synergists for hexaphenoxycyclotriphosphazene in
Transcription
synergists for hexaphenoxycyclotriphosphazene in
Fraunhofer ICT SYNERGISTS FOR HEXAPHENOXYCYCLOTRIPHOSPHAZENE IN CAST PA6 Carl-Christoph Höhnea,b, Bert Käbischa,b, Thorsten Andersa and Edwin Krokeb a) Fraunhofer Institut für Chemische Technologie (ICT), Umwelt Engineering, D-76327, Pfinztal b) Technische Universität Bergakademie Freiberg, Institut für Anorganische Chemie, D-09596, Freiberg Introduction Carbon fiber reinforced (CFR) anionic polyamide 6 (APA6) is a light and at the same time very strong material. Therefore CFR APA6 components are of interest as lightweight construction materials e.g. for aircraft manufacturing. Like many other organic polymers APA6 is flammable and thus it is mandatory to protect the polymer matrix by adding flame retardants (FRs). However, an suitable process for pro- duction of CFR APA6 materials such as thermoplastic resin transfer molding (T-RTM) process is highly sensitive to presence of polymer additives such as FRs. E.g. commonly used FRs interrupt the anionic ring opening reaction of ε-caprolactam to form PA6 or are filtered out by the fiber fleece. With hexaphenoxycyclotriphosphazene (HPCTP) we discovered an incorporable FR for CFR APA6. Results Preparation FRs TESTED IN LAB SCALE FR requirements for CFR APA6 produced via T-RTM: • Solubility in molten ε-Caprolactam • No interruption of the anionic polymerization process Only the HPCTP-FR Rabitle FP110 (Nordmann, Russmann) is applicable in T-RTM process for CFR APA6 with higher loading (see tested FRs). FR Solubility No interruption Rabitle FP110 (HPCTP) Yes (tested till 50 wt.%) Yes Methyl-DOPO Yes (till 10 wt.%) Yes (till 5 wt.%) Aflammit PCO 960 Exolit AP 462 Apyral 40 CD Apyral 40 VS1 Magnifin H5 IV Red phosphorus Melamine Expandable graphit Exolit OP 935 Exolit OP 1312 Yes (till 10 wt.%) No No No No No No No No No Yes (till 1 wt.%) Yes Yes Yes Yes Yes No No No No LOI 38.4 O2% 38 36 LOI [O2%] 34 V-0 34.2 O2% n.b. n.b. n.b. V-0 CFR APA6 32 30 FAR 25.853 F1 pass fail 28 26 24 22 20 n.b. n.b. n.b. 0 24 LOI 24.4 23.1 APA6 + 8 wt.% HPCTP 22.6 APA6 23.1 Synergists: n.b. Aromatic carbon source Dicumene (VELOX) Triphenylmethane 21 25 Triazine based Flamestab NOR116 (BASF) 2,4,6-Trimethoxy-1,3,5-triazine CONE CALORIMETRY OF CFR APA6 Thermally thick charring material 0 % HPCTP 2 HRR [kW/m ] 10 % HPCTP 5 % HPCTP 120 15 % HPCTP 25 % HPCTP 80 40 20 Afterglow 0 0 50 100 150 30 10 % HPCTP 15 % HPCTP 25 % HPCTP 200 250 300 350 400 450 500 550 Surface [mm2] 100x100 100x100 100x100 100x100 100x100 tig [s] 47 44 40 47 54 Peak HRR [kW/m2] 198 176 155 148 150 APA6 + 15 wt.% HPCTP (syn. Air) APA6 + 15 wt.% HPCTP (Nitrogen) 60 HPCTP (syn. Air) 40 APA6 (syn. Air) 20 0 0 100 200 300 400 Temperature [°C] 500 600 700 2 3 4 Synergist [wt.%] 5 6 Conclusion 10 0 600 Time [s] HPCTP [wt.%] 0 5 10 15 25 1 40 2 160 80 3,3,9,9-Tetramethyl-2,4,8,10-tetraoxaspiro[5,5]-undecane 0 THR [MJ/m ] 5 % HPCTP HPCTP (Nitrogen) 100 Oxygen source (ether) Desmophen 2061BD (Bayer) 19 50 HRR THR 0 % HPCTP TGA APA6 (Nitrogen) 20 200 Plate (650x480x2 mm3; CFR: 64 wt.%, 53 vol.%) TGA OF FIBER-FREE APA6 HPCTP promotes in oxygen rich atmosphere (syn. air) the formation of thermally stable char. In an innert atmosphere (Nitrogen) no char formation is observed. 22.9 22 20 mold 23.3 23.3 23 10 15 HPCTP [wt.%] APA6 + 8 wt. HPCTP + Synergist APA6 + Synergist 23.7 n.b., V-0 fiber-free APA6 5 Polymerization T: 150 °C t: 360 s p: normal CFR: unidirectional For future researches the influence of six additional additives in lab scale experiments was studied. Five of the examined compounds exhibited distinct synergistic effects with HPCTP in APA6 matrix. Although Trimethoxytriazine showed no synergy, it significantly improved flame resistance of APA6 as a stand alone additive. UL94 n.b. Mixing (1:1) T: 110 °C 4 wt.% Cat. 2 wt.% Act. 0-25 wt.% FR Synergism 22.8 O2% 22.0 O2% ε-Caprolactam ε-Caprolactam Catalyst Activator FR Melting T: 110 °C Weight [wt.%] FR-TESTS CFR APA6 with 15 wt.% HPCTP pass FAR and UL94 (V-0) test and shows highest LOI value. T-RTM process THE TSR [MJ/m2] [m2/m2] 35,6 94 29,3 404 25,3 528 23,4 526 19,4 654 The Heat Release Rate (HRR) decreases with increasing HPCTP load. Without HPCTP, CFR APA6 shows afterglow. Incorporation of HPCTP eliminates afterglow and promotes char formation. tb MARHE [s] [kW/m2s] 535 126,2 450 116,2 352 105,6 409 97,5 380 86,9 Peak CO [ppm] 92 201 309 380 564 Peak CO2 Mass loss [%] [wt.%] 0,369 39,8 0,335 30,7 0,302 29,4 0,279 29,5 0,289 28,5 According to TGA and cone calorimetry, char formation is the essential FR mechanism of HPCTP in CFR APA6. Incorporation of only 15 wt.% HPCTP prevents afterglow (cone calorimetry) and allows the material to pass FAR and UL94 (V-0) tests. Following mechnaical properties were obtained for CFR APA5 with 15 wt.% HPCTP (0° orientation). Crystallinity: 40 %, Impact resistant: 96 kJ/m2 E-mod.: 118GPa (flex.) 103GPa (compr.) 134GPa (Young) Strength: 1228MPa (flex.) 463MPa (compr.) 1471MPa (tens.) Reference: C.-C. Höhne, Master Thesis, TU Bergakademie Freiberg, 2014. Acknowledment: We thank our colleague from Polymer Engineering (ICT) Rainer Wendel for performing of the T-RTM process. Background: Photo of a CFR APA6 plate via T-RTM. M.Sc. Carl-Christoph Höhne Fraunhofer Institute for Chemical Technology ICT| Environmental Engineering | Polymers and Additives| Joseph-von-Fraunhofer-Strasse 7 | 76327 Pfinztal | Phone: +49 721 4640-310 | carl-christoph.hoehne@ict.fraunhofer.de | FRPM 2015 | June 21th-25th 2015