. In: Freedberg IM, Eisen AZ, Wolff K, et al, eds. Fitzpatrick’s dermatology in general medicine. Vol 1. 6th ed. New York: McGraw-Hill Book Co, 2003;xxx–xxx. 2. Kane CL, Kheen CA, Smithberger E, et al. Histopathology of cutaneous squamous cell carcinoma and its variants. Semin Cutan Med Surg 2004;23:54–61. 3. Anwar J, Wrone DA, Kimyai-Asadi A, et al. The development of actinic keratosis into invasive squamous cell carcinoma: evidence and evolving classification schemes. Clin Dermatol 2004;22:189–196. 4. Arlette JP, Trotter MJ. Squamous cell carcinoma in situ of the skin: history, presentation, biology and treatment. Australas J Dermatol 2004;45:1–11. 5. Cockerell CJ. Pathology and pathobiology of the actinic (solar) keratosis. Br J Dermatol 2003;149:34–36. 6. Mitsuishi T, Kawana S, Kato T, et al. Human papillomavirus infection in actinic keratosis and bowen’s disease: comparative study with expression of cell-cycle regulatory proteins p21(Waf1/Cip1), p53, PCNA, Ki-67, and Bcl-2 in positive and negative lesions. Hum Pathol 2003;34:886–892. 2040 AJVR, Vol 67, No. 12, December 2006 57 Appendix New papillomaviruslike sequences. GenBank accession No. Sample type and No. DQ085782 BISC 15 1 ATGGTACAAT GGGCATTTGA CAATAAGTAC ACAGATGAAG CAGAGATAGC TTTTCATTAT 61 GCACGTTTGG CAGAGGAGGA TGCAAATGCA GAGGCTTGGT TAAAAAGCAA CTCCCAAGCT 121 AAATATGTCC GAGATTGTGC GCAAATGGTG AAGCTGTATC TTAGACAAGA AATGAGGCAG 181 ACTACTATTT CTGAATGGAT TGACAAGTGC TGCCAGTCAG TGACAGAGGA CGGTGACTGG 241 GGGGATATTA TGCGCTTCTT AAAATATCAG CAAGTTAATT TCACTCAGTT TTTAACTGCC 301 ATGAGAAATG CTTTAGAGGG TAAACCTAAA AAAAACTGCT TAGTATTTTA TGGGCCTCCA 361 GATACTGGCA AGTCATATTT CTGCTTTAGT TTGGTTAGTT TTATGCAGGG GAAAGTGGTG 421 AATTTTATGA ATAGCAA DQ085783 BISC 2 1 ANGAGGAACG ATATAGCCTA CCACTATGCA TTGCTAGCCG ACGAGGACAC AAATGCAGCG 61 GCATGGCTAG GTACAAACTC ACAGGCCAAG CATGTCAGGG ACTGCGCAGT GATGGTCAAG 121 CATTACAGGC GTGCCATAAT GTCTGCCATG AGTATGTCCG AATGGATAAA CAGACGAATG 181 GGCCTGATAG AGGAGGAAGG AGACTGGAAA AACATAGGCA ATTTCCTCAG ATACCAGGGT 241 ATAGAGGTTA TTACATTTAT AGGGGCGCTG AGGGACATGT TAAAGGGCAT TCCAAAAAGG 301 ACATGTATGT GTATAGTGGG ACCACCAGAC ACAGGGAAAT CAGCGTTTTG CCTTAGCCTG 361 CTAGACTTCT TCGGGGGTAG GGTACTGTCA TTCACCAATT ACAAAAGCCA TTTTTGNTGN 421 CCNACCCTCA A DQ085784 SCC 15, 24, and 28 1 TTATGGTACA NGTGGGCATT TGACAATAAG TACACAGATG AAGCAGAGAT AGCTTTTCAT 61 TATGCACGTT TGGCAGAGGA GGATGCAAAT GCAGAGGCTT GGTTAAAAAG CAACTCCCAA 121 GCTAAATATG TCCGAGATTG TGCGCAAATG GTGAAGCTGT ATCTTAGACA AGAAATGAGG 181 CAGACTACTA TTTCTGAATG GATTGACAAG TGCTGCCAGT CAGTGACAGA GGACGGTGAC 241 TGGGGGGATA TCATGCGCTT CTTAAAATAT CAGCAAGTTA ATTTCACTCA GTTTTTAACT 301 GCCATGAGAA ATGCTTTAGA GGGTAAACCT AAAAAAAACT GCTTAGTATT TTATGGGCCT 361 CCAGATACTG GCAAGTCATA TTTCTGCTTT AGTTTGGTTA GTTTATGCAT GGAAAGTGGA 421 TTTNA DQ085785 SCC 29 1 TTATGCACGT TTGGCAGAGG AGGATGCAAA TGCAGAGGCT TGGTTAAAAA GCAACTCCCA 61 AGCTAAATAT GTCCGAGATT GTGCGCAAAT GGTGAAGCTG TATCTTAGAC AAGAAATGAG 121 GCAGACTACT ATTTCTGAAT GGATTGACAA GTGCTGCCAG TCAGTGACAG AGGACGGTGA 181 CTGGGGGGAT ATTATGCGCT TCTTAAAATA TCAGCAAGTT AATTTCACTC AGTTTTTAAC 241 TGCCATGAGA AATGCTTTAG AGGGTAAACC TAAAAAAAAC TGCTTAGTAT TTTATGGGCC 301 TCCAGATACT GGCAAGTCAT ATTTCTGCTT TAGTTTGGTT AGTTTATGCT TGAAAGTGGA DQ085786 BISC 6 1 TTTTATGGTA CAGTGGGCAT TTGACAATGA ATACTTTGAG GAAAGTGAGA TAGCATATCA 61 GTATGCATGC CTTGCAGAAA CAGAAGAAAA TGCTGCAGCC TTCCTAAATT CTAACAGCCA 121 AGCTAAGCAT GTCAGGGACT GTGCAACTAT GTGCAGATAT TATAAGAGAG CAGAAATGCA 181 GAGAATGTCA ATGTCCGCCT GGATTCACAA GAGATGTAAG GAGACCAGCC TGCAGGGAGA 241 TTGGAAAGAA ATAGTCAAGT TTCTTAGACA TCAAAGTGTA GAGTTTATTA CCTTTCTCTG 301 CAGCTTCAAG AAATTTCTCA GGGGTGTGCC TAAAAAAAAT TGCATGCTTT TCTGGGGTCC 361 TCCTAACACA GGCAAATCTA TGTTTTGCAT GAGCTTACTT TCTTTCCTAA AGGCANAGAT 421 TCTTTANC DQ085788 BISC 5 1 TTCTTATGGT ACAGTGGGCA TTTGACAATA AGTACACAGA TGAAGCAGAG ATAGCTTTTC 61 ATTATGCACG TTTGGCAGAG GAGGATGCAA ATGCAGAGGC TTGGTTAAAA AGCAACTCCC 121 AAGCTAAATA TGTCCGAGAT TGTGCGCAAA TGGTGAAGCT GTATCTTAGA CAAGAAATGA 181 GGCAGACTAC TATTTCTGAA TGGATTGACA AGTGCTGCCA GTCAGTGACA GAGGACGGTG 241 ACTGGGGGGA TATTATGCGC TTCTTAAAAT ATCAGCAAGT TAATTTCACT CAGTTTTTAA 301 CTGCCATGAG AAATGCTTTA GAGGGTAAAC CTAAAAAAAA CTGCTTAGTA TTTTATGGGC 361 CTCCAGATAC TGGCAAGTCA TATTTCTGCT TTAGTTTGGT TAGTTTATGC AGGGAAAGTG 421 TATTTAAAA DQ085789 BISC 10 1 TTTTTNTGGT NNCCAGTGGC NTACGATAAC GACTTCCGTG ACGAGTGCCA AATTGCCTAC 61 GAATATGCAC GGCTTGCCAC GGAGGACAGC AATGCATTGG CATGGTTGGA ATGCAATAAT 121 CAGGCCAAAT TTGTCAAAGA CTGTGCACGT ATGGTCGGGT ACTATAAGCG CGCTGAAATG 181 CAAAATATGT CTATCTCTGC TTGGATACNT AAGCAAATTA AAGATAGGCA GTGCACTACC 241 GATTGGAAAG TAATTNTGAA TTTTCNTAAG TTTCANCATG TGGAGGTTAT AATTTTTTTA 301 AATGCAATGA TGCATTTGCT CCGTGGCACG CCAAAGAAAA ATTGTCTGGT TCTGTACGGT 361 CCCCCAAATA CAGGGAAATC CATGTTCGCA ATGAGCTTAA TTCAGTGTCT GAAAGGACGT 421 GTATTGTNGT ATGTGAATTC ACGTAGTCAG TTNTGGTTGC ANCCCTTGGC AGATGCAAAA 481 ATAGCACTGC TGGACGATGC AACCAGACCA TGCTGGGAAC TATATAGATA TTTATTGAGA 541 AATGCATTGG ATGGTAATCC TATATGCCTG ACTAANCNAG C Sequences AJVR, Vol 67, No. 12, December 2006 2041 58 Chapter 8 Clinical, histological and immunohistochemical study of feline viral plaques and bowenoid in situ carcinomas S. Wilhelm1, F. Degorce-Rubiales2, D. Godson3, C. Favrot1 Veterinary Dermatology, 2006; 17: 424-431 1 Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland 2 LAPVSO, Toulouse, France 1 Prairie Diagnostic Service, Saskatoon, Saskatchewan, Canada 59 Clinical, histological and immunohistochemical study of feline viral plaques and bowenoid in situ carcinomas Blackwell Publishing Ltd Sylvia Wilhelm*, Frederique Degorce-Rubiales†, Dale Godson‡ and Claude Favrot* cats in the FVP + BISC group. On the other hand, only one of the nine BISC cats was positive. The presence of both FVP and BISC lesions in some cats and the high detection rate of PV antigens in the FVP and FVP + BISC groups suggest that both conditions might have the same viral cause and that some BISC may evolve from FVP. The low rate of viral antigen detection in the BISC group indicates another cause or a loss of viral replication during the cancerogenesis. *Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse-Faculty University of Zurich, Zurich, Switzerland †LAPVSO, Toulouse, France ‡Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Correspondence: C. Favrot, Clinic for Small Animal Internal Medicine, Dermatology Unit, Vetsuisse-Facility, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland. Tel. +41 44 635 81 12; Fax: +41 44 635 89 20; Email: cfavrot@vetclinics.unizh.ch; Email: swilhelm@vetclinics,unizh.ch Accepted 31 August 2006 Introduction What is known about the topic of this paper • Reports of papillomavirus-induced dermatitis in cats are rare. • Lesions of feline viral plaques have been described as feline hyperpigmented plaques and are clinically indistinguishable from lesions of bowenoid in situ carcinomas. • Feline bowenoid in situ carcinoma could be, like feline viral plaques, papillomavirus-induced. Papillomaviruses (PV) are highly diverse viruses that usually induce benign skin or mucous membrane proliferation in mammals and birds but can also cause squamous cell carcinomas.1 In humans, the PVs that induce benign hyperplasia and those that induce cancers are phylogenetically different.1 Benign hyperplasias (warts) usually regress after a few months, a regression associated with the development of cell-mediated immunity.2 In contrast with dogs, where PV infections are frequently observed, reports of PV-induced dermatoses are rare in cats.3–7 Lesions are usually flat and hyperpigmented, rather than exophytic and flesh colour warts, and spontaneous regression is rare.3–7 These lesions are usually, but not always, multiple and have been described as feline viral plaques (FVP).8 Feline multicentric in situ squamous cell carcinomas also usually occur as multiple hyperpigmented plaques that resemble those of human Bowen’s disease.9,10 Gross and coworkers, however, recently remarked that there are major differences between the human and the feline diseases, and have coined the term ‘bowenoid in situ carcinoma’ (BISC) to describe the feline condition.8 As FVP clinically resembles BISC, it was suggested that both conditions may have the same cause, and one report mentions the association of both FVP and BISC on the same cat.11,12 Furthermore, it has been shown immunohistologically that up to 47% of feline BISC samples are positive for PV antigen, suggesting that BISC is virally induced and that FVP could be, at least in some instances, precursory lesions of feline BISC.11 Using records of the clinical, histological and immunohistological features of 26 cases of feline dermatoses clinically described as pigmented plaques and with an initial histological diagnosis of FVP and/or BISC, the hypotheses that both lesions are often associated in the same samples, and that PV antigens are present in the majority of these lesions, were tested. What this paper adds to the field of veterinary dermatology • Clinically, feline viral plaques and feline bowenoid in situ carcinomas are indistinguishable. • Feline viral plaques and feline bowenoid in situ carcinomas might have the same viral cause. • Feline viral plaques could be a precursory lesion of feline bowenoid in situ carcinoma. Abstract Feline viral plaques (FVP) induced by papillomavirus (PV) are often hyperpigmented and flat warts. The fact that up to 47% of bowenoid in situ carcinomas (BISC), which also usually occur in the form of hyperpigmented plaques, are positive for PV antigen in immunochemistry suggests that BISC could evolve from FVP. The relationship between the presence of PV antigens and the clinical and histological features of 26 cases of feline dermatoses (clinically described as pigmented plaques and with histological diagnosis of FVP and/or BISC) was therefore determined. The cases were classified into one of the three following groups: FVP, FVP + BISC or BISC. Immunohistological detection of papillomavirus group-specific antigen was performed using a polyclonal rabbit antibovine papillomavirus antiserum. Of the seven cases in the FVP group, six were deemed positive by immunohistology as were all 10 424 © 2006 The Authors. Journal compilation © 2006 European Society of Veterinary Dermatology. 17; 424–431 60 FVP and BISC in cats with hyperpigmented plaques for 20 min at 42 °C and treated with a 1 : 2000 dilution of rabbit antibovine papillomavirus type-1 antibody (Dako Diagnostics Canada Inc., Missisauga, ON, Canada). A goat-biotinylated antirabbit IgG (Vector Laboratories Inc., Burlington, ON, Canada) was used at a 1 : 400 dilution as the secondary antibody. Replicate sections were stained as above without protease digestion, and additional sections were stained with a normal rabbit antiserum as the primary antibody to provide negative control. A positive control tissue, canine cutaneous papilloma, was included in each assay run. Both diaminobenzidine (DAB) (Electron Microscopy Sciences, Fort Washington, PA, USA) and Nova Red (Vector Laboratories Inc., Burlington, ON, Canada) were used as chromogens on two different sections for each sample. Materials and methods Animals History and clinical information was obtained from 26 cats with hyperpigmented plaques. Cats were included, provided that a histological diagnosis of FVP and/or BISC had been made previously, and clinical data (including concurrent diseases, immunosuppressive therapy and evolution of the lesions, when available) were subsequently analysed for each of the three histological groups: FVP, FVP + BISC and BISC. Statistical analysis Data were analysed using nonparametric statistical methods (GraphPad PRISM® for Windows, version 4.0; GraphPad Software, Inc., San Diego, CA, USA). Kruskal–Wallis one-way ANOVA by ranks and the Dunn’s post-test for multiple comparisons were used to compare ages among the three histological groups. Results Clinical information The clinical data are summarized in Table 2. Differences between ages of cats in FVP, FVP + BISC and BISC groups (median 11.5, 12 and 13, respectively) were not statistically significant. The sizes of the groups did not allow a proper evaluation of potential breed or sex predispositions. On clinical examination, FVP and BISC lesions were often indistinguishable and usually presented as solitary or multiple grey, tan to black papules or small flat plaques (Figs 1 and 2). Some, more frequently the BISC, appeared ulcerated (Fig. 2). Solitary lesions were observed in only three of the 26 cats. The face, neck and limbs were mostly affected by BISC. FVP occurred mostly on the trunk, even if other areas, including face and neck, were also affected. Cats with both conditions usually presented lesions on more than one body area and all body regions could be affected. Very little follow-up information was available but cases of transformation of FVP into BISC after the initial histological diagnosis were not recorded. None of the affected cats had a known history of immunosuppressive drug administration or concurrent disease. Histological evaluation Archival specimens of all 26 cats were compiled. These samples have been previously collected by biopsy from all 26 cats, fixed in formalin, and processed routinely to paraffin wax for histological assessment. Sections (5 µm) were cut, routinely processed and stained with haematoxylin and eosin. The following criteria were systematically assessed: severity and nature of the acanthosis, hypergranulosis and size of the keratohyalin granules, premature keratinization, involvement of the hair follicle in the pathological process, disorderly or abnormal maturation of the epidermis, atypia (pleomorphic or abnormally large nuclei, multinucleate cells), mitoses more than three cell layers above the basal cell layer, koilocytosis, clear cells and presence of intracytoplasmic pseudo-inclusions and intranuclear inclusions. Koilocytes were defined as keratinocytes with swollen cytoplasms and shrunken nuclei.8 Clear cells were defined as keratinocytes with swollen cytoplasm but rather enlarged, vesicular nuclei. These modified keratinocytes (clear cells and koilocytes) have been reported to be also regularly associated with human PV infection.13 When observed, the margins of the lesions were checked for changes suggestive of viral infection such as koilocytes and clear cells, pseudoinclusions, and clumped keratohyalin granules. Samples were subsequently classified into one of three groups: FVP, FVP + BISC (when both lesions were present on the same cat or on the same section) or BISC in accordance with standard criteria (Table 1) for the diagnosis of FVP and BISC.8 When changes overlapping typical FVP and BISC lesions were observed, lesions were designated as FVP, provided that the acanthosis remained moderate and atypia was absent. Lesions were classified as BISC if the acanthosis was marked and loss of polarity as well as atypia was evident. Histological examination The results are summarized in Table 3. FVP The diagnosis of FVP was made in seven cases (Table 3). Lesions consisted of well-demarcated epidermal hyperplasia with acanthosis, hyperpigmentation, hypergranulosis with clumped keratohyalin granules and numerous koilocytes (Fig. 3). Some of these keratinocytes contained bluegrey fibrillar pseudo-inclusions (one of seven). Larger and compact amphophilic intracytoplasmic pseudo-inclusions were present in four cases (Fig. 3). In one case, both pseudo-inclusion types were present in the same sample and compact ones (present in the stratum granulosum) Immunohistochemical analysis Papillomavirus antigen was detected (at the Immunology Laboratory of Prairie Diagnostic Services, Saskatoon, Saskatchewan, Canada) using an avidin–biotin complex technique adapted for an automated slide stainer (Codon Histomatic Stainer, Fisher Scientific, Edmonton, AB, Canada) as previously described.14 This method has already been validated for the detection of feline PV antigens.7 Briefly, sections from each tissue block were mounted on slides (Codon Slides, Fisher Scientific, Edmonton, AB, Canada) coated with 0.1% poly-D-lysine, digested with protease XIV (Sigma Chemical Co., St. Louis, MO, USA) Table 1. Histological features of feline viral plaque and bowenoid in situ carcinoma Acanthosis Follicular involvement Differentiation Clumped keratohyalin granules Koilocytes Intracytoplasmic pseudo-inclusions Atypia Mitotic activity Feline viral plaque Bowenoid in situ carcinoma Mild to moderate Sometimes Normal Yes Yes Yes No No Moderate to severe Yes Dysplastic epidermis, loss of polarity Yes Yes Yes Yes Moderate © 2006 The Authors. Journal compilation © 2006 European Society of Veterinary Dermatology. 61 425 Wilhelm et al. Table 2. Clinical findings Case Breed Sex Age (years) Lesions Multiple/Solitary Localization 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 DSH Cornish Rex DSH DSH DSH DSH DSH American curl DSH DSH Sphynx DSH DSH DSH DSH DSH DLH DSH DLH Himalayan DSH DSH DLH DSH DSH DSH M M F F 14 12 11 15 18 12 13 14 13 12 6 3 16 8 13 13 9 12 11 8 15 11 17 11 16 12 Crusty plaques Papillary plaques Plaque Plaques, papules Papules Crusts, plaques Crusts, plaques Crusts, plaques Papules Papules Macules Ventral papules Plaque Papules Crusts, erythema, erosion Papules, crusts Scaly papules Erythematous papules Erythematous plaques Crusty plaque Crusty plaque Crusty plaques Plaques Crusty plaques Crusty plaques Crust papules Multiple Multiple Solitary Multiple Multiple Multiple Multiple Multiple Multiple Multiple Multiple Multiple Solitary Solitary Multiple Multiple Multiple Multiple Multiple Multiple Multiple Multiple Multiple Multiple Multiple Multiple Thorax, face, shoulder Shoulder, paw, trunk, abdomen Neck Face, feet, abdomen Flank Face and digits Eyelids, face Face, neck Unknown Flank Neck Abdomen Abdomen Dorsum Axilla, feet Face, neck Face Neck, face Neck, face Dorsum, neck Leg, toe Face, lip Dorsum Face, lip Face, neck, shoulders, foot pads Face, neck M F M F F F M M F F M F F M F F F M F M M DSH, domestic shorthair cat; DLH, domestic longhair cat. epidermis with irregular acanthosis and broad rete ridges. Irregular acanthosis frequently descended around hair follicles. The epidermis was disorganized with a marked loss of cellular polarity and loss of normal stratification of the stratum basale and spinosum in all cases (wind-blown appearance). Keratinocytes with a hyperchromatic nucleus were present throughout the whole epidermis. Atypia was variable in nature and intensity (anisocytosis, anisocryosis and rare binucleated keratinocytes). Rare mitotic figures were present in all samples. Scattered apoptotic keratinocytes were present in four BISC samples. Koilocytes were present in all of them (Fig. 6). Other clear cells with rather enlarged vesicular nuclei were also observed. The cells (koilocytes and clear cells) contained sometimes intracytoplasmic additional blue-grey fibrillar pseudo-inclusions (three of nine cases). Clumped keratohyalin granules were seen in one of nine BISC cases. Erosions or ulcerations were present in five of nine cases. Figure 1. Cat no. 6. Pigmented plaque on the head diagnosed as feline viral plaque: Note the slightly raised and hyperpigmented lesion with a small central ulceration. Courtesy of Catherine Mège. Immunohistochemical examination Results are summarized in Table 3. Of the seven cases of the FVP group, six were positive for PV antigen. Interestingly, all of the 10 samples with BISC and FVP lesion types were positive (Fig. 7). Only one of the nine BISC cases was deemed positive (11%). PV antigens were always visualized in the nucleus of the koilocytes; intracytoplasmic pseudo-inclusions remained unstained (Fig. 4). seemed to result from the condensation of fibrillar ones (more prevalent in the stratum spinosum) (Fig. 4). Intranuclear inclusions were not observed. FVP + BISC Interestingly, both BISC and FVP changes were present in 10 cats, sometimes in the same, sometimes in different, skin samples (Fig. 5a,b). Transition lesions exhibiting both FVP and BISC features were also sometimes observed. Discussion The clinical resemblance between BISC and FVP and the presence of both lesions in some cats suggest that some BISC evolve from FVP. Furthermore, despite the absence BISC The diagnosis of BISC was made on nine cases. These lesions consisted of sharply demarcated expansion of the 426 © 2006 The Authors. Journal compilation © 2006 European Society of Veterinary Dermatology. 62 FVP and BISC in cats with hyperpigmented plaques Figure 3. Cat no. 10. Histology of a feline viral plaque. Note the presence of clear cells (ballooned cytoplasm, rather swollen nucleus (black arrow) with intracytoplasmic pseudo-inclusions (red arrow). Haematoxylin and eosin. Magnification ×10. Bar = 200 µm. Figure 2. Cat no. 26. Pigmented plaques at the base of the ear and the pinna diagnosed as feline bowenoid in situ carcinoma. Note the slightly raised and ulcerated lesions partially covered by crusts. Table 3. Histopathological findings Case Margins? Hyperpig. Koilocytes/clear cells Dyskerat. Comp. ps. incl. Fibr. ps. incl. KH Gran. Diagnosis PV-Ag 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No Yes No Yes No Yes No No No No No Yes No Yes Yes Yes Yes Yes Yes No No Yes No No No Yes No Yes No No Yes Yes Yes Yes No No No No No No No Yes No No No Yes No No Yes No No No No No No Yes No No No No No No No Yes No No No No No Yes No No No No No Yes Yes Yes No Yes No No Yes Yes Yes Yes Yes Yes No Yes No Yes Yes Yes No No Yes Yes Yes Yes BISC BISC + FVP FVP BISC + FVP BISC BISC + FVP BISC BISC FVP FVP FVP FVP FVP FVP BISC BISC + FVP BISC BISC BISC + FVP BISC + FVP BISC BISC BISC + FVP BISC + FVP BISC + FVP BISC + FVP Neg Pos Pos Pos Neg Pos Neg Neg Pos Neg Pos Pos Pos Pos Neg Pos Neg Pos Pos Pos Neg Neg Pos Pos Pos Pos Margins?, presence of lesional margins; Hyperpig., hyperpigmentation; Dyskerat., dyskeratosis; Comp. ps. incl., compact pseudo-inclusions; Fibr. ps. inclus., fibrillar pseudo-inclusions; KH Gran., clumped keratohyalin granules; PV-Ag, papillomavirus antigen. Pos, positive; Neg, negative. © 2006 The Authors. Journal compilation © 2006 European Society of Veterinary Dermatology. 63 427 Wilhelm et al. Figure 4. Cat no. 9. Immunohistochemical analysis of a feline viral plaque. Note the presence of positive nuclei (black arrow). The fibrillar (red arrow) and the solid (green arrow) intracytoplasmic inclusions remained unstained. Diaminobenzidine. Magnification ×40. Bar = 50 µm. Figure 6. Cat no. 21. Histology of a feline bowenoid in situ carcinoma. Note the marked acanthosis (black stars: acanthotic epidermis), the follicular involvement (black points), the loss of polarity and the presence of numerous koilocytes (arrow). Haematoxylin and eosin. Magnification ×10. Bar = 200 µm. of statistically significant difference, cats affected by FVP tended to be younger than those affected by BISC: this could imply that FVP are precursor lesions of BISC. However, while BISC affected the face, neck or the limbs in most cases, FVP lesions were more often present on the trunk even if other areas, including neck and face, were affected. This finding does not seem to support the hypothesis that BISC evolve from FVP but the discrepancy could be explained by a higher cancerization rate of lesions located on the face and neck, for example as a result of increased ultraviolet radiations exposure, compared to those in other regions of the body. Figure 5. Cat no. 16. Histology of two lesions present on the same biopsy sample. Haematoxylin and eosin. Magnification ×40. Bar = 50 µm. (a) Feline viral plaque. Note the moderate acanthosis. The stratification and the differentiation of the epidermis are conserved. Koilocytes and clumped keratohyalin granules are the most obvious papillomaviruses’ cytopathic characteristics on this lesion. (b). Early bowenoid in situ carcinoma. Note the acanthosis, the obvious disorganization of the epidermis and the abnormal differentiation of most keratinocytes. Clumped keratohyalin granules and one single koilocyte are the only papillomavirus cytopathic effects noticed on this lesion. 428 © 2006 The Authors. Journal compilation © 2006 European Society of Veterinary Dermatology. 64 FVP and BISC in cats with hyperpigmented plaques acids are often uncovered in normal mammalian skin. However, genome copy number is usually very low and productive infection rarely occurs in such cases.15,16 Establishing causality between the presence of viruses in skin lesions and oncogenesis remains problematic, and the presence of replicating viruses cannot be regarded as a sufficient proof. In vitro studies are mandatory to establish such causality.17 Almost all cats affected by BISC were deemed negative by IHC. These findings might suggest that BISC has two distinct causes and that only a subgroup of BISC is virally induced. A loss of viral replication during the cancerization process could also explain these findings. In fact latent PV infection or infection with minimal replication may remain undetected by IHC, because of the relatively low sensitivity of such techniques. The ‘hit and run’ model, which postulates an initial cellular transformation by the virus and a subsequent loss of viral genome, could account for the negative IHC in some BISC lesions.18 Furthermore, it was recently demonstrated that PVs maintained productive infections in precursory lesions of cervical cancer but that capsid antigens were no longer produced in late cervical cancers.19 In conclusion, a loss of viral protein expression in advanced cases of BISC seems likely. Feline BISC has long been considered the counterpart of human Bowen’s disease (BD) – an in situ squamous cell carcinoma that presents as solitary, well-circumscribed, erythematous plaques and occurs on the face, extremities and genitalia.20,21 Koilocytes are usually not present in such lesions.21 Human bowenoid papulosis is characterized by genital pigmented verrucous papules or plaques.21 This condition is also histologically characterized by in situ SCC lesions but, in contrast to BD, bowenoid papulosis lacks full-thickness epidermal atypia. PV DNA is uncovered in virtually all samples of bowenoid papulosis but data concerning the presence of PV in human BD remain contradictory.22–25 Furthermore, PVs that infect human bowenoid papulosis and BD are usually to mucosal and not to cutaneous strains.23,24 These data show that feline BISC lesions display substantial differences from both human conditions and justify the use of a specific denomination, as emphasized by Gross and coworkers.8 The results of the present study support the hypothesis that some BISC evolve from FVP lesions and the causative role of PV. However, evidence that these PVs are able to induce cancerization in mammalian skin is lacking and further studies are warranted. Nucleic acids amplification techniques could establish which PVs are present in FVP and BISC lesions and whether BISC samples without FVP are really sterile or infected by dormant PV. As well, in vitro studies addressing the transforming potential of feline PV are required to better understand the role that these viruses play in this condition. Figure 7. Cat no 19. Immunohistochemical analysis of a feline bowenoid in situ carcinoma. Note the presence of numerous koilocytes and clear cells (red arrow) with positive nuclei. Novared. Magnification ×10. Bar = 200 µm. FVP usually conserved the general organization of the epidermis and atypia was absent, whereas BISC lesions were disorganized and abnormal keratinocytes were present throughout the epidermis. However, both conditions share numerous histological features: irregular acanthosis with rete ridges formations, presence of clumped keratohyalin granules, koilocytes and clear cells. The presence of koilocytes or clear cells in all BISC lesions (including IHCnegative ones) might be regarded as a proof of presence of the virus. These cells with vacuolated cytoplasm and shrunken, pycnotic nuclei are usually considered highly suggestive of PV infections.8,13 All the authors who have studied feline BISC have recognized these cells, but two of three have not used the term ‘koilocyte’ to describe them.8–10 In situ hybridization studies could be helpful to determine if these cells actually harbour PV nucleic acids and if the term ‘koilocyte’ is appropriate. In both FVP and BISC samples, fibrillar and compact pseudo-inclusions were seen. In one case both were present in the same sample, and compact ones (more present in the stratum granulosum) seemed to result from the condensation of fibrillar ones (more prevalent in the stratum spinosum) (Fig. 4). This condensation has already been described by Carney and coworkers.3 Our study demonstrates that the association between FVP and BISC is frequent and occurs sometimes on the same skin lesion. Additionally, cases of overlapping BISC and FVP lesions have been detected. This association was already described before.11,12 These similarities support the hypothesis that FVP could be precursory lesions of BISC. All except one FVP and FVP + BISC cases were positive for PV antigen by immunohistochemistry (IHC). As pseudo-inclusions were present in the negative case, it can be considered that all these samples were infected by PV. Furthermore, as IHC detects capsid antigens, it can be concluded that productive infection occurred in all positive samples (all FVP lesions and positive BISC). These findings support the hypothesis that PVs play an active role in the development of such lesions. It must, however, be borne in mind that PVs are sometimes commensal, and nucleic References 1. de Villiers E-M, Fauquet C, Broker TR et al. Classification of papillomaviruses. Virology 2004; 324: 17–27. 2. Nicholls PK, Stanley MA. The immunology of animal papillomaviruses. Veterinary Immunology and Immunopathology 2000; 73: 101–27. 3. Carney HC, England JJ, Hodgin EC et al. Papillomavirus infection © 2006 The Authors. Journal compilation © 2006 European Society of Veterinary Dermatology. 65 429 Wilhelm et al. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. of aged Persian cats. Journal of Veterinary Diagnostic Investigation 1990; 2: 294–9. Carpenter JL, Kreider JW, Alroy J, Schmidt GM. Cutaneous xanthogranuloma and viral papilloma on a eyelid of a cat. Veterinary Dermatology 1992; 3: 187–90. Egberink HF, Berrocal A, Bax HAD et al. Papillomavirus associated skin lesions in a cat seropositive for feline immunodeficiency virus. Veterinary Microbiology 1992; 31: 117–25. Lozano-Alarcon F, Lewis II TP, Clark EG et al. Persistent papillomavirus infection in a cat. Journal of the American Animal Hospital Association 1996; 32: 392–6. Sundberg JP, van Ranst M, Montali R et al. Feline papillomas and papillomaviruses. Veterinary Pathology 2000; 37: 1–10. Gross TL, Ihrke PJ, Walder EJ, Affolter VK. Epidermal tumors. In: Gross TL et al., eds. Skin Diseases of the Dog and Cat: Clinical and Histopathological Diagnosis. Oxford: Blackwell Science, 2005: 562–577. Baer KE, Helton K. Multicentric squamous cell carcinoma in situ resembling Bowen’s disease in cats. Veterinary Pathology 1993; 30: 535–43. Miller WH Jr, Affolter V, Scott DW, Suter MM. Multicentric squamous cell carcinomas in situ resembling Bowen’s disease in five cats. Veterinary Dermatology 1992; 3: 177–82. LeClerc SMC, Haines EG. Papillomavirus infection in association with feline cutaneous squamous cell carcinoma in situ. In: Proceedings of the AAVD/ACVD Meeting 1997: 125–126. Gross TL, Affolter VK. Advances in skin oncology. In: Kwochka KW, Willemse T, von Tschaner C, eds. Advances in Veterinary Dermatology III. Boston: Butterworth-Heinemann, 1998: 382– 385. McLeod K. Prediction of human papillomavirus antigen in cervical squamous epithelium by koilocytes nuclear morphology and ‘wart scores’: confirmation by immunoperoxydase. Journal of Clinical Pathology 1987; 40: 323–8. Haines DM, Chelack BJ. Technical considerations for developing enzyme immunohistochemical staining procedures on formalin- 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. fixed paraffin-embedded tissues for diagnostic pathology. Journal of Veterinary Diagnostic Investigation 1991; 3: 101–12. Antonsson A, Hansson BG. Healthy skin of many animal species harbours papillomaviruses which are closely related to their human counterparts. Journal of Virology 2002; 76: 12537–42. Majewski S, Jablonska S. Human papillomavirus and oncogenesis: critical evaluation of recent findings. International Journal of Dermatology 2002; 41: 319–20. Harwood CA, Proby CM. Human papillomaviruses and nonmelanoma skin cancer. Current Opinion in Infectious Diseases 2002; 15: 101–14. Smith KT, Campo MS. ‘Hit and run’ transformation of mouse C127 cells by bovine papillomavirus type 4: the viral DNA is required for the initiation but not for maintenance of the transformed phenotype. Virology 1988; 164: 39–47. Doobar J. Molecular biology of human papillomavirus infection and cervical cancer. Clinical Science 2006; 110: 525–41. Arlette JP, TrotterMJ. Squamous cell carcinoma in situ of the skin: history, presentation, biology and treatment. Australasian Journal of Dermatology 2004; 45: 1–11. Duncan KO, Lefell DJ. Epithelial precancerous lesions. In: Freedberg IM et al., eds. Fitzpatrick’s Dermatology in General Medicine. New-York: Mc Graw-Hill, 2003: 719–36. Mitsuishi T, Kawana S, Kato T, Kawashima M. Human papillomavirus infection in actinic keratosis and Bowen’s disease: comparative study with expression of cell-cycle regulatory proteins p21waf1/ cip1, 53, pcna, ki-67, and bcl-2 in positive and negative lesions*1. Human Pathology 2003; 34: 886–92. Mitsuishi T, Sata T, Matsukura T, Iwasaki T, Kawashima M. The presence of mucosal human papillomavirus in Bowen’s disease of the hands. Cancer 1997; 79: 1911–7. Quereux G, N’Guyen JM, Dreno B. Human papillomavirus and extragenital in situ carcinoma. Dermatology 2004; 209: 40–5. Lu S, Syrjanen K, Havu VK. Failure to demonstrate human papillomavirus (HPV) involvement in Bowen’s disease of the skin. Archives of Dermatology Research 1996; 289: 40–5. Résumé Les plaques virales du chat (FVP) induites par les papillomavirus (PV) se présentent souvent comme des plaques hyperpigmentées. Le fait que jusqu’à 47% des carincomes in situ bowenoides (BISC), qui se présentent aussi sous la forme de plaques hyperpigmentées, sont positifs pour l’antigène de PV par immunohistochimie suggère que les BISC pourraient provenir de FVP. La relation entre la présence d’antigènes de PV et les données cliniques et histologiques de 26 cas de dermatoses félines cliniquement répertoriées comme des plaques hyperpigmentées avec un diagnostic histologique de FVP et/ou de BISC a été recherchée. Les cas ont été classés en trois groupes : FVP, FVP + BISC ou BISC. La recherche immunohistochimique de papillomavirus a été réalisée en utilisant un antisérum polyclonal de lapin anti-bovin. Sur les sept cas du groupe FVP, six étaient positifs à l’immunohistochimie, un seul des neuf BISC était positif. La présence de lésions de FVP et de BISC chez certains chats, et la fréquence importante de découverte d’antigènes de PV dans les groupes FVP et FVP + BISC suggère que ces deux maladies ont une même cause virale, et que certains BISC peuvent provenir de FVP. Le faible taux de détection d’antigène viral dans le groupe BISC indique une autre cause, ou la perte de la réplication virale pendant la cancérogénèse. Resumen Las placas virales felinas (FVP) inducidas por el virus papiloma son a menudo verrugas hiperpigmentadas y planas. El hecho de que hasta un 47% de los carcinomas Bowenoides in situ (BISC), que también ocurren como placas hiperpigmentadas, son positivos al antígeno del virus papiloma mediante inmunohistoquímica sugiere que los BISC pueden evolucionar a partir de placas virales felinas. Se determinó la relación entre la presencia de antígenos del virus del papiloma y las características clínicas e histológicas de 26 casos de dermatosis (clínicamente descritas como placas pigmentadas y con diagnostico histológico de FVP y/o BISC). Los casos se clasificaron en uno de los tres grupos siguientes: FVP, FVP + BISC o BISC. La detección inmunohistológica de antígeno especifico del grupo del virus papiloma se realizó utilizando un antisuero policlonal de conejo frente al papiloma bovino. De los siete caso en el grupo FVP, seis fueron considerados positivos mediante inmunohistoquímica así como los diez gatos del grupo FVP + BISC. Por otro lado, solo uno de los nueve gatos con BISC fue positivo. La presencia de ambas lesiones FVP y BISC en algunos gatos y el elevado nivel de detección de antígenos del virus papiloma en los grupos FVP y FVP + BISC sugiere que ambas condiciones podrían tener la misma causa vírica y que algunos BISC podrían 430 © 2006 The Authors. Journal compilation © 2006 European Society of Veterinary Dermatology. 66 FVP and BISC in cats with hyperpigmented plaques progresar desde FVP. El bajo porcentaje de detección de antígeno vírico en el grupo BISC sugiere otra causa o una pérdida de replicación viral durante el proceso de carcinogénesis. Zusammenfassung Feline virale Plaques (FVP), die von Papillomavirus (PV) verursacht werden, sind oft hyperpigmentierte und flache Warzen. Die Tatsache, dass bis zu 47% der ‘Bowen’-ähnlichen in situ Karzinome (BISC), die normalerweise auch in Form von hyperpigmentierten Plaques erscheinen, mittels Immunchemie positiv sind für PV-Antigen, weist darauf hin, dass BISC sich aus FVP entwickeln könnte. Der Zusammenhang zwischen dem Auftreten von PV Antigenen und den klinischen und histologischen Erscheinungsbildern von 26 Fällen von felinen Dermatosen (die klinisch als pigmentierte Plaques beschrieben und histologisch als FVP und/oder BISC diagnostiziert wurden) wurde daher bestimmt. Die Fälle wurden in eine der drei folgenden Gruppen eingeteilt: FVP, FVP + BISC oder BISC. Die immunhistologische Bestimmung des gruppenspezifischen Papillomavirus Antigens wurde mit einem polyklonalen Kaninchen Antiserum gegen bovines Papillomavirus durchgeführt. Von den sieben Fällen in der FVP Gruppe wurden sechs mittels Immunhistologie als positiv angesehen, genauso wie alle 10 Katzen in der FVP + BISC Gruppe. Andererseits war nur eine der neun BISC Katzen positiv. Das Vorhandensein von beiden, FVP und BISC Läsionen bei manchen Katzen und das häufige Auftreten von PV-Antigenen in den FVP und FVP + BISC Gruppen ist ein Hinweis darauf, dass beide Formen dieselbe virale Ursache haben und einige BISC sich aus den FVP entwickeln könnten. Das seltene Auftreten von viralem Antigen in der BISC Gruppe bedeutet, dass eine andere Ursache vorliegt oder der Verlust von viraler Replikation während der Kanzerogenese besteht. © 2006 The Authors. Journal compilation © 2006 European Society of Veterinary Dermatology. 67 431 Chapter 9 Summarizing discussion and further studies 68 Viruses replicate inside cells by synthesizing their own proteins and assembling them into virions. This replication is associated with various cytopathic effects, which are, usually, typical or pathognomonic of one specific virus. Poxviruses infections are associated with large intracytoplasmic inclusions and herpesvirus infections with intranuclear inclusions, for example. Aside from these cytopathic effects, viruses induce macroscopic changes which are sometimes, easily recognizable. Papillomaviruses induce cauliflower-like lesions, the socalled warts, which are virtually pathognomonic. Poxviruses and herpesviruses induce pock lesions and vesicles, respectively, which are very typical of these infections. These virusassociated changes have long been described in dogs and cats [1]. Viruses may also induce some less obvious changes, which are described in humans but remained often undescribed in canine and feline. These changes may be due to various pathogenic states like minimal viral replication, latency or non-productive infections. This thesis aims to describe some of these undescribed virus-induced skin changes in dogs and cats and, especially, papillomavirus-induced ones. We first described a case of canine erythema multiforme presumably associated with parvovirus infection [2]. We hypothesized that an infection of stem cells and primary amplifying keratinocytes occurred following hematogenic dissemination of the parvovirus. Viral antigens could have been presented by class I major histocompatibility complex molecules at the surface of the keratinocytes. Recognition of the viral antigens by Tlymphocytes, possibly sensitised by a previous parvovirus vaccination would have triggered these cytotoxic T-cells to induce apoptosis of infected keratinocytes. In this case, clinical and pathological lesions are not due to the cytopathic effect of the virus itself but to the T lymphocyte-induced cytolysis. Interestingly, virus infections (especially herpes simplex infection but also B19 parvovirus infections) are the most frequent causes of erythema multiforme in humans [3, 4]. This case was the first report of virus-associated erythema multiforme in dogs. This report leaves however some moot questions that warrant some further studies. The most important question is to know whether canine parvovirus usually replicates in the skin of affected dogs without causing any cytopathic effects or if the skin contamination reported in this study was incidental or due to a specific parvovirus strains. Second, as parvovirus antigens have been uncovered in the affected skin, one cannot exclude a direct effect of the virus infection associated to a secondary lymphocytic reaction. 69 The second article of this thesis aimed to describe some previously unknown cutaneous consequences of FeLV infection. FeLV is a member of the oncornavirus subfamily of retroviruses, which replicates in many tissues like bone marrow, salivary glands and respiratory epithelium. Its replication in the feline skin was already described by Gross and coworkers and associated with the so-called giant cell (multinucleated keratinocytes) dermatosis and horn formation [1, 5]. Multinucleated keratinocytes are sometimes observed in humans in association with neoplastic conditions, infectious diseases like herpesvirus infection and immunologic disorders [6]. Retroviruses also possess fusion proteins, which are able to induce syncytium formation in infected tissues [7, 8]. However, although FeLV infection is a frequent disease, syncytium are rarely observed in the affected skin of infected cats [5]. We described another case of FeLV-associated giant cell dermatosis with an ulcerative phenotype and demonstrated the presence of both FeLV antigens and proviral sequences in the lesional skin. Gross and coworkers suggested that these cytopathic effects were not the direct consequence of FeLV infection but the early stage of carcinomatous transformation [5]. The presence of FeLV antigens in the affected skin of the cat we observed, suggested an active replication of the virus and supported the hypothesis of a direct cytopathic effect. Furthermore, Rohn and coworkers demonstrated that FeLV variants do possess various pathogenic and cytopathic effects[9]. All in all, we considered more likely that these changes are the direct consequence of infection with a specific and rare variant of FeLV. This hypothesis however warrants further investigation. Feline internal lymphomas are often the consequence of FeLV infection. Cutaneous lymphomas, however, usually occur on FeLV-negative cats [10]. FeLV genomic sequences have however already been sometimes amplified from cutaneous lymphomas [11]. The originality of the case we reported lies on the fact that FeLV antigens have been demonstrated in the affected skin of a serologically negative cat. These findings suggest that productive FeLV infection may in some instances occur and may be restricted to the skin. Further studies are needed to demonstrate the existence of multiple FeLV strains with various physiologic and pathologic properties. Papillomaviruses (PV) are host-specific epitheliotropic viruses that infect the skin and mucous membranes. As these viruses do not possess the enzymatic machinery required for replication, they depend upon host-cell machinery to achieve this process and upon host-cell 70 differentiation for completion of their life cycle [12]. As more than 150 different PV have been isolated from the human lesional or healthy skin, only a few PV have been identified in carnivores [13, 14]. In this thesis, we have demonstrated the existence of new papillomavirus-like sequences in various canine and feline lesions, including cyclosporine Aassociated exophytic lesions, in situ and invasive carcinomas [15, 16]. We have used two sets of primers designed for the amplification of a sequence of the E1 gene of PV. The narrowrange set of primers was supposed to amplify canine and feline PV and their close relatives [16]. The broad range PCR system was designed to amplify up to 64 human PVs and several animal PV such as canine and feline PV[16, 17]. These studies have shown the existence of at least six feline and five canine unknown papillomavirus-like sequences. As the classification of papillomaviruses is based upon L1 gene, the amplification of sequences of the E1 gene does not allow proper evaluation of these sequences and classification of the newly uncovered PVs but these results suggested however that canine and feline lesional skin can be infected by PV of great genetic diversity. It would be of great interest to amplify and clone these novel canine and feline PVs. Fortunately, a new technique, the rolling-circle amplification (RCA) technique, was recently introduced to amplify and isolate circular DNA and, especially human and animal PVs [18, 19]. RCA is a multiple random primed, sequenceindependent amplification of circular DNA. Furthermore, the amplification is as effective as PCR. Therefore, only minute amount of crudely isolated DNA from tissue can be used for amplification of papillomavirus genomic DNA. RCA analysis of canine and feline skin samples will permit to determine whether healthy skin harbors PVs and to sequence PVs that are present in lesional skin. This descriptive study is the mandatory initial step for a better understanding of the role that play PV in the development of skin lesion in dogs and cats, and, especially, in the development of skin cancers. We have already applied this new technique to the isolation and cloning of a new canine PV (CPV3)[20]. In mammals and birds, PV induce a wide range of cutaneous and mucous changes such as exophytic and flat warts, precancerous and cancerous lesions. They are considered important carcinogens in humans and some high-risk PVs are directly responsible for the development of cervical cancers in women[21-23]. Even though the link between cervical carcinoma and human PV is clear, the role of PVs in the development of cutaneous squamous cell carcinoma (SCC) is not as definite [24]. There is however emerging epidemiological evidence to suggest 71 that PV might play an important role in skin cancerogenesis, especially in epidermodysplasia (EV) associated-one. Establishing causality between the presence of PV in a skin lesion and the development of the lesion is nevertheless problematic [25]. Criteria have been proposed to establish this relationship but difficulties in culturing PVs have made their fulfillment often impossible [22, 25]. Additionally the use of extremely sensitive nested polymerase chain reaction (PCR) makes possible the detection of minute amounts of viral DNA (even 0.05 viral genome per cell). The presence of such an amount of PV nucleic acid does not indicate a productive infection and can also be found in healthy skin [26, 27]. Evidence also suggests that ultraviolet (UV) radiation contributes to the cancerization of some PVassociated skin cancers [25, 28]. All in all, the role of PV in the development of skin cancer in humans remains questionable. Some animals models support the causative role of PV in the induction of skin SCC: A few decades ago, it was demonstrated that cottontail-rabbit PV (CRPV) are able to induce skin cancers in rabbit [29-30]. Other studies have also established that attenuated life canine oral PV (COPV) vaccine induce SCC in Beagles [32]. Additionally, canine and feline can be affected by skin conditions that share some similarities with human EV and cancerization has been reported in some patients [33]. Epidemiologic studies have demonstrated association between carnivores SCC and PV but causality has never been established [16, 33-40]. This thesis has confirmed the epidemiologic association between some groups of feline and canine skin cancers and PV infections and the genetic diversity of carnivore PVs [16, 20, 34, 40]. Aside from the identification and cloning of these new PVs, the most important studies to carry out would be to determine the relative prevalence of each new carnivore PV and to demonstrate in vitro that, at least some of them, are able to induce keratinocyte transformation and immortalization. We have, for example, detected, cloned, and sequenced a novel PV (CPV3), which was associated with a case of canine epidermodysplasia verruciformis [20]. The affected dog developed multiple plaques and one single interdigital lesion of in situ SCC [20]. DNA of CPV3 was uncovered in each lesion tested (including SCC) but was not present in intact skin of the same dog. Sequence-independent, multiply primed rolling-circle amplification was used to amplify, clone, and sequence the entire genome of CPV3. Indeed, analysis of the cloned and sequenced canine papilloma genome allowed its classification as a member of a new papillomavirus genus (GenBank accession DQ295066). Additionally, mRNA for the putative transforming protein E6 was discovered in each tested lesion: These findings 72 demonstrated that CPV3 was transcriptionally active in the mentioned skin lesions and supported the hypothesis of a causative role of CPV3 in the pathogenesis of canine EV [41]. Complementary DNA of the p53 transcript of the affected dog was cloned from blood, intact skin as well as skin lesions and its nucleotide sequence was found not to differ from the wild type canine p53 sequence. This finding suggested that the development of malignancy could not be attributed to UV-dependent mutagenesis. Therefore, the hypothesis was supported that transforming proteins of CPV3 induced cancer development by different mechanism than human EV-associated PVs [41]. As well, we are currently studying the relative prevalence of CPV3 in canine sera. We have cloned CP3-L1 gene (codes for major CPV3 capsid protein) and generated antisera against this protein. Our goal would be to establish an ELISA test and to evaluate 500 already collected canine sera. All in all, the findings in this thesis, the subsequent and future studies open new avenues to study PV-induced skin cancerogenesis. As at least some carnivore conditions bear major resemblances with human ones, these breakthroughs will reveal helpful for both veterinary and human oncology. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Scott, D.W., W.H. Miller, and C.E. Griffin, Viral, rickettsial and protozoal diseases, in Muller & Kirk's Small Animal Dermatology, D.W.M. Scott, W.H. Griffin, C.E., Editor. 2001, W.B. Saunders: Philadelphia. p. 517-542. Favrot, C., et al., Parvovirus infection of keratinocytes as a cause of canine erythema multiforme. Vet Pathol, 2000. 37(6): p. 647-649. Huff, J.C., Erythema multiforme. Dermatol Clin, 1985. 3(1): p. 141-152. Huff, J.C., W.L. Weston, and M.G. Tonnesen, Erythema multiforme: a critical review of characteristics, diagnostic criteria, and causes. J Am Acad Dermatol, 1983. 8(6): p. 763775. Gross, T.L., et al., Giant cell dermatosis in FeLV-positive cats. Vet. Dermatol., 1993. 4(3): p. 117-122. Kimura, S.K. and H. Hatano, Multinucleate epidermal cells in non-neoplastic dermatoses. Brit J Dermatol, 1978. 99: p. 485-489. Fenyo, E.M., et al., Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J Virol, 1988. 62(11): p. 4414-4419. White, J.M., Membrane fusion. Science, 1992. 258: p. 917-924. Rohn, J.L., et al., In vivo evolution of a novel, syncytium-inducing feline leukemia virus variant. Journal of Virology, 1998. 72(4): p. 2686-2696. Vonderhaar, M.A. and W.B. Morisson, Chapter 45. Lymphosarcoma, in Cancer in dogs and cats, W.B. Morisson, Editor. 2002, Teton New Media: Jackson, Wyoming. p. 641670. 73 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. Tobey, J.C., et al., Cutaneous T-cell lymphoma in a cat. J Am Vet Med Assoc, 1994. 204(4): p. 606-609. Doorbar, J., The papillomavirus life cycle. J Clin Virol, 2005. 32(Supplement 1): p. 7-12. de Villiers, E.-M., et al., Classification of papillomaviruses. Virolo, 2004. 324: p. 17-27. Scott, D.W., W.H. Miller, and C.E. Griffin, Neoplastic and non-neoplastic tumors, in Kirk and Muller's Small Animal Dermatology, D.W. Scott, W.H. Miller, and C.E. Griffin, Editors. 2001, W.B. Saunders Co.: Philadelphia. p. 1236-1413. Favrot, C., et al., Evaluation of papillomaviruses associated with cyclosporine-induced hyperplastic verrucous lesions in dogs. Am J Vet Res, 2005. 66(10): p. 1764-1769. Zaugg, N., et al., Detection of novel papillomaviruses in canine mucosal, cutaneous and in situ squamous cell carcinomas. Vet Dermatol, 2005. 16(5): p. 290-298. Iftner, A., et al., The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Res, 2003. 63(21): p. 7515-7519. Rector, A., et al., Isolation and cloning of a papillomavirus from a North American porcupine by using multiply primed rolling-circle amplification: the Erethizon dorsatum papillomavirus type 1. Virol, 2005. 331(2): p. 449-456. Rector, A., R. Tachezy, and M.A. Van Ranst, Sequence independant strategy for detection and cloning of circular DNA virus genome by using multiply primed rolling circle amplification. J. Virol., 2004. 78(10): p. 1993-1998. Tobler, K.et al., Detection of the prototype of a potential novel genus among the papillomaviridae in association with canine epidermodysplasia verruciformis. J Gen Virol, 2006. 67(12): p. 2036-2041 Saladi, R.N. and A.N. Persaud, The causes of skin cancer: a comprehensive review. Drugs Today (Barc), 2005. 41(1): p. 37-53. zur Hausen, H., Papillomavirus infections--a major cause of human cancers. Biochim Biophys Acta, 1996. 1288(2): p. F55-78. zur Hausen, H., Oncogenic DNA viruses. Oncogene, 2001. 20(54): S. 7820-7823. Sterling, J.C., Human papillomaviruses and skin cancer. J ClinVirol, 2005. 32(Supplement 1): p. 67-72. Harwood, C.A. and C.M. Proby, Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis, 2002. 15(2): p. 101-114. Antonsson, A. and B.G. Hansson, Healthy skin of many animal species harbours papillomaviruses which are closely related to their human counterparts. J Virol, 2002. 76(24): p. 12537-12542. Majewski, S. and S. Jablonska, Human papillomavirus and oncogenesis: critical evaluation of recent findings. Int J Dermatol, 2002. 41(6): p. 319-320. Termorshuizen, F., et al., Sunlight Exposure and (Sero) Prevalence of Epidermodysplasia Verruciformis-Associated Human Papillomavirus. J Invest Dermatol, 2004. 122(6): p. 1456-1462. Breitburd, F., J. Salmon, and G. Orth, The rabbit viral skin papillomas and carcinomas: a model for the immunogenetics of HPV-associated carcinogenesis. Clin Dermatol, 1997. 15(2): p. 237-47. Rous, P. and J.W. Beard, The progression to carcinoma of virus-induced rabbit papillomas (Shope). J Experim Med, 1935(62): p. 523-548. Brandsma, J.L., The cottontail rabbit papillomavirus model of high-risk HPV-induced disease. Methods Mol Med, 2005. 119: p. 217-235. Bregman, C.L., et al., Cutaneous neoplasms in dogs associated with canine oral papillomavirus vaccine. Vet Pathol, 1987. 24(6): p. 477-87. 74 33. 34. 35. 36. 37. 38. 39. 40. 41. Gross, T.L., et al., Epidermal tumors, in Skin diseases of the dog and cat: Clinical and histopathological diagnosis, T.L. Gross, et al., Editors. 2005, Blackwell Science: Oxford. p. 562-577. Nespeca, G., et al. Detection of novel papillomavirus-like sequences in paraffinembeddedspecimens oe invasive and in situ squamous cell carcinomafrom cats. Am J Vet Res, 2006. 26(12): p. 2036-2041 LeClerc, S.M., E.G. Clark and D.M Haines, Papillomavirus infection in association with feline cutaneous squamous cell carcinoma in situ (Abstract). in AAVD/ACVD Meeting. 1997.p. 125-126. Schwegler, K., J.H. Walter, and R. Rudolph, Epithelial neoplasms of the skin, the cutaneous mucosa and the transitional epithelium in dogs: an immunolocalization study for papillomavirus antigen. Zentralbl Veterinarmed A, 1997. 44(2): p. 115-123. Sundberg, J.P., R.E. Junge, and W.D. Lancester, Immunoperoxidase localization of papillomaviruses in hyperplastic and neoplastic epithelial lesions in animals. American JtVet Rest, 1984. 45(7): p. 1441-1446. Teifke, J.P., et al., Detection of papillomavirus-DNA in mesenchymal tumour cells and not in the hyperplastic epithelium of feline sarcoids. Vet Dermatol, 2003. 14(1): p. 47-56. Teifke, J.P., C.V. Lohr, and H. Shirasawa, Detection of canine oral papillomavirus-DNA in canine oral squamous cell carcinomas and p53 overexpressing skin papillomas of the dog using the polymerase chain reaction and non-radioactive in situ hybridization. Vet Microbiol, 1998. 60(2-4): p. 119-130. Wilhelm, S. et al.Clinical, histological and immunohistochemical study of feline viral plaques and bowenoid in situ carcinomas. Vet Dermatol, 2006. 17: p. 424-431 Erne, M.L. Further Characterization of a novel canine papillomavirus (CPV3) and its potential role in the context of Epidermodysplasia Verruciformis. Dissertation. Zürich 2006. 75 Chapter 10 Zusammenfassung und weitere Studien 76 Viren replizieren sich innerhalb von Zellen indem sie ihre eigenen Proteine synthetisieren und diese zu Virionen assemblieren. Diese Replikation wird von verschiedenen zytopathischen Effekten begleitet, die in der Regel typisch oder pathognomonisch für ein bestimmtes Virus sind. Zum Beispiel werden Pockenvirusinfektionen von grossen intrazytoplasmischen Inklusionen begleitet und Herpesvirusinfektionen von intranuklearen Inklusionen. Abgesehen von diesen zytopathischen Effekten rufen Viren auch makroskopische Veränderungen hervor, die manchmal einfach zu erkennen sind. Papillomaviren rufen blumenkohlähnliche Läsionen hervor, sogenannte Warzen, die nahezu pathognomonisch sind. Pocken- und Herpesviren rufen Pockenpusteln bzw. Blasen hervor, die sehr typisch sind für diese Infektionen. Diese Viren begleitenden Veränderungen wurden schon lange für Hunde und Katzen beschrieben [1]. Viren können auch weniger offensichtliche Veränderungen hervorrufen, die für Menschen beschrieben sind, für Hunde und Katzen aber grösstenteils nicht. Diese Veränderungen können auf unterschiedlichen pathogenischen Zuständen beruhen, wie minimale virale Replikation, Latenz oder nicht-produktive Infektion. Ziel dieser Arbeit ist es, einige der von Viren hervorgerufenen Hautveränderungen zu beschreiben, die bei Katzen und Hunden bisher nicht bekannt waren, besonders die von Papillomaviren verursachten. Wir waren die ersten, die einen Fall von Erythema multiforme (EM) bei Hunden beschrieben haben, das mit einer Parvovirusinfektion assoziiert war [2]. Wir haben angenommen, dass die Infektion von Stammzellen und primären amplifizierenden Keratinozyten nach einer hämatogenen Ausbreitung des Parvovirus auftrat. Virale Antigene wurden demnach von Haupthistokompatibilitätskomplex-Molekülen der Klasse I auf der Oberfläche von Keratinozyten präsentiert. Wir gingen davon aus, dass die Erkennung des viralen Antigens von T-Lymphozyten, die möglicherweise durch eine vorgängige Parvovirus-Impfung sensibilisiert wurden, diese zytotoxischen T-Zellen dazu gebracht haben, die Apoptose von infizierten Keratinozyten herbeizuführen. In diesem Fall sind die klinischen und pathologischen Läsionen nicht auf den zytopathischen Effekt des Virus selber zurückzuführen, sondern auf die von T-Lymphozyten hervorgerufene Zytolyse. Interessanterweise sind virale Infektionen (besonders die Herpes simplex Infektion, aber auch die B19 Parvovirus Infektion) die häufigste Ursache von EM bei 77 Menschen [3,4]. Unser Bericht war der erste veröffentlichte Fall von Virus assoziiertem EM bei Hunden. Er liess aber einige Fragen offen, die weitere Untersuchungen rechtfertigen. Die wichtigste Frage war, ob Parvoviren von Hunden sich in der Haut von betroffenen Hunden ohne zytopathische Effekte replizieren oder ob die Kontaminierung der Haut, von der wir in unserer Studie berichteten, zufällig oder auf einen spezifischen Stamm von Parvoviren zurückzuführen war. Zweitens konnten wir eine direkte Wirkung des mit einer sekundären lymphotischen Reaktion assoziierten Virus nicht ausschliessen, weil Parvovirus-Antigen in der befallenen Haut gefunden wurde. Das Ziel des zweiten Teils dieser Arbeit war es, einige vorgängig unbekannte kutane Folgen der FeLV-Infektion zu beschreiben. FeLV ist ein Mitglied der Oncornavirus-Unterfamilie von Retroviren und repliziert sich in vielen Geweben wie zum Beispiel im Knochenmark, in Speicheldrüsen und im Atemwegsepithel. Seine Replikation in feliner Haut wurde schon von Gross und Mitarbeitern beschrieben und ist von Riesenzellen (multinukleare Keratinozyten) Dermatose assoziiert. Mulitnukleare Keratinozyten werden manchmal bei Menschen im Zusammenhang mit neoplastischen Konditionen, infektiösen Krankheiten wie Herpesvirus Infektion und immunologischen Störungen beobachtet [6]. Retroviren besitzen auch Fusionsproteine, die in infizierten Geweben die Bildung von Synzytium herbeiführen können [7,8]. Dennoch werden Synzytia selten in der Haut von infizierten Katzen beobachtet, obwohl die FeLV Infektion eine häufige Krankheit ist. Wir haben einen Fall von FeLV assoziierter Riesenzellen-Dermatosis mit einem ulzerativen Phänotyp beschrieben und haben sowohl die Präsenz von FeLV-Antigenen als auch von proviralen Sequenzen nachgewiesen. Gross und Mitarbeiter haben vorgeschlagen, dass diese zytopathischen Effekte nicht die direkte Folge einer FeLV Infektion sind, sondern ein frühes Stadium von karzinomatöser Transformation [5]. Das Vorhandensein von FeLV-Antigenen in den Hautläsionen der Katze in unserer Studie legte die aktive Replikation des Virus nahe und stützte die Hypothese eines zytopathischen Effektes. Ferner haben Rohn und Mitarbeiter gezeigt, dass FeLV-Varianten verschiedene pathogenische und zytopathische Effekte haben [9]. Angesichts dieser Ergebnisse haben wir vermutet, dass es wahrscheinlicher ist, dass die Veränderungen die direkte Folge 78 einer Infektion mit spezifischen und seltenen Varianten von FeLV sind. Diese Auffassung bedarf jedoch weiterer Untersuchungen. Feline Lymphome sind oft das Resultat einer FeLV-Infektion. Ein kutanes Lymphom tritt jedoch normalerweise bei FeLV-negativen Katzen auf [10]. Feline Genomsequenzen von Leukämieviren wurden manchmal durch kutane Lymphome amplifizert [11]. Die Einzigartigkeit unseres Falles liegt in der Tatsache, dass FeLV-Antigene in den Hautläsionen einer serologisch negativen Katze nachgewiesen wurden. Diese Erkenntnisse legen nahe, dass eine produktive FeLV-Infektion in gewissen Fällen auftreten und auf die Haut beschränkt sein kann. Weitere Studien sind nötig um zu untersuchen, ob multiple FeLV-Stämme mit verschiedenen physiologischen und pathologischen Eigenschaften existieren. Papillomaviren sind wirtespezifische epitheliotrope Viren, die Haut und Schleimhäute infizieren. Weil diese Viren keine enzymatische Ausrüstung besitzen, die für eine Replikation benötigt wird, sind sie von Ausrüstungen der Wirtszellen abhängig, um diesen Prozess zu vollbringen, von einer Differenzierung der Wirtszelle, um ihren Lebenszyklus zu vollenden [12]. Obwohl mehr als 150 verschiedene Papillomaviren von gesunder und kranker menschlicher Haut isoliert wurden, wurden nur wenige in Karnivoren identifiziert [13,14]. In der vorliegenden Studie wurden neue Papillomaähnliche Sequenzen in verschiedenen caninen und felinen Läsionen nachgewiesen, einschliesslich Cyclosporin A-assoziierte exophytische Läsionen und in-situ und invasive Karzinome [15,16]. Es wurden zwei Sets von Primern verwendet, die für die Amplifikation einer Sequenz des E1-Gens des Papillomavirus entwickelt wurden. Das Set von Primern mit begrenzter Wirkung wurde entwickelt, um canine und feline Papillomaviren und deren nahe Verwandten zu amplifizieren [16]. Das umfassende PCR System wurde entwickelt, um bis zu 64 humane Papillomaviren und mehrere Papillomaviren von Tieren einschliesslich die caninen und felinen zu amplifizieren [16, 17]. Diese Untersuchungen haben die Existenz von mindestens sechs felinen und fünf caninen zuvor unbekannten Papillomavirus-ähnlichen Sequenzen gezeigt. Weil die Klassifikation der Papillomaviren auf dem L1-Gen basiert, erlaubt die Amplifikation von Sequenzen des E1-Gens keine einwandfreie Evaluation dieser Sequenzen oder 79 Klassifikation der neu entdeckten Papillomaviren. Diese Resultate haben jedoch nahegelegt, dass canine und feline Hautläsionen von Papillomaviren von beträchtlicher genetischer Diversität infiziert werden können. Es wäre von enormem Interesse, diese canine und feline Papillomaviren zu amplifizieren und zu klonen. Glücklicherweise wurde kürzlich eine neue Technik, das Rolling-circle Amplifikationsverfahren (rollingcircle amplification, RCA) eingeführt, um zirkuläre DNA und insbesondere Papillomaviren von Menschen und Tieren zu amplifizieren und isolieren [18,19]. Das Rolling-circle Amplifikationsverfahren ist eine multiple „random primed“, Sequenz unabhängige Amplifikation von zirkulärer DNA. Zudem ist diese Amplifikation so wirkungsvoll wie PCR. Daher werden für die Amplifikation von Papilloma genomischer DNA nur kleinste Mengen von grob isolierter DNA benötigt. Das Rolling-circle Amplifikationsverfahren kann angewendet werden um zu bestimmen, ob gesunde Haut Papillomaviren in sich trägt und um Papillomaviren zu sequenzieren, die in Hautläsionen von Hunden und Katzen vorhanden sind. Diese beschreibende Studie ist der unumgängliche erste Schritt für ein besseres Verständnis der Rolle, die Papillomaviren in der Entwicklung von Hautläsionen bei Hunden und Katzen spielen, besonders in der Entwicklung von Hautkrebsen. Wir haben diese neue Technik bereits bei der Isolation und beim Klonen eines neuen caninen Papillomavirus angewandt (CPV3) [20]. Bei Säugetieren und Vögeln führen Papillomaviren ein grosses Spektrum an kutanen Veränderungen und Veränderungen der Schleimhaut herbei, wie zum Beispiel exophytische und Flachwarzen und präkanzeröse und kanzeröse Läsionen. Sie werden für wichtige Karzinogene bei Menschen gehalten und einige risikoreiche Papillomaviren sind direkt für die Entwicklung von Gebärmutterhalskrebs bei Frauen verantwortlich [21-23]. Obwohl die Verbindung zwischen zervischen Karzinomen und humanen Papillomaviren klar ist, ist die Rolle von Papillomaviren in der Entwicklung von kutanem PlattenepithelKarzinom (SCC) nicht so klar [24]. Es gibt jedoch vermehrte epidemiologische Evidenzen, die nahelegen, das Papillomaviren eine wichtige Rolle bei der Hautkanzerogenese spielen, besonders bei der Epidermodysplasia verruciformis (EV). Es ist dennoch problematisch, eine Kausalität zwischen dem Vorhandensein von Papillomaviren in Hautläsionen und der Entwicklung der Läsionen herzustellen [25]. Es 80 wurden Kriterien vorgeschlagen, um diese Beziehung zu bestätigen, Schwierigkeiten bei der Kultivierung von Papillomaviren haben deren Erfüllung aber grösstenteils unmöglich gemacht [22, 25]. Zusätzlich erlaubt der Gebrauch von extrem sensitiver Nested-PCR den Nachweis einer winzigen Menge von viraler DNA (0.05 virale Genome per Zelle). Die Anwesenheit von kleinen Mengen von Nukleinsäure des Papillomavirus induziert keine produktive Infektion und kann auch in gesunder Haut vorkommen [26, 27]. Vieles deutet auch darauf hin, dass ultraviolette Strahlung (UV) zur Kanzerisation von einigen Papillomavirus assoziierten Hautkrebsen beiträgt [25, 28]. Alles in allen bleibt angesichts all dieser Ergebnisse die Rolle von Papillomaviren bei der Entwicklung von Hautkrebs beim Menschen unklar. Einige Tiermodelle stützen die kausative Rolle von Papillomaviren bei der Induktion des Squamosazell-Karzinoms (SCC): Vor einigen Jahrzehnten wurde gezeigt, dass Cottontail rabbit Papillomaviren (CRPV) in der Lage sind, Hautkrebs bei Hasen zu induzieren [2931]. Andere Studien haben auch festgestellt, dass attenuierter Lebend-Impfstoff für Canines orales Papillomavirus (COPV) bei Beagle SCC induziert [32]. Hinzu kommt, dass Hunde und Katzen von Hautkonditionen betroffen sein können, die einiges gemein haben mit EV von Menschen und bei einigen Patienten wurde von einer Kanzerisation berichtet [33]. Einige Studien haben eine Verbindung zwischen SCC und Papillomaviren bei Karnivoren gezeigt, es wurde aber keine Kausalität hergestellt [16, 34-40]. Diese Arbeit hat die epidemiologische Verbindung zwischen einigen Gruppen von felinem und caninem Hautkrebs und Papillomavirus-Infektion sowie die genetische Diversität von karnivoren Papillomaviren bestätigt [16, 20, 34, 40]. Nebst der Identifikation und dem Klonen dieser neuen Papillomaviren sind die wichtigsten Untersuchungen diejeinigen, die die relative Prävalenz von jedem neuen karnivoren Papillomavirus feststellen und in vitro zeigen, dass zumindest einige davon in der Lage sind, die Transformation und Immortalisation von Keratinozyten zu induzieren. Wir haben zum Beispiel ein neuartiges Papillomavirus (CPV3) entdeckt, geklont und sequenziert, das mit einem Fall von Caniner Epidermodysplasia verruciformis assoziiert war [20]. Der befallene Hund entwickelte multiple Plaques und eine einzige interdigitale Läsion von in-situ SCC [20]. In jeder untersuchten Läsion (einschliesslich SCC) wurde 81 DNA von CPV3 isoliert, diese war aber nicht vorhanden in der intakten Haut desselben Hundes. Es wurde Sequenz-unabhängige, „multiple primed“ RCA verwendet, um das ganze CPV3 Genom zu amplifizieren, klonen und sequenzieren. Tatsächlich liess die Analyse des geklonten und sequenzierten caninen Papilloma-Genoms seine Klassifikation als Mitglied einer neuen Gattung von Papillomaviren (GenBank-Eintrag DQ295066) zu. Zusätzlich wurde in jeder untersuchten Läsion mRNA für das mutmassliche transformierende Protein E6 gefunden. Diese Resultate zeigten, dass CPV3 in den erwähnten Hautläsionen transkriptional aktiv war und stützten die Hypothese einer kausativen Rolle von CPV3 in der Pathogenese von Caniner EV [41]. Komplementäre DNA des p53 Transkriptes des betroffen Hundes wurde sowohl von intakter Haut als auch von Hautläsionen geklont, und seine Nukleotid-Sequenz wich nicht von der Wildtyp-caninen p53-Sequenz ab. Dieses Ergebnis deutete darauf hin, dass die Entwicklung eines bösartigen Tumors nicht auf UV-abhängige Mutagenese zurückzuführen war. Folglich wurde die Hypothese gestützt, dass transformierende Proteine von CPV3 die Entwicklung von Krebs mit Mechanismen induzieren, die anders sind als die Mechanismen, die bei humanen EV-assoziierten Papillomaviren angestrengt werden [41]. Wir untersuchen gegenwärtig auch die relative Prävalenz von CPV3 in caninen Seren. Wir haben die CP3-L1 Gene geklont (Kodes für CPV3 Haupt-Kapsidprotein) und Antiseren gegen dieses Protein generiert. Unser Ziel ist es, einen ELISA Test zu etablieren und 500 vorgängig gesammelte canine Seren zu evaluieren. Schliesslich öffnen die Resultate dieser Arbeit and hoffentlich zukünftiger Studien neue Zugänge zur Erforschung der Papillomavirus-induzierten Hautkanzerogenese. Das sollte sich sowohl für die veterinär- als auch die human-medizinische Onkologie als hilfreich erweisen, wenn man bedenkt, dass es mehrere ähnliche Hautkonditionen bei Karnivoren und Menschen gibt. 1. 2. 3. Scott, D.W., W.H. Miller, and C.E. Griffin, Viral, rickettsial and protozoal diseases, in Muller & Kirk's Small Animal Dermatology, D.W.M. Scott, W.H. Griffin, C.E., Editor. 2001, W.B. Saunders: Philadelphia. p. 517-542. Favrot, C., et al., Parvovirus infection of keratinocytes as a cause of canine erythema multiforme. Vet Pathol, 2000. 37(6): p. 647-649. Huff, J.C., Erythema multiforme. Dermatol Clin, 1985. 3(1): p. 141-152. 82 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Huff, J.C., W.L. Weston, and M.G. Tonnesen, Erythema multiforme: a critical review of characteristics, diagnostic criteria, and causes. J Am Acad Dermatol, 1983. 8(6): p. 763775. Gross, T.L., et al., Giant cell dermatosis in FeLV-positive cats. Vet. Dermatol., 1993. 4(3): p. 117-122. Kimura, S.K. and H. Hatano, Multinucleate epidermal cells in non-neoplastic dermatoses. Brit J Dermatol, 1978. 99: p. 485-489. Fenyo, E.M., et al., Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J Virol, 1988. 62(11): p. 4414-4419. White, J.M., Membrane fusion. Science, 1992. 258: p. 917-924. Rohn, J.L., et al., In vivo evolution of a novel, syncytium-inducing feline leukemia virus variant. Journal of Virology, 1998. 72(4): p. 2686-2696. Vonderhaar, M.A. and W.B. Morisson, Chapter 45. Lymphosarcoma, in Cancer in dogs and cats, W.B. Morisson, Editor. 2002, Teton New Media: Jackson, Wyoming. p. 641670. Tobey, J.C., et al., Cutaneous T-cell lymphoma in a cat. J Am Vet Med Assoc, 1994. 204(4): p. 606-609. Doorbar, J., The papillomavirus life cycle. J Clin Virol, 2005. 32(Supplement 1): p. 7-12. de Villiers, E.-M., et al., Classification of papillomaviruses. Virolo, 2004. 324: p. 17-27. Scott, D.W., W.H. Miller, and C.E. Griffin, Neoplastic and non-neoplastic tumors, in Kirk and Muller's Small Animal Dermatology, D.W. Scott, W.H. Miller, and C.E. Griffin, Editors. 2001, W.B. Saunders Co.: Philadelphia. p. 1236-1413. Favrot, C., et al., Evaluation of papillomaviruses associated with cyclosporine-induced hyperplastic verrucous lesions in dogs. Am J Vet Res, 2005. 66(10): p. 1764-1769. Zaugg, N., et al., Detection of novel papillomaviruses in canine mucosal, cutaneous and in situ squamous cell carcinomas. Vet Dermatol, 2005. 16(5): p. 290-298. Iftner, A., et al., The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors. Cancer Res, 2003. 63(21): p. 7515-7519. Rector, A., et al., Isolation and cloning of a papillomavirus from a North American porcupine by using multiply primed rolling-circle amplification: the Erethizon dorsatum papillomavirus type 1. Virol, 2005. 331(2): p. 449-456. Rector, A., R. Tachezy, and M.A. Van Ranst, Sequence independant strategy for detection and cloning of circular DNA virus genome by using multiply primed rolling circle amplification. J. Virol., 2004. 78(10): p. 1993-1998. Tobler, K.et al., Detection of the prototype of a potential novel genus among the papillomaviridae in association with canine epidermodysplasia verruciformis. J Gen Virol, 2006. 67(12): p. 2036-2041 Saladi, R.N. and A.N. Persaud, The causes of skin cancer: a comprehensive review. Drugs Today (Barc), 2005. 41(1): p. 37-53. zur Hausen, H., Papillomavirus infections--a major cause of human cancers. Biochim Biophys Acta, 1996. 1288(2): p. F55-78. zur Hausen, H., Oncogenic DNA viruses. Oncogene, 2001. 20(54): S. 7820-7823. Sterling, J.C., Human papillomaviruses and skin cancer. J ClinVirol, 2005. 32(Supplement 1): p. 67-72. Harwood, C.A. and C.M. Proby, Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis, 2002. 15(2): p. 101-114. Antonsson, A. and B.G. Hansson, Healthy skin of many animal species harbours papillomaviruses which are closely related to their human counterparts. J Virol, 2002. 76(24): p. 12537-12542. 83 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. Majewski, S. and S. Jablonska, Human papillomavirus and oncogenesis: critical evaluation of recent findings. Int J Dermatol, 2002. 41(6): p. 319-320. Termorshuizen, F., et al., Sunlight Exposure and (Sero) Prevalence of Epidermodysplasia Verruciformis-Associated Human Papillomavirus. J Invest Dermatol, 2004. 122(6): p. 1456-1462. Breitburd, F., J. Salmon, and G. Orth, The rabbit viral skin papillomas and carcinomas: a model for the immunogenetics of HPV-associated carcinogenesis. Clin Dermatol, 1997. 15(2): p. 237-247. Rous, P. and J.W. Beard, The progression to carcinoma of virus-induced rabbit papillomas (Shope). J Experim Med, 1935(62): p. 523-548. Brandsma, J.L., The cottontail rabbit papillomavirus model of high-risk HPV-induced disease. Methods Mol Med, 2005. 119: p. 217-235. Bregman, C.L., et al., Cutaneous neoplasms in dogs associated with canine oral papillomavirus vaccine. Vet Pathol, 1987. 24(6): p. 477-87. Gross, T.L., et al., Epidermal tumors, in Skin diseases of the dog and cat: Clinical and histopathological diagnosis, T.L. Gross, et al., Editors. 2005, Blackwell Science: Oxford. p. 562-577. Nespeca, G., et al. Detection of novel papillomavirus-like sequences in paraffinembeddedspecimens oe invasive and in situ squamous cell carcinomafrom cats. Am J Vet Res, 2006. 26(12): p. 2036-2041 LeClerc, S.M., E.G. Clark and D.M Haines, Papillomavirus infection in association with feline cutaneous squamous cell carcinoma in situ (Abstract). in AAVD/ACVD Meeting. 1997.p. 125-126. Schwegler, K., J.H. Walter, and R. Rudolph, Epithelial neoplasms of the skin, the cutaneous mucosa and the transitional epithelium in dogs: an immunolocalization study for papillomavirus antigen. Zentralbl Veterinarmed A, 1997. 44(2): p. 115-123. Sundberg, J.P., R.E. Junge, and W.D. Lancester, Immunoperoxidase localization of papillomaviruses in hyperplastic and neoplastic epithelial lesions in animals. American JtVet Rest, 1984. 45(7): p. 1441-1446. Teifke, J.P., et al., Detection of papillomavirus-DNA in mesenchymal tumour cells and not in the hyperplastic epithelium of feline sarcoids. Vet Dermatol, 2003. 14(1): p. 47-56. Teifke, J.P., C.V. Lohr, and H. Shirasawa, Detection of canine oral papillomavirus-DNA in canine oral squamous cell carcinomas and p53 overexpressing skin papillomas of the dog using the polymerase chain reaction and non-radioactive in situ hybridization. Vet Microbiol, 1998. 60(2-4): p. 119-130. Wilhelm, S. et al.Clinical, histological and immunohistochemical study of feline viral plaques and bowenoid in situ carcinomas. Vet Dermatol, 2006. 17: p. 424-431 Erne, M.L. Further Characterization of a novel canine papillomavirus (CPV3) and its potential role in the context of Epidermodysplasia Verruciformis. Dissertation. Zürich 2006. 84