Übung 12.06.2015
Transcription
Übung 12.06.2015
Übungen zur LV Stochastische Prozesse in der Physik Sebastian Rosmej / Reinhard Mahnke 16. Juni 2015 Übungsaufgaben Serie 5 (bitte zur Übung am 19.06.2015 die Ergebnisse mitbringen, auch zum Vorrechnen und diskutieren an der Tafel) Fokker-Planck Gleichung Aufgabe 5: Study of Fokker–Planck dynamics p(x, t) with known linear drift f (x) = −γ x given by ∂p(x, t) ∂ σ 2 ∂ 2 p(x, t) = − [f (x)p(x, t)] + ∂t ∂x 2 ∂x2 ; p(x, t = 0) = δ(x − x0 ) (1) with natural boundary conditions. Summary: What to do? The task is to solve the one–dimensional Fokker–Planck equation ∂p(x, t) ∂ + j(x, t) = 0 ∂t ∂x (2) with flux j(x, t) including given drift f (x) = −dV (x)/dx and constant diffusion coefficient D j(x, t) = − dV (x) ∂p(x, t) p(x, t) − D dx ∂x (3) getting the probability density p(x, t) taking into account initial condition p(x, t = 0) = δ(x − x0 ) and natural boundary conditions limx→±∞ j(x, t) = 0. The result is ∞ ψ0 (x) X −λn t p(x, t) = e ψn (x0 )ψn (x) ψ0 (x0 ) n=0 1 (4) where the eigenfunctions ψn (x) and eigenvalues λn are determined from the eigenvalue equation d2 −D 2 + VS (x) ψn (x) = λn ψn (x) dx (5) with Schrödinger potential " 1 d2 V (x) 1 VS (x) = − − 2 2 dx D 1 dV (x) 2 dx 2 # (6) The lowest eigenvalue is always zero (λ0 = 0) and the corresponding eigenfunction is related to the stationary solution via exp (−V (x)/D) pst (x) = ψ0 (x)2 = R +∞ dx exp (−V (x)/D) −∞ (7) Task: Calculate Rthe probability density p(x, t) for the given harmonic potential V (x) = − f (x)dx with f (x) = −γ x based on the solution of the eigenvalue problem known from quantum mechanical harmonic oscillator. 2