Census Techniques in Ecology
Transcription
Census Techniques in Ecology
Census Techniques in Ecology Methoden in der Ökologie LV# 444-561 Protocol Soil Fauna Soil Field Techniques Stream Ecology - I Stream Ecology - II (Census of Flora) Census of Fauna Microclimate Bioindicators Teilprotokolle 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 (Erfassung der Bodenfauna)) (Bodenkundliche Felmethoden) (Fliessgewässeruntersuchung -I) (Fliessgewässeruntersuchung - II) Erfassung der Pflanzenwelt (Erfassung der Tierwelt) Kleinklimamessung (Bioindikatoren) October 6th 1997 till October 13th 1997 Handed in by: Pierre Madl (Mat-#: 9521584) and Maricela Yip (Mat-#: 9424495) Salzburg, 31st October 1997 biophysics.sbg.ac.at/home.htm References: Protocol Title of References 1/8 • F. Schinner / R. Öhlinger / Ekandeler / R. Margesin Methods in Soil Biology Springer Verlag - 1995 - FRG • W. J. Sutherland Ecological Census techniques Cambridge University Press 1996 - New York 2/8 • W. J. Sutherland Ecological Census techniques Cambridge University Press New York 1996 USA • E. Schlichting, H.P Blume, K. Stahr Bodenkundliches Praktikum Blackwell Science Berlin 1995 - FRG • N.D. Gordon, T.A. McMahon, B.L. Finlayson Stream Hydrology John Wiley & Sons Melbourne 1992 - AUS • J.D. Allan Stream Ecology Chapman & Hall - Michigan 1995 - USA • D. Meyer Makroskopisch-bioligische Feldmethoden ALG Hannover 1990 - FRG • Wetzel Robert G., Likens Gene E. Limnological Analyses, 2nd Edition, Springer-Verlag 1991 • H.B.N. Hynes The Ecology of Running Waters Liverpool Univ. Press 1970 - UK • N.D. Gordon, T.A. McMahon, B.L. Finlayson Stream Ecology John Wiley & Sons Melbourne 1992 - AUS • J.D. Allan Stream Ecology Chapman & Hall - Michigan 1995 - USA • W. J. Sutherland Ecological Census techniques Cambridge University Press New York 1996 USA • W. J. Sutherland Ecological Census techniques Cambridge University Press 1996 New York USA • H. Janetschek Ökologische Feldmethoden Verlag Eugen Ulmer Stuttgart 1982 – FRG • M. Mühlbenberg Freilandökologie Quelle und Meyer Verlag Heidelberg 1989 - FRG • F. Schinner / R. Öhlinger / Ekandeler / R. Margesin Methods in Soil Biology Springer Verlag - 1995 - FRG • H. Janetschek Ökologische Feldmethoden Verlag Eugen Ulmer Stuttgart 1982 - FRG • W. J. Sutherland Ecological Census techniques Cambridge University Press 1996 - New York • H. Janetschek Ökologische Feldmethoden Verlag Eugen Ulmer Stuttgart 1982 – FRG • H.H. Kreeb Pflanzenökologie und Bioindikation Gustav Fischer Verlag Stuttgart 1990 - FRG • Schubert Bioindikatoren • H.J. Jäger, L. Steubing Monitoring of air pollutants by plants Junk Publishers The Hague 1982 - NL • I.F. Spellerberg Monitoring Ecological Change Cambridge University Press 1991 – UK • D.W. Jeffrey, B. Madden Bioindicators and Environmental Management Academic Press London 1991 - UK • S.Ellisa, A. Mellor Soils and Environment Routiedge Publ. London 1995 - UK 3/8 4/8 5/8 6/8 7/8 8/8 Methods in Ecology Sub-Protocol 1/8 1 Methods in Ecology (Methoden in der Ökologie) Soil Fauna (Erfassung der Bodenfauna) Protocol - 1/8 October 6th 1997 Instructors: Dr. W. Foissner Mag. A. Leitner Handed in by: Pierre Madl (Mat-#: 9521584) Salzburg, in the month of October 1997 Soil Fauna Methods in Ecology Sub-Protocol 1/8 2 Soil Fauna Introduction: The biosphere represents the fauna and flora which live above, at and below the Earth’s surface, along with organic material which is no longer alive. Because soil contains rock material, water, air and biota, it is the interface at which all the environmental components interact and is the most complex medium within environmental systems, both influencing and responding to their operation. The geosphere determines the parent material from which a soil develops, the hydrosphere determines the presence of water which is vital for the operation of many of the processes of soil formation. The atmosphere determines the climatic conditions which influence their rate of operation, and the biosphere determines which fauna and flora are available for participation in these processes. The use of soil provides information about past environmental conditions has been developed in more recent decades through a number of disciplines. The soil contains a rich variety of animals of very different sizes and life forms. The most abundant groups are the Protozoa, Nematoda, Annelida, and Arthropoda. These microorganisms are involved in the shredding and decomposition of organic compounds to make them available for reabsorbtion of sessile organisms like plants. Digging and burrowing animals help to increase the pore volume and improve aeration as well as mixing of the soil. Grouped on a nutritional bases, animals are collectively categorized as • phytotrophic (feeding on living plants), • zootrophic (feeding on animal matter), • microtrophic (living on microroganisms), and • saprotrophic (utilizing dead organic matter). Since soil zoological investigations require adequate methods, the precise identification of the animals collected is of essential importance. Based on the size of the organism, this soil organisms are grouped into micro-, meso-, and macrofauna. • The microfauna utilizes pores with a diameter of less than 100[µm]; It consists of microscopically small eukaryotic, single-celled protozoans (amoebae, ciliates and flagellates) and multicellular organism (rotifers, tardigrades, nematodes): together these phyla of animals consume considerable amounts of bacteria, fungi, and debris. Protozoans and Nematodas alone require approx. 103 to 105 bacteria each per cell division to maintain their daily metabolism. Therefore, being in direct contact to the surrounding environment due to their delicate external membranes these organisms can adapt quickly to changes in environmental patterns. Consequently, members of the microfauna are a really cosmopolitan group of organisms. • The mesofauna (Acari, Collembola, Enchytraeidae) occurs predominantly in the larger pore space, i.e.: macropores of <2[mm]. Most member of these phyla (mites, springtails, potworms) feed on substrate like plant litter, fungi, mineral particles, or feces from other soil animas. As with the organisms of the microfauna, the member of this category are highly adaptable as well; they are found in moist mineral soils to deciduous litter; i.e.: approx.: 105 [individuals/m2]. • The macrofauna (Oligochates, Chilopoda, Diplopoda, Diptera, Coleoptera) utilize existing cracks and root canals, as well as, dig and burrow actively; they contribute considerably to the loosening and aeration of the soil. The distribution of earthworms, for instance, is strongly dependent on their surroundings like water content, soil type, vegetation and pH. In addition, their respective digging habits splits them into litter dwellers, horizontal burrowers, and deep (vertical) burrowers. Due to their size, earthworms contribute a large fraction of the biomass in loamy meadows. Predators like centipedes depend highly on atmospheric humidity, therefore, they vary in numbers depending upon the soil structure; e.g.: as many as 300 [individuals/m2] can be found in leaf litter of deciduous forests. Millipedes support the activity of earthworms and are found in almost all types of soil (excluding very acidic sites). They are primary decomposers of great soil-biological importance. Flies contribute heavily to the turnover in the soil. They are not only decomposers, but they are also great predators and can reach up to 2000 [individuals/m2]. Beetles occur in all strata and trophic levels. The smaller forms occur in the upper soil layers; among them are found fungivores, omnivores and predators alike. The microflora (prokaryota, autotrophic flagellates, diatoms, etc.) and macroflora (plants and fungi in general) are not treated in this protocol. The following pages list some simple procedures used during the course. Methods in Ecology Sub-Protocol 1/8 3 Soil Fauna Sampling Organisms of the Macrofauna (Earthworms): The estimation of earthworm abundance is difficult due to the heterogeneous moisture distribution of the soil and their special lifestyle. To obtain a representative result, at least a couple of probes should be taken with either method. • A simple but not very reliable way to extract and count earthworms is the electrical method. A weak voltage (12V) Materials used: procedure not executed is applied on a chosen area. The electrodes, arranged in a circle force the earthworms to abandon their dark environment and to emerge the surface. The effectiveness of this procedure is highly dependent upon soil water content. • Handsorting is the most efficient procedure. A given area of 0.25 [m2] is sorted out by extracting a layer, approx. 20 [cm] deep. The top grass layer should be carefully separated to avoid further damage; crumble the soil, remove the earthworms found into a container, rinse, count, weigh, and return them back to the soil. Close the excavation site, and try to put the soil layers back as they were previously. Materials used: i) frame covering 0.25 [m2] i) spade i) digital balance • The chemical extraction by using a diluted formalin solution is easier, Although both horizontal and vertical burrowing earthworms are affected, only the vertical burrowers will be counted. This technique gives an Materials used: i) frame covering ¼ [m2] estimate of the individuals living underneath. Formalin used i) formalin bottle in such diluted quantities will not kill the earthworms, but 200 [mL] volumetric flask will make the soil unpleasant for their normal activities. i) bucket of water 5[L] Deep dwelling borrowers, avoiding such a disturbance, will i) digital balance emerge to the surface. Depending on the water content of the soil, about 5 to 10 [l] of a 0.2 to 0.4 [%] formalin solution is used. Pour 1/3 of the solution onto the sampling area of about 0.25 [m2] in repeated intervals of 10 [min]. Remarks: Because of the toxicity of formalin, protection gloves and glasses should be used when handling this solution in concentrated form. Results of Formalin and Handsorting techniques (¼ m2 for each group): Lawn Meadow Group Formalin-Solution Handsorting Formalin-Solution Handsorting # Total mass [g] # Total mass [g] # Total mass [g] # Total mass [g] I II III IV Comments: Methods in Ecology Sub-Protocol 1/8 4 Soil Fauna Sampling Organisms of the Mesofauna: Separation of invertebrates from soil, litter, and other debris can be achieved with a Tullgren funnel. The soil sample s filled into the funnel; the tungsten lamp Materials used: creates a warm, dry, and well illuminated condition at the top i) funnel of the funnel, which encourages cool-, shaded-, and moisturei) gaze-filter loving invertebrates to move down the funnel through a filter, i) beaker into a collecting bottle. If live specimens are required then a i) formalin flask lightly moistened piece of filter paper should be placed in the i) bucket collecting container. Funnels are usually left in operation for a i) spade or shovel week or so, and if life specimens are being collected, they i) lighting source or other should be checked daily. The Berlese funnel is a slightly altered apparatus, in which hot water is passed through an outer extra cage instead of a electrical light source, causing the same effect described above. Remarks: The use of desiccation funnels is not labor-intensive, since sorting can be left unattended. But small and inconspicuous invertebrates are likely to be missed during sieving. Larger funnels tend to extract relatively more larger invertebrates than smaller ones, since smaller invertebrates may become desiccated within the larger funnel before they reach the collecting tube. A Tullgren funnel for separating small invertebrates from soil, litter, etc., Methods in Ecology Sub-Protocol 2/8 1 Methods in Ecology (Methoden in der Ökologie) Soil Field Techniques (Bodenkundliche Feldmethoden) Protocol - 2/8 13th of October 1997 Instructor: Dr. T. Peer Handed in by: Pierre Madl (Mat-#: 9521584) Salzburg, in the month of October 1997 Soil Field Techniques Methods in Ecology Sub-Protocol 2/8 2 Soil Field Techniques Introduction The soil is weathered mineral material at the Earth’s surface, which may or may not contain organic matter, and often also contains air and water. It may range in thickness from a few millimeters to many meters, and it is present over most of the Earth’s land surface. Soils are complex, multivariate medium which plays an important role in all environmental disciplines. As a result, it is necessary to understand the way in which they vary spatially and how their characteristics are suited to various forms of environmental investigation and utilization. Soils have been recognized since history through its influence on agriculture, drainage and human settlement. Materials used: Before we do any soil survey: soil corer, • It is necessary to know the purpose of the survey. spade • Required permission of authorities. saw • What information will be recorded and needed. hatchet • How much detail is required. bucket yardstick (metric gauge) • What scale will the survey operate. plastic bags • How much time and what resources are available for the survey. cold box • Finally, all the information gathered from the soil must be related to geological-, vegetation-, the purpose of the survey. aerial-, topographical map flask of 0.01 [M] HCl, Soil Sampling mobile pH-meter, A homogeneous representative number soil samples are taken from the area under investigation and combined to a bulk sample, the characteristics require are: soil texture, topography, soil depth, soil heaviness, presence of rocks/stones, moisture conditions. Orientation of the site of interest should be well illuminated (sunny side) and easily accessible. Best time to do sample is in spring before the beginning of the vegetation period, fertilization and plant growth do not have much influence at this time. Soil horizons Soils often comprise a series of layers aligned roughly parallel with the surface, and the combined, vertical sequence of horizons are known as a profile. The number of horizons vary between profiles, they mostly have three basic horizons (A,B,C). different horizon combinations giving rise to different soil types. Profiles of the other soil types are usually a few centimeters or meters deep. • The uppermost layer (A) contains organic matter, mixed with mineral material. • The underlying (B) is usually a more mineral rich zone, into which material is often moved, vertically or laterally, from elsewhere in the soil. Combination of (A-B) is a solum. • The deeper layer (C) represents the little altered form of the material from which the soil derives, known as the parent material. • The underlying bedrock (D or R) are the soils that may occur as a geologically recent, superficial deposit, having been laid down by a river, a glacier, the wind, or the sea. A soil profile and pedon, showing soil horizons; The profile is a 2-D unit, while the pedon shows characteristics in 3D When doing the excavation, separate the various layers into piles. To minimize disturbance after the survey, return the layers in the way they were previously. Methods in Ecology Sub-Protocol 2/8 3 Soil Field Techniques Soil formation The process by which soils form can be divided into four groups: • Addition of material, both organic and inorganic, to the soil. • Transformation of this material via organic matter decomposition, weathering and clay mineral formations. • They are transfer within the soil by water or by mechanical means, • and it is loss from the soil via either the surface or subsurface. Phases The soil is composed of three phases: • Solid phase, both mineral and organic material; the liquid and gas phases are in-between pores or voids. • Liquid component is the soil water, derived from precipitation, and ground water sources. • Gaseous component is the soil atmosphere or soil air, consist of a mixture of gases derived from the above-ground atmosphere and from the respiration of soil organisms. The major soil-forming processes Methods in Ecology Sub-Protocol 2/8 4 Soil Field Techniques Soil constituents Mineral: The mineral fraction of soils is derived largely from weathering of the underlying parent material, which my consist of consolidated bedrock (igneous-from molted magma, sedimentary-from erosion and weathering cycles or metamorphic-from alterations due temperature/pressure) or unconsolidated superficial deposits (a variable of solid bedrock materials and are often classified as depositional environment). Organic components: Soil organic matter is derived from different sources such as plant litter: which consists of plant debris, leaves, stems, flowers, twigs, bark, branches of trees, etc. Other organic components are plant roots, root exudates, soil organisms, fecal remains, metabolites, etc. which are washed into the soil. Soil organisms can be producers (plants), consumers (animals), decomposers (returning material to the soil), autotrophs and heterotrophs. They can be also classified according to their size: microorganisms (<200 micrometer)-fauna and flora, mesofauna (2001000 micrometer) and macrofauna (>1000 micrometer) Water: Soil water is derived from two principal sources-precipitation and ground water. Precipitation: rain, snow, hail fog, and mist. The proportion of precipitation that reaches the ground surface depends largely on the nature and density of vegetation cover. On surfaces devoid of vegetation, precipitation reaches the soil directly. On reaching the surface, water can either infiltrate the soil or, run off over the surface, and evaporate. The composition of soil water is a particularly dynamic characteristic, varying over periods of time. This behavior arises from the intimate association between the water, small mineral and organic particles (clay and humus) and plant roots, which can involve the exchange of ions between these components. Soil water contains a number of dissolved solid and gaseous constituents, many of which exists in mobile ionic form, and a variety of suspended solid components. Basic cations (Ca2+, Mg2+, K+, Na+, NH4+) may be derived from a number of sources. Color: There other dissolved components in the soil usually minor and local in their occurrence. These include organic material and silica, together with a number of pollutants such as heavy metals (lead, zinc, cadmium) and radionuclides (cesium). Soil water contains not only dissolved solids but also a number of suspended constituents. These include small particles of mineral and organic material, which often results in discoloration and increased turbidity of soil water. Similarly, precipitates may accumulate in soil water, as a result of chemical changes as the water migrates through the soil. Air: Water has a reciprocal arrangement in terms of their occupancy of soil pore space, in saturated soils, air content is low, whereas in dry soils the pore spaces are largely air-filled. Changes in water and air content are particularly dynamic because much of the water present in a saturated soil drains away rapidly, while heavy rainfall can quickly bring the soil back to saturation. The gaseous constituents of soil air are derived largely from the atmosphere, the respiration and metabolism of soil organisms, and from the evaporation of soil moisture. Soil air is continuos with the atmosphere provided that the soil surface is not sealed due to compacting or crusting, and such continuity ensures the free movement and exchange of gases. In addition to CO2, organisms release other gases into the soil, including (CH4, H2) as a result of organic matter decomposition. Composition by volume of a typical topsoil Methods in Ecology Sub-Protocol 2/8 5 Soil Field Techniques Soil physical properties Mineral particles The principal properties of soil mineral particles in an environmental context are their size, shape, nature of surface, orientation and mineralogy. The mineration fractions consists of particles of different sizes such as larger ones, cobbles and pebbles, sand, silt and clay (2mm in diameter). Most studies of soil is concerned with the (<2 mm) range and is called fine earth. It is the proportion by weight of the size categories within the fine fraction which defines the particle size distribution or texture of a soil. Most soils comprise a continuos spectrum of particle sizes, and the width of this spectrum is defined by the degree of sorting. Texture Can be estimated in the field simply by rubbing the soil between thumb and forefinger. Sand grains are easily distinguished by their coarseness, while silt has a distinctive soapy feel and clay is characteristically plastic and moldable when moist. In order to analyze the soil in more detail, it is required laboratory analyzes such as the a Coulter Counter or laser diffractometer, a scanning electron microscope, which allows the particle sizes to be viewed in 3dimentions. Minerals differ markedly in their composition such as physical and chemical characteristics: texture, acidity, and nutrient status. Aggregates Aggregation in soils is promoted by a number of physical, chemical and biotic forces. Physical forces: expansion, shrinkage associated with wetting and drying, compaction by raindrop impact, animal trampling and agricultural machinery. Chemical forces: electrostatic, presence of adsorbed cations in association with the negative surface charge of colloidal particles such as clay and humus. Aggregates or peds, which persists during wetting/drying and freezing/thawing cycles form the basis of soil structure. Pore space Vary in shape from spherical voids to tortuous, interconnecting cracks and channels. They also vary in size from large macropores to fine micropores (<1 [µm]). Pore space will influence both the bulk density and the porosity of a soil. Porosity is a measure of the percentage volume of the pore space, and can be determined indirectly from particle and bulk density. Porosity and pore size distribution are influenced by a number of soil characteristics: texture, degree of aggregation, bulk density, presence of swelling clays and organic content. Moisture Soil water possesses free energy which is a measure of its potential for movement and change in the soil. In soils with a high moisture content, forces attracting the water to solid particles are weak and its free energy is high. Moisture is affected by: adsorption, water is attracted to the surfaces of colloids by electrostatic forces. Capillarity, water is held in soil pores by adsorptive forces at the water surface. Matric suction, combination of capillarity and adsorption. Osmosis, occur between solutions of different ionic concentrations. Several methods are available to measure soil moisture: it can be determined gravimetrically using bulk samples which requires weighing, field-moist, oven-drying, etc. the weight differences representing the moisture content, expressed as a percentage of either filed-moist or oven-dried soil. Temperature Soil temperature is a dynamic property because it varies between day and night, seasonally, it can be rapid and extreme. It is also influence by: texture, moisture and organic content. Mechanics Soil mechanics properties are strength/stability: derived from interparticle and interped forces responsible for the development of soil structure. For stability: survival during wetting, breakdown or slaking, resistance to compression, and shear-indication for cohesion; for strength: related to soil properties, texture, organic content bulk density and moisture content. and consistence of the soil. Color Is determined in the field, and provides useful information regarding the presence or absence of soil constituents. For example: dark colors are usually indicative of high organic, manganese, moisture content, while red colors is for soil rich in iron oxides, blue-gray colors indicate the presence of iron in its reduced form. The Munsell color notation has three components: • Hue-indicates major color present. • Value-measures the degree of darkness or lightness of the color. • Chroma-measure of color intensity. Methods in Ecology Sub-Protocol 2/8 6 Soil Field Techniques Interrelationship between selected soil properties Soil Chemical Properties Elements and compounds in a soil occur in two principal forms – as the chemicals that make up the structure of the basic soil constituents, and as individual components which are held in the soil by interparticle attraction. The chemical that make up the structure of mineral material are determined by total chemical analysis, i.e. by atomic absorption spectrometry following dissolution of the material in strong acids. Or by the more rapid method of X-ray fluorescence spectrometry. Ion exchange: Is the most important soil property in that it plays a key role in plant nutrition, and in a broader context, in the development of many chemical characteristics of soils. Central to ion exchange is the way in which ions are held on the surfaces of colloidal particles. Acidity and pH: Acids in aqueous solutions undergo dissociation to release their constituent ions, namely (H+). Acidity is measured in terms of (H+) ion concentration using the pH scale. Soil water in equilibrium with atmospheric CO2 (dissolved in precipitation)and from the soil air where it is a product of soil organisms respiration and decay, pH can sink below 5.0 because CO2 levels in soil air are greater than in the atmosphere: CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3H+ is also released by plants in exchange for nutrient base cations, and part of nitrification in which NH4+ is converted to NH3. The measurement of soil pH is usually made in a standard suspension of 1:2.5 weight to volume (e.g. 110 g of soil in 25 ml distilled water). Distilled water is often used to make up the suspension, a suspension made with a dilute solution of calcium chloride (0.01M) in order to provide a more realistic value of H+ concentration minimizes Ca release from the soil exchange complex. For this reason pH levels measured in CaCl suspension are generally lower than those recorded in a suspension made up with distilled water. Soil acidity promotes the development of further acidity through aluminum hydrolysis, and this becomes an important source of H+ ions when soils become acidic. pH < 5.5, Al3+ ions begin to occupy exchange sites. Unpolluted rain water in equilibrium with atmospheric CO2 has a pH = 5.6 Aeration Soil aeration relates to the amount of oxygen present in the soil atmosphere. A particularly useful indicator of degree of soil aeration is the redox potential (Eh) or oxidation-reduction status, a chemical species undergoes oxidation or reduction through the transfer of electrons (e-). Methods in Ecology Sub-Protocol 2/8 7 Soil Field Techniques Methods in Ecology Sub-Protocol 2/8 8 No.: Date: Investigator: NOTE SHEET for the Soil-Field-Research Location: Altitude [m]: Landscape, landsurface: Geology (parent material): Vegetation: Climate / weather: Soil hydrology: Human or animal influence: Disturbances: Soil type: Horizon-sequence Tickness [cm] Boundaries Moisture Color Organic matter Texture Structure Porosity Consistence Larger separates Coatings Spots / patches Root development Carbonates pH-Value Biology: Development: Risks: Soil-stability: Protection: Other remarks: Soil Field Techniques Exposition: Inclination: Methods in Ecology Sub-Protocol 3/8 1 Methods in Ecology Methoden in der Ökologie Stream Ecology I (Fliessgewässeruntersuchung - I) Protocol - 3/8 6th of October 1997 Instructors: Dr. W. Foissner Mag. A. Leitner Handed in by: Pierre Madl (Mat-#: 9521584) Salzburg, in the month of October 1997 Stream Ecology - I Methods in Ecology Sub-Protocol 3/8 2 Stream Ecology - I Introduction: Since soil contains rock material, water, air and biota, it is the interface at which all the environmental components interact and is the most complex medium within environmental systems, both influencing and responding to their operation. The geosphere determines the parent material from which a soil develops, the hydrosphere determines the presence of water which is vital for the operation of many of the processes of soil formation. The atmosphere determines the climatic conditions which influence their rate of operation, and the biosphere determines which fauna and flora are available for participation in these processes. The hydrosphere (mainly hydrogen and Oxygen) are the many forms in which water can occur at and below the Earth’s surface as seen with lakes, rivers, oceans, ground water, etc. Substrate is a complex aspect of the hydrosphere. Current, together with available parent material, determines a mineral substrate composition of a fresh water system. Organic detritus is found in conjunction with mineral material, and can strongly influence the organism’s response to substrate. This includes everything on the bottom or sides of streams or projecting out into the stream, not excluding a variety of human artifacts and debris, on which organisms reside, it is very heterogeneous. Slower currents, imply finer substrate particle size often correlated with lower oxygen content. The size and amount of organic matter, which affects algae and microbial growth, vary with the substrate. Substrate itself is highly variable from place to place, exhibiting small-scale patchiness both vertical and horizontally within the stream bed, and changing over time in response to fluctuations in flow. Inorganic substrate includes bed materials of many streams ranging from clays and silts to boulders and bedrock. Organic substrate in general consist of very small organic particles (<1 mm) and usually serve as food rather than as substrate to which other organisms attach, except perhaps for the smallest invertebrates and microorganisms. Larger ones range from mosses, plant stems to submerged logs, generally functions as substrate rather than food. In autumn-shed-leaves on the stream bed are a substrate to insects that graze algae from their surfaces, and food to insects that eat the leaves themselves. More commonly, are large organic substrates that serve as perches from which to capture food items transported in the water column, as sites where fine detrital material accumulates, and as surfaces for algae growth. Autumn-shed-leaves are a significant feature of woodland streams during at least part of the year. Aggregations of leaves on the stream bottom usually support the greatest diversity and abundance of invertebrates. Mosses and some other plants that are macroscopic but relatively small maintain very high local densities of animals without themselves serving of food. Plants serve as a refuge, and a trap for silt and organic matter, but provide little or not direct nourishment. Submerged wood is yet another category of organic substrate, Clearly these are not amenable to the statistical averaging one does with mineral substrates. Benthic Organisms of the substrate The great majority of steam-dwelling macroinvertebrates live in close association with the substrate, and so they have been the main focus of organisms-substrate studies. Many taxa show some degree of substrate specialization. When one examines preferences among stones of various sizes, substrate specialization. Some stream-dwelling organisms are quite restricted in the conditions they occupy, and biologists have a number of terms to describe these substrate specialists. Lithophilous taxa are those found in association with stony substrates. Streambeds of gravel, cobble and boulders occur in a great many areas around the world, harboring a diverse fauna. Many specialists are equally common on stones of all sizes, some are demonstrably more likely to be found with a particularly size class. Larvae of the water penny (Psephenidae) occur mainly on the undersides of rocks, and often under boulders in torrential flow. Pyralid moth larvae live underneath silken shelters constructed within depressions on rock surfaces. Attached and encrusting growth forms require a substrate that is not easily overturned by current. Diatom populations are greatly reduced by storms that scour and flip substrate. Mosses, bryozoans and sponges are found mainly on larger stones or in locations where scouring is infrequent. An other way to categorize benthic organisms can be done with the following scheme: Microbenthos / Microphyta: . Protoista, single- and multicellular organism of auto- and heterotrophic origin. Macrobenthos: Animals of various taxa, e.g.: Plecoptera, Ephemoptera, Trichoptera, Turbellaria, Hirudinea, Gastropoda, Bivalvia, Anphipoda, Isopoda, Diptera and Oligochaeta. Macrophyta: Macroscopic water plants, like Chlorophyta, and larger aquatic plants. Methods in Ecology Sub-Protocol 3/8 3 Stream Ecology - I Methods in catching benthic dwellers: On estuaries and sandy or muddy shores, large, low-density invertebrates such as various polychaete and oligochaete worms, can be surveyed and monitored by digging substrate samples. Invertebrates can then be extracted by wet sieving. Large polychaete worms rapidly retreat deep into the substrate when sensing disturbance. If surveying larger molluscs or worms, the substrate can simply be sorted by hand. Smaller invertebrates and those occurring at a higher densities are best sampled by taking smaller substrate cores. The benthos must be carefully handled, taking care not to damage the delicate invertebrates within it. The lower, unwanted portion can be discarded. There are many methods, but we only one to handle easy and practical ones discussed in class. Sampling of Microbenthos: Brushing off encrustations the lower Useful tools: side (bedrock-side) of larger stones present in the streambed, a i) water-resistant boots representative aggregation of microscopic organisms can be i) latex gloves obtained. i) pocket-lens Sampling of Macrobenthos: Observation of the underside of lager i) brush bedrocks (up to 20 or more) is an easy an fast method to detect i) pipette the most common species present in a stream system. i) tea-spoon Pond nets: Ponds can be used as a quick methods of catching large i) various sizes of glass numbers of aquatic invertebrates. There is a variety of bottles techniques: moving the net in a figure of eight, above the i) sieve bottom of the water, so that invertebrates on the substrate are i) flat trays stirred up and caught as they swim away, pressing the net rim i) various 1 [l] plastic against mossy stones to catch highly clinging nimphs ,and bottles moving the net at different speeds and depths through open i) conservation liquid water and patches of aquatic vegetation. After taking the net i) soft tweezers out of the water, it should be allowed to drain the net contents i) towels should be emptied onto a white tray, sorted out and taking care i) procedure not executed of the specimens. Wet sieving: Benthic invertebrates are best extracted by wet sieving, using, sieves of 2.0 mm, 1.0 mm, and 0.5 mm mesh size. Sorting may be made quicker and more efficient by adding a 1% solution of rose bengal dye, which stains translucent invertebrate pink. Bucket sampling: With the help of bucket, collect a group of invertebrates, together with other fragments and water, in the bucket, bring it to the surface, and examine the bucket. Kick sampling: The majority of invertebrates in fast and slow-moving streams are found amongst stones and gravel on the stream bed. Kick sampling involves dislodging invertebrates in the stream bed by kicking and disturbing the substrate and catching the dislodged invertebrates in a net held a short distance downstream. This technique is widely used to obtain macroinvertebrates for use in water quality assessment. Then sorted out in a white or black tray. It is a quick method to estimate relative population densities, but tends to under-record invertebrates firmly attached to stones such as stone-cased caddis fly larvae. Surber sampler: Is a refined method of kick sample which involves a frame glass bucket with an attachment net. The area to be sampled being defined by the frame resting on the substrate, Then observe the samples, select the ones of interest, push them inside the net with the help of a stick, rinse the net with the stream water, and pull the whole sample to the surface with the help of a staff member. Frame placed on stream-bed Methods in Ecology Sub-Protocol 3/8 4 Stream Ecology - I Water Quality: Although technical means should be used to judge water quality, observation of water transparency is an easy way to indicate levels of pollution. Sedimental flow patterns (organic sediments does not settle down as fast as mineral sediments) enrich the first hand judgments. Water quality data may include electrical conductivity, pH, concentration of heavy metals and other ions (ammoniom, chloride, sulfate), organic such as pesticides, dissolved oxygen, biological oxygen demand (BOD), turbidity, salinity and temperature. In order to monitor waters, samples must be collected manually at fixed intervals of time. The aim is to determine seasonal variability. Data should be reviewed to see if the range of discharges is adequately sampled. For further information on this subject, see sub-protocol 4/8, Stream Ecology-II. Water quality Index - WQI (after D. Meyer) Level of Saprobic Index organic strain (WQI) insignificant 1.0 - <1.5 I (very clean) low 1.5 - <1.8 I-II (clean) medium 1.8 - <2.3 II (fairly clean) intermediate 12.3 - <2.7 II-III (f.c. - doubtful) heavy 2.7 - <3.2 III (doubtful) very heavy 3.2 - <3.5 IIIIV (doubtful - bad) excessively 3.5 - <4.0 IV (bad) NH4-N [mg/l] <0.1 stream: <0.2 river: <0.3 stream: <0.3 river: <0.5 <1.0 1.0 - <5.0 5.0 - 10.0 >10.0 O2 Saturation [%] max. saturation [%] 95 - 100 100 - 103 85 - 95 103 - 110 70 - 85 110 - 125 50 - 70 125 - 150 30 - 50 150 - 200 20 - 30 200 < 20 BOD5 [mg/l] Chloride Cl[mg/l] <1 <100 1-2 100 - 250 2-5 250 - 500 5 - 7.5 >500 - 1500 7.5 - 11 >1500 - 2500 11 - 15 >2500 - 3500 >15 >3500 Methods in Ecology Sub-Protocol 4/8 1 Methods in Ecology (Methoden in der Ökologie) Stream Ecology - II (Fliessgewässeruntersuchung - II) Protocol - 4/8 October 6th 1997 Part: Dr. R. Patzner Handed in by: Pierre Madl (Mat-#: 9521584) and Maricela Yip (Mat-#: 9424495) Salzburg, 31st of October 1997 Stream Ecology - II Methods in Ecology Sub-Protocol 4/8 2 Stream Ecology - II Introduction: Stream waters contains a variety of dissolved and suspended constituents, often muddy with sediments, and drainage in limestone-rich regions are fertile while those containing only granite rocks are not. Many factors influence the composition of river water, causing variations from place to place. Rain is one source of chemical inputs to rivers, and a stream flowing through a region of relatively insoluble rocks can be chemically very similar to rain-water in its composition. But this varies with geology, and with the magnitude of inputs via other pathways including volcanic activity and pollution. Materials are concentrated by evaporation and altered by chemical and biological interactions within the stream. Water Quality: Although technical means should be used to judge water quality, observation of water transparency is an easy way to indicate levels of pollution. Sedimental flow patterns (organic sediments do not settle down as fast as mineral sediments) enrich the first hand judgments. Water quality data may include electrical conductivity, pH, concentration of heavy metals and other ions (ammonium, chloride, sulfate), organic such as pesticides, dissolved oxygen, biological oxygen demand (BOD), turbidity, salinity and temperature. In order to monitor waters, samples must be collected manually at fixed intervals of time. The aim is to determine seasonal variability. Data should be reviewed to see if the range of discharges is adequately sampled. Water quality Index - WQI (after D. Meyer) Level of Saprobic Index organic strain (WQI) insignificant 1.0 - <1.5 I (very clean) low 1.5 - <1.8 I-II (clean) medium 1.8 - <2.3 II (fairly clean) intermediate 12.3 - <2.7 II-III (f.c. - doubtful) heavy 2.7 - <3.2 III (doubtful) very heavy 3.2 - <3.5 IIIIV (doubtful - bad) excessively 3.5 - <4.0 IV (bad) NH4-N [mg/l] <0.1 stream: <0.2 river: <0.3 stream: <0.3 river: <0.5 <1.0 1.0 - <5.0 5.0 - 10.0 >10.0 O2 Saturation [%] max. saturation [%] 95 - 100 100 - 103 85 - 95 103 - 110 70 - 85 110 - 125 50 - 70 125 - 150 30 - 50 150 - 200 20 - 30 200 < 20 BOD5 [mg/l] Chloride Cl[mg/l] <1 <100 1-2 100 - 250 2-5 250 - 500 5 - 7.5 >500 - 1500 7.5 - 11 >1500 - 2500 11 - 15 >2500 - 3500 >15 >3500 Saprobic index: Biotic scores are based on the presence or absence of certain taxa. The score is weighted according to the known tolerance of those taxa to pollution (levels of certain physical and chemical variables). Unpolluted running water sites are based on macro-invertebrate fauna. A comparison of observed and predicted families is then used as a bases for assessment of environmental stress affecting river communities. 1. Executed Techniques: 2. Datasheet of Experiments 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 Determining the content of Dissolved Oxygen Biochemical Oxygen Demand Determining Conductivity Determining pH Hardness of Water Spectrochemical Analysis in the case of Nitrate NO3 Taking a water sample with a Winkler flask Evaluating Soil Texture Determining Flow Velocity Measuring Profile of River Bed - Determining Flow Capacity Census of Fish population - Electrofishing - DeLury Method Methods in Ecology 1.1 Sub-Protocol 4/8 3 Stream Ecology - II Dissolved Oxygen in Water [mg/L]: Materials used: Both O2 and CO2 gas occur in the atmosphere and i) 1 beaker dissolve into water according to partial pressure and i) aqua destillata temperature. Air is nearly 21% O2 by volume and i) Oximeter (Fa.WTW) just 0.03% CO2, but the latter is more soluble in water. Although saturated freshwater has higher concentrations of O2 than CO2, the difference is not so great. CO2 tends to deviate from atmospheric equilibrium in highly productive lowland streams where luxuriant growths of macrophytes and microbenthic algae can result in dealing with shifts in dissolved CO2. The impact of high oxygen demand due to pollution can be exacerbated by high summer temperatures, i.e.: pollution reduces the solubility of O2 in water, and by ice cover in winter, which minimizes diffusion. It is a critical factor in aquatic ecology. Its concentration is affected by temperature, salinity, plant respiration, organic material, organic pollution, and eutrophication. Two major techniques to measure O2 in water: The Winkler titration (requires many chemicals, therefore not executed) or by the O2-electrode. The O2-electrode is a very convenient, time saving method and has the potential for continous measurament in remote areas. It consists of a multipurpose meter and a sensor, the probe provides direct monitoring. Remarks: When taking readings with an O2-meter, a water flow must be present (or by slightly stirring probe) since it abstracts O2 from the water. Rinse electrode with distilled water after use. Electrodes must be kept clean and moist. Hypothetical effect of organic pollution in a river: a & b, physical and chemical changes; c, changes in microorganisms; d, changes in larger organisms Methods in Ecology Sub-Protocol 4/8 4 Stream Ecology - II 1.2 Biochemical Oxygen Demand - BOD [mg/L]: The biochemical oxygen demand is one common Materials used: standard applied to monitoring and surveillance of i) 2 glass bottles with stopper fresh water. It is considered to be an aspect of i) distilled water chemical monitoring. i) Oximeter (Fa.WTW) The BOD is the ability of a given volume of water to i) magnetic stirrer used up oxygen over a period of five days at a temperature of 18 [°C]. A second bottle of the same water body is kept for two days under the same conditions as a reference. Organic matter in the sample of water decomposes and the amount of oxygen consumed is then calculated. See WQI -table heading this protocol. Remarks: BSB2 and BSB5 - bottles have to be filled completely; make sure no that no air-bubbles are left in the flask after placing the stoppers. Place bottles in a dark place at 18 [°C]. Before determining O2 content, pop the magnetic topping onto electrode. Rinse electrode with distilled water after uses. Methods in Ecology Sub-Protocol 4/8 5 Stream Ecology - II 1.3 Conductivity of Water [S/m]: The total dissolved solids (TDS) content of fresh Materials used: water is the sum of the concentrations of the i) 1 beaker dissolved major ions. The world average is about i) aqua destillata 100 mg/l. Both the total and the concentration of i) conductivity-meter (Fa.WTW) the constituents vary considerably from place to place, due to variability in natural and anthropogenic inputs. However, the vast majority of the world’s rivers have TDS of more than 50% HCO3- and 10-30% (CL- , SO42-). This reflects the dominance of sedimentary rock weathering, and especially of carbonate minerals. Salinity is sometimes used with TDS. The ionic concentration of rain-water is more diluted: Na+, K+, Ca2+, Mg2+, and Clderived also from particles of the air. Year to year variation in stream flow influences the amount of dissolved material exported from a watershed because the concentration of most ions in stream water is relatively constant, the amount exported is determined largely by stream flow. Fresh water has a lower conductivity than sea water, because sea water has a higher ionic concentration. There are many laboratory conductivity meters. Meters that measure over a single wide range tend to be inaccurate, especially at the fresh water end of the scale. A better way is to use meters that focuses on whichever part of the scale is relevant. The conductivity reading is in [mS/cm] and provides an estimate of salinity. Furthermore, water conductivity in fresh water systems gives an estimate of water polluting levels: Water body aqua distillata clean water current (free of carbonates) clean water current (containing carbonates) polluted water system (containing carbonates) sea water conductivity [µS/cm] <10 approx. 100 approx. 350 approx. 500 approx. 55000 Remarks: Dip electrode into the water and slightly stirring it; rinse electrode with distilled water after use. Methods in Ecology Sub-Protocol 4/8 6 Stream Ecology - II 1.4 Determining pH of Water[-] Most natural waters contain various bicarbonate Materials used: and carbonate compounds, originating from i) 1 beaker dissolution of sedimentary rocks. The calcium i) aqua destillata bicarbonate content of freshwater determines the i) pH-meter (Fa.WTW) pH or acidity/alkalinity balance. When CO2 dissolves in pure water, a small fraction is hydrated to form carbonic acid. Stream waters usually contains bicarbonates and carbonates , and H2CO3 readily dissolves calcium carbonate rocks, neutralizing the soil and river water, and forming calcium bicarbonate. Freshwater can vary widely in acidity and alkalinity due to natural causes as well as anthropogenic inputs. Extreme pH values, generally those much below 5 or above 9, are harmful to most organisms, and so the buffering capacity of water is critical to the maintenance of life. The CO2, HCO3-, CO32- equilibrium serves as the major buffering mechanisms. The pH is a measurement of hydrogen- (H+) or hydroxyl- (OH-) ion activity. For fast and accurate determination we used an portable electronic device, which is a pH-meter and an electrode. The electrode is immersed in the solution (or directly into the water body) and the meter reads the pH. Indication values (pH) • pH-levels around 7 indicate natural water. • pH-levels below 7 indicate acidic reactions • pH above 7 alkaline reaction. Remarks: Adjust pH-meter before use; rinse electrode with distilled water after use. Methods in Ecology Sub-Protocol 4/8 7 Stream Ecology - II 1.5 Hardness of Water [dH]: The hardness of water is caused by its concentration of polyvalent cations, principally Materials used: calcium and magnesium, which tend to precipitate i) 1 beaker soap. It is measured and adjusted by water i) aqua destillata treatment operators, it is expressed in terms of mg i) Merck Test Kit CaCO3. It can be computed from known concentrations of calcium and magnesium. When other hardness-producing cations are present in significant amounts, their concentrations must be measured and included in the computations. The concentration [mg/l] of each hardness-producing cations is multiplied by the appropriate factor to obtain equivalent calcium carbonate concentrations: Hardness CaCO3 equivalent [mg/l] = cation [mg/l] x factor These equivalents are then summed to obtain the total hardness. Using the test kit provided by Merck: • Rinse test-tube several times with sampling water. • Fill test-tube with 5 [ml] of water sample. • Add 3 drops of test-chemical (A); the water sample should change to a reddish hue (shake if necessary). • Fill syringe with titrant solution to the maximum (0-mark). • Slowly dribble titrant into the test-tube containing the (now) reddish sample. Stop adding titrant as soon as the hue shifts towards green. • The position of the piston (syringe) directly indicates the hardness of the water sample. Methods in Ecology Sub-Protocol 4/8 8 Stream Ecology - II 1.6 Spectrochemical Analysis (nitrate NO3 [mg/L]): Nitrogen is often determined in water because it is Materials used: important for plant growth, and maybe a limiting i) 1 beaker nutrient in water. If excessive quantities are i) aqua destillata present, eutrophication may result. Nitrogen exists i) diluted sulfuric acid in gaseous state in water and soluble in organic i) microspatula form. Soluble N exists in many forms and i) spectrophotometer constantly fluctuates between oxidized and i) 1 test tube reduced forms. i) electrical shaker Nitrate is determined by reducing all of the nitrate to nitrite and then determining this nitrite concentration spectrometrically. Similarly this procedure can be used to trace chloride, phosphorous, nitrite, or ammonium. Ammonium ion ↔ NH4+ ↔ ammonia ↔ nitrite NH3 ↔ NO2 ↔ ↔ nitrate NO3- Using the test kits provided by Merck: • Use micro-spoon provided to put a scoop of reagent (NO3-1A) into the test-tube. • Add 5 [ml] of 96% sulfuric acid (H2SO4) to the sample (NO3-2A). • Pop the test-tube with a stopper and vigorously mix it with the shaker. • Slowly add 1.5 [ml] of water sample to the mixture (exergonic - beware of heat formation). • Let it rest for 10 [min]. • Place test-tube into the measurement-cage and attend a few seconds before value is displayed. Remarks: Use protection gloves and glasses when handling sulfuric acid! Methods in Ecology Sub-Protocol 4/8 9 Stream Ecology - II 1.7 Water Temperature [°C]: Water temperature increases in downstream Materials used: direction, to a point where the water reaches an i) 1 beaker equilibrium with air temperatures. Water i) aqua destillata temperature changes both seasonally and daily, but i) digital thermometer (Fa.WTW) to a lesser degree than air temperature does. i) mercury thermometer Local variations in shade, wind, stream depth, i) alcohol thermometer water sources and the presence of inpoundments will alter the general trends caused by geographical position. Many organisms take advantage of these local variations. When water cools, it becomes more dense and sinks. The temperature of a stream is critical to aquatic organisms through its effects on their metabolic rates and thus growth and development times. It is an important factor in regulating the occurrence and distribution of vegetation, fish, invertebrates, and other organisms. It affects other properties of water such as viscosity as well. Taking a water sample with a Winkler flask This flask is used to obtain samples of water from different depths. The flask is dropped to the required depth and then the rope is jerked. This causes the elastic cord to stretch, pulling out the stopper and permitting water to flow through the tube and into the bottle; then the rope is pulled quickly to close the inlets by sealing the flask. Then bring the sampled water to the surface. Determining the Temperature: Measure both the surface- and deep water (1 meter) temperature with three different meters. Remarks: When using the analog meters, make sure that they are exposed long enough in the water. Do not conduct measurements under direct exposure from the sun, since solar radiation will slightly alter the readings. Displacement sampler for water oxygen samples. Methods in Ecology Sub-Protocol 4/8 10 Stream Ecology - II 1.8 Evaluating Soil Texture of Stream bed: In a stream, substrate usually refers to the Materials used: particles on the stream bed, both organic and i) set of different sizes of sieves inorganic. Studies of substrate composition i) digital balance should consider the average and range of particle i) transparent plastic bags sizes, the degree of packing or imbeddedness, and the irregularity or roundness of individual particles. Substrate is a major factor controlling the occurrence of benthic (bottom) animals. A sharp distinction exists between the types of fauna found on hard stream beds such as bedrock or large stones and soft ones composed of shifting sands. The greatest number of species are usually associated with complex substrates of stone, gravels and sand. The composition of stream can be altered by sediment influxes from upland erosion and by channel modification. Excessive siltation of gravel and cobble beds can lead to suffocation of fish eggs and aquatic insect larvae and can affect aquatic plant densities. This in turn, can result in changes mollusk, crustacean and fish populations. Generally, these changes tend to cause a shift towards downstream conditions (unstable beds of fine materials), effectively extending lowland river ecosystems further upstream. When sampling streams for suspended sediment it is important to obtain a sample which accurately reflects the stream’s sediment load. There are several technical to trap large and small particles called bed load samplers, pit-type, basket-type, pan-type, etc. Physical analyses include soil particles parameters like: size, shape, mineralogical composition, surface texture, orientation in space; bulk includes: color, average density, porosity, permeability. For this practical exercise, we only concentrate to determine the particle size. Particle size analyses can be applied to any mixture of sediments which include: width , diameter, settling velocity, length [mm]. Some of the techniques are: • Visual analyses (done by eye) classification: boulders, cobbles, gravel, sand and silt or clay. • Hand texturing: the soil composition is estimated from the feel and malleability of a wetted sample (bolus), by working the bolus between the thump band forefinger. • Direct measurement: Individual boulders, cobbles and large gravel’s can be measured directly in the field. • Dry sieving: is the most common used method for the analysis of sand sized particles. First separate, pick and weigh all of the larger-sized rocks, Further subdividing may be desirable to prevent overloading the sieves when working down to sieve sizes of 2 mm and finer. A set of sieves of required sizes is stacked together, decreasing in aperture size downwards. • Wet sieving: is a good methods for sizing coarse particles and sand-sized particles when aggregation problems are encountered. Class Stone Gravel Coarse sand Medium sand Fine sand Very fine sand Silt Size [mm] > 63 20 - 63 6.3 - 20 2.0 - 6.3 0.6 - 2.0 0.2 - 0.6 0.06 - 0.2 Examples of commonly used soil textural classification systems Methods in Ecology Sub-Protocol 4/8 11 Stream Ecology - II 1.9 Waterflow [m/s]: Current is the most significant characteristic of Materials used: running water, and it is in their adaptations to i) chronometer constantly flowing water that many stream i) floating object animals differ from their still-water relatives. i) yardstick (metric) Some species have an innate demand for high water velocities, relying on them to provide a continual replenishment of nutrients and oxygen, to carry away waste products and to assist in the dispersal of the species. At a given temperature, the metabolic rates of plants and animals are generally higher in running water than in still waters. However, it takes a great deal of energy to maintain position in swift waters, and most inhabitants of these zones have special mechanisms for avoiding or withstanding the current. Current velocity can be measured by placing a float in the water and measuring the time taken to travel a predetermined distance. Methods in Ecology Sub-Protocol 4/8 12 Stream Ecology - II 1.10 Profile of Riverbed To describe the physical characteristics of a Materials used: stretch, a basic survey should include a i) yardstick (metric) measurement of the channel slope, several crossi) cord (at least 10 [m] in length) section profiles representative of the stream, a i) level description of bed materials and a sketch of the i) water-resistant boots stream itself. i) clinimeter (not executed) Sites can be located at random, spaced uniformly or selected as representative of a smaller area of the stretch. • A cross-sectional profile of a small stream can be obtained with a measuring tape and a meter rule a and survey staff. If the stream has water in it, the water surface provides a horizontal surface from which to take vertical measurements at several points along the horizontal line. The horizontal distance to the measurement points and the vertical distance to the stream bed and water depth are recorded. Measurement should be taken at each break in slope along the bed. The depth of water at each edge should also be recorded. • The bank slope is best measured using a staff and clinometer, it is held against the staff which is set against the bank, and the angle is read directly from the clinometer. • The bank overhang is measured with a staff or meter rule from the farthest point of undercut to the most distant point of overhang. • The bankfull width and depth provide a more standardized description of channel dimensions, the bankfull elevation is identified by scour lines, vegetation limits, changes between bed and bank materials, the presence of flood deposited slit or abrupt changes in slope. Training and experience will lead to consistent interpretations. Field measurement of a stream cross-section. Profiling river-bed Methods in Ecology Sub-Protocol 4/8 13 Stream Ecology - II Flow Capacity [m3/s]: Channel cross-section showing vegetation zones, reflecting actual situation of the measured riverbed section, where flow capacity has been determined. Methods in Ecology Sub-Protocol 4/8 14 Stream Ecology - II 1.11 Census of Fish population: Fish capturing methods are of two categories: Materials used: passive methods (rely on the fish swimming into i) bucket a net or a trap), and active methods in which the i) electrofishing unit fish is pursued (electrofishing, SCUBA, etc.). i) fish net The selection of the technique will depend on i) rubber fishing boots the habitat to be sampled, Factors such as depth, i) safety rubber gloves clarity, presence of vegetation or speed of the i) measuring tubes (metric) current will need to be considered. A i) MS-222 as anesthetic hydrographical survey prior to sampling may be necessary The mark-recapture technique is based on the recognizable (marked) organisms relapsed to the population will be recaught in numbers proportional to their abundance in that population. The size of the natural population can be estimated from the proportion of marked to unmarked organisms in random samples obtained form the entire population. By using the DeLury procedure, the data obtained give an estimate (approximation) of how many individuals there are present in the surveyed area. .Assumptions for mark-recapture technique: • There can be no difference in mortality or emigration between marked and unmarked organisms. • Tags or other marks must remain recognizable and must not be lost. All marks on recaptures must be reported. • There must not be a difference in catchability between marked and unmarked organisms. • Marked organisms must be mixed randomly within the entire population. • There can be no unknown recruitment or immigration to the population. Handling of capture fish: • All the catched fish should be placed in a bucket of water (for narcotization use MS-222). • Weigh, measure (length) and/or mark one fish at a time, making sure that they do not escape from the hands. • Return the fish to the bucket for recovery. • Proceed to return all the fish into the water. Electrofishing: It involves passing an electric current through water via electrodes which stuns nearby fish, leading to the disorientation and easy capture. Power is supplied by an electrical generator (or batteries for backpack units) and is converted to the required form via an electrofishing unit or box. The circuit is completed by on/off switches on the anode. Several currents are used, producing different effects o the fish. The most common is direct current (DC), because it attracts fish to the anode and causes fewer harmful effects to the fish than alternating current (AC). During electrofishing, anodes are often hand-held, while the cathode trails behind the boat or operator. The charge is usually kept on during fishing. The key is to be always close enough to the target fish to induce a response and to explore all available habitats with the anode. The operator should always work in a upstream direction, as disturbed sediments flow away from the sampling area and the stunned fish drift towards the operator. In streams and rivers, fish are captured efficiently and absolute measures of abundance may be generated. Overexposition of stunned fish to the anode may lead to death. Large and thinner fish are easier to stun than smaller and thicker ones. Remarks: Water and electricity are dangerous, people have been killed while electrofishing, therefore only licensed operators may electrofish. Wearing rubber gloves and boots at all times avoiding immersion of any unprotected parts into the water. Equipment should have automatic dead-man switches on the anodes. Emergency stop buttons (in case the operator falls in the water). High number of personnel are required (minimum of three). Methods in Ecology Sub-Protocol 4/8 15 DeLury Method: A section of a stream, 2 to 3 [m] wide x 100 [m] in length has been surveyed. The fish census technique resulted in a catch of: 1st catch: 9 individuals 2nd catch: 5 individuals 3rd catch: 2 individuals estimated number: NE = (xn+xn+1) / 2 Stream Ecology - II Methods in Ecology Sub-Protocol 4/8 16 Stream Ecology - II 2. Datasheet: 1. Dissolved O2 Uniteich [mg/L] 7.9 2. Biochem. O2 Demand BOD2 BOD5 [mg/L] 9.8 6.8 3. Conductivity Pongau Uniteich [µS/cm] 116 636 4. pH Uniteich (ausfluss) [-] 8.01 5. Hardness [dH] 4 6. Spectrochemical NO3 Uniteich Pongau 7. Temperature digital analogue (Hg) analogue (Probemeter) [%] 96 [mg/L] 0.9-1.0 3.9 [°C] at 1[m] 15.6 15.1 15.6 8. Soil Texture (woo?) Stone (> 63) Gravel (20 - 63) Coarse sand (6.3 - 20) Med. Sand (2.0 - 6.3) Fine sand (0.6 - 2.0) Very fine (0.2 - 0.6) Silt(0.06 - 0.2) [g] 268 461 925 198 46 - 9. Flow Velocity Hellbrunnerbach v1 Hellbrunnerbach v2 Hellbrunnerbach v3 averaged [m/s] 0.19 0.20 0.2 0.2 [°C] at 0 17.2 17.0 17.5 10. Fish Census # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 #10 #11 #12 #13 #14 #15 #16 [g] 20 21 21 23 28 31 31 39 81 134 135 144 149 150 175 290 Std [cm] Tot [cm] 10 10 10 10 10 11 11 12 17 20 20 20 21 21 22 25 12 12 12 12 12 13 13 14 20 23 23 23 24 24 25 28 K-Factor 167 175 175 192 233 239 239 279 405 583 587 626 621 625 700 1036 Methoden in der Ökologie Teilprotokoll 5/8 1 Erfassung des Pflanzenbestandes Methoden in der Ökologie (Methods in Ecology) Erfassung des Pflanzenbestandes (Census of Flora) Protokoll - 5/8 7ten Oktober 1997 Betreut durch: Dr. W. Strobl Mag. B. Hummer Eingereicht von: Cäcilia Aigner (Mat-#: 9620537) Pierre Madl (Mat-#: 9521584) Anita Rötzer (Mat-#: 9472202) Maricela Yip (Mat-#: 9424495) Salzburg, im Oktober 1997 Methoden in der Ökologie Teilprotokoll 5/8 2 Erfassung des Pflanzenbestandes Einleitung: Die Methoden der Vegetationsbescheibung und deren Aufnahme werden vom Zweck der Untersuchung bestimmt. Derzeit kommt die floristische Methode nach Braun-Blanquet am häufigsten zum Einsatz. Als Aufnahme bezeichnet man die listenmässigeErfassung sämtlicher vorkommender Pflanzen und ihrer Mengenanteile. Voraussetzung ist die Kenntnis der Flora. Nicht sofort bestimmbare Pflanzen müssen gesammelt werden. An den Kopf der Liste kommen allgemeine Angaben wie Datum, Ortsbezeichnung, Meereshöhe, Hangneigung, Exposition, , Grösse der Probefläche, Entwicklungszustand der Vegetation, Schätzung der Gesamtdeckung (nach Schichten getrennt). Dazu Angaben über den Standort (v.a. Boden). Auswahl und Abgrenzung der Probefläche: Sorgfältige Auswahl ist für den Erfolg späterer statistischer Auswertungen ausschlaggebend. Für einen allgemeinen Eindruck muss das Untersuchungsgebiet zuerst begangen werden. Weit verbreitete Vegetationstypen müssen in Optimum ihres Entfaltungsraumes studiert werden, bevor verarmte Randgebiete bearbeitet werden. Die Form der Probefläche ist unwesentlich , die Verteilung der Probefläche im Gesamtareal erfolgt an besten zufällig. Die Probefläche soll homogen sein, d.h. Pflanzenbestand und Standortbedingungen sollen keine grösseren Schwankungen aufweisen. Die Probefläche muss gross genug sein, um alle Arten zu erfassen, aber nicht grösser als unbedingt nötig. Zufallsverteilung: Unter sehr gleichmässigen Bedingungen sollten die verschiedene Pflanzen einer Pflanzengemeinschaft zufällig über die Fläche verteilt sein (nicht willkürlich!). Die Verteilung der Pflanzen im Gelände kann gemessen und kartiert werden; die einzelnen Arten können taxonomisch bestimmt oder nach Lebensform beschrieben und ihre Mengenanteile festgestellt werden. Die möglichst umfassende Beschreibung der Vegetation ist auf jeden Fall nützlich. Beispielhaft sei hier der tropische Regenwald genannt, der mit seiner komplexen Raumstruktur und der Vielzahl ökologischer Nischen. Ähnlich homogen, wenn auch weit weniger komplex sind die artenreichen sommergrünen Wälder des nördlichen Hemisfäre. Eine wirkliche zufällige Verteilung der Pflanzen im strengeren Sinn gibt es nicht. Selbst bei der Erstbesiedelung von Ödland (Sukzession) führen morfologische Merkmale zu einer Musterbildung. Antropogener Einfluss: In Mitteleuropa gibt es kaum mehr natürliche Vegetaton; seit mehr als 1000 Jahren ha der Mensch seine Spuren hinterlassen. Wälder und Wiesen werden bewirtschaftet; durch Düngung, Unkraut- und Schädlingsbekämpfung hat sich der Artenbestand verändert. Noch am ehesten naturbelassen sind die Hochregionen des Gebirges, in denen aber auch bis vor wenigen Jahren intensive Weidenutzung betrieben wurde. Methoden in der Ökologie Teilprotokoll 5/8 3 1. Vegetationsaufnahme - Artenspektrum: Eine einmalige Vegetationsaufnahme gibt nur einen einzigen Aspekt wieder. Der jahreszeitliche Dominanzwechsel ist aber eine wesentliche Eigenschaft der Vegetation; daher müssen Aufnahmen aller charakteristischer Fasen gemacht werden. Erfassung des Pflanzenbestandes Material: Bestimmungsbuch aus Botanik In diesem Protokoll wurde nur eine einmalige Vegetationsaufnahme durchgeführt. Ort: # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Spezie Hypericum tetrapterum L. (Johanniskraut) Eurynchium striatum (Schönschnabel) Galium aparine L. (Klebkraut) Urtic dioica L. (Grosse Brennessel) Calystegia sepium L. (gem. Zaunwinde) Filipendula ulmaria L. Maxim (Ectes Mädesüss) Rubus caesius L. (Kratzbeere) Lythrum salicaria L. (Blutwegerich) Galium aparine L. (Klebkraut) Poa trivialis L. (gem. Rispengras) Plantago lanceolata L. (Spitzwegerich) Vicia gracca L. (Vogelwicke) Lathyrus pratensis L. (Wiesen Platterbse) Sorbus aucuparial L. (Eberesche) Mentha logifolia L. (Rossminze) Acer pseudoplatanus L. (Bergahorn) Spirea mecensis L. (Spierstrauch) Phragmites australis (CAV.) (Schilfrohr) Valeriana officinalis L. (Baldrian) Dactylis glomerata L. (Wiesen Knäuelgrass) Heracleum sphonedylium L. (Wiesen Bärenblau) Phalaris phragmitis L. (Glanzgras) Lolium perenne L. (engl. Raygras) Taraxacum officinale (gem. Löwenzahn) Galium molugo L. (Wiesenlabkraut) Fraxinus excelsior L. (gem. Esche) Methoden in der Ökologie Teilprotokoll 5/8 4 Erfassung des Pflanzenbestandes 2. Mengenschätzung, Frequenz: [%] Mit dieser Methode wird innerhalb der Probefläche (zufällig Material: verteilt oder nach einem bestimmten Muster) eine grössere i) Frequenzrahmen 0.5 x Zahl von flächengleichen Kleinquadraten abgesteckt. Die 0.5 [m] in 10 [cm2] Flächengrösse dieser Quadrate kann frei gewählt werden (im geteilte Quadrate Grünland am besten zwischen 25 und 1200 [cm2]. Nun wird für jedes Kleinquadrat eine Artenliste erstellt, die bei geringen Flächengrösse selbstverständlich immer nur wenige Namen umfasst. Die Frequenz einer Art ergibt sich dann durch die Auszählung der Kleinflächen, in denen die zu untersuchende Art vorkommt. Sie wird in der Regel auf die Gesamtzahl der Kleinflächen bezogen und als Frequenzprozent angegeben. Anmerkungen: Das Verfahren ist sehr zeitaufwendig und durch zahlreiche Keimlinge und kleine Rosetten (die einwandfrei zugeordnet werden müssen) meist sehr mühsam. Ein besonderer Nachteil liegt darin, dass die Ergebnisse der Frequenzbestimmung in gewissem Umfang von der gewählten Grösse der Kleinquadrate abhängt. Demgegenüber steht der Vorteil dass bei korrekter Anwendung das Ergebnis nicht von der subjektiven Beurteilung des Beobachters abhängt. Die Grösse der Kleinflächen beeinflusst das Ergebnis der Frequenmzbestimmung, aber auch die Aussage über den Bindungstrend (Musterbildung) zwischen den Arten A, B, C. Bei gleicher Individuenzahl beeinflusst auch die Pflanzengrösse das Ergebnis der Freqwuenzbestimmung Die Raumverteilung (Dispresion) ist ebenfalls von grossem Einfluss auf die Frequenz Eigenaufnahme Mithilfe der Frequenzbestimmung: Methoden in der Ökologie Teilprotokoll 5/8 5 Erfassung des Pflanzenbestandes 3. Transekt Methode: [%] Eine Frequenzbestimmung entlang eines ökologischen Material: Gradienten ergibt ein Transekt. i) Massstab (mind. 25 [m] Solche Profile sind überall dort empfehlenswert und lang aufschlussreich, wo sich die Vegetation in klarer Abhängigkeit von einem oder wenigen Standortfaktoren ändert und zunächst keine floristisch einheitliche Fläche erkennbar ist. Ein Transekt liefert unter anderem Antwort auf die Frage, ob es sich tatsächlich um einen kontinuierlichen Übergang handelt oder ob floristisch homogene Teilbereiche abgrenzbar sind. Dazu wird entlang einer parallel zum standörtlichen Gradienten verlaufenden Markierungslinie ein Streifen bestimmter Breite abgesteckt. Anschliessend werden innerhalb dieses Streifens in regelmässigen Abständen Frequenzbestimmungen durchgeführt. Die Breite des Streifens und der Minimalabstand der Frequenzerhebungen muss nach standortlichen Situationen festgelegt werden. Anmerkungen: Transekte sind sehr zeitaufwendig. Eine wesentliche Zeitersparnis lässt sich erreichen, wenn auf Frequenzbestimmung verzichtet wird und statt dessen auf etwas vergrösserten Kleinflächen (30 x 30 [m] bis 50 x 50 [m]) sie Deckung der einzelnen Arten entsprechend der Braun Planquet Skala abgeschätzt wird. Methoden in der Ökologie Teilprotokoll 5/8 6 Erfassung des Pflanzenbestandes 4. Vegetationsaufnahme nach Braun-Blanquet Methode: [%] Sie besteht im wesentlichen aus einer kompletten Artenliste Material: und der nach einer bestimmten Klassifizierung geschätzten i) Massstab (mind. 25 [m] Häufigkeit. lang Mit einiger Übung und Erfahrung liefert dieses Verfahren bei mässigem Zeitaufwand Resultate ausreichender Genauigkeit. Ein schwieriges Problem ist die richtige Wahl der Probenfläche. Sie sollte einheitlich sein (keine Störstellen, Randstrukturen, oder standörtlich abweichende Kleinflächen enthalten) und eine mehr oder minder gleichmässige Verteilung der beteiligten Pflanzenarten aufweisen. Die Grösse der Aufnahmefläche sollte so gewählt werden, dass möglichst alle Arten der beteiligten Pflanzengemeinschaft enthalten sind, andererseits nicht zu gross da man sonst mit der Homogenität der Pflanzenverteilung in Konflikt geraten könnte. Die ökologische Aussage, die das Vorhandensein oder Fehlen einer Pflanze liefert, lässt sich durch Angaben zur Menge der einzelnen Arten weiter präzisieren. Nach Braun-Blanquet geschieht das mit einer Skala, die sowohl die Individuenanzahl (Abundanz) als auch die Deckung der einzelnen Arten (Dominanz) auf der Probefläche berücksichtigt. Beide Grössen werden in einer 7-stüfigen Klasseneinteilung vereinigt, deren Klassenkennzeichnung als Artmächtigkeit bezeichnet wird. Folgende Artenmächtigkeitsskala wird verwendet: R (1) + (2) 1 (3) 2 (4) 3 (5) 4 (6) 5 (7) selten (meist nur ein Exemplar)s 2-5 Individuen, spärlich, nur wenig Fläche deckend 6-50 Individuen, Deckung unter 5% über 50 Individuen, Deckung 5-25% Individuenzahl beliebig, Deckung 25 - 50% Individuenzahl beliebig, Deckung 50 - 75% Individuenzahl beliebig, Deckung 75 - 100% Anmerkungen: Grössere Genauigkeiten wären nur durch erheblich aufwendigere Verfahren erreichbar; der dafür erforderliche Zeitaufwand ist entsprechend gross. Häufig wird diese Klassifizierung durch den Geselligkeitsgrad (sociability) erweitert (es lässt sich nicht erkennen, ob es sich um eine grosse Zahl kleinwüchsiger Pflanzen oder wenige grosse Rosetten handelt). Auch die Vitalität (performance) als Ausdruck der Üppigkeit, Kümmerlichkeit die übers normale Mass hinausgeht kann vermerkt werden – beides wurde in diesem Protokoll nicht berücksichtigt. Entwicklungsfasen eines Waldes, Optimal-, Terminal-, Zerfallsfase; die Schichtung verliert sich, gruppenweise Verjüngung setzt ein Methoden in der Ökologie Teilprotokoll 5/8 7 Erfassung des Pflanzenbestandes Aufnahmeblatt: Aufnahme Nummer: Region Datum: Ort: Kartenblatt (Koordinaten): Meereshöhe: Geländemorfologie: Exposition: Inklination: Höhen-, Vegetationsstufe: Gesteinsunterlage: Boden: Bewirtschaftung: Mikroklima: Aspekt: Grösse: Vegetation der Aufnahmefläche: Höhe BS.1 BS.2 Bemerkgn. Deckung Alter Sonstiges Höhe SS.1 SS.2 KS MS Deckung: Deckung Alter Sonstiges Methods in Ecology Sub-Protocol 6/8 1 Methods in Ecology (Methoden in der Ökologie) Census of Fauna (Erfassung der Tierwelt) Protocol - 6/8 October 8th 1997 Instructors: Dr. J. R. Haslett E. Traugott Handed in by: Pierre Madl (Mat-#: 9521584) Salzburg, in the month of October 1997 Field Studies - Invertebrates Methods in Ecology Sub-Protocol 6/8 2 Field Studies - Invertebrates Introduction: A number of techniques can be used for ecological field studies. The choice in using a particular method is primarily based on the purpose the study is aiming at. To determine the importance of a site, the population size of the species, the habitat requirements of a species, the reasons for the species decline, etc. it is important to plan the work carefully. The data must be stored in a way that it can be retrieved and understood by others in the future, such as data sheets, in files or computer records, properly labeled specimen, etc. It is useful to determine the exact locations where species of particular interests were found. Designing and Planing ecological field Studies: • Purpose of the study, • What information will be needed, and what is worth to be recorded, • How much detail is required, • On what scale will the survey be operating, • How much time and what resources (funds, time, etc.) are available to conduct the survey. Selection of suitable study sites: The activity of most invertebrates, is often influenced by weather conditions and time of the day. The level of activity may determine in which micro- or habitat a particular individual is at any one time, how easy the individual is to locate and to catch, and how likely it is to enter a trap. • Accessibility of is the site (especially if heavy equipment is needed), • What are the necessary materials needed to conduct the investigation, • Availability of the organism to be studied at a particular site, • Required permission of authorities (parks, conservation zones, etc.) Designing the sampling program: The difficulty of identifying many invertebrate species, together with the need to prevent invertebrates once caught in traps from devouring each other or dying and decaying, often requires them to be killed and preserved. Catches of individuals within the trap therefore will reflect both the abundance and activity of the species, together with the species susceptibility to be caught in the particular trap. • How many samples are needed (excessive sampling is time consuming, could alter population density, and will result in intense evaluation work after the survey). Any trapping program should take into account the likely effect that such removal of invertebrates may have on local population. This particularly important in the case of trapping large sexually mature invertebrates such as dragonflies, butterflies, and crickets, where the colony may only include a small number of adults. • Which sampling pattern to use (random, periodic, limiting area, etc.), • Time of sampling (periodically, seasonal or daily, at what times are organisms active, etc.). Sampling Populations of Organisms: Invertebrates are able to exploit very small and specific areas within the environment (microhabitats). A number of these individuals spend their larval stage in different habitats than as adult organisms. Changes over time: It may be necessary to sample on a number of occasions throughout the year, in order to obtain a representative selection of species present. The importance and value of biological monitoring is the interest in the changes in populations of plants, animals, loss of habitat, disturbance, changes in land use, decline or rise in population, etc. which can be directly related to antropogenic influences, successional changes, or other impacts. Spatial variations: When surveying invertebrates at a particular site, it will be necessary to sample a wide range of different microhabitats e.g. within a woodland (dead wood of different tree species at different stages of decay and moisture content, the leaves of a variety of different three and shrub species, wet and dry leaf litter, soil, bare ground, etc.) and macrohabitats, e.g.: cross-section of an alpine valley or other larger spatial gradients. Community structure: Species that occur together in space and time gives an estimate of the diversity and relative abundance present. The higher the probe, the better the interpretability of its structure. Methods in Ecology Sub-Protocol 6/8 3 Field Studies - Invertebrates Two Major Categories of Sampling Methods: Relative Methods provide information on relative frequencies of occurrence. The fact that more individuals present at one site or time, and fewer at an other site or time allow comparisons to be made. Relative Methods are less disturbing compared to absolute sampling methods. • Counting numbers per unit effort (CPUE): Timed searches are useful to make quick assessments of the invertebrate. Such method is to search each small (<1 hectare) for a total of three minutes. Searching each habitat within a period of time in proportion to its area. In terrestrial habitats the number of individuals counted in a set period of time has been used to obtain relative estimates of conspicuous taxa such as butterflies at different heights; e.g.: sweep netting, etc. • Trapping: The action of the organism itself determines the outcome of the catch, weather lured or accidentally caught; e.g.: pitfall traps, flight intersection traps, water traps, catch-recatch method, etc. All trapping methods rely on invertebrates actively entering the trap. Catches of individuals within the trap will reflect both the abundance and activity of the species, together with the species’ susceptibility to being caught in the particular trap. Absolute Methods provide an absolute measure of population density at the time and place of sampling - the number of individuals present per unit area or volume of habitat; e.g. D-Vac, handsorting method, etc. Absolute methods do have quite a disturbing effect and will alter the sampled area to a certain degree (physically or chemically). Transect Methods: These methods are used to survey changes in vegetation along an environmental gradient or through different habitats. This can be done by using line-, belt transects or gradsects (for larger areas). Estimating of cover within a transect requires is mainly used for flora field studies and requires quite some experience. Transect methods can be considered as intermediates, they are either absolute or relative - just a matter of size and effort. Marking / Following Individual Organisms: Mark - Recapture is a suitable method for estimating populations, for physiological and behavioral studies, reveals habitat preferences, migration patterns etc. Invertebrate taxa with hard exosceleton are the most widely used. The exosceleton is marked (avoiding joints or sensory organs) using an oil-based enamel paint. Other methods include marking the wings of butterflies and moths with felt tip pen after first rubbing a small patch of scales off, and gluing on individually numbered tags (carapace of crabs). This method can also be used with modular organisms (have intermediate iteration of the repeated parts or units of structure), such as plants. However, marking, locating and identifying individuals can be very time consuming and detailed work in a dense population especially when plants are small. Permanent quadrants, or markers will move over time due to soil movements and intentional or accidental interference of animals. Certain types of markers can be lost through vandalism. If an individual is only mapped or if the marker is not fixed to the plant, then if the plant dies and a new plant grows in the same place, this individual might be mistaken by the old one. New individual may grow through the wired ring to create the same problem. Killing & preserving insects All insects and hard-bodied invertebrates can be killed and preserved by dropping them into 70% alcohol solution. Although most other invertebrate groups can be adequately preserved in alcohol, many are better fixed beforehand. Fixation is the process of stabilizing protein constituents in body tissue to help maintain them in a similar condition to that when the animal was still alive. When using alcohol solution to store invertebrates for up to a year or longer, containers should be thoroughly sealed (since alcohol quickly evaporates) in addition to 5% glycerol to prevent specimen from becoming brittle, or from completely drying out, should all the alcohol evaporate. Lepidoptera (Butterflies and moths) should be pinned to prevent damage to the scales on their wings. Labeling should be done immediately after classification by placing the card along with the specimen into the jar containing the solution. Since labels attached to the outside invariably fall off eventually. Some simple methods for catching insects. These are easy to use and quite efficient. • • • • • Pitfall Traps Suction Sampling Flight Intersection Trap Sweep Netting Water Traps Methods in Ecology Sub-Protocol 6/8 4 Field Studies - Invertebrates Pitfall Traps: Animals active on the soil surface are caught in containers that are burrowed at ground level. Crawling insects are trapped, killed, and preserved in a formalin solution. The content of the pitfall trap is sorted Materials used: according to animal groups. The animals are then preserved i) 200 [mL] jars in ethanol, then calculate the activity and abundance. i) coverage plate on tiny The buried jars should be filled with formalin solution (about piles an inch high). The protection plate should be positioned i) formalin flask slightly above ground over the jar to keep rainwater from i) spatula or shovel filling it. After traps have been emptied, it is worth wiping their inside surfaces with a cloth, to keep them clean and smooth (particularly if slugs and snails have entered and left behind a mucus trail). In most cases it is sensible to make the position of traps with a small post, or flag, since they can be surprisingly difficult to relocate, especially if left for long periods during the growing season. The number of jars is dependent on the site structure, For uniform habitats, 8-10 traps per site are usually enough. For sites with more complex structures, consider the different subunits within the habitat by using about 5 jars per subunit. Depending upon species abundance, check traps periodically. Catches in pitfall traps are a product of both invertebrate density and activity. Remarks: Marking traps are conspicuous to passers-by and grazing stock, which may damage them. Some species of ground beetle, once caught, emit pheromones that attract other individuals to the trap, slightly altering the actual distribution. Catch rates vary with the nature of the surrounding vegetation. Tend to catch larger invertebrates (<3mm long). Despite these facts, it is one of the most common method because it is cheap and easy for catching very large numbers of invertebrates. Requires minimum effort. A pitfall trap for catching invertebrates moving on the surface of the ground or amongst low vegetation Methods in Ecology Sub-Protocol 6/8 5 Field Studies - Invertebrates Suction Sampling: It involves the sucking up of invertebrates from a Materials used: known area of vegetation into a net with a motor driven i) D-Vac device apparatus (D-Vac). The animals will reach the suction container alive. It is necessary to keep the sampler running between individual sucks to prevent collected specimens from escaping. Remove the filter inset including its contents, close it, and transport if into the laboratory for further investigation. Remarks: Can be heavy and tiring to carry long distances. Require refilling with a petrol/oil mix at frequent intervals. Prone to breaking down. Refills need filter. Expensive. It is influenced by the weather conditions such as rain, wind, grass too wet, etc. Collects fewer invertebrates per unit time spend in the field. Suction sampling under-records large invertebrates (>3[mm]) that can take shelter or are firmly attached to the vegetation, as well as those organisms that can sense the approaching vibrations, and noise and take evasive action. Suction sampling is only effective in vegetation less than 15 [cm] high. The sorting of the material can be made easier by cooling the samples (freezer, freezing sprays) and yields the number of individuals per square meter. This suction sampler can be used to suck up invertebrates from low vegetation and bare ground. Methods in Ecology Sub-Protocol 6/8 6 Field Studies - Invertebrates Flight Intersection Trap: It is a device suitable to collect flying insects: it works by blocking flying insects with a screen of fine black netting. Blocked insects then drop down into collecting trays or are guided upwards into a collecting Materials used: bottle (Malaise trap). i) Malaise Trap (Townes) It basically resembling a sac, supported by lateral as well as a i) formalin flask roof-like framework. The entire tent-like structure is fenced off with a mosquito net in a way that two main entrance areas are left open. The central chamber is divided by a white net in a way that approaching insects can’t proceed with their intended flight-path. Insects obstructed by this net tend to redirect their route upwards to overcome the obstacle where the funnel-like roof-construction force them to fly directly into the sealed containers partially filled with formalin or other narcotizing substances. A battery operated lights can be useful to attract nocturnally active organisms. The catch will reflect both the abundance and activity of particular species.. Remarks: Expensive structure. Subject to vandalism by passers-by. Area of research requires approved permission. Flight interception traps are rarely used to compare numbers of insects between sites or at the same site overtime. The rate of collection is highly dependent upon the location, wind, position of the sun. It is pretty effective at catching smaller, more agile flying insects (Hymenoptera). Malaise Trap after Townes Methods in Ecology Sub-Protocol 6/8 7 Field Studies - Invertebrates Sweep Netting: The method involves passing a sweep net (Kescher net - similar like a butterfly catcher) through the vegetation using alternate backhand and forehand strokes. Nets need to have a reinforced rim. An easy way to standardize the method is, for each sample to consist of a series of net sweeps of approximately 1m in length taken every other pace while walking at a steady speed through the vegetation. After a series of sweeps, invertebrates caught in Materials used: the net can be easily collected. i) Kescher net Remarks: Sweep netting cannot be carried out if the vegetation is damp and does not work well in vegetation less than 15 [cm] high. The catch obtained will also be influenced by the speed, depth, and angle at which the net is pulled through the vegetation. This method is well suited for surveying purposes. A sweep-net used for catching invertebrates in low vegetation Methods in Ecology Sub-Protocol 6/8 8 Field Studies - Invertebrates Water Traps: Many flying insects are attracted to certain colors and can be attracted to and caught in colored waterfilled bowels. Yellow bowel are the best for catching both flies Materials used: and Hymenoptera. White bowel also attracts flies, but has a i) bowels of various strong repellent effect of Hymenoptera. Neutral colored colors bowels, such as brown, gray, or blue are used, these will have i) bucket of water the least attractant/repellent effect on insects, and so reduce the selectivity of the sampling. The species composition of water trap catches varies with the height of the trap. Therefore, if being used to survey an area, a number of trapped should be set at different heights to catch a wide range of species. Conversely, if being used to compare catches between sites, or at the same over time, the height that the trap is set about should be kept unchanged.. To keep leaves from falling into the bowels, a wide-mesh gauze can be fixed above it. Traps should be emptied at least once a week. Remarks: Variable rippling of water, caused by wind will also affect the trap. Insects captured in that way are sometimes eaten by birds - once learned about this source, they will visit regularly. Water traps should also be kept out of reach from grazing stock, since they use them as drinking troughs. Traps have to be emptied at frequent intervals, otherwise, contents will decay unless a preservative is used (preservatives will effect the attractiveness of the trap) or flushed out after heavy rain. Likely to be disturbed by passers-by. They can be used in all habitats. Insects caught in the taps will depend on their activity and their attraction to the color as well as their abundance. A water trap for attracting and catching small flying insects. Methoden in der Ökologie Teilprotokoll 7/8 1 Methoden der Kleinklimamessung Methoden in der Ökologie Methoden der Kleinklimamessung (Microclimate) Teilprotokoll - 7/8 9ten Oktober 1997 Betreut durch: Dr. P. Heiselmayer Mag. Eichberger Eingereicht durch: Pierre Madl (Mat-#: 9521584) Bernhard Schmall (Mat-#: 9620737) Maricela Yip (Mat-#: 9424495) Salzburg, im Oktober 1997 Methoden in der Ökologie Teilprotokoll 7/8 2 Methoden der Kleinklimamessung Einleitung: Die auf Lebewesen in ihrem natürlichen (Biotop) einwirkenden Faktoren können in klimatische, biotische und orografische (den Boden betreffend) Einflüsse eingeteilt werden. Die elementarsten dieser Faktoren sind hinsichtlich klimatischer Einflüsse sind Sonneneinstrahlung, Temperatur, Luftfeuchtigkeit, Niederschlag, Wind, CO2-Konzentration und Bewölkung. Aus klimatischer Sicht unterscheidet man Witterung und Klima folgendermassen: Als Witterung bezeichnet man den Zustand der Atmosfäre im gegebenen Augenblick und wird durch das Zusammenwirken der einzelnen klimatischen Faktoren bestimmt. Unter Klima versteht man den mittleren Zustand und den gewöhnlichen Verlauf der Witterung an einem bestimmten Ort. In meteorologischen Stationen werden die einzelnen Messpunkte so gewählt, dass die gewonnen Daten möglichst wenig durch örtliche Gegebenheiten beeinflusst werden (Bodenbedeckung, Hangneigung, Bauwerke, etc.) d.h.: bodenfern und freistehend. Die Datenreihe, repräsentativ für eine um die Station liegende Gegend, erfasst somit das Makroklima. Je näher man sich der Bodenoberfläche nähert, desto grösser werden räumliche und zeitliche Unterschiede individueller Umweltfaktoren die Messdaten beeinflussen. Das Klima der bodennahen Luftschicht wird als Mikroklima bezeichnet. Die im Verlauf der Übung gesammelten Daten und deren Bestimmung beziehen sich ausschliesslich auf die Erfassung mikroklimatischer Schwankungen die direkt oder indirekt durch die Sonneneinstrahlung gesteuert werden. Strahlung: Sonneneinstrahlung ist als elektromagnetische Strahlung (EMR) durch ihre Wellenlänge “λ“ [nm] und ihre Intensität “I“ [W/m2] gekennzeichnet. Im gesamten Strahlungsbereich weist die EMR kalorische Wirkung auf, i.e.: der strahlungsabsorbierende Körper wird erwärmt. Kürzere Wellenlängen (<1200[nm]) rufen ausserdem chemische Veränderungen hervor (E = h⋅f). Unter Strahlungswärme versteht man die gesamte während einer Zeiteinheit absorbierten Strahlung [J/m2]. Dabei werden aus der Vielzahl der Erfassungsmethoden drei elementare Verfahren herangezogen die direkt bzw. indirekt die zu erfassenden Grössen beeinflussen: Eine weitere wichtige daraus resultierende Grösse ist der Wind. Er ist einer der wichtigsten mikroklimatischen Umweltfaktoren, der vor allem die Temperatur, Niederschlags- und Verdunstungsverhältnisse beeinflusst. Windgeschwindigkeit und Windrichtung steuern aber auch den Austausch von Wärme, Luftfeuchtigkeit, O2 und CO2, zwischen Lebewesen und ihrer Umgebung zu bestimmen so massgeblich die Lebensbedingungen für Pflanzen und Tiere. Protokollübersicht: 1. Folgende Messgrössen und deren Erfassung wurden während der Übung besprochen: 1.1 Fotosynthetisch aktive Strahlung 1.2 Bodenoberflächen Temperatur mittels Thermoelement 1.3 Relativen Luftfeuchtigkeit mit dem Aspirationspsychrometer nach Assmann 1.4 Windstärkemessung anhand eines thermischen Anemometers 1.5 Potentielle Evaporation 1.6 Bodentemperatur 2. Praktische Ausführung 2.1 Allgemeines zum Standort, Geologie, Klima und Vegetation des Messplatzes 2.2 Diskussion 2.3 Tabellarische Übersicht der gewonnen Daten 2.4 Grafische Darstellung der Tabelllenwerte Methoden in der Ökologie Teilprotokoll 7/8 3 Methoden der Kleinklimamessung 1.1 Bestimmung der fotosynthetisch aktiven Strahlung (PhAR) - [µmol Photonen /(s⋅m2)] Der Wellenlängenbereich für fotosynthetisch wirksame Strahlung liegt zwischen 380 und 749[nm] und wird Material: übereinkommensgemäss auf den Bereich 400-700[nm] i) PhAR-Meter (mit festgelegt. Für die Berechnung von Energiegeladenen Akuusatz) ausnützungskoeffizienten der pflanzlichen Stoffproduktion ist i) Masstab (mind. 2 [m] die Erfassung der auf den Pflanzenbestand einfallenden, lang) reflektierten und von Blättern absorbierten PhAR notwendig. Einfallswinkel (Sonnenstand) und Beschattung (Wolken, Vegetation, etc), fliessen in die Messwerterfassung mit ein. Anmerkung: Messfühler besitzt eine Abschirmkappe (rot) welche bei direkter Sonneneinstrahlung über den Sensor gestopselt wird - kam aufgrund der Schattenlage des Messplatzes nicht zum Einsatz. Weiters sollte Messfühler nicht durch Anwesenheit von Zweit-/Dritt-Personen zusätzlich Beschattet werden. Messfühlerposition und Datenerfassung: 5 Mess-Durchgänge in 30-minütigem Abstand à 4 Positionen (5/10/50/200 [cm] Höhe) Methoden in der Ökologie Teilprotokoll 7/8 4 Methoden der Kleinklimamessung 1.2 Bestimmung der Bodenoberflächen-Temperatur mittels Thermoelement [°C]: Elektrische Thermometer sind sehr klein gebaut und Material: ermöglichen Fernmessungen. Durch eine nachfolgende i) Thermoelement elektrische Verstärkung kann eine sehr hohe Messgenauigkeit gestützes erzielt werden. Der eigentliche Messfühler (Thermoelement) Temperaturmeter (mit besteht aus zwei Kontaktstelle zweier an ihren Enden geladenen Akkusatz) miteinander verdrillter und verlöteter Drähte aus verschiedenen Metallen, meist Kupfer und Constatan (für höhere Temperaturen: Pt - Pt-Rhodium oder Th-Mb Elemente). Eines der Thermopaare wird dabei einer konstanten Temperatureinwirkung ausgesetzt (Referenz) . Lediglich das zweite Paar wird als Relativmessfühler zur Temperaturbestimmung eingesetzt. Bei Erwärmung, Abkühlung entsteht aufgrund des Prinzips der elektrochemischen Spannungsreihe eine elektromotorische Kraft (EMK), welche der zweitenj (Referenzfühler) entgegenwirkt. Eine nachgeschaltete Verstärkerstufe ermöglicht die Erfassung der gesamt EMK (ist proportional der Temperatur) mit einer digitalen oder analogen Anzeige. Anmerkung: Vor Beginn der Messung sollte Messfühler kalibriert werden - Justage per KalibrierungsPotentiometer und Nullwertschalter auf die “0“-Marke des Zeigerinstrumentes. Thermosensor nicht mit den Händen auf den Boden drücken - es genügt die oberste Bodenlage zu vermessen (Körperwärme) Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30-minütigem Abstand à 5 Positionen Thermoelemente zur Temperaturmessung: A; Temperaturdifferenzmessung B, Absolutmessung, wobei die Vergleichslötstelle in Eiswasser getaucht wird (4°C-Referenz) C, Thermosäule, in Serie geschaltene Thermoelemente, zur Bodentemperatur-Differenz-Messung D, Parallelschaltung, Mittelwertbildung der drei frei stehenden Thermoelemente, wobei viertes Element als Referenzelement zu betrachten ist (analog B) Methoden in der Ökologie Teilprotokoll 7/8 5 Methoden der Kleinklimamessung 1.3 Erfassung der relativen Luftfeuchtigkeit mit dem Aspirationspsychrometer nach Assmann [%] Das Gerät, als Aspirationsthermometer mit zwei Material: Thermometern und einem nachgeschalteten Lüfter i) Aspirationsmeter (mit ausgeführt, erfasst Lufttemperatur und Verdunstungskälte. federgetriebenen Gebläse) Durch einen mit destilliertem Wasser getränkten i) destilliertes Wasser Textilstrumpf wird eines der Thermometer durch den vom i) Massstab (mind. 2 [m] Gebläse verursachten Luftzug abgekühlt. Je trockener die lang) aspirierte Luft, desto grösser die Verdunstungskälte. Die dadurch entstehende Temperaturdifferenz ist der relativen Luftfeuchte proportional. Das Gerät ist in ein doppeltes Gehäuse eingebaut um die Temperaturerfassung durch Sekundärwärmeemitenten (Hand- Körperwärme) nicht zu verfälschen. Anmerkungen: Gebläseöffnungen während der Messung nicht mit den Händen abdecken; sicherstellen, dass Textilstrumpf vor jeder Messung mit destilliertem Wasser befeuchtet wurde. Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30-minütigem Abstand à 4 Positionen (5/10/50/200 [cm] Höhe) Aspirations-Psychrometer nach Assmann Methoden in der Ökologie Teilprotokoll 7/8 6 1.4 Thermischer Windmesser (Hitzdraht Anemometer) [m/s]: Heizt man einen Körper (Heizdraht) elektrisch mit konstanter Leistung, so hängt die Differenz zwischen Körpertemperatur und Lufttemperatur von der Windgeschwindigkeit ab. Diese Technik eignet sich daher bestens zur Bestimmung kleiner Windgeschwindigkeiten wie sie vor allem im Inneren von geschlossenen Pflanzenbeständen auftreten. Methoden der Kleinklimamessung Material: i) Hitzdraht-Anemometer (mit geladenen Akkusatz) i) Massstab (mind. 2 [m] lang) Anmerkungen: Vor Inbetriebnahme kalibirert sich das Messgerät automatisch - dabei sollte jedoch der Messfühler von der Schutzlamelle (Schieberegler am Messfühlergriff) noch geschlossen sein. Während der Messung nicht unnötig zum Messfühler blasen, husten, etc. Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30-minütigem Abstand à 4 Positionen (5/10/50/200 [cm] Höhe) Hitzdraht-Anemometer 1) 2) 3) 4) 5) 6) 7) Manganin φ 1mm 2) Manganin φ 0.2mm Konstantan φ 0.3mm Heizdraht aus NiCr φ 0.08mm Bakelit Cu-Rohr φ 5mm Cu-Kugeln φ 6mm Methoden in der Ökologie Teilprotokoll 7/8 7 Methoden der Kleinklimamessung 1.5 Potentielle Evaporation (Piche Evaporimeter) [ml/min] bzw. [m3/h]: Die Wasserabgabe von einem Blatt und einer freien Material: Wasseroberfläche ist unterschiedlich. Im letzeren Fall erfolgt i) Bürettenrohr eine nahezu ungehinderte Änderung des Aggregatzustandes, i) Massstab da gasförmiges und flüssiges Wasser unmittelbar i) Filterpapierscheiben aneinandergrenzen. (mit 3 [cm] Durchmesser) Im Blatt einer Pflanze ergeben sich aufgrund des Zellgerüstes i) Klemmfedern komplizierte Grenzverhältnisse aufgrund der vorhandenen i) Befestigungsklammern Matrix. Um das jeweilige Verdunstungspotential der i) Befestigungsstützen Atmosfäre objektiv erfassen zu können, ist ein geeignetes (mind. 1[m] lang) Messverfahren notwendig. Das Piche Evaporimeter erfüllt diese Bedingungen. Dazu benutzt man ein Bürettenrohr und füllt es zu ¾ mit destilliertem Wasser auf. Mittels eine Klemmfeder wird am offenen Ende eine Filterpapier-Scheibe eingespannt. Aufgestellt wird das Evaporimeter mit der Filterscheibe nach unten in der zu untersuchenden Verdunstungshöhe (hier 5, 10, 50 [cm] Distanz zu Bodenniveau). Durch das Umdrehen saugt sich die Papierscheibe mit Wasser an und befeuchtet sich. Sie wird durch den dabei entstehenden geringen Unterdruck, zusätzlich zur Kraft der Feder an die Burettenöffnung angedrückt. Weiters verhindert das Filterpapier ein auslaufen der Flüssigkeit. Anmerkungen: Verdunstungsplättchen sollten über den gesamtem Messerfassungs-Zeitraum ungestört bleiben (während Ablesung ist Annäherung unumgänglich). Morgendliche Messungen verlaufen fehlerhaft, da bei Sonneneinstrahlung (Wasser und Lufterwärmung) die Flüssigkeit aus dem Gefäss gepresst wird. Ablesungen sind nur so lange zulässig, als sich kein flüssiges Wasser auf der Papierscheibe ansammelt (tritt bei Regen auf). In solchen Fällen muss der Wasserüberschuss abgesaugt werden. Das Bürettenrohr ist mit der aufgedruckten Skala in 1/100 [ml] eingeteilt. Dadurch ist es möglich Ablesungen schon nach 5 [min] vorzunehmen. Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30minütigem Abstand à 3 Positionen (5/10/50 [cm] Höhe) Methoden in der Ökologie Teilprotokoll 7/8 8 1.6 Bodentemperatur (Stechthermometer) [°C]: Bodentemperatur kennzeichnet den Energieumsatz im Boden und steht in enger Beziehung zum Wasser-Luft Haushalt; sie beeinflusst ausserdem die Stoffwechseltätigkeit der Vegetationsglieder eines Standortes, vor allem der Mikroorganismen. Methoden der Kleinklimamessung Material: i) Stechthermometer (mit geladenen Akkusdatz) i) Massstab Anmerkungen: Messfühler in das Erdreich treiben und abwarten bis Handwärme durch Bodenwärme ersetzt wurde (zeitverzögert). Sicherstellen das Zeigerausschlag in der Testposition den “0“-Wert erreicht. Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30-minütigem Abstand à 3 Positionen (2/5/10/ [cm] Tiefe) Thermoelemente zur Temperaturmessung: A; Temperaturdifferenzmessung B, Absolutmessung, wobei die Vergleichslötstelle in Eiswasser getaucht wird (4°C-Referenz) C, Thermosäule, in Serie geschaltene Thermoelemente, zur Bodentemperatur-Differenz-Messung D, Parallelschaltung, Mittelwertbildung der drei frei stehenden Thermoelemente, wobei viertes Element als Referenzelement zu betrachten ist (analog B) Methoden in der Ökologie 2. Teilprotokoll 7/8 9 Methoden der Kleinklimamessung Praktische Ausführung: 2.1 Allgemeine Angaben zum Standort der Datenerfassung: Standort: Salzburg - Freisaal, 100 [m] westlich der NAWI (hinter dem UNI-Teich) unter der Eiche; Meereshöhe: 422 [m] Terrain: eben Geologie: Nördliche Kalkalpen (grossgeologisch) Moräne und Alluvium (abgelagertes Gesteinsmaterial der Gletscherformation während der letzen Eiszeiten sowie Ablagerungen von Schwemmaterial des nahegelegenen Flusses, Salzach). Klima: Gemässigtes, feuchtes Klima (im Nordstau der Alpen); durchschnittliche Niederschlagsmenge pro Jahr: 1300 [mm] Jahresdurchschnittliche Temperatur: 9°[C] Dominante Windrichtung: West Vegetation: Mehrmahdige Wiese, mit gepflanzten Kulturbäumen und -sträuchern; nahegelegener Bach (Hellbrunnerbach) und künstlich angelegter Teich (UNI-Gewässer); sowohl Boden als auch Gewässer stark eutrofiert (Hinterlassenschaft von 4-Beinern). Witterung: Leicht bis stark bewölkt - herbstlich warm 2.2 Diskussion: Die hier kurz angerissene Gegenüberstellung beruht auf den Vergleich der hier gewonnenen Daten mit jenen Werten der Gruppe “Wiese“ (Zocher, Machart, Hager): Strahlungswerte der 1445er Serie sind folge einer kurzzeitigen starken Sonneneinstrahlung (gesamtes Spektrum); im Vergleich dazu fallen die Werte “Baum“ (trotz nur 10%-iger Intensität) eher konstant zu allen erfassten Messzeitpunkten aus; Begründung: Blätterdach schirmt einfallendes Spektrum hervorragend ab Windgeschwindigkeiten der 1415er Serie weichen am stärksten im offen Gelände “Wiese“ völlig vom Standort Baum ab; Begründung: An der Baumbasis ist Messplatz von niederen Sträuchern umgeben die sehr effizient Luftströmungen abschwächen Bodentemperaturwerte der -2er Serie der Gruppe Wiese sind auffällig erhöht; die lässt auf einen intensiven Spektrumanteil schliessen welcher geringfügige aber doch messbare Eindringtiefe besitzt Der Bodenoberflächen-Temperatur, der 1415er Serie resultiert durch die kurzfristige Sonnenstrahlung zum gegenwärtigen Messzeitpunkt. Verdunstungswerte der 1415er bis 1515er Serie liegt im freien Gelände während bis nach der Sonneneinstrahldauer sehr hoch; speziell in bodennahen Bereich dürften mehr Strahlungswärme vom Evaporimeter aufgenommen worden sein; hat eine Volumsausdehnung zur Folge, womit sich dieser massive Schwund erklären liesse. Lufttemperatur liegt aufgrund der kurzfristigen Sonneneinstrahlung während der 1415er Serie etwas höher als in den Vergleichsmesszeiträumen. Luftfeuchtigkeit ist in bodennahen Schichten stärker als in den höheren Messlagen; Begründung: Wasserverbrauch (Bodenfeuchtigkeit) des Grasbewuchses bei Assimilationstätigkeit Methoden in der Ökologie Teilprotokoll 7/8 10 Methoden der Kleinklimamessung 2.3 Datensammlung (Tabelle - links Gruppe “Wiese“ - rechts Gruppe “Baum“): Zeit Höhe 1345 1415 1445 1515 1545 Strahlung [µmol Fotonen /(s⋅m2)] 5 [cm] 10[cm] 50[cm] 200[cm] 280 327 441 481 351 444 533 611 1048 1214 1212 1124 245 802 752 472 239 339 362 440 Zeit Höhe 1345 1415 1445 1515 1545 Strahlung [µmol Fotonen /(s⋅m2)] 5 [cm] 10[cm] 50[cm] 200[cm] 28.8 25.6 26.5 27.7 32.0 33.3 30.3 20.7 28.9 21.1 28.7 22.1 27.9 27.1 24.3 14.3 22.9 27.5 24.0 23.4 Zeit Höhe 1345 1415 1445 1515 1545 Wind [m/s] 5 [cm] 10[cm] 0.07 0.11 0.19 0.18 0.07 0.10 0.11 0.07 0.03 0.22 200[cm] 0.07 0.85 0.63 0.14 0.76 Zeit Höhe 1345 1415 1445 1515 1545 Wind [m/s] 5 [cm] 10[cm] 0.03 0.12 0.00 0.00 0.03 0.05 0.04 0.16 0.09 0.04 Zeit Tiefe 1345 1415 1445 1515 1545 Bodentemperatur [°C] -10[cm] -5 [cm] -2 [cm] 15.8 17.1 18.8 16.0 17.4 18.8 16.0 17.6 19.1 16.0 17.8 19.3 16.2 17.8 19.3 0 [cm] 21.9 23.0 26.4 24.9 21.9 Zeit Tiefe 1345 1415 1445 1515 1545 Bodentemperatur [°C] -10[cm] -5 [cm] -2 [cm] 15.0 16.0 17.0 15.0 16.0 18.0 16.0 17.0 18.0 16.0 17.0 17.0 16.0 17.0 17.0 Zeit Höhe 1345 1415 1445 1515 1545 Wasserverdunstung [ml]** 5 [cm] 10[cm] 50[cm] 0 0 0 0 0.1 0 0.2 0 0.1 0.1 0.2 0.5 0.1 0.1 0.1 Zeit Höhe 1345 1415 1445 1515 1545 Temperatur [°C]* 5 [cm] 10[cm] 21.4 20.6 22.0 21.6 24.0 22.2 23.2 23.0 21.8 23.0 50[cm] 22.4 21.2 23.0 24.0 23.0 200[cm] 21.4 22.8 25.0 24.8 24.2 Zeit Höhe 1345 1415 1445 1515 1545 Temperatur [°C]* 5 [cm] 10[cm] 21.3 20.1 21.0 21.9 22.4 22.4 23.2 22.8 22.2 22.2 50[cm] 21.0 22.0 22.4 22.6 22.2 200[cm] 22.0 22.0 23.0 22.6 22.6 Zeit Höhe 1345 1415 1445 1515 1545 Luftfeuchtigkeit [%]*** 5 [cm] 10[cm] 50[cm] 86 64 88 71 77 81 73 57 70 67 56 74 76 65 93 200[cm] 67 64 47 45 62 Zeit Höhe 1345 1415 1445 1515 1545 Luftfeuchtigkeit [%]*** 5 [cm] 10[cm] 50[cm] 77 77 77 69 68 84 58 56 59 57 57 62 68 66 70 200[cm] 68 68 51 56 64 50[cm] 0.18 0.70 0.19 0.23 0.55 Zeit Höhe 1345 1415 1445 1515 1545 50[cm] 0.05 0.00 0.18 0.26 0.19 200[cm] 0.04 0.02 0.24 0.61 0.10 0 [cm] 20.7 20.2 21.0 22.3 20.6 Wasserverdunstung [ml]** 5 [cm] 10[cm] 50[cm] 0 0 0 0 0.2 0.1 0.1 0.15 0.15 0.1 0.2 0.1 0.2 0.1 0 *) Lufttemperatur mittels Aspirationspsychometer erfasst. **) Wasserverdunstungs-Volumen: relativänderung zum vorigen Messwert ***) ????????????? Methods in Ecology Sub-Protocol 8/8 1 Methods in Ecology (Methoden in der Ökologie) Bioindicators Protocol 8/8 October 10th 1997 Instructor: Dr. R. Türk Handed in by: Pierre Madl (Mat-#: 9521584) Salzburg, 31ten Oktober 1997 Bioindicators Methods in Ecology Sub-Protocol 8/8 2 Bioindicators Introduction: An indicator is a species indicating the state of both natural and man-made (antropogen) environments. Such physical and chemical disturbances will result in a change in species composition of the biotic community. Such community changes are useful in monitoring current states of the environment and quite helpful in environmental assessment. Biological material and indicator species used for monitoring of pollutants are many and varied, ranging Monitor Organism from cells, tissues and organs to whole organisms, including protists, lower plants, lichens, higher plants, coelenterates, aquatic and terrestrial invertebrates, even fish, and birds. active passive monitoring monitoring Plant and Animal Indicators: Throughout history, different cultures have known that the presence of certain species, reaction accumulation especially plant species, indicated certain conditions. The indicators indicators presence, absence and condition of every plant and animal is a measure of the conditions under which it is existing or existed previously. • Occurrence of plants like the Common Stinging Nettles (Urtica dioica) indicate high levels of N in soil. • The insect group ephemeroptera (Mayflies) which have aquatic larvae contains species that are intolerant to eutrophication, and so have been incorporated into programs monitoring water quality. • The appearance of Rosebay Willow Herb (Chamaenerion angustifolium) indicates disturbed soil or some kind of perturbation. • Aborigines of West Africa recognized the Gau Tree (Acacia albida) as a fertile soil instrument. • The presence of basil (Ocimum homblei) in Zimbabwe indicates high copper content in the soil. Behavior and physiology: Some animals have been used in monitoring the quality of the environment. • Dawn chorus bird of polluted and disturbed urban areas are less likely to participate in chorus singing. • Miners have used caged canary to give biological warning signals when detecting methane gases. • The behavior and respiratory physiology of several aquatic organisms including fish have successfully been used to monitor water quality. Microevolution: One classical example of an indicator of the extent of pollution has been the spread of melanic forms of the Peppered moth (Biston betularia) throughout polluted areas of Britain and Europe. Particularly striking, was the spread but then later decline of melanic forms after the Clean Air Act in Britain. This decline in coincided with a period of increasing species richness of lichens on trees. Community indicators: Populations of animals and plants occur in communities and therefore the species indicator concept can be extended to communities of indicator species. Different soils (serpentine, chalk, acids) all support indicator plant communities. • The characteristic flora of serpentine soils, which are low in Ca and high in Mg, is a good example of a plant indicator community. • Acids soils, in which heathland plants reside, are the low-growing, dwarf ericoid shrubs. • Best quality water indicators were discovered in association with dominance of Alopecurus pratensis, Agropyron pectiniforme and Stipa capillata in the former USSR. • Diatoms, are still used to monitor river and stream water quality. Indicators of pollution: It has long been known that heavy metals and organochlorides penetrate ecosystems, as a result, some organisms will accumulate pollutants in varying amounts. In polluted parts of the River Thames, the mollusk Anodonta spp. Has been found to have twenty times the level of cadmium compared to the same species from the River Test. Although bioaccumulation occurs in a wide variety of taxonomic groups, it does not necessarily follow that the source of pollution is near those organisms in which the pollutants have accumulated. • The discovery of DDE (variant of DDT) in bodies of Penguins in the Antarctic, thousands of miles from any use of agrochemicals. • Detector species occurring naturally in the area of interest and which may show a measurable response to environmental change, e.g. changes in behavior, mortality, age-class structure, etc. • Exploiter species whose presence indicates the probability of disturbance or pollution. They are often abundant in polluted areas because of lack of competition from eliminated species. • Accumulator organisms that take up and accumulate chemicals in measurable quantities. • Biossay organisms are selected for use as a laboratory reagent to detect the presence and/or concentration of pollutants, or to rank pollutants in order of toxicity. Methods in Ecology Sub-Protocol 8/8 3 Bioindicators Such organisms used as detector and exploiter types should have the following characteristics: 1. Narrow tolerance to environmental variables (stenothermal, stenohaline) instead of high tolerance (erythermal, euryhaline). 2. Easy to sample. 3. Accumulation of pollutants should occur without killing the organism. 4. Sedentary or limited dispersal like: plants, common chronic symptoms: premature senescence and bronzing or chlorosis due to disease of insects, environmental stress, drought, etc. 5. Long-lived so that different age-classes can be sampled; e.g.: lichens and mosses are very sensitive to airborne pollutants and in the case of lichens have the potential to flourish for centuries (under favorable conditions). In the case of lichens, pollutants such as SO2 affects the algae component of the lichen and thus the symbiotic relationship between algae and fungus breaks down. Lichens have long been used as a bioindicator for more than 100 years. Lichens are also detector, exploiter and accumulator, these characteristics make them a good indicator of air pollution. Monitoring air pollutants by lichen mapping itself because lichens are also sensitive to HF, HCl, NOX, O3, and pAN (known to be detrimental). Lichens can be used as a biological material instead of physical and chemical apparatus for air pollution measurements. Many lichens are widespread and can be used over wide areas. Epiphytic lichens should be investigated on one or a limited number of similar tree species which are not influenced by microenvironmental conditions. Mapping of lichens requires a high degree of experience. It should be done in periodic time intervals and should cover a great diversity of species. Interpretations and results should be done by lichenologists. In alpine valleys the lichen growth on mountain maple trees (Acer pseudoplatanus, Alnus incana) are useful indicators of SO2 pollution. Even though lichen mapping is a valuable tool in estimating air quality, it should be supplemented by the use of lichen transplants and determination of sulfur and chlorophyll content of the lichen thalli. Mosses on tree barks are valuable indicators of pollution of heavy metals. Since mosses lack epidermis and cuticle, they accumulate metals in a passive way by acting as ion exchangers. These bioaccumulation is enforced by the fact that mosses do not have organs for the take up of nutrients from the substrate. Trees selected for the pollution mapping should have the following properties: a) Tree should be free standing, (except for extensive agricultural use, because the herbicides and pesticides use can influence lichens cover and falsifies mapping results). b) The bark of road side trees are usually exposed of exhausted pollutants and dust caused by traffic. c) The buffer capacity of the tree bark play an important role in lichen distribution. Tree with an acidic bark are unsuitable for studies, because the buffer capacity is very low. Although, many ecologists made use of tree bark as a bioindicator of environment acidity. d) Some species are not suitable for mapping since they support a rich lichen flora, such as Aesculus hipocastanum and Fraxinus excelsior. e) The particular different water capacities of tree barks and of rain tracks (runoff) have to be considered in micro-environmental influence; f) The percentage cover of Lecanora conizaeoides is a valuable indicator of pollution levels, because in highly polluted areas this species only occurs in the bark crevices; whereas in less highly polluted areas tally occur on bark ridges. g) Since the layer structure of mosses produce organic matter; therefore, accumulate metals in a passive way by ion exchangers. An other interesting organism often used to monitor air quality is Tobacco (Nicotiana tabacum), or BEL 3 as it is known for short. It is a very easy to use indicator plant for ground-level ozone. Because it is sensitive to phytotoxic constituents, it reacts to even very low concentrations of O3, and shows characteristic symptoms (spots). These spots are small white lesions on the adaxial surfaces of the leaves and are the cause of photochemical reactions from incompleted combustion of fossil fuels. There are many other biological indicators which could successfully be used, not only as effective warning systems but also as cheap and reliable components of long-term pollution monitoring programs. Methods in Ecology Sub-Protocol 8/8 4 Bioindicators Right: Active biomonitoring with exposed lichen samples Left: Bonitierungsskala von Blattnekrosen bei tausalzgeschädigten Linden. 1) ungeschädigt 2) Chlorose des >Randes 3) starke Chlorose bei Spreite (gelbfärbung des Randes) 4) breite Randnekrose mit gelber Grenzzone 5) grösster Teil der Spreite abgestorben Flechenrekrosen (silberflecken) auf den Blättern des Tabaks Nicotiana tabacum. BelW3 als charakteristisches OzonSAchadbild. Die Nekrosen bilden sich bei jungen Blättern nur an der Blattspitze Methods in Ecology Sub-Protocol 8/8 5 Bioindicators Practical Observations around the backyard of the University: Paved square at the back entrance of the University building reveals that moss growth in the gaps of the blocks is very limited due to excessive pedestrian traffic. Whereas other sections not as heavily frequented by people show a more advanced level of succession (grass, etc.). Marble walls of the west-side wing of the University building are covered with a grayish film. The most concentrated patches are found at those locations where rain water run off is heaviest. The Ca-rich substrate provides an ideal spot for cyanobacterial growth. Heterocysts autotrophic organism can fix nitrogen from the air and chlorophyll enables them to utilize sunlight to convert CO2 to O2 for their energetical requirements. Caleoplaca cytrina, a lichen found on nitrogen rich substrates; is found preferably at locations periodically fertilized by urination of Pincelin canine (common name: dog). Almost every tree trunk is covered with a greenish film; the presence of Pleurococcus sp., indicates that excess fertilization from relocated artificially fertilized soil (soil erosion by wind) nourishes their growth. This particular pattern is not found in areas lacking farming. In distinct sections of tree trunks, frequent visitors (cats) sharpen their claws, therefore minimizing recolonialization of epiphytic organisms. Counting epiphytic lichens: An easy procedure in which a plot is filed by pinning a self made transparent census overlay against the tree bark. The plastic foil is divided into squared compartments, measuring 10 x 10 [cm] each, with a total area of 0.2 x 0.5 [m2]. Identification and determination of the frequencies of the species present within this area reflects species diversity. If this procedure is repeated in frequent intervals of time (taking pictures), the plot technique is a powerful tool to compare past and present changes of sensitive lichen colonies. Quercus robur Height: 1.2 to 1.45 [m]; Exposition: west Frequency Species found units Remarks: ∑ Termini Bioindicators reveals the presence of air pollutants by showing typical symptoms from the effects of other natural or antropogenic stress. BI may react either specifically to a certain pollutant or unspecifically to a mixture of toxins. Bioaccumulator has collected pollutants from the surrounding air in a given time reference. They are been analyzed for the detection of those components which are not decomposed, released or translocated. These plants are accumulators. Biomonitor can be an indicator or accumulator: they can provide quantitative information and allow to identify changes in pollution over the course of time. Pollutants are released by sources dispersed in the atmosphere and transmitted to a certain location where the ambient concentration is called immission. Monitoring: Active M.: Organisms known to be sensitive (narrow tolerance) to certain pollutants are exposed intentionally to various locations in order to monitor their reaction in periodic intervals of time. Passive M.: The presence, absence and condition of every plant and animal is a measure of the conditions under which it is existing or existed previously. Reaction Indicators: An organism reacts in a visible way caused by antropogenic sources.