Universität Tübingen Master`s Thesis in Computational

Transcription

Universität Tübingen Master`s Thesis in Computational
Universität Tübingen
Master’s Thesis in Computational
Linguistics
Automatic Prediction of CEFR
Proficiency Levels Based on Linguistic
Features of Learner Language
Julia Hancke
julia hancke@yahoo.com
Supervisor: Prof. Dr. Detmar Meurers
Second Examiner: Dr. Frank Richter
29.04.2013
Abstract
In this theses we present an approach to language proficiency assessment
for German. We address language proficiency assessment as a classification
problem. Our main focus lies on examining a wide range of features on the
syntactic, lexical and morphological level. We combine features from previous work on proficiency assessment with proficiency measures from language
acquisition research, and additional indicators from readability assessment.
Our data set consists of 1027 German short essays that were produced during German as a second language examinations and rated on the CEFR
scale by humans examiners. We experiment with different machine learning
algorithms and techniques for model optimization, and conduct a number
of experiments that mainly investigate the performance of different feature
combinations.
Contents
1 Introduction
4
2 Background
2.1 Related Work . . . . . . . . . . . . . . .
2.2 Machine Learning . . . . . . . . . . . . .
2.2.1 Algorithms for Machine Learning
2.2.2 Evaluation . . . . . . . . . . . . .
2.3 Defining Linguistic Units . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5
. 5
. 9
. 10
. 11
. 12
3 Data
16
4 Preprocessing
4.1 Components of the Preprocessing Pipeline . . . . . . . . . . .
4.2 Sentence Boundary Detection for Essays with Missing or Spurious Punctuation . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Building a Missing Sentence Boundary Detector . . . .
4.2.2.1 Creating Training and Test Set . . . . . . . .
4.2.2.2 Preprocessing for Sentence Boundary Detection
4.2.2.3 Features . . . . . . . . . . . . . . . . . . . . .
4.2.2.4 Experiments . . . . . . . . . . . . . . . . . .
4.2.2.5 Conclusion . . . . . . . . . . . . . . . . . . .
18
18
5 Features For Language Proficiency Assessment
5.1 Lexical Features . . . . . . . . . . . . . . . . . . . . . .
5.1.1 Lexical Diversity Measures . . . . . . . . . . . .
5.1.2 Depth of Knowledge Features . . . . . . . . . .
5.1.3 Shallow Measures and Error Measures. . . . . .
5.2 Language Model Features . . . . . . . . . . . . . . . .
5.3 Syntactic Features . . . . . . . . . . . . . . . . . . . .
5.3.1 Parse Rule Features . . . . . . . . . . . . . . . .
5.3.2 Dependency Features . . . . . . . . . . . . . . .
5.3.3 Parse Tree Complexity and Specific Syntactic
structions. . . . . . . . . . . . . . . . . . . . . .
5.4 Morphological Features . . . . . . . . . . . . . . . . . .
5.4.1 Inflectional Morphology of the Verb and Noun
5.4.2 Derivational Morphology of the Noun . . . . .
5.4.3 Nominal Compounds . . . . . . . . . . . . . .
5.4.4 Tense . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
27
27
28
30
35
35
37
38
38
.
.
.
.
.
.
39
42
43
43
44
45
2
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
Con. . .
. . .
. . .
. . .
. . .
. . .
22
22
23
23
24
24
25
27
6 Experiments and Results
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . .
6.2 Comparison of different Algorithms for Classification . . .
6.3 SMO Configuration and Optimization . . . . . . . . . . . .
6.4 Measuring the Contribution of Different Feature Types . .
6.5 Combining Different Feature Groups . . . . . . . . . . . .
6.6 Feature Selection . . . . . . . . . . . . . . . . . . . . . . .
6.7 Pass or Fail Classification for Each Exam Type Separately
6.8 Classification with Rasch Corrected Scores . . . . . . . . .
6.9 Predicting the Exam Type . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
46
46
47
48
49
53
55
58
60
61
7 Conclusion
61
8 Perspectives for Future Work
63
3
1
Introduction
Tools for the automatic evaluation of free text essays, such as the Educational
Testing Service’s e-Rater (Attali and Burstein, 2006) or Pearson’s Intelligent
Essay Assessor (Landauer et al., 2003), have been an active field of research
over the last decade. They are now increasingly employed in high stakes
examinations. The most striking advantages of automatic assessment over
human raters are speed, lower costs and the reduction of marking inconsistencies.
Automatic language proficiency assessment is a specific case of automatic
essay rating that has recently begun to attract attention within the natural
language processing community. Briscoe et al. (2010) and Yannakoudakis
et al. (2011) automatically graded English as a second or foreign language examinations (Cambridge First Certificate of English). Vajjala and Loo (2013)
automatically assigned CEFR1 proficiency levels to texts written by learners
of Estonian.
Language proficiency assessment and automatic essay grading in general
mainly differ on the marking criteria they employ. Automatic essay rating
systems mainly assign grades based on the content of an essay and some additional stylistic criteria. Many systems have to be specifically trained for each
separate essay prompt. In contrast, language proficiency assessment treats
an essay mostly as a sample of a student’s language skills. The rating an
essay receives depends mainly on the language mastery it demonstrates. The
marking criteria in previous approaches to automatic proficiency assessment
mainly focused on the linguistic properties of learner texts.
In this theses we present an approach to automatic proficiency assessment
for German. We address language proficiency assessment as a supervised
classification task. We mainly focus on examining a wide range of linguistic
features that seem promising indicators of language proficiency. We combined
features from previous work on proficiency assessment with insights from
research on second language acquisition. Additionally we integrated features
from readability assessment and simplification. Those fields are connected to
proficiency assessment as they study the comprehension side of texts while
proficiency assessment studies the production side.
The empirical basis for our work consists of 1027 German short essays
from German as a foreign language exams that were collected by the MERLIN 2 project (Wisniewski et al., 2011). All essays were graded by human
raters on the scale of the Common European Framework of Reference for
1
Common European Framework of Reference for Languages
Multilingual Platform for the European Reference Levels: interlanguage Exploration
in Context. German is only one of several languages included in the project.
2
4
Languages (CEFR), which is gradually becoming a European standard in
language assessment. CEFR level can stand for the level of an exam that a
student takes or for the “grade” an essay receives. In this work we will refer
to the first meaning as exam type and the second meaning as either essay
rating level or proficiency level.
We conducted several machine learning experiments with our feature set.
Initially, we developed a five class classifier with all CEFR proficiency levels
(A1-C1) as classes. Experiments on five class classification included comparing different algorithms for classification and investigating the predictive
power of different feature combinations. Additionally we developed two class
“pass of fail” classifiers for each exam type separately and used cost sensitive
learning for optimizing the results.
In the following section we provide background information on related
work and machine learning, and define the linguistic units that occur throughout this theses. Section 3 introduces our data set in more detail. Section 4
describes our preprocessing procedure. In section 5 we discuss the linguistic
properties that we used as features for the machine learning experiments,
which are then reported on in section 6. Finally section 7 and 8 summarize
our results and suggest directions for future work.
2
2.1
Background
Related Work
Although there is - to the best of our knowledge - no previous work on proficiency assessment for German, there is research on the automatic grading
of English and Estonian language examinations. Briscoe et al. (2010) and
Yannakoudakis et al. (2011) used machine learning for automatically grading
English as a second language (ESOL) exam scripts. Their experiments were
conducted on a set of scripts from the Cambridge Learner Corpus (CLC), a
text collection that contains transcripts of short essays produced during First
Certificate in English (FCE) exams. The scripts were written in response to
a free text prompt.
Briscoe et al. (2010) and Yannakoudakis et al. (2011) deployed several features that mirror linguistic skill such as lexical unigrams and bigrams, part of
speech unigrams, bigrams and trigrams, parse rule names, script length and
a corpus derived error rate. Yannakoudakis et al. (2011) added grammatical
relation (GR) distance measures to this feature set. In both approaches, the
RASP system Briscoe et al. (2006) was used for linguistic markup. For determining scores based on their feature set, Briscoe et al. (2010) experimented
5
with several supervised machine learning techniques such as Support Vector
Machine, Time Aggregated Perceptron and Discriminative Preference Ranking. Yannakoudakis et al. (2011) compared Rank Preference Models with
Regression Models.
In addition to the features that capture linguistic properties of the text,
Briscoe et al. (2010) included Incremental Semantic Analysis (ISA). ISA is
a non prompt-specific approximation to content analysis and was added primarily to make the system less vulnerable to score manipulations through superficial text properties like script length. Yannakoudakis et al. (2011) tested
their system’s vulnerability to subversion by manipulating exam scripts themselves: they swapped words that have the same part-of-speech within a sentence and randomly reordered word unigrams, bigrams and trigrams within
a sentence. Additionally, they scrambled the order of sentences within a
script. The modified scripts were then assessed by a human examiner and the
computer system, and the correlations between the scores were calculated.
Except for modifications that included the reordering of entire sentences,
the correlations were still good. However the system generally tended to
administer higher scores to modified scripts than the human examiner. Yannakoudakis et al. (2011) pointed out that very creative ‘outlier’ essays, that
use stylistic devices, might be rated worse by the system than by a human
examiner.
Vajjala and Loo (2013) predicted the proficiency of learners of Estonian
based on morpho-syntactic and lexical indicators. Their feature set comprised nominal and adjectival case information as well as verbal tense, mood,
voice, number and person. Additionally part-of-speech ratios, several lexical variation measures from SLA, and text length were included. Sequential
Minimal Optimization Algorithm was used for classification. Vajjala and Loo
(2013) conducted experiments with various feature combinations, feature selection and more sophisticated machine learning techniques like ensemble
classifiers and multi-stage cascading classifiers.
For the sake of completeness it should be mentioned that automatic assessment has not only been attempted for written but also for spoken language. Automatic language proficiency assessment for spoken language is quite different from the assessment of written productions in a
number of ways. Speech recognizers have to be used to process the spoken data. Also, the grading criteria are different. Scores are mostly based
on qualities such as fluency, intelligibility and overall pronunciation quality
(de Wet et al., 2007).
Bernstein et al. (2000) tried to place learners’ spoken responses to prompts
on a functional communication scale that is compatible with the Council of
6
Europe Framework. Content scores were calculated based on correct words.
Manner scores were based on pronunciation and fluency. de Wet et al. (2007)
assessed fluency based on the rate of speech. While there is hardly any overlap in the features and techniques used in written versus oral proficiency
assessment yet, it is thinkable that in the future, criteria from written assessment could be incorporated into spoken language assessment.
In contrast to marking SLA exams, where the marking criteria put a
strong emphasis on the linguistic quality of the scripts (Briscoe et al., 2010),
Automated Essay Scoring (AES) in general is concerned with marking
essays on the basis of their style, grammar, organization and often on their
relevance to the given task. It is an umbrella term for software that scores
written prose (Dikli, 2006). There are several, mostly commercial systems for
AES, some of which are deployed to assess high-stakes examination scripts.
One of the earliest system was Project Essay Grade (PEG) ((Page, 2003),
c.f. Dikli (2006)). It deployed a number of mostly shallow features that approximate properties of well written essays such as fluency, diction, grammar
and punctuation (Dikli, 2006). Based on these features PEG used linear
regression to first train a model based on pre-examined essays. This model
was used to score unrated essays (Yannakoudakis et al., 2011). PEG was
criticized for not taking into account the content and organization of the
essays. The absence of such features made it easier to trick the system, since
superficial features like word and script length can easily be manipulated
(Yannakoudakis et al., 2011).
E-Rater (Attali and Burstein, 2006) examines an essay at different levels such as grammar, style, topic similarity and organization. Each text is
represented as a weighted vector of those features (Dikli, 2006). Scores are assigned based on the cosine similarity between the vectors of marked training
scripts and unmarked scripts (Dikli, 2006). E-Rater also measures relevance
to the prompt. This enables the tool to take into account the content of an
essay and makes it less vulnerable to score manipulation. The disadvantage
is that E-Rater needs to be trained specifically for each prompt.
Intelligent Essay Assessor (IEA) (Landauer et al., 2003) focuses on content analysis based on Latent Semantic Analysis (LSA) (Landauer and Foltz,
1998). Additionally it takes into account grammar and style (Dikli, 2006).
The systems needs to be trained on prompt specific texts, and scores are
assigned on the basis of similarity between training essays an the essays that
should be rated (Dikli, 2006).
The Bayesian Essay Test Scoring System (BETSY) (Rudner and Liang,
2002) approaches AES as a text classification problem. BETSY uses features
representing content and style such as the number of words, sentences, verbs,
7
and commas, and certain content word frequencies to train Bernoulli Naive
Bayes models (Dikli, 2006; Yannakoudakis et al., 2011).
More comprehensive surveys of AES systems are offered by Williamson
(2009) and Dikli (2006).
As a tool that measures text complexity, Coh Metrix (Graesser
et al., 2004) is relevant for this work although it is neither an AES system,
nor a tool for grading second language productions. As indicators of text
complexity it deploys about 200 measures of cohesion, linguistic complexity,
and readability with an emphasis on cognitively grounded features. The
tool outputs the scores for different components of complexity such as lexis,
syntax and coherence. However it does not attempt to assign a holistic score
on a grading scale. In principle Coh-Metrix can be applied for examining the
readability of a text as well as for examining a learner text.
Second Language Acquisition (SLA) Studies examine how humans
learn languages that are not their native language. Particularly interesting for this work are SLA studies that are linked to language testing or the
characterization of proficiency levels. The Second Language Acquisition &
Testing in Europe (SLATE) network connects a number of such projects
that are quite similar to MERLIN in purpose. To name just one example,
the English Profile (http://www.slate.eu.org/projects.htm#proj2) aims at
offering a more detailed reference for each CEFR level for English. This includes descriptions of the learners’ capabilities at different linguistic levels.
The project combines corpus linguistics, pedagogy and assessment (Cambridge ESOL)3 .
Additionally this work was informed by several studies that take a computational approach to the examination of language development. Lu (2010)
and Biber et al. (2011) automatically extracted and examined specific syntactic constructions as measures of L2 development. Lu (2012) investigated
lexical richness measures such as Type-Token Ratio and Lexical Density as
indicators of the lexical development of language learners. Crossley et al.
(2011b) closely analyzed several lexical scores used in Coh-Metrix and measured how well they correlated with human assessment of lexical proficiency.
Readability assessment is relevant to this work because it tries to detect a text’s reading level based on its linguistic and sometimes also conceptional and cognitive complexity. Therefore, features that are good indicators
for reading level might also be good features for language proficiency as3
Briscoe et al. (2010)’s study was conducted at Cambridge ESOL. The connection is
not mentioned explicitly though.
8
sessment. Recent approaches to readability assessment were mostly bases
on statistical natural language processing techniques. Unigram models were
deployed for readability classification by Si and Callan (2001) and CollinsThompson and Callan (2004). Heilman et al. (2007, 2008) added grammatical
features to this approach. Schwarm and Ostendorf (2005), Petersen and Ostendorf (2009) and Feng (2010) trained models for readability classification
on the Weekly Reader, an educational newspaper consisting of articles at four
reading levels. They combined traditional features like sentence length and
word length with syntactic parse tree features and ngram language models.
Feng (2010) additionally deployed discourse features. Vajjala and Meurers
(2012) combined features from previous work on readability assessment with
lexical diversity measures and parse tree based syntactic measures from research on second language learning.
While the work mentioned above has been conducted on English, there
are also approaches that examine readability assessment for other languages.
Dell’Orletta et al. (2011) used a mixture of traditional, morpho-syntactic,
lexical and syntactic features for building a two class readability model for
Italian. Francois and Fairon (2012) built a French readability classifier deploying verb tense and mood along with several other features. DeLite readability checker (Vor der Brück and Hartrumpf, 2007; Vor der Brück et al.,
2008) is a tool for assessing the readability of German texts that makes use
of syntactic, lexical, semantic, discourse and morphological features. However, it is based on a relatively small human annotated corpus of 500 texts
that are all at a relatively high reading level. Hancke et al. (2012) combined syntactic, lexical and language model features from previous work on
readability assessment on English texts with German specific morphological
features. Their two-class readability classifier was trained and tested on a
corpus collected from publicly accessible websites for children and adults.
2.2
Machine Learning
Tom Mitchell (Mitchell, 1997) defined machine learning as follows:
”A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.”
We approach automatic proficiency level assessment as a supervised learning
task. Labeled data is used to train models, from which the correct classes of
unlabeled data can be predicted. More specifically, as our class labels are on
a discrete scale, we use classification. There are five classes corresponding
to the CEFR levels A1-C1. If one transformed the labels A1-C1 into the
numbers 1-5 one could also apply regression. However we think classification
9
is better suited as 1-5 are still discrete values.
Throughout this work, WEKA machine learning toolkit (Hall et al., 2009)
was used. It offers implementations of various machine learning algorithms.
2.2.1
Algorithms for Machine Learning
This section briefly introduces the machine learning algorithms that were
used in this work. Naive Bayes classifier is a probabilistic learner. It operates on the simplifying assumption that all features are equally important
and independent of each other. Predictions are based on Bayes rule of conditional probability :
P (Hi |Ej ) =
P (Ej |Hi )P (Hi )
P (Ej )
(1)
The conditional probabilities of a piece of evidence (E) given a certain
hypothesis (H) are multiplied with each other and with the likelihood of the
hypothesis (prior probability). This product is divided by the prior probability of the evidence. The outcome indicates the likelihood of the hypothesis
(H) given the evidence (E) (Witten and Frank, 2005). Naive Bayes is easy
to interpret and is reported to perform well on many data sets. However it
is sensitive to redundancy in the data set (Witten and Frank, 2005).
Decision Trees are a recursive, top-down, divide and conquer approach
to classification. The data set is split into subsets by selecting one feature
as the root node, making one branch for every possible value of the feature.
To decide which node to split on, the amount of information (in terms of
entropy) is used, that would be needed to decide on the class of the instances
at this node. The information of a node is influenced by the number of
instances that reach the node and by the homogeneity of their classes (Witten
and Frank, 2005). While decision trees work most naturally with nominal
features (Witten and Frank, 2005), they have been extended to also work
with numeric data. There are several different brands of decision trees. In
this work we use J48, which is the WEKA implementation of the popular
C.45 decision tree algorithm developed by Ross Quinlan (Witten and Frank,
2005).
Sequential Minimal Optimization Algorithm (SMO) is an effective
algorithm for training a Support Vector Machine (Witten and Frank, 2005).
Support Vector Machines are an extension of linear models. To find the
optimal decision boundary, they fit a hyperplane into the feature space, such
that it separates the data points belonging to different classes with the largest
possible margin. As hyperplanes can only linearly separate the data, Support
Vector Machines map the feature vectors into higher dimensional space using
10
kernel functions4 . This mathematical trick enables them to handle non-linear
problems with linear models (Witten and Frank, 2005). Support Vector
Machines have many advantages. Different kernel functions provide a high
degree of flexibility. Support Vector machines are not very sensitive to overfitting, since the large margin hyperplane provides stability (Witten and
Frank, 2005).
2.2.2
Evaluation
For a faithful estimate of a machine learner’s performance, models should
be tested on previously unseen data (Witten and Frank, 2005). It is common practice to split the data into a separate training and test set (holdout
estimation). An alternative is cross validation. The training data is randomly shuffled and equally split into n folds. In stratified cross validation
the data is sampled such that the class distribution is retained (Witten and
Frank, 2005). Successively, one part is left aside while the model is trained
on the other n − 1 parts and then evaluated on the part that has been left
out. The results are averaged over all n iterations (Baayen, 2008). It is common to set n = 10, because it has been empirically shown to be a plausible
choice for most data sets and learning methods (Witten and Frank, 2005).
Cross validation has the advantage, that it uses the data more economically
since no test set has to be split off. The fact that it tests the performance on
several different partitions, makes it more representative than a single test
set. We will use stratified cross validation throughout, and whenever cross
validation is mentioned, stratified cross validation is meant.
In cases where there is very little data, leave-one-out testing can be
useful. This is a special case of cross validation where n equals the total
number of instances in the training set. It is a deterministic procedure since
no sampling is involved and it allows the most efficient use of small data
sets (Witten and Frank, 2005). However it is computationally expensive and
stratification is not possible: the correct proportion of classes in the test set
cannot be maintained.
Classification results are presented in accuracy and F-measure. Accuracy reports how many percent of the samples were classified correctly.
F-measure represents the trade-off between precision and recall. Precision
captures the portion of samples that were correctly classified as a target
class. Recall measures the total portion of samples that were classified as a
4
Kernel functions are basically similarity functions. They are used to efficiently handle
the mapping of the feature space into higher dimensions. For basic information on kernels
used with SMO see Witten and Frank (2005), for a detailed discussion of kernels in general
see Schölkopf and Smola (2003)
11
target class (Manning and Schütze, 1999).
2.3
Defining Linguistic Units
Most features used for proficiency classification in this work will be based
on linguistic units. Word class definitions follow the Stuttgart Tübingen
Tagset. Frequently several tags were combined into more general classes for
the implementation. A comprehensive listing can be seen in Table 1. A
point worth considering is the definition of ‘content word’, which we will also
refer to as ‘lexical token’. In German there is no clear consensus on whether
modals are auxiliaries and should be counted as lexical vs. functional units
(see Reis (2001) for a discussion). In this work modals are considered to be
‘content words’ following Reis (2001).
Unit
lexical token/‘content word’
(incl. modals)
lexical token/ ‘content word’
(excl. modals)
verb
lexical verb (incl. modals)
lexical verb (excl. modals)
finite verb
noun
adjective
adverb
conjunction
wh-Word
preposition
modifier
Definition
ADJA, ADJD, ADV, FM, XY, NN, NE,
VVFIN, VVIMP, VVINF, VVIZU, VVPP,
VMFIN, VMINF, VMPP
ADJA, ADJD, ADV, FM, XY, NN, NE,
VVFIN, VVIMP, VVINF, VVIZU, VVPP
VVFIN, VVIMP, VVINF, VVIZU, VVPP,
VAFIN, VAIMP, VAINF, VAPP, VMFIN,
VMINF, VMPP
VVFIN, VVIMP, VVINF, VVIZU, VVPP,
VMFIN, VMINF, VMPP
VVFIN, VVIMP, VVINF, VVIZU, VVPP
VVFIN, VVIMP, VAFIN, VAFIN,
VMFIN
NN, NE
ADJA, ADJD
ADV
KOUI, KOUS, KON
PWS, PWAT, PWAV
APPR, APPRART, APPO, APZR
ADJA, ADJD, ADV
Table 1: Unit definitions on the level of lexical units according to the Stuttgart
Tübingen Tagset tags.
Sentence is a common concept, but in fact it is very hard to find a scientific
definition that describes it adequately. As Grewendorf et al. (1989) point out,
there is no consensus among linguists. Definitions of sentence often include
12
several linguistic levels. Gallmann and Sitta (2004) define sentence on three
levels: orthographic/phonetic, syntactic and semantic/pragmatic:
Sätze sind sprachliche Einheiten, die durch die folgenden Merkmale bestimmt sind: [Sentences are linguistic units that are defined by the following
characteristics:]
1. Sie weisen einen bestimmten grammatischen Bau auf. [They have a
specific grammatical structure.]
2. Sie sind durch die Stimmführung (in der geschriebenen Sprache: durch
die Satzzeichen) als abgeschlossen gekennzeichnet. [They are marked
as self-contained by prosody (in the written language: by punctuation)]
3. Sie sind inhaltliche - relativ - abgeschlossen. [They are - relativelyself-contained regarding their meaning]
(Gallmann and Sitta, 2004)
For the implementation a more concrete definition is needed: a sentence is
a unit that is delimited by one of the following sentence final punctuation
marks: .!?
Unit
sentence
clause
coordinated clause
dependent clause
subord. conj.
relative clause
Definition
ROOT
S + ’satzwertige Infnitive’
CS
w.
(@S
[ <1 KOUS|KOUI|PRELAT|PRELS|PRELS-SB
|PRELS-OA|PRELS-DA|PWAT|PWS|PWAV]
| [< (@NP < PRELAT|PRELS|PRELS-SB|
PRELS-OA|PRELS-DA|PWAT|PWS|PWAV)])
>> S|CS|DL & !> CS
(@S
[ <1 PRELAT|PRELS|PRELS-SB|PRELS-OA|PRELS-DA]
| [< (@NP < PRELAT|PRELS|PRELS-SB|PRELS-OA
|PRELS-DA|PWAT|PWS|PWAV) ]
| [< (@AP < PRELAT|PRELS|PRELS-SB|PRELS-OA
|PRELS-DA|PWAT|PWS|PWAV) ] )
>> S|CS|DL & !> CS
Table 2: Definitions of Syntactic Units Part I.
Clauses for English are characterized as structures that contain a subject
and a finite verb (Hunt, 1965). Different from English, German allows subjectless sentences, so all maximal projections headed by a finite verb, as well
13
as elliptical constructions, where the finite verb is omitted, are considered as
clauses.
Dependent clauses are embedded clauses. They fulfill a grammatical function in the clause that they are embedded in (see (Gallmann and Sitta,
2004, 120-133) for a detailed description). Dependent clauses can be further
grouped into:
1. Relative Clauses
Das ist das Paper, das ich lesen sollte. [That is the paper that I should
read.]
2. Interrogative Clauses
Er fragt, ob er das Paper lesen soll. [He asks whether he should read
the paper.]
3. Conjunctional Clauses
Sein Kollege sagt, dass er das Paper lesen soll. [His colleague says that
he should read the paper.]
While many dependent clauses are headed by a subordinating conjunction or
a pronoun there are also dependent clauses without such markers (Er sagt,
er hat keine Zeit. [He says he does not have the time.] ). Additionally there
are “satzwertige Infinitive” - infinite clauses that have the same function as
a dependent clause (Gallmann and Sitta, 2004; Bech, 1955; Meurers, 2000)
(Peter besucht einen Kurs, um Deutsch zu lernen. [Peter attends a course
to learn German.] ).
T-Units are defined as “one main clause plus any subordinate clause or
non clausal structure that is attached to or embedded in it” (Hunt 1970, p. 4;
cf. Lu, 2010). Only independent clauses (including their dependents) count
as a T-Unit.
At the phrasal level, coordinated phrases are defined as coordinated adjective, adverb, noun, and verb phrases. Verb phrases include non-finite as
well as finite verb phrases. Finally, complex nominals are nouns with an
adjective, possessive or prepositional phrase, relative clause, participle, or
appositive. Nominal clauses, gerunds and infinitives in subject position are
also included.
For the implementation these definitions had to be operationalized. We
used TregEx (Levy and Andrew, 2006) to search parse trees with regular
expressions. The tags in the operational definitions follow the NEGRA annotation scheme (Skut et al., 1997). Table 2 and Table 3 show the explicit
definitions for all constructions that we extracted from parse trees, except
for straightforward mappings such as: verb phrase - VP.
14
Unit
interrogative clause
conjunctional clause
dependent clause wo.
subord. conj.
’satzwertige Infnitive’
dependent clause
T-Unit
complex T-Unit
coordinated Phrase
complex nominal
Definition
(@S
[ <1 PWAT|PWS|PWAV]
| [< (@AP < PWAT|PWS|PWAV) ]
| [< (@NP < PWAT|PWS|PWAV) ] )
>> S|CS|DL & !> CS
(@S
[ <1 KOUS|KOUI] )
>> S|CS|DL & !> CS
(@S
[<1 (VVFIN|VAFIN|VMFIN <<, !/\\?/)] . /,/
|[<1 (@NP . VVFIN|VAFIN|VMFIN )] , /,/ )
> S|CS|DL & !> CS
@VP [< VZ , /,/] | [< VZ . /,/]
dependent clause w. subord. conj
+ dependent clause wo. subord. conj
+ ’satzwertige Infnitive’
clause that is not (but may contain) a dependent
clause
T-Unit that contains dependent clause
CAC|CAVP|CNP|CVP
@NP|NN|NE < S | < @AP
| < @PP | < @PP | < ADJA|ORD
Table 3: Definitions of Syntactic Units Part II.
15
3
Data
”Glückwunsch zur deine prüfung, Ich bin schietoll für dich, für mir, get mir gut
und Ich finde sehr gut dass deine tante und onkel besucht in Istanbul hat, und
was Ich wüsche in istanbul ist dass eine Mütze, Mütze finde ich schön.”
Figure 1: Example for a text passage with spurious punctuation and spelling
mistakes from an essay in the MERLIN corpus.
The data used in this theses consists of 1027 German essays from the
MERLIN corpus5 . MERLIN is a multilingual European project that aims
at “creating a freely accessible multilingual online platform for the illustration
of CEFR levels”(Wisniewski et al., 2011, 35). The texts were produced by
language learners of different native language backgrounds during German as
a second or foreign language exams. The learners were asked to write a short
free text for a certain task6 , for example writing a letter to a friend or writing
a fake job application. There were three different tasks per exam type. All
essays were labeled with CEFR proficiency levels by trained human raters.
The CEFR levels comprise six proficiency levels that are mainly defined on
a functional scale: A1 (Breakthrough), A2 (Waystage), B1 (Threshold), B2
(Vantage), C1 (Effective Operational Proficiency), C2 (Mastery). Level C2
was not represented in our data set.
In the course of the MERLIN project, the learner essays were digitalized
and stored using the Paula XML annotation scheme (Wisniewski et al., 2011).
The annotation of the data is still in progress. We used a plain text version
of the original essays7 .
There are roughly 200 texts for each exam type. However, it is the essay
rating level or proficiency level that reflects the actual language mastery
demonstrated in an essay. The distribution among essay rating levels is not
even. There are only 57 texts that received the rating A1 and only 75 that
were rated with C1. Figure 2 shows the distribution of texts across the essay
rating levels. As a first superficial statistical analysis of the data showed,
there is a high correlation between exam type and text length (r = 0.86) and
essay rating level and text length (r = 0.84). This is illustrated in Figure 3
and Figure 4. As a result much less data is available for the low essay rating
levels, especially for A1.
5
German is just one of several European languages included in MERLIN
Information on the task was gathered from email correspondence with Detmar Meurers
and Serhiy Bykh
7
Thanks to Serhiy Bykh and Adriane Boyd for making the plain text version available
6
16
0
50
100
150
200
250
300
Num. Texts Per Essay Rating Level
A1
A2
B1
B2
C1
Figure 2: Number of essays per essay rating level.
The dataset poses several challenges. The skewed distribution of data
across the essay rating levels can complicate machine learning. There are
various possible factors that could also influence classification: different text
lengths, different L1 backgrounds and different tasks for essay writing.
Additionally the data is very noisy compared to ‘standard’ written language such as newswire. Although nonstandard language use and mistakes
can be utilized for classifying learner language, they first and foremost pose
a challenge. Passages like the one shown in Figure 1 are not uncommon in
the MERLIN data. Punctuation is often spurious. Spelling and word order
mistakes are frequent. This is problematic for NLP-Tools. Figure 5 shows
the parse tree of the above text passage. Some words were tagged with the
wrong part-of-speech. More strikingly, the whole passage was analyzed as a
single sentence because there is only one sentence final punctuation mark.
17
Length in Words dep. on Essay Rating Level grouped by Exam Type
A1
A2
B1
B2
C1
●
●
●
●
●
● ●
300
●
●
●
●
●
Num Words In Text
●
●
● ●
●
●
●
●
200
●
● ●
●
●
●
●
●
●
●
●
●
●
●
● ●
100
●
●
●
●
●
●
●
●
●
●
●
0
A1A2B1B2C1C2 A1A2B1B2C1C2 A1A2B1B2C1C2 A1A2B1B2C1C2 A1A2B1B2C1C2
Essay Rating Level
Figure 3: Text length in words depending on essay rating level grouped by
exam type.
4
4.1
Preprocessing
Components of the Preprocessing Pipeline
We used a plain text version of the 1027 German original learner texts from
the MERLIN corpus. Due to the nature of the essay writing tasks, some
texts contained letterheads. The letterheads were tagged in the plain text
version. For the analysis they were removed as they don’t contribute to the
proficiency analysis and are problematic for some tools, such as sentence
detectors and parsers.
18
Length in Words dep. on Exam Type grouped by Essay Rating Level
A1
A2
B1
B2
C1
C2
●
●
●
●
●
●
300
●
●
●
●
●
●
Num Words In Text
●
●
●
●
●
●
200
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
100
●
●
●
● ●
●
●
●
●
● ●
●
0
A1 A2 B1 B2C1 A1 A2 B1 B2C1 A1 A2 B1 B2C1 A1 A2 B1 B2C1 A1 A2 B1 B2C1 A1 A2 B1 B2C1
Exam Level
Figure 4: Text length in words depending on exam type grouped by essay
rating level.
The spurious punctuation in some of the MERLIN essays prompted us to
build a tool for missing sentence boundary detection. Although the results
were promising, the tool was not reliable enough to be used in this work. Still,
the approach is discussed in Section 4.2 and might be further developed in
the future. For now, the OpenNLP 8 SentenceDetectorME (OpenNLP Tools
1.5) was used for sentence segmentation. A pre-trained model for German is
available at OpenNLP. A number of problems occurred when using the tool
on our data.
8
http://opennlp.apache.org/
19
Figure 5: Example for a parsed text passage with spurious punctuation and
several spelling mistakes from an essay in the MERLIN corpus. Visualized
with ProD (Culy et al., 2012)
20
1. If there were several sentence final punctuation marks, the sentences
were not split.
2. Abbreviations were often not handled correctly.
1. was addressed by finding all instances of multiple sentence final punctuation marks using the regular expression [!?\\.]{2,} and replacing them
by a single full stop. For handling 2. a custom model was created for SentenceDetectorME. OpenNLP offers a command line interface for sentence
detector training9 . In addition to custom training data it is possible to specify a list of abbreviations for improving the tool’s performance. For that
purpose a list of German abbreviations was mined from the web10 . SentenceDetectorME was then trained on NEGRA 2 Corpus Export11 and the
additional abbreviation list.
For tokenization OpenNLP TokenizerME (OpenNLP Tools 1.5) was used.
The model was trained on the same data and abbreviation list as the sentence
detector to maintain compatibility.
To reduce problems caused by spelling errors, a Java API for Google Spell
Check (version 1.1)12 was used. When submitting a word or text for spell
correction, the language can be chosen13 . When sending a request, multiple
corrected suggestions are returned for each misspelled word, ranked according
to the spell checker’s confidence. The suggestion with the highest confidence
was picked.
The spell corrected data was tagged using a Java interface (version 0.0.8)14
to the RFTagger (Schmid and Laws, 2008), a statistical tagger that provides
a fine grained morphological analysis. As some of the further processing steps
relied on Stuttgart-Tübingen Tagset, all tags were additionally converted to
this tagset, using the converter class that is integrated into the Java interface.
RFTagger lemmatizes words with a Perl script that looks up lemmas in
a lexicon. This capability, however, is not included in the Java interface for
RFTagger. An attempt to use the scripts for lemmatization separately made
the application extremely slow. Therefore we eventually used TreeTagger
9
http://opennlp.apache.org/documentation/1.5.2-incubating/manual/
opennlp.html#tools.sentdetect.detection
10
http://german.about.com/library/blabbrev.htm
11
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
negra-corpus.html
12
https://code.google.com/p/google-api-spelling-java/
13
There were some encoding issues, when using German. The Java encoding must be
set to UTF-8, however, the correction suggestions for German are returned ISO-8859-1
encoded, so they have to be coded to UTF-8 again. Also, the rate of making requests has
to be reduced in order to not be blocked by Google.
14
http://www.sfs.uni-tuebingen.de/~nott/rftj-public/
21
(Schmid, 1995) with a Java wrapper by Richard Eckart de Castilho15 for
lemmatization. The problem with this approach is that TreeTagger and RFTagger don’t necessarily assign the equivalent part-of-speech tag to a word.
However, after supervising this potential problem during a preprocessing run,
it turned out that the differences were minimal.
All documents were parsed with the Stanford Parser for German, a lexicalized probabilistic context free grammar parser. We used the standard
model for German (version 2.0.4) (Rafferty and Manning, 2008) trained on
the NEGRA Corpus16 . As we wanted to experiment with dependency based
features as well, all documents were additionally parsed with MATE dependency parser (Bohnet, 2010), using the standard model for German (Seeker
and Kuhn, 2012), which was trained on the TIGER Corpus.
For storing annotated documents, the serializable class AnnotatedDocument
was implemented. The advantage is that all annotation layers can be stored
and accessed in a principle way.
4.2
Sentence Boundary Detection for Essays with Missing or Spurious Punctuation
Most conventional approaches address sentence segmentation as a problem
of punctuation disambiguation. Machine learners are trained with features
such as part-of-speech frequency (Palmer and Hearst, 1997) and lexical information (Reynar and Ratnaparkhi, 1997) in the context of the candidate
punctuation mark and obtain high accuracies (98%, (Reynar and Ratnaparkhi, 1997)). Since sentence final punctuation is sometimes spurious in the
MERLIN essays, those tools do not work reliably. It would be most desirable to find a solution to sentence boundary detection that does not rely on
punctuation.
4.2.1
Survey
Finding sentence boundaries in the absence of punctuation is also a relevant
task in speech recognition. Many approaches (Stolcke and Shriberg, 1996;
Gotoh and Renals, 2000; Liu et al., 2004) use a special type of ngram model
introduced by Stolcke and Shriberg (1996). To incorporate sentence boundary probabilities into ngram models, Stolcke and Shriberg (1996) postulated
a possible sentence boundary tag after each word. Hidden event models
were trained with these ngrams to find the most likely positions for sentence
15
http://code.google.com/p/tt4j/
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
negra-corpus.html
16
22
boundaries. Later approaches often combined this technique with prosodic
information (Liu et al., 2004; Liu et al.; Favre et al., 2008). Favre et al.
(2008) tried to include syntactic clues by using parser probabilities of text
spans.
After reviewing approaches to sentence boundary detection, that were
used in speech recognition, it seems doubtful that the same techniques could
be applied to our data without much adjustment. There is no prosodic
information in the written texts that could enhance the performance of the
hidden event ngram models. Also, in contrast to the transcript of a speech
recognizer, the learner essays mostly do contain some punctuation marks.
As a first step, the passages where punctuation is missing would have to be
identified.
Nagata et al. (2010) describe an approach to detecting missing sentence
boundaries in texts produced by Japanese learners of English. They put
forward a method for automatically generating training data for missing sentence boundary detection and then used this data to train Support Vector
Machines with features like sentence length probability, number of words beginning with a capital letter, number of verbs, prepositions, wh-words, conjunctions, and frequencies of non-sentence final punctuation marks. Their
best model achieved promising result (0.716 % F-measure).
We conclude that implementing a component for placing missing punctuation marks in the absence of punctuation is not feasible in this thesis.
Nevertheless we attempted the first step by trying to automatically identify
missing sentence boundaries using a similar approach as Nagata et al. (2010).
Such a tool would be useful to flag essays with spurious punctuation. Those
essays could then either be excluded or manually corrected.
4.2.2
Building a Missing Sentence Boundary Detector
This section describes the implementation of a missing sentence boundary
detector. Following Nagata et al. (2010) we automatically generated training data from a corpus of learner language. A classifier was then trained
with linguistic features that are promising indicators for missing sentence
boundaries.
4.2.2.1 Creating Training and Test Set We automatically created
training data from the Kobalt-DAF (Zinsmeister et al., 2011) data. KobaltDAF is an ongoing project that researches the linguistic properties of texts
written by learners of German from different L1 backgrounds. The current version of the corpus comprises of 69 texts. We followed the procedure
23
proposed by Nagata et al. (2010). Each training sample consists of one sentence. To obtain samples, the Kobalt-DaF texts were sentence split with the
OpenNLP sentence segmenter as described in Section 4.1. The resulting sentences were used as negative training instances. To create positive instances,
pairs of sentences were concatenated. The order of the original sentences was
shuffled beforehand, to avoid that contiguous sentences were combined.
Two additional test sets were created for evaluating the sentence boundary detector on two different essay rating levels (A2 and B1) from the MERLIN corpus. 1000 sample sentences as segmented by OpenNLP sentence
segmenter (section 4.1) were manually labeled for essay rating level A2 and
B1 respectively (henceforth MA2 and MB1). Among the 1000 sentences for
each essay rating level there were only 61 positive instances in MA2 and 36
in MB1. This uneven distribution of negative and positive cases has to be
kept in mind when evaluating the classifiers.
4.2.2.2 Preprocessing for Sentence Boundary Detection The preprocessing procedure was very similar to the steps described in section 4.1.
Minor difference arose from the fact that for some problems, better solutions
were found later on. Because of the need to manually annotate sentences,
which is very time consuming, the experiments could not be repeated again
at a later point.
No version of the data with tagged letterheads had been available at the
time when we built the missing sentence boundary detector. To exclude
most of the potential letterheads, only lines with more then two tokens were
considered. A full stop was appended to lines that did not yet have a sentence
final punctuation mark. The fact that OpenNLP sentence segmenter has
problems with multiple punctuation marks !!! had not been addressed.
Spell checking was only implemented later. Fine grained tags such as
those delivered by RFTagger were not needed for the task at hand, so the
OpenNLP Tagger was used with the standard model provided by OpenNLP.
The data was parsed with the Stanford Parser for German.
4.2.2.3 Features We adapted most of the features used by Nagata et al.
(2010). Nagata et al. (2010)’s feature set included the number of capitalized words that are neither proper nouns nor the pronoun I. In German,
however, besides from the proper nouns, also common nouns are capitalized,
so the number of capitalized words excluding all nouns was counted. Nagata et al. (2010, 1272) argued that verbs are indicative of missing sentence
boundaries, as a sentence is assumed to consist of a single verbs unless ”it
contains conjunctions and/or clauses”. Therefore they counted the verbs
24
excluding present and past participles. We implemented two distinct verb
features instead: the number of verbs per word, and the number of finite
verbs per word. To include the presence of conjunctions as indicators Nagata et al. (2010) considered the frequencies of different conjunctions as well
as the total number of conjunctions. In this work only the total number of
conjunctions is used as a feature. Similarly, we only used the total number
of wh-Words and prepositions.
Furthermore we included the following features into our approach: frequency of colons, semicolons, commas, total number of punctuation marks,
and sentence length probability. Sentence length probability is the likelihood
that a sentence is of a particular length, measured on the distribution of
already observed sentence lengths. For computing this probability Nagata
et al. (2010) assumed that sentence length has a Gaussian distribution and
used the probability density function. The observed sentence lengths can
be computed from the training data. In addition to this more sophisticated
measure of sentence length, we also included sentence length as the number
of words per sentence. It was used as a baseline for all experiments.
Additionally three new features were examined that rely on information
from parse trees. The number of clauses per number of words seemed to
be a promising indicator, since the parser mostly recognized clauses in spite
of missing punctuation. This resulted in parse trees which contained many
clauses under one ROOT node. As the parser often related these clauses to
each other by using coordination, coordinated clauses also seemed a good
indicator. Finally parse tree height seemed promising as it could help to
distinguish sentences which have many clauses because of heavy embedding
from relatively flat trees, that contain many clauses because of missing sentence boundaries.
4.2.2.4 Experiments First the performance of three different machine
learning algorithms - Naive Bayes, Sequential Minimal Optimization Algorithm (SMO) and Decision Tree (J48) - were compared. All algorithms were
used with their standard configurations from WEKA. We used 10 fold cross
validation and the whole feature set to build and test the models. We report precision, recall and F-measure for the positive class (missing sentence
boundary)17 . The experiments showed that the Decision Tree Algorithm was
the best choice.
We build different models on the generated training data using 10 fold
17
Cost sensitive learning could have been applied to the sentence boundary detection
task. However, as the main task was proficiency level assessment, it seemed unwise to
spend too much time on sentence boundary detection.
25
Name
Avg. Num. Verbs Per Words
Avg Num. Finite Verbs Per Words
Avg Num. Conjunctions Per Words
Avg Num. wh-Words Per Words
Avg Num. Prepositions Per Words
Avg Num. Commas Per Words
Avg Num. Colons Per Words
Avg Num. Semicolons Per Words
Avg Num. Capital Not Nouns Per Words
Avg Num. Punctuation Per Words
Sentence Length Probability
Num. Tokens In Sentence
Avg Num. S Nodes Per Words
Avg Num. CS Nodes Per Words
Parse Tree Height To Words Ratio
Formula
# verbs / # W
# finite verbs / # W
#conjunctions / # W
# wh-words / # W
# prepositions / # W
# commas / # W
# colons / # W
# semicolons / # W
# capital not nouns / # W
# punctuation marks / # W
#W
# clauses / # W
# coordinated clauses / # W
parse tree height / # W
Table 4: Features for missing sentence boundary detection.
Classifier
Accuracy Precision Recall
SMO
92.67
95
90
Naive Bayes
75.07
70
90
Decision Tree J48
94.56
97
92
Table 5: Comparison of different classifier algorithms
cross validation. Then each of these models was evaluated on the hand
labelled MA2 and MB1 test sets. A model build with all features (ALL) was
compared to a sentence length baseline (BL). As indicated by Nagata et al.
(2010), the capitalization feature was responsible for many false positives in
their experiments. Therefore we created a model without the capitalization
feature (ALL-CAP).
A detailed summary of the results can be seen in Table 6. When tested
with cross validation ALL performed better than BL. However, when tested
on the MA2 and MB1 sets, ALL’s results dropped below those of BL. Especially the precision plummeted. For ALL-CAP, the F-measure dropped
when evaluated with cross validation, but increased when tested on MA2
and MB1. The reason is probably, that the spelling conventions regarding
capitalization are complied with to a different degree in the training data
and the MERLIN test sets. Generally the performance on MA2 and MB1
was not too impressive. Even the ALL-CAP model only slightly exceeded
the baseline for MA2 and the performed below the baseline for MB2.
26
Dataset
Train
MA2
MB1
Model
Accuracy F-Measure Precision Recall
BL
79.00
80
77
83
ALL
94.56
94
97
92
ALL-CAP
88.90
88
93
85
BL
93.90
38
50
31
ALL
57.56
16
9
64
ALL-CAP
91.10
40
34
42
BL
92.10
60
25
61
ALL
63.53
12
6
66.7
ALL-CAP
88.48
24
16
50
Table 6: Comparison of different models
4.2.2.5 Conclusion Although the proposed method seemed promising
when tested with cross validation, the results on the MERLIN test sets were
not satisfactory. The immensely skewed distribution of positive and negative
samples and too little similarity between the training and test data might
have contributed to this result. Additionally it might be hard to find one
model that can be successfully applied to all levels of the MERLIN corpus, as
the essays at different levels are so dissimilar. It is concluded that the missing
sentence boundary detection component is not yet mature enough to be used
in the further course of this work. It is however considered worthwhile to
continue its development in the future.
5
Features For Language Proficiency Assessment
In this section we introduce our feature set for language proficiency classification. We implemented a variety of syntactic, lexical, morphological, and
language model features that were informed by different fields of research.
5.1
Lexical Features
A number of lexical indices of language proficiency have emerged from research on language acquisition, and have recently also been deployed in readability assessment and language proficiency classification (Vajjala and Meurers, 2012; Hancke et al., 2012; Vajjala and Loo, 2013). We integrated a wide
range of lexical indices into our approach to examine their usefulness for
German proficiency assessment.
27
5.1.1
Lexical Diversity Measures
Lexical Diversity. Lexical diversity or lexical richness designates the variety and range of the vocabulary used in a text or speech (McCarthy and
Jarvis, 2007). Measures of lexical diversity have been widely deployed as
indices for e.g., vocabulary knowledge and writing quality. They have also
been used to measure the lexical proficiency of language learners (Crossley
et al., 2011a; Lu, 2012; Graesser et al., 2004).
The most commonly used lexical diversity index is probably Type-Token
Ratio (TTR) (McCarthy and Jarvis, 2007). It is known that TTR depends
on text length. McCarthy and Jarvis (2007) explained this flaw with Heaps
law ((Heaps, 1978) c.f. McCarthy and Jarvis (2007)): When a text becomes
increasingly long (many tokens), the chance that new words (types) occur
becomes more unlikely. As a result, long texts appear to be less lexically
diverse when measured with TTR. In a comprehensive study McCarthy and
Jarvis (2007) examined a number of TTR variants that were developed for
decreasing the dependency on text length - mostly involving some mathematical transformation. These variations include Root Type-Token Ratio,
Corrected Type-Token Ratio, Uber Index and Yule’s K. McCarthy and Jarvis
(2007)’s results showed that none of these measures were independent of text
length, although for Yule’s K and Uber Index the effect was minor18 .
More recently vodc (MacWhinney, 2000) has been proposed as a new
index of lexical diversity. It tries to overcome the dependency on text length
by repeatedly drawing samples of different sizes from a text, and calculating
the mean TTR of this samples. A formula using the D coefficient (Malvern
et al., 2004, c.f. McCarthy and Jarvis (2010)) is then deployed to fit a
theoretical curve to the empirical TTR curve obtained from the random
samples (McCarthy and Jarvis, 2007, 2010).
The results of McCarthy and Jarvis (2007)’s examination suggested that
vocd is not independent of text length. Furthermore they showed that deploying the hypergeometric distribution19 can replace the curve fitting procedure in vocd. The hypergeometric distribution describes the probability
of success for drawing (without replacement) a particular number of tokens
of a particular type from a sample of a certain size (McCarthy and Jarvis,
2007, 2010). McCarthy and Jarvis (2007) proposed HDD, an index of lexical
diversity, that is very similar to vocd, but makes use of the hypergeometric
distribution directly.
McCarthy and Jarvis (2010) introduced the measure of textual lexical
18
According to McCarthy and Jarvis (2007) 2% for Yule’ K and 3% for Uber Index of
the variance was explained by text length.
19
A probabilistic distribution
28
diversity (MTLD). It is a sequential approach to measuring lexical diversity
by calculating the mean length of a string sequence, that maintains a default
TTR value. Whenever a new type is found, the TTR is calculated. As soon
as the default value is reached, a factor count is increased and the TTR is
reset. The same procedure is repeated from that point in the text to the
end of the text. If the last portion of text does not reach the default TTR,
a partial factor is calculated20 . MTLD is then calculated by dividing the
number of tokens by the number of factors. The same procedure is repeated
beginning at the end of the text. The final score is the mean of the forward
and backward MTLD value (McCarthy and Jarvis, 2010).
Formulas
#T
p yp/#T ok
p#T yp/#T ok
#T yp/(2 ∗ #T ok)
log (#T yp)/ log (#T ok)
log (#T ok)2 / log (#T yp/#T ok)
104 ∗(sum(f X ∗X 2 )−#T ok)/(#T ok 2 ),
Measures using type to token ratio
Type-Token Ratio
Root Type-Token Ratio
Corrected Type-Token Ratio
Bilogarithmic Type-Token Ratio
Uber Index
Yule’s K
X=vector of freq. for each type,
fX=frequency of each type freq. in X
HD-D
Measure of Textual Lexical Diversity
McCarthy and Jarvis (2007)
McCarthy and Jarvis (2010)
Table 7: Type-Token Ratio and variations
Lexical Density and Variation. Lexical density (originally Ure (1971),
c.f. Lu (2012)) and lexical variation measures are closely related to the type
to token based ratios that we discussed in the previous section. Lexical
Density measures the ratio of lexical words (or ‘content words’) to all words.
Lexical variation measures include different ratios that measure the variation
within specific syntactic categories, for example Verb Variation (verb types
to verb tokens) and Noun Variation (noun types to noun tokens). Lu (2012)
deployed lexical density and variation measures in combination with lexical
diversity measures to examine the relationship between lexical richness and
the quality of English learner productions. Those measures also have been
proven to be good indicators of readability by Vajjala and Meurers (2012) for
English texts and Hancke et al. (2012) for German texts. However, although
these measures have been successfully applied in a number of approaches,
doubts remain that - like Type-Token Ratio - they might depend on text
length.
20
(1 − ttrlef tover )/(1 − ttrdef ault )
29
Measures using lexical type distributions
Lexical Density
Lexical Word Variation
Noun Variation
Adjective Variation
Adverb Variation
Modifier Variation
Formulas
#T ok Lex/#T ok
#T yp Lex/#T ok Lex
#T yp N oun/#T ok Lex
#T yp Adj/#T ok Lex
#T yp Adv/#T ok Lex
Verb Variation 1
Verb Variation 2
Squared Verb Variation 1
Corrected Verb Variation 1
Verb Token Ratio
Noun Token Ratio
Verb-Noun Token Ratio
#T yp
#T yp
#T yp
#T yp
#T ok
#T ok
#T ok
(#T yp Adj
#T yp Adv)/#T ok Lex
+
V erb/#T ok V erb
V erb/#T ok Lex
V erb2 /#T
√ ok V erb
V erb/ 2#T ok V erb
V erb/#T ok
N oun/#T ok
V erb/T #ok N oun
Table 8: Lexical variation features
A comprehensive set of lexical diversity, density and variation measures
was included as can be seen in Tables 7 and 8.
5.1.2
Depth of Knowledge Features
As suggested by Crossley et al. (2011b), not only vocabulary size and diversity should be taken into account, but also the depth of lexical knowledge. Their results showed that lexical frequencies and hypernym scores are
promising features for proficiency assessment.
Lexical Frequency. The general frequencies of the lexical items used
by a learner are often seen as an indicator of lexical proficiency. As summarized by Crossley et al. (2011b), it is assumed that learners with a higher
proficiency use less frequent lexical items. High word frequency leads to
more exposure, which makes a word easier to learn (Ellis (2002), cf. Crossley
et al. (2011b)). This hypothesis is supported by studies of lexical acquisition
(Balota and Chumbly (1984), Kirsner (1994) c.f. Crossley et al. (2011b)).
According to Crossley et al. (2011b) the correlation between word frequency and acquisition has also been confirmed for lexical development in
second language learning: In most studies it was shown that beginning learners were more likely to use and comprehend high frequency lexical items
(Crossley and Salsbury (2010); Ellis (2002) c.f. Crossley et al. (2011b)). To
measure the frequencies of lexical items , Crossley et al. (2011b) retrieved content word frequency scores from the CELEX database (Baayen et al., 1995)
30
- a psycholinguistic database that includes word frequencies as counted from
a reference corpus.
We extracted content word frequencies from dlexDB (Heister et al., 2011).
DlexDB frequency scores are based on the “Kernkorpus des Digitalen Wörterbuchs
der deutschen Sprache” (DWDS ). The DWDS corpus comprises of 122.816.010
tokens and 2.224.542 types. For providing relevant annotations such as partof-speech tags, lemmas or syllables, dlexDB relied on automatic annotation
with NLP tools (Heister et al., 2011). DlexDB was chosen over CELEX because it is more recent and based on a larger reference corpus (6 million vs.
100 million running words).
DlexDB offers a number of interesting scores for each word, such as absolute and normalized frequencies and log absolute and normalized frequencies
for annotated types (type, word pair), types, lemmas and ngrams, but also
familiarity scores and frequency ranks (see Heister et al. (2011) for a comprehensive list). Currently the API for fully automatic queries is still under
development21 . However, the database can be queried via a web interface22 .
Queries can be send for individual lexical items or for lists of items, and the
results can be exported after creating a user account (up to 10 000 results).
For making all the necessary frequencies from dlexDB available to our
tool, a custom dlexDB version with all the words in the MERLIN corpus
and all the scores that were relevant had to be created by manually querying
dlexDB. A list with all spell checked words in the MERLIN corpus was
created. It was split into tiles of not more than 4000 words, in order to
remain below the export limit. Each tile was then used to query dlexDB
manually over the web interface: For each word the following scores were
retrieved:
1. Absolute Annotated Type Frequency (ATF)
2. Log absolute Annotated Type Frequency (LATF)
3. Absolute Type Frequency (TF)
4. Log absolute Type Frequency (LTF)
5. Absolute Lemma Frequency (LF)
6. Log absolute Lemma Frequency (LLF)
Finally all non-matches and all words that did not match the category of
‘content word’ (incl. modals) were cleaned out.
Features that measure the general frequency of the lexical items used in
an essay were created using the scores 1.-6. All types in an essay were looked
21
22
personal correspondence with dlexDB developers
http://www.dlexdb.de/query/kern/typposlem/
31
Log Frequencies of Annotated Types with Text
3
1
2
Log Frequency
4
5
auch
so
nur
noch
aber
kann
dann
schon
wieder
immer
doch
mehr
sagte
ganz
sehr
hier
selbst
jetzt
nun
da
einmal
anderen
also
soll
Menschen
gibt
Frau
Jahre
konnte
Welt
erst
Regierung
heute
So
deutschen
will
Auch
gar
Mann
Leben
ersten
wohl
Herr
etwa
kam
Frage
machen
gut
lassen
neue
gab
Jahren
sollte
neuen
Hand
andere
kommt
geht
wollte
Deutschland
dort
ging
Augen
Art
Arbeit
bereits
jedoch
Berlin
besonders
sagen
Da
gerade
de
dabei
steht
denn
letzten
Ende
Dann
Teil
darauf
fast
Seite
ganze
vielleicht
gemacht
Entwicklung
Geschichte
allein
Stadt
nie
Weise
weiter
Staaten
sagt
Mutter
liegt
oft
ganzen
Tag
eigenen
stand
viel
gleich
eben
sogar
alten
weit
Kopf
sollen
deutsche
wollen
kleinen
Tage
erste
Bedeutung
Wort
Vater
macht
tun
Form
recht
gesagt
Kinder
sehen
Gesellschaft
darf
je
geben
wirklich
Gott
Weg
mal
Jahr
bis
kaum
Politik
Mensch
Gesicht
lange
bisher
DDR
kommen
Namen
sonst
Lage
stehen
ebenso
Beziehungen
Recht
kleine
einzelnen
Leute
bald
nahm
Wasser
bleibt
machte
genau
damals
Fall
Nur
Nun
Fragen
Sache
sieht
gegeben
Kind
Land
Herrn
Paris
Stelle
solchen
Frankreich
Uhr
Beispiel
leicht
Haus
Hier
deshalb
darin
Volk
dadurch
Sinne
Krieg
alte
Mark
eigentlich
Natur
besteht
Kraft
bringen
Ausdruck
fand
sollten
gekommen
gleichen
allerdings
Frauen
blieb
Bild
gilt
daher
Nacht
Boden
genug
besser
gehen
Hause
sofort
Geld
Sprache
Kunst
oben
selber
Kirche
anders
Bewegung
Staat
weitere
Aufgabe
verschiedenen
allgemeinen
einfach
Dinge
Millionen
bleiben
gesehen
nehmen
daran
dachte
Blick
Gedanken
USA
finden
Jetzt
Stimme
scheint
schwer
wissen
dagegen
Kampf
Liebe
Interesse
richtig
Sinn
gebracht
Zahl
stark
Gebiet
findet
endlich
Macht
schien
sprach
Grund
Freiheit
Reihe
Worte
Europa
politische
Mittel
Ordnung
konnten
Musik
lang
Berliner
anderer
genommen
Luft
eigene
Raum
Platz
Rolle
meist
schnell
Seiten
Buch
Anfang
gute
Lebens
Wege
guten
stellt
Sicherheit
Tagen
Zimmer
Stunde
halten
Stellung
Stunden
Erde
Abend
Wirtschaft
Tisch
nimmt
kommen
voll
Deutschen
Personen
ebenfalls
jungen
mag
liegen
Richtung
sprechen
Sohn
notwendig
insbesondere
Begriff
niemals
kurz
handelt
klar
bekannt
ferner
kamen
besten
letzte
gefunden
England
gern
Hilfe
wenigstens
Seele
Familie
gestellt
Kultur
Wahrheit
Herren
sicher
Dabei
System
Antwort
glaube
wenig
Fenster
Mitglieder
Meinung
Wien
and
bestimmten
Frieden
London
junge
deutlich
Erfolg
Wochen
Volkes
all
folgenden
Wirkung
Brief
Rahmen
folgende
Wert
erscheint
einzige
weiteren
Wirklichkeit
Werke
langsam
Gefahr
hoch
Verbindung
Wagen
gestern
Gruppe
Satz
spricht
Aufgaben
erreicht
bringt
neu
Arbeiter
bereit
Vielleicht
Wissenschaft
Vereinigten
schrieb
General
vorher
Morgen
Interessen
Noch
lassen
darum
Italien
Deutschlands
denken
Problem
wissen
gleichzeitig
bedeutet
Tatsache
sozialen
Herz
besondere
Arzt
erkennen
Gegensatz
Republik
Schule
bestimmt
Bedingungen
Schon
Prozent
setzt
braucht
Schritt
gleiche
Landes
Folge
Also
Mitte
Probleme
genannt
Entscheidung
Linie
erster
langen
Angst
erhalten
Eltern
Artikel
frei
wollten
Gelegenheit
Tat
wirtschaftlichen
Literatur
fiel
stellen
vielmehr
her
Bett
Organisation
Charakter
Auffassung
wolle
Rom
bestimmte
Bildung
gewisse
verstehen
Auge
Erst
Arbeiten
lange
deutscher
Freund
General
verschiedene
Falle
Friedrich
verloren
Deutschen
Menge
Sonne
Besuch
Ruhe
solle
tief
Minuten
Reich
Eindruck
gingen
Freude
gesprochen
besonderen
dahin
Idee
Situation
schaffen
to
Beziehung
Mal
Person
geschrieben
Schwierigkeiten
folgt
wahrscheinlich
vorhanden
gehalten
manchmal
Ergebnis
Teile
Bericht
beginnt
Wunsch
Worten
Gewalt
Jahrhundert
gehen
Beginn
hin
finden
Wohnung
morgen
hinaus
Tages
erreichen
Willen
lieber
lediglich
ruhig
tragen
neuer
Gebiete
gemeinsamen
Polizei
Grunde
Stellen
Hoffnung
Rechte
Wahl
Spiel
Gegenwart
Anzahl
selten
verbunden
Jahres
the
Polen
Lehrer
eher
Bereich
Franz
daraus
mindestens
Rat
allgemeine
danach
Erfahrung
Heute
Bundesrepublik
tut
gegangen
wesentlich
Produktion
Vorstellung
jedenfalls
Blut
Bruder
Grenze
Industrie
Absicht
links
bezeichnet
for
Ort
einzelne
tat
Bilder
Punkt
Denken
Ansicht
sehen
Opfer
Tochter
Verhalten
Presse
reden
Woche
wollen
Theorie
gewissen
Peter
Deutsche
Arm
Gruppen
Freunde
hab
geblieben
gemeinsam
gedacht
Tiere
englischen
Kindern
Revolution
Vertrag
helfen
hohe
sogenannten
Unterschied
modernen
erhalten
Klasse
Kenntnis
nennen
nationalen
Schutz
kennt
Programm
getroffen
miteinander
leben
Verwaltung
direkt
Chef
sagen
Herzen
fertig
halb
heutigen
Feuer
Vorschlag
Regel
entspricht
setzen
China
Ernst
bildet
wichtig
irgend
behandelt
machen
bekommen
sehe
Kosten
aufgenommen
Vergangenheit
suchte
Dienst
Monaten
Name
schlecht
verstanden
neues
leider
allgemein
Thema
Kriege
Leistungen
weiterhin
Verantwortung
Moskau
Amt
einzigen
Forderung
Direktor
Ausbildung
suchen
Dort
gewinnen
dritten
Standpunkt
Hamburg
Dichter
Plan
Nation
wirtschaftliche
wesentlichen
Verwendung
Pflicht
Erinnerung
soziale
Arme
Monate
Bank
erfahren
Amerika
leisten
fehlt
brauchen
Dingen
starke
Maria
Heimat
glaubte
Erfahrungen
wichtige
Sonntag
nennt
Bau
gezeigt
Preis
Nichts
Botschafter
dennoch
schreibt
Schwester
geschehen
Forderungen
bitte
Gegenteil
Lager
innere
Deshalb
Handel
alt
Abschnitt
Moment
schwere
entwickelt
Regelung
Gesetze
bietet
start
Leistung
verlassen
guter
wahr
File
element
file
gemeinsame
lesen
Theater
Sehr
Gebieten
laut
Alter
Dauer
insgesamt
Folgen
wirkt
Erziehung
Meter
gebe
sage
Verkehr
schreiben
dienen
kannst
Reise
wichtigsten
bestehen
fragen
Damen
weiteres
km
Religion
Schritte
vergessen
teils
Vorstellungen
Spitze
Menschheit
Immer
Alte
Jungen
Sachen
Mehrheit
stehen
Briefe
Wissen
Ausland
Weile
Praxis
glauben
spielt
gezogen
Anerkennung
machten
versteht
sucht
besitzt
gelegt
Text
The
Ideen
See
Einstellung
Leuten
Finger
Voraussetzung
offen
denke
Unternehmen
entsteht
geschlossen
erforderlich
Sommer
Landwirtschaft
Schrift
erwarten
komme
festgestellt
hierzu
lagen
Wand
lebt
beschlossen
Ganz
Japan
Wahlen
entsprechend
Voraussetzungen
Technik
Glas
fallen
Aufmerksamkeit
Garten
Forschung
Gedanke
denkt
fragt
voller
kurzen
Fehler
alter
glaubt
blieben
Johann
freie
Laufe
trotzdem
Junge
Anteil
Meer
gehe
Tier
bekam
bilden
Nase
Sorge
is
vollkommen
erfolgt
Schweiz
arbeiten
Max
Haar
sitzt
Je
andererseits
Parlament
Betrieb
treffen
Selbst
Werte
Stand
Angaben
richtige
falsch
Ferner
internationale
kennen
Onkel
gelten
spielen
Glauben
gefallen
Martin
Umgebung
kleiner
Winter
Papier
Rechnung
Versuche
Arten
Gebrauch
geben
fest
Farbe
historischen
entstanden
Spanien
Angelegenheit
Ereignisse
Europas
Eigenschaften
beste
Hauses
tot
kleines
Vergleich
nehmen
Film
warten
Struktur
las
kurze
genannten
wissenschaftlichen
Insel
bilden
erfolgen
erschienen
Stimmung
Auftrag
Krankheit
Hof
versucht
entsprechende
halten
Lust
praktisch
Bonn
Tradition
klein
Frankfurt
westlichen
folgen
Ausnahme
ernst
Essen
lernen
Ungarn
dritte
sogenannte
Fleisch
beider
begonnen
Punkte
fremden
Not
treten
italienischen
Schreiben
eingesetzt
verpflichtet
bekannten
Band
abgeschlossen
anderes
Einrichtungen
Hauptstadt
Zahlen
mitten
technischen
Untersuchungen
Traum
Preise
Hinsicht
bleiben
gelernt
erkannt
englische
Tante
Vorschriften
Schriftsteller
somit
anderem
geboren
halte
Firma
wichtigen
abends
befindet
bedarf
Wein
gezwungen
volle
Ludwig
teilweise
eigentlichen
Beruf
Wald
Dorf
abgelehnt
relativ
Studenten
Schiff
Brot
Fortschritt
brauchte
Gerade
gerne
Handlungen
Ecke
Neue
Wunder
stellen
Teilen
still
Markt
glauben
entwickeln
aufmerksam
unbedingt
verstand
Fahrt
Auto
cm
fahren
Umwelt
einerseits
legen
in
betrachtet
Hund
Sein
eigenes
vermeiden
Union
Tiefe
verschieden
lebte
willst
verschiedener
Verbrechen
verboten
vergessen
polnischen
entscheiden
vorgesehen
Mai
Schaden
angesehen
streng
Diskussion
Systems
Pflanzen
gelesen
Reaktion
offenen
Kollegen
unterscheiden
bestehen
abgesehen
festen
eigener
annehmen
weist
benutzt
Quellen
Allerdings
keinerlei
Nummer
Nationen
eng
Einrichtung
umgekehrt
hingewiesen
rechnen
Waren
bestimmt
gefragt
ausgeschlossen
beteiligt
Vorbereitung
mache
Armen
irgendwo
Ebenso
Reden
Blatt
entstehen
Herbst
Leser
meine
Indien
Goethe
Besonders
Blumen
demokratischen
gelungen
nachher
mochte
betrachten
christlichen
lasse
Holt
wirken
leben
beginnen
Stil
moderne
Stoff
Hut
junger
nationale
irgendwie
Daher
Milch
gemeint
gutes
verantwortlich
fordert
Anlage
De
kommenden
vorsichtig
sozusagen
Gast
Botschaft
stehe
leichter
Mut
Wille
Vorgang
notwendigen
Monat
Schweden
Beispiele
Maschinen
folgendes
rechte
treten
Schulen
einfachen
abend
Dank
Schnee
meinen
Abteilung
essen
kenne
Mangel
dazu
Verbesserung
Dagegen
Gegend
Nachricht
wissenschaftliche
kennen
letzter
handeln
Belgien
Erfolge
Bahn
Gemeinde
Summe
Karte
erwartet
Mitarbeiter
neuem
schneller
Stufe
Grad
halbe
beispielsweise
bekommt
entfernt
sitzen
Gesundheit
Trotzdem
Betracht
einfache
Hotel
versuchen
Niemand
Montag
Gold
hart
ehemaligen
erinnern
betrifft
Spiegel
besonderer
Endlich
Norden
Verpflichtungen
deutsch
Politiker
Anlagen
sorgen
gestorben
August
Freitag
Strom
bedeuten
versucht
gespielt
Lachen
reine
liegen
arbeitet
freundlich
anerkannt
erheblich
Ruf
jeweiligen
vorstellen
wartete
feststellen
Handeln
Vorteil
Position
Kirchen
erlebt
entschieden
reicht
April
Bezug
Geschmack
Regeln
schlafen
Einmal
froh
Grundlagen
gestanden
halben
gebraucht
Priester
Bedenken
Fortsetzung
Darum
Ganze
Gewissen
Flucht
feste
Geburt
Hintergrund
geleistet
Logik
Nachmittag
besetzt
Juni
historische
Produkte
ganzes
verlieren
Informationen
Nachrichten
Kapital
privaten
Entfernung
Bier
Verbindungen
Radio
mitgeteilt
meistens
beobachten
sitzen
beweisen
technische
Studium
spielen
Schlaf
Januar
besitzen
erinnert
kaufen
tiefen
Eva
Beratung
Tasche
September
Regen
Oktober
lautet
Sehnsucht
Kaufmann
bewegen
bessere
Vortrag
gebaut
ruft
verzichten
Mama
weiterer
wiederholt
praktische
bisherige
Neues
Provinz
offiziellen
Mittelpunkt
vorigen
Schmidt
gelten
Generation
Phantasie
Lieder
Decke
kalt
Gleichzeitig
gearbeitet
Familien
bemerkt
erhalten
befinden
vorbereitet
sprachen
entdeckt
Solche
Note
begreifen
Juli
Leiden
stolz
absolut
krank
brauche
geschehen
Dadurch
anzunehmen
sicherlich
Kilometer
vermutlich
Mantel
Auseinandersetzung
Herkunft
Bitte
chinesischen
behalten
Einladung
rote
nehme
hingegen
Gestalten
hoher
Sorgen
Unterricht
fremde
Objekt
Element
bezeichnen
stellten
knapp
Aussage
engen
Eier
Karten
gegebenen
gemeldet
verwenden
Alten
armen
November
Jedenfalls
offensichtlich
Bayern
wahren
richtet
Allein
heiligen
Bedingung
Wieder
arabischen
Dezember
stimmt
stattfinden
Liste
eintreten
DER
voneinander
Pflichten
bekannt
Befreiung
Institut
Wetter
Manchmal
nich
eindeutig
Unterschiede
bieten
verletzt
holen
dauernd
langer
Bahnhof
Unterhaltung
Pause
weiten
deswegen
reich
Nachbarn
gesellschaftliche
Ausgang
dunkel
Schlag
Anforderungen
arbeitete
Gesellschaften
behandeln
Papa
Dennoch
tiefe
Systeme
Institutionen
behaupten
Schein
Ablehnung
Angebot
gegenseitig
gesucht
Nutzen
Afrika
einziges
stammt
Mittwoch
Auswahl
Ferne
erfolgt
erheben
bekannte
falschen
Februar
Ablauf
Anna
wichtigste
liebe
notwendige
gerecht
Sprachen
Vorbild
geeignet
hilft
Donnerstag
tragen
Abstand
Darauf
entschlossen
Partner
bezeichnet
Bundesrat
Dienstag
dringend
Ansichten
finde
Deutsche
erstmals
Gut
Hauptsache
herrscht
Kapitalismus
normalen
entfernt
kurzem
Aufenthalt
Tieren
Sicht
italienische
breit
kulturellen
gelassen
eingerichtet
fortgesetzt
setzen
sprechen
wert
hoffe
Soll
erfolgreich
bezug
Flasche
beendet
gewinnt
geschickt
soweit
Gesichter
Schicht
Stock
Konflikt
bitten
echte
Information
Verein
Faktoren
daneben
berufen
verlangen
Gefahren
einzelner
Mittelalter
Rechtsanwalt
angegeben
Schweizer
Drittel
Freundin
verstehe
Ganzen
Fischer
Geburtstag
Holland
Post
setzten
gesund
Kleine
rechtzeitig
offene
Leider
besseren
Betrag
Akademie
Bald
klingt
einverstanden
bezahlt
Firmen
Faust
jung
Damals
NZZ
russische
langem
Erinnerungen
Eingang
Laden
Freunden
Gehalt
steigt
Autor
Senat
Ausstellung
Sonst
Banken
entscheidende
Verstand
Glaube
Bundestag
zahlen
unendlich
Ahnung
lachen
arbeiten
aufnehmen
kg
merkte
Kann
Kleidung
weg
Tee
morgens
auftreten
warm
arme
frisch
lebendig
Frankfurter
leiden
Vorgehen
jederzeit
Berg
falsche
fremd
Abends
getrennt
teil
Minute
untereinander
aufzunehmen
kleineren
Berichte
Daseins
erlaubt
muss
gewachsen
Initiative
Dokumente
gerufen
Auskunft
Weiter
beitragen
bleibe
Verlangen
fallen
Hausfrau
Andererseits
Eintritt
Angestellten
schlagen
Kartoffeln
Anwesenheit
Wagner
Bedarf
Konsequenzen
Wolfgang
Ideal
Ernst
Paar
Vorteile
Weitere
Sollte
spanischen
Fast
Gestern
andre
Beschreibung
Kommunikation
klassischen
bezahlen
Wohl
Entspannung
gefahren
reichen
Dritten
Winkel
genaue
Neuen
benutzen
bedeutende
genauso
trinken
ansehen
absolute
klaren
bringen
eingeladen
dienen
schlechten
gestalten
verbreitet
Kunden
Chance
genauer
Treffen
treiben
lebenden
Jugendlichen
ergriffen
entwickelte
stimmte
wisse
verkauft
Themen
Kaum
verliert
Kandidaten
liebt
Gut
Reisen
erinnere
lieb
laufen
Wohnungen
anfangen
Erwartung
Kette
Ost
fern
Strecke
Bauch
verfolgen
Klarheit
stelle
traurig
einziger
Halle
polnische
unterwegs
kleinere
Vorsicht
vorgeschlagen
Rock
antworten
frage
Mittag
schwierig
Hamburger
aufgebaut
anfangs
entsprechen
denken
angebracht
Gesetzen
erworben
ehemalige
erledigt
Problemen
klare
Besucher
Lauf
schlechte
geregelt
Spuren
Oh
geglaubt
besuchen
Gleich
Inseln
Aufsatz
bewahren
Michael
Messe
net
dreimal
liest
Franken
Besitzer
Hochschule
verkaufen
Keller
vorbei
Irrtum
Stolz
Verzicht
tun
vierten
Darin
Kleid
besitzen
Kurs
Wachstum
Krankheiten
heutige
Symbol
Kurz
kostet
bestanden
direkte
dankbar
Kontakt
Dunkel
achten
Bein
Kleider
Strukturen
Begeisterung
entscheidend
Umgang
suchen
Auflage
bestimmt
VON
Fremde
West
Auftreten
freiwillig
Streben
Schuhe
Begegnung
Temperatur
wartet
bedeutend
Gleichgewicht
erstaunt
Leidenschaft
besuchte
hohem
angeboten
Objekte
Haupt
aufgegeben
schicken
Urlaub
Anpassung
Bewohner
lieben
unternehmen
Fremden
Produkt
Lieber
vereinbart
Bibliothek
interessant
laufen
Ausgleich
Verkauf
Berlins
beziehen
gerechnet
bestehe
wirken
Austausch
entstehen
Wurzeln
Philosophen
positive
Erlaubnis
dauert
Loch
meldete
Region
erleben
Mitteilungen
dorthin
Mathematik
Bauten
Physik
Oft
Aussprache
Tendenzen
Alkohol
lernte
un
Wahrscheinlich
liebsten
Bescheid
vertraut
bauen
Fest
Wichtigkeit
begegnet
gewohnt
Empfang
positiven
Andere
verlassen
Bestandteil
Gedichte
beachten
Reichtum
Oder
Verwandten
Flugzeug
Einkommen
Bulgarien
wichtiger
schwerer
ausgehen
Erlebnis
gekauft
kleiner
identisch
verwirklichen
Sport
Bilde
verlangen
Ansehen
Normen
weisen
Rhein
Bemerkungen
ehrlich
Architektur
Integration
Geschehen
Allgemeine
herzustellen
bezogen
Tanz
gelebt
speziell
verraten
Wirt
Geduld
Orte
teilnehmen
Nationalen
Patienten
berichten
sollst
gebrochen
erlassen
vorkommen
Hunde
gestrigen
Niveau
Deutscher
Motor
Daneben
Schwierigkeit
gewaltige
Fisch
Haushalt
denkbar
verdient
Ankunft
Danach
versuchen
lustig
Katastrophe
daraufhin
Einwohner
Kenntnisse
Vermittlung
Lohn
aktiv
besonderes
verbinden
chinesische
legen
Stern
hell
Wollen
Jan
geschenkt
verschwinden
untersuchen
nennen
Verdienst
Museum
Polen
finanziellen
danke
fahren
Nachweis
Gutes
mehrmals
Suche
Auswirkungen
All
absoluten
schlimm
ausgegeben
Kauf
Faktor
wenden
Halle
Niederlande
Tausende
Demokratischen
Gehen
verbessern
Viertel
Erste
Davon
Anzeige
bedeutenden
Versuchen
positiv
wilden
Ausnahmen
organisiert
Horizont
Orten
davor
Reaktionen
nach
seltsam
AP
verstehen
Bereichen
August
Fenstern
ausgezeichnet
Danach
Adel
Hochzeit
behauptete
begriff
Kloster
fordern
Erwartungen
entscheidet
UN
Nie
sag
erleichtern
umfassende
Transport
unterrichtet
ertragen
normale
japanische
Telefon
beeinflussen
sauber
leid
Positionen
Samstag
Amsterdam
Musiker
Komm
Fabrik
Ewigkeit
schritt
merken
Bonner
goldenen
Bach
reiche
Heiligen
teuer
vermieden
empfehlen
Mischung
Situationen
wohnte
Antworten
Reiche
heilige
gespannt
schlimmer
Ersten
Kontakte
Geschenk
vorausgesetzt
Bad
gegenseitige
est
strenge
Autos
kalte
Sehen
Bereiche
geeignet
Angabe
Adresse
Schatz
folgender
heiraten
Deutsch
Generationen
Eben
Feier
Weihnachten
Hemd
Tuch
Versicherung
echt
amtlichen
ausreichend
eingehen
studierte
geplant
siehst
internationaler
Wissenschaftler
blaue
Gewohnheit
Bereits
Gute
wertvolle
offizielle
sowieso
Harmonie
bieten
verheiratet
Arbeitslosigkeit
beantworten
Dazu
Werkzeug
pflegen
weich
wichtiger
stammen
Momente
ginge
aktiven
hoffen
Unsinn
Bisher
sicher
Kinde
Chemie
folgen
besucht
Spiele
Orientierung
Westberlin
passiert
Meinungen
interessiert
beginnen
angefangen
Speisen
seitdem
rufen
Australien
versprochen
Anders
Reihenfolge
Einsamkeit
weh
Geister
herzlich
ganzer
DIE
automatisch
eventuell
Iran
Nachfrage
Park
erkennbar
erwartet
schwerer
gelben
Schiller
altes
ungarischen
umsonst
wohnt
Sitte
hervorgerufen
letztlich
dortigen
flog
wagen
Fernsehen
melden
solcher
Asien
Vielmehr
Kolonien
peinlich
Kindheit
Schritten
Internationale
Kredit
verwandt
Luxemburg
vergleichen
Steuer
ausgestattet
Werbung
Lebensmittel
Mitarbeit
schriftlich
Fabriken
Bekannten
vierte
Goethes
angeht
deutsches
Datum
kulturelle
Projekt
Finanzierung
Laune
komm
neulich
liebe
Will
Konflikte
parallel
beherrscht
leere
geeignete
Etwa
aussehen
Theodor
nachmittag
Villa
Gerichte
angekommen
Argument
Personal
lieben
steigen
Leid
Arbeitnehmer
Miene
passieren
bequem
Computer
Krankenhaus
Bezirk
Armut
entsprach
finanzielle
Lehren
lege
westdeutschen
Eigentlich
erwerben
Wirken
gesammelt
spreche
beschreiben
Stamm
fremder
untergebracht
antwortet
unsicher
Durchschnitt
getrunken
lebe
verdienen
Insgesamt
individuelle
merkt
Erkenntnisse
Dialog
Veranstaltungen
entsprechen
entdecken
entstanden
Duft
beigetragen
Chancen
besorgt
verhalten
Statistik
lernt
ordentlich
greifen
Einzelnen
geholfen
Hinweise
erwartete
abgeben
verdient
schaut
Kredite
aktive
Arbeitgeber
befassen
Lassen
Insekten
Veranstaltung
Aussehen
freuen
prinzipiell
Essen
davon
tanzen
helle
Wiese
systematisch
studieren
Aspekte
Jedoch
Entwicklungen
bereitet
erstens
Aussichten
spanische
UND
wirksame
dauern
Gemeinschaften
Kleinen
blind
Katze
kommst
Daraus
letztes
seiten
traditionellen
betrachtet
regeln
Sogar
frische
unterschiedlichen
Geste
Brasilien
entwickelt
schenken
sinnlos
Guten
nachweisen
erlauben
Leibe
Garantie
Ofen
goldene
gesunde
geh
geschafft
Ganzes
eigenem
bringe
unterschieden
Denkmal
Medien
Schaffen
riesige
Preisen
Dom
interessante
Vormittag
spezielle
geteilt
Klima
Kuba
Aspekt
Kollege
Leere
Kino
entnehmen
billig
grundlegenden
Respekt
bedeute
normal
Suppe
Unterschrift
Besuche
schnelle
theoretische
Mannschaft
geschlossene
Kissen
drin
blau
Hotels
begrenzt
aufgeben
nutzen
Benehmen
Melodie
bitter
bedenken
Ingenieur
Engel
hoffen
Alten
Risiko
gewartet
erfahren
Polens
on
angestellt
schrecklich
Sprechen
Verstehen
Alternative
sozial
entschieden
sagst
Nationale
springt
Korea
Schlafzimmer
schlagen
Einzelne
vermitteln
Tabelle
Hierzu
Heim
Ball
wohnen
Kommen
fragen
Takt
Klavier
Termin
fortzusetzen
Geldes
Irak
wollt
bisweilen
Bilanz
Konzert
Jugendliche
Interview
Beschwerden
kennengelernt
komisch
Kontinent
Heilige
Wissen
Darf
behandelt
Koch
schwierige
wiederholt
unterschiedliche
erweitert
verhandeln
Vorliebe
Lesen
bekommen
endet
geredet
eintritt
Hofe
mindesten
entstandenen
befinden
nah
interessiert
bereiten
unangenehm
hoffte
ausgegangen
nicht
weinen
sammeln
innerer
formuliert
grossen
Gebirge
Brille
nett
Jahrhunderten
wahren
Willy
gegessen
junges
Instrumente
Langsam
Institution
sichere
aufgeregt
Unterlagen
reichen
Student
Traditionen
freut
Insbesondere
Hose
Erlebnisse
gefeiert
billiger
Guten
beantwortet
leidet
treffen
Aufschwung
vermittelt
Treiben
einsam
reden
Ah
gewandt
danken
organisieren
beraten
fortsetzen
Nachteil
au
Klagen
egal
Arbeitszeit
schreiben
eine
geantwortet
bestimmtes
geschickt
teilzunehmen
schlechter
New
Rad
mitgebracht
Export
Wiesen
ergaben
Nehmen
Gelegenheiten
holt
Obst
freundlichen
Erstens
Innere
weitaus
Gute
bekommen
Ideale
mach
meinst
erlaubt
unterscheiden
Distanz
kritisch
suche
beliebt
lese
hiermit
geschossen
Rote
warte
erweitern
Seitdem
Sitten
erfolgreichen
entnommen
Nachbarschaft
Futter
Noten
Sicher
ungeduldig
Politische
Lokal
erschienen
brauchst
Geschehens
Entsprechend
Teppich
entschlossen
Anwalt
Niederlanden
Wohl
wertvoll
Mozart
jetzige
Schulz
Hoffentlich
Gemeinsamen
widmen
Blau
Restaurant
hofft
ineinander
Abreise
erreicht
Anfrage
logisch
genutzt
verbessert
Kulturen
Hessen
Spanier
bunte
sehn
Platze
hinweisen
Hingabe
Wollen
teilen
mitteilen
empfindlich
Sofa
schickt
kaufte
Empfehlung
dachten
vermuten
Beschwerde
gepflegt
beziehen
vorlegen
typische
gedient
starkes
ruhiger
einfacher
gezeichnet
Wende
verzeichnen
warten
diskutiert
empfindet
lieben
Feste
Gibt
Tun
niedrig
machst
hilflos
reisen
begleiten
Berater
schreibe
unterliegt
negative
umgehen
ruhigen
wunderbar
Irland
Willst
angemessene
Niemals
Habe
Entschuldigung
Anhang
kleinste
ungarische
reduziert
Neugier
Geht
unterschiedlich
Mexiko
freue
interessiert
Genau
interessieren
verspricht
Haaren
wich
Wohnzimmer
lebende
lieber
Sklaven
geschlafen
Deutscher
entschied
Freuden
Sofort
begeistert
unterhalten
setze
Geschenke
freundliche
Vorfahren
gelitten
Engel
heben
besprechen
festzuhalten
monatlich
friedlich
versichert
versuche
Bestehen
verwirrt
Mittagessen
fordern
vorzubereiten
erfolgreiche
anwenden
gefallen
eingetragen
Bezirke
Ferien
Alltag
Viel
bemerkt
wichtiges
beenden
Schlange
negativ
Daumen
willkommen
kosten
rufen
auszusprechen
Abendessen
konkret
Raketen
Weisen
akzeptieren
studiert
erledigen
Teils
Beispielen
Kriterien
ma
Herr
gezahlt
sinnvoll
ist
vormittag
Erkennen
Marokko
Wegen
arm
Wichtig
isoliert
wiederholt
Elbe
voraus
Flug
unheimlich
Spielen
sparen
heutzutage
Berichten
Richtig
Gastgeber
Werten
Schwere
schauen
Gymnasium
herrlich
teilgenommen
Jacke
oftmals
Stefan
lokalen
umfangreichen
fliegen
Meist
Vereine
Fliegen
ausgezeichnete
Beethoven
grob
normalerweise
hinterlassen
Regionen
geheime
Heiligen
fahre
vorzustellen
Nachteile
total
unterrichten
Bezahlung
Komponisten
Tabak
Projekte
Lebensbedingungen
Schopenhauer
dulden
Sendung
Rathaus
dichten
angesprochen
erwecken
international
Warten
Strenge
Start
Erster
Verwandlung
besonderem
Kummer
betrachten
funktioniert
Engels
Kanada
andres
Details
irgendwann
reagieren
Nachbar
genannte
bezeichnen
Grammatik
schlechter
Brauch
Lehrerin
Budget
schwieriger
psychische
Baby
Allgemeinen
Erleben
folglich
Kennzeichen
mitnehmen
gesunken
Enkel
Abgesehen
Mach
Schwerpunkt
behaupten
gekostet
korrekt
Dienstleistungen
akzeptiert
Schade
unbekannte
lohnt
medizinischen
Wirklich
Wohlstand
Karriere
Bruders
Agentur
Gabe
Mag
Geh
besitze
Stehen
los
Hof
erwarte
wechseln
Software
Ostern
Strand
mochten
ermittelt
angemessenen
lehren
Freie
gefehlt
offener
kostete
Schwein
indische
erinnern
passiert
heben
kriegen
anderseits
Bekannte
Mitarbeitern
erkennen
Motiven
Kuchen
Sagen
Olga
Terrasse
bester
Besonderes
existieren
nenne
Nordamerika
jeweilige
greifen
niedriger
waschen
kauft
besessen
Internet
Party
trinkt
langweilig
jugendlichen
Tieres
brachen
intensiv
Enden
Wiesbaden
beibehalten
Morgens
Original
gewohnten
geweckt
Weinen
informiert
Taufe
Mutti
Siehst
Oben
Schulung
Gunst
Museen
angegebenen
Vertrags
vergleichbar
Reis
Eingreifen
bestanden
musste
Sitzen
anbieten
gelacht
Gefallen
Kerze
Ja
bemerkenswert
Tiefen
beherrschen
entwickelte
Weit
Besondere
Minderheiten
Barcelona
wenden
ruhige
unentbehrlich
Katharina
feiern
Anzeigen
geheiratet
beschriebenen
Balkon
enden
freiwilligen
Freud
Vielfalt
Ehepaar
stammte
bestimmte
nacht
vorbereiten
Becker
vorgehen
Moderne
schaden
dei
Arbeitslosen
Verwandte
besseres
Sinnen
Junge
Mieter
sollen
Hohe
begrenzten
Regensburg
fliegt
relative
Sizilien
hoben
Serbien
grosse
oh
psychologisch
Ehefrau
Atelier
beruflichen
Fach
Spaziergang
freudig
schade
Kommt
Leber
regionalen
CH
Einfachheit
Engagement
verpflichtet
Regisseur
schlechtes
reichen
Hirn
Sage
garantieren
gereicht
Kandidat
vorteilhaft
sicherer
Seide
Vorfall
wandern
Kurse
Offenheit
Kriterium
Freizeit
do
anzupassen
Arbeitsplatz
bekomme
englisch
Wiedersehen
Bette
Lange
einigen
benutzt
Trinken
Nachdenken
Katzen
GmbH
Wichtigste
angerufen
geduldig
Reichen
Unordnung
steigen
verbreiten
Angesicht
lernen
hie
kluge
verbracht
einfacher
Trotz
Religionen
mittags
teilen
verbrachte
herrschen
Seife
beherrschen
Nein
anzufangen
radikale
Kochen
denkst
Daraufhin
erfahren
gehst
Architekt
Entstehen
Gewohnheiten
Gemeinsame
spazieren
aufstehen
Wohnsitz
antreten
Institute
passen
beleuchtet
Grimm
Kleinigkeit
Berger
totalen
Auftrage
schlimmsten
verbringen
betrachte
als
unsichtbar
aktuelle
ferne
Besonderheiten
Hab
Betreuung
begrenzte
gemischt
gestimmt
Einwohnern
kompliziert
Weiterhin
wohnen
gelassen
alleine
erreichbar
Daran
Glauben
abgelegt
erwachsen
beinah
Bewerber
Ukraine
Minimum
sollt
Vergleiche
beherrscht
betonen
Eden
Schokolade
Sei
Varianten
erwarb
Service
dran
erobern
Lernen
Rate
pflegen
definieren
erwarten
unterschiedlicher
Auswirkung
Quartier
Letzte
flache
getrennt
Lagen
komplizierte
Wochenende
Suchen
Beste
Seen
Schwager
Einzug
Kannst
Nicaragua
Unzufriedenheit
verletzen
Luxus
Rufe
Kompetenz
billige
Kunstwerke
Konferenzen
erregen
Krach
schriftliche
ideale
Los
sammelte
wechselt
Kambodscha
si
Sollen
grobe
traditionelle
tu
Wunsche
ausgesprochene
versichern
orientiert
Beilage
abnehmen
Erwachsene
leichter
schlage
gewechselt
wahrzunehmen
hoffentlich
Umgekehrt
totale
verloren
Klein
per
regieren
Toilette
Solche
bestellen
Dante
Kluft
Verschwinden
gesperrt
kennst
Erzieherin
Bar
Albanien
helfen
verpflichten
verlieren
Tausend
bekannte
Semester
Mexico
eingehalten
Gar
bunt
Interessenten
Landsleute
vertiefen
produzieren
Freie
Verpflegung
Besseres
besetzen
ankam
Vergessen
gib
Nachher
erstatten
Langeweile
wiesen
schen
gekocht
maximal
Sekt
Miete
Bezirken
schrien
betrogen
Wurst
feiert
Herausforderung
kriegen
Besser
angenehme
verdienen
Ratten
Fotos
Technischen
Schlage
Fort
Paare
Schnell
ankommen
Jung
Sollten
Julia
unterbrechen
formell
Saft
modern
Historie
Anne
esse
medizinische
seltene
Vorher
Dolmetscher
geographischen
frischer
gedenken
Toleranz
bar
Entgegenkommen
Wollte
generell
Industrien
festlegen
volles
herzlichen
Schlachten
Somit
vergleiche
eingreifen
Fahrrad
Versprechungen
organisatorischen
bezogen
Marktwirtschaft
Perspektiven
Siedlungen
Gib
Telephon
nimm
Richtige
richtiges
Eins
rufe
Fachleute
Anderen
lokale
spontan
mittag
Linz
Dorfe
Freundlichkeit
Dritte
sprachliche
Ostberlin
Anfangs
Konto
SPIEGEL
beten
begegnet
geachtet
schweizerischen
unglaublich
gewaltiger
informieren
einheimischen
streichen
ablegen
tauchen
Spezialisierung
Weiterbildung
orientieren
Vorurteile
Ankara
Hast
geforderten
schreckliche
verlorene
arbeite
Allen
passen
Deutsches
ablehnen
beraten
erinnert
Mitten
verwandten
Sicherlich
treiben
KM
man
einsetzt
Trier
streben
Sauberkeit
berichten
Portier
dringende
drauf
extrem
hervorragend
entwickeln
Schafe
lateinische
Los
betonen
Abends
Freundinnen
lesen
Backen
Kriegen
so
Erfolgen
Slowakei
romantische
Winters
Litauen
Speise
faul
vergleicht
unterschied
verbreiteten
Sag
Halten
lg
interpretiert
Gerichten
Abfahrt
Wenigstens
unbedingt
besorgt
weltweit
Kompetenzen
beleidigt
lauten
anpassen
Riesen
intensive
behilflich
Tragen
verlassen
anziehen
bereitet
solltest
lebend
Starke
extra
werd
Foto
teurer
kochen
schaffen
Machen
Anruf
bewegen
Wiege
bitten
Bereicherung
Angebote
vereinbaren
ab
fordere
Verschiedene
Latein
Technische
Bureau
Heine
be
Un
Bissen
Sieht
komplexe
Orient
bevorzugt
beklagen
Touristen
fliegen
wende
lauten
weise
Buchhandlung
Lange
Vorsprung
bearbeiten
brav
Kur
respektieren
verstecken
senden
Komplexe
Dortmund
Verlassen
Forum
denk
Einstellungen
passende
Spezialisten
schauen
Links
hinnehmen
anrufen
General
Bedeutungen
wahnsinnig
steigende
sympathisch
Flughafen
Morgens
durchschnittliche
wolltest
aufpassen
bedeuten
Ausstellungen
geschilderten
nachdenken
Peru
Rotwein
erfreut
vereinigten
auswendig
grad
privat
Schlimmste
Lesern
Salat
beginne
verfehlt
sage
Profil
seht
Wolle
Vorkommen
MA
Ausflug
erlebt
Englisch
anzubieten
erlassen
Besichtigung
sorgen
aktuell
Panik
Konflikten
Kleinigkeiten
klagen
Entscheidend
islamischen
Branche
beigebracht
baldige
Vermutlich
gleich
teure
trinken
unzufrieden
lernten
einen
Hunden
erweitert
tiefes
angemeldet
schadet
Tom
DES
abgebaut
berufen
Stimmt
klappt
Schlafen
Erachtens
Abitur
Einwanderung
wiedergeben
lustige
spiele
erlauben
viermal
Besten
Unterkunft
identifizieren
wechseln
nette
bilde
gewinnen
Ebenfalls
Berufsausbildung
vermittelt
Oma
Einerseits
vereinen
frisches
International
fertige
vorschlagen
ausgeben
fremdes
Nachwuchs
erwartete
Lebenden
zahllose
ten
Halbjahr
Dokumentation
Bitten
Kommt
Husten
bauen
erstattet
existieren
meinen
Bus
Eintreten
Kleinen
KONKRET
streiten
Bleibt
toll
erheben
berufliche
Sektoren
verkaufte
Programmen
Nimm
merke
Neuer
Wenig
Irgendwo
Thailand
Kopie
uralte
Lediglich
bereiten
Gans
Fahren
Kamin
weint
geflogen
Pfalz
Vorurteil
Fasten
Neu
Muttersprache
scheiden
Neuen
erfreut
Betrachten
beantragen
schonen
entsprochen
Lange
Fremder
Fliege
kennenzulernen
Museums
Hingegen
falle
jugendliche
Englischen
Deswegen
Weltwirtschaft
auskommen
unterschreiben
nochmal
Is
verbesserte
Ausweis
Argumenten
drittens
Dana
gelandet
Fallen
Soziale
nachgedacht
Befinden
Waschen
Beste
Klar
hoffentlich
sprachlich
echtes
rauchen
St
Aspekten
Kandidatur
bewohnt
Siemens
anhalten
Einkauf
Momenten
Ach
Mars
Job
schwimmen
Taxi
Sagen
tschechische
Etage
ER
festes
Einzelnen
einladen
vorstellt
beweisen
Konnte
Meier
erwarteten
Aufenthaltes
demzufolge
beschlossen
Arabischen
Rauchen
Bleiben
Allgemeinen
verschwinden
mitwirken
Nichte
integriert
Partnerschaft
belasten
rechnen
erholen
werden
vertieft
leiden
Losung
Hilfen
vermeidet
Patriotismus
Laufen
Sehen
Warte
diene
Hunderten
angenommene
Volksschule
Filmen
umgehend
nirgendwo
Restaurants
verhalten
Sprichwort
College
intensiven
Schachtel
Seht
kaputt
unbestimmt
Vorabend
orientiert
nahe
Vereinigte
Wichtige
Venezuela
kostenlos
betrieb
liess
genauer
achtet
lasen
Au
schritten
schmutzig
Hunderttausende
vermittelte
Sucht
scheiden
Nord
hingehen
Wolle
engagiert
begabt
heisst
Schinken
getanzt
funktionieren
konfrontiert
geschrien
Vertrieb
Pech
Berufen
kennenlernen
Heimweh
respektiert
erworbenen
holen
gezogenen
Liegt
eigne
Bayern
voran
mitbringen
verwandte
beliebten
biete
Gemeinsam
FRAU
erleben
Nigeria
WO
essen
erkundigen
kontinuierlich
Fax
Wesentlichen
Kamm
KB
erfinden
Interessant
Rucksack
befolgen
bauten
richte
Worauf
erlernen
aufgewachsen
Hofmann
Altstadt
Kabel
ansonsten
entsprechendes
Erlebnissen
Tourismus
gefreut
hole
Bemerkenswert
war
Spiegel
Meinen
breites
angehen
ablehnen
Dialekt
Internationale
merken
Folgende
andernfalls
dortige
offenes
werten
Studiums
Wissenschaftlern
erreichen
beiden
Allgemein
einzubeziehen
Beliebtheit
benennen
leisten
Prestige
bereichert
Nimmt
Bekleidung
angebaut
falsches
freuen
schlimmste
nimmst
besichtigen
Irgend
kochen
lachen
Trend
band
bestens
Gummi
Steht
Westeuropas
abholen
Club
treffe
umzugehen
Umzug
Jungs
Arbeitseinsatz
einzuhalten
brauchen
Besitze
Lamm
Badezimmer
geehrter
langfristig
Opa
Tanzen
laden
Main
Sonntags
itvor
interpretieren
Kaninchen
Kolumbien
kocht
raten
Auswanderung
Themas
Inserat
hat
bezeugen
tragisch
gereist
stimme
Meistens
ausgesehen
Tageblatt
Lang
verbinden
landen
weiss
Denkweise
wohne
kriege
Quadratmeter
dynamischen
geschlossen
Qualifikation
Vierteljahr
Funktionieren
Besuchen
DAS
kosten
weise
unbequem
vorlesen
auszugeben
Gesuch
Keller
Pazifik
umzusetzen
putzen
problematisch
gerichtlichen
Wichtiger
baldigen
herzliche
ausgesucht
enorm
afrikanische
Gleiche
versichert
einbringen
English
laufe
Kurze
Aufstehen
Inder
Dekoration
kritisieren
reist
reserviert
korrekte
kombiniert
Eher
teile
Freiwilligen
Sagt
eroberten
schweiz
schwierigsten
Alex
Heizung
schnellsten
besucht
magst
Feiern
Denk
formuliert
erwachsene
Wesentlich
raucht
solide
sein
dramatisch
sinnvolle
Selbst
Tags
Perle
stammen
Sag
Schriftstellern
schlesischen
Schlafe
eigenartig
Drittens
erlaube
verwandt
achten
optimale
Diskretion
Gesichte
aktiviert
Kennen
Neulich
solche
lieber
Rufen
Entscheidende
anordnen
To
Lieferanten
Kenntnissen
Feiertag
gekriegt
behalten
Niederlassung
DE
Folglich
Alt
verpflichten
Seine
VI
bedeutungsvoll
anzeigen
dauerhaft
Jemen
schweizerische
Wichtiges
Mittags
wertvoller
schicke
empfehlen
Motivation
schlimme
mei
findest
Hinterkopf
Schaum
momentan
Offensichtlich
Setzen
Krankenschwester
markiert
kulturell
Besten
Reizen
Festes
beizubringen
Schwimmen
Daran
Mindestens
Andre
Eigene
Tief
Goldenen
Schwere
riechen
melden
Werks
globalen
Gasthaus
Gewisse
IN
qm
Geschwistern
Aufenthalts
Dialogs
Kinos
wird
fange
ausgebildete
sammeln
Karneval
Bar
Art
Irgendwann
geehrt
wiedersehen
mitmachen
dichter
folge
gerichtlich
Quadrat
vergesse
traditionell
Erinnern
Informatik
Verwahrung
Schumacher
Dei
Festen
Genau
frohen
Ostdeutschland
Angestellter
meiden
Leicht
gesprungen
schlafen
Kindergarten
anschauen
Vereinen
Kanne
Post
anbietet
Lieben
perfekt
netten
vietnamesischen
bleib
ferne
mitzunehmen
vereinigte
schreibst
regen
reagieren
Termine
reiche
aufmachen
gesundes
reizt
spitze
elektronischen
ausgezeichnet
gebieten
freundliches
Kartoffel
helfe
verwalten
naher
main
raus
freundlicher
Lebenslauf
Still
Mutterland
leide
Laut
ausgegebenen
ausnutzen
Kolonisation
Kommunen
Vermieter
Hiermit
verfolgen
Geben
ostdeutschen
entdeckt
sicherer
Wissenschaftliche
Stadtteil
Madagaskar
us
Bestes
sobald
Fang
wundervoll
relevanten
ausziehen
Frische
unbegrenzt
Bewahrung
Unterwegs
schlafe
entsprachen
Privatleben
heulen
niedriger
Eigener
Selten
Spektrum
achte
vertieft
beleidigt
Hoch
Schlagen
Affe
frohe
Schwer
beachtete
arbeitslos
Einzelpersonen
Bleib
hilfreich
nutzte
Uganda
interessieren
Hin
auseinandersetzen
Rundschau
Raten
wand
Tun
erfahre
Mithilfe
aussuchen
Kleiner
bunter
Hart
verkauft
getaucht
ledig
psychisch
Tu
Globalisierung
Irgendwie
Vorsichtig
benehmen
Erwarten
bezahlte
Kroatien
weisen
Option
werfe
verbreitet
diskret
Kenia
positiver
Sammeln
DOS
Ca
Handtuch
behalte
antworteten
bevorzugt
benutzen
Daraus
Lieber
reizen
Rio
Osteuropas
Geheime
Heimatstadt
Praktisch
zahlen
ganzem
not
Kriegs
einheimische
kenn
fragst
Schleifen
unwichtig
Inserate
Mieten
Meinst
komplett
Schal
KaM
Unbekannte
Meinen
trinke
kaufen
Strasse
Schultz
sechste
sonntags
wusste
Goldene
Garage
Jens
Tiergarten
Vorort
Preises
empfehle
einziehen
Reich
Kinderzimmer
elektronische
unterhalten
tolle
Verkehrsmittel
Steigen
Tobias
gibst
NZZ
administrative
konservativ
verhalten
Kleines
Fazit
gemietet
klingelt
telefonisch
Gen
sog
existierenden
heiratet
bevorzugt
Infrastruktur
Schenke
Gab
Fernseher
New
definitiv
probieren
wertvolles
Ernst
Schauen
Erreichen
Kosovo
Etwas
Berg
unvorstellbar
Anderseits
Innenstadt
herrschen
stecke
Hoher
Gepflogenheiten
Eingehen
mangelt
bring
find
Buchhalter
Rechnen
Wenden
Vitamin
Neuigkeiten
May
Halb
Samt
tags
Genug
anstrengend
verschmelzen
lerne
gleichen
pflanzen
Studio
verwenden
Neujahr
Handelt
plaudern
anzurufen
Beispielsweise
Schulzeit
Spree
Hofe
Air
Andernfalls
modernes
einhalten
Parks
Liebe
Fotografie
giebt
Visum
Absolute
handeln
Bauen
hatte
Gedenken
Studierte
riesiges
erworbene
Aller
Frei
typischer
SO
verraten
Moderne
Kellnerin
Helle
Plus
antworte
dichter
Si
mussten
Hauptbahnhof
dauern
Hase
erlernt
Packung
berliner
haben
behandeln
Landen
Heulen
brauch
feierlicher
SCHMIDT
raten
abzuholen
seltsames
Englisch
bisschen
Fischer
Sibylle
Oberschule
bekannteste
verdiene
beziehe
Deutlich
News
Krankenversicherung
In
Badewanne
Anrecht
tollen
Setzt
Ober
Historischen
Postkarte
rauchen
Bracke
Kahn
gross
Seide
Elektronik
vorletzten
Heiraten
betreut
Wollt
Begreifen
vermute
abzubauen
ausbauen
lauten
darlegen
Schweizerische
Geben
Unterschieden
tauschen
Familienleben
Denkt
Mann
Wirtschaftliche
transportieren
weiterentwickelt
Hamburger
EU
sorge
Vorstellen
Besseren
klettern
Labor
Parallel
Kanton
Beten
sind
Schimmel
beschweren
hessischen
Bekannt
beriet
interessantes
danken
profitieren
einkaufen
begrenzt
fortsetzt
Umgangsformen
interessanter
versprachen
Lebensart
Geborgenheit
regionaler
Jungen
Einfach
kaufe
Polnischen
neunten
Geschenken
MANN
ausruhen
effektiv
vorzubringen
Entbindung
Gern
Einheimischen
beinhaltet
Hundes
erfolge
anerkenne
verliere
ideal
feiern
Betrages
empfehlenswert
Seltsam
trockener
schicken
Michail
Blaue
potentielle
optimal
prima
bevorzugen
wars
Arbeitsmarkt
bedanken
Westberlins
Ansonsten
normales
streiten
Lektion
rate
Tut
ferner
angestellten
Einzige
lockere
unfreundlich
pure
Sex
Historische
versichern
Neustadt
Istanbul
schaue
House
Vase
Genauso
Ging
Elektrotechnik
bestimmten
erwachsen
langwierigen
auszutauschen
Winter
Frisch
Roma
fachlichen
Einfluss
entspannt
Management
klagen
teilweise
Konzepte
Central
bedeutet
Fragt
ge
sprache
AM
Erstmals
Team
gegessen
feierten
Schwimmer
ausbreiten
Praktische
russisch
woll
fachliche
beruflich
Lift
monatlichen
vereinigten
Server
Wohnort
passend
schwimmen
Wortschatz
Kanton
On
konntest
verheirateten
Beweisen
Innere
auftreten
Grippe
Kopftuch
Hundert
Werden
Extrem
Weh
herausfinden
Gitarre
FRAGE
Stadion
have
Notwendige
Deswegen
Freundschaften
fiele
Glaubt
Hinweisen
Wilden
Filiale
passe
Taschengeld
geeignetes
Feiertagen
gelungene
intelligent
Schweizerischen
wundervolle
Bestimmtes
Ritual
Stolz
Hospital
Faust
Kollegin
umgeht
SIE
technologische
integrieren
ruhiges
Schluss
Manipulation
Einwanderer
bewahre
nutzen
spannend
Finden
College
Vergleichen
BMW
planen
Bosch
Camp
wertvoller
Letzten
Bewerbung
Schlechte
Gestern
Fr
technisches
Isolation
massiv
Bade
Stark
will
beauftragen
austauschen
privates
Nimm
Feuerwerk
Bisweilen
Kennst
pries
was
Geburtstage
studiert
erfahrener
Beginnen
motiviert
Erkennung
Feiertage
beobachten
aufgestiegen
angeeignet
Papagei
Postkarten
Institute
Place
tagen
ERSTER
stattdessen
Dreimal
koste
Englische
Optionen
Weltmacht
heimische
Hardware
Falsch
Pflegerin
Folgende
ausbilden
Mochte
Mache
Lokale
qualifizierte
begeistert
Langen
Absoluten
Wandern
Ma
Kneipen
Grosse
Office
originell
wiederzusehen
benehmen
Bestimmte
Via
speisen
Gegebenen
Cousine
anmerken
Komisch
ander
freundlicher
Assimilation
alle
Sicher
entgegenkommen
Kultusministerium
mitkommen
vermitteln
weiblich
berufen
we
marokkanischen
mexikanische
bereite
abschaffen
Science
IM
gesprochene
interessanter
bezahlte
bestes
Macht
soviel
aufgeschlossen
Soweit
gewundert
loyal
exportiert
Studentin
sehn
da
durchgehen
gebt
Gebt
anzuschauen
besessen
variieren
Briefkasten
Sinnlosigkeit
entschieden
einschalten
Bestimmt
backen
obligatorisch
fachlich
traue
Oberschlesien
Chinesischen
Greifen
par
Sibylle
deutschsprachigen
Umfeld
teilweise
Spanisch
Mehr
Angebots
Storm
absolviert
Brasiliens
Fantasie
Photos
Ab
Christlichen
Gleichen
Russland
Babys
Heimatland
Hausarbeit
Russisch
achte
Bon
armenischen
Wechseln
befassen
Volksgruppe
ereignen
verbringt
Wegs
Stern
Normalerweise
lohnen
haste
vertrete
Bringt
Gluck
Aussprachen
Delhi
gucken
begreifen
verwandte
schenke
Kleinere
Kurden
stell
Lehrgang
preisen
Einwohnerzahl
erstmal
Sagte
Gewinnen
bringst
Ganze
Grillen
Aug
jetz
ausprobiert
passender
Haustiere
Besteht
Dahin
Liegen
alternative
Wissenschaftlichen
aufziehen
grad
verbreiteten
anmelden
Leisten
Sog
Grundes
organisiert
Russische
italienisch
diversen
Diplom
Andree
Andres
Lauten
idealer
Vorbei
Gemeint
Erstattung
niedrigere
dynamisch
gewissenhafte
Entsprechende
einleitend
Makler
entschlossen
Fremdes
Absprache
DEN
Datenverarbeitung
wunderbarer
Direkt
Sauerkraut
Agenturen
mieten
Diana
laden
Einfache
Aussterben
Findet
Nam
reparieren
hinterlassen
bekannten
Aktiven
Geburtsort
Guter
em
Nichtsdestoweniger
beleidigen
hilf
beantwortet
Stell
Sparen
Medikamenten
Anschauen
betreuen
qualifizierten
stamme
Wohnungsnot
schwieriger
Abschluss
Vorlesen
schreib
Basler
ch
eingestuft
gefreut
ES
engagieren
Meisterwerke
ausserdem
Modern
Palme
Lieb
Mail
Gegenseitige
Ostblock
angeschaut
Westdeutschen
entscheiden
investieren
nachlesen
Fischers
Wohnen
Balance
Letzten
Lade
mann
ausbilden
hausen
Fuss
Mob
elften
gratulieren
Notwendig
Bundesbahn
vertrieb
Kam
Klappen
Hoffen
Schauen
gesamtes
teuersten
Neuem
Alls
Parkplatz
Will
vietnamesische
Umsiedlung
Beobachten
Denke
Eins
Be
entscheidendes
Dichten
Bleibe
EMail
mitzubringen
Kluge
telefonieren
Schlechtes
US
anstrengen
Computers
melde
selbe
lokal
Vati
Besondere
Wollten
Heben
mobil
Aufsatzes
unterschieden
asiatische
Erinnern
Lieben
weiter
Reine
bad
Bangkok
Schlimmer
spanisch
Uni
verschwenden
wandern
Nahost
Exkurs
nichtsdestoweniger
einsteigen
verkaufen
Volkslieder
schreibe
Kaution
reise
obengenannten
schwieriges
Gemach
super
letztemal
Weiteres
Echte
weitergeben
SR
nettes
Fahrkarte
bezahlt
angebotene
gebacken
beklagen
Kaufpreis
abenteuerlichen
unternehmen
siebzehnten
verlockend
Positive
Angeboten
planen
konventionell
Dusche
Besonderen
interessiere
Anziehen
bewusst
Ehrlich
Spezialist
Gaste
Italienische
Muslime
fahr
Entschuldige
Arbeitstag
billigste
wagen
eingefangen
produzieren
prima
Wetters
Komm
Gross
reisen
Opel
geheizt
beschreiben
Datums
Monika
Bekanntschaften
Konfirmation
geschiedene
Schenken
Negative
Solcher
Junger
Falsche
Bella
bon
DIREKTOR
Silvester
Garn
bekanntgemacht
Ungarischen
unterrichtet
Realschule
andren
lehren
Rome
such
Beilagen
post
Unklarheiten
Individuelle
Neustadt
begleiten
Beginne
Herausforderungen
grosser
Teilweise
reduziert
beispielhaft
Bahnhofs
Computern
krieg
Italienisch
besuchen
Polnische
Einzelner
Betreuer
Tomate
Do
Strassen
niedrigste
Egal
Fremdwort
erleichtern
sportlich
polnisch
Funden
Negativ
repariert
Erlauben
Verboten
erinnerst
Treten
Word
Fehlt
Studentinnen
RS
schwierigste
ostdeutsche
attraktiv
Heine
Ich
Box
grosse
SHULTZ
Service
OH
Folgenden
Liegen
Denkern
achten
Vielen
fanatisch
gleichen
regional
Lebenserfahrung
Miteinander
Fachschule
Wunderbar
Betrachtet
bewerben
kriminelle
Speziell
Eigenes
schen
Hoch
Raus
its
ausprobieren
Pkw
Kuchen
nehm
Nord
Ansporn
Sardinien
vereinigte
Italienischen
Willkommen
wissenschaft
Centrum
Stamme
PL
Kolleginnen
bewundere
Park
anspruchsvollen
flexibel
Ostblocks
Offen
Kontrakt
verloren
Tokyo
voller
Pech
ausverkauft
verpflichtet
grammatischen
beteiligt
einzuschalten
exotischen
Letztes
enden
Hell
unbequeme
ANTWORT
grosses
gebraucht
tunesische
senden
Itsei
GENERAL
unter
garnichts
dauernd
Dorthin
Tanze
Biere
unangebracht
schwerster
Radikale
suchst
Klare
Eins
has
Hie
ergreifend
Entsprechendes
Stadtgebiet
Spanische
Folgendes
Kannen
weiss
schleifen
kW
regen
totes
Einatmen
Anhalten
Feuern
Weiss
Defekt
Aquarium
Cd
Arbeitsstunden
Auswanderer
unverletzt
minus
Privat
Erscheinungsbild
Streichen
Geboren
ANNA
Order
AB
theoretisches
annehmen
Lebensstil
abbauen
sondern
schicke
Habe
eingeschrieben
Geh
Okay
Jobs
kommunikativ
verzichten
besuche
Englische
gelernte
differenzieren
Clubs
Gehe
klappen
Abnehmen
Lassen
sehne
Euro
Lebt
angst
auswendig
Legen
Seher
mitmachen
trunken
circa
Des
Stadtrand
Knapp
vertraut
Privaten
damit
auslaufen
system
schlag
Stellt
Spanischen
modernste
Weiten
Einstieg
Ostdeutschen
Anfangs
Kusine
harren
Falls
welt
gewandt
DEUTSCHEN
Schneller
separaten
Schwager
kennenlernen
Medizinische
Kindesalter
Mach
ertragen
entschuldige
THEODOR
DB
art
litauische
Beiden
beten
Nahe
Helle
Einsatzbereitschaft
Anfange
Lebende
Po
geschmeckt
Gebrauche
vergessen
Auskommen
Anderer
Lokalen
Planen
schick
Mal
vie
Ganzes
Population
Umsonst
Fahrkarten
liebevolle
Nennen
verdient
wurde
Voll
Do
Helferin
Stellt
KG
Nirgendwo
regeln
Modernen
Viet
Aufenthaltserlaubnis
lauf
Geschossen
Stattdessen
MIT
Bringen
erledigt
Arbeitsstelle
koreanische
Formulare
Ausweise
Erlernen
markiert
Hase
Hallo
Sprechen
schlaffen
schlaf
Grundschule
OB
eingeschlichen
Annonce
ende
Total
funktionierenden
Befremden
Heutzutage
probiert
Kommenden
Wiederholt
Innovation
kanns
Hertz
Fried
Katz
Dan
Aus
Sprach
Offene
ST
Richtiges
gucken
ergriffen
vermietet
Tot
par
Radfahren
Anzeiger
Festtag
Wiedersehn
Wertvolle
Kommst
Putzen
Anlass
bild
flexible
Chips
angenehmes
entspannen
akzeptiert
International
Armenien
Halte
Fern
Kam
Telefonnummer
Spielplatz
Stadtteile
getestet
gebucht
gelaunt
global
Aufgeben
Krankenhause
wunder
aktives
Kennt
dos
perfekte
trink
Sollen
billigere
versprochenen
sprechende
Kantons
Oftmals
Industriegebiet
Ungarische
unterlagen
geehrte
Ausserdem
landen
Kalte
Altes
genau
offener
Schattenseiten
Sommerferien
Fertig
Bedeutende
verstecken
Wahren
Davor
Fremdsprache
Verkaufs
Chinesische
billige
passendes
beworben
erreiche
Scheiden
vermuten
verstehenden
eingekauft
kroatische
tausende
Normale
Vierten
Bracke
weiter
Mei
Germanistik
Genannten
Kommen
schade
habe
Katz
Einkaufen
Gesellschaftliche
Generell
weiterzugeben
Folgt
Interessantes
teuerste
Blieb
Fata
preiswert
Meerschweinchen
Mehrmals
schaden
Voller
Schnelle
Solchen
Vergleicht
Familienkreis
alkoholische
Verstecken
umziehen
Vorname
Reiche
husten
informiert
Stadtviertel
new
Spricht
Ruhig
Medizinischen
durchsuchen
behauptete
Schrieb
worden
Bunte
Hobby
aufgeschlossen
freundlichem
aufsteht
separat
Schaut
AN
Segment
wirklichkeit
Ausruhen
vielmals
interner
Traurig
Lang
lade
Salat
Sage
AUF
kommunizieren
weckten
Kleinste
Prinzipiell
motivieren
verreisen
Letztlich
klettern
beleidigen
Richtige
feuern
Gesunde
Assistentin
entscheide
motivierte
Bessere
beendet
Versteht
solide
Technology
gratuliert
auswandern
klarstellen
Falsches
bitt
Allgemeinbildung
wahnsinnige
bezeugen
fasziniert
Helfen
FISCHER
Schaffen
auseinandersetzt
ausgewandert
Burger
Ruhig
Hilf
liebst
baue
par
Informationsaustausch
funktionieren
absagen
Kaufen
flucht
alleinstehende
beschneiden
Bozen
Linguistik
gehts
Schrecklich
fliege
aussprachen
interpretiert
Diaspora
verbesserte
exotische
Nehmen
Liber
Mitt
Ratschlag
Stadtteilen
Schlimm
EIN
Bestande
Museum
We
antworten
Genauer
anfange
plus
Kulturleben
schlachten
Herzliche
bezahlen
Erinnerst
Liebsten
reichere
Prozess
mia
Betriebswirtschaftslehre
Schlesischen
Schlecht
Gilt
Volkshochschule
verschmelzen
wohlhabende
Besonderen
Konditionen
absolvieren
schlimmere
Bars
Gelben
gebrauche
Jetz
Vermeiden
Mietzins
vorhat
Arme
Weil
gratulierte
ehrgeizig
may
langfristiges
ukrainische
schenken
Herrlich
Merken
Nachbarland
verstanden
verhalten
bezahle
Konkret
Denkst
Alt
Genaue
Offenen
Gerne
elektronischer
Immobilien
Kulturkreis
verbinde
tolles
Good
Sitte
Sitzt
Weinberge
arbeitslosen
mithalten
Nairobi
Lesen
solltet
dB
Schlimme
Schreib
vergleichen
ehrgeizige
erregen
Morgen
good
bedauerlicherweise
entwickeltes
besuchte
bestellen
aufwarten
Ge
Ch
umgezogen
gar
akzeptiere
Streng
Verkehrsmitteln
Hochhaus
kulturelles
Komme
Bali
Her
Sportplatz
Auslaufen
Schweden
All
deutschsprachige
Einsteigen
Mitarbeiterin
schlesische
berichte
Klettern
Data
ruhe
hilfsbereit
Studienzeit
Religionsgeschichte
bevorzugen
Verlockung
okay
promoviert
Achten
Alter
Schlechten
Cousin
ICH
sparen
Lebensbereiche
Nachteilen
Voraus
Rusch
Vierte
Achte
Tut
Studienjahr
aufzumachen
frischer
Stell
Entscheidendes
Pollen
Putzfrau
Vorausgesetzt
fertiges
hochentwickelte
strukturierten
orientieren
melodisch
Absolut
Dachte
Kundin
hand
vitae
hinfahren
Sehn
preisen
studiere
Banane
wurzeln
science
PERSONEN
Super
Sehe
Vergessen
Langer
Japanische
Journalistik
Unendlich
einatmen
Plaudern
Reicht
sende
Raus
Studieren
kompetent
Internationaler
Herzlichen
Anschluss
Ausblicke
vermisse
Heeren
Mehr
ville
Sozialen
Ober
angebracht
gratuliere
Demzufolge
Lateinische
menschen
bereichert
Kummer
Passen
Aktive
Halbe
Visa
Las
anruft
Sie
Sprachkenntnisse
erledigen
original
weiterentwickeln
Theoretische
Ineinander
sinnvoller
Machen
Braucht
Tourist
Leben
Hoch
geregnet
grosser
messe
waren
Unglaublich
einigen
Psychische
Vollkommen
Normalen
Verlorene
fang
Villa
passend
Spezielle
Einschalten
beherrsche
vermeiden
schriebe
schulen
Leiden
Positiv
Wesel
Kaufvertrag
informellen
ruf
Stadtzentrum
Gastarbeiter
Schreibe
MARTIN
Sozialen
DEM
ORT
einzigartiger
Tagblatt
Familienlebens
Einverstanden
Heimatlandes
verhandeln
verbunden
verbreiten
Probieren
vermieten
Konnten
tauchen
Wessen
Wille
Rheinufer
Scheint
Streite
aufzupassen
musst
Language
Lege
Wertvolles
unwohl
befristeten
Schick
tanze
geschichte
Fingers
Aserbaidschan
muslimischen
wohl
Erfolgt
empfahlen
Urlaubs
TU
Kennenlernen
streben
mittel
Bank
India
Aufgabengebiet
vorzufinden
frauen
KONKRET
augen
Privatwohnung
Motivationen
Hessischen
Falschen
Finanz
Minus
Eng
pauschal
Sieben
erweitern
arbeitest
stabiles
tolerant
Ausbildungszeit
ungebildet
Heutigen
Ablegen
telefoniert
verfehlt
form
Ohre
Soll
very
Haustieren
Achtzehn
variieren
ermittelt
beliebt
verantwortungsvolle
Einziger
eigner
SOHN
sont
unverzichtbar
verbessert
erwecken
studieren
Halten
Notwendige
gewachsen
eingebildet
Schwimmbad
Offizielle
Gesamt
aufgegebenen
gefeierte
og
alternativ
verletzen
Brauchst
Erhalten
Haustier
Wonnen
Wartet
harren
Faxen
idea
Privilegs
besorgt
peruanischen
Temple
wort
Beschreiben
Duschen
renoviert
Leichter
Wetter
alls
Verantwortungen
Mietvertrag
weglassen
Regieren
Sehne
Clan
spannende
Vorspeisen
Sonntagabend
Eintauchen
Erstaunt
wolltet
decke
Fahr
Weh
land
telefoniert
fasziniert
eingeben
gekaufte
werten
Hauptprobleme
gewesen
mitbekommen
kommuniziert
unterschreibt
besetzen
Antreten
Weiteres
arabisch
belasten
Lichtbild
Weise
Fluss
Kahn
Lebe
Afrikanische
definieren
AUS
Leistungsbereitschaft
probiert
Islamischen
sinnvoller
riechen
Lehr
Aufnehmen
anfallende
Gleiche
Trink
Argumentationen
Arbeitskollegen
Vorgesehen
Ingo
preiswerte
Doktorarbeit
Fachwissen
beibehalten
Ausziehen
Passieren
Peinlich
koche
Schulbesuch
Gehst
Nachmittagen
religion
anfangen
Landessprache
Spielt
REPUBLIK
Klassenkameraden
Vollkornbrot
Verhandeln
Praktikum
Eventuell
Hamster
Findest
Merke
Prima
schal
Tram
ERNST
FRANZ
Schuler
Badeanzug
verbringen
gibts
auto
respektiere
verbleibe
Anderen
Mochten
hinzieht
Hinaus
House
Freut
Dar
Mia
elfte
Gans
Streu
Wohnungsamt
Lustig
must
Handelsschule
nachvollziehen
obdachlos
trainieren
sammle
Email
lernst
Verbs
also
hatt
unfreundliche
defekt
Chefin
Cola
Ir
Ausgehen
unterschieden
Verantwortlich
Einheimische
bestandenen
tauschen
allein
Liest
Nike
For
fremder
betreff
Schreckliche
Ausgeschlossen
Bundesgericht
gleiche
Typische
Orangensaft
profitieren
kennenlernten
Arbeitsleben
verschicken
lehrreichen
Freundlich
Dankbar
bewohnt
Machte
Direkte
Kamen
wieviel
Fust
Net
Art
fahrt
fall
VATER
satz
Renovierung
spiel
Ansichtskarte
Einsam
Echt
vie
Setze
Einzigen
Einzelperson
were
Waschraum
Bedeutend
Erlassen
behalten
Werder
betreut
wohnst
Rituale
Kleine
reizen
MORGEN
Schreibt
Marketing
Schwierig
Geplant
Hochdeutsch
Besonderer
reichend
heilende
Brauche
arbeit
Schweizern
GROSSE
Schell
CHR
gestalten
Buchung
eigner
presse
Elektronische
verzeichnen
Brauchen
Bedeutet
Laborant
Merz
passt
ALS
OG
Km
DA
verraten
akzeptieren
Sage
durchschnitt
kurdischen
sichere
Wirtschaftlichen
erforschten
fasten
AH
Morgenpost
Fremdsprachen
Komplexe
Reisekosten
Erscheint
Verboten
Verstehe
Keinerlei
Indische
Relativ
Haste
Pro
GENERAL
hingeht
Verfolgen
max
Rechnen
Aktuelle
Erinnert
Wertvoll
Hute
freu
Schlimmsten
TEIL
EDV
garantieren
Bewegen
Eigenen
Strenge
nor
hochdeutsch
Behandeln
betrachtet
Wunder
Bilden
about
Wahr
Nich
Info
SCHWESTER
Sowas
tanzen
Ausgezeichnet
Absagen
Umlage
Magst
Hausaufgaben
Knapp
Collegen
Arbeitszeiten
Verbinden
Klaren
Lasse
viel
Culture
Grosse
Freitagabend
ausgeliehen
regieren
Metropolen
priesen
Gegeben
Steigt
Aufpassen
beliebteste
Istambul
dichten
Krank
Aber
Supermarkt
Betriebswirtschaft
Souvenirs
Grossen
Garden
PARIS
EINE
Hilf
Luxembourg
eingebildet
Hilfsorganisationen
Historische
aktuelles
Radikale
wurzeln
trainiert
Leserin
Letzter
sache
Froh
ok
wussten
worte
sont
physik
eingefangen
Besprechen
positiver
Steigen
Entscheidende
verabreden
unsauber
Versucht
einzieht
Winkels
Traums
Miene
Voran
Bitter
kan
Befindet
hilfst
DOLMETSCHER
Studentenzeit
Selber
Grille
Verstanden
Entdecken
Verstehen
Dienen
Freuen
erlaubt
Priese
online
lass
wo
filmen
Ruft
LONDON
Setzen
staat
Beginnt
Typische
Ursprache
Asiatische
schicken
Tauchen
Einen
Fand
And
Abs
Grob
FR
tag
true
Notwendigen
ruhiger
Heilige
untersuchen
Produzieren
Leserinnen
streichen
einander
motiviert
Popular
bestelle
parken
Parken
Wilden
Daine
Lieb
Kalt
Seltsames
Bildungspolitik
general
Klingt
Bedauerlicherweise
Interessante
lobenswert
Hausen
Mantel
Haben
Ehlich
Melde
Diem
Weill
ohn
Telefonieren
sogen
Gesunde
Sauber
warn
Wahnsinnige
Riesige
Verheirateten
assimilieren
nachfragen
isoliert
Danke
Denke
duzen
weile
zahl
Erforderlich
Schimmel
Online
Order
Such
teueren
Nachbarinnen
Italienische
beleuchtet
Beachten
dominant
Behalten
Erinnere
Weitaus
Fahren
bunter
Maine
Roma
Denk
bella
ober
wills
passieren
exportiert
verkaufte
DICHTER
Schwerer
Ausgeschlossen
Montagmorgen
beantworten
aussterben
trockener
welschen
Yorkshire
beraten
Bozen
sicht
Nachfragen
freitags
BUCH
WELT
MfG
PO
TV
Hilft
ser
ertragen
MUTTER
Hochachtungsvoll
hinterlassen
geniessen
Badehose
gangbare
Franken
Finde
Dran
Gastlandes
Gestorben
Schicken
Ganzen
Solltest
PKW
DO
Sybil
see
moment
Kundendienst
erwachsen
Kriminelle
abschnitt
Positiven
winters
Besitzt
Weis
Volle
tisch
kind
alls
Toll
Negativ
identifizieren
Schlesische
Ganzem
Sollst
sprecht
po
genannter
Interessante
kennenlernt
Entschluss
Entwickeln
ausbreiten
hunderten
vorbereite
Kulturelle
Blaue
mongolische
Vergleichen
Unbedingt
Freitags
Bring
Krankenpfleger
Seht
BEI
IST
Geburtstagsgeschenk
Arzneimitteln
Kondition
ausleben
Kubaner
verleihe
eben
Liber
Nah
sinn
Aufmerksam
Ungeduldig
Abgelehnt
Aufziehen
Anzuge
Junges
Schattenseite
Global
Wohngemeinschaft
japanisch
quellen
Samstagabend
Spanischen
natur
stern
Herrschen
schweizer
Benutzen
diskutiert
Arbeitet
bischen
Fordert
Machst
bissen
Lieber
Warm
Liebe
her
informieren
Hoffen
Psychologisch
geregeltes
Eigenartig
Reagieren
language
MONIKA
Frage
Shultz
Ste
Sogenannte
Schlag
grossem
werte
Problematisch
Modernes
attraktive
erlernten
Herzlich
Vorhand
meiden
backen
service
weiten
Ticket
bau
Einbringen
engagiert
Streiten
ACh
Erfolgreiche
nachgefragt
Geburtstags
Spatz
Fachkenntnisse
vereinbaren
verlockend
tolerieren
Dauernd
situation
heiraten
heissen
wurden
Richtet
bracht
Hunt
mai
Informatiker
Kaufe
NACH
HA
IR
ausgeschlossen
verbringe
Logisch
Handy
Einschiffung
aufgaben
Weltsprache
trotzt
Unheimlich
Abenteuerlust
Brasilianer
Einhalten
erwerben
Brache
March
Lasse
Wicht
Links
Loch
blick
here
Erfinden
kaufst
Ostdeutsche
Schachtel
Gold
Verbringen
gesicht
Bringe
place
Gegebenen
schrumpfen
nutze
rat
Unterscheiden
Vorkenntnisse
Landeskultur
bestandene
kritisieren
Verlieren
erobern
sinnen
werde
Werd
haus
Aller
Brav
Silvesternacht
Ofen
GE
Angenehme
beantragen
gedenken
gemach
Angefangen
korrespondieren
nachschauen
Praktikanten
muslimische
Verzichten
adressiert
Einziehen
beurteile
Teuerste
allererst
Nahm
Holen
Tel
Betrifft
Schlechter
ERSTE
Schickt
Stand
DREI
Freiwillig
gekriegt
Lustige
langen
giebt
Entspricht
Gewaltige
Freundliches
Bearbeiten
Italienerin
Lebende
Bucher
Dauert
Lebte
Esse
vorauf
Geschrieben
Gesucht
KLEINE
gerade
pflanzen
adressiert
Einleitend
beamtete
verwalten
Australia
Polnisch
weisen
Bester
Bietet
studio
Teure
Karol
Kalt
lest
Perfekt
Betreff
fach
off
Gewohnten
Geschickt
gestorbene
Ehemalige
Neuburg
Tags
paradiesische
Ausprobieren
respektieren
punktuell
Organisationstalent
Gefragt
name
wiedersehen
Bedeutende
Bezeichnen
entnehmen
Verwenden
ausleihen
schriebst
Beider
Passe
Prima
Bildet
Einfachen
Einfacher
umfasst
Osterreich
Geblieben
October
Stocke
WC
Ausstattungen
Angenehmes
gedanken
Dringend
giebt
Aufgeregt
Schwieriger
sex
Belastbarkeit
beschweren
Klassischen
erweitertem
bewohnbar
Finanzielle
bedenken
Betrachte
Verlassen
Tausende
studierte
Weltweit
Herze
Herre
Audi
liber
Mus
Ville
air
systems
vorfahren
Kauft
kauf
Gesund
Stau
IDE
Ausgezeichnet
plaudern
pendeln
Sozusagen
Kleinkindern
touristische
vielleicht
Herbst
Lerne
Lohnt
Fiel
STAATEN
Gastland
Server
Gebe
spare
gebacken
Eindeutig
Eigenem
Neuburg
gebrach
Freudig
gehet
giebt
besprechen
probiere
Entschlossen
Entscheiden
unzumutbar
beschreibe
Fachblatt
Erheben
Riechen
machts
hinnen
Einem
Nennt
Totale
sinne
Bohn
Tiefes
Souvenir
Sechste
pass
Ursprungsland
Ledig
gefragt
Diplome
Sonntags
teurer
ca
Gespannt
Feststellen
kurdische
waschen
Zahllose
beende
strecke
order
Ire
Wohnt
herumzulaufen
Hilflos
Trinkt
rufst
fast
Gehalten
Gedacht
VOLK
ROM
Einarbeitung
angeschaut
ausgesucht
Homepage
begeistert
geguckt
quellen
neusten
Ukrainische
Unsicher
traditionalen
hektischen
vermieden
eroberten
teilnehme
bedanke
Normale
Viermal
trainiert
verletzt
Wollen
hatten
Lands
Pizza
Pass
Nett
DVD
Eigentumswohnungen
wiege
orten
Topfpflanzen
Tschechische
Technisches
Vermittlerin
Wundervoll
Bewahren
Bekommt
Arabisch
Formell
wunder
Fremd
hause
Leide
Hole
liber
seh
befremden
Anrufen
Stadtmitte
Glaubte
Glass
VOR
gesprungen
Mongolische
Rechtzeitig
Popo
Gesagt
JA
Verschmelzen
Industrieland
eintauchen
Verstanden
Bezahlen
austeilen
Denkbar
Verloren
Praktika
Daniela
Nimmst
besetzt
hausen
schalte
Rutsch
weinen
recht
Lese
Idea
seh
Alt
Verkaufen
Guitarre
MAN
Drin
US
Elf
gesamt
Begeistert
Ertragen
gebiete
gesellschaft
Entsprechende
Metropol
problem
Gegeben
Ginge
aussehen
Besitzen
Frisches
Arbeite
sachen
Richte
nation
musik
Parke
Disco
uni
differenzieren
fortschritt
Stiefsohn
Gemach
Sinnlos
Ann
CHI
got
Eigentlichen
geworden
Bisherige
gehabt
Hobbys
werten
Bahnhofsplatz
Shop
Passendes
Weltkultur
Dames
wollen
Muller
Neste
Merkt
Mach
hast
Est
bin
Befremden
Vorteilhaft
feststelle
MENSCH
Gesehen
BERLIN
Schaum
LANGE
Schick
Chine
Stock
irrs
anstrengt
weitergehend
begrenzt
punkt
schrumpfen
Untersuchen
Familienstand
durchzulesen
besondern
Polnischen
Bewahre
Mamma
stunden
rahmen
Achten
Kamen
Bracht
hastet
Kusse
Marks
Bitten
Ende
mitte
Aktiv
Wirkt
JUNGER
Gelten
Selten
ung
Ungarischen
lebendigste
dinge
etc
Psychische
Langfristig
interpretieren
Gesprochen
Verschiedenen
Interessanter
unterbrechen
Entstanden
Interessiert
Annehmen
Verbunden
verdienst
erweitert
Verliert
lohnen
Lokale
Haber
Macht
Frohe
Teils
Einfamilienhaus
funktioniert
Perfekt
BEZIEHUNGEN
Gratuliere
Suchte
ODER
WIR
fr
get
vergessen
grossen
wegen
verantwortungsvoll
Lebendig
einstieg
Geeignet
Bestimmten
schwimme
Russlands
Danken
Verwirrt
Anhieb
haben
Dirndl
viele
Wan
Erfindern
helf
Contra
Ganz
SI
tage
Weglassen
ungarisch
reagiere
vergisst
gold
Party
spannender
klappen
DU
Deutschland
vorkommen
renovieren
bewarben
Erwartete
Alternativ
ausleben
Anbieten
betreuen
duschen
mensch
Normal
Lieder
Lernt
diem
Hab
stad
Via
frustriert
freund
SICH
Silke
geschmeckt
Eigner
gibts
Baujahr
jahre
jahr
Hauptschule
Appel
Geduldig
wos
Gespielt
lachendes
Amtlichen
arbeitsam
Passende
Kleineren
beenden
Number
Website
Kritisch
Essen
Lamm
Weich
Leere
Volle
Fest
stil
Grundkenntnisse
Schonen
Sauber
Stelen
ALLE
GOtt
Ain
CD
vorzusetzen
Ausgezeichnete
linguistische
bedeutung
umgehen
Bezogen
angaben
single
lange
Kg
par
Schwieriger
Unterschreiben
Entschieden
Mitnehmen
Verheiratet
Verdienen
Mitwirken
Betonen
inklusive
Kurzem
Lieben
bilder
Halte
Eller
Pfefferminztee
Schweizerin
DRITTE
Sowieso
Sozial
Sehn
Sonn
VOM
Statt
Get
Bir
TV
passte
teuerer
teuere
Mietwohnungen
engagiert
Lieblings
Organisieren
Geeignete
Single
NUR
Fernverkehr
monatliches
verbessere
Welschen
Arbeitete
hinweise
heissen
Domen
Lassen
Harren
culture
kreativ
Horen
Liebst
Fahre
Extra
Altes
Weist
Liebt
Freu
wien
rolle
chef
rauf
Schwerer
Schien
wil
geregnet
ausgeschriebene
vorprogrammiert
Unangenehm
Begonnen
allergisch
eigentlich
anzeigen
Legen
plan
Unterschiedliche
Deutschunterricht
hunderttausende
Arbeitserlaubnis
Romantische
anschreiben
verabreden
verboten
Privates
chance
Dulden
Palme
Naher
Nahm
Kleid
Rolle
Breit
stadt
Its
Tool
verfehlt
fur
Schriftliche
JUNGE
Gehen
WIRT
RAD
Sr
geste
west
note
amt
Unterstutzung
Vorschlagen
Unbedingt
gereicht
Heutige
jungen
gehts
Anfangen
jahren
Workshop
Hope
Sagst
po
Beherrschen
Entscheidet
Lateinische
bedanken
Verbreiten
Ausleben
Einzelne
Weiterer
Erreicht
vereine
schone
Massiv
Achter
Rocke
beide
einen
heim
Breit
Fern
dien
Mall
Camp
telefoniere
Gastronomie
Gesundes
Gruss
NRW
vil
entspannen
entspannt
Immigranten
Folgendes
Umgehen
Vorlegen
Fertiges
Erledigt
Lebenserfahrungen
fremdsprachigen
Berufserfahrung
Erfolgreich
Hauptplatz
plus
Unvorstellbar
Jederzeit
Lebenssituationen
Besonderem
besondern
Existieren
schlachtet
Friedlich
versucht
Erreicht
welsche
bezahlt
Bruche
Beinah
Nenne
mietet
lecker
kunst
buch
Tut
cd
Gegenargument
Schulungen
Fro
Empfehlenswert
Systematisch
information
Erfahren
Gelassen
Garden
PETER
ICE
Hochachtungsvoll
Wohnungsmiete
portugiesisch
angestellter
Bevorzugt
gebracht
Program
riesigem
Billige
Dinge
NEUE
unterentwickelt
weltbekannten
Anschreiben
Mitmachen
Ablehnen
Bestehen
Anderem
ansehen
Weiteren
Echtes
preise
Lieber
Marks
Have
bello
Bunt
umzog
wasser
eu
Offener
Gerner
START
Stele
MAI
INS
werte
Wohnungsmarkt
Unterrichten
Fachhochschule
Nachweisen
kulinarische
Freundliche
Hinnehmen
eintreten
Passiert
Fordern
studium
Austria
Wiesen
Ehrlich
central
house
Neue
seien
since
Wars
unde
seite
seh
Akzeptieren
politik
Rauf
gezwungene
Geehrter
grenze
Starkes
ANS
WIE
MIT
Spass
film
Mietwohnung
weiterbringen
erkundigen
Migration
gegeben
grillen
grund
Billig
giebt
UM
Nebenkosten
Bekannteste
Entscheide
bewahren
mitmache
Bestimmt
Beziehen
Erheblich
wahrheit
widmen
Warten
Festes
vielen
Voran
bade
Blind
siech
Kuss
Erde
vertiefen
produkt
feuern
feiere
HAMBURG
Genannt
Senden
Sichere
Schuss
Grobe
Stehe
Got
HR
Gegenargumente
Gingen
namen
Spanierin
Spanish
Sprecht
ausgegrenzt
angepasst
Hunderttausende
ausdrucken
Wirksame
Verbreitet
Behalten
Nochmal
Probiere
Denken
Freibad
Hessen
Beliebt
Markts
Bereit
Damit
Prima
Totes
send
Bild
File
Privatwohnungen
Portugiesisch
Tanzgruppe
Bisherige
ereignen
Negative
ordnung
bildung
Fertig
Tage
Verkauft
Offiziellen
MOSKAU
Sinnvoll
PALME
ALTE
Gibst
summe
personen
Jets
kommunikation
Alleinstehende
Kolonisatoren
Festzuhalten
Reklamation
einwandern
herstammt
Mindesten
besuchst
trainieren
einleben
Entsteht
Paletten
Modern
Wolltest
number
verwirrt
Tickets
Packet
Teurer
Recht
kunst
wurd
Mari
Tolle
Wirtschaftlichen
angeeignet
engagieren
Ferientage
ausgehen
Muttertag
Umlagen
Heutige
geplant
Kaufhof
langen
Fange
gibts
Gesuchen
WINTER
MICH
Order
LG
Aufenthaltsbewilligung
Behaupten
Sprechende
Unsichtbar
Umziehen
Elektronischen
Romantische
Monatslohn
ausserhalb
wiedersehn
Momentan
Brauches
Aktuelles
orientiere
Bereiten
Besucht
souvenir
zimmer
besetzt
Bester
achter
Reden
Hasso
Liebst
Baue
Mette
Man
tier
Elften
trefft
Geschlossene
REGIERUNG
VEREINIGTE
Gefeierte
Gelernte
WERKE
ENDE
WIEN
MAX
XXX
MIR
Vertragsbedingungen
Praktizierung
Abgeben
mitbringe
Besorgt
Allergie
lage
gefallen
spannender
Geldanlage
Spielen
sont
Unterschied
Jahrs
Einkommensteuern
insbesonders
Mitkommen
Faulenzen
vermittelte
Brauchte
Daumen
Herrscht
Mobilien
bischen
Erlaube
Weiblich
tradition
Erlaubt
Neuber
Nehme
theorie
boden
Meiste
sinnen
Kostet
Lands
streite
Bello
Wenn
Lasst
Teuer
unde
mari
idee
True
box
vie
is
Genannte
Stauer
SEIN
Em
IS
Kostenerstattung
Psychologin
gratulieren
Ausgeben
Fragen
glaab
geld
Tiefgarage
gefallt
Schwierige
sonne
raum
Sprachliche
antwortest
FREUND
mitbekommen
strukturierter
entdecken
Betrachtet
Westlichen
charakter
Antworte
reserviert
schenkst
Pommes
schonen
Behalte
Finland
Letzter
indem
Freue
Worte
Habe
weise
Nette
koch
Lest
Mus
Mai
feierlicher
faulenzen
Kauffrau
office
franz
fille
Gesellschaftliche
Chemieindustrie
VEREINIGTEN
Seidenstoff
Schreib
Starke
Stress
IHRE
Chi
XY
IT
Neubauwohnung
Bedeutungsvoll
Hervorragend
Wichtigsten
beitragen
Bringst
Eng
Baugenossenschaften
anfang
Reparaturkosten
Anpassen
persisch
popular
Kaputt
warum
ansonst
verdienenden
Aussuchen
Bezeichnet
Erwarteten
hinweisen
Kommerz
Beenden
Verwandt
Abholen
Bemerkt
erhalten
Verloren
anders
Neuem
Misch
Hobe
latein
leute
Wills
wein
Bitt
Treffen
futtern
Infos
BECKER
Schadet
SAG
BIS
benachteiligte
obengenannte
Ungarische
bewegung
Vorsorgen
Wichtigen
wohnung
Engen
logik
Family
Wohnplatz
probieren
probiert
Staatssprache
wege
wiederkommst
Beantworten
kennenlerne
interessierst
abnehmen
Vorbereiten
Ausnutzen
Basketball
Wohnblock
Badetuch
Monatlich
Erwartet
Anderer
mitteilen
wahrend
Erstmal
umzieht
Heuser
konntet
Halben
dulden
cousin
Kenne
Yoruba
kinder
Nehm
Wisse
markt
Tollen
KaM
niest
lasst
Total
Ede
Vie
ha
mit
frustriert
Schreckliche
Gutschein
TOURIST
GLAUBE
Gerecht
Stammt
CHINA
Bikini
Sinne
WAS
Sinn
TAG
eingeladen
Linguisten
giebt
gibts
Schwierigste
Springt
Sept
aussage
gruppe
person
FRANKFURT
beantwortende
Diskrimination
schlachten
konkretem
Vereinbart
Ramadan
Bestellen
Verwalten
Bessere
anziehe
Blieben
Wartete
Anders
endlich
Korrekt
Alleine
Kurzen
Achter
herzen
Reiche
technik
schickt
Einzel
Treten
misch
Extra
word
ober
Holt
Au
Vie
Umfassende
Einkaufszentren
Aufmachen
Nebenfach
antragen
fenster
Stadtzentrums
LEBEN
Stunde
Surfen
DASS
WIRD
AND
WG
deutschsprachiger
vergangenheit
Einziges
meinung
Billiger
gehts
aufgeben
erfahrung
befolgen
korrespondieren
Heilpraktiker
Paap
Schwierige
Streng
Preisunterschied
Beschneiden
Weltsituation
einkommen
weiterbilden
verwandten
Investment
anwenden
Kritisieren
Mehreren
Variieren
Neunten
Frischer
Benutzt
Diskos
Father
Wollen
italien
Keins
Dien
data
Abe
bett
Kan
Tat
Rs
fernsehen
telefoniert
Entfernt
unfroh
luft
ENTWICKLUNG
Gebraucht
Ordentlich
Chinesin
Studierte
WENN
Stelle
OST
party
Hingewiesen
Durchgehen
vorgesehen
Langweilig
richtung
Lang
Ung
einpassen
Originell
perfektes
Unterbrechen
MUTTER
Verwirklichen
Italienischen
Winkelmann
Nachname
Teamarbeit
traditionale
Erwerben
Wirksame
nachdem
einladen
verbliebe
Anreise
stunden
trainiert
Passen
Bestes
schritte
Meiner
Market
Assen
Nettes
Ander
dienst
Mitten
krach
Woch
Verkaufen
Befinden
Einfach
Drauf
hilfe
FRANKREICH
Centrums
Gewesen
Schreibst
Gelben
NOCH
PARK
Oda
Off
gegenwart
Personalabteilung
entwicklung
Regional
Einiges
Dingen
Wohngemeinschaften
praxis
platz
Schwieriges
Sontag
nam
wan
Spontan
programm
const
Unentbehrlich
mitbekommen
Theoretisches
Kondominium
Beschlossen
unterschiede
Denkmalen
bewusster
beinhaltet
Bestimmt
beachten
ausdruck
innovativ
Machten
Pendeln
meldest
Meiden
Twelve
Dubai
thema
Nette
Tolle
Has
wellt
lern
Par
Via
DEUTSCHLAND
Stattfinden
Geheime
Getrennt
ARBEIT
MENEM
Gesenk
Shan
HAT
Sollt
Om
putze
Feuerzangenbowle
Hingewiesen
Wahnsinnig
Einziges
Junges
Vorigen
Lustige
Engen
Menge
giebt
bayerisch
Befolgen
Interpretieren
Reparieren
pendeln
position
Klappt
Computerprogramme
nass
mus
Spreche
Super
papa
worten
autos
Urlaubsort
Maschinenbauindustrie
beschliessen
ausnahmen
beschwere
Kroatische
Kulturelles
Bedeuten
Praktikant
Falsche
besuch
Achten
Bester
Basler
Hause
duzen
Weich
Leber
Nutze
werke
Kenn
Weint
Marz
Lass
lust
Au
ch
via
tel
wirt
Helfen
Wolfen
GESCHICHTE
Geschlossen
FRIEDRICH
Gestorbene
BERGER
SCHMidT
Gefallen
Schicke
KOCH
SIND
ALT
Ch
Dreizimmerwohnung
Reisegruppe
organisation
Erkundigen
organisiert
Verhaltung
gebieten
Billigste
Vorigen
regle
Pflegen
Heldenplatz
Fischsuppe
Beispielhaft
unseren
Schrumpfen
Spazieren
menge
tea
Job
Industriebereiche
Kommunizieren
benutzenden
Kulturkreisen
Traditionelle
Tschechien
Verbrechen
Benennen
Behandelt
teilnehmen
Ausleihen
Reisebuch
bewerben
Praktische
Existieren
Besuchte
Bezahlen
draussen
Intensive
Bemerkt
balance
Leichter
Aktives
mensch
dichten
Babies
Herzen
Achtet
Bitten
Haste
Meins
Disko
Bahn
Pasta
Hello
stock
Wem
Alte
herz
Fish
Dos
blut
Pair
uhr
beeinflussen
Hilfreich
vertiefe
BUNDESREPUBLIK
SCHOPENHAUER
Schwimmer
Gelesen
STIMME
MITTAG
Seltene
Stimme
BILD
NEW
Er
Ausgesprochene
Wohnungssuche
Abgeschlossen
Notwendigen
Vergleichbar
hamburger
Bevorzugt
vorstellung
Festlegen
Politologie
Langen
Niedrig
gehts
Very
forschung
ergriffen
Entspannen
plan
Steigende
Gesagt
Empfehlen
Sprachkurse
tante
tanz
Nichtsdestotrotz
kommunizieren
Klassischen
Verschieden
Konservativ
Anerkannt
Freundlich
vorbereiten
Traditional
vereinbart
Einladen
Passend
Erinnert
Mitteilen
Fordern
Korean
heulen
lebens
schein
Merkt
Trinke
Bilde
Klare
Wohn
Ana
Das
herr
wahl
ain
Dokumentarfilme
Einfache
wirtschaft
Erfreut
Kraft
ALLGEMEINE
Geschiedene
DEUTSCHE
Schlechten
Schriftliche
BRIEFE
KINDER
Stunden
Sammle
Oracle
GELD
LANG
DICH
ABE
APP
Senn
WER
IHR
Chi
strenge
Freitagnachmittag
verbindung
leistungen
Betrogen
gerade
dingen
Ruhige
Engl
hingefahren
deutschsprechenden
Entsprechen
Apartment
passender
praktiziere
Japanisch
spazieren
Bequem
beispiel
aufpassen
news
Sprachlich
camp
Uralte
Us
Durchsuchen
Verstehenden
Auswandern
Automatisch
Miteinanders
unterrichten
Anwenden
Mitmachen
Praktikums
Einzelkind
Vorbereitet
Exklusion
interesse
toleranter
Wertvolle
Erwarte
vereinen
Bezahlt
Bleiben
Relative
Austria
wochen
nativen
Ferner
schule
Halbe
kannt
Pasta
haar
Kiez
lala
Na
Einkaufszentrum
feststellen
stattfinden
erfinden
surfen
farbe
Helf
SCHILLER
SPANIEN
POLITIK
MACHT
Gucken
Offenes
BONN
AUCH
GOTT
Starke
ABS
Ciao
GOtt
WAR
AIR
VIA
Sei
computer
Amortisierung
beschreibung
Begleiten
sociologie
Tragisch
Wagen
junge
Aufgaben
finger
Bruttoinlandsprodukt
Komplizierte
respektiert
Europa
hope
Guttenberg
Computerbranche
ste
Untereinander
LITERATUR
Univers
AU
Mitbewohnern
mitbekommen
Anzunehmen
Existierenden
Wochenendes
Verschwinden
Alkoholische
Beschweren
Ausdrucken
Bekommen
Miteinander
menschheit
Niederland
interessen
Traditionell
Beziehen
Vermieten
Trainieren
vermieten
Tauschen
erlernten
Romantic
vorstellen
interview
Wahrend
Maximal
tatsache
Relative
Zahllose
Verdient
Beliebt
Heeren
dames
unwohl
wahlen
duch
Totes
Elter
Reist
hate
Alls
dan
Eva
bist
Eu
ch
Dior
Woll
telefonieren
taufe
ABSCHNITT
MENSCHEN
Gefunden
WAGNER
Gemacht
Christos
Geehrte
Sicherer
KLEINE
Charts
KIND
Garn
NEIN
HErr
BLZ
VEIL
ON
argument
Vorgeschlagen
beziehungen
Entschuldige
ausbildung
geschehen
Umgehend
Mitbringen
mitbringen
Beleidigt
gedanke
anzeige
gemeint
lediglich
heiligen
Ruhiger
Tragen
Mage
giebt
gibts
Lege
Erfolgreichen
speise
Grundaufgaben
Stromsystem
manner
namen
Sprachstamm
tom
ort
June
alleinstehender
Verkehrsmittels
unterschreiben
abschliessen
Austauschen
Monatliches
Erwachsen
verschieden
maschinen
Verbessern
Antwortet
motivieren
Vorhanden
einleitend
Modernen
Bestimmt
Bestellen
Austeilen
draussen
innerhalb
revolution
Entdeckt
Konntest
Kulturell
Telecom
Flache
Nahost
Verletzt
verletzt
cAMP
Touch
Muss
Pries
Lass
dan
linie
rock
Wos
Wiel
Pair
Auslandsaufenthalt
umfasst
Hoffe
Elfte
fille
fer
Schlimmere
Grosses
Gewinnt
ITALIEN
Grosser
MERKE
Grimm
ABER
BACH
HERR
Stecke
MUSS
Solide
Staus
SMS
KW
Wi
pommes
Bewerbungsunterlagen
Ausgesprochene
gastronomische
Angemessene
schwierigkeiten
gestanden
gegenteil
Langen
Fertige
Folgen
gewalt
giebt
Psychisch
Ergreifend
Ergriffen
anfangt
personal
papier
platze
Singles
Verpflichtet
anne
antwort
rate
Unterschiedlich
Ukrainische
NEUEN
beherrschst
Bekommen
Interessiert
armenisch
Ausbauen
Erkennbar
ausruhen
Diskutiert
Bemerkt
Michaela
Fremder
industrie
wahrend
Frieden
Erlaubt
Diskret
Lachen
Melden
dialekt
Bieten
nahme
minute
weitere
Worten
Kenne
mehre
dauer
durch
Werke
urlaub
bank
leider
Nahe
Falle
touch
tollen
reihe
Kind
wisst
Toch
mail
Neh
Won
Par
Unzufrieden
Berufliche
hilfsbereit
schleifen
freunde
filmen
feien
WEITERE
FRAGEN
Schriftlich
LUDWIG
Schade
Suchst
Const
TOTAL
HIER
FREI
VIER
RAT
EM
Ah
WE
TO
wi
fil
gruppen
gott
sept
hochachtungsvoll
hochgestiegen
ausgeben
integrieren
Begegnet
Intelligent
gebrauch
anlagen
Erledigt
Fertige
grunde
Mittags
einige
Wege
gibts
Aufgenommen
hingefahren
Begriff
entsprechend
einspart
Geographischen
Sagt
Spatz
erstaunt
strasse
mutter
Tschechische
Beibehalten
Wesentlichen
Koreanische
Ankommen
ankommen
nachdenken
Entwickelte
verwandtem
Erworbene
Arbeitsort
Entwickelt
Kulturellen
Exotische
Erweitern
vorbereitet
Absolute
Fasnacht
Normales
Wertvoller
eindruck
souvenirs
Dachten
abstand
betracht
aktiviert
Russisch
Wechselt
abreise
erlebnis
Dauern
Flexible
Manner
handel
Meiner
umwelt
Endet
Nettes
kirche
lecker
heine
Merkt
Reise
Kenn
Here
Nach
weise
mark
tollen
biss
Hole
wohn
Vitae
unde
Fur
isst
villa
ch
Definieren
fleisch
verkauf
Kaffe
GEMEINSAME
PRODUKTION
BUNDESTAG
WIRTSCHAFT
ANDEREN
Orientieren
BILDUNG
ENGELS
SCHULZ
KINDER
Gefehlt
MARIA
KOMM
Stehen
Schule
MEHR
OHNE
LAGE
Cab
Stark
Gan
MAL
Chi
Wi
vorsorgen
anpasse
ap
garten
vertrag
gott
bekanntgemacht
Kinderbetreuung
Renovierungen
gelegenheit
Festgestellt
Folgender
Eingeben
Vergessen
Ungarisch
stimmung
prozentig
vergleich
Einigen
dingen
Ruhige
geit
erfolg
job
komplettieren
produktion
family
Computerprogrammen
seen
Spare
Sept
mut
etc
Unternehmen
Umladen
JAPAN
Alleinstehende
Verschiedenen
Verschwenden
Mexikanische
Freundliche
ausziehen
Teilnehmen
Wohnheime
Fasziniert
belastbar
Fachliche
beliebten
Ramadan
bewerbe
kroatisch
allererst
Anderer
Vermuten
Bezahle
cousine
reichend
Verstand
Herrlich
Intensiv
Erlaubt
Verraten
literatur
Nehme
Bieten
Duzen
Lander
Trinken
Ferne
lands
Tolles
Nette
Vatter
Ruhe
Warm
winter
Fahr
Vieler
union
leser
Find
Hatt
Lala
Ice
sint
Ven
vie
Umfassende
aufmerksamkeit
Informieren
traumhaftes
informiere
radfahren
famille
Treffe
schiff
Studentenaustausch
INTERNATIONALE
Chinesischen
Gezeichnet
ANHANG
MENSCH
Gemacht
ALLEN
Stimmte
Gelernt
STERN
Check
UNION
WEISS
Sechs
MEIN
GIBT
Stam
IHM
UNS
Wil
auge
par
gesetze
vorstellungen
Allgemeine
Eingeladen
geschmack
Erledigen
eingehen
Niedrigste
Niedriger
Erledigt
leistung
beginn
spiegel
berg
Jugendzeitschrift
sorgenfrei
Weltsprachen
Kompliziert
repariert
spitze
pl
Gewaltiger
Geeignete
Gelungen
Gestrigen
Sontag
opfer
mamma
meer
om
Spezialisation
Sporthallen
Sprachkurs
arten
meter
etc
text
JAHRE
UNI
Durchschnittliche
Entschlossen
Arbeitssuche
Kommenden
Erworbenen
Theoretische
Dramatisch
Reiseleiterin
Erschienen
Ausbreiten
Exotischen
Viertausend
Frankreich
investieren
Anordnen
kombiniert
Besetzen
anziehen
draussen
Falschen
strukturen
krankheit
Tauschen
arbeiter
isolation
Welsche
Lebend
Verdient
Wenden
Merken
Dienst
husten
Merkte
Totalen
Leidet
Letzte
siezen
disch
bette
Fahrt
vorbild
lernet
Reihe
kultur
woche
bein
bzw
Reizt
Faul
Ten
herr
kille
liste
Es
Vie
aufnehmen
Telefonisch
defekter
Vertiefen
freiheit
freude
schrift
often
GESELLSCHAFT
WISSENSCHAFT
KAMBODSCHA
Stromkosten
Geschenkt
Garnichts
VERTRAG
GOETHE
ERSTEN
HANDEL
Gewohnt
KIRCHE
NACHT
VIERTE
BAND
Starkes
WORD
Sonne
Schritt
ART
Samt
WAN
KuS
TIFF
BE
wi
vorgang
par
verbindungen
Wiedergeben
Mongolische
Besichtigen
Weitergeben
begeistere
erinnerung
Begrenzte
Angehen
gelungen
Mangelt
Ruhiges
Burger
Billige
Fliegt
gehts
Mage
glas
hobby
Aufgenommen
erfahrungen
auffassung
Versprochen
probleme
speisen
Stadtgraben
Gezeigt
perfektionieren
Empfindlich
pflichten
Sprachliche
Opferfest
staaten
mutter
autor
NEUER
Immobilienmarkt
Bedeutenden
multikulturelle
Arbeitsklima
Interessieren
Entschieden
Elternabend
Kindertraum
kenianische
Bestanden
attraktives
Bekomme
Entwickelt
Freizeiten
sehnsucht
Teamwork
Einleben
Nachlass
erlernen
Hobbies
Dessen
Markten
erholen
Bucher
Aktuell
anzahl
Frohen
bezahl
Trunken
datum
Raucht
Bunte
Nation
Kleine
maine
rechte
stocke
Kocht
ecke
verein
erde
halle
Find
Fort
Pure
Total
Volle
wille
seh
sint
still
Verkaufte
Hilfst
BEDEUTUNG
MITGLIEDER
PROGRAMM
Gezeichnet
Genannten
Gratulieren
MAROKKO
BONNER
SCHWEIZ
SCHULTZ
FORUM
GROSS
WISSEN
Studiere
Charm
Garten
Schaue
Seltene
MACH
GAST
Gehet
WAHL
STE
VILLA
IRAK
Grob
CM
IHN
Seh
OK
Ser
kin
wi
gan
par
management
angst
tages
anstrengendes
globalisierten
handlungen
organisieren
Eingesetzt
Dringende
generation
erziehung
Hingehen
England
Freudig
english
Einiger
Mittage
Weniger
Riesige
gebiet
Junge
Tagen
Dynamisch
baby
Aufgewachsen
kontaktfreudig
hoffnung
Komplizierte
Versprochen
Entsprach
punkte
paris
pair
Schlachtungen
Geeignetes
Schmutzig
Gesprochene
ausnutzen
starte
traum
wurst
tema
NUMMER
anwesenheit
Bekannteste
Bestimmten
Medizinische
inbesondere
ausserhalb
Beherrscht
Betrachten
bearbeiten
mathematik
Arbeitslos
Ausbilden
Kombiniert
Nachbaren
Fortschritt
Verstanden
draussen
Verheiratet
institution
Normales
industriel
schweizer
Bereitet
minimum
Erobern
traditional
Denken
kenntnis
Korrekte
Verhalten
Maschin
Verletzen
Heiratet
Demen
Breites
Direkte
hundert
Lockere
Manner
Denke
vermisst
Kleiner
Lander
Isoliert
berlin
Rechte
mieten
Weitere
klasse
schiller
Bach
Dane
Bitter
univers
March
Kennt
stunde
miete
hund
Nahe
Ten
learn
abs
winkel
Vierte
Tolles
unde
Her
Per
weh
solt
Tea
Biro
kino
informationen
Herausfinden
Entfernt
Walldorf
Laufen
briefe
feuer
brief
Rufen
fuss
Rufe
mitt
fort
DEUTSCHLAND
Ostdeutschland
BULGARIEN
SICHERHEIT
Schlesischen
Geschenkt
BERICHT
ANDERE
MICHAEL
GRUPPE
Schlechte
Schriebe
Siamese
Gebaut
SELBST
Ganzer
LEBER
POLEN
Summe
HABE
Offene
STADT
DOM
Giebt
Sende
Solltet
WEST
Since
BIN
SOG
NIE
SEI
Ok
wi
spuren
spass
partner
putzen
Krebserkrankung
Wohnungsmieten
Benachteiligte
Technologische
ausgeliehen
Ehemaligen
Lebendigste
Eingeladen
ablehnung
beziehung
Ehrgeizige
Ergebniss
ungemischt
gratuliert
Beteiligt
Unterliegt
Begabt
einigen
Langem
Fliegen
einiges
wegzieht
Engels
Jungen
gehalt
Folge
grund
gehts
Lustig
richtig
Typischer
Wochenendausflug
Aufgebaut
erfolgen
Akzeptiert
Unbequem
Tierparks
quartier
quadrat
papier
shop
Orientierungsstufe
Gezwungen
Gegessen
Organisiert
Sociologie
Sorge
mussen
pflicht
ana
mus
won
Optimal
Unterhalten
FRAUEN
Jetzt
Administrative
Freundlichen
verschwenden
Monatsmiete
Erschienen
diskussion
adressiert
Fortsetzen
akademie
Wundervolle
Einleitend
Modernste
draussen
Einzelner
anhalten
Immobilie
abreiten
auswahl
vorbereitet
allererst
mochtest
Benutzt
bereich
Erkannt
Fordere
hundred
Bekam
bereite
Persisch
einreist
melodie
Frohen
Bunter
historie
altere
solution
Isoliert
Klasse
herren
Wahren
Verletzt
Dona
Wohnst
Biete
wahren
Naher
duze
nichte
Bunt
herrn
Meier
Biss
Bed
Neun
leere
woher
worde
Traue
kleid
habt
bild
bus
Be
unde
wirst
Welt
rad
Veil
Beruflich
Hauskauf
fata
LANDWIRTSCHAFT
UNTERSCHRIFT
GRUNDLAGEN
Gewissenhafte
WIRKLICHKEIT
LUXEMBURG
ANDEREN
Schlesische
Gearbeitet
SPRACHE
Sinnvoller
NIGERIA
Stammen
SYSTEM
Gebiete
WAHLEN
Sinnvolle
Gelacht
MENGE
Gelernt
WIEDER
Gefehlt
Glaube
KUNST
WebSite
DANA
Schritte
Schone
ROLLE
GEHT
Solltest
HILFE
GUTE
KLEIN
Guter
Grus
GUT
OFF
CA
TOM
THE
Kin
OK
Pfr
systeme
peter
Wohnungsmarktes
Burgermeister
bedingungen
entscheidung
Ausgestattet
Begrenzten
grammatik
Antragen
regierung
Mitgeteilt
geguckt
stellung
wirkung
gabe
Lg
okay
Erfolgt
fertige
gefahr
flug
hauptsachlich
Komplett
chips
App
Tipps
Gegenseitig
Organisiert
Geregelt
profil
museum
mama
ann
ven
Spannend
Spiele
Spitze
erstatten
momento
samt
Unterschieden
KAUFMANN
Administrative
nichtsdestotrotz
Deutschlands
Armenischen
Ausreichend
Freundlicher
Dezembers
austausch
Behandelt
Bewerben
beachtete
Vereinbaren
Renovieren
Heimische
einziehen
Abbauen
Exotische
Arbeitest
Preiswerte
Litauische
Erweitert
erlassen
Kulturelle
Deutsch
sicherheit
Vermitteln
Besetzt
sicherlich
Erholen
Verreisen
betreut
Markiert
verreisen
Eberlin
Rahmen
Futtern
Weiteren
Enorm
Hohem
bauch
Flache
Altere
Verloren
Melden
Machts
Vertraut
struktur
klasse
Vollsinn
Frend
schicht
verkehr
niveau
Leben
Ales
Pollen
tasche
toilette
bein
Marai
Parks
Alle
Treten
eller
Mobil
Dier
Muss
Dos
Volles
letze
hunt
Lern
reine
wiese
Hoh
Waldi
katz
nord
Rom
Fer
seits
Rois
db
oda
Was
Po
vile
Wissenschaftlichen
Katzenfutter
Einfachen
Hinfahren
familie
freie
stufe
GEMEINSAMEN
Geschrieben
INDUSTRIE
FORDERT
NATIONEN
CHANCE
DESSEN
FREMDE
Geschafft
EUROPA
Gestalten
Gewisse
Gekocht
Geredet
ALTER
SCHULE
SCHUTZ
Schreibe
Cousin
FARBE
INDIEN
Standart
WINTER
KRAFT
Streben
FOTO
REICH
KANN
LISTE
LAND
Stellen
FALL
Gast
EVA
SOLL
Send
Solle
Ohn
mA
XYZ
TAT
So
Pl
wi
entspannt
Arbeitsgenehmigung
Deutschsprachige
hochachtungsvoll
Hauptargumente
Angemessene
Fortgesetzt
Wahnsinnige
ereignisse
Vereinigten
Niedrigere
Religiosen
gestimmt
hingehen
umgebung
Baldige
gewohnt
Einigen
Morgens
regisseur
Eigene
heiligen
berger
Junges
Fragst
Eigne
Kriege
glass
jungs
Husky
symbol
Verkaufsabteilung
nachfrage
jahres
Aja
Transportieren
phantasie
kaput
Organisatorischen
Gelungene
mars
nase
neus
om
Sprachkursen
Sprechende
Optimale
Ostpolen
strassen
mozart
steuer
strom
MULLER
KULTUR
HEUTE
JEMEN
KUBA
RUHE
Immobilienmakler
Multikulturalismus
Entscheidendes
Vietnamesischen
Armenischen
Nachvollziehen
Handelsketten
durchsuchen
Freundlichen
interkulturelle
deutschland
Freundlicher
ausserhalb
Beschreibe
Bezeichnet
Beherrscht
besondern
Wohlhabende
Bestimmte
Behandelt
Trockenraum
benennen
ausweise
Kurdischen
Investieren
Traditionelle
Verbesserte
Winkelmann
bescheid
anbieten
Abreiten
einatmen
Nachlesen
verschenke
Motivieren
allererst
Erweitert
Kurdische
Entdeckt
Bestehe
Beraten
Frisches
Erinnert
Handeln
traditional
Brauch
Traditions
bericht
bureau
About
Dalles
kindern
Versucht
bilanz
Innerer
Merken
Verraten
bahn
institut
market
Vertraut
Doch
Duch
verzicht
Presse
Lernte
haber
Vorteile
Freut
theater
abe
Reden
Eine
schutz
dom
Preiss
bed
Weisst
Als
Reine
Worde
labor
Has
Wann
wohin
womit
Lebt
Pure
vieler
obst
tiere
rois
Par
seh
ire
Vie
Kommunikationswissenschaft
Konstruktionsfehler
Beeinflussen
Ausverkauft
Abschaffen
Frankfort
einfluss
fremde
frieden
funden
Verkauft
Helfen
faxen
Helfe
hof
RECHTSANWALT
DONNERSTAG
ORGANISATION
ABLEHNUNG
AUSTRALIEN
FORDERUNG
DEUTSCHER
BEWEGUNG
Geschlossene
MITTELALTER
Geschilderten
AUFGABEN
Christlichen
ALBANIEN
Gesamtnote
Geforderten
AUSLAND
BEKANNT
EINFLUSS
FREMDEN
PROBLEME
BURGER
FISCHER
NACHBAR
Gefunden
GEBIETE
FREITAG
WERBUNG
AFRIKA
Gefahren
Getroffen
GEBIET
BELLA
KOMMT
LETZTE
Sinnvolle
Czech
JUNGE
DENN
SCHON
REDEN
Offener
NIMMT
Bikini
DAK
KINO
POST
EST
HOF
Chr
ESt
Senn
hirn
Solle
SEH
Serr
VHS
Im
Wi
prozess
pause
suppe
par
entgegensetze
sport
Dachwohnung
Erdgeschoss
Begrenzte
gutsituierte
Beitragen
Registration
integration
Flugticket
ergebnis
Einzige
linguistik
vorschlag
betrag
vorgehen
garden
Joggen
Ruhigen
grunde
alltag
mangel
Ruhiger
Legen
Flog
gibts
olga
Mfg
jan
beispielweise
komplettieren
Abstellplatz
versprechend
population
Europas
patienten
Komplet
produkte
republik
kapital
haupt
punkt
Gelungene
Gegessen
Geeignet
Sorgenfrei
Gezeigt
qualifizierte
Sympathisch
Spannende
Gespannt
Ostpolen
antreten
centrum
arzt
stress
etc
vater
sont
Qualifizierte
Qm
Unterschiedlicher
FEUER
NATUR
JETZT
RUFE
NUN
Jula
Auseinandersetzen
Lebensmittelladen
Beibehalten
Einwohners
einwandert
besondern
Wohlhabende
Ruhestunde
Beweisen
Praktikantin
Eroberten
Erwecken
Bedeutet
Kulturellen
Abstand
verschicken
Arbeiten
Eventuell
allererst
Attraktiv
denkmal
Basilica
Fachlich
Heilende
alkohol
Fussball
Bezahlt
Hundred
Frischer
Preiswert
Mannlich
Bereite
Betrieb
Vermeidet
millionen
Flexibel
initiative
Echtes
Fitness
Kostete
klarheit
Freuet
reaktion
Menem
Band
Meines
Flucht
Wenden
Klaren
london
Kanns
Kurtze
Laden
Fiele
Koste
vielmal
Here
Wolltet
Reine
dier
Putze
strand
Waren
tourist
nahe
Bis
seele
Holt
ch
trend
unde
wolte
wicht
West
Veile
Nor
Par
seh
sint
Beschwerdebrief
aufzuwachsen
Arbeitsumfeld
konfrontiert
schriftsteller
Befassen
Auftreten
Traumberuf
freunden
fremden
freundin
entfernt
fantasie
software
fasten
freuet
Hoffte
firma
feien
Hofft
Trefft
off
FINANZIERUNG
INSTITUTIONEN
ABSCHLUSS
BERLINER
POLITISCHE
DIENSTAG
GROSSEN
ANDERE
Geheiratet
ANLAGE
BESUCH
FRIEDEN
PROBLEM
Ordentlich
Gebieten
SCHLUSS
Gefallen
DANTE
ESSEN
Gefeiert
RECHTE
Gekauft
UNGARN
Ortsteile
Schaden
DOCH
IMMER
LANGE
REISEN
EUCH
Sommer
BEIM
Solution
KRIEG
MARIA
EINS
STERN
Schaut
Cola
REISE
LASS
LINIE
Selber
KEIN
BID
Starte
Selbe
Gar
ODA
Samt
NOT
WILL
kw
spuren
par
gesamt
pasta
Angenommene
anerkennung
verbesserung
Bezeugen
Kleidungen
Beklagen
versicherung
Integrieren
beleidigt
gesichter
Hamburg
ahnung
Heutigen
umgekehrt
verwaltung
garantie
kleidung
gehts
tragedy
Kluge
gebs
regel
Dynamischen
Bayerisch
eigenschaften
Hervorgerufen
fotografiere
Aufgeben
folgender
aufgabe
Traumjob
jobs
Hauptsprachen
Lebenspartner
diplomierter
komponisten
Respektieren
philosophen
Metropolie
aspekte
spatzieren
personal
polizei
park
Pipi
Geburtstagsparty
Strenge
Berufspraktikum
Empfindet
Hauptfeste
kampf
wann
serr
Sportzentrum
erstattet
const
ant
worten
etc
wurst
Unbestimmt
FREUND
JAHR
TRUE
Uralte
JE
Auswahlkriterium
Durchschnittliche
Aussenseiter
Personalwesen
internationaler
assimilieren
Entschieden
Entstanden
architektur
Bauchtanz
Fahrkosten
erwachsen
Abschnitt
mitkommen
verwirklichen
Draussen
Ansehen
Fanatisch
Bewerbe
Intensiven
weiterlernen
Verschicken
Harmonie
Erwarten
allererst
Fremden
Kostenlos
situationen
Potentielle
Erheben
Reserviert
verbrechen
Benutzt
Menchen
blumen
Vorsichten
Dunker
anlass
Korrekte
Teuersten
bucher
Positiven
Trockener
hobbies
toleranter
Holland
Lockere
Positiver
romantic
traditions
erlernt
Landen
Arten
check
Denkt
Websites
aben
Immen
Kurzen
Kosten
china
schulen
vermisst
Vermute
Acht
trainiere
Lecker
Verdient
Versteht
Musse
Holen
Lautet
kurtze
Rutsch
student
Dien
Wohnte
Platze
katze
tochter
Markt
Leibe
Werder
Reich
Bie
Neus
Feb
Weisst
stehts
Frie
mutti
Teilen
chi
sitten
Warte
ritual
lohn
loch
Wand
Rote
Ide
Par
uber
reis
leit
Ist
seh
Tea
welt
Wirtschaftshochschule
Identifizieren
Verwandschaft
Berufliche
Einfacher
auflisten
Frankfurt
bahnhof
fabriken
Erfreut
forum
umfasst
ferne
durft
WIRTSCHAFTLICHE
FORTSETZUNG
Gemeinsamen
BUNDESRAT
GESCHENKE
ERZIEHUNG
Geschiedene
Globalization
PARLAMENT
Gewachsen
Gebrochen
ANFANG
BILDER
SONNTAG
MACHEN
Getrennt
ALLER
MONTAG
RAHMEN
Geehrte
TERMINE
GEHEN
Genutzt
TECHNIK
MEXIKO
FAHRT
ACHT
BRIEF
Schonen
Grenze
Schlecht
FORM
Sarrazin
Sowieso
DIEM
MEINS
PERLE
MUSIK
STELLT
Circa
Schade
HAUS
Scheint
HART
Studiert
SPORT
Schnell
HErrn
WORTE
Stellten
BOX
KUSS
Gibts
Sende
DIR
ROTE
NAM
PRO
NET
FR
Offe
ITS
Sher
WEG
Om
xy
aug
gans
paar
gesetzen
gast
export
prozent
Abgeschlossen
selbstgebackenem
Wohnungssituation
Freizeitangebot
angemieteten
Hervorragend
Bevorzugen
geborgenheit
Begrenzten
Ehemaligen
Auswendig
Linguistische
Freiwilligen
geborenem
grundlagen
hintergrund
Angaben
Begrenzt
betrogen
georgisch
Regionalen
Einzigen
luxemburg
beteiligt
eingang
Erregen
geehrter
technology
integriert
Kleidung
budget
Engen
Unwichtig
gehest
Jetzige
Vergesse
werkzeug
Ruhigen
geburt
engel
neugier
Tragedy
giebt
Dynamischen
Physiotherapie
sibylle
Turkey
Aufgeregt
jahrhundert
auftrag
Erfolge
Verfugung
juni
Korrespondieren
beispielweise
Appartment
perspektiven
kompliziert
Unbequeme
Aprils
kneipen
perle
Schlussfolgerung
Gezwungene
Schwierigsten
Einkaufspreise
assen
vermesse
mussen
normen
sommer
names
server
meer
mars
WorkShop
Sportlich
arten
monate
wetter
streu
stat
tee
QM
Unterschieden
Unverzichtbar
FEBRUAR
BRUDER
KAPUTT
FREUD
TRAUM
Ukraina
FUR
MUT
Hochentwickelte
Bedeutenden
Elektronische
Kundenkontakt
Besonderer
Vietnamesische
ausserhalb
Einkommen
kommuniziert
Finanziellen
Attraktives
Absoluten
besondern
Funktioniert
krankenhaus
selbstbewusst
Bedanken
Erleichtern
kontaktieren
Erworbene
Doktorand
erbrachter
Erreichbar
austeilen
Bezahlen
Lobenswert
Anderes
Belasten
draussen
adresse
Mietkosten
Voneinander
bessere
Basilica
duschen
Bestelle
branche
industrien
Andren
Berliner
Erinnere
Litauische
Ermittelt
Bezahlt
Alleine
reaktionen
Tunesische
motivierte
Erleben
Normalen
dusche
Inklusive
bessre
Assen
Beider
schwester
nachweis
Polnische
artikel
nachricht
verheiratet
Frische
Verwandte
studenten
Aben
anteil
Trockener
Broch
markten
renoviert
Flasch
schneller
Neusten
Hinnen
Erlebt
Vermittelt
vermietet
Verwandt
schnelle
ales
medien
herbst
hunde
Names
mantel
tausend
schluss
blatt
Lernet
Lernst
irrtum
Verleihe
Lasen
schuhe
Hertz
weshalb
Lasse
Falls
Leicht
vielleich
Merke
Winkels
schatz
Maria
Fille
Koch
rutsch
Lebe
chi
Kats
Mars
bir
Etc
Tauch
Kille
db
weiten
Man
radio
Wiede
weisst
tieren
Tema
loss
Tisch
Wider
ticket
hut
Kur
Vielle
Villas
unde
Wisst
Teile
Ma
Wich
wier
horizont
Bon
volk
Artz
wirt
Differenzieren
erforschten
Musikfestival
fortsetzen
Erfahren
Effektiv
Pflanzen
frische
futtern
ferma
offnen
fare
Rufen
worauf
Rufst
info
hof
DEUTSCHLANDS
BEDINGUNGEN
VERBESSERUNG
VERSCHIEDENE
GESUNDHEIT
GESCHEHEN
COMPUTER
BERATUNG
ANDERER
BRASILIEN
AUFLAGE
Gesammelt
GEBIETEN
Geschehen
HAUSHALT
BEGRIFF
BELGIEN
Geschlafen
ARTIKEL
EUROPAS
REGELUNG
Gearbeitet
DAMALS
WOLFGANG
EUROPA
Christos
BOSCH
EINMAL
SCHRITTE
Getroffen
LETZTEN
GEWALT
SOZIALEN
HERBST
SAMSTAG
NORDEN
Schreiben
KELLER
THEATER
AUTO
HERRN
Check
THEORIE
Ganzer
FALLE
Gummi
FREIE
NICHTS
KUNST
Schenke
MITTEL
Schlafen
STARKE
Geteilt
STEFAN
NEUES
DIES
ALL
KENIA
Schicke
PALME
JUNG
ZAHLEN
Setzten
WOCHE
WAGEN
Giebt
NAME
REIHE
GAN
Chr
Oma
PER
Seh
Stat
genommen
wegs
par
genennt
tagen
sept
auseinandersetzung
Finanzierungssystem
datenverarbeitung
beziehungsweise
Angesprochen
angelegenheit
Eingeschrieben
Ausgegangen
bemerkungen
bedeutungen
Kennengelernt
Erziehungen
begegnung
Vorausetzungen
angesicht
Ehrgeizige
Beginnen
Einsteigen
abgeben
gesundheit
Unangebracht
beratung
gesundere
Ehrgeizig
Folgender
dringend
Beteiligt
geniesse
gesunde
hamburg
weitergeben
Migranten
mitglieder
gekocht
Heiligen
guitarre
sociologie
dialog
goethe
Verbringe
ordnung
Riesiges
grimm
gehts
Wichtige
gibts
Mittag
gud
Wassersystem
Anforderungsprofil
aufgenommen
Angefangen
gesellschaften
Aufgegeben
Begreifen
Aja
projekte
pflichtig
Muttersprachen
acceptiert
Einpassen
aspekten
Entspannt
transportieren
reparieren
Ap
Tropical
Papier
sprech
temple
parke
Popo
Pipi
tipp
Schwimmanzug
Sontags
nummer
wozu
um
sr
on
Computerwelt
Gesperrt
Spannende
Spielt
const
mette
team
vater
stat
Qualifizierten
Jobs
NEU
TUN
Abenteuerlichen
Beschriebenen
Elektronischer
austauschen
einzuwandern
Fachsemester
beschneiden
Absolvieren
Kundenservice
ausserhalb
absolviere
Einwandern
bedeutend
Beleuchtet
Finanziellen
Entnehmen
Bereichert
Heimatlands
Bedenken
Aussehen
Entwickelte
Nachschauen
bereichen
Besuchen
einsamkeit
Besessen
Antworte
kontaktieren
Finanzielle
Feierlicher
Bedanke
krankheiten
amerika
bereiche
Erwartete
kanarische
Evamaria
Brachen
LeserInnen
Erlernten
Basilica
Bestens
Erlauben
nachwuchs
Weihnachten
harmonie
Erwartet
wochenende
Touristische
Verzeichnen
Beliebt
direktor
wunderbarer
Identisch
Intensive
vorzustellen
Dunker
Diesen
Fremde
schlimmer
Verlockend
Verbessert
traditionen
Reduziert
Enden
Versuchen
Liebsten
Naturlich
kummer
Adel
ukrainisch
kindheit
Essen
teamwork
vermutlich
Herzen
Innerer
Dona
eltern
Meldete
wachstum
herzen
brille
Lernten
konnen
kirchen
Feiert
Blau
dona
Leisten
Ecke
Kucher
Karten
verstehet
Probiert
kloster
kulture
club
Musste
Verbinde
Positive
brot
indien
kissen
bier
Freie
heren
Mache
dise
mantel
kinder
Nutzen
Hartz
Laune
ideen
Halte
versucht
vermisst
martin
Karte
kaine
marks
Reisen
termine
hose
chi
Misch
Treiben
Preise
Wurzeln
lieder
vorsicht
kette
Wolltest
Muhe
ch
Worden
Liess
Kuss
Heir
rituale
Raten
milch
Recht
Polen
Wirken
kurs
Mba
Note
Zahlen
Mier
Pass
mall
Nett
Wisse
vieles
seite
Wicht
leit
vielle
Par
Wais
wald
oH
volk
Daueraufenthalt
Wissenschaftliche
aufstechen
Beruflichen
befremden
Erforschten
Auflisten
Konfrontiert
frankfurter
informiert
Erfahre
vorschriften
Dorfen
flasche
firmen
Elften
father
Perfekte
Kaufte
Kaufst
dorf
fisch
feier
fitter
Laufe
Verfehlt
telefon
Vertieft
Vorauf
stoff
willt
DEUTSCHLANDS
CHINESISCHE
DISKUSSION
INFORMATION
GEGENWART
CROISSANT
NIEDERLANDE
EINZELNEN
NATIONALEN
TECHNISCHE
AutoCAD
UNSICHTBAR
BUCHER
EINTRITT
BUDGET
Croissant
GELESEN
Gebraucht
Gerichtlich
MITTWOCH
MILLIONEN
FREIHEIT
BEIDEN
BEREIT
BAUCH
VERGLEICH
Geschafft
KINDHEIT
Grosstadt
EIGENE
DIENST
ELTERN
Geholfen
GRENZE
FAMILIE
Getaucht
SCHWERE
VERBOTEN
Schiffsfahrt
KREDITE
LETZTER
JOHANN
KAPITAL
Check
EINEN
LERNEN
NORMAL
CHEF
DANN
Gehabt
Orientiert
EDEN
AMT
WIRKLICH
KAMPF
LETZTE
SPIELEN
KOREA
BAR
Streichen
FANG
FEST
CAB
Gehts
CHF
HERZ
REDEN
SACHE
Gibts
LIEBE
Chi
IDEA
IRAN
REICH
SENAT
Stamm
Stehen
NOTE
STAAT
Orten
PLAN
TISCH
MAG
SEHE
Schrit
Selbe
LAS
VIELE
Fil
WORT
Kin
PAR
Stufe
Seer
Kw
hr
IS
Seh
TEE
VIEL
Sint
TEL
Tv
wi
genomen
anpassen
engagement
erwartung
gemusst
segment
gutte
temperatur
Deutschsprachigen
Angemessenen
Angesprochen
Angekommen
Ausgebildete
arbeitgeber
erinnerungen
besichtigen
Begeistert
Angebaut
Wohnungsuchen
gleichseitig
eingeben
Besorgt
mittagessen
gewaltiger
anlage
grossartig
begabt
Billiger
weitergehend
unterhaltung
Einiger
Jeweilige
Unbegrenzt
gerecht
Mitbringe
geduld
Ungebildet
rechnung
heilige
joggen
wichtigkeit
Vorgehen
Wichtigen
Frog
kriegs
ludwig
Regeln
lage
Wegen
Wenig
Typischer
Wyborcza
Loyal
Berufsabteilung
Aufgegebenen
Beauftragen
beauftragen
ferngesehen
Erfolgreiche
entfernung
fortsetzung
Langfristiges
auftrage
Verzweifelung
Ergriffen
johann
projekt
jets
Deutschsprechenden
Akzeptieren
Behauptete
muttersprache
komplizierte
hauptstadt
aspekt
Kompetent
versprechend
diplom
standpunkt
Passport
spektrum
Verspricht
Haupt
speziale
kaput
Obengenannten
Gezwungen
Geburstag
Geflogen
Gepflegt
Signalfeuer
Sociologie
Schlagen
Sorgen
Og
Verpflichten
nue
Sprachenlernen
Sprachschule
monaten
monat
noten
stamm
storm
traum
mut
orte
stau
ost
Qualifizierten
Quellen
JAHRHUNDERT
DAUER
AUDI
AJA
BAU
HUNDE
HEUTE
Ukrainisch
VERKAUF
HUNT
UMWELT
KURZ
RAUM
Unde
UHR
Automobilbranche
Deutschkenntnisse
beschwerden
Marokkanischen
Brasilianerin
Beherrsche
Bewundere
Armenisch
Deutschand
Einzelkinder
Bestanden
Entnommen
Bereichert
albanisch
einkommen
erlebnissen
Interessanter
Besuchst
Historischen
entschluss
architekt
Paradiesische
Aktuelle
Bisschen
nachschauen
Besuche
Bezahlte
erlebnisse
Beendet
Entwickelt
Lebensarten
Draussen
bereiten
Formuliert
absicht
Bischen
Diversen
Fachliche
Besetzt
Bruders
Entdeckt
Achen
kommunen
Disaster
Verdienenden
kenntnisse
Lachendes
nachrichten
interessire
Verstehenden
innovation
Erreiche
Bruche
harmonie
Fischers
brache
vorzubereiten
interessirt
Aleks
Herzliche
Deines
Erkannt
Erlaube
Bracht
Passendes
bezirk
Heilende
Beten
Kleineren
Melodisch
Danke
Diskos
Alles
details
Dalles
Decke
Verwandtem
cAMP
Wunderbarer
einlebt
bach
Bette
november
blaue
Alex
renovieren
entlich
Madchen
disem
Finden
Diese
Nationale
bohn
verbrechen
Reduziert
hauses
Bitte
kriterien
Verstecken
Famili
Einer
Motiviert
Verheiratet
Biss
Kinders
Leichter
dona
Dani
blatt
Mussten
Potenzial
Plaudern
verbrachte
Husten
Mitwoch
Reichere
Hastet
Passend
Vereinbart
Kusche
Tolerieren
Bist
letztlich
kontakt
Fluss
Kleider
Esse
Kloster
Versichert
Heisst
modern
Bie
Halbe
katzen
tolerieren
huben
kredite
Vorletzten
Klaren
bie
hotels
Probiert
eier
Normal
Koche
Kriese
hemd
inseln
Hand
schwein
Laden
Messe
Halle
Lieber
Mehre
Helle
leuten
ein
Meine
ch
db
Leere
Frei
hund
Punkte
Kann
Trainiert
Reisen
schuss
Wussten
Paare
Muss
Totalen
sieben
Parke
riesen
Warum
Wusste
twelve
stehts
seele
Leit
Wohne
Weisst
obst
weider
solch
tauch
Parr
weisst
sohn
Volles
visum
solte
Werte
seht
unde
Weile
Per
sitte
Warn
Were
Wird
viet
vie
Anwort
Po
Ausverkauft
aufstehen
herausfinden
Dauerhaft
Erfahrener
fantastisch
leidenschaft
faulenzen
frankreich
schriftstellern
Wirtschaftliche
ablauf
Bedarf
Kaufmann
hinfahren
Briefe
beruf
famille
fabrik
fehler
Perfekte
faust
fried
fille
vielfalt
seife
CHINESISCHEN
WIRTSCHAFTLICHEN
AMSTERDAM
ANTWORTEN
EINSTELLUNG
Gastronomische
WIRTSCHAFTLICHE
BEHANDELT
DEUTSCHEN
EINKOMMEN
FORSCHUNG
FINANZIELLE
EREIGNISSE
Gewissenhafte
Gastarbeiterin
EINLADUNG
ANGABEN
HAUPTSTADT
BERICHTE
AUFGABE
ASPEKTE
VORBEREITUNG
CENTRUM
CHANCEN
BEGINNT
ERINNERN
ERGEBNIS
DEUTSCH
Schulabschluss
Garantieren
ENGLAND
Gekommen
INTERVIEW
MOTIVATION
Gesammelt
STANDPUNKT
ABEND
ANDRE
WICHTIGSTEN
AUGEN
Geniessen
FREIHEIT
ARTEN
Geheiratet
MITTWOCH
Getrunken
ALTEN
SCHWEIZER
ENGELS
FRIEDEN
SCHWEDEN
BLEIBT
HOLLAND
Geschoss
PFLICHTEN
WESTBERLIN
OSTBLOCK
Gemischt
GEBURT
FLUCHT
VORSCHLAG
ORDNUNG
RUSSLAND
SCHLECHT
RICHTUNG
BREIT
Gewandt
ETWAS
FRISCH
WIESBADEN
BLIEB
EINEM
Geweckt
KLEINEN
WACHSTUM
Getestet
EINER
BROT
VERBOTEN
Geredet
GANZE
ANA
Akin
Schwimme
Chine
Getanzt
FAUST
Gefreut
Ganzer
BIER
ECKE
Offiziellen
Gehabt
IRLAND
BZW
MEINEN
CCA
Gelebt
TELEFON
Club
FORT
LIEBER
FAST
NAMEN
HOCH
TRINKEN
FIND
FILM
LOKAL
UGANDA
Stammte
WAGNER
Chi
Gutte
HEIM
TASCHE
Gibts
RECHT
STIMMT
LIEGT
MITTE
MARK
GeH
MEER
KOPF
Schone
Schalte
Stabiles
VOLKES
Studiert
SEELE
HErr
NASE
OBST
STAND
Sinnen
OPEL
STUFE
Hirn
PAAR
Oben
PASS
MFG
MAY
TISCH
Schrit
MIA
Orte
SEIT
Om
Okt
Stad
RIO
Seh
Sint
TOT
Soll
Vil
wi
xyz
europa
paare
papa
gegensatz
august
genannter
gespannt
verantwortung
voraussetzung
apartment
transport
Ausbildungsbetrieb
Angemessenen
durchgeschrieben
Entgegenkommen
benachteiligte
Anstrengend
Ausgebildete
Burgermeister
Angebotene
Angemeldet
Angegeben
Enttauschung
bewahrung
einzigartiger
Beleidigen
Eingetragen
Kulturmischung
gleichgewicht
Engagieren
allerding
ablegen
Anlagen
einstellung
Anzeige
Fortgesetzt
Bezogen
gewohnheit
Eingehen
Bulgaria
Billigere
Berger
untersuchungen
billiger
ewigkeit
Dingen
gemischt
burger
Mittagessen
Freitags
Bringt
Warmherzigkeit
hamburg
gebirge
gegend
berg
gestellt
engel
Fliege
spaziergang
Weitergehend
nahgelegt
weiterbildung
Jungen
gabe
Jetzige
Niedriger
Klagen
Langen
joggen
Mietung
Umgehend
gibts
grille
regelung
Unterwegs
Prestige
kriegs
sendung
Verlangen
gud
Wohnungs
Tatigkeit
Regen
region
Wagner
Husky
Auslandserfahrung
anforderungen
Aufgegeben
aufgeregt
anfrage
wohngemeinschaft
forderung
empfang
festlegen
nachfragen
reihenfolge
vierteljahr
objekt
jahr
beispielsweise
Akzeptiert
Entsprachen
Exportiert
manipulation
april
Versprochenen
mittelpunkt
Metropolie
kneipen
haupt
kaput
politiker
photos
teppich
Tipp
Gangbare
Geregelt
Sportanlage
aufpasst
Empfehle
Kaufpreisen
annonce
an
evo
musse
nase
raum
Syrian
sona
vase
vonn
usa
Sprachaustausch
Sprachlernen
Sprachen
Suppe
armut
momente
etc
ratten
tomate
strom
unnett
motor
QATAR
Qatar
BLUMEN
FREUNDE
BUNT
BLUT
HIERZU
JANUAR
Unterrichtet
NEUER
JULI
LUFT
Unter
Unde
Uber
Architekturstudenten
Bemerkenswert
anschliessend
Deutschkurse
besonderten
Alternative
beibehalten
Entschlossen
ausserhalb
Beliebteste
Anmelden
Discotheken
absolviert
ausnahme
erkenntnisse
Bekannten
beherrscht
bestandteil
Antworter
Bestimmte
Praktikantenstelle
Elektroniker
Eindrucken
Besessen
Faxnummer
Bekannte
bewehren
Beliebten
interkultureller
Erschienen
besucher
Ansonst
Abreise
Exotischen
Insbesonders
Beurteile
Bedeute
Beendet
Bezahlte
Heimatsland
Dominant
Draussen
Feierlicher
Kontinuierlich
elektronik
endecken
brauchts
Bestens
Konventionell
draussen
Besucht
basilica
Erkennen
Arbeits
besitzer
Achen
Mitbekommen
Erworben
chancen
Dauernd
Folkmusik
achen
Besetzt
institutionen
instrumente
daumen
Erweitert
babies
becker
Erlassen
Haustieren
hinsichtlich
Kulinarische
Bauch
Erhalten
Dichten
Frustriert
Interessiert
Dreimal
chemie
Peruanischen
Besse
Lehrreichen
abar
bruder
Muslimische
boden
Monatlichen
Kombiniert
charm
Konkretem
hardware
Nachrichten
bach
diskos
Famille
nachrichten
audi
Ans
Frische
Firmen
bars
Diene
dante
chine
Disch
Einen
Ball
eNDe
Erlebt
Liebevolle
Herzlich
Indische
Freind
kontinent
Bod
bzw
haaren
hessen
blut
Interner
heeren
Potentielle
Bie
Fitter
Haben
Fatih
heimat
Hatten
bie
Heben
kulturen
Wiedersehen
Komme
untertreiben
Hoben
Kleines
Hunds
Hollen
chi
Heute
Fille
Vorzustellen
Verwandten
minuten
ch
melodie
Huete
kleider
Lohnen
db
Wundervolle
Etc
Lauten
lockere
Verlockend
Haar
Nennen
landes
Verbessert
verwanden
Vermieden
Mobilia
Hast
heist
hello
inder
sektoren
Probiert
Lesen
Muche
Kalte
Klare
slowakei
Kette
kredit
Musse
Weinkultur
Versichert
lehrer
norden
Istas
Meine
laune
Netten
unterricht
Verlorene
komt
Letze
Verdienst
varianten
labor
Lade
Metre
Wertvoller
hoh
Land
Musst
schnee
Vermittelt
Tauchen
hist
Links
Vorurteile
Trainiere
Portier
schicht
sklaven
Telecom
Muter
kuss
Verdiene
vorbreitet
Reche
Mark
statistik
Nahe
Versucht
Vorbereit
Leid
ice
Ins
Nass
Lieb
Nicht
themen
onkel
siezen
lehr
Welsche
Leit
Vertrete
Vereine
Verliere
Teilzeit
libe
Widmen
tasche
Verwirrt
risiko
Reist
Rock
stehts
Werden
stelen
Tobias
Wortlich
Weinen
leit
sitten
Wetters
wunsch
sohn
Wieviel
Wartet
Weisst
Par
weisst
Vieler
Wohnt
Wieso
Voller
Wisse
wiede
wieso
tuch
Tool
Wurst
wider
West
Wurd
Toll
Wier
VIa
wiel
Vie
Unfreundlich
niht
Trinkt
Aufstechen
Anfallende
Hotelfachschule
Beruflichen
auskunft
anrufen
erfahrener
landwirtschaft
Definitiv
festellen
konfrontiert
Hilfsbereit
einkauf
Informiere
Kaufmans
freuden
famille
hinfahre
freund
Traumhaftes
freun
duft
fluss
officielles
Perfektes
radfahren
fish
fon
telefonier
offnen
stefan
Vertieft
stoff
Werfe
ABGESCHLOSSEN
GESELLSCHAFTLICHE
KRANKENSCHWESTER
GEMEINSCHAFTEN
BEMERKUNGEN
ABENDESSEN
INTERNATIONALER
BOTSCHAFTER
ALLGEMEINE
GESCHLOSSENE
ABGELEHNT
ANTWORTET
GEGENSEITIGE
BESONDERE
WISSENSCHAFTLICHE
ACHTZEHN
BEZAHLUNG
INSBESONDERE
ERINNERUNG
BOTSCHAFT
VORAUSSETZUNGEN
BEZIEHUNG
AGENTUR
ARBEITEN
ARBEITER
BEHALTEN
SCHRIFTSTELLER
FERNSEHEN
KONFIRMATION
Chinesische
EINFACHER
ABSICHT
ACHTER
INTEGRATION
Gemeinsame
ITALIENISCHE
AUGUST
AutoCAD
GEFUNDEN
NORDAMERIKA
MADAGASKAR
BERGER
Globalization
Geforderten
NIEDERLANDE
BLEIBEN
ALLEIN
EIGENEN
CHANCE
FORDERN
MITTELALTER
LEISTUNGEN
Gekommen
Croissant
HOFFNUNG
Gebrauche
FENSTER
GEGEBEN
Geschlafen
UNTERSCHIEDE
INTERESSE
GEFRAGT
GROSSEM
GROSSEN
GROSSER
FREIZEIT
HORIZONT
TECHNISCHEN
Geschrien
Gesunken
AUGE
HANDELN
Gescheck
MANCHMAL
Gemeldet
BILLIG
FALSCH
INITIATIVE
BANK
Gebracht
Gefeierte
BERG
GEFAHR
NICARAGUA
Gratuliere
Geehrter
EINIGE
FINDEN
GROSSE
DIANA
Gratuliert
NATIONALE
Gebucht
KONFLIKT
VERHEIRATET
SCHNELLER
BETT
Globalen
EINER
AUG
FERNE
Gereicht
SCHREIBEN
GEBEN
GENUG
SCHWEDEN
DORT
Grunden
BIRO
Chine
PERSONAL
Const
GLEICH
INSERAT
Grossen
STUDENTEN
KOMMEN
Geheizt
Am
Getanzt
VEREINBART
ORDNUNG
Gezahlt
WILLKOMMEN
POLITIKER
JUNGEN
Grosser
Siebzehnten
GRIMM
FREIE
GUTEN
Schuhmarkt
INNERE
EIER
KOSTEN
DAN
KLASSE
LANGER
TAGEBLATT
SPEZIELLE
VERHALTEN
HALLE
STRUKTUR
GMBH
PROZESS
LEBENS
KRIEGE
STELLUNG
Gehts
NEHMEN
KLEINE
KAMPF
MUSSTE
JUNGE
Chr
ETC
GLAS
MEDIEN
Chi
INDER
SONNTAG
PERSON
HOHE
GAR
Orientiert
Ch
LIEBER
OFFENE
HOPE
HOSE
Giebt
Gibts
THAILAND
MOTOR
SYSTEMS
REGELN
KRIEG
LESEN
SERVICE
LESER
LASST
SACHEN
NATION
GET
GILT
Ortsteile
STELLEN
WOHNUNG
NACHT
VERKEHR
SOZIALE
Schonen
TREFFEN
Schritten
MEIER
HAB
PREISE
Schnelle
hiER
REISEN
MAMA
OPFER
LINKS
Stiefsohn
Gud
STRENG
KATZ
ONKEL
Schwein
STEHEN
Schreibt
LOCH
MERZ
Sicherer
LEBE
SOLLTE
SECHS
NORD
SCHAL
Senden
RADIO
MAIN
PLATZ
hiN
WebSites
Sweden
Studiert
SETZT
SOLLE
SUPER
ROCK
NICH
Siezen
MAn
Sehen
SEITE
MAI
Solide
Schrit
SPIEL
Obst
Solter
OFT
TRIER
SPAS
Offe
TEILE
Send
STAD
Sona
TAGE
TAGS
WEIST
TEXT
SEX
WALD
Off
Stad
See
Seh
WILLE
WILLY
Sint
VOLL
WEIL
ZAHL
WOs
Will
wi
fR
xy
anpassung
auge
gegen
gerner
gruss
program
vorsprung
umgang
presse
par
spas
ausgegrenzt
gett
sonntag
vergesst
vertrags
vortrag
computern
computers
Angenommene
beziehungsweise
Anstrengendes
Datenverbindung
Anstrengend
Benachteiligte
Ausgegeben
begeisterung
angestellter
buchhandlung
Angesehen
Anstrengen
Ausgesucht
ausstellung
Beantragen
Auswendig
Abgelegt
lebensbedingungen
angehen
ausgleich
bezahlung
Begegnet
Eingetragen
begegnet
Aussage
Begrenzt
Entschuldig
einrichtung
Beleidigt
beilagen
generationen
hochgestiegen
Festgestellt
erkennung
Engagiert
gewunschen
geschreiben
geschehens
dienstag
Erledigen
Engineer
engineer
Bringe
Ertragen
gewohnten
gymnasium
Verantwortungsvolle
geschenk
kindergarten
gratulierte
geniesen
grossartig
Einige
Lebensalltag
geheert
gerichte
Nachgedacht
Jeweiligen
keinesweg
mitteilungen
Mitgebracht
mitgebracht
Integriert
langeweile
guittare
meinungen
hingabe
veranstaltungen
orientierung
neuigkeiten
gehts
logischste
Heilige
Teilgenommen
marketing
Registration
gmbh
schwierigkeit
mischung
Mitburger
migration
Untergebracht
giebt
gibts
Junger
gund
gud
Lagen
weiterbringen
Jung
verwandlung
Morger
verwendung
Unterlagen
lager
Winkelgasse
vermittlung
Liegt
wohnungen
Regle
Vergesst
Wichtiger
wielange
werbung
Bays
Wisky
Aufgegebenen
empfehlung
Befolgen
ferngesehen
auflage
ausflug
Wohnungsgesellschaften
eingreifen
Wohnungsgemeinschaft
kontaktfreudige
Ergriffen
Erfolgen
flughafen
flugzeug
gepflegt
freitag
Nachgefragt
frog
jahrlich
jacke
objekte
Pflegen
juli
Mfg
Wolfgang
Anspruchsvollen
Fremdsprachenlernen
Beispielweise
ausprobiert
Besprechen
Behauptete
Entspannt
appel
konsequenzen
Komplettieren
hauptsache
Kompliziert
schopenhauer
personlich
problemen
parlament
personnal
kaput
priester
preises
provinz
spazierst
option
Papa
sprech
Temple
tropical
Geographischen
Grundlegenden
Gegenseitige
Gezwungene
Gesprungen
Gegangen
Selbstgebackenem
Gleichseitig
Gewaltiger
Georgisch
Gelungen
Geflogen
Geglaubt
Gepflegt
Obligatorisch
Sogenannte
Sonnstag
partnerschaft
qualifizierten
qualifikation
Kipfel
Verpflichtet
pflichte
anna
normen
nemen
nue
uneres
wassa
xxxxx
om
rom
Computerkenntnisse
Gesprochene
Spannender
Spanische
Speisen
Spuren
Sprech
Spater
Spas
erwartet
momenten
etc
ostern
verraten
temer
stam
sont
tram
stat
ANKUNFT
BAUTEN
BERUF
FREUDEN
KULTURELLE
KULTUREN
EURE
JAHREN
HAUPT
KUMMER
KUNDEN
PUTZFRAU
HUND
JETZE
JETZT
Unterschreibt
Unterschiede
VENEZUELA
Jahrs
Untersuchen
Untertreiben
JUNI
Unzumutbar
NEUEN
PUTZEN
Julis
Unterrichtet
Unverletzt
PERU
NUR
Uhrlaub
WUNDER
Unde
TUT
UsA
Usa
Bedauerlicherweise
Alleinstehender
Anschliessend
anschliessend
Beschriebenen
arbeitnehmer
Alkoholische
Bestandenen
Arabischen
Beantwortet
Ausserhalb
Immobilienmarktes
Anmerken
ausserhalb
brasilianisch
Antworten
deutschlands
aussichten
Entstandenen
Beherrscht
ausleihen
besondern
Attraktive
Durchschnitt
Existierenden
Beamtete
Aktiviert
beherscht
bereichert
Beachten
allererst
bewusster
Entscheiden
austeilen
bewohner
Benutzen
bekanten
discutieren
ausweis
Entstanden
ansicht
Arbeite
Heimatslandes
Basilica
Bewohnt
dezember
Arbeits
achen
Brotchen
Haushaltarbeit
Beende
Backen
Erwachsen
Fantastisch
banken
brauchts
Diskusion
Erwarteten
abitur
Bauten
Draussen
Akins
Endecken
Allein
kundenorientiert
Entstehen
atelier
Industriemarkt
berater
Fernsehen
Bauen
Betreut
bewerb
excellente
Besser
Erkennen
Erreichen
Bonner
Brauch
erlaubnis
Heimatkultur
disaster
ales
bucher
Erstatten
Beide
Einhaus
Intensivkurse
Beriet
essentiel
Kommunikativ
herzustellen
erzahlen
beser
aLs
drinken
Darvor
Dauert
inbesondere
Fenstern
distanz
Blaue
charts
Erinnert
darvor
Erholen
Interessierst
hochschule
Danie
bonn
Heimkultur
Heimische
brille
clubs
Kontaktieren
Extrem
Interessiert
kenntnissen
Koreanische
Familia
Echte
Deke
cirka
disce
disco
Erwart
bett
Mitzunehmen
herrschen
dises
exkurs
Muslimischen
Fleisch
hertzliche
handtuch
brot
bzw
email
clan
cola
Bid
Interresse
Faxen
kaninchen
Fahre
Echt
interessirt
Hamster
dise
Peruanischen
Drei
Industriel
Haustier
Eier
Finde
chi
Kentnisse
Heissen
hochzeit
Vietnamesischen
ch
Fitter
Haaren
dE
insekten
mitnehmen
Kurdische
Fare
Mitmachen
db
hauses
Fata
kommerz
nocheinmal
Faul
Kroatisch
heeren
rechtsanwalt
hunden
Haben
hattest
Mindesten
Hinnen
inklusiv
internet
kriterium
motivation
Multikultur
Weiterentwickelt
Hoben
Idealer
Immen
Huben
Heren
kannen
Mietraum
Motivierte
Landern
hastu
Kurzzeit
Mithalten
Lokation
Holen
kirchen
Vietnamesisch
Verschiedener
konnen
strukturierter
Kamm
konzert
mitarbeit
Traditionellen
herre
Landen
Milionen
Hate
Machen
wiederzusehen
kamm
Kreativ
helle
klavier
Mitwoch
naturlich
Rundhaus
Kaser
inder
Lehren
Lauten
verheirateten
Lernen
lebend
lebens
motiven
musiker
insel
Lehrer
Hat
Normen
kerze
keller
karte
manch
kinde
schachtel
Keler
Technische
Rechnen
Verschieden
Verbesserte
klima
Positiver
Polnisch
Passiert
Learn
Nachte
Moche
march
lehrer
Norden
Nechte
Hut
Kats
Verabreden
Leide
tendenzen
Muslin
katz
Mitten
maria
Wunderbarer
ide
Marai
Preisen
ien
leber
lerne
luxus
rahmen
weiterbilden
Verbrachte
leide
miten
raketen
leste
schaum
Liste
Nennt
Wiedersehn
Vermittelte
verheiratet
Loss
Versichern
Versuchen
schmidt
studiums
schicke
Libe
neien
luter
milte
mba
mier
Mall
Must
Prada
Tausend
kur
Vorletzten
Verbleibe
Wiederholt
Telecom
Vermisse
nord
leit
Trainiert
Vielleicht
rusch
neh
raise
themas
selten
Vielmals
rhein
Rate
rucht
RAd
Teuere
vieleicht
Wunsche
Par
Weshalb
Per
termin
Weitaus
vorteile
solte
Werden
vierten
Wiesen
Wassa
Wende
Tanz
Weisst
Wieder
weider
volkes
Wohen
Tolle
weisst
Winkel
Voller
Wiese
Wass
werks
Tee
Warn
Trei
weita
wald
WeIt
visa
Viel
VIa
Vie
vie
wel
Evo
Fon
konto
komt
Wohin
Vorm
tool
Eintritt
Bitt
Unfreundliche
niht
trinkt
willt
Auslandsaufenthalts
Aufwiedersehen
Befremden
Aufwarten
Blumenfest
briefkasten
ankunft
einfachheit
anfand
botschaft
aufsatz
Berufen
freundinnen
Eifelturm
defekter
Erfahren
fahrkarte
betriff
funfzehn
familien
frustriert
fremden
Brief
Erfreut
konferenzen
Hoffentlich
flasche
familia
famille
freiheit
Informiert
faktor
Elfte
Kaufmans
Haushof
fehler
dorf
duft
herkunft
kartoffeln
freud
freun
fotos
schlafzimmer
fata
unterschriftlich
fille
fax
fust
Kaufen
fer
Kauft
Telefoniert
offnen
Pazifik
schlafe
schafe
luft
vorfahren
offe
Verfehlt
surfen
verlauft
Vertieft
vertieft
sofa
ANFORDERUNGEN
ANGELEGENHEIT
ALLGEMEINEN
BESCHREIBUNG
ALTERNATIVE
GEOGRAPHISCHEN
AUFFASSUNG
ARABISCHEN
AUSBILDUNG
CHRISTLICHEN
ENTSCHEIDUNG
ERFOLGREICHE
ENTSPANNUNG
BEDINGUNG
AUSGLEICH
FORDERUNGEN
AUSNAHME
AUSDRUCK
ERFOLGREICH
EMPFEHLUNG
ENTSCHEidEN
BEDENKEN
BIBLIOTHEK
ANDERES
SCHLUSSFOLGERUNG
BESTEHEN
INTERNATIONALE
BEZAHLEN
INFORMATIONEN
EINSAMKEIT
BEKOMMT
ACHTER
DORTMUND
ANDRES
ERKENNBAR
ZIMMER
DEUTSCHE
BEKANNT
GEBURTSTAG
ANZAHL
BEISPIEL
BEREICH
ALLTAG
BANKEN
FRANKFORT
ACHTE
ERKENNEN
BAYERN
ERLERNEN
ENTSTEHT
HOCHSCHULE
BEGINN
ALTEN
Geschilderten
EINZELNE
FAKTOREN
HISTORISCHE
BEIDER
AUTOR
KAPITALISMUS
PARTNERSCHAFT
GEDANKEN
EIGENEN
HAUSARBEIT
ASIEN
DANACH
APRIL
ALSO
AFFE
DRITTEN
ARME
WISSENSCHAFTLICHE
GRAMMATIK
GEMELDET
DETAILS
COUSIN
BODEN
ENDLICH
BEZUG
Geschossen
FUSSBALL
INTERESSEN
GEBOREN
DIALOG
FAMILIEN
BABY
TEN
MONGOLISCHE
GEGEBEN
BALD
KANDIDATEN
ARM
MADAGASKAR
EINZUG
BALL
EINMAL
INSGESAMT
VERANTWORTLICH
BLICK
BITTE
PERSPEKTIVEN
Gebacken
Genannter
GESEHEN
FLEISCH
FERNER
Ste
Gewundert
CAMP
DAMIT
GESTERN
KRITISIEREN
GEPLANT
DINGE
Gerechnet
BEIN
FOLGEN
GROSSER
GOLDENE
GRUPPEN
ENGEL
SCHWIERIGKEIT
DELHI
GLAUBEN
HEUTIGEN
GARTEN
GEDULD
Geworden
CLUB
PHILOSOPHEN
Gratulierte
Gelassen
Gemischt
DARF
HOFMANN
BIST
HEIMWEH
Gekaufte
Gelandet
FINDET
Gemietet
BON
Gestimmt
KRANKHEIT
Gekostet
VIETNAMESISCHE
Ganzem
EBEN
INSEKTEN
EDES
Goldenen
VERSCHIEDENEN
DATA
Gelernte
Genauer
BUS
FOLGE
FESTE
ERDE
Gratuliert
Gedient
CUS
Bzw
EURO
KENNTNIS
Gleichen
THEORETISCHE
SCHUMACHER
FIRMA
KONTAKTE
Gekauft
TSCHECHISCHE
Getestet
Geheizt
MODERNEN
ERST
Gebaut
GENAU
Gerufen
Genutzt
MODERNES
INSTITUT
MONATLICH
Bin
Grundes
PRAKTISCHE
NACHRICHT
Cus
REAKTIONEN
HESSEN
FREIE
DOs
HALTEN
SOGENANNTE
REVOLUTION
ENG
Chi
Gestellt
Cm
GOTHE
LEISTUNG
NOVEMBER
GANZ
Ch
GUTER
HEIMAT
ELF
FUSS
OFFIZIELLE
OSTBERLIN
SCHWIERIGE
POLNISCHE
HAUSE
Gehts
KLEINEN
KANNST
KOCHEN
VERWENDUNG
Gehe
SPANISCHEN
VERMITTLUNG
FOR
KUCHEN
KONNTE
FAX
GAB
Gmbh
Gothe
GEH
HAND
SCHENKEN
KOMME
LOHNEN
GEN
Gutes
Gern
LASSEN
Obdachlos
VERBINDUNG
Giebt
UNTERRICHT
Gaz
Gibts
MUSEUM
SCHLAGEN
MELDEN
FIL
KARTE
REAKTION
KENNT
StudentInnen
TRANSPORT
RAMADAN
NEULICH
MONATE
SEKTOREN
Fill
MOZART
STREICHEN
TEAMWORK
Schnellsten
NAHOST
HOLT
LADEN
SCHREIBT
RICHTIGE
RELATIVE
MACHT
SITUATION
MARKS
SLOWAKEI
Gud
WESTLICHEN
STRASSEN
IDEE
KLEID
MARKT
REICHEN
Schlechter
Schlachtet
Sammelte
Gilt
KALT
SOZIALEN
SECHSTE
NAHER
Schweizer
ONLINE
RECHTE
MILCH
NENNT
POLIZEI
LIEBE
SCHRIFT
SCHRITT
KAN
STUNDEN
RATTEN
Schenkst
THAILAND
VERTRAGS
Schlaffen
STRASSE
PRAXIS
Schicken
Schleifen
HR
TOCHTER
LUST
Schenke
RIESEN
Hir
POLEN
WOLFGANG
Schweitz
PERLE
SOFORT
Streichen
KIN
TABELLE
WEITERER
OBER
SAGEN
Hr
MAN
Schulen
SAGTE
ROLLE
SEITEN
PECH
Schlafe
RHEIN
Schickt
TASCHE
SEHEN
Senden
Schuss
Sichere
TRETEN
mim
NOR
SEELE
RAUS
STROM
Stadten
WIRKUNG
Schen
WEITERE
SAGE
Seines
SEINE
Strecke
TEILEN
SPASS
STEHT
WASSER
WARTEN
Schun
THEMA
STOFF
WOHNEN
Offe
REIS
VOLKES
Schiff
Schrit
Schik
Sitzen
Seele
OM
Om
WEITEN
WEITER
WOLLEN
Suche
Seen
WIRKEN
SINN
TIPPS
On
Sucht
TANZ
Stele
Sind
Stolz
WEISS
STIL
WAHR
WAND
WANN
WEGE
Sint
VILLA
Stat
UNG
THE
WERT
WEIN
WEIT
WEN
Xxx
WI
Wi
lift
fill
0
2000
4000
6000
8000
10000
12000
Index
Figure 6: Log Annotated Type Frequencies.
up in the custom dlexDB. For each type of frequency score (ATF, .. , LLF)
the scores of all types in an essay were summed up. They were then divided
by the total number of types that had been found in the custom dlexDB (M
= matches). We used the matches as a denominator in the ratios rather than
the number of types in the essay: the more types are found in dlexDB, the
more items add to the sum of scores. Hence creating ratios with all types in
an essay as a denominator would not be fair, since they do not reflect the
number of types that actually contributed to the sum of scores.
Additionally we calculated the ratio of words occurring in a specific frequency band of LATF. To decide on frequency bands, the LATFs of the
whole custom dlexDB were plotted using R (Figure 6). It can be seen that
32
dlexDB Frequency Features
Annotated Type Ratio
Type Ratio
Lemma Ratio
Log Annotated Type Ratio
Log Type Ratio
Log Lemma Ratio
Ratio of Words In Log Frequency Band
Ratio of Lex. Types not in Dlex
Formulas
sum(ATF) / # M
sum(TF) / # M
sum(LF) / #M
sum(LATF) / # M
sum(LTF) / # M
sum(LLF) / # M
sum(LATFinFrequencyBandN / # M
# not M / #T ypLex
Table 9: Lexical frequency features using dlexDB
there are many words with a log frequency between zero and one. Above
one, a relatively linear curve ascends up to four, and a steep rise follows up
to five. Between five and six the items become more sparse. The types are
mainly adverbs or modals. Consequently six frequency band were assumed,
one for each step from zero to six. The ratio of all lexical types that were
not found in dlexDB was included as a measure of orthographical or lexical
errors. A summary of all frequency features can be seen in Table 9.
Lexical Relatedness. Conceptual relations between lexical items are
important for the organization of lexical knowledge in the human mind. Hypernymy is a relation of more specific terms (hyponyms - subordinate words)
to less specific terms (hypernyms - superordinate words) (Crossley et al.,
2009). Hypernyms can have a grouping function or be an umbrella term
for hyponyms (e.g., flower is an umbrella term for roses, lilies, daisies ...).
Crossley et al. (2009) claimed that hypernymic relations are good indicators
for lexical organization and the depth of lexical knowledge. The results of
their study indicated that in second language learning, the number of hypernymic relations increases as the learner makes progress. Crossley et al.
(2009, 2011b) used WordNet 23 (Miller, 1995) to retrieve hypernymy scores.
WordNet’s organization is hierarchical: Hypernymy scores, that measure the
distance to the root node, are provided. More abstract words have lower
scores (Crossley et al., 2009).
Polysemous words have several related senses (Crossley et al., 2011b).
Polysemy plays a role in the conceptual organization of lexical knowledge
because overlapping word senses relate concepts to each other, and can thus
form connections between lexical items (Crossley et al., 2010). In a longitudinal study of second language learners, Crossley et al. (2010) retrieved
information about polysemy from WordNet synsets (groups of related lexical
23
http://wordnet.princeton.edu/
33
items) to measure “the production of words with multiple senses over time”.
They found out that there is a correlation between growing lexical proficiency
and the production of multiple word senses.
In this work GermaNet 7.0 was used to retrieve information about lexical
relatedness. GermaNet is a machine readable lexical-semantic resource for
German that is similar to WordNet for English. It is structured as a net
or graph of concepts that are interlinked by semantic relations. Concepts
are organized in synsets. Synsets are sets of lexical units with a closely
related meaning. Most words belong to more than one synset. GermaNet
also offers information about conceptual relations such as hypernymy or partwhole relations (Henrich and Hinrichs, 2010). GermaNet 7.0 consists of 74612
synsets and covers 99523 lexical units24 . It is free for academic use after
signing a license agreement, and a Java API25 is available.
Six lexical relatedness features were implemented with information from
GermaNet. The lexicon was queried with the lemma and word category of
each noun and verb type in an essay. For all matches M (= lemma and word
category combinations that were found in GermaNet) all synsets (SynS) were
retrieved. All retrieved synsets were considered, as word sense disambiguation could not be implemented in the scope of this work. For each synset all
immediate hypernyms and hyponyms were retrieved - that is hypernyms and
hyponyms with a node distance of 1 from the synset.
The general connectedness of a word was measured by the average number of relations per synset that a word belongs to. The average number of
hypernyms per match and average number of hyponyms per match measure
the number of immediate super- and subordinate terms of a match, and are
another index for a word’s connectedness.
Polysemy measures were based on synset scores. The average number or
word senses per word was calculated by using the number of synsets each
match belonged to (= number of word senses). Additionally, the number of
lexical units belonging to each of the synsets might be interesting. Synsets
that contain more lexical units establish more relations and connections in
the lexical network. Additionally the number of frames per verb found in
GermaNet (VM) was included as a feature. GermaNet frames encode the
subcategorization information of a verb. Table 10 shows a summary of all
lexical connectedness features.
24
Info on GermaNet 7.0 on the project website http://www.sfs.uni-tuebingen.de/
lsd/index.shtml
25
Here: Java API 7.0 http://www.sfs.uni-tuebingen.de/lsd/tools.shtml
34
Lexical Connectedness Features
Avg. Num. Synsets per Match
Avg. Num. Lexical Units per Synset
Avg. Num. Relations per Synset
Avg. Num. Hypernyms per Match
Avg. Num. Hyponyms per Match
Avg. Num. Frames per Verb
Formulas
# SynS / # M
sum(# LexUnit in SynS) / # SynS
sum(# RelSynS of SynS)/ # SynS
sum(# Hyper per Syns)/ # M
sum(# Hypo per Syns) / # M
# Frames / # VerbalM
Table 10: Lexical features measuring the connectedness of lexical items.
5.1.3
Shallow Measures and Error Measures.
As two shallow measures of lexical complexity, syllable count26 and word
length in characters were included. Those measures were used in language
acquisition studies (Crossley et al., 2011a), but were also part of traditional
readability formulas (Kincaid et al., 1975). Finally, errors on the word level
were measured by counting the spelling errors found by Google Spell Check.
Formulas
# Tok
# Char / # Tok
# Syll / # Tok
# Spell Erros / # Tok
Other Lexical Measures
Text Length
Avg. Num. Characters per Word
Avg. Num. Syllables per Word
Google Spell Check Error Rate
Table 11: Shallow measures of lexical proficiency.
5.2
Language Model Features
Ngram language models can predict the probability of a specific sequence of
words based on its history (Schwarm and Ostendorf, 2005).
P (w) = P (w1 )P (w2 |w1 )
m
Y
P (wi |wi−1 , wi−2 )
(2)
i=3
Language models can be deployed to measure textual complexity, as the distribution of word sequences tends to differ with complexity. Therefore they
have been widely used in readability assessment (e.g., Schwarm and Ostendorf (2005); Petersen and Ostendorf (2009); Feng (2010)). Ngram frequency
26
Syllable counts were obtained by simple heuristics: In German, a syllable mostly
contains exactly one vowel - phonetically speaking. This means that in written language
diphthongs, double vowels and the combination vowel+e, which indicates a long vowel,
have to be counted as one vowel.
35
features are closely related to language models. They have been included in
the approaches of Briscoe et al. (2010) and Yannakoudakis et al. (2011) to
capture lexical and - in the case of higher order ngrams - structural information.
Language models draw their power form distributional probabilities and
thus work best when a large amount of domain specific training data is
available. This was not the case for the MERLIN data. Petersen and Ostendorf (2009) faced the same problem, when training readability models on
the Weekly Reader, an educational magazine at different grade levels. As a
solution they trained their language models on separate data sets (Petersen
and Ostendorf, 2009). Feng (2010) who, like Petersen and Ostendorf (2009),
worked with the Weekly Reader data, criticized this approach and proposed
a leave-one-out approach for training language models directly on the Weekly
Reader data.
We rejected the idea of Feng (2010)’s leave-one-out approach, because
the amount of data offered by the MERLIN data would probably still be
too small. Compared to the Weekly Reader data set used by Feng (2010),
there are less documents - 1000 MERLIN essays in total compared to 1629
articles (Feng, 2010, 46) form the Weekly Reader. Additionally, the average
number of words per document is much larger in the Weekly Reader (about
130-330 words) than in MERLIN (about 33-218 words). Another reason for
using a separate data set for language model training is that the essays in
MERLIN were written on three different tasks per exam level. It can be
assumed that an essay shares more vocabulary with essays that were written
on the same task than with those written on different tasks. This could cause
the language model scores to represent the tasks rather than the proficiency
levels.
Therefore separate training corpora, that we collected from the web, were
used for language modeling. 2000 articles from News4Kids (http://www.
news4kids.de), a German website which adapts news for children was used
to represent easy texts. The difficult language model was trained on 2000
articles from the website of the German news channel NTV (http://www.
n-tv.de). The same data has been used for building language models for
German readability classification by Hancke et al. (2012).
Schwarm and Ostendorf (2005) and Feng (2010) suggested that mixed
models, that combine words and parts-of-speech, are more effective for readability assessment than simple word based models. But Petersen and Ostendorf (2009) reached the opposite conclusion. Therefore both types of models
were included.
The language models were prepared and evaluated as described in Hancke
et al. (2012): All words were converted to lowercase and except for sentence
36
final punctuation, all punctuation was removed. As proposed by Petersen
and Ostendorf (2009), a bag-of-words classifier was first trained with the
language modeling data set (News4Kids and NTV ). Information Gain (Yang
and Pedersen, 1997) was used for feature selection. All words below an
empirically determined threshold were replaced by their part of speech. SRI
Language Modeling Toolkit (Stolcke, 2002) was used for training unigram,
bigram and trigram models on the words-only and mixed word/part of speech
corpora representing easy and difficult texts. For all models, Kneyser-Ney
smoothing (Chen and Goodman, 1999) was selected as smoothing technique.
This resulted in twelve language models.
The perplexity scores (Equation 3) from all twelve language models were
included as features for proficiency assessment. Perplexity is an informationtheoretic measure that indicates the fit between a text and a language model.
To obtain these scores the spelling-corrected version of the MERLIN data
was used. This should minimize cases where ngrams were not recognized due
to spelling errors. All language model score features can be seen in Table 12.
P P = 2H(t|c) , whereH(t|c) =
Level of Difficulty
Easy
Difficult
1
log2 P (t|c)
m
Word Based Model
Unigram perplexity
Bigram perplexity
Trigram perplexity
Unigram perplexity
Bigram perplexity
Trigram perplexity
(3)
Mixed Model
Unigram perplexity
Bigram perplexity
Trigram perplexity
Unigram perplexity
Bigram perplexity
Trigram perplexity
Table 12: The twelve perplexity scores used as language model features
5.3
Syntactic Features
Syntactic characteristics and measures have been deployed as features for
proficiency assessment (Briscoe et al., 2010), but also in L2 developmental
studies (Hawkins and Buttery, 2009, 2010; Lu, 2010; Biber et al., 2011) and
readability assessment (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala
and Meurers, 2012). However, all these approaches worked with English
texts. Hancke et al. (2012) adapted a number of syntactic features previously used in L2 developmental studies (Lu, 2010) and readability assessment (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala and Meurers, 2012)
37
for readability assessment on German texts. We used these features as the
foundation of our syntactic feature set and added several new indices.
5.3.1
Parse Rule Features
Briscoe et al. (2010) and Yannakoudakis et al. (2011) used the frequencies
of parse rule names to gain information about the grammatical structures in
learner texts. They extracted parse rule names from the parse trees produced
by the RASP parser. While these types of features are not theoretically well
informed, they allow a very comprehensive inclusion of the syntactic structures used by the learners. Looking at the distributions of those structures
might point to indicative constellations.
We included similar features, based on the trees produced by the Stanford
Parser. Parse tree rules were extract by the means of listing all local trees
(Figure 7) for all parse trees. As a corpus for parse rule name extraction a
subset of 700 articles form the NTV corpus was used. From the extracted
parse rule names, a vector was formed. For each essay in the MERLIN
corpus, the frequencies of the parse rule names in this vector were counted
and divided by the number of words in the essay. Additionally experiments
were made with just indicating whether a parse rule was present in an essay
or not by putting the value to either zero or one.
(NUR PWAV $.)
(VP PP ADJD NP-OA VVPP)
(CNP-SB NE $, NN KON NN)
(PP APPR PRF)
(S KOUS NP-DA NP-OA VVFIN)
(VP PP NP-OA PP VVINF)
(PP APPR CNP PP)
(S CARD VVFIN NP-SB PP)
(NP ART NN PP $.)
(AP PP)
Figure 7: Examples for parse tree rules.
5.3.2
Dependency Features
Yannakoudakis et al. (2011) included the sum of the longest distances in
word tokens between a head and a dependent in a grammatical relation
as an indicator of syntactic sophistication. In readability assessment, the
length of dependencies has also been used in various shades. Dell’Orletta
et al. (2011) suggested the average length of dependencies in words as a
38
dependency-based alternative to phrase length. Additionally they examined
the number of dependents per verb as an indicator of readability. Vor der
Brück and Hartrumpf (2007); Vor der Brück et al. (2008) used the length
of dependencies headed by specific parts-of-speech, such as number of words
per NP and VP, as features for their readability classifier.
In this work, the following dependency based features were included: the
maximum number of words between a head and a dependent in a text, the
average number of words between a head and a dependent per sentence, the
average number of dependents per verb (in words) including and excluding
modifiers, and the number of dependents per NP (in words).
5.3.3
Parse Tree Complexity and Specific Syntactic Constructions.
As a starting point, we included the syntactic features that Hancke et al.
(2012) adapted for German readability assessment from various sources.
Features adapted from readability assessment comprised average parse tree
height and the average length and number of NPs, VPs and PPs per sentence
(Petersen and Ostendorf, 2009; Feng, 2010). To this set Hancke et al. (2012)
added VZs (‘zu’-marked infinitive phrases) per phrase as a language specific
feature.
Syntactic Features from SLA
Avg. Length of a Clause
Avg. Sentence Length
Avg. Length of a T-Unit
Avg. Num. Clauses per Sentence
Avg. Num. T-Units per Sentence
Avg. Num. Clauses per T-Unit
Avg. Num. Complex-T-Units per T-Unit
Avg. Num. Dep. Clause per Clause
Avg. Num. Dep. Clause per T-Unit
Avg. Num. Co-ordinate Phrases per Clause
Avg. Num. Co-ordinate Phrases per T-Unit
Avg. Num. Complex Nominals per Clause
Avg. Num. Complex Nominals per T-Unit
Avg. Num. VPs per T-Unit
Formulas
#W/#C
#W/#S
# W / # TU
#C/#S
# TU / # S
#C / # TU
# comp. TU / # TU
# DC / # C
# DC / # TU
# CP / # C
# CP / # TU
# compl. Nom. / # C
# compl. Nom. / # TU
# VP / # TU
Table 13: Syntactic features from Hancke et al. (2012) based on features form
SLA.
The measures from second language acquisition adapted by Hancke et al.
39
(2012)27 aim at capturing a learner’s syntactic development by examining
specific syntactic properties. Complexity as reflected in the length of production units is measured by average length of sentences, clauses and T-Units
(Lu, 2010; Vajjala and Meurers, 2012). Sentence complexity is reflected by
the number of clauses per sentence. Ratios like dependent clauses per clause
and number of complex T-Units per T-Unit are used to capture the amount
of embedding, while the amount of coordination is represented by e.g., the
number of coordinated phrases per clause and the number of T-Units per
sentence. Finally, the complexity of particular structures is considered (e.g.,
complex nominals per clause).
Syntactic features from readability assessment
Avg. Num. NPs per Sentence
Avg. Num. VPs per Sentence
Avg. Num. PPs per Sentence
Avg. Num. VZs per Sentence
Avg. Num. NPs per Clause
Avg. Num. VPs per Clause
Avg. Num. PPs per Clause
Avg. Num. VZs per Clause
Avg. Length of a NP
Avg. Length of a VP
Avg. Length of a PP
Avg. Num. Dep. Clauses per Sentence
Avg. Num. Complex T-Units per Sentence
Avg. Num. Co-ordinate Phrases per Sentence
Avg. Parse Tree Height
Formulas
#NP / # S
# VP / # S
# VZ / # S
# PP / # S
# NP / # C
# VP / # C
# PP / # C
# VZ / # C
sum(len(NP)) / # NP
sum(len(VP)) / # NP
sum(len(PP)) / # NP
# DC / # S
#compl. TU/ # S
# CP / # S
sum(parseTreeHeight) / # S
Table 14: Syntactic Features from Hancke et al. (2012) based on previous
work on readability assessment.
Inspired by different sources, we added several other syntactic features.
The average number of non-terminal nodes per sentence, clause and word
were included following Feng (2010). The internal complexity of NPs was
measured by taking into account the number of modifiers per NP as was
suggested by Graesser et al. (2004). Additionally the complexity of VPs was
measured in the same way.
The number of passive voice constructions was counted per clause and
by sentence. This feature was inspired by work on text simplification: Siddharthan (2002) identified passive constructions to transform them into ac27
They follow Vajjala and Meurers (2012) who first deployed these measures for readability assessment
40
passive : (wird|werden|wurden)/VAFIN .* */VVPP
Futur 2 : (wird|werden|wurden)/VAFIN .* */VVPP haben/VAINF
Figure 8: Regular expressions used to identify passive voice
tive voice, because active voice is supposedly simpler. Grounded on this
hypothesis it was interesting to investigate passive voice as a feature for
proficiency assessment. In German, there is also the ‘Zustandspassiv’ (Das
Fenster ist geöffnet.), which we did not included here.
To identify passive voice, we used dependency parsing and regular expressions (Figure 8). In passive voice, the inflected verb is a form of werden
followed by a participle. The same construction is also part of Futur 2,
where it is, however, followed by haben. For each verb in a sentence, all its
verbal dependents were extracted from the dependency parse. Each verb was
represented by its form and part of speech (wordform/POS-Tag). The head
verb was concatenated into a string with its dependents. On this string, the
regular expressions described above was applied to find passive voice.
A more detailed analysis of other specific constructions was inspired by
Biber et al. (2011). In their article they challenged the common practice of relying on T-Unit and clausal subordination based measures for the assessment
of grammatical complexity in writing. They investigated 28 grammatical features that were based on the grammatical types and grammatical functions
of clauses and phrases (Biber et al., 2011).
In this work, it was not possible to include the full range of Biber et al.
(2011)’s indicators of complexity. Biber et al. (2011) identified some features
manually such as the syntactic functions of prepositional phrases. For other
features, external resources would be needed, e.g., a list of nouns that control
complement clauses28 (Biber et al., 2011). Inspired by Biber et al. (2011)’s
work, we included a more fine grained analysis of dependent clauses. Finite
dependent clauses that start with a conjunction or pronoun, finite dependent
clauses that do not start with a conjunction or pronoun, and non-finite dependent clauses (‘satzwertige Infinitive’) were set apart. Finite clauses that
start with a conjunction or pronoun were further differentiated into interrogative, conjunctional and relative clauses.
28
GermaNet verb frames, that contain subcategorization information for the verbs could
be used to enable a more fine grained analyzes. However an implementation was not
possible within the bounds of this work.
41
Other Syntactic Features
Avg. Num. Non-Terminals Per Sentence
Avg. Num. Non-Terminal Per Words
Avg. Num. Modifiers Per NP
Avg. Num. Modifiers Per VP
Passive Voice - Sentence Ratio
Passive Voice - Clause Ratio
Dep. Clauses with Conj. to dep. Clause Ratio
Conjunctional Clauses Ratio
Interrogative Clauses Ratio
Relative Clauses Ratio
Dep. Clauses w.o. Conj. to dep. Clause Ratio
‘satzwertige Infinitive’ to Clause Ratio
Formulas
# NTs / # S
# NTs / # W
# modifiersInNPs / # NPs
# modifiersInVPs / # VPs
# passiveVoice / # S
# passiveVoice /# C
# DC w. Conj. / # DC
# Conj. C / # dep. C w. Conj.
# Inter. C / # dep. C w. Conj.
# Rel. C / # DC w. Conj.
# DC w.o. Conj. / # DC
# satzInf / # DC
Table 15: Other syntactic features that measure parse tree complexity and
examine specific constructions.
5.4
Morphological Features
Morphological indicators have proven to be valuable features for proficiency
classification for Estonian (Vajjala and Loo, 2013) and for readability assessment for various languages with a rich morphology (Dell’Orletta et al.,
2011; Francois and Fairon, 2012; Vor der Brück and Hartrumpf, 2007; Vor der
Brück et al., 2008; Hancke et al., 2012).
German,too, has a rich inflectional and derivational morphology. Inflectional morphemes convey a range of grammatical meanings. German nominal
declension has four cases and several different declension paradigms. Different verb forms and inflectional morphemes of the finite verb express person
and number (e.g., ich gehe [I go], du gehst [you go]) as well as tense and
mood.
Compounding is very productive in German word formation. Words
with different parts-of-speech can be combined (e.g., Mauseloch [mouse hole],
Schwimmbad [swimming pool ], Grosseltern [grandparents]). Prefixation (Gebäude [Building]) and suffixation are also very common and diverse. For example, there is nominalization with overt suffixes (regieren[govern] – Regierung
[government]) or without an overt suffix (laufen [to run] – der Lauf [the run])
(Hancke et al., 2012).
In this work, the morphological features proposed for readability assessment by Hancke et al. (2012) were taken as a vantage point for exploring
the impact of morphological features on proficiency assessment. Additionally, tense was explored in more detail, using automatically extracted tense
patterns.
42
5.4.1
Inflectional Morphology of the Verb and Noun
Following Hancke et al. (2012) we extracted a broad range of features based
on verbal inflection including person, mood and type of verb (finite, nonfinite, auxiliary). Additionally we included nominal case information as
features. All inflectional features (Tables 16 and 17) were automatically
extracted from the output of the RFTagger.
Verb Features
Infinitive-Verb Ratio
Participle-Verb Ratio
Imperative-Verb Ratio
First Person-Verb Ratio
Second Person-Verb Ratio
Third Person-Verb Ratio
Subjunctive-Verb Ratio
Finite Verb-Verb Ratio
Modal-Verb Ratio
Auxiliary-Verb Ratio
Avg num. Verbs per Sentence
Formulas
# infinitive Vs / # Vs
# participle Vs / # Vs
# imperative Vs / # Vs
# 1st person Vs / # finite Vs
# 2nd person Vs / # finite Vs
# 3rd person Vs / # finite Vs
# subjunctive Vs / # finite Vs
# finite Vs / # Vs
# modal Vs / # Vs
# auxiliary Vs / # Vs
# Vs / # S
Table 16: The features based on the inflectional morphology of the verb
Noun Features
Accusative-Noun Ratio
Dative-Noun Ratio
Genetive-Noun Ratio
Nominative-Noun Ratio
Formulas
# accusative Ns / # Ns
# dative. Ns / # Ns
# genitive Ns / # Ns
# nominative Ns / # Ns
Table 17: The features based on inflectional morphology of the noun
5.4.2
Derivational Morphology of the Noun
Examining nominal suffixes is not only interesting because derived words are
supposedly more complex than simple words (Vor der Brück et al., 2008).
Word stems of Germanic origin can often be combined with other suffixes
than word stems that have Greek or Latin roots (e.g., Linguist vs. Sprachwissenschaftler ).
To capture the information encoded in nominal suffixes, we counted the
occurrence of each suffix in a list (Table 18) originally compiled by Hancke
43
et al. (2012). The list includes all different gender and number forms for
each suffix. The counts for all forms of a suffix were accumulated in order
to not get different counts for the plural and singular forms or for different
genders of the same suffix. Only polysyllabic words were considered in order
to exclude simple nouns that are homomorphs of a derivational morpheme
(e.g., Ei [egg] vs. suffix -ei ).
Suffix
ant
arium
ast
at
ator
atur
ei
er
ent
enz
eur
heit
Suffix
ist
ion
ismus
ität
keit
ling
nis
schaft
tum
ung
ur
werk
wesen
Further Suffix Forms
anten, antin, antinnen
arien
asten, astin, astinnen
ate
atoren, atorin, atorinnen
aturen
eien
erin, erinnen
ents
enzen
eure, eurin, eurinnen
heiten
Further Suffix Forms
isten, istin, istinnen
ionen
ismen
itäten
keiten
lingen
nisse
schaften
tümer
ungen
werke
Table 18: List of German derivational suffixes used
Hancke et al. (2012)’s experiments with different ratios showed that the
best results were obtained by dividing the suffix counts by the number of
tokens in an essay. Therefore the suffix features were calculated by counting
the frequencies of all suffixes in an essay and then dividing these counts by
the number of all tokens in the essay. Additionally the ratio of all derived
nouns to all nouns was included as a feature.
5.4.3
Nominal Compounds
Following Hancke et al. (2012) the ratio of compound nouns to all nouns and
the average number of words in a compound were included as features. Compounds were identified and split into their components with JWordSplitter
3.429 . It is unclear whether the use of compounds is indicative of a learner’s
linguistic proficiency. However, we think it is worth investigating. Especially for learners with native languages that do not use this word formation
mechanism, compounds may be a stumbling block.
29
http://www.danielnaber.de/jwordsplitter
44
5.4.4
Tense
To capture the usage of tense, ‘tense patters’ (Figure 9) based on the morphologically rich tags of the RFTagger were extracted. This approach was
preferred to using regular expression for matching pre-defined tenses because
we believe that it allows a better coverage of possible constellations. The
tense patterns could be very interesting for a linguistic characterization of
the CEFR levels, because they might reveal what tenses the learners know
at each level.
John fragt den Mann,
VFIN.Full.Pres
der neben ihm gewohnt hat,
VFIN.Haben.Pres VPP.Full.Psp
ob er die Katze füttern kann.
VFIN.Mod.Pres VINF.Full.-
Figure 9: Example for tense patterns
The patterns were extracted from the same subset of the NTV corpus as
the parse rules (section 5.3). From the dependency parse, all those verbal
children of all verbs were collected, where the relation did not cross the
boundaries of a subordinated clause (tags KOUS, KOUI) or a conjunction (tags
KON). This restriction was necessary because subordinated clauses are often
the dependent of the finite verb in the main clause. Relative clauses were
not considered boundaries, since they do not attach to verbs. The verb’s
children found in this way were substituted by their RFTagger tags. The
information about number, person and mood was removed, so that only the
tense information remained.
To make sure that only the longest pattern was included, the extraction
routine checked whether the previous match was included in the current
match. If so, the current pattern replaced the previous pattern instead of
being added as a new pattern. For each script, the frequency of each pattern
was counted and divided by the number of tokens in the script. Alternatively,
we experimented with using a binary scale, where one indicates that a pattern
was present in an essay, and zero indicates that it was not present.
45
Figure 10: Number of samples per class in the training and test set
6
6.1
Experiments and Results
Experimental Setup
All experiments were conducted on the MERLIN data set described in section 3. The data was preprocessed as described in Section 4.1. For supplementing statistical analysis we used R. The WEKA machine learning toolkit
(version 3.7.6) (Hall et al., 2009) was used for all experiments involving machine learning. All feature values were normalized with the WEKA filter
Normalize, such that all values fall into the interval [0,1]. Most experiments
were performed with 10-fold cross validation on the whole data set, as well
as on a separate training and test set. For creating the training and test set,
2/3 randomly chosen samples from each class were added to the training set
and 1/3 to the test set.
Splitting the data set regarding no other factor than class (= essay rating
level) resulted in an uneven distribution of exam types across the classes and
the training and test set (Figure 11). While in theory this should not have
any influence on the results, in practice it is quite likely that the essay rating
level (=class) is not independent of the exam type. The correlation between
exam type and essay rating level is 0.8 (Pearson’s correlation).
46
Figure 11: Exam type distribution across the classes in the training and test
set.
6.2
Comparison of different Algorithms for Classification
As a first step we experimented with different machine learning algorithms.
We tested SMO, Naive Bayes and J48 Decision Tree. Naive Bayes and J48
were used with their standard configurations30 in WEKA, except that for
SMO, the normalization of the input was turned off since the data was already
normalized. All features were used for building the models.
The results can be compared to a majority baseline, which represents the
performance if every sample would be classified as the class with the most
samples. For the sake of comparison we also built a regression model with
WEKA’s Linear Regression (LinearRegression 31 ) using cross validation for
training and testing. It resulted in a good correlation (r =0.78) but also in
a relatively high root mean squared error (0.68).
Comparing the results of the three different classification algorithms showed
that SMO performed better than the other classifiers. Therefore it was chosen for all further experiments. This result was expected since Support Vec30
Naive Bayes: weka.classifiers.bayes.NaiveBayes ; J48: weka.classifiers.trees.J48 -C 0.25
-M 2 ; SMO: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 2 -V -1 -W 1
-K ”weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0”
31
Automatic feature selection and the elimination of redundant features was turned off
in the configuration
47
Classifier
Majority Baseline
SMO
Naive Bayes
J48
Holdout
Accuracy F-Measure
33.0
16.3
57.2
56.4
41.17
40.3
48.7
47.8
CV on all data
Accuracy F-Measure
33.0
16.3
64.5
64.0
48.2
49.3
56.5
56.2
Table 19: Comparison of different classifier algorithms.
tor Machines are especially suitable for numeric features and larger feature
spaces. They have been previously used for similar problems with good results (Petersen and Ostendorf (2009); Vajjala and Meurers (2012)).
It is remarkable that irrespective of the classifier, the cross validation results were persistently about 7 % better than the results with the separate
training and test set. There are several possible explanations. The models
built with cross validation were probably more accurate because more training data was available. The models’ variance could be high, which would
mean that they probably over-fit the training data and therefore do not generalize well on different test sets. The unequal distribution of exam types
across training and test set could be another reason. We examined the SMO
model in more detail by looking at the performance of each cross validation
fold separately. The highest accuracy was 10.7 % better than the worst (59.2
%). The worst result for a fold in cross validation, however, was still 2 %
better than the accuracy for our holdout test set. This indicates that the relatively high variance of the model is responsible for the difference in results
between cross validation and holdout estimation in a greater degree than the
amount of training data.
6.3
SMO Configuration and Optimization
For all further experiments we used SMO with a polynomial kernel of exponent 1. We also experimented with other exponents and with RBF kernel, but
the polynomial kernel with exponent 1 exceeded the other options. The polynomial kernel implements a function (xy)n , which computes the dot product
of the vectors x and y and raises it to the power of n. Choosing n = 1 in
fact results in a linear model (Witten and Frank, 2005).
One of the disadvantages of Support Vector Machines is their sensitivity
to the tuning of certain parameters. When using the polynomial kernel, once
an exponent is chosen, the cost parameter C should be optimized in order to
get robust results (Harrington, 2012). The cost parameter manages the trade
48
off between making the margin as large as possible and keeping a distance
of at least one between the samples (Harrington, 2012). If C is too large the
model will tend to over-fit. If it is too small it tends to under-fit.
In order to optimize the cost parameter in our experiments we used
WEKA’s meta classifier CVParameterSelection. It performs 10 fold cross
validation on the training data to find the optimal parameter value in a
specified range. We chose a range from 1 to 10 in steps of 1. One of the main
advantages of using the meta classifier is that it allows the use of 10 fold cross
validation for parameter selection and for model building / performance evaluation. It performs an ”inner” cross validation for parameter selection on
each ”outer” cross validation for model building / performance evaluation.
The disadvantage is, that this procedure is computationally expensive and
time consuming.
6.4
Measuring the Contribution of Different Feature
Types
Syntactic Features
Avg. Num. Dep. Clause per Clause
Avg. Length of a T-Unit
Avg. Num. Dep. Clause per T-Unit
Avg. Num. VZs per Sentence
Avg. Num. Complex-T-Units per T-Unit
Avg. Num. VPs per T-Unit
Avg. Num. Dep. Clauses per Sentence
Avg. Num. VZs per Clause
Dep. Clauses with Conj. to dep. Clause Ratio
Avg. Num. Clauses per T-Unit
r
0.58
0.57
0.56
0.55
0.54
0.54
0.53
0.52
0.50
0.50
Table 20: The ten syntactic features that correlate best with proficiency level.
To enhance our understanding of the feature groups we calculated the
correlation of each feature with proficiency level (= essay rating level), based
on the training set. The 10 features of each group that correlated best with
proficiency level are shown in Tables 20 - 23. Although the parse rule (PR)
and tense features (TEN) conceptually belong to the syntactic and morphological feature group respectively, they were treated as separate groups
because they differ from the other groups in several respects. While the
other features are mostly theory driven, the tense and parse rule features are
data driven. Additionally they contain a far larger amount of features than
the other groups, and there is more sparsity. Features like average sentence
49
Morphological Features
Derived Nouns-Nouns Ratio
Nominative-Noun Ratio
Second Person-Verb Ratio
Avg. Compound Depth
Dative-Noun Ratio
Avg. Num. Verbs Per Sentence
Infinitive-Verb Ratio
keit
ion
Third Person-Verb Ratio
r
0.59
-0.54
-0.46
0.45
0.40
0.40
0.38
0.37
0.35
0.35
Table 21: The ten morphological features that correlate best with proficiency
level.
length and Type-Token Ratio can be reliably calculated for every text while
many tense constellations and parse rules occur only in some texts.
Lexical Features
Text Length
Root Type-Token Ratio
Corrected Type-Token Ratio
Corrected Verb Variation 1
Squared Verb Variation 1
Type-Token Ratio
HDD
Google Spell Check Error Rate
Avg. Num. Characters per Word
Avg. Num. Syllables per Word
r
0.81
0.78
0.78
0.75
0.74
-0.57
0.54
-0.47
0.47
0.44
Language Model Features
Unigram Plain Difficult
Unigram Plain Easy
Bigram Mixed Difficult
Trigram Mixed Easy
Bigram Mixed Easy
Bigram Plain Difficult
Trigram Plain Easy
Bigram Plain Easy
Unigram Mixed Difficult
Trigram Mixed Difficult
r
-0.47
-0.46
0.42
0.34
0.33
0.32
0.25
0.15
0.09
0.07
Table 22: Ten lexical and language model features that correlate best with
proficiency level.
The lexical group contains 5 features that correlate better than the best
correlations in all other groups (r > 0.7). The other 5 features among the
10 best of this group still have good correlation values. Notably Type-Token
Ratio has a negative correlation with proficiency level, while its variants
show positive correlations. This may be explained with Type-Token Ratio’s
dependency on text length. For extremely short texts it is easier to obtain a
high Type-Token Ratio than for longer texts. This negative correlation might
indicate that the increase in text length in the higher levels is greater than
the increase in the richness of vocabulary. Text length and Type-Token Ratio
have a correlation of -0.65. Notably the correlation of other features with
50
text length are much higher: Root Type Token Ratio (r = 0.86), Squared
Verb Variation (r = 0.81) and Corrected Verb Variation (r = 0.84). This
might indicate that they are not actually good measures for proficiency but
encode text length instead.
In the syntactic group none of the features correlate as highly with proficiency level as the 5 best features in the lexical group. However, all ten values
are above 0.5. More than half of the top 10 correlating syntactic features encode embedding. The features of the morphological group all in all correlate
slightly worse than those in the syntactic group. Most notable is the relatively high (r = 0.59) correlation of Derived Nouns-Noun Ratio which encodes
the overall use of nominal derivation and nominalization. Nominative-Noun
Ratio has a negative correlation and could either encode the use of conceptually simple sentences or grammar mistakes - another case might have been
correct in some places where nominative appeared. A detailed study would
be interesting. Second Person-Verb Ratio might be seen as a sign of personal
and non-formal style. It is to be suspected that its use depends on the task,
the essays were written for. The fact that it correlates better with exam type
(r =-0.58) than with proficiency level supports this claim.
From the parse rule group ROOT NUR had a high negative correlation
with proficiency level. NUR means “Non Unary Root”. It is an artifact
used by the Stanford Parser when converting trees from NEGRA to Penn
Treebank format trees. It is introduced if a tree has multiple children under
the ROOT node (personal correspondence with Christopher Manning). It is
hard to interpret this in the context of proficiency levels, but the negative
correlation and its occurrence in non standard trees indicate that it reflects
word order mistakes or missing punctuation. The parse rule feature with
the second highest correlation encodes ‘satzwertige Infinitive’ like Computer
zu spielen. It should be mentioned that most of the over 3000 parse rule
features exhibited a correlation of lower than 0.1.
In the language model group the easy and difficult Plain Text Unigram
Perplexity scores were the most indicative features. It is however intriguing
that both correlations are negative. It would have been expected to see
a negative correlation for the model that represents easy language and a
positive correlation for the model that represents difficult language. In the
tense group all correlations were quite low. The best values were achieved by
an infinite modal followed by an infinite verb as in Sie können gehen. [You
may go.] and by infinitives with ‘zu’.
To further examine the predictive power of each group of indicators we
built a classifier with each feature group individually. Text length was chosen
as an additional baseline due to its high correlation with proficiency level.
The results showed that all feature groups outperformed the majority base51
Parse Rule Features
ROOT NUR
VZ PTKZU VVINF
S NP-SB VVFIN PRF NP-SB $.
NP-SB ADJA ADJA NN PP
NP-SB NN NE
NP-OA PPER
VP VVPP $, CVP
VP NP-DA NP-OA VVIZU
NP-OA NE
ROOT NP
r
-0.62
0.49
-0.40
-0.39
-0.32
-0.31
0.31
0.31
-0.28
-0.28
Tense Feature
VINF.Mod.- VINF.Full.VINF.Full.zu
VFIN.Aux.Pres VPP.Full.Psp
VFIN.Full.Pres
VINF.Aux.- VPP.Full.Psp
VFIN.Mod.Pres.VFIN.Sein.Pres
VINF.Full.- VFIN.Full.Past
VFIN.Mod.Pres.VINF.Sein.VFIN.Mod.Pres
VIMP.Full.Sg
r
0.21
0.21
0.18
-0.17
0.15
0.14
0.14
0.13
-0.12
-0.12
Table 23: Ten parse rule and tense features that correlate best with proficiency level.
line, but only the lexical feature group performed better than the text length
baseline in terms of accuracy in the cross validation scenario. The lexical
and morphological group performed better than text length when comparing
F-measure. In the holdout scenario no feature outperformed the baseline of
text length in terms of accuracy, and only the lexical group exceeded it in
terms of F-measure. With both methods of evaluation the lexical and morphological groups performed best, and parse rule and tense features yielded
the poorest results. The results were mostly congruent with the insights
gathered from looking at the ten best correlating features from each group.
The lexical features performed best. Although displaying slightly lower correlations with proficiency level among the top 10 features, the classifier built
with the morphological features exceeded the classifier built with the syntactic features. As expected the parse rule, language model and tense groups
performed worst.
Further investigating the parse rule and tense feature groups however,
we found out that representing those features as binary instead of frequency
weighted vectors immensely improved their performance (7 % and 18 % respectively). Looking at the values of the tense features before normalization
revealed that they were mostly 0 and even the non zero values were mostly
close to 0. The maximum value was 2. For the parse rule features the situation was similar, with the maximum feature value being 0.17. This could
explain why they yield better result when used as binary features: if the
feature values are mostly very close to zero they may not be separable by the
support vector machine, especially when mixed with larger values.
We conclude that it would be optimal to use the tense and parse rule
features as binary features. However, combining binary and numeric features
52
Holdout
Name
#
Accuracy F-Measure
Majority Baseline
33.0
16.3
Text Length (BL)
1
61.4
55.7
SYN
47
53.6
49.9
PR
3445
49.0
47.2
LEX
46
60.5
58.9
LM
12
50.0
46.7
MORPH
41
56.82
55.7
TEN
230
38.5
36.8
CV on all data
Accuracy F-Measure
33.0
16.3
63.9
59.4
58.2
54.5
57.1
56.0
68.7
67.4
54.6
51.0
61.8
60.1
44.2
41.7
Table 24: Performance of each group of features individually.
Name Accuracy F-Measure
PR
61.1
60.5
TEN
56.8
54.7
Table 25: Performance of the tense and parse rule groups as binary features.
Training and testing with 10-fold CV on all data.
into one model would require more sophisticated machine learning techniques
and is not manageable in the scope of this work. It is still an interesting fact
that might be picked up in the future.
6.5
Combining Different Feature Groups
After having examined the performance of each feature group individually we
tested the performance of all possible combinations of feature groups. This
experiment might offer some insights on which of the feature groups complement each other. For each two, three and four class combinations, the three
most successful combinations are reported in addition to the combination of
all feature groups. The experiment was conducted with the separate training
and test as well as with cross validation on the whole data set.
In comparison to using the groups individually, the performance mostly
improved when combining two or three feature groups . However, for four
groups and when using all features, the performance of the classifiers dropped
considerably below the performance of the best individual group. This suggests that too much useless features accumulated, which can have a negative
effect on the models’ predictive power.
The best combination of feature groups with cross validation as evaluation
was LEX LM MORPH. When using holdout estimation, the LEX MORPH
53
CV on all data
Name
Accuracy F-Measure
SYN LEX
69.7
67.3
LEX MORPH
69.4
69.1
LEX LM
69.1
68.0
LEX LM MORPH
70.1
69.9
SYN LEX LM
69.9
66.9
SYN LEX MORPH
68.5
67.9
SYN LEX LM MORPH
68.9
68.6
LEX LM MORPH TEN
68.8
68.3
SYN LEX LM TEN
65.5
64.0
ALL
64.5
64.0
Table 26: Three best performing two, three and four class combinations and
the performance of all features (CV).
Holdout
Name
Accuracy F-Measure
LEX MORPH
61.1
60.8
LEX TEN
59.8
59.3
LEX LM
59.4
59.0
LEX LM MORPH
61.1
60.58
SYN LEX MORPH
58.5
58.0
LEX LM TEN
57.8
57.6
SYN LEX LM MORPH
58.8
58.4
SYN LEX LM PR
57.8
57.3
LEX LM MORPH TEN
57.8
57.2
ALL
57.2
56.4
Table 27: Three best performing two, three and four class combinations and
the performance of all features (holdout).
and LEX LM MORPH were equal in accuracy. It is interesting to see that the
different methods for model training and testing produced different rankings.
Investigating the reasons for these discrepancies would be very interesting,
but has to be deferred to future work.
In addition to the classification experiments, we examined the intercorrelations of individual features, mainly to detect high intercorrelations across
groups. Notably, Average Number of Verbs per Sentence from the morphological group correlated highly with several syntactic features, for instance Average Sentence Length (r = 0.91) and Average Longest Depen54
dency per Sentence (r = 0.86). Furthermore there was a high correlation
between Participle-Verb Ratio and Passive Voice per Clause (r = 0.86). Unsurprisingly there were high intercorrelations between some elements of the
syntactic and parse rule group, for example Average VZ Frequency and the
corresponding parser tag VZ PTKZU VVINF (r = 0.89). Many high intercorrelations also occurred between features of the tense and the parse rule
group.
From the declining results for combinations of more than three groups it
can be concluded that these combinations have potential but that too much
noise disturbs the SMO. Feature selection can be applied to find a good
combination of features. For future work it might be interesting to train an
ensemble classifier instead of combining feature groups.
6.6
Feature Selection
As the previous section has illustrated, using all available features together
in one model does not result in the best classifier. Irrelevant features have a
negative impact on most machine learning algorithms, slow them down and
make the resulting models harder to interpret. It is therefore a common practice to perform attribute selection before classification (Witten and Frank,
2005). We used the WEKA implementation of correlation based feature selection (CfsSubsetEval ). This method is independent of the machine learning
algorithm used. It evaluates the merit of each feature in terms of correlation
with the class but also takes redundancy among the features into account.
Features that correlate highest with the class but have a low intercorrelation
are preferred (Witten and Frank, 2005).
Name
LEX LM MORPH
SYN LEX LM MORPH
ALL
#
30
34
88
CV on Training Set
Accuracy F-Measure
71.2
70.7
72.5
72.4
71.6
71.2
Holdout
Accuracy F-Measure
61.7
61.3
62.7
62.2
61.8
60.7
Table 28: Results after Feature Selection with CfsSubset Evaluation
We applied feature selection to the most successful combinations of three
and four feature groups and to the whole feature set. Since CfsSubsetEval
uses the whole training set for feature selection we conducted the following
experiment on the separate training and test set only. Since the test set
should not be used for judging the success of feature selection, the results
are shown for 10 fold cross validation on the training set. Choosing a feature
55
set should based on these results only. However, since this is experimental
work, we also show the results on the heldout test set to be able to compare
their performance to their non feature-selected counterparts.
Interpretation
Length / sophistication of
production units
Embedding
Verb phrase complexity
Coordination
Use of passive voice
Script length
Lexical richness
Lexical richness w. respect to
verbs
Nominal style
Word length / difficulty
Frequency of the words used
in the script / Vocabulary
Ease
Spelling errors
Nominalization, use of derivational suffixes, use of words
with Germanic stems
Nominal case
Verbal mood and person
Features
Avg. Sentence Length, Avg. Length of a
T-Unit
Dep. Clauses with Conj. to dep. Clause
Ratio, Avg. Num. Non-Terminal Per
Words
Avg. Num. VZs per Sentence, Avg.
Length of a VP
Avg. Num. Co-ordinate Phrases per Sentence
Passive Voice - Sentence Ratio
Text Length
Type-Token Ratio, Root Type-Token Ratio, Corrected Type-Token Ratio, HDD,
MTLD
Squared Verb Variation 1, Corrected Verb
Variation 1
Noun Token Ratio
Avg. Num. Syllables per Word, Avg.
Num. Characters per Word
Annotated Type Ratio, Ratio of Words In
Log Frequency Band Two, Ratio of Words
In Log Frequency Band Four, Unigram
Plain Easy
Ratio of Lex. Types not in Dlex, Google
Spell Check Error Rate
keit, ung, werk, Derived Nouns To Nouns
Ratio
Genetive-Noun Ratio, Nominative-Noun
Ratio
Subjunctive-Verb Ratio , Second PersonVerb Ratio , Third Person-Verb Ratio
Table 29: The 34 features constituting the best performing model after feature selection.
The results showed that feature selection improved all three models. Generally it can be observed that with feature selection the performance of the
56
models became more similar. Their accuracies varied less than 1 %, while the
difference between the best and the worst of the models before feature selection was 3.9 %. This suggests that feature selection indeed made the models
more robust. With feature selection SYN LEX LM MORPH (Best34 ) is
the best performing model instead of LEX LM MORPH (Best30 ). The second best model consists of the 88 features selected from the whole dataset
(Best88 ).
Table 29 shows all features in Best34. They were summarized into groups
according to their possible interpretation. It can be observed that although
CfsSubsetEval prefers features with a low intercorrelation, it still keeps intercorrelating features to a certain extent if their predictive power is convincing. Selected features with a highly intercorrelation were for example
Squared Verb Variation and Corrected Verb Variation (r = 0.97) or Average
Number of Characters per Word and Average Number of Syllables per Word
(r = 0.94).
Best34 comprises 7 syntactic, 16 lexical, 1 language model and 9 morphological features. It is remarkable that most linguistic aspects, that were
encoded in the model previous to feature selection, are represented in Best34.
It has already been mentioned that text length has a high correlation with
proficiency level. Consequently it was among the selected features. Vocabulary difficulty and lexical richness also seemed to be particularly indicative.
They are represented by shallow features like the Average Number of Characters per Word but also by the general frequency of the vocabulary used in
the essays as measured by dlexDB scores and by the Easy Plain Unigram language model. Additionally several Type-Token Ratio variations, that measure lexical richness, were selected, as well as lexical variation measures and
Noun-Token Ratio. Notably also both features that measure spelling errors
were among the best 34 features.
On the syntactic level shallow indicators such as Average Sentence Length
were included as well as parse tree based measures of embedding and coordination, and the use of passive voice. From the morphological group, features that encode verbal mood and person, nominal declension and nominal
suffixes were added. Finally it can be seen that none of the lexical relatedness measures or morphological noun compounding features were present in
Best34, nor in fact Best30 or Best88. It can be concluded that they are not
particularly predictive of proficiency level.
To check if the model had become more stable after feature selection,
we trained and tested a model based on Best34 with cross validation on
the whole data set, and examined the accuracies of each fold separately.
Compared to the 10.7 % difference between the highest and lowest accuracy
for a fold in the initial model (see section 6.2), the different between the
57
highest and lowest result was reduced to 8.56 %. This indicates that Best34
is more robust.
The experiments showed that feature selection with CfsSubsetEval improved the classification results and lead to a feature set that encodes proficiency at different, conceptually satisfactory levels. Additionally the model
became more robust. Therefore we conclude that applying feature selection
with CfsSubsetEval for model optimization is a recommendable step.
6.7
Pass or Fail Classification for Each Exam Type
Separately
In a real world scenario users might not want to consider all essays regardless
of their exam type. They might want to know which people passed or failed a
particular exam. Imagine a group of students had just finished an A2 exam.
A student passes the exam if the essay is assigned at least the rating level
that equals the exam type. As an example, if a student took an A2 exam,
and was graded as A2 or above, she would have passed the exam. If she
was graded as A1 she would have failed. While a user could still successfully
use the classifier that we built in the previous sections to obtain the CEFR
levels, and then decide who passed and failed, we also examined binary “pass
or fail” classification for each exam type separately. The performance might
be better as the classifier can be attuned specifically to a pass of fail scenario.
Figure 12: Distribution of classes for each exam level.
58
Figure 12 shows, that the class (essay rating level) distributions over each
individual exam type are very unequal. Distributions, that are enormously
skewed and offer very little samples for some classes, have an negative impact
on machine learning algorithms. As most algorithms optimize the overall
cost, for a distribution like 7 fail - 200 pass most algorithms would almost
certainly learn a majority classifier (classify all examples as pass). Cost sensitive learning can be used to compensate an uneven distribution, or to take
into account that misclassifying one class can be more expensive or problematic than the other. Usually all types of errors have the same cost. Giving
different weights to instances of different classes can be used to make some
classification errors more expensive than others (Harrington, 2012; Witten
and Frank, 2005). While adjusting the weights is relatively straightforward
for a two class problem, it is much more complicated when multiple classes
are involved. Also, it has been noticed that the same methods, that work
well for two class problems, do often not perform as expected for multiclass
problems (Abe et al., 2004). For more detailed information on cost sensitive classification in general see Ling and Sheng (2010). For a discussion of
applying it to multiclass problems see Abe et al. (2004).
For cost sensitive classification we used WEKA’s meta classifier CostSensitiveClassifier with SMO as a base classifier and the option for re-weighting
training instances according to the cost matrix. This implementation uses
bagging to make the base classifier cost sensitive (Witten and Frank, 2005,
319-320) and is based on the approach described in Domingos (1999). All
experiments were conducted with the Best34 feature set. Because there were
only about 200 samples per exam type, we chose leave-one-out for building
and evaluating the classifiers. CVParameterSelection with 10 folds was used
for selecting SMO’s C parameter. In addition to accuracy, we report precision
and recall per class.
The numbers in Table 30 show the results of experimenting with cost
sensitive learning. As the exact costs are not known to us, we aimed at
balancing the uneven distributions. The weights that we chose were guided
by the class distributions. In a real world scenario statistics about the fail
rate of an exam or expert knowledge might be used instead. It can be seen
that the accuracies, and the precision values for the minority classes dropped
when the costs were adjusted, but the precision values for the majority classes
increased. Most importantly, the recall values for the minority classes improved. The experiment with A2 (Table 31) shows a classifier that was not
designed to merely balance the distribution, but to prioritize the detection
of “fail” cases. Therefore the cost for misclassifying “fail” as “pass” was set
to twice the number of instances in the majority class.
We conclude, that for two class problems, cost sensitive learning provides
59
Name
B1 fail
B1 pass
B1-c fail
B1-c pass
B2 fail
B2 pass
B2-c fail
B2-c pass
C1 fail
C1 pass
C1-c fail
C1-c pass
Accuracy
82.8
82.8
74.3
74.3
77.9
77.9
73.5
73.5
68.7
68.7
67.7
67.7
Precision
75.6
84.6
51.9
88.4
68.8
80.8
55.2
87.2
73.7
57.4
77.9
54.1
Recall
54.4
93.5
73.7
74.5
52.4
89.4
76.2
72.3
79.5
49.3
69.3
67.7
Cost-Matrix
03
10
0 153
57 0
0 71
127 0
Table 30: Balancing skewed distributions with cost sensitive learning.
Name
A2 fail
A2 pass
A2-c fail
A2-c pass
Accuracy
96.6
96.6
85.1
85.1
Precision
0
96.6
14.7
98.9
Recall
0
1
71.4
85.6
Cost-Matrix
0 400
10
Table 31: Training a classifier that gives a higher priority to detecting “fail”
cases.
an interesting opportunity to balance skewed data sets and influence the
classification in favour of a particular class. How exactly this device should be
used in automatic language proficiency assessment depends on the situation
and has to be decided individually.
6.8
Classification with Rasch Corrected Scores
In addition to the actual ratings assigned by human annotators, the MERLIN
project also offered a corrected version of the ratings. Multifaceted RASCH
analysis was used to model effects that are associated with the properties
of individual raters and generate the corrected scores (Bärenfänger, 2012).
Classification is expected to work better with the RASCH corrected scores,
since they are supposed to be more consistent (Briscoe et al., 2010). For
comparison’s sake we trained a classifier with all features on the whole data
set using 10 fold cross validation. With an accuracy of 67.9 % and F-measure
of 66.7 % the classifier built on the corrected data indeed performed better
than the model previously built under the same conditions on the actual
60
human ratings (64.5 % accuracy, 64.0 % F-Measure). This result indicates,
that some classification errors in our approach can be attributed to the inconsistencies of the human ratings. A more detailed analyses, that would
include the manual inspection of some essays, could be enlightening.
6.9
Predicting the Exam Type
In this experiment we built a classifier for predicting the exam type instead
of the essay rating level. There are several reasons why this is interesting. In
section 6.1 we mentioned that the exam type might have an influence on the
CEFR levels assigned by the human raters. Raters might form expectations
about the essays at certain exam types, that might influence the ratings. All
other considerations set aside, it is common that most people that take a
test for a certain level, also achieved this level - more people pass an exam
than fail it.
The experiment was conducted with 10 fold cross validation on the whole
data set and with all features. The resulting classifier predicted the exam
type with an accuracy of 88.9 % and an F-measure of 88 %. This indicates
that our feature set can more accurately predict the exam type than the
essay rating level. It cannot be concluded from this experiment however, as
the conditions are not equal. For instance, the class distribution is different.
While the exam type classifier has an equal amount of data for each class,
the essay rating level classifier was trained on a skewed data set, which could
be one reason that the essay rating level classifier performed worse. We leave
the investigation of the exact reasons for future work.
7
Conclusion
During the initial phase of this work, we explored the MERLIN data set and
identified some interesting characteristics and challenges, in particular the
high amount of spelling errors and frequently spurious punctuation. We addressed the spelling errors by integrating Google Spell Check into our preprocessing pipeline. We surveyed methods for sentence boundary detection that,
unlike conventional tools, do not mainly rely on punctuation. Finally we implemented a tool for automatically identifying missing sentence boundaries.
Although the results seemed promising, the tool was not reliable enough to
use it in this work.
We learned that the texts in the MERLIN corpus vary immensely in
length between the CEFR levels (exam types as well as essay rating levels).
There are roughly the same number of texts for each of the CEFR exam types
61
A1-C1, but not for the actual CEFR levels assigned by the human raters. As
the ratings represent the actual proficiency, the data set for our proficiency
classifier did not have an even class distribution.
We implemented a wide range of theory driven lexical, syntactic and
morphological features as well as data driven tense and parse rule features.
They were mainly inspired by previous research on proficiency assessment,
essay grading, readability classification and SLA studies. This resulted in a
feature set of more than 3000 features.
We addressed proficiency assessment as a classification problem, using
each of the five essay rating levels as one class. SMO was chosen for building
our classifiers. We trained one classifier for each feature group to find the
most predictive group. The lexical classifier performed best (holdout 60.5 %,
CV 68.7 % accuracy), followed by the morphological and syntactic classifiers.
The language model, tense and parse rule features performed rather poorly.
However, the tense and parse rule features achieved much better results when
represented as binary instead of frequency weighted vectors (+18 % and +7
% accuracy respectively).
When combining several feature groups we found out that combinations
of two or three groups mostly performed better than one group alone. Particularly, the lexical and morphological group (holdout 61.1 %, CV 69.4 %
accuracy) seemed to complement to each other. The best three class combination consisted of the lexical, morphological and language model groups
(holdout 61.1 %, CV 70.1 % accuracy). When combining more than three
groups, the classifiers’ performances dropped. We attribute this to the accumulation of too many redundant features. A supplementary statistical
analysis showed that particularly in the data driven classes there are many
features with a correlation below 0.1. On the other hand there were hardly
any high (r > 0.7) intercorrelations between features belonging to different
groups.
We applied correlation based feature selection on the best combinations
of three and four feature groups and on the whole feature set. The best model
(holdout 62.7 %, CV on training set 72.5 % accuracy) contained 34 features
from the syntactic, lexical, language model and morphological groups. Interpreting the model showed that it contained most of the linguistic aspects
that are encoded in our entire feature set.
We experimented with a two class “pass or fail” scenario for each of
the exam types. For most exam types there were significantly more “pass”
than “fail” samples. We showed that cost sensitive learning can be used to
simulate a more equal class distribution or to give more priority to detecting
the “fail” class.
Additional experiments showed that our classifier performed better when
62
using RASCH corrected scores for training and testing (67.9 % compared to
64.5 % accuracy). This implies that some of the classifier errors might be
due to inconsistent human ratings in the original data set. Finally we used
our feature set to train a classifier for predicting the exam type. Strikingly,
it performed better than our proficiency classifier (88.9 % compared to 64.5
% accuracy). The implications of this could not be examined further in the
course of this work, but will be an interesting topic for further research.
In summary it can be said that we gained interesting insights not only into
the performance of particular features, but also into the issues associated with
the task and the data set. As this was a first attempt at language proficiency
classification for German there is no previous work that we could directly
compare our work to. However, the performance of our classifiers seemed
promising.
8
Perspectives for Future Work
We conducted a wide range of experiments and many of our results led to
new questions. With respect to machine learning it would be interesting
to investigate, why different combinations of feature groups performed best
in the holdout and in the cross validation scenario. It was mentioned in
section 6.4 that some features might encode text length rather than language
proficiency. For clarification, the experiments in this work should be repeated
with samples that are controlled for text length. It is also worth investigating
why our feature set seemed to be more useful for detecting the exam type
than the essay rating level.
If the system was going to be used in a real life scenario, it would be
necessary to test its robustness against score manipulation by students who
figured out the criteria on which the essay ratings are assigned. However,
since the number of our criteria is rather large, we think that tricking the
system would be hard.
Furthermore, it would be desirable to experiment with different ways of
handling the uneven class distribution in the multiclass scenario. Also, more
sophisticated machine learning techniques such as ensemble classifier should
be employed. For example, if one classifier was built for each group of features
and then combined into an ensemble, the tense and parse rule groups could
be used as binary features.
In addition to more machine learning experiments a thorough statistical
analysis would help to arrive at a better understanding of the data set and
might reveal the influence of exam type, L1 background or effect of different
tasks on the essay rating level.
63
Finally the tool for missing sentence boundary detection could be further
developed.
References
Naoki Abe, Bianca Zadrozny, and John Langford. An iterative method for
multi-class cost-sensitive learning. In In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 3–11, Florida, USA, 2004. AAAI Press.
Yigal Attali and Jill Burstein. Automated essay scoring with e-rater
v.2. Journal of Technology, Learning, and Assessment, 4(3), February 2006. URL http://escholarship.bc.edu/cgi/viewcontent.cgi?
article=1049&context=jtla.
R. H. Baayen, R. Piepenbrock, and L. Gulikers. The CELEX lexical database (cd-rom). CDROM, http://www.ldc.upenn.edu/Catalog/
readme_files/celex.readme.html, 1995.
R. Harald Baayen. Analyzing Linguistic Data. A Practical Introduction to
Statistics using R. Cambridge University Press, 2008.
Olaf Bärenfänger. Assessing the reliability and scale functionality of the merlin written speech sample ratings. Technical report, European Academy,
Bolzano, Italy, 2012.
Gunnar Bech. Studien über das deutsche verbum infinitum. Historiskfilologiske Meddelelser udgivet af Det Kongelige Danske Videnskabernes
Selskab. Bind 35, no. 2, 1955; Bind 36, no. 6, 1957; Kopenhagen, 1955.
Reprinted 1983, Tübingen: Max Niemeyer Verlag.
Jared Bernstein, John De Jong, David Pisoni, and Brent Townshend. Two
experiments on automatic scoring of spoken language proficiency. In Proceedings of InSTIL2000 (Integrating Speech Tech. in Learning), pages 57–
61, Dundee, Scotland, 2000.
D. Biber, B. Gray, and K. Poonpon. Should we use characteristics of conversation to measure grammatical complexity in l2 writing development?
TESOL QUARTERLY, 54:5–35, 2011.
Bernd Bohnet. Top accuracy and fast dependency parsing is not a contradiction. In Proceedings of the 24th International Conference on Computational
Linguistics (COLING), pages 89–97, Beijing, China, 2010.
64
E. Briscoe, J. Carroll, and R. Watson. The second release of the rasp system. In In Proceedings of the COLING/ACL 2006 Interactive Presentation
Sessions, Sydney, Australia, 2006.
Ted Briscoe, B. Medlock, and O. Andersen. Automated assessment of esol
free text examinations. Technical report, University of Cambridge Computer Laboratory, 2010.
Stanley F. Chen and Joshua T. Goodman. An empirical study of smoothing
techniques for language modeling. Computer Speech and Language, 13:
359–394, October 1999.
Kevyn Collins-Thompson and Jamie Callan. A language modeling approach
to predicting reading difficulty. In Proceedings of HLT/NAACL 2004,
Boston, USA, 2004. URL http://www.cs.cmu.edu/~callan/Papers/
hlt04-kct.pdf.
Scott Crossley, Tom Salsbury, and Danielle McNamara. Measuring l2 lexical
growth using hyperniymic relationships. Language Learning, 59:307–334,
2009.
Scott Crossley, Tom Salsbury, and Danielle McNamara. The development of
polysemy and frequency use in english second language speakers. Language
Learning, 60:573–605, 2010.
Scott A. Crossley, Tom Salsbury, and Danielle S. McNamara. Predicting the
proficiency level of language learners using lexical indices. In Language
Testing, 2011a.
Scott A. Crossley, Tom Salsbury, Danielle S. McNamara, and Scott Jarvis.
Predicting lexical proficiency in language learners using computational indices. Language Testing, 28:561–580, 2011b.
Chris Culy, Corina Dima, and Emanuel Dima. Through the looking glass:
Two approaches to visualizing linguistic syntax trees. presented at IV2012,
July 2012.
Febe de Wet, Christa van der Walt, and Thomas Niesler. Automatic largescale oral language proficiency assessment. In INTERSPEECH 2007, 8th
Annual Conference of the International Speech Communication Association, Antwerp, Belgium, 2007.
Felice Dell’Orletta, Simonetta Montemagni, and Giulia Venturi. Read-it:
Assessing readability of italian texts with a view to text simplification. In
65
Proceedings of the 2nd Workshop on Speech and Language Processing for
Assistive Technologies, pages 73–83, 2011.
Semire Dikli. An overview of automated scoring of essays. The Journal of Technology, Learning, and Assessment (JTLA), 5(1):4–35, August 2006. URL http://escholarship.bc.edu/cgi/viewcontent.cgi?
article=1044&context=jtla.
Pedro Domingos. Metacost: A general method for making classifiers costsensitive. In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, pages 155–164, San Diego, CA, USA,
1999.
B. Favre, D. Hakkani-Tr, S. Petrov, and D. Klein. Efficient sentence segmentation using syntactic features. In Spoken Language Technology Workshop
(SLT), 2008.
Lijun Feng. Automatic Readability Assessment. PhD thesis, City University
of New York (CUNY), 2010. URL http://lijun.symptotic.com/files/
thesis.pdf?attredirects=0.
Thomas Francois and Cedrick Fairon. An ai readability formula for french as
a foreign language. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, 2012.
Peter Gallmann and Horst Sitta. Deutsche Grammatik. Interkantonale
Lehrmittelzentrale. Lehrmittelverlag des Kantons Zrich., 2004.
Y. Gotoh and S. Renals. Sentence boundary detection in broadcast speech
transcripts. In Proceedings of the International Speech Communication
Association (ISCA) Workshop: Automatic Speech Recognition: Challenges
for the New Millennium (ASR-2000), pages 228–235, Paris, 2000.
Arthur C. Graesser, Danielle S. McNamara, Max M. Louweerse, and Zhiqiang
Cai. Coh-metrix: Analysis of text on cohesion and language. Behavior
Research Methods, Instruments and Computers, 36:193–202, 2004. URL
http://home.autotutor.org/graesser/publications/bsc505.pdf.
Günther Grewendorf, Fritz Hamm, and Wolfgang Sternefeld. Sprachliches Wissen. Eine Einführung in moderne Theorien der grammatischen
Beschreibung. Surhkamp, 1989.
66
Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. The weka data mining software: An update. In
The SIGKDD Explorations, volume 11, pages 10–18, 2009.
Julia Hancke, Detmar Meurers, and Sowmya Vajjala. Readability classification for german using lexical, syntactic, and morphological features. In
Proceedings of the 24th International Conference on Computational Linguistics (COLING), pages 1063–1080, Mumbay, India, 2012.
Peter Harrington. Machine Learning in Action. Manning Publications Co.,
2012.
John A. Hawkins and Paula Buttery. Using learner language from corpora to
profile levels of proficiency – Insights from the English Profile Programme.
In Studies in Language Testing: The Social and Educational Impact of
Language Assessment. Cambridge University Press, Cambridge, 2009.
John A. Hawkins and Paula Buttery. Criterial features in learner corpora:
Theory and illustrations. English Profile Journal, 2010.
Michael Heilman, Kevyn Collins-Thompson, Jamie Callan, and Maxine Eskenazi. Combining lexical and grammatical features to improve readability
measures for first and second language texts. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL-07), pages 460–467,
Rochester, New York, 2007.
Michael Heilman, Kevyn Collins-Thompson, and Maxine Eskenazi. An analysis of statistical models and features for reading difficulty prediction. In
Proceedings of the 3rd Workshop on Innovative Use of NLP for Building
Educational Applications at ACL-08, Columbus, Ohio, 2008.
J. Heister, K.-M. Würzner, J. Bubenzer, E. Pohl, T. Hanneforth, A. Geyken,
and R. Kliegl. dlexdb - eine lexikalische datenbank fr die psychologische
und linguistische forschung. Psychologische Rundschau, 62:10–20, 2011.
Verena Henrich and Erhard Hinrichs. Gernedit - the germanet editing tool.
In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), 2010.
Kellogg W. Hunt. Grammatical structures written at three grade levels.
NCTE Research Report No. 3, 1965.
67
Kellogg W. Hunt. Do sentences in the second language grow like those in the
first? TESOL Quarterly, 4(3):195–202, 1970.
J. P. Kincaid, R. P. Jr. Fishburne, R. L. Rogers, and B. S Chissom. Derivation
of new readability formulas (Automated Readability Index, Fog Count
and Flesch Reading Ease formula) for Navy enlisted personnel. Research
Branch Report 8-75, Naval Technical Training Command, Millington, TN,
1975.
T. Landauer, D. Laham, and P. Foltz. Automated scoring and annotation of
essays with the intelligent essay assessor. In M.D. Shermis and J. Burstein,
editors, Automated Essay Scoring: A cross-disciplinary perspective, pages
87–112. Law, 2003.
Roger Levy and Galen Andrew. Tregex and tsurgeon: tools for querying
and manipulating tree data structures. In 5th International Conference on
Language Resources and Evaluation, Genoa, Italy, 2006.
Charles X. Ling and Victor S. Sheng. Class imbalance problem. In Encyclopedia of Machine Learning, page 171. 2010.
Y. Liu, A. Stolcke, E. Shriberg, and M. Harper. Using conditional random
fields for sentence boundary detection in speech. In In Proceedings of ACL,
pages 451–458.
Y. Liu, A. Stolcke, Shriberg E., and Harper M. Comparing and combining
generative and posterior probability models: Some advances in sentence
boundary detection in speec. In In Proceedings of 2004 Conference on
Empirical Methods in Natural Language Processing, pages 64–71, 2004.
Xiaofei Lu. Automatic analysis of syntactic complexity in second language
writing. International Journal of Corpus Linguistics, 15(4):474–496, 2010.
Xiaofei Lu. The relationship of lexical richness to the quality of ESL learners’
oral narratives. The Modern Languages Journal, 2012.
Christopher Manning and Hinrich Schütze. Foundations of statistical Natural
Language Processing. MIT, 1999.
P. M. McCarthy and S. Jarvis. A theoretical and empirical evaluation of vocd.
Language Testing, 24:459–488, 2007. URL https://umdrive.memphis.
edu/pmmccrth/public/Papers/080767_LTJ_459-488.pdf?uniq=czcyb.
68
Philip McCarthy and Scott Jarvis. Mtld, vocd-d, and hd-d: A validation
study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods, 42(2):381–392, 2010. ISSN 1554-351X. doi:
10.3758/BRM.42.2.381. URL https://serifos.sfs.uni-tuebingen.
de/svn/resources/trunk/papers/McCarthy.Jarvis-10.pdf.
Walt Detmar Meurers. Lexical Generalizations in the Syntax of German Non-Finite Constructions.
Phil. dissertation, Eberhard-KarlsUniversität Tübingen, 2000. URL http://www.sfs.uni-tuebingen.de/
~dm/papers/partI-2up.pdf. Published as: Arbeitspapiere des SFB 340,
Nr. 145.
George Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39–41, November 1995. URL http://aclweb.org/
anthology/H94-1111.
Thomas M. Mitchell. Machine Learning. McGraw-Hill, 1997.
R. Nagata, J. Kakegawa, and T. Kutsuwa. Detecting missing sentence boundaries in learner english. In S. Bolasco, I. Chiari, and L. Giuliano, editors,
Statistical Analysis of Textual Data. Proceedings of the 10th International
Conference (JADT 2010)., volume Volume 2, 2010.
S. Palmer and M. Hearst. Adaptive multilingual sentence boundary disambiguation. Computational Linguistics, 23:241–267, 1997.
Sarah E. Petersen and Mari Ostendorf. A machine learning approach to
reading level assessment. Computer Speech and Language, 23:86–106, 2009.
Anna N. Rafferty and Christopher D. Manning. Parsing three German
treebanks: lexicalized and unlexicalized baselines. In Proceedings of
the Workshop on Parsing German, PaGe ’08, pages 40–46, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics. URL
http://dl.acm.org/citation.cfm?id=1621401.1621407.
Marga Reis. Bilden modalverben im deutschen eine syntaktische klasse?
Modalitt und Modalverben im Deutschen / hrsg. von Reimar Müller, 2001.
Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach
to identifying sentence boundaries. In Proceedings of the fifth conference on
Applied natural language processing, ANLC ’97, pages 16–19, Stroudsburg,
PA, USA, 1997. Association for Computational Linguistics. doi: 10.3115/
974557.974561. URL http://dx.doi.org/10.3115/974557.974561.
69
Helmut Schmid. Improvements in part-of-speech tagging with an application to german. In Proceedings of the ACL SIGDAT-Workshop,
Dublin, Ireland, 1995. URL http://www.ims.uni-stuttgart.de/ftp/
pub/corpora/tree-tagger2.pdf.
Helmut Schmid and Florian Laws.
Estimation of conditional probabilities with decision trees and an application to fine-grained pos
tagging.
In COLING ’08 Proceedings of the 22nd International
Conference on Computational Linguistics, volume 1, pages 777–
784, Stroudsburg, PA, 2008. Association for Computational Linguistics. URL http://www.ims.uni-stuttgart.de/projekte/gramotron/
PAPERS/COLING08/Schmid-Laws.pdf.
Bernhard Schölkopf and Alexander J. Smola. A short introduction to learning
with kernels. In Advanced Lectures on Machine Learning. Springer-Verlag,
2003.
Sarah Schwarm and Mari Ostendorf. Reading level assessment using support
vector machines and statistical language models. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL05), pages 523–530, Ann Arbor, Michigan, 2005. doi: http://dx.doi.org/
10.3115/1219840.1219905.
Wolfgang Seeker and Jonas Kuhn. Making ellipses explicit in dependency
conversion for a german treebank. In In Proceedings of the 8th International Conference on Language Resources and Evaluation, 31323139. Istanbul, Turkey: European Language Resources Association (ELRA), 2012.
Luo Si and Jamie Callan. A statistical model for scientific readability. In Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM), pages 574–576. ACM, 2001.
Advaith Siddharthan. An architecture for a text simplification system. In
In Proceedings of the Language Engineering Conference 2002 (LEC 2002),
2002.
Wojciech Skut, Brigitte Kreen, Torsten Brants, and Hans Uszkoreit. An
annotation scheme for free word order languages. In Proceedings of the
Fith Conference on Applied Natural Language, Washington, D.C., 1997.
URL http://www.coli.uni-sb.de/publikationen/softcopies/Skut:
1997:ASF.pdf.
A. Stolcke and E. Shriberg. Automatic linguistic segmentation of conversational speech. In Proceedings of ICSLP, 1996.
70
Andreas Stolcke. SRILM – an extensible language modeling toolkit.
In Proceedings of ICSLP, volume 2, pages 901–904, Denver, USA,
2002.
URL http://www.speech.sri.com/cgi-bin/run-distill?
papers/icslp2002-srilm.ps.gz.
Sowmya Vajjala and Kaidi Loo. Role of morpho-syntactic features in estonian
proficiency classification. In Proceedings of the 8th Workshop on Innovative
Use of NLP for Building Educational Applications (BEA8), Association for
Computational Linguistics, 2013.
Sowmya Vajjala and Detmar Meurers. On improving the accuracy of readability classification using insights from second language acquisition. In
Joel Tetreault, Jill Burstein, and Claudial Leacock, editors, Proceedings of the 7th Workshop on Innovative Use of NLP for Building Educational Applications (BEA7) at NAACL-HLT, pages 163–173, Montral,
Canada, June 2012. Association for Computational Linguistics. URL
http://aclweb.org/anthology/W12-2019.pdf.
Tim Vor der Brück and Sven Hartrumpf. A semantically oriented readability
checker for german. In Proceedings of the 3rd Language & Technology
Conference, 2007.
Tim Vor der Brück, Sven Hartrumpf, and Hermann Helbig. A readability
checker with supervised learning using deep syntactic and semantic indicators. Informatica, 32(4):429–435, 2008.
Katrin Wisniewski, Andrea Abel, and Detmar Meurers. Merlin. multilingual
platform for the european reference levels: Interlanguage exploration in
context. eu lifelong learning project 518989-llp-1-2011-1-de-ka2-ka2mp. eu
llp proposal. Proposal, 2011.
Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, Amsterdam; Boston, MA, 2nd
edition, 2005.
Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text categorization. In Proceedings of the Fourteenth International Conference on Machine Learning, ICML ’97, pages 412–420,
San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc. URL
http://dl.acm.org/citation.cfm?id=645526.657137.
Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. A new dataset and
method for automatically grading ESOL texts. In Proceedings of the 49th
71
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages 180–189, Stroudsburg,
PA, USA, 2011. Association for Computational Linguistics. ISBN 9781-932432-87-9. URL http://dl.acm.org/citation.cfm?id=2002472.
2002496. Corpus available from http://ilexir.co.uk/applications/
clc-fce-dataset.
Heike Zinsmeister, Marc Reznicek, Julia Ricart Brede, Christina Rosn, and
Dirk Skiba. Wissenschaftliches netzwerk: Annotation und analyse argumentativer lernertexte. konvergierende zugange zu einem schriftlichen korpus des deutschen als fremdsprache. wissenschaftliches netzwerk kobaltdaf, dfg antrag. Proposal, 2011.
72