Optimizing Cooling Processes - A Dynamic View on the Third Law
Transcription
Optimizing Cooling Processes - A Dynamic View on the Third Law
Optimizing Cooling Processes - A Dynamic View on the Third Law" Karl Heinz Hoffmann! TU Chemnitz! Germany! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! The Third Law" ● 1906 Nernst 1911 Planck! lim S = 0 T →0 A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! r_t a f4r O xäo 6 o (D N (D { I o w o ^ Ja Yll I -H Qoa & o 0 o t o q n N o o N o o a e o o 6 o o @ ● magnetic refrigeration! rDärl -314 rno) \Y ö> A tl oi= I'e EFo, q ?x oo. ii 5: ot- t\0 ,'a s 6'-. rO r/: OY na EO Oc ni o g{ tl The Third Law" s x ü – isotherms! – adiabats! il:in ● alternate! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! .<;it. r P 15:. 9;ä o? o!] 6' gg ,o qs F.v A)o En xo (D;. vg, rC) lcl :.!g ={a s;' N/ -5,El No reversible adiabatic process starting at nonzero temperature can possibly bring a system to zero temperature! ä@ c:-< a) cl o t!ö ,*o '^. =... I Y "9, X ,-E 6 ä'E Y0e +tr Äa ii(D 3..6 Ca lim S = 0 T →0 il ● as ! The Third Law" ● consequence: absolute zero is unattainable! ● infinite number of steps would be needed to reach absolute zero! ● steps are thermodynamic equilibrium steps (infinitely slowly)! What about non-equilibrium processes?! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Dynamic View on the Third Law" ● Processes in finite time! Finite-Time Thermodynamics Endoreversible Thermodynamics! ● no longer thermodynamic equilibrium branches! ● consider a refrigerator! Are there limits on the cooling rate?! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Dynamic View on the Third Law" ● continuous refrigeration process: entropy production! ● the Second Law:! σ = −Q̇c /Tc + Q̇h /Th > 0 Rc = Q̇c < ● What exponent δ does apply in A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Q̇h Tc Th Rc ∝ Tcδ ?! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! A Quantum Refrigerator" ● working medium: an ensemble of quantum harmonic oscillators! 1 2 m ω(t)2 2 Ĥ = P̂ + Q̂ 2m 2 ● description by density operator! ● the work parameter: the frequency instead of the volume! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! A Quantum Refrigerator: Average Cooling Rate" ● for a cyclic refrigerator the cooling rate is the heat up-take per cycle time! Rc = Qc Qc = τ τhc + τc + τch + τh ● expectation: 3.5 3.0 τch 2.5 For given Tc one needs to choose optimal! ωc , τhc , τc , τch , τh n 2.0 τh τc 1.5 τhc 1.0 Qc ( ωc ( Tc ) ) τ ( ωc ( Tc ) ) A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! 0.5 0.5 1.0 1.5 2.0 Ω 2.5 3.0 Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! 3.5 The Dynamics of a Quantum Working Fluid" ● Adiabats: externally driven Hamiltonian! Ĥ(ω(t)) dÔ(t) i ∂ Ô(t) = [Ĥ(t), Ô(t)] + dt � ∂t ● contact to heat bath, fixed frequency: dissipative Lindblad dynamics! dÔ(t) i ∗ = L (Ô) = [Ĥ, Ô] + L∗D (Ô) dt � ● Lindblad term establishes thermal equilibrium to a bath! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Simplified Dynamics" ● There exists a set of operators which is invariant under the dynamics! Ĥ, L̂, Ĉ ● These are the Hamiltonian, the Lagrangian, and the Correlation! 1 2 m ω(t)2 2 Ĥ = P̂ + Q̂ 2m 2 1 2 m ω(t)2 2 L̂ = P̂ − Q̂ 2m 2 1 Ĉ = ω(t) (Q̂P̂ + P̂Q̂) 2 A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Entropies" ● von Neumann entropy SvN = −kB Tr(ρ̂ ln ρ̂) ● energy entropy SE = −kB with � pn ln pn n pn = � n |ρ(Ĥ, L̂, Ĉ)| n � expectation values in energy eigen states! ● in equilibrium! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! SvN = SE Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Adiabat Dynamics" ● frequency changing linear in time [0,10] from 1 to 0.3! 1.0 1.0 0.9 E L C 0.8 0.8 Ω 0.7 0.6 0.6 0.4 0.5 0.2 0.4 0.0 0.3 0 2 4 6 t A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! 8 10 0 2 4 6 8 t Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! 10 Adiabat Dynamics" ● frequency changing linear in time [0,10] from 1 to 0.3! 1.0 0.99 E n 0.8 0.98 SvN SE 0.97 0.6 0.96 0.4 0.2 0.95 0 2 4 6 t 8 10 0.94 0 2 4 6 8 t ● the mean occupation number n is not constant: quantum friction! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! 10 Heat Bath Contact" ● fixed frequency and coupling to a bath with the contact temperature! ! ! ! ! ! !W. Muschik, G. Brunk! 1.0 0 0.5 L 0.0 2 E 3.0 4 �0.5 6 �1.0 1.0 E L C 2.5 2.0 1.5 1.0 0.5 0.5 0.0 C �0.5 0.0 �1.0 �0.5 0 2 4 6 8 t A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! 10 Heat Bath Contact" ● fixed frequency and coupling to a bath with the contact temperature! 2.10 2.08 SvN SE 2.06 2.04 2.02 0 2 4 6 8 10 t A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Heat Bath Contact" ● fixed frequency and coupling to a bath with a different temperature! 3.0 2.0 E L C 2.5 2.0 1.8 SvN 1.5 1.6 1.0 SE 1.4 0.5 0.0 1.2 �0.5 1.0 0 10 20 t 30 A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! 40 0 10 20 t 30 Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! 40 Heat Bath Contact" ● fixed frequency and coupling to a bath with a different temperature! L 0.0 0.5 1.0 1.0 �0.5 0.5 �1.0 1.0 C 0.0 0.5 �0.5 C0.0 �1.0 1.0 0.5 �0.5 0.0L 01 2 E 3 �1.0 4 A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! �0.5 0 1 2 E 3 4 �1.0 Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! The Cooling Rate" ● the cooling rate! Rc = 1 �ωc (nC − nD ) τhc + τc + τch + τh ● given the time needed for the adiabats: optimize for relative time allocation on the isotherms (isofrequencies) optimize for time allocation between isotherms and adiabats! τhc = τch τh = τc 3.5 eq Ropt c ≈ �ωc neq c τhc 3.0 nC τch 2.5 nC n 2.0 τh τc 1.5 nD 1.0 0.5 0.5 A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! τhc ωc 1.0 1.5 2.0 Ω 2.5 3.0 3.5 Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Adiabat Dynamics: the 1TURN Process" ● special frequency protocol! 1.0 1.02 E 0.8 ω̇ µ = 2 = const ω n 1.00 SvN 0.6 SE 0.98 0.4 0.96 0.2 0.0 0 5 10 15 20 25 0.94 0 5 10 t ● the optimal time from hot to cold! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! 15 20 t ∗ τhc = 1 −1 ω 2 c Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! 25 Time needed for IR Adiabats: the 1TURN Process" ● for given ωc , ωh choose proper speed and time ∗ τhc 1 −1 = ωc 2 ! Ropt < const. Tc2 c 0.2 C 0.0 0.1 0.2 0.1 L 0.2 0.0 0.1 L E 0.2 0.4 1.00.80.6 0.0 0.1 0.0 C 0.2 0.2 0.4 0.6 E 0.8 A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! 1.0 Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Adiabat Dynamics: 3JUMP Process" ● three frequency jumps between given frequencies! 2.0 τ2 E L C 2 1.8 1.6 1 1.4 0 Ω 1.2 1.0 0.0 τ1 0.1 0.2 0.3 �1 0.4 t 0.5 A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! 0.6 0.7 0.0 0.1 0.2 0.3 0.4 t 0.5 0.6 Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! 0.7 Adiabat Dynamics: 3JUMP Process" ● three frequency jumps between given frequencies! 1.0 C 1.0 0.5 0.0 2.5 2.0E 1.5 1.0 1.0 1.5 E C 2.0 0.5 2.5 �1.5 �1.0 �0.5 L 0.0 A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! 0.5 0.0 �1.5 �1.0 �0.5 L 0.0 0.5 Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Shortest Time needed for Adiabats" ● If frequency is confined between ωc and ωh 3JUMP Processes are the adiabats which lead in the shortest time from equilibrium to equilibrium! ● proof on the basis of control theory, very technical ∗ τhc 1 − 12 = √ ωc ωh A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Ropt c 3 2 < const. Tc Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! (Dated: July 13, 2012) In the optimal control problems mentioned above for these probl turned up a[15, closely related invariantofwhich we herethe dub 16], the constancy X reduces dimension of ant of motion for Hamiltonian systems is introduced: the Casimir thermore the v the Casimirthe companion X It appears to be as simplifies problem by [15–18]. oneoscillators) – a feature which greatly simple dynamical algebras (e.g., coupled spins, harmonic energy useful for these problems as theand Casimir is for the optimal control facilitates its understanding andof the sC problems thatGeneralized consider adiabatically varying the parameters in the operator Dynamics: Finite-Dimensional Lie Algebra" the von Neum problems traditional, static of interpretation [17, 18].symmetries. X is calhas proved useful in optimal controlwith of changes in these parameters. of X. wh culated usingof the formula for problem the Casimir but Hterms allows simple calculation of the entropy non-equilibrium ensembles. A Hamiltonian withoperator Hamiltonian is said inserting of operators. ope have a values dynamical algebra [19] provided H can be ex● There exists a setexpectation oftooperators whichinstead is invariant under the dynamics! Sv, 05.70.-a, 02.30.Yy In the optimal control problems mentioned aboveof the Lie alto pressed as a linear combination of elements esses, Entropy, Lie Algebra, Casimir Invariant, Optimal Control TH Ĥ,of L̂, X Ĉ reduces the dimension of [15, 16], thegebra. constancy {B the problem by one – a feature which greatly simplifies N ! Consider a s the optimal control and facilitates its understanding and i and this latter dynamics follows from the commutation h (t)Bi . (1) ● More general setting: there exists a set H of = operators of operators { interpretation [17, 18]. whichrelations form a Lie algebra with! i=1 where the Ham A Hamiltonian problem with Hamiltonian H is said m mechanics has N It then follows that theprovided dynamics (say) the energy can No operators. Th ! to have a dynamical algebra [19] H of can be exk nvariants simpli[B cijdynamics Bkelements , (2) reduced ofofa the basis for algebra i, B j ] =to the be closedHa u pressed as abe linear combination of Lie al- the to these invariants k=1 {Bi }N gebra. i=1 is not Lie algebra assoN defining the algebra. ! htforward invarii h (t)B . H = Optimal control involving only the iexpectation values(1) ants are familiar i=1handled in the Heisenberg of (say) the energy, are nicely omentum. representation. The dynamics of anyof operator A energy are then It then follows that the dynamics (say) the can Note that thi ced by Hendrik be reduced to dA the dynamics of ∂A a basis for the algebra Hamiltonian ar d element of the ı = [H, A] + , (3)Hoffmann! commutes with A Dynamic View on the Third Law! Karl Heinz IWNET2012, Roros! Professur für Theoretische Physik, dt h̄ ∂t August 19-24, 2012! insbesondere Computerphysik! ture makes it a Taking the trace with the (constant) density matrix leads having the symto ordinary differential equations for the expectation this means that The metric metricg gofofthe thealgebra algebra calculated directly The cancan be be calculated directly fromthe thestructure structureconstants: constants: from Th N The osc N! ! n n cincmincm . Lie (6) (6) gikgik= = . Generalized Dynamics: Finite-Dimensional Algebra" kmckm m,n=1 m,n=1 Now Casimir C [20] is completely deterP, Q Nowofthe the Casimirinvariant wher ● Known constant the motion: invariant C [20] is completely deter-where mined erators, m mined erato N lator,lator, resp ! N ! The Casimir Operator! the finite L C= g ik Bikk Bi , (7) the fi C= g Bk Bi , (7) i,k=1 i,k=1 with g ikik = [g −1−1 ]ki . In addition a second dimensionless ● There exists invariant, awith second constant of. the which is invariant under g the = [gCasimir ]ki In motion addition second dimensionless companion X,a naturally exists: the dynamics:invariant, the Casimir companion X, naturally exists: N ! Ng ik !B "!B " . ! k i ik g !Bk "!Bi " . X= i,k=1 X= The Casimir Companion! (8) Using the (8) Using [H, L] = [H Because of the linearity of equation (4), the expectation values Bi of = !B evolve according to the(4), same Because the of equation theequations expectationthe metric i " linearity ● The von Neumann entropy – also in non-equilibrium – can always be of motion Bi . The invariance of X folvalues Bthe = the !Bi "operators evolve according to the same equations the m i as expressed in terms of Casimir Companion ! lows of motion as the operators Bi . The invariance of X foli,k=1 lows A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Ẋ = N ! N ! i,k=1 Ẋ = " # Karl Heinz Hoffmann! Professur für Theoretische Physik, g !"B˙k "!Bi " + !Bk "!Ḃi " insbesondere Computerphysik! # N ! i,k=1 ik g ik !B˙k "!Bi " + !Bk "!Ḃi " This metr explicitly This above, one Entropies" ● von Neumann entropy SvN = kB ln �� 1 X− 4 � 1 E2 − ω2 4 � + √ + � X arcsinh ● energy entropy! SE = kB ln �� � √ X X − 14 � � E2 ω2 E 2 − L2 − C 2 X= ω2 E2 arcsinh E 2 2 1 ω ω2 − 4 SE ≥ SvN ● one can define "contact temperature"! 1 Tcontact A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! ∂SE �� = � ∂E ω Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! The Team" Yair Rezek Ronnie Kosloff Fritz Haber Research Center Hebrew University Jerusalem A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Peter Salamon Karl Heinz Hoffmann San Diego State University Tech. Universität Chemnitz! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Summary" ● Dynamic view on the Third Law: Study temperature dependence of the Cooling Rate! ● "Quantum Refrigerator": parametric harmonic oscillators as working medium! ● good indicators for non-equilibrium: Von Neumann entropy, energy entropy! ● Application: Maximum cooling rate of a quantum refrigerator! ● There exist adiabatic processes in finite time !!!! ● Generalization: Lie algebra dynamics and the Casimir Companion! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Selected References 1" ● Optimal control in a quantum cooling problem Salamon, Peter and Hoffmann, Karl Heinz and Tsirlin, Anatoly Applied Mathematics Letters (in press) (2012)! ● Time-optimal controls for frictionless cooling in harmonic traps Hoffmann, Karl Heinz and Salamon, Peter and Rezek, Yair and Kosloff, Ronnie Europhysics Letters 96(6): 60015-1--6 (2011)! ● Optimal control of the parametric oscillator Andresen, Bjarne and Hoffmann, Karl Heinz and Nulton, James and Tsirlin, Anatoly and Salamon, Peter European Journal of Physics 32(3): 827--843 (2011) ; ISSN 0143-0807! ● The quantum refrigerator: The quest for absolute zero Rezek, Y. and Salamon, P. and Hoffmann, K. H. and Kosloff, R. Europhysics Letters 85: 1--5 (2009)! ● Maximum work in minimum time from a conservative quantum system Salamon, P. and Hoffmann, K. H. and Rezek, Y. and Kosloff, R. Physical Chemistry Chemical Physics11: 1027--1032 (2009)! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik! Selected References 2" ● Optimal Process Paths for Endoreversible Systems Hoffmann, K. H. and Burzler, J. and Fischer, A. and Schaller, M. and Schubert, S. Journal of Non-Equilibrium Thermodynamics 28(3): 233--268 (2003)! ● Recent Developments in Finite Time Thermodynamics Hoffmann, K. H. Technische Mechanik 22(1): 14--25 (2002)! ● Endoreversible Thermodynamics Hoffmann, K. H. and Burzler, J. M. and Schubert, S. Journal of Non-Equilibrium Thermodynamics 22(4): 311--355 (1997)! A Dynamic View on the Third Law! IWNET2012, Roros! August 19-24, 2012! Karl Heinz Hoffmann! Professur für Theoretische Physik, insbesondere Computerphysik!