Op de Bok - Maart 2010 - Vereniging Nederlandse Verkeersvliegers
Transcription
Op de Bok - Maart 2010 - Vereniging Nederlandse Verkeersvliegers
op de bok 0 3 2010 vereniging van nederlandse verkeersvliegers Inhoud 1 03 | 2010 4 15 19 3 24 32 33 34 35 Rubrieken Woord en wederwoord Shoot! Bespreking Colums Voorwoord Evident Hamerslag Raadsverslagen Transavia-raadsverslag KLM-raadsverslag Martinair-raadsverslag 25 Op de hoogte 36 Mededelingen van de ledenraad Crew fatigue factors in the Guantanamo Bay aviation accident Text Mark R. Rosekind, Kevin B. Gregory, Donna L. Miller, Elizabeth L. Co, J. Victor Lebacqz and Malcolm Brenner – Alertness Solutions, NASA Ames Research Center and National Transportation Safety Board Photo www.flightglobal.com/ airspace/media/farnboroughairshow2008 7 In a recent consensus statement, an international group of scientists identified fatigue as “the largest identifiable and preventable cause of accidents in transport operations (between 15 and 20% of all accidents), surpassing that of alcohol or drug related incidents in all modes of transportation. Official statistics often underestimate this contribution.” (JSR, 2000). Fatigue engendered by sleep loss and circadian disruption can degrade all aspects of human capability. Significant reductions in operator performance can affect judgement and decisionmaking, attention, reaction time, alertness, memory, and mood (REFs). These degraded performance factors can increase fatigue-related risks and reduce the operational safety margin. In spite of these well-documented effects, the contributory or causal role that fatigue may play in an accident is often underestimated or potentially ignored. One reason for underestimating its contribution is that there is “no blood test for fatigue.” Thorough accident investigations will include an analysis of alcohol and drug factors. If traces of these compounds are discovered, then they are generally identified as contributory or causal to the accident. However, no simple, practical or validated “blood test” for fatigue currently exists. Therefore, to include or exclude fatigue as contributory or causal in an accident requires the evaluation of two specific aspects of the accident. First, were identifiable fatigue factors present at the time of the accident? Second, if fatigue factors were present, did fatigue-related performance decrements contribute to or cause the accident? This paper will outline a systematic approach to examine the role of fatigue factors in an accident investigation. First, four specific physiological factors that can create fatigue will be described, including scientific data regarding their relevance. Second, there will be discussion of how to examine whether fatigue–related performance changes played a contributory or causal role in an accident. Third, to demonstrate the application of this approach in an actual accident investigation, the crash of a DC-8 in Guantanamo Bay, Cuba will be used as a model analysis. Four Fatigue Factors: Physiological and Operational Considerations An extensive scientific literature indicates that there are four core physiological factors that are known to underlie fatigue and are relevant to an accident investigation. These four fatigue factors are: 1) sleep (acute loss and cumulative debt), 2) continuous hours of wakefulness, 3) circadian rhythms (time-of-day), and 4) sleep disorders. Each of these physiological factors will be described and their operational relevance discussed for their potential role in an accident. Sleep (acute loss and cumulative debt). On average, human adults physiologically require about 8 hours of sleep. However, there is a range of sleep need from about 6 to 10 hours of sleep. Therefore, the average adult will need about 8 hours of sleep for optimal waking performance and alertness. Sleep loss can be considered in two ways: acute and cumulative. Acute sleep loss involves the total amount of sleep obtained in a 24-hour period. An average person that obtains only 5 hours of sleep one night has an acute sleep loss of 3 hours. Sleep loss that occurs over several days builds into a cumulative sleep debt. An average person that obtains only 5 hours of sleep for 3 consecutive nights has a cumulative sleep debt of 9 hours. Recovery from a cumulative sleep debt typically involves more deep sleep and not an hour-for-hour payback of lost sleep that requires extended sleep. Generally, two nights of usual sleep, at a person’s regular bedtime, A scientific review found that two hours of sleep loss can result in “impairment of performance and levels of alertness”. 8 can reduce the cumulative sleep debt to 0. Calculating an individual’s acute sleep loss or cumulative sleep debt should be based on the person’s usual sleep requirement and pattern. A scientific review found that two hours of sleep loss can result in “impairment of performance and levels of alertness” (MAC/Roth REF). in te scannen foto Crewrest op de B747-400; zicht naar achter (foto Jan Bennink). Continuous Hours of Wakefulness. How long an individual operator remains awake is another physiological factor that can affect performance and alertness. The physiological complement to sleep is the subsequent number of hours of continuous wakefulness. Shiftwork studies examining different duty lengths (e.g., 8 vs. 10 vs. 12 hours) have provided mixed findings. At 12 hours, some studies have shown significant decreases in performance and alertness and increases in errors and injuries (REFs). NTSB aviation accident data have shown an increased risk beyond 12 hours (REF). At 16 hours of work, a national occupational-injury database demonstrated a progressive increase three times the accident/injury rate at 9 hours (REF). Other studies have shown that performance decrements associated with 17 hours or longer of prolonged wakefulness can approximate the changes typical of alcohol consumption (2 REFs). Generally, performance and alertness can be maintained up to 12 hours of wakefulness. Data suggest that 16 or 17 hours of continuous wakefulness can be associated with significantly reduced performance and alertness. The changes associated with periods of 12 to 16 hours of continuous wakefulness are not well defined. It should be noted that the relevant physiological factor is the continuous hours of wakefulness and that a duty period may be a subset of this. Circadian Rhythms. Another major physiological determinant of waking performance and alertness is the internal circadian clock (REFs). Located in the suprachiasmatic nucleus (SCN) of the hypothalamus, the circadian clock controls the timing of physiological activity (e.g., thermoregulation, immune function, digestion), performance, alertness, and mood. Daily, the circadian clock is programmed for its lowest point at around 3 am to 5 am. This is the period of lowest activity across physiological systems and human functioning. Performance reductions can occur in a larger window from about 12 am to 6 am. A second programmed period of sleepiness occurs at about 3 pm to 5 pm. These windows of circadian low are associated with decreased performance, alertness, and mood and are especially relevant in an accident investigation when a critical phase of operation occurs during one of them. However, just operating during these periods is associated with physiological changes that reduce performance and alertness. Sleep Disorders. Almost 90 different sleep disorders exist and are described in a diagnostic classification system (AASM REF). The primary presenting complaint for many of these disorders is excessive sleepiness. There are a broad range of physiological and psychological causes for these sleep disorders and the individual sufferer might be unaware of its existence. Most of these sleep disorders can be diagnosed and treated successfully by accredited sleep medicine specialists. This factor is a consideration because an operator may have a sleep disorder that predisposes the individual for excessive sleepiness. Altered circadian rhythms (e.g., shiftwork, timezone crossings) and other factors could further exacerbate the preexisting sleepiness. One example sleep disorder is sleep apnea, a condition in which an individual has breathing pauses throughout sleep. This causes waking sleepiness and performance decrements, as well as other related health problems (e.g., cardiovascular risks). Studies of individuals with sleep apnea have shown up to a 7 times increased risk for car accidents. Sleep disorders, such as sleep apnea, put individuals at increased risk for sleepiness and potential performance reductions. Examining these Four Fatigue Factors. In an accident investigation, each of these four fatigue factors should be evaluated to determine whether they were present at the time of the accident. The information regarding these factors should be obtained from a variety of sources whenever possible. For example, the sleep/wake history might be collected from the individual operator involved in the accident, from family members or coworkers. This involves obtaining information about usual sleep patterns and habitual bed times and then specifics for the period prior to the accident. Usually, a minimum of a 72-hour period before an accident should be examined. Depending on circumstances, it may be necessary to review a longer period of time (e.g., when was 9 It is important to consider the sources of information used to examine these fatigue factors. the last one or two nights of full sleep?). The continuous hours of wakefulness can be determined from an individual’s report (e.g., when did they get up?) and operating information (e.g., reporting for duty). The circadian factor can be straightforward and would identify whether a critical phase of operation or significant performance requirement occurred during a window of circadian low. A sleep medicine specialist may be needed to determine whether an individual had a sleep disorder at the time of an accident. It is important to consider the sources of information used to examine these fatigue factors. Typically, self-report data is obtained by interviewing an operator about circumstances prior to an accident. Self-reports of sleep and alertness can be discrepant from physiological measures and the reliability of the reports may be difficult to establish. Also, retrospective data can present limitations due to a variety of factors. Hence the importance of obtaining information about these fatigue factors from a variety of sources whenever possible. Once the information related to these factors is obtained and analyzed, it should be determined whether each one was present at the time of the accident and to what extent. Basically, this translates to a listing of the individual fatigue factors that were relevant at the time of the accident and the data that indicates its severity. A variety of efforts are underway to develop an empirical risk factor based on this type of information. These are in development as mathematical models or weighting of different factors (REF-modeling supplement/Coast Guard). Clearly, these physiological factors can be highly related. Therefore, the relationship between the factors should also be a consideration. For example, one factor might be heavily loaded, such as no sleep, but minimal contribution of the other factors. In another situation, all factors might be present. For example, an operator had only 3 hours of sleep, was awake for 19 hours, the accident occurred at 4:30 am, and the individual had been diagnosed with sleep apnea. Examining the Role of Fatigue-Related Performance Changes The first step, as previously described, is to determine whether to include or exclude fatigue factors as present at the time of the accident. If fatigue factors were present, the second step is to determine whether fatigue-related performance decrements were contributory or causal in the accident. Fatigue created by sleep loss and circadian disruption can decrease waking performance, vigilance, and mood. These decrements are known to affect errors, accidents, and safety (REFs). The basic question is whether fatigue-related decrements can be linked to performance that contributed to or caused the accident. Obviously, this aspect of the determination relies heavily on the specifics of the accident. Applying this Approach to an Actual Accident Investigation In 1993, the National Transportation Safety Board (NTSB) investigated a DC-8 accident at Guantanamo Bay, Cuba. At the request of the NTSB investigators, members of the NASA Fatigue Countermeasures Program examined the fatigue factors related to the accident. A full NTSB report on the accident has been published and includes an appendix on the analysis of the fatigue factors by the NASA Group. The following section applies the analytical approach previously described in this paper to the specific circumstances of the DC-8 Guantanamo Bay accident. Details of the analysis are taken directly from the NTSB report and expanded further in this paper. Analysis of Sleep/Wake Histories for AIA Flight 808 Crew The four fatigue factors described above were analyzed for the AIA Flight Crew involved in an aviation accident that occurred at Guantanamo Bay, Cuba on August 18, 1993. The data analyzed were taken from the NTSB Human Performance Investigator’s Factual Report, the Operations Group Chairman’s Factual Report, and the Flight 808 Crew Statements. When there were discrepancies among the sources, conservative estimates and averages were used. The sleep/wake histories for the Flight Crew of AIA Flight 808 prior to the accident The First Officer was then awake for 19 hours until the accident occurred at Guantanamo Bay. 10 at Guantanamo Bay on August 18, 1993 at about 1656 EDT are presented in Figure 1. This figure provides an opportunity to examine the temporal organization and amount of sleep and wakefulness over the three days leading up to the accident. The days 8/16/93, 8/17/93, and 8/18/93 are identified at the top of the figure along with a 24-hour clock. The white bars indicate the duty periods and individual black lines show specific takeoff and landing activities during the duty periods. A single horizontal bar for each flight crewmember shows the sleep (black) and wakefulness (shaded) over the period leading up to the accident at about 1656 on 8/18/93. Figure 1. AIA Flight 808 Crew Sleep/Wake Histories Overall, this information demonstrates that the entire crew displayed cumulative sleep loss and extended periods of continuous wakefulness. The first horizontal bar in Figure 1 displays the sleep/wake history of the Captain. He reported a typical sleep requirement of 8 hours. The Captain awakened on 8/16/93 after 8 hours of sleep and was awake for 9 hours before taking a 2-hour nap prior to his all-night duty period. Following his nap, the Captain was awake for 17.5 hours. He reported a 5-hour sleep period during a daytime sleep opportunity in a Dallas-Ft. Worth Airport hotel during layover. The Captain was then awake for 23.5 hours until the accident occurred at Guantanamo Bay. This 23.5-hour period included an all-night duty period after which the Captain was released from duty. However, he was called back to operate Flight 808 prior to his return home, and therefore was continuously awake until the accident. The second bar in Figure 1 displays the sleep/wake history of the First Officer. He also reported a usual sleep requirement of 8 hours. The First Officer awakened on 8/16/93 after 8 hours of sleep and was awake for 9 hours before taking a 2-hour nap prior to his all-night duty period. Following his nap, the First Officer was awake for 19 hours. He reported an 8-hour sleep period during a daytime sleep opportunity in a Dallas-Ft. Worth Airport hotel during layover. The First Officer was then awake for 19 hours until the accident occurred at Guantanamo Bay. This 19-hour period included an all-night duty period after which the First Officer was released from duty. However, he was called back to operate Flight 808 prior to his leaving the airport, and therefore was continuously awake until the accident. The third bar in Figure 1 displays the sleep/wake history of the Second Officer. He reported a usual sleep requirement of 9.5 hours. The Second Officer awakened on 8/16/93 after 9.5 hours of sleep and was awake for a 15-hour day before going to sleep at 2300 for a usual night of sleep. The Second Officer was then called at home after 6 hours of sleep and reported for duty at the airport, joining the Captain and First Officer. The Second Officer was then awake for 9 hours. He reported a 6-hour sleep period during a daytime sleep opportunity in a Dallas-Ft. Worth Airport hotel during layover. The Second Officer was then awake for 21 hours until the accident occurred at Guantanamo Bay. An examination of the cumulative totals for sleep and continuous wakefulness is informative. For the entire 65-hour period portrayed in Figure 1, which includes the last full 8-hour sleep period at home, the Captain was awake for 50 hours with 15 hours of sleep. Including the 2-hour nap, in the last 48 hours, the Captain was awake for 41 11 hours with 7 hours of sleep. For the 46 hours after the nap, the Captain was awake for 41 hours with 5 hours of sleep. In the last 28.5 hours prior to the accident, the Captain was awake for 23.5 hours with 5 hours of sleep. For the entire 65-hour period portrayed in Figure 1, which includes the last full 8-hour sleep period at home, the First Officer was awake for 47 hours with 18 hours of sleep. Including the 2-hour nap, in the last 48 hours, the First Officer was awake for 38 hours with 10 hours of sleep. For the 46 hours after the nap, the First Officer was awake for 38 hours with 8 hours of sleep. In the last 27 hours prior to the accident, the First Officer was awake for 19 hours with 8 hours of sleep. For the entire 65-hour period portrayed in Figure 1, which includes the last full 9.5hour sleep period at home, the Second Officer was awake for 45 hours with 21.5 hours of sleep. In the last 42 hours, the Second Officer was awake for 30 hours with 12 hours of sleep. In the last 27 hours prior to the accident, the First Officer was awake for 21 hours with 6 hours of sleep. Overall, this information demonstrates that the entire crew displayed cumulative sleep loss and extended periods of continuous wakefulness. It should be noted that the cumulative sleep loss can be partially attributed to the reversal of the circadian pattern, with nighttime sleep periods at home followed by daytime sleep periods due to all-night duty periods. Sleep obtained in opposition to the body’s circadian rhythms is more disturbed than sleep that coincides with times when the body is programmed for sleep. Also, the accident occurred at about 4:56 PM in the 3-5 PM window of sleepiness. In a typical 24-hour period, most individuals would be awake about 16 hours and sleep about 8 hours. This represents a 2:1 wake/sleep ratio. Based on this general pattern, a calculation of the cumulative sleep/wake debt is portrayed in Figure 2. The wake/sleep ratio is displayed along the left axis. A ratio of 2:1 or 2 represents a usual baseline pattern (shown by the solid line) with a wake/sleep ratio less than 2 representing a sleep gain. A wake/sleep ratio greater than 2:1 or 2 would represent a sleep loss. The three days prior to the trip are portrayed on the horizontal axis. Figure 2. Cumulative Sleep/Wake Debt The Captain and First Officer reported a usual sleep requirement of 8 hours and therefore, a wake/sleep ratio of 2 would be their appropriate self-defined norm. As evidenced in Figure 2, the wake/sleep ratio for both the Captain and First Officer is greater than 2 (indicated by the solid line) over the two days prior to the accident, reaching greater than 3 for the Captain. The Second Officer reported a usual sleep requirement of 9.5 hours. This represents a wake/sleep ratio of 1.53 as his selfdefined norm (indicated by the dashed line). He approximates this on 8/16 and 8/17 and exceeds a ratio of 2 prior to the accident. 12 in te scannen foto There was no history, report, or information that suggested any of the flight crew had a sleep disorder, though none of them were clinically evaluated in a sleep disorders center. Taken together these data demonstrate that the entire flight crew displayed cumulative sleep loss, operated during an extended period of continuous wakefulness, obtained sleep at times in opposition to the circadian clock time for sleep, and that the accident occurred in the afternoon window of physiological sleepiness. Specifically, the Captain and second officer had an acute sleep loss of 3 and 3.5 hours respectively, all three crewmembers had a cumulative sleep debt, all crewmembers had been awake for an extended period of time ranging from 19 to 23.5 hours, and the critical landing phase of the operation occurred during the afternoon window of circadian low. Three of the four fatigue factors were present at the time of the accident. In consideration of the previous scientific information and the specific factors examined in this accident, the data clearly support the finding that fatigue was a physiological factor for the entire crew. Evidence that Fatigue-Related Performance was Contributory or Causal in the Accident Crewrest op de B747-400; gezien vanaf stoelen (foto Jan Bennink). The data presented in the previous section demonstrated that the entire crew had experienced sleep loss, extended periods of continuous wakefulness, and circadian disruption (both the timing of sleep periods and time of accident). Given the sleep/ wake and circadian history of the entire flight crew, it is clear fatigue was present. However, to determine how fatigue may have contributed to or caused the accident, one would have to determine whether performance and behavioral changes associated with fatigue played a role in the accident. Several sources of data were available for examination to provide specific information regarding flight crew performance and actions before the accident. The transcript of the cockpit voice recorder (CVR) was made available at the NTSB hearing on this accident, and the Captain provided testimony at the hearing. Based on an analysis of this data, four fatigue-related performance changes were identified that contributed to or were causal in this accident. Each will be described. 1. Degraded Judgement and Decision-Making The CVR transcript provides information about flight crew performance, decisions, and responses leading up to the accident at Guantanamo Bay. One piece of information is related to the decision to use runway 10. Two of the crewmembers, including the Captain (the pilot flying), had never flown into Guantanamo Bay; the First Officer had only flown into Guantanamo Bay years before in small military jets. The crew acknowledged that it was a difficult airport with special considerations. The plan had been to use the straightforward approach available on runway 28. With essentially no discussion, the Captain decided to change plans and use runway 10, which requires a more severe maneuver to complete the landing. By all reports, the Captain was lauded for his airmanship and good judgment, especially in emergency and landing procedures. Therefore, for an experienced Captain to make a sudden decision to change runways, with no prior experience at a special airport, with minimal crew discussion, indicates a degraded decision-making process. In this situation, fatigue may have affected the crew’s decision-making in the following ways: a) they did not consider important information (i.e., their unfamiliarity with the airport, their level of fatigue), b) their lack of discussion about the decision to change runways, and c) misreading of potential outcomes. In this case, the entire flight crew, all of whom were affected by the fatigue factors previously outlined, shared the decision-making process. 2. Cognitive Fixation Another piece of information from the CVR was the Captain’s fixation on finding a strobe light that was a landing cue. In the transcript, the Captain makes seven references to finding the strobe light. During the critical period leading up to the accident, the Captain displayed an overwhelming focus and concern to locate the strobe light. This cognitive fixation on the strobe light, to the exclusion of other critical information, is another potential fatigue affect on performance. It would fit laboratory research that demonstrates that this effect can result from sleep loss (ref. 15-21). 13 3. Poor Communication/Coordination Also evident from the CVR was the Captain’s disregard of critical information just prior to the accident. While the Captain was fixated on locating the strobe light and was making multiple references to its location, the other crewmembers questioned whether they were going to successfully make the landing. The Captain did not acknowledge the question, certainly did not process the potential implications of the question, and finally disregarded the critical information to continue his search for the strobe light. While the transcript reveals that words were expressed, the crew actions indicate poor communication and coordination of efforts. 4. Reduced Reaction Time Another piece of information from the CVR was the response to the stall warning when the operation was clearly in trouble. Several pilots reviewed the CVR transcript and spontaneously commented on how slowly the Captain and crew responded to the stall warning prior to the accident. The warning is intended to provide a window for immediate response and an opportunity to recover the aircraft. An experienced pilot will have been trained to immediately respond to the stall warning with an automatic response. However, fatigue can degrade reaction time and psychomotor responses. Therefore, the Captain and crew appear to have been slow to respond to the stall warning as a consequence of the prior sleep loss, circadian disruption, and extended period of continuous wakefulness. Other Considerations There are several other instances from the CVR that suggest the presence of fatigue but are subtler. For example, there appears to have been excessive checking of information (e.g., were waypoints entered, radio frequencies). These more subtle occurrences may also reflect decreased memory and mental functioning but are less clearly defined than the previous four examples from the CVR. The level of performance demonstrated by the Captain is below that normally expected of a Captain with his level of experience. However, the Captain’s aviation record does not suggest that he was a substandard pilot. The Captain’s airmanship was lauded from several sources. Therefore, some factor must have interfered with his performance on this flight. Also note that some of the CVR performance decrements identified above were also Crew Resource Management (CRM) failures. This further supports the data that the entire crew, not just the Captain, were affected by fatigue at the time of the accident. Another piece of information that became available at the NTSB hearing was the Captain’s testimony. Perhaps the most telling statement was in response to the question about how he felt just prior to the accident and he said, “lethargic and indifferent.” Individuals use a variety of words to express their state associated with sleep loss and circadian disruption, for example, ‘fatigued,’ ‘tired,’ ‘sleepy,’ and ‘lethargic.’ Also, controlled laboratory studies of sleep deprivation have shown that individuals will increase their effort to perform, though their performance is degraded, and they become indifferent to the outcome. The Captain’s report of being “lethargic and indifferent” in the period leading up to the accident is quite consistent with the typical effects of sleep and circadian disruption. Conclusions This paper outlines a systematic approach to examine fatigue factors in an accident investigation. Four core fatigue factors are identified and a summary of their physiological and operational relevance is provided. Determining whether these fatigue factors can be included or excluded is the first step of analysis. Next, it is critical to examine whether fatigue-related changes can be linked to actions that caused or contributed to an accident. This analytical approach was applied to the investigation of a DC-8 accident at Guantanamo Bay, Cuba. Based on its analysis, the NTSB determined “that While the transcript reveals that words were expressed, the crew actions indicate poor communication and coordination of efforts. Acknowledgments 1. Lyman, E.G., & Orlady, H.W. (1980). Fatigue and Associated Performance Decrements in Air Transport Operations. NASA Contract NAS2-10060. Mountain View, CA: Battelle Memorial Laboratories, Aviation Safety Reporting System. 2. Rosekind, M.R., Gander, P.H., Miller, D.L., Gregory, K.B., McNally, K.L., Smith, R.M., & Lebacqz, J.V. (1993). NASA Ames Fatigue Countermeasures Program. FAA Aviation Safety Journal, 3(1), 20-25. 3. Rosekind, M.R., Gander, P.H., Miller, D.L., Gregory, K.B., Smith, R.M., Weldon, K.J., Co, E.L., McNally, K.L., and Lebacqz, J.V. (in press). Fatigue in Operational Settings: Examples from the Aviation Environment. Human Factors. 4. Gander, P.H., Graeber, R.C., Foushee, H.C., Lauber, J.K., & Connell, L.J. (in press). Crew Factors in Flight Operations II: Psychophysiological Responses to Short-Haul Air Transport Operations. NASA Technical Memorandum. Moffett Field, CA: NASA Ames Research Center. 5. Gander, P.H., Graeber, R.C., Connell, L.J., & Gregory, K.B. (1991). Crew Factors in Flight Operations: VIII. Factors Influencing Sleep Timing and Subjective Sleep Quality in Commercial LongHaul Flight Crews. NASA Technical Memorandum 103852. Moffett Field, CA: NASA Ames Research Center. 6. Gander, P.H., Barnes, R.M., Gregory, K.B., Connell, L.J., Miller, D.L., & Graeber, R.C. (in press). Crew Factors in Flight Operations VI: Psychophysiological Responses to Helicopter Operations. NASA Technical Memorandum. Moffett Field, CA: NASA Ames Research Center. 7. Gander, P.H., et al. (in preparation). Crew Factors in Flight Operations VII: Psychophysiological Responses to Overnight Cargo Operations. NASA Technical Memorandum. Moffett Field, CA: NASA Ames Research Center. 8. Rosekind, M.R., Graeber, R.C., Dinges, D.F., Connell, L.J., Rountree, M.S., & Gillen, K. (in press). Crew Factors in Flight Operations IX: Effects of Planned Cockpit Rest on Crew Performance and Alertness in Long-Haul Operations. NASA Technical Memorandum. Moffett Field, CA: NASA Ames Research Center. 9. Dement, W.C. (1994). History of Sleep Physiology and Medicine. In M.H. Kryger, T. Roth, & W.C. Dement (Eds.), Principles and Practice of Sleep Medicine. Philadelphia, PA: Saunders. 10. Kryger, M.H., Roth T., & Dement, W.C. (Eds.). (1994). Principles and Practice of Sleep Medicine. Philadelphia, PA: Saunders. 11. Carskadon, M.A. (Ed.). (1993). Encyclopedia of Sleep and Dreaming. New York, NY: Macmillan. 12. Roth T., Roehrs, T.A., Carskadon, M.A., Dement, W.C. (1994). Daytime Sleepiness and Alertness. In M.H. Kryger, T. Roth, & W.C. Dement (Eds.), Principles and Practice of Sleep Medicine. Philadelphia, PA: Saunders. 13. Mitler, M.M., Carskadon, M.A., Czeisler, C.A., et al. (1988). Catastrophes, Sleep, and Public Policy: Consensus Report. Sleep, 11, 100-109. 14. Akerstedt, T. (1988). Sleepiness as a Consequence of Shift Work. Sleep, 11(1), 17-34. 15. Broughton, R.J. & Ogilvie, R.D. (Eds.). (1992). Sleep, Arousal, and Performance. Boston, MA: Birkhäuser-Boston, Inc. 16. Dinges, D.F. (1990). Are You Awake? Cognitive Performance and Reverie During the Hypnopompic State. In R. Bootzin, J. Kihlstrom, & D. Schacter (Eds.), Sleep and Cognition. Washington, D.C.: American Psychological Association. 17. Dinges, D.F. & Kribbs, N.B. (1991). Performing while Sleepy: Effects of Experimentally-Induced Sleepiness. In T. Monk (Ed.), Sleep, Sleepiness and Performance. Chichester, UK: John Wiley and Sons, Ltd. 18. Horne, J.A. (1978). A Review of the Biological Effects of Total Sleep Deprivation in Man. Biological Psychology, 7, 55-102. 14 19. Dinges, D.F. (1992). Probing the Limits of Functional Capability: The Effects of Sleep Loss on Short-Duration Tasks. In R.J. Broughton & R. Ogilvie (Eds.), Sleep, Arousal and Performance: Problems and Promises. Boston: BirkhäuserBoston, Inc. 20. Dinges, D.F., & Broughton, R.J. (Eds.). (1989). Sleep and Alertness: Chronobiological, Behavioral, and Medical Aspects of Napping. New York: Raven Press. 21. Graeber, R.C. (1988). Aircrew Fatigue and Circadian Rhythmicity. In E.L. Weiner & D.C. Nagel (Eds.), Human Factors in Aviation. New York: Academic Press. 22. Wake Up America: A National Sleep Alert. (1993). Report of the National Commission on Sleep Disorders Research. 23. Sasaki, M., Kurosaki, Y., Mori, A., & Endo, S. (1986). Patterns of Sleep-Wakefulness Before and After Transmeridian Flight in Commercial Airline Pilots. Aviation, Space, and Environmental Medicine, 57(12), B29-B42. 24. Torsvall, L. & Akerstedt, T. (1978). Sleepiness on the Job: Continuously Measured EEG Changes in Train Drivers. Electroencephalography and Clinical Neurophysiology, 66, 502-511. 25. Akerstedt, T., Torsvall, L., & Gillberg, M. (1987). Sleepiness in Shift-Work: A Review with Emphasis on Continuous Monitoring of EEG and EOG. Chronobiology International, 4, 129-140. 26. Akerstedt, T. (1992). Work Hours and Continuous Monitoring of Sleepiness. In R.J. Broughton & R.D. Ogilvie (Eds.). Sleep, Arousal, and Performance. Boston, MA: Birkhäuser-Boston, Inc. 27. Kryger, M.H., Roth T., & Carskadon, M.A. (1994). Circadian Rhythms in Humans: An Overview. In M.H. Kryger, T. Roth, & W.C. Dement (Eds.), Principles and Practice of Sleep Medicine. Philadelphia, PA: Saunders. 28. Monk, T. (1994). Shift Work. In M.H. Kryger, T. Roth, & W.C. Dement (Eds.), Principles and Practice of Sleep Medicine. Philadelphia, PA: Saunders. 29. Graeber, R.C. (1994). Jet Lag and Sleep Disruption. In M.H. Kryger, T. Roth, & W.C. Dement (Eds.), Principles and Practice of Sleep Medicine. Philadelphia, PA: Saunders. the probable causes of this accident were the impaired judgment, decision-making, and flying abilities of the captain and flightcrew due to the effects of fatigue” (REF). Based on their findings, the NTSB made the following recommendations related to fatigue: require that flight time accumulated in noncommercial “tail end” ferry flights be included in total flight and duty time accrued; expedite the review and upgrade of Flight/Duty Time Limitations of the Federal Aviation Regulations to ensure that they incorporate the results of the latest research on fatigue and sleep issues; and require U.S. air carriers to include, as part of pilot training, a program to educate pilots about the detrimental effects of fatigue, and strategies for avoiding fatigue and countering its effects. It is important to acknowledge the limitations of human physiology regarding sleep, circadian rhythms, and fatigue. The flight crewmembers involved in this accident were clearly professional, well trained, experienced, and highly motivated to perform their best. As humans, there are limitations to performance that are purely a reflection of physiological capabilities and can be independent of training, motivation, and experience. It is hoped that the structured analytical approach outlined here can provide a model for the examination of fatigue factors in accident investigations. Applying this approach provides a method for refining analysis of individual accidents and can create better estimates of fatigue-related risks than current statistics provide. This approach also can be used to examine errors or incident occurrences or to consider schedules prior to their implementation. These types of analyses offer the opportunity to identify fatigue-related vulnerabilities before an accident occurs and can be used as a preventive measure. Addressing the fatigue-related risks identified in such an analysis provides a mechanism to improve performance and alertness and enhance operational safety. “...the probable causes of this accident were the impaired judgement, decision-making, and flying abilities of the captain and flightcrew due to the effects of fatigue” Jongeren en pensioen Jongeren en pensioen zijn vaak een vreemde combinatie, terwijl het juist belangrijk is om je op jonge leeftijd bewust te zijn van je pensioensituatie. Om jongeren en pensioen dichterbij elkaar te brengen, is het Pensioenfonds Vliegend Personeel KLM een jongerenproject gestart. De take-off voor dit project vond op 28 januari plaats. Medewerkers van Blue Sky Group gingen op het bemanningencentrum met vliegers in gesprek over pensioen. Daarbij werd onder andere onderzocht wat men van pensioen weet en hoe pensioen-informatie het best kan worden aangeboden. De gesprekken dienden als vooronderzoek voor het jongerenproject en leverden ook enthousiaste deelnemers voor het projectteam op. Het projectteam zal zich in drie bijeenkomsten buigen over het onderwerp pensioen en over de mogelijkheden om jonge collega’s bij dit onderwerp te betrekken. De bijeenkomsten vinden plaats op 22 april, 22 mei en 10 juni 2010. Voor vragen kun je contact opnemen met de afdeling Communicatie via 020- 4 266 216 of communicatie@blueskygroup.nl Intensivering aandacht op vliegveiligheid: tekst Robert Brons, foto Rob van Ringelesteijn Nieuwe era of gemiste kans? Aandacht voor vliegveiligheid lijkt altijd goed; een effectieve aanpak is beter. De aandacht door middel van de recente inspanningen en de daaraan gekoppelde analyse lijken zich nu te concentreren op de vlieger. Natuurlijk hebben vliegers een cruciale rol in de vliegveiligheid en zijn vaak zowel de sluitpost als de poortwachter voor een veilige vlucht. Dat is echter maar één kant van de medaille. Er wordt een mogelijke verlaging van de vliegveiligheid aan de hand van een aantal recente serieuze incidenten en waargenomen trends gesuggereerd. Bestaan deze trends inderdaad en ligt de oorzaak alleen bij bij de vlieger? Zou het niet kunnen zijn dat de oorzaak veeleer gezocht moet worden in de combinatie vlieger, vliegtuig en procedure? Om deze kwestie te onderzoeken dient niet alleen de vlieger onderwerp van de analyse te zijn, maar ook de operatie zelf. Het feit dat in recente jaren vele veranderingen in het operationele vlak zijn doorgevoerd zonder een gedegen veiligheidsen operationele analyse, speelt volgens de VNV een belangrijke rol. 17 Trend Cijfers kunnen veel zeggen maar ook veel verhullen. De cijfers waar de VNV over beschikt zijn gebaseerd op het aantal (verplichte) animaties en onderzoeken bij (serieuze) incidenten en ongevallen waar de VNV bij betrokken is geweest. Geconcludeerd kan worden dat het aantal verplichte animaties trendmatig is gedaald, terwijl het aantal -onderzoeken bij incidenten licht lijkt te stijgen en het aantal OVV-onderzoeken licht dalende is. Of er daadwerkelijk sprake is van een relevante trend is mede afhankelijk van de vragen of men nu gerichter kijkt, kritischer kijkt en of de waargenomen feiten verband houden met elkaar. Met andere woorden of er geen sprake is van op zichzelf staande incidenten. Een verplichte animatie is bijna altijd crew gerelateerd. En juist daarin is een dalende lijn waar te nemen. Incidenten daarentegen hebben buiten een crew element vaak ook andere elementen (ATC, techniek, procedures, training, weer, luchthaven, etc.). Deze incidenten lijken toe te nemen, en dat is vreemd. Dat kan alleen indien de selectiecriteria die tot een verplichte animatie leiden zijn aangepast, of dat het juist de externe factoren zijn die ten grondslag liggen aan de mogelijke trend. Samenvattend: allereerst dient onderzocht te worden of inderdaad sprake is van een relevante trend. Vervolgens dienen de onderliggende factoren en oorzaken van deze trend te worden onderzocht alvorens een effectief actieplan kan worden ontwikkeld om deze trend te keren. In deze meer ingewikkelde operatie worden systeemfouten en menselijke fouten kritieker omdat vangnetten zijn verdwenen of marges en speelruimte kleiner zijn. Kritische operatie Onmiskenbaar is de operatie in de laatste jaren ingewikkelder en kritischer geworden. Introductie van groen, economisch en klantvriendelijk vliegen maakt de taak voor de vlieger ingewikkelder. De focus op vliegveiligheid is daardoor verwaterd en soms zelfs conflicterend geworden. De operatie lijkt kritischer geworden ten aanzien van (take-off ) performance, brandstofgebruik en on-time-performance. Bovendien worden de mogelijkheden voor de vlieger meer ingeperkt door de toenemende operationele restricties op het gebied van airspace en air traffic management, curfews en baangebruik. In deze meer ingewikkelde operatie worden systeemfouten en menselijke fouten kritieker omdat vangnetten zijn verdwenen of marges en speelruimte kleiner zijn geworden. Bij de Lintop-performance is dit duidelijk te zien: marges zijn afgenomen zodat verkeerde invoer van intersecties of take-off gewichten kritieker is geworden. Invoerfouten zijn van alle tijden. Ook in de ‘goede’ jaren bestondenn deze omissies , maar gingen ongemerkt voorbij vanwege de grotere marges. Vlieger of aantal valkuilen? Er wordt een verband gesuggereerd tussen de mogelijke trend en de afname van de professionaliteit van de vlieger. Dit verband kan niet zonder meer gelegd worden zonder goede onderbouwing en analyse van de onderliggende factoren. De operationele en ondersteunende omstandigheden zijn zo veranderd dat niet zo maar een vergelijk is te maken. Duidelijk is dat de BOP zijn sporen heeft achtergelaten. De kwaliteit van de handboeken is achteruit gegaan. Om het door de VNV expliciet verwoorde bezwaar, geuit in 2007, samen te vatten: de handboeken zijn niet eenduidig, onpraktisch ingedeeld en minder geschikt voor operationeel gebruik. Informatie is versnipperd. Operationele richtlijnen zijn verdwenen of verruimd. De vlieger dient nadrukkelijker als poortwachter en is verantwoordelijk voor een goed procesverloop. De middelen hiervoor zijn daarentegen beperkter geworden. Met de introductie van de performance optimalisatie van Lintop zijn niet alleen marges verkleind maar is ook het operationele proces onder druk gezet. Indien de werkwijze van ACARS-Lintop geen onafhankelijke berekening van beide vliegers toelaat, verliest het proces een veiligheidscheck en is derhalve minder betrouwbaar. De relatie tussen elektronische performance berekeningen en incorrecte invoer is al in de literatuur De vlieger dient nadrukkelijker als poortwachter en is verantwoordelijk voor een goed procesverloop. 18 bekend (NLR, Eurocontrol, IATA). Bovendien voldoen de huidige ACARS-Lintop interface en output niet aan Human Factors-richtlijnen voor cockpit instrumenten. Marges bij landing distance-berekeningen zijn verkleind, terwijl de betrouwbaarheid en nauwkeurigheid van de invoerdata niet zijn toegenomen. Wind, passagiersgewicht, touchdownpunt en baanfrictie wijken in de praktijk af van aangenomen waarden en dit maakt de minimale FCOM landing distance-berekening niet representatief. FCOM crosswindlimieten zijn verhoogd, terwijl de gerapporteerde wind onbetrouwbaar is gebleven. Operationele restricties zijn weggehaald of verminderd en achtergrondinformatie is verwijderd. Continuous descents geven een lastiger energiemanagementtaak voor de vlieger, zeker in een druk luchtruim. Een snelheids- of hoogte-overschot kan lastiger worden gecorrigeerd; dit geeft mogelijk meer hogesnelheidsincidenten. Tailwind naderingen door het noise preferential baangebruik kan leiden tot unstabilized approaches. Dat, gecombineerd met een uiterste focus op brandstofbesparend vliegen, kan de aanleiding betekenen tot een grotere kans op een toename van ‘hot approaches’. De focus op brandstof, zelfs enige tijd toegespitst op het persoonlijke niveau, betekent ook een grotere druk om tekortkomingen in het afhandelingsproces goed te maken tijdens de taxifase. Hoe sneller airborne, des te eerder kan met een lagere cost index worden gevlogen. Dit gecombineerd met veranderde procedures voor de take off check en aangepaste winteroperatie procedures maakt dat het principe van een steriele cockpit tijdens de taxifase in feite is verlaten. Tijd kan worden gewonnen door het accepteren van het aanbod tot een intersectie take-off. Indien dat tijdens het taxiën gebeurt, is door de vereiste hernieuwde performanceberekening de PM headsdown en hij kan de PF niet meer bijstaan of monitoren. Hetzelfde geldt voor een motor starten tijdens het uittaxiën. Vanuit meerdere kanten is de druk op de vlieger toegenomen en er zijn meerdere latente valkuilen geïntroduceerd. Onderzoeken van onder andere Eurocontrol, Flight Safety Foundation, IATA, IFALPA, en NLR tonen allemaal aan dat het verlies van Situational Awareness tijdens het taxiën de hoofdoorzaak is voor runway incursions. Taxiën is een ‘flight safety-critical’ vluchtfase; indien niet strikt aan het steriele cockpitconcept wordt vastgehouden, zal de kans op incidenten zoals een take-off vanaf een taxiway niet verder afnemen. Introductie van een nieuw type (B737-700, E190, B777-300) en modificatieverschillen over de vloot (bij B737) kunnen verdekte gevolgen geven. Verandering van ervaring, exposure en training kunnen een rol spelen in de mogelijke trends. De meerwaarde van training boven het wettelijke vereiste is minder makkelijk aantoonbaar dan de directe geldelijke besparing die minder training oplevert. Vliegers zijn bewust gemaakt van de economische situatie en doen er alles aan om kosten te besparen. Dat blauwe/rode/groene gevoel is prima en heeft geresulteerd in (nog) meer oog voor een economische en klantvriendelijke operatie. De poortwachterfunctie voor de veiligheid staat daarmee niet altijd meer vooraan. Een ‘shift of balance’ vindt ongemerkt plaats en staat in de literatuur bekend als “drifting into failure”. Kortom: vanuit meerdere kanten is de druk op de vlieger toegenomen en er zijn meerdere latente valkuilen geïntroduceerd. De gevolgen van de introductie van BOP, de nieuwe handboeken, Lintop en de focus op brandstofbesparing en economische bedrijfsvoering moeten worden gewogen met betrekking tot de (verdekte) consequenties voor de vluchtuitvoering en vliegveiligheid. Conclusie De voorgestelde zichtbare reactie van operators zoals intensivering training, strengere line-checks, meer nadruk op de professionaliteit van de vlieger, is natuurlijk één kant en tevens de gemakkelijkste kant van het verhaal. De andere kant, namelijk de verschraling van goede operationele procedures en training en verandering van operationele omstandigheden, vereist veel meer aandacht. Deze beide kanten zijn complementair. Als basis voor alle veranderingen zou een gedegen risicoanalyse moeten staan. Regulatory compliance, het volgen van regelgeving alleen, is echt niet afdoende. Honderd procent veiligheid is fictie en ook niet realistisch. Wel is het zaak om bij een 19 wijziging in procedures, training of hardware, de risico’s op analytische wijze in kaart te brengen. Een goed risicomodel zou moeten aangeven waar valkuilen ontstaan die dan worden ondervangen of kunnen worden geaccepteerd. Dit systeem zou uniform moeten gelden, dus ook bij wijzigingen doorgevoerd door de vliegtuigfabrikant, de wetgever of door de vliegtuigmaatschappij. De toezichthouder, concreet de Inspectie Verkeer en Waterstaat, moet investeren in haar eigen kwaliteit zodat daadwerkelijk goed toezicht wordt gegarandeerd in de complexe wereld van safety managementsystemen en risicomodellen. In Nederland is meer dan voldoende ervaring, expertise en innovatiekracht voor de luchtvaart aanwezig om de gepercipieerde trend te keren. Laten we die samen ontwikkelen en gebruiken! bespreking De piloot “De piloot” door Liesbet Slegers Clavis Uitgeverij ISBN 978 90 448 1163 6 Het aantal kinderboeken dat als thema luchtvaart neemt is niet groot, en als ze dat dan doen gaat het meestal over het vliegtuig. Liesbet Slegers, Vlaams auteur van kinderboeken en illustratrice, heeft als onderwerp juist de vlieger genomen als onderdeel van een lopende reeks over beroepen. ‘De piloot’ vertelt de kleuter vanaf drie jaar wat een piloot doet, hoe hij of zij – ze tekent ook een vrouw in de cockpit – er uit ziet, hoe een vlucht verloopt en wat verkeersleiding is. Het mooi uitgevoerde boek in hardcover oogt aantrekkelijk, met vrolijke kleuren en lachende mensen (niet alleen de piloten). Op de linkerpagina de tekst met een klein tekeningetje, rechts een volle pagina illustratie. De tekeningen van Slegers zijn eenvoudig, maar duidelijk en voorzien van veel kleur. De ultieme test is natuurlijk het voorleggen aan mijn eigen kinderen (vier en zeven jaar). Ze vonden het allebei interessant, maar vroegen na de eerste keer voorlezen maar een keer weer naar het boek. De informatie die dit kinderboek geeft is accuraat door medewerking van Pierre-M. Ghyoot, secretaris-generaal van de Belgian Cockpit Association. En dat is ook duidelijk de doelstelling van het boek geweest: informatie geven. Daarin slaagt er bijzonder goed, maar de afwezigheid van een spannend verhaal maakt wel dat het kind waarschijnlijk niet snel om herhaling gaat vragen. Toch is het zeker voor vliegend personeel met kinderen in de kleuterleeftijd een verrijking van de kinderboekenkast. Mijn kinderen gingen me in ieder geval wel vragen stellen na het voorlezen, en dat geeft aan dat de informatie wel aankomt. Terugblik Ruim een half jaar geleden (uitgave juli 2009) verscheen in Op de Bok een artikel getiteld ‘Refractieve chirurgie’ waarin Jacqueline Vollebregt inging op alle vragen die opkomen bij het onderwerp ooglaseren. Een vraag kon in het artikel (nog) niet beantwoord worden, namelijk of bij arbeidsongeschiktheid na een ooglaseroperatie er wel een invaliditeitspensioen wordt uitgekeerd. De juridische adviesgroep van het Pensioenfonds van de KLM liep hierbij tegen het probleem aan dat laseren geen voorgeschreven medische behandeling is. “Men doet het om gemaks- of esthetische redenen”, argumenteerde de adviesgroep. De vraag werd daarop voorgelegd aan het bestuur van het Pensioenfonds, die nu heeft geantwoord: “Naar aanleiding van uw vraag kunnen wij u meedelen dat het bestuur van het pensioenfonds van oordeel is dat een ooglaseroperatie (uitgevoerd in een daarvoor medisch gekwalificeerde kliniek) tot doel heeft om het gezichtsvermogen te verbeteren en niet gericht zal zijn op het bewerkstelligen van arbeidsongeschiktheid. Het enkele feit dat een vlieger na het ondergaan van een ooglaseroperatie vliegmedisch wordt afgekeurd, wordt door het pensioenfondsbestuur onder normale omstandigheden dan ook niet als opzet of grove roekeloosheid gezien. Alsdan zal een arbeidsongeschiktheidspensioen tot uitkering komen.” Evident 24 column Boos Evert van Zwol president Ik had gehoopt het niet mee te hoeven maken tijdens deze VNV-bestuursperiode, maar het is er helaas toch van gekomen; een bedrijf failliet. Een grote groep VNV-leden werkzaam bij Denim Air kwam na hun gesprek met de curatoren langs bij de VNV voor een vliegervergadering. Naast het afblazen van stoom en uiting geven aan boosheid overheerste het gevoel dat de werknemers van Denim zijn beetgenomen in de laatste, moeilijke periode van het bedrijf. Een zeer begrijpelijk gevoel overigens want de VNV is gerechtelijke procedures gestart tegen het faillissement en sluit niet uit dat ook de verantwoordelijke bestuurders juridisch aangepakt zullen worden. Naast het collectieve drama van het faillissement staan de individuele moeilijkheden van onze collega’s mij zeer scherp op het netvlies. Na de vergadering tijdens een soort informele ‘Denim Air afscheidsborrel’ hoor je zo links en rechts wat men nu denkt te gaan doen. Behalve dat de banen in de luchtvaart nu bepaald niet voor het oprapen liggen, zijn de condities vaak ook nog eens erg slecht. Het inmiddels overal in zwang rakende betalen voor je eigen typerating maakt het plaatje er alleen maar minder vrolijk op. Veel vliegers hebben dat immers recent nog moeten doen bij Denim Air en kunnen door het faillissement hoogstwaarschijnlijk geen aanspraak maken op de ontslagvergoeding die met Denim was overeengekomen. Ik kan alleen maar hopen dat in de onvermijdelijke upswing van de wereldluchtvaart alle vliegers werkzaam bij bedrijven die opleidingskosten van vele tienduizenden euro’s berekenen collectief door kunnen stromen naar betere werkgevers. Zorgen van een heel andere orde maak ik me over de wirwar van onderzoeken die naar aanleiding van serieuze incidenten over vliegers heen kunnen komen. Op dit moment lopen er onderzoeken bij de OVV, KLM, Openbaar Ministerie en IVW naar aanleiding van het taxiway B-incident. Dat er goed en gedegen onderzoek naar moet worden verricht staat voor ons buiten kijf, maar zoveel verschillende? De felheid en territoriumdrift die sommige partijen ten toon spreiden baart ons soms ook zorgen en raakt helaas ook weer aan het onderwerp van meldingsbereidheid versus vliegveiligheidsonderzoek. Is er ook goed nieuws te melden? Ja, toch wel. Denk bijvoorbeeld aan de signalen dat delen van de wereld echt economisch herstel laten zien, dat transavia.com bereid lijkt te zijn inhoudelijk met de VNV over de buitenlandstrategie te gaan praten en dat de Eerste Kamer met ons van mening is dat artikel 5.3 van de Wet luchtvaart niet te pas en te onpas ingezet moet kunnen worden. Maar al die ontwikkelingen zijn nog pril en komen hopelijk volgende maand meer uitgebreid aan bod. Het gevoel overheerste dat de werknemers van Denim zijn beetgenomen in de laatste, moeilijke periode van het bedrijf.