Universität Tübingen Master`s Thesis in Computational
Transcription
Universität Tübingen Master`s Thesis in Computational
Universität Tübingen Master’s Thesis in Computational Linguistics Automatic Prediction of CEFR Proficiency Levels Based on Linguistic Features of Learner Language Julia Hancke julia hancke@yahoo.com Supervisor: Prof. Dr. Detmar Meurers Second Examiner: Dr. Frank Richter 29.04.2013 Abstract In this theses we present an approach to language proficiency assessment for German. We address language proficiency assessment as a classification problem. Our main focus lies on examining a wide range of features on the syntactic, lexical and morphological level. We combine features from previous work on proficiency assessment with proficiency measures from language acquisition research, and additional indicators from readability assessment. Our data set consists of 1027 German short essays that were produced during German as a second language examinations and rated on the CEFR scale by humans examiners. We experiment with different machine learning algorithms and techniques for model optimization, and conduct a number of experiments that mainly investigate the performance of different feature combinations. Contents 1 Introduction 4 2 Background 2.1 Related Work . . . . . . . . . . . . . . . 2.2 Machine Learning . . . . . . . . . . . . . 2.2.1 Algorithms for Machine Learning 2.2.2 Evaluation . . . . . . . . . . . . . 2.3 Defining Linguistic Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 5 . 9 . 10 . 11 . 12 3 Data 16 4 Preprocessing 4.1 Components of the Preprocessing Pipeline . . . . . . . . . . . 4.2 Sentence Boundary Detection for Essays with Missing or Spurious Punctuation . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Building a Missing Sentence Boundary Detector . . . . 4.2.2.1 Creating Training and Test Set . . . . . . . . 4.2.2.2 Preprocessing for Sentence Boundary Detection 4.2.2.3 Features . . . . . . . . . . . . . . . . . . . . . 4.2.2.4 Experiments . . . . . . . . . . . . . . . . . . 4.2.2.5 Conclusion . . . . . . . . . . . . . . . . . . . 18 18 5 Features For Language Proficiency Assessment 5.1 Lexical Features . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Lexical Diversity Measures . . . . . . . . . . . . 5.1.2 Depth of Knowledge Features . . . . . . . . . . 5.1.3 Shallow Measures and Error Measures. . . . . . 5.2 Language Model Features . . . . . . . . . . . . . . . . 5.3 Syntactic Features . . . . . . . . . . . . . . . . . . . . 5.3.1 Parse Rule Features . . . . . . . . . . . . . . . . 5.3.2 Dependency Features . . . . . . . . . . . . . . . 5.3.3 Parse Tree Complexity and Specific Syntactic structions. . . . . . . . . . . . . . . . . . . . . . 5.4 Morphological Features . . . . . . . . . . . . . . . . . . 5.4.1 Inflectional Morphology of the Verb and Noun 5.4.2 Derivational Morphology of the Noun . . . . . 5.4.3 Nominal Compounds . . . . . . . . . . . . . . 5.4.4 Tense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 28 30 35 35 37 38 38 . . . . . . 39 42 43 43 44 45 2 . . . . . . . . . . . . . . . . . . . . . . . . Con. . . . . . . . . . . . . . . . . . 22 22 23 23 24 24 25 27 6 Experiments and Results 6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 6.2 Comparison of different Algorithms for Classification . . . 6.3 SMO Configuration and Optimization . . . . . . . . . . . . 6.4 Measuring the Contribution of Different Feature Types . . 6.5 Combining Different Feature Groups . . . . . . . . . . . . 6.6 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 6.7 Pass or Fail Classification for Each Exam Type Separately 6.8 Classification with Rasch Corrected Scores . . . . . . . . . 6.9 Predicting the Exam Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 46 47 48 49 53 55 58 60 61 7 Conclusion 61 8 Perspectives for Future Work 63 3 1 Introduction Tools for the automatic evaluation of free text essays, such as the Educational Testing Service’s e-Rater (Attali and Burstein, 2006) or Pearson’s Intelligent Essay Assessor (Landauer et al., 2003), have been an active field of research over the last decade. They are now increasingly employed in high stakes examinations. The most striking advantages of automatic assessment over human raters are speed, lower costs and the reduction of marking inconsistencies. Automatic language proficiency assessment is a specific case of automatic essay rating that has recently begun to attract attention within the natural language processing community. Briscoe et al. (2010) and Yannakoudakis et al. (2011) automatically graded English as a second or foreign language examinations (Cambridge First Certificate of English). Vajjala and Loo (2013) automatically assigned CEFR1 proficiency levels to texts written by learners of Estonian. Language proficiency assessment and automatic essay grading in general mainly differ on the marking criteria they employ. Automatic essay rating systems mainly assign grades based on the content of an essay and some additional stylistic criteria. Many systems have to be specifically trained for each separate essay prompt. In contrast, language proficiency assessment treats an essay mostly as a sample of a student’s language skills. The rating an essay receives depends mainly on the language mastery it demonstrates. The marking criteria in previous approaches to automatic proficiency assessment mainly focused on the linguistic properties of learner texts. In this theses we present an approach to automatic proficiency assessment for German. We address language proficiency assessment as a supervised classification task. We mainly focus on examining a wide range of linguistic features that seem promising indicators of language proficiency. We combined features from previous work on proficiency assessment with insights from research on second language acquisition. Additionally we integrated features from readability assessment and simplification. Those fields are connected to proficiency assessment as they study the comprehension side of texts while proficiency assessment studies the production side. The empirical basis for our work consists of 1027 German short essays from German as a foreign language exams that were collected by the MERLIN 2 project (Wisniewski et al., 2011). All essays were graded by human raters on the scale of the Common European Framework of Reference for 1 Common European Framework of Reference for Languages Multilingual Platform for the European Reference Levels: interlanguage Exploration in Context. German is only one of several languages included in the project. 2 4 Languages (CEFR), which is gradually becoming a European standard in language assessment. CEFR level can stand for the level of an exam that a student takes or for the “grade” an essay receives. In this work we will refer to the first meaning as exam type and the second meaning as either essay rating level or proficiency level. We conducted several machine learning experiments with our feature set. Initially, we developed a five class classifier with all CEFR proficiency levels (A1-C1) as classes. Experiments on five class classification included comparing different algorithms for classification and investigating the predictive power of different feature combinations. Additionally we developed two class “pass of fail” classifiers for each exam type separately and used cost sensitive learning for optimizing the results. In the following section we provide background information on related work and machine learning, and define the linguistic units that occur throughout this theses. Section 3 introduces our data set in more detail. Section 4 describes our preprocessing procedure. In section 5 we discuss the linguistic properties that we used as features for the machine learning experiments, which are then reported on in section 6. Finally section 7 and 8 summarize our results and suggest directions for future work. 2 2.1 Background Related Work Although there is - to the best of our knowledge - no previous work on proficiency assessment for German, there is research on the automatic grading of English and Estonian language examinations. Briscoe et al. (2010) and Yannakoudakis et al. (2011) used machine learning for automatically grading English as a second language (ESOL) exam scripts. Their experiments were conducted on a set of scripts from the Cambridge Learner Corpus (CLC), a text collection that contains transcripts of short essays produced during First Certificate in English (FCE) exams. The scripts were written in response to a free text prompt. Briscoe et al. (2010) and Yannakoudakis et al. (2011) deployed several features that mirror linguistic skill such as lexical unigrams and bigrams, part of speech unigrams, bigrams and trigrams, parse rule names, script length and a corpus derived error rate. Yannakoudakis et al. (2011) added grammatical relation (GR) distance measures to this feature set. In both approaches, the RASP system Briscoe et al. (2006) was used for linguistic markup. For determining scores based on their feature set, Briscoe et al. (2010) experimented 5 with several supervised machine learning techniques such as Support Vector Machine, Time Aggregated Perceptron and Discriminative Preference Ranking. Yannakoudakis et al. (2011) compared Rank Preference Models with Regression Models. In addition to the features that capture linguistic properties of the text, Briscoe et al. (2010) included Incremental Semantic Analysis (ISA). ISA is a non prompt-specific approximation to content analysis and was added primarily to make the system less vulnerable to score manipulations through superficial text properties like script length. Yannakoudakis et al. (2011) tested their system’s vulnerability to subversion by manipulating exam scripts themselves: they swapped words that have the same part-of-speech within a sentence and randomly reordered word unigrams, bigrams and trigrams within a sentence. Additionally, they scrambled the order of sentences within a script. The modified scripts were then assessed by a human examiner and the computer system, and the correlations between the scores were calculated. Except for modifications that included the reordering of entire sentences, the correlations were still good. However the system generally tended to administer higher scores to modified scripts than the human examiner. Yannakoudakis et al. (2011) pointed out that very creative ‘outlier’ essays, that use stylistic devices, might be rated worse by the system than by a human examiner. Vajjala and Loo (2013) predicted the proficiency of learners of Estonian based on morpho-syntactic and lexical indicators. Their feature set comprised nominal and adjectival case information as well as verbal tense, mood, voice, number and person. Additionally part-of-speech ratios, several lexical variation measures from SLA, and text length were included. Sequential Minimal Optimization Algorithm was used for classification. Vajjala and Loo (2013) conducted experiments with various feature combinations, feature selection and more sophisticated machine learning techniques like ensemble classifiers and multi-stage cascading classifiers. For the sake of completeness it should be mentioned that automatic assessment has not only been attempted for written but also for spoken language. Automatic language proficiency assessment for spoken language is quite different from the assessment of written productions in a number of ways. Speech recognizers have to be used to process the spoken data. Also, the grading criteria are different. Scores are mostly based on qualities such as fluency, intelligibility and overall pronunciation quality (de Wet et al., 2007). Bernstein et al. (2000) tried to place learners’ spoken responses to prompts on a functional communication scale that is compatible with the Council of 6 Europe Framework. Content scores were calculated based on correct words. Manner scores were based on pronunciation and fluency. de Wet et al. (2007) assessed fluency based on the rate of speech. While there is hardly any overlap in the features and techniques used in written versus oral proficiency assessment yet, it is thinkable that in the future, criteria from written assessment could be incorporated into spoken language assessment. In contrast to marking SLA exams, where the marking criteria put a strong emphasis on the linguistic quality of the scripts (Briscoe et al., 2010), Automated Essay Scoring (AES) in general is concerned with marking essays on the basis of their style, grammar, organization and often on their relevance to the given task. It is an umbrella term for software that scores written prose (Dikli, 2006). There are several, mostly commercial systems for AES, some of which are deployed to assess high-stakes examination scripts. One of the earliest system was Project Essay Grade (PEG) ((Page, 2003), c.f. Dikli (2006)). It deployed a number of mostly shallow features that approximate properties of well written essays such as fluency, diction, grammar and punctuation (Dikli, 2006). Based on these features PEG used linear regression to first train a model based on pre-examined essays. This model was used to score unrated essays (Yannakoudakis et al., 2011). PEG was criticized for not taking into account the content and organization of the essays. The absence of such features made it easier to trick the system, since superficial features like word and script length can easily be manipulated (Yannakoudakis et al., 2011). E-Rater (Attali and Burstein, 2006) examines an essay at different levels such as grammar, style, topic similarity and organization. Each text is represented as a weighted vector of those features (Dikli, 2006). Scores are assigned based on the cosine similarity between the vectors of marked training scripts and unmarked scripts (Dikli, 2006). E-Rater also measures relevance to the prompt. This enables the tool to take into account the content of an essay and makes it less vulnerable to score manipulation. The disadvantage is that E-Rater needs to be trained specifically for each prompt. Intelligent Essay Assessor (IEA) (Landauer et al., 2003) focuses on content analysis based on Latent Semantic Analysis (LSA) (Landauer and Foltz, 1998). Additionally it takes into account grammar and style (Dikli, 2006). The systems needs to be trained on prompt specific texts, and scores are assigned on the basis of similarity between training essays an the essays that should be rated (Dikli, 2006). The Bayesian Essay Test Scoring System (BETSY) (Rudner and Liang, 2002) approaches AES as a text classification problem. BETSY uses features representing content and style such as the number of words, sentences, verbs, 7 and commas, and certain content word frequencies to train Bernoulli Naive Bayes models (Dikli, 2006; Yannakoudakis et al., 2011). More comprehensive surveys of AES systems are offered by Williamson (2009) and Dikli (2006). As a tool that measures text complexity, Coh Metrix (Graesser et al., 2004) is relevant for this work although it is neither an AES system, nor a tool for grading second language productions. As indicators of text complexity it deploys about 200 measures of cohesion, linguistic complexity, and readability with an emphasis on cognitively grounded features. The tool outputs the scores for different components of complexity such as lexis, syntax and coherence. However it does not attempt to assign a holistic score on a grading scale. In principle Coh-Metrix can be applied for examining the readability of a text as well as for examining a learner text. Second Language Acquisition (SLA) Studies examine how humans learn languages that are not their native language. Particularly interesting for this work are SLA studies that are linked to language testing or the characterization of proficiency levels. The Second Language Acquisition & Testing in Europe (SLATE) network connects a number of such projects that are quite similar to MERLIN in purpose. To name just one example, the English Profile (http://www.slate.eu.org/projects.htm#proj2) aims at offering a more detailed reference for each CEFR level for English. This includes descriptions of the learners’ capabilities at different linguistic levels. The project combines corpus linguistics, pedagogy and assessment (Cambridge ESOL)3 . Additionally this work was informed by several studies that take a computational approach to the examination of language development. Lu (2010) and Biber et al. (2011) automatically extracted and examined specific syntactic constructions as measures of L2 development. Lu (2012) investigated lexical richness measures such as Type-Token Ratio and Lexical Density as indicators of the lexical development of language learners. Crossley et al. (2011b) closely analyzed several lexical scores used in Coh-Metrix and measured how well they correlated with human assessment of lexical proficiency. Readability assessment is relevant to this work because it tries to detect a text’s reading level based on its linguistic and sometimes also conceptional and cognitive complexity. Therefore, features that are good indicators for reading level might also be good features for language proficiency as3 Briscoe et al. (2010)’s study was conducted at Cambridge ESOL. The connection is not mentioned explicitly though. 8 sessment. Recent approaches to readability assessment were mostly bases on statistical natural language processing techniques. Unigram models were deployed for readability classification by Si and Callan (2001) and CollinsThompson and Callan (2004). Heilman et al. (2007, 2008) added grammatical features to this approach. Schwarm and Ostendorf (2005), Petersen and Ostendorf (2009) and Feng (2010) trained models for readability classification on the Weekly Reader, an educational newspaper consisting of articles at four reading levels. They combined traditional features like sentence length and word length with syntactic parse tree features and ngram language models. Feng (2010) additionally deployed discourse features. Vajjala and Meurers (2012) combined features from previous work on readability assessment with lexical diversity measures and parse tree based syntactic measures from research on second language learning. While the work mentioned above has been conducted on English, there are also approaches that examine readability assessment for other languages. Dell’Orletta et al. (2011) used a mixture of traditional, morpho-syntactic, lexical and syntactic features for building a two class readability model for Italian. Francois and Fairon (2012) built a French readability classifier deploying verb tense and mood along with several other features. DeLite readability checker (Vor der Brück and Hartrumpf, 2007; Vor der Brück et al., 2008) is a tool for assessing the readability of German texts that makes use of syntactic, lexical, semantic, discourse and morphological features. However, it is based on a relatively small human annotated corpus of 500 texts that are all at a relatively high reading level. Hancke et al. (2012) combined syntactic, lexical and language model features from previous work on readability assessment on English texts with German specific morphological features. Their two-class readability classifier was trained and tested on a corpus collected from publicly accessible websites for children and adults. 2.2 Machine Learning Tom Mitchell (Mitchell, 1997) defined machine learning as follows: ”A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.” We approach automatic proficiency level assessment as a supervised learning task. Labeled data is used to train models, from which the correct classes of unlabeled data can be predicted. More specifically, as our class labels are on a discrete scale, we use classification. There are five classes corresponding to the CEFR levels A1-C1. If one transformed the labels A1-C1 into the numbers 1-5 one could also apply regression. However we think classification 9 is better suited as 1-5 are still discrete values. Throughout this work, WEKA machine learning toolkit (Hall et al., 2009) was used. It offers implementations of various machine learning algorithms. 2.2.1 Algorithms for Machine Learning This section briefly introduces the machine learning algorithms that were used in this work. Naive Bayes classifier is a probabilistic learner. It operates on the simplifying assumption that all features are equally important and independent of each other. Predictions are based on Bayes rule of conditional probability : P (Hi |Ej ) = P (Ej |Hi )P (Hi ) P (Ej ) (1) The conditional probabilities of a piece of evidence (E) given a certain hypothesis (H) are multiplied with each other and with the likelihood of the hypothesis (prior probability). This product is divided by the prior probability of the evidence. The outcome indicates the likelihood of the hypothesis (H) given the evidence (E) (Witten and Frank, 2005). Naive Bayes is easy to interpret and is reported to perform well on many data sets. However it is sensitive to redundancy in the data set (Witten and Frank, 2005). Decision Trees are a recursive, top-down, divide and conquer approach to classification. The data set is split into subsets by selecting one feature as the root node, making one branch for every possible value of the feature. To decide which node to split on, the amount of information (in terms of entropy) is used, that would be needed to decide on the class of the instances at this node. The information of a node is influenced by the number of instances that reach the node and by the homogeneity of their classes (Witten and Frank, 2005). While decision trees work most naturally with nominal features (Witten and Frank, 2005), they have been extended to also work with numeric data. There are several different brands of decision trees. In this work we use J48, which is the WEKA implementation of the popular C.45 decision tree algorithm developed by Ross Quinlan (Witten and Frank, 2005). Sequential Minimal Optimization Algorithm (SMO) is an effective algorithm for training a Support Vector Machine (Witten and Frank, 2005). Support Vector Machines are an extension of linear models. To find the optimal decision boundary, they fit a hyperplane into the feature space, such that it separates the data points belonging to different classes with the largest possible margin. As hyperplanes can only linearly separate the data, Support Vector Machines map the feature vectors into higher dimensional space using 10 kernel functions4 . This mathematical trick enables them to handle non-linear problems with linear models (Witten and Frank, 2005). Support Vector Machines have many advantages. Different kernel functions provide a high degree of flexibility. Support Vector machines are not very sensitive to overfitting, since the large margin hyperplane provides stability (Witten and Frank, 2005). 2.2.2 Evaluation For a faithful estimate of a machine learner’s performance, models should be tested on previously unseen data (Witten and Frank, 2005). It is common practice to split the data into a separate training and test set (holdout estimation). An alternative is cross validation. The training data is randomly shuffled and equally split into n folds. In stratified cross validation the data is sampled such that the class distribution is retained (Witten and Frank, 2005). Successively, one part is left aside while the model is trained on the other n − 1 parts and then evaluated on the part that has been left out. The results are averaged over all n iterations (Baayen, 2008). It is common to set n = 10, because it has been empirically shown to be a plausible choice for most data sets and learning methods (Witten and Frank, 2005). Cross validation has the advantage, that it uses the data more economically since no test set has to be split off. The fact that it tests the performance on several different partitions, makes it more representative than a single test set. We will use stratified cross validation throughout, and whenever cross validation is mentioned, stratified cross validation is meant. In cases where there is very little data, leave-one-out testing can be useful. This is a special case of cross validation where n equals the total number of instances in the training set. It is a deterministic procedure since no sampling is involved and it allows the most efficient use of small data sets (Witten and Frank, 2005). However it is computationally expensive and stratification is not possible: the correct proportion of classes in the test set cannot be maintained. Classification results are presented in accuracy and F-measure. Accuracy reports how many percent of the samples were classified correctly. F-measure represents the trade-off between precision and recall. Precision captures the portion of samples that were correctly classified as a target class. Recall measures the total portion of samples that were classified as a 4 Kernel functions are basically similarity functions. They are used to efficiently handle the mapping of the feature space into higher dimensions. For basic information on kernels used with SMO see Witten and Frank (2005), for a detailed discussion of kernels in general see Schölkopf and Smola (2003) 11 target class (Manning and Schütze, 1999). 2.3 Defining Linguistic Units Most features used for proficiency classification in this work will be based on linguistic units. Word class definitions follow the Stuttgart Tübingen Tagset. Frequently several tags were combined into more general classes for the implementation. A comprehensive listing can be seen in Table 1. A point worth considering is the definition of ‘content word’, which we will also refer to as ‘lexical token’. In German there is no clear consensus on whether modals are auxiliaries and should be counted as lexical vs. functional units (see Reis (2001) for a discussion). In this work modals are considered to be ‘content words’ following Reis (2001). Unit lexical token/‘content word’ (incl. modals) lexical token/ ‘content word’ (excl. modals) verb lexical verb (incl. modals) lexical verb (excl. modals) finite verb noun adjective adverb conjunction wh-Word preposition modifier Definition ADJA, ADJD, ADV, FM, XY, NN, NE, VVFIN, VVIMP, VVINF, VVIZU, VVPP, VMFIN, VMINF, VMPP ADJA, ADJD, ADV, FM, XY, NN, NE, VVFIN, VVIMP, VVINF, VVIZU, VVPP VVFIN, VVIMP, VVINF, VVIZU, VVPP, VAFIN, VAIMP, VAINF, VAPP, VMFIN, VMINF, VMPP VVFIN, VVIMP, VVINF, VVIZU, VVPP, VMFIN, VMINF, VMPP VVFIN, VVIMP, VVINF, VVIZU, VVPP VVFIN, VVIMP, VAFIN, VAFIN, VMFIN NN, NE ADJA, ADJD ADV KOUI, KOUS, KON PWS, PWAT, PWAV APPR, APPRART, APPO, APZR ADJA, ADJD, ADV Table 1: Unit definitions on the level of lexical units according to the Stuttgart Tübingen Tagset tags. Sentence is a common concept, but in fact it is very hard to find a scientific definition that describes it adequately. As Grewendorf et al. (1989) point out, there is no consensus among linguists. Definitions of sentence often include 12 several linguistic levels. Gallmann and Sitta (2004) define sentence on three levels: orthographic/phonetic, syntactic and semantic/pragmatic: Sätze sind sprachliche Einheiten, die durch die folgenden Merkmale bestimmt sind: [Sentences are linguistic units that are defined by the following characteristics:] 1. Sie weisen einen bestimmten grammatischen Bau auf. [They have a specific grammatical structure.] 2. Sie sind durch die Stimmführung (in der geschriebenen Sprache: durch die Satzzeichen) als abgeschlossen gekennzeichnet. [They are marked as self-contained by prosody (in the written language: by punctuation)] 3. Sie sind inhaltliche - relativ - abgeschlossen. [They are - relativelyself-contained regarding their meaning] (Gallmann and Sitta, 2004) For the implementation a more concrete definition is needed: a sentence is a unit that is delimited by one of the following sentence final punctuation marks: .!? Unit sentence clause coordinated clause dependent clause subord. conj. relative clause Definition ROOT S + ’satzwertige Infnitive’ CS w. (@S [ <1 KOUS|KOUI|PRELAT|PRELS|PRELS-SB |PRELS-OA|PRELS-DA|PWAT|PWS|PWAV] | [< (@NP < PRELAT|PRELS|PRELS-SB| PRELS-OA|PRELS-DA|PWAT|PWS|PWAV)]) >> S|CS|DL & !> CS (@S [ <1 PRELAT|PRELS|PRELS-SB|PRELS-OA|PRELS-DA] | [< (@NP < PRELAT|PRELS|PRELS-SB|PRELS-OA |PRELS-DA|PWAT|PWS|PWAV) ] | [< (@AP < PRELAT|PRELS|PRELS-SB|PRELS-OA |PRELS-DA|PWAT|PWS|PWAV) ] ) >> S|CS|DL & !> CS Table 2: Definitions of Syntactic Units Part I. Clauses for English are characterized as structures that contain a subject and a finite verb (Hunt, 1965). Different from English, German allows subjectless sentences, so all maximal projections headed by a finite verb, as well 13 as elliptical constructions, where the finite verb is omitted, are considered as clauses. Dependent clauses are embedded clauses. They fulfill a grammatical function in the clause that they are embedded in (see (Gallmann and Sitta, 2004, 120-133) for a detailed description). Dependent clauses can be further grouped into: 1. Relative Clauses Das ist das Paper, das ich lesen sollte. [That is the paper that I should read.] 2. Interrogative Clauses Er fragt, ob er das Paper lesen soll. [He asks whether he should read the paper.] 3. Conjunctional Clauses Sein Kollege sagt, dass er das Paper lesen soll. [His colleague says that he should read the paper.] While many dependent clauses are headed by a subordinating conjunction or a pronoun there are also dependent clauses without such markers (Er sagt, er hat keine Zeit. [He says he does not have the time.] ). Additionally there are “satzwertige Infinitive” - infinite clauses that have the same function as a dependent clause (Gallmann and Sitta, 2004; Bech, 1955; Meurers, 2000) (Peter besucht einen Kurs, um Deutsch zu lernen. [Peter attends a course to learn German.] ). T-Units are defined as “one main clause plus any subordinate clause or non clausal structure that is attached to or embedded in it” (Hunt 1970, p. 4; cf. Lu, 2010). Only independent clauses (including their dependents) count as a T-Unit. At the phrasal level, coordinated phrases are defined as coordinated adjective, adverb, noun, and verb phrases. Verb phrases include non-finite as well as finite verb phrases. Finally, complex nominals are nouns with an adjective, possessive or prepositional phrase, relative clause, participle, or appositive. Nominal clauses, gerunds and infinitives in subject position are also included. For the implementation these definitions had to be operationalized. We used TregEx (Levy and Andrew, 2006) to search parse trees with regular expressions. The tags in the operational definitions follow the NEGRA annotation scheme (Skut et al., 1997). Table 2 and Table 3 show the explicit definitions for all constructions that we extracted from parse trees, except for straightforward mappings such as: verb phrase - VP. 14 Unit interrogative clause conjunctional clause dependent clause wo. subord. conj. ’satzwertige Infnitive’ dependent clause T-Unit complex T-Unit coordinated Phrase complex nominal Definition (@S [ <1 PWAT|PWS|PWAV] | [< (@AP < PWAT|PWS|PWAV) ] | [< (@NP < PWAT|PWS|PWAV) ] ) >> S|CS|DL & !> CS (@S [ <1 KOUS|KOUI] ) >> S|CS|DL & !> CS (@S [<1 (VVFIN|VAFIN|VMFIN <<, !/\\?/)] . /,/ |[<1 (@NP . VVFIN|VAFIN|VMFIN )] , /,/ ) > S|CS|DL & !> CS @VP [< VZ , /,/] | [< VZ . /,/] dependent clause w. subord. conj + dependent clause wo. subord. conj + ’satzwertige Infnitive’ clause that is not (but may contain) a dependent clause T-Unit that contains dependent clause CAC|CAVP|CNP|CVP @NP|NN|NE < S | < @AP | < @PP | < @PP | < ADJA|ORD Table 3: Definitions of Syntactic Units Part II. 15 3 Data ”Glückwunsch zur deine prüfung, Ich bin schietoll für dich, für mir, get mir gut und Ich finde sehr gut dass deine tante und onkel besucht in Istanbul hat, und was Ich wüsche in istanbul ist dass eine Mütze, Mütze finde ich schön.” Figure 1: Example for a text passage with spurious punctuation and spelling mistakes from an essay in the MERLIN corpus. The data used in this theses consists of 1027 German essays from the MERLIN corpus5 . MERLIN is a multilingual European project that aims at “creating a freely accessible multilingual online platform for the illustration of CEFR levels”(Wisniewski et al., 2011, 35). The texts were produced by language learners of different native language backgrounds during German as a second or foreign language exams. The learners were asked to write a short free text for a certain task6 , for example writing a letter to a friend or writing a fake job application. There were three different tasks per exam type. All essays were labeled with CEFR proficiency levels by trained human raters. The CEFR levels comprise six proficiency levels that are mainly defined on a functional scale: A1 (Breakthrough), A2 (Waystage), B1 (Threshold), B2 (Vantage), C1 (Effective Operational Proficiency), C2 (Mastery). Level C2 was not represented in our data set. In the course of the MERLIN project, the learner essays were digitalized and stored using the Paula XML annotation scheme (Wisniewski et al., 2011). The annotation of the data is still in progress. We used a plain text version of the original essays7 . There are roughly 200 texts for each exam type. However, it is the essay rating level or proficiency level that reflects the actual language mastery demonstrated in an essay. The distribution among essay rating levels is not even. There are only 57 texts that received the rating A1 and only 75 that were rated with C1. Figure 2 shows the distribution of texts across the essay rating levels. As a first superficial statistical analysis of the data showed, there is a high correlation between exam type and text length (r = 0.86) and essay rating level and text length (r = 0.84). This is illustrated in Figure 3 and Figure 4. As a result much less data is available for the low essay rating levels, especially for A1. 5 German is just one of several European languages included in MERLIN Information on the task was gathered from email correspondence with Detmar Meurers and Serhiy Bykh 7 Thanks to Serhiy Bykh and Adriane Boyd for making the plain text version available 6 16 0 50 100 150 200 250 300 Num. Texts Per Essay Rating Level A1 A2 B1 B2 C1 Figure 2: Number of essays per essay rating level. The dataset poses several challenges. The skewed distribution of data across the essay rating levels can complicate machine learning. There are various possible factors that could also influence classification: different text lengths, different L1 backgrounds and different tasks for essay writing. Additionally the data is very noisy compared to ‘standard’ written language such as newswire. Although nonstandard language use and mistakes can be utilized for classifying learner language, they first and foremost pose a challenge. Passages like the one shown in Figure 1 are not uncommon in the MERLIN data. Punctuation is often spurious. Spelling and word order mistakes are frequent. This is problematic for NLP-Tools. Figure 5 shows the parse tree of the above text passage. Some words were tagged with the wrong part-of-speech. More strikingly, the whole passage was analyzed as a single sentence because there is only one sentence final punctuation mark. 17 Length in Words dep. on Essay Rating Level grouped by Exam Type A1 A2 B1 B2 C1 ● ● ● ● ● ● ● 300 ● ● ● ● ● Num Words In Text ● ● ● ● ● ● ● ● 200 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 100 ● ● ● ● ● ● ● ● ● ● ● 0 A1A2B1B2C1C2 A1A2B1B2C1C2 A1A2B1B2C1C2 A1A2B1B2C1C2 A1A2B1B2C1C2 Essay Rating Level Figure 3: Text length in words depending on essay rating level grouped by exam type. 4 4.1 Preprocessing Components of the Preprocessing Pipeline We used a plain text version of the 1027 German original learner texts from the MERLIN corpus. Due to the nature of the essay writing tasks, some texts contained letterheads. The letterheads were tagged in the plain text version. For the analysis they were removed as they don’t contribute to the proficiency analysis and are problematic for some tools, such as sentence detectors and parsers. 18 Length in Words dep. on Exam Type grouped by Essay Rating Level A1 A2 B1 B2 C1 C2 ● ● ● ● ● ● 300 ● ● ● ● ● ● Num Words In Text ● ● ● ● ● ● 200 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 100 ● ● ● ● ● ● ● ● ● ● ● ● 0 A1 A2 B1 B2C1 A1 A2 B1 B2C1 A1 A2 B1 B2C1 A1 A2 B1 B2C1 A1 A2 B1 B2C1 A1 A2 B1 B2C1 Exam Level Figure 4: Text length in words depending on exam type grouped by essay rating level. The spurious punctuation in some of the MERLIN essays prompted us to build a tool for missing sentence boundary detection. Although the results were promising, the tool was not reliable enough to be used in this work. Still, the approach is discussed in Section 4.2 and might be further developed in the future. For now, the OpenNLP 8 SentenceDetectorME (OpenNLP Tools 1.5) was used for sentence segmentation. A pre-trained model for German is available at OpenNLP. A number of problems occurred when using the tool on our data. 8 http://opennlp.apache.org/ 19 Figure 5: Example for a parsed text passage with spurious punctuation and several spelling mistakes from an essay in the MERLIN corpus. Visualized with ProD (Culy et al., 2012) 20 1. If there were several sentence final punctuation marks, the sentences were not split. 2. Abbreviations were often not handled correctly. 1. was addressed by finding all instances of multiple sentence final punctuation marks using the regular expression [!?\\.]{2,} and replacing them by a single full stop. For handling 2. a custom model was created for SentenceDetectorME. OpenNLP offers a command line interface for sentence detector training9 . In addition to custom training data it is possible to specify a list of abbreviations for improving the tool’s performance. For that purpose a list of German abbreviations was mined from the web10 . SentenceDetectorME was then trained on NEGRA 2 Corpus Export11 and the additional abbreviation list. For tokenization OpenNLP TokenizerME (OpenNLP Tools 1.5) was used. The model was trained on the same data and abbreviation list as the sentence detector to maintain compatibility. To reduce problems caused by spelling errors, a Java API for Google Spell Check (version 1.1)12 was used. When submitting a word or text for spell correction, the language can be chosen13 . When sending a request, multiple corrected suggestions are returned for each misspelled word, ranked according to the spell checker’s confidence. The suggestion with the highest confidence was picked. The spell corrected data was tagged using a Java interface (version 0.0.8)14 to the RFTagger (Schmid and Laws, 2008), a statistical tagger that provides a fine grained morphological analysis. As some of the further processing steps relied on Stuttgart-Tübingen Tagset, all tags were additionally converted to this tagset, using the converter class that is integrated into the Java interface. RFTagger lemmatizes words with a Perl script that looks up lemmas in a lexicon. This capability, however, is not included in the Java interface for RFTagger. An attempt to use the scripts for lemmatization separately made the application extremely slow. Therefore we eventually used TreeTagger 9 http://opennlp.apache.org/documentation/1.5.2-incubating/manual/ opennlp.html#tools.sentdetect.detection 10 http://german.about.com/library/blabbrev.htm 11 http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/ negra-corpus.html 12 https://code.google.com/p/google-api-spelling-java/ 13 There were some encoding issues, when using German. The Java encoding must be set to UTF-8, however, the correction suggestions for German are returned ISO-8859-1 encoded, so they have to be coded to UTF-8 again. Also, the rate of making requests has to be reduced in order to not be blocked by Google. 14 http://www.sfs.uni-tuebingen.de/~nott/rftj-public/ 21 (Schmid, 1995) with a Java wrapper by Richard Eckart de Castilho15 for lemmatization. The problem with this approach is that TreeTagger and RFTagger don’t necessarily assign the equivalent part-of-speech tag to a word. However, after supervising this potential problem during a preprocessing run, it turned out that the differences were minimal. All documents were parsed with the Stanford Parser for German, a lexicalized probabilistic context free grammar parser. We used the standard model for German (version 2.0.4) (Rafferty and Manning, 2008) trained on the NEGRA Corpus16 . As we wanted to experiment with dependency based features as well, all documents were additionally parsed with MATE dependency parser (Bohnet, 2010), using the standard model for German (Seeker and Kuhn, 2012), which was trained on the TIGER Corpus. For storing annotated documents, the serializable class AnnotatedDocument was implemented. The advantage is that all annotation layers can be stored and accessed in a principle way. 4.2 Sentence Boundary Detection for Essays with Missing or Spurious Punctuation Most conventional approaches address sentence segmentation as a problem of punctuation disambiguation. Machine learners are trained with features such as part-of-speech frequency (Palmer and Hearst, 1997) and lexical information (Reynar and Ratnaparkhi, 1997) in the context of the candidate punctuation mark and obtain high accuracies (98%, (Reynar and Ratnaparkhi, 1997)). Since sentence final punctuation is sometimes spurious in the MERLIN essays, those tools do not work reliably. It would be most desirable to find a solution to sentence boundary detection that does not rely on punctuation. 4.2.1 Survey Finding sentence boundaries in the absence of punctuation is also a relevant task in speech recognition. Many approaches (Stolcke and Shriberg, 1996; Gotoh and Renals, 2000; Liu et al., 2004) use a special type of ngram model introduced by Stolcke and Shriberg (1996). To incorporate sentence boundary probabilities into ngram models, Stolcke and Shriberg (1996) postulated a possible sentence boundary tag after each word. Hidden event models were trained with these ngrams to find the most likely positions for sentence 15 http://code.google.com/p/tt4j/ http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/ negra-corpus.html 16 22 boundaries. Later approaches often combined this technique with prosodic information (Liu et al., 2004; Liu et al.; Favre et al., 2008). Favre et al. (2008) tried to include syntactic clues by using parser probabilities of text spans. After reviewing approaches to sentence boundary detection, that were used in speech recognition, it seems doubtful that the same techniques could be applied to our data without much adjustment. There is no prosodic information in the written texts that could enhance the performance of the hidden event ngram models. Also, in contrast to the transcript of a speech recognizer, the learner essays mostly do contain some punctuation marks. As a first step, the passages where punctuation is missing would have to be identified. Nagata et al. (2010) describe an approach to detecting missing sentence boundaries in texts produced by Japanese learners of English. They put forward a method for automatically generating training data for missing sentence boundary detection and then used this data to train Support Vector Machines with features like sentence length probability, number of words beginning with a capital letter, number of verbs, prepositions, wh-words, conjunctions, and frequencies of non-sentence final punctuation marks. Their best model achieved promising result (0.716 % F-measure). We conclude that implementing a component for placing missing punctuation marks in the absence of punctuation is not feasible in this thesis. Nevertheless we attempted the first step by trying to automatically identify missing sentence boundaries using a similar approach as Nagata et al. (2010). Such a tool would be useful to flag essays with spurious punctuation. Those essays could then either be excluded or manually corrected. 4.2.2 Building a Missing Sentence Boundary Detector This section describes the implementation of a missing sentence boundary detector. Following Nagata et al. (2010) we automatically generated training data from a corpus of learner language. A classifier was then trained with linguistic features that are promising indicators for missing sentence boundaries. 4.2.2.1 Creating Training and Test Set We automatically created training data from the Kobalt-DAF (Zinsmeister et al., 2011) data. KobaltDAF is an ongoing project that researches the linguistic properties of texts written by learners of German from different L1 backgrounds. The current version of the corpus comprises of 69 texts. We followed the procedure 23 proposed by Nagata et al. (2010). Each training sample consists of one sentence. To obtain samples, the Kobalt-DaF texts were sentence split with the OpenNLP sentence segmenter as described in Section 4.1. The resulting sentences were used as negative training instances. To create positive instances, pairs of sentences were concatenated. The order of the original sentences was shuffled beforehand, to avoid that contiguous sentences were combined. Two additional test sets were created for evaluating the sentence boundary detector on two different essay rating levels (A2 and B1) from the MERLIN corpus. 1000 sample sentences as segmented by OpenNLP sentence segmenter (section 4.1) were manually labeled for essay rating level A2 and B1 respectively (henceforth MA2 and MB1). Among the 1000 sentences for each essay rating level there were only 61 positive instances in MA2 and 36 in MB1. This uneven distribution of negative and positive cases has to be kept in mind when evaluating the classifiers. 4.2.2.2 Preprocessing for Sentence Boundary Detection The preprocessing procedure was very similar to the steps described in section 4.1. Minor difference arose from the fact that for some problems, better solutions were found later on. Because of the need to manually annotate sentences, which is very time consuming, the experiments could not be repeated again at a later point. No version of the data with tagged letterheads had been available at the time when we built the missing sentence boundary detector. To exclude most of the potential letterheads, only lines with more then two tokens were considered. A full stop was appended to lines that did not yet have a sentence final punctuation mark. The fact that OpenNLP sentence segmenter has problems with multiple punctuation marks !!! had not been addressed. Spell checking was only implemented later. Fine grained tags such as those delivered by RFTagger were not needed for the task at hand, so the OpenNLP Tagger was used with the standard model provided by OpenNLP. The data was parsed with the Stanford Parser for German. 4.2.2.3 Features We adapted most of the features used by Nagata et al. (2010). Nagata et al. (2010)’s feature set included the number of capitalized words that are neither proper nouns nor the pronoun I. In German, however, besides from the proper nouns, also common nouns are capitalized, so the number of capitalized words excluding all nouns was counted. Nagata et al. (2010, 1272) argued that verbs are indicative of missing sentence boundaries, as a sentence is assumed to consist of a single verbs unless ”it contains conjunctions and/or clauses”. Therefore they counted the verbs 24 excluding present and past participles. We implemented two distinct verb features instead: the number of verbs per word, and the number of finite verbs per word. To include the presence of conjunctions as indicators Nagata et al. (2010) considered the frequencies of different conjunctions as well as the total number of conjunctions. In this work only the total number of conjunctions is used as a feature. Similarly, we only used the total number of wh-Words and prepositions. Furthermore we included the following features into our approach: frequency of colons, semicolons, commas, total number of punctuation marks, and sentence length probability. Sentence length probability is the likelihood that a sentence is of a particular length, measured on the distribution of already observed sentence lengths. For computing this probability Nagata et al. (2010) assumed that sentence length has a Gaussian distribution and used the probability density function. The observed sentence lengths can be computed from the training data. In addition to this more sophisticated measure of sentence length, we also included sentence length as the number of words per sentence. It was used as a baseline for all experiments. Additionally three new features were examined that rely on information from parse trees. The number of clauses per number of words seemed to be a promising indicator, since the parser mostly recognized clauses in spite of missing punctuation. This resulted in parse trees which contained many clauses under one ROOT node. As the parser often related these clauses to each other by using coordination, coordinated clauses also seemed a good indicator. Finally parse tree height seemed promising as it could help to distinguish sentences which have many clauses because of heavy embedding from relatively flat trees, that contain many clauses because of missing sentence boundaries. 4.2.2.4 Experiments First the performance of three different machine learning algorithms - Naive Bayes, Sequential Minimal Optimization Algorithm (SMO) and Decision Tree (J48) - were compared. All algorithms were used with their standard configurations from WEKA. We used 10 fold cross validation and the whole feature set to build and test the models. We report precision, recall and F-measure for the positive class (missing sentence boundary)17 . The experiments showed that the Decision Tree Algorithm was the best choice. We build different models on the generated training data using 10 fold 17 Cost sensitive learning could have been applied to the sentence boundary detection task. However, as the main task was proficiency level assessment, it seemed unwise to spend too much time on sentence boundary detection. 25 Name Avg. Num. Verbs Per Words Avg Num. Finite Verbs Per Words Avg Num. Conjunctions Per Words Avg Num. wh-Words Per Words Avg Num. Prepositions Per Words Avg Num. Commas Per Words Avg Num. Colons Per Words Avg Num. Semicolons Per Words Avg Num. Capital Not Nouns Per Words Avg Num. Punctuation Per Words Sentence Length Probability Num. Tokens In Sentence Avg Num. S Nodes Per Words Avg Num. CS Nodes Per Words Parse Tree Height To Words Ratio Formula # verbs / # W # finite verbs / # W #conjunctions / # W # wh-words / # W # prepositions / # W # commas / # W # colons / # W # semicolons / # W # capital not nouns / # W # punctuation marks / # W #W # clauses / # W # coordinated clauses / # W parse tree height / # W Table 4: Features for missing sentence boundary detection. Classifier Accuracy Precision Recall SMO 92.67 95 90 Naive Bayes 75.07 70 90 Decision Tree J48 94.56 97 92 Table 5: Comparison of different classifier algorithms cross validation. Then each of these models was evaluated on the hand labelled MA2 and MB1 test sets. A model build with all features (ALL) was compared to a sentence length baseline (BL). As indicated by Nagata et al. (2010), the capitalization feature was responsible for many false positives in their experiments. Therefore we created a model without the capitalization feature (ALL-CAP). A detailed summary of the results can be seen in Table 6. When tested with cross validation ALL performed better than BL. However, when tested on the MA2 and MB1 sets, ALL’s results dropped below those of BL. Especially the precision plummeted. For ALL-CAP, the F-measure dropped when evaluated with cross validation, but increased when tested on MA2 and MB1. The reason is probably, that the spelling conventions regarding capitalization are complied with to a different degree in the training data and the MERLIN test sets. Generally the performance on MA2 and MB1 was not too impressive. Even the ALL-CAP model only slightly exceeded the baseline for MA2 and the performed below the baseline for MB2. 26 Dataset Train MA2 MB1 Model Accuracy F-Measure Precision Recall BL 79.00 80 77 83 ALL 94.56 94 97 92 ALL-CAP 88.90 88 93 85 BL 93.90 38 50 31 ALL 57.56 16 9 64 ALL-CAP 91.10 40 34 42 BL 92.10 60 25 61 ALL 63.53 12 6 66.7 ALL-CAP 88.48 24 16 50 Table 6: Comparison of different models 4.2.2.5 Conclusion Although the proposed method seemed promising when tested with cross validation, the results on the MERLIN test sets were not satisfactory. The immensely skewed distribution of positive and negative samples and too little similarity between the training and test data might have contributed to this result. Additionally it might be hard to find one model that can be successfully applied to all levels of the MERLIN corpus, as the essays at different levels are so dissimilar. It is concluded that the missing sentence boundary detection component is not yet mature enough to be used in the further course of this work. It is however considered worthwhile to continue its development in the future. 5 Features For Language Proficiency Assessment In this section we introduce our feature set for language proficiency classification. We implemented a variety of syntactic, lexical, morphological, and language model features that were informed by different fields of research. 5.1 Lexical Features A number of lexical indices of language proficiency have emerged from research on language acquisition, and have recently also been deployed in readability assessment and language proficiency classification (Vajjala and Meurers, 2012; Hancke et al., 2012; Vajjala and Loo, 2013). We integrated a wide range of lexical indices into our approach to examine their usefulness for German proficiency assessment. 27 5.1.1 Lexical Diversity Measures Lexical Diversity. Lexical diversity or lexical richness designates the variety and range of the vocabulary used in a text or speech (McCarthy and Jarvis, 2007). Measures of lexical diversity have been widely deployed as indices for e.g., vocabulary knowledge and writing quality. They have also been used to measure the lexical proficiency of language learners (Crossley et al., 2011a; Lu, 2012; Graesser et al., 2004). The most commonly used lexical diversity index is probably Type-Token Ratio (TTR) (McCarthy and Jarvis, 2007). It is known that TTR depends on text length. McCarthy and Jarvis (2007) explained this flaw with Heaps law ((Heaps, 1978) c.f. McCarthy and Jarvis (2007)): When a text becomes increasingly long (many tokens), the chance that new words (types) occur becomes more unlikely. As a result, long texts appear to be less lexically diverse when measured with TTR. In a comprehensive study McCarthy and Jarvis (2007) examined a number of TTR variants that were developed for decreasing the dependency on text length - mostly involving some mathematical transformation. These variations include Root Type-Token Ratio, Corrected Type-Token Ratio, Uber Index and Yule’s K. McCarthy and Jarvis (2007)’s results showed that none of these measures were independent of text length, although for Yule’s K and Uber Index the effect was minor18 . More recently vodc (MacWhinney, 2000) has been proposed as a new index of lexical diversity. It tries to overcome the dependency on text length by repeatedly drawing samples of different sizes from a text, and calculating the mean TTR of this samples. A formula using the D coefficient (Malvern et al., 2004, c.f. McCarthy and Jarvis (2010)) is then deployed to fit a theoretical curve to the empirical TTR curve obtained from the random samples (McCarthy and Jarvis, 2007, 2010). The results of McCarthy and Jarvis (2007)’s examination suggested that vocd is not independent of text length. Furthermore they showed that deploying the hypergeometric distribution19 can replace the curve fitting procedure in vocd. The hypergeometric distribution describes the probability of success for drawing (without replacement) a particular number of tokens of a particular type from a sample of a certain size (McCarthy and Jarvis, 2007, 2010). McCarthy and Jarvis (2007) proposed HDD, an index of lexical diversity, that is very similar to vocd, but makes use of the hypergeometric distribution directly. McCarthy and Jarvis (2010) introduced the measure of textual lexical 18 According to McCarthy and Jarvis (2007) 2% for Yule’ K and 3% for Uber Index of the variance was explained by text length. 19 A probabilistic distribution 28 diversity (MTLD). It is a sequential approach to measuring lexical diversity by calculating the mean length of a string sequence, that maintains a default TTR value. Whenever a new type is found, the TTR is calculated. As soon as the default value is reached, a factor count is increased and the TTR is reset. The same procedure is repeated from that point in the text to the end of the text. If the last portion of text does not reach the default TTR, a partial factor is calculated20 . MTLD is then calculated by dividing the number of tokens by the number of factors. The same procedure is repeated beginning at the end of the text. The final score is the mean of the forward and backward MTLD value (McCarthy and Jarvis, 2010). Formulas #T p yp/#T ok p#T yp/#T ok #T yp/(2 ∗ #T ok) log (#T yp)/ log (#T ok) log (#T ok)2 / log (#T yp/#T ok) 104 ∗(sum(f X ∗X 2 )−#T ok)/(#T ok 2 ), Measures using type to token ratio Type-Token Ratio Root Type-Token Ratio Corrected Type-Token Ratio Bilogarithmic Type-Token Ratio Uber Index Yule’s K X=vector of freq. for each type, fX=frequency of each type freq. in X HD-D Measure of Textual Lexical Diversity McCarthy and Jarvis (2007) McCarthy and Jarvis (2010) Table 7: Type-Token Ratio and variations Lexical Density and Variation. Lexical density (originally Ure (1971), c.f. Lu (2012)) and lexical variation measures are closely related to the type to token based ratios that we discussed in the previous section. Lexical Density measures the ratio of lexical words (or ‘content words’) to all words. Lexical variation measures include different ratios that measure the variation within specific syntactic categories, for example Verb Variation (verb types to verb tokens) and Noun Variation (noun types to noun tokens). Lu (2012) deployed lexical density and variation measures in combination with lexical diversity measures to examine the relationship between lexical richness and the quality of English learner productions. Those measures also have been proven to be good indicators of readability by Vajjala and Meurers (2012) for English texts and Hancke et al. (2012) for German texts. However, although these measures have been successfully applied in a number of approaches, doubts remain that - like Type-Token Ratio - they might depend on text length. 20 (1 − ttrlef tover )/(1 − ttrdef ault ) 29 Measures using lexical type distributions Lexical Density Lexical Word Variation Noun Variation Adjective Variation Adverb Variation Modifier Variation Formulas #T ok Lex/#T ok #T yp Lex/#T ok Lex #T yp N oun/#T ok Lex #T yp Adj/#T ok Lex #T yp Adv/#T ok Lex Verb Variation 1 Verb Variation 2 Squared Verb Variation 1 Corrected Verb Variation 1 Verb Token Ratio Noun Token Ratio Verb-Noun Token Ratio #T yp #T yp #T yp #T yp #T ok #T ok #T ok (#T yp Adj #T yp Adv)/#T ok Lex + V erb/#T ok V erb V erb/#T ok Lex V erb2 /#T √ ok V erb V erb/ 2#T ok V erb V erb/#T ok N oun/#T ok V erb/T #ok N oun Table 8: Lexical variation features A comprehensive set of lexical diversity, density and variation measures was included as can be seen in Tables 7 and 8. 5.1.2 Depth of Knowledge Features As suggested by Crossley et al. (2011b), not only vocabulary size and diversity should be taken into account, but also the depth of lexical knowledge. Their results showed that lexical frequencies and hypernym scores are promising features for proficiency assessment. Lexical Frequency. The general frequencies of the lexical items used by a learner are often seen as an indicator of lexical proficiency. As summarized by Crossley et al. (2011b), it is assumed that learners with a higher proficiency use less frequent lexical items. High word frequency leads to more exposure, which makes a word easier to learn (Ellis (2002), cf. Crossley et al. (2011b)). This hypothesis is supported by studies of lexical acquisition (Balota and Chumbly (1984), Kirsner (1994) c.f. Crossley et al. (2011b)). According to Crossley et al. (2011b) the correlation between word frequency and acquisition has also been confirmed for lexical development in second language learning: In most studies it was shown that beginning learners were more likely to use and comprehend high frequency lexical items (Crossley and Salsbury (2010); Ellis (2002) c.f. Crossley et al. (2011b)). To measure the frequencies of lexical items , Crossley et al. (2011b) retrieved content word frequency scores from the CELEX database (Baayen et al., 1995) 30 - a psycholinguistic database that includes word frequencies as counted from a reference corpus. We extracted content word frequencies from dlexDB (Heister et al., 2011). DlexDB frequency scores are based on the “Kernkorpus des Digitalen Wörterbuchs der deutschen Sprache” (DWDS ). The DWDS corpus comprises of 122.816.010 tokens and 2.224.542 types. For providing relevant annotations such as partof-speech tags, lemmas or syllables, dlexDB relied on automatic annotation with NLP tools (Heister et al., 2011). DlexDB was chosen over CELEX because it is more recent and based on a larger reference corpus (6 million vs. 100 million running words). DlexDB offers a number of interesting scores for each word, such as absolute and normalized frequencies and log absolute and normalized frequencies for annotated types (type, word pair), types, lemmas and ngrams, but also familiarity scores and frequency ranks (see Heister et al. (2011) for a comprehensive list). Currently the API for fully automatic queries is still under development21 . However, the database can be queried via a web interface22 . Queries can be send for individual lexical items or for lists of items, and the results can be exported after creating a user account (up to 10 000 results). For making all the necessary frequencies from dlexDB available to our tool, a custom dlexDB version with all the words in the MERLIN corpus and all the scores that were relevant had to be created by manually querying dlexDB. A list with all spell checked words in the MERLIN corpus was created. It was split into tiles of not more than 4000 words, in order to remain below the export limit. Each tile was then used to query dlexDB manually over the web interface: For each word the following scores were retrieved: 1. Absolute Annotated Type Frequency (ATF) 2. Log absolute Annotated Type Frequency (LATF) 3. Absolute Type Frequency (TF) 4. Log absolute Type Frequency (LTF) 5. Absolute Lemma Frequency (LF) 6. Log absolute Lemma Frequency (LLF) Finally all non-matches and all words that did not match the category of ‘content word’ (incl. modals) were cleaned out. Features that measure the general frequency of the lexical items used in an essay were created using the scores 1.-6. All types in an essay were looked 21 22 personal correspondence with dlexDB developers http://www.dlexdb.de/query/kern/typposlem/ 31 Log Frequencies of Annotated Types with Text 3 1 2 Log Frequency 4 5 auch so nur noch aber kann dann schon wieder immer doch mehr sagte ganz sehr hier selbst jetzt nun da einmal anderen also soll Menschen gibt Frau Jahre konnte Welt erst Regierung heute So deutschen will Auch gar Mann Leben ersten wohl Herr etwa kam Frage machen gut lassen neue gab Jahren sollte neuen Hand andere kommt geht wollte Deutschland dort ging Augen Art Arbeit bereits jedoch Berlin besonders sagen Da gerade de dabei steht denn letzten Ende Dann Teil darauf fast Seite ganze vielleicht gemacht Entwicklung Geschichte allein Stadt nie Weise weiter Staaten sagt Mutter liegt oft ganzen Tag eigenen stand viel gleich eben sogar alten weit Kopf sollen deutsche wollen kleinen Tage erste Bedeutung Wort Vater macht tun Form recht gesagt Kinder sehen Gesellschaft darf je geben wirklich Gott Weg mal Jahr bis kaum Politik Mensch Gesicht lange bisher DDR kommen Namen sonst Lage stehen ebenso Beziehungen Recht kleine einzelnen Leute bald nahm Wasser bleibt machte genau damals Fall Nur Nun Fragen Sache sieht gegeben Kind Land Herrn Paris Stelle solchen Frankreich Uhr Beispiel leicht Haus Hier deshalb darin Volk dadurch Sinne Krieg alte Mark eigentlich Natur besteht Kraft bringen Ausdruck fand sollten gekommen gleichen allerdings Frauen blieb Bild gilt daher Nacht Boden genug besser gehen Hause sofort Geld Sprache Kunst oben selber Kirche anders Bewegung Staat weitere Aufgabe verschiedenen allgemeinen einfach Dinge Millionen bleiben gesehen nehmen daran dachte Blick Gedanken USA finden Jetzt Stimme scheint schwer wissen dagegen Kampf Liebe Interesse richtig Sinn gebracht Zahl stark Gebiet findet endlich Macht schien sprach Grund Freiheit Reihe Worte Europa politische Mittel Ordnung konnten Musik lang Berliner anderer genommen Luft eigene Raum Platz Rolle meist schnell Seiten Buch Anfang gute Lebens Wege guten stellt Sicherheit Tagen Zimmer Stunde halten Stellung Stunden Erde Abend Wirtschaft Tisch nimmt kommen voll Deutschen Personen ebenfalls jungen mag liegen Richtung sprechen Sohn notwendig insbesondere Begriff niemals kurz handelt klar bekannt ferner kamen besten letzte gefunden England gern Hilfe wenigstens Seele Familie gestellt Kultur Wahrheit Herren sicher Dabei System Antwort glaube wenig Fenster Mitglieder Meinung Wien and bestimmten Frieden London junge deutlich Erfolg Wochen Volkes all folgenden Wirkung Brief Rahmen folgende Wert erscheint einzige weiteren Wirklichkeit Werke langsam Gefahr hoch Verbindung Wagen gestern Gruppe Satz spricht Aufgaben erreicht bringt neu Arbeiter bereit Vielleicht Wissenschaft Vereinigten schrieb General vorher Morgen Interessen Noch lassen darum Italien Deutschlands denken Problem wissen gleichzeitig bedeutet Tatsache sozialen Herz besondere Arzt erkennen Gegensatz Republik Schule bestimmt Bedingungen Schon Prozent setzt braucht Schritt gleiche Landes Folge Also Mitte Probleme genannt Entscheidung Linie erster langen Angst erhalten Eltern Artikel frei wollten Gelegenheit Tat wirtschaftlichen Literatur fiel stellen vielmehr her Bett Organisation Charakter Auffassung wolle Rom bestimmte Bildung gewisse verstehen Auge Erst Arbeiten lange deutscher Freund General verschiedene Falle Friedrich verloren Deutschen Menge Sonne Besuch Ruhe solle tief Minuten Reich Eindruck gingen Freude gesprochen besonderen dahin Idee Situation schaffen to Beziehung Mal Person geschrieben Schwierigkeiten folgt wahrscheinlich vorhanden gehalten manchmal Ergebnis Teile Bericht beginnt Wunsch Worten Gewalt Jahrhundert gehen Beginn hin finden Wohnung morgen hinaus Tages erreichen Willen lieber lediglich ruhig tragen neuer Gebiete gemeinsamen Polizei Grunde Stellen Hoffnung Rechte Wahl Spiel Gegenwart Anzahl selten verbunden Jahres the Polen Lehrer eher Bereich Franz daraus mindestens Rat allgemeine danach Erfahrung Heute Bundesrepublik tut gegangen wesentlich Produktion Vorstellung jedenfalls Blut Bruder Grenze Industrie Absicht links bezeichnet for Ort einzelne tat Bilder Punkt Denken Ansicht sehen Opfer Tochter Verhalten Presse reden Woche wollen Theorie gewissen Peter Deutsche Arm Gruppen Freunde hab geblieben gemeinsam gedacht Tiere englischen Kindern Revolution Vertrag helfen hohe sogenannten Unterschied modernen erhalten Klasse Kenntnis nennen nationalen Schutz kennt Programm getroffen miteinander leben Verwaltung direkt Chef sagen Herzen fertig halb heutigen Feuer Vorschlag Regel entspricht setzen China Ernst bildet wichtig irgend behandelt machen bekommen sehe Kosten aufgenommen Vergangenheit suchte Dienst Monaten Name schlecht verstanden neues leider allgemein Thema Kriege Leistungen weiterhin Verantwortung Moskau Amt einzigen Forderung Direktor Ausbildung suchen Dort gewinnen dritten Standpunkt Hamburg Dichter Plan Nation wirtschaftliche wesentlichen Verwendung Pflicht Erinnerung soziale Arme Monate Bank erfahren Amerika leisten fehlt brauchen Dingen starke Maria Heimat glaubte Erfahrungen wichtige Sonntag nennt Bau gezeigt Preis Nichts Botschafter dennoch schreibt Schwester geschehen Forderungen bitte Gegenteil Lager innere Deshalb Handel alt Abschnitt Moment schwere entwickelt Regelung Gesetze bietet start Leistung verlassen guter wahr File element file gemeinsame lesen Theater Sehr Gebieten laut Alter Dauer insgesamt Folgen wirkt Erziehung Meter gebe sage Verkehr schreiben dienen kannst Reise wichtigsten bestehen fragen Damen weiteres km Religion Schritte vergessen teils Vorstellungen Spitze Menschheit Immer Alte Jungen Sachen Mehrheit stehen Briefe Wissen Ausland Weile Praxis glauben spielt gezogen Anerkennung machten versteht sucht besitzt gelegt Text The Ideen See Einstellung Leuten Finger Voraussetzung offen denke Unternehmen entsteht geschlossen erforderlich Sommer Landwirtschaft Schrift erwarten komme festgestellt hierzu lagen Wand lebt beschlossen Ganz Japan Wahlen entsprechend Voraussetzungen Technik Glas fallen Aufmerksamkeit Garten Forschung Gedanke denkt fragt voller kurzen Fehler alter glaubt blieben Johann freie Laufe trotzdem Junge Anteil Meer gehe Tier bekam bilden Nase Sorge is vollkommen erfolgt Schweiz arbeiten Max Haar sitzt Je andererseits Parlament Betrieb treffen Selbst Werte Stand Angaben richtige falsch Ferner internationale kennen Onkel gelten spielen Glauben gefallen Martin Umgebung kleiner Winter Papier Rechnung Versuche Arten Gebrauch geben fest Farbe historischen entstanden Spanien Angelegenheit Ereignisse Europas Eigenschaften beste Hauses tot kleines Vergleich nehmen Film warten Struktur las kurze genannten wissenschaftlichen Insel bilden erfolgen erschienen Stimmung Auftrag Krankheit Hof versucht entsprechende halten Lust praktisch Bonn Tradition klein Frankfurt westlichen folgen Ausnahme ernst Essen lernen Ungarn dritte sogenannte Fleisch beider begonnen Punkte fremden Not treten italienischen Schreiben eingesetzt verpflichtet bekannten Band abgeschlossen anderes Einrichtungen Hauptstadt Zahlen mitten technischen Untersuchungen Traum Preise Hinsicht bleiben gelernt erkannt englische Tante Vorschriften Schriftsteller somit anderem geboren halte Firma wichtigen abends befindet bedarf Wein gezwungen volle Ludwig teilweise eigentlichen Beruf Wald Dorf abgelehnt relativ Studenten Schiff Brot Fortschritt brauchte Gerade gerne Handlungen Ecke Neue Wunder stellen Teilen still Markt glauben entwickeln aufmerksam unbedingt verstand Fahrt Auto cm fahren Umwelt einerseits legen in betrachtet Hund Sein eigenes vermeiden Union Tiefe verschieden lebte willst verschiedener Verbrechen verboten vergessen polnischen entscheiden vorgesehen Mai Schaden angesehen streng Diskussion Systems Pflanzen gelesen Reaktion offenen Kollegen unterscheiden bestehen abgesehen festen eigener annehmen weist benutzt Quellen Allerdings keinerlei Nummer Nationen eng Einrichtung umgekehrt hingewiesen rechnen Waren bestimmt gefragt ausgeschlossen beteiligt Vorbereitung mache Armen irgendwo Ebenso Reden Blatt entstehen Herbst Leser meine Indien Goethe Besonders Blumen demokratischen gelungen nachher mochte betrachten christlichen lasse Holt wirken leben beginnen Stil moderne Stoff Hut junger nationale irgendwie Daher Milch gemeint gutes verantwortlich fordert Anlage De kommenden vorsichtig sozusagen Gast Botschaft stehe leichter Mut Wille Vorgang notwendigen Monat Schweden Beispiele Maschinen folgendes rechte treten Schulen einfachen abend Dank Schnee meinen Abteilung essen kenne Mangel dazu Verbesserung Dagegen Gegend Nachricht wissenschaftliche kennen letzter handeln Belgien Erfolge Bahn Gemeinde Summe Karte erwartet Mitarbeiter neuem schneller Stufe Grad halbe beispielsweise bekommt entfernt sitzen Gesundheit Trotzdem Betracht einfache Hotel versuchen Niemand Montag Gold hart ehemaligen erinnern betrifft Spiegel besonderer Endlich Norden Verpflichtungen deutsch Politiker Anlagen sorgen gestorben August Freitag Strom bedeuten versucht gespielt Lachen reine liegen arbeitet freundlich anerkannt erheblich Ruf jeweiligen vorstellen wartete feststellen Handeln Vorteil Position Kirchen erlebt entschieden reicht April Bezug Geschmack Regeln schlafen Einmal froh Grundlagen gestanden halben gebraucht Priester Bedenken Fortsetzung Darum Ganze Gewissen Flucht feste Geburt Hintergrund geleistet Logik Nachmittag besetzt Juni historische Produkte ganzes verlieren Informationen Nachrichten Kapital privaten Entfernung Bier Verbindungen Radio mitgeteilt meistens beobachten sitzen beweisen technische Studium spielen Schlaf Januar besitzen erinnert kaufen tiefen Eva Beratung Tasche September Regen Oktober lautet Sehnsucht Kaufmann bewegen bessere Vortrag gebaut ruft verzichten Mama weiterer wiederholt praktische bisherige Neues Provinz offiziellen Mittelpunkt vorigen Schmidt gelten Generation Phantasie Lieder Decke kalt Gleichzeitig gearbeitet Familien bemerkt erhalten befinden vorbereitet sprachen entdeckt Solche Note begreifen Juli Leiden stolz absolut krank brauche geschehen Dadurch anzunehmen sicherlich Kilometer vermutlich Mantel Auseinandersetzung Herkunft Bitte chinesischen behalten Einladung rote nehme hingegen Gestalten hoher Sorgen Unterricht fremde Objekt Element bezeichnen stellten knapp Aussage engen Eier Karten gegebenen gemeldet verwenden Alten armen November Jedenfalls offensichtlich Bayern wahren richtet Allein heiligen Bedingung Wieder arabischen Dezember stimmt stattfinden Liste eintreten DER voneinander Pflichten bekannt Befreiung Institut Wetter Manchmal nich eindeutig Unterschiede bieten verletzt holen dauernd langer Bahnhof Unterhaltung Pause weiten deswegen reich Nachbarn gesellschaftliche Ausgang dunkel Schlag Anforderungen arbeitete Gesellschaften behandeln Papa Dennoch tiefe Systeme Institutionen behaupten Schein Ablehnung Angebot gegenseitig gesucht Nutzen Afrika einziges stammt Mittwoch Auswahl Ferne erfolgt erheben bekannte falschen Februar Ablauf Anna wichtigste liebe notwendige gerecht Sprachen Vorbild geeignet hilft Donnerstag tragen Abstand Darauf entschlossen Partner bezeichnet Bundesrat Dienstag dringend Ansichten finde Deutsche erstmals Gut Hauptsache herrscht Kapitalismus normalen entfernt kurzem Aufenthalt Tieren Sicht italienische breit kulturellen gelassen eingerichtet fortgesetzt setzen sprechen wert hoffe Soll erfolgreich bezug Flasche beendet gewinnt geschickt soweit Gesichter Schicht Stock Konflikt bitten echte Information Verein Faktoren daneben berufen verlangen Gefahren einzelner Mittelalter Rechtsanwalt angegeben Schweizer Drittel Freundin verstehe Ganzen Fischer Geburtstag Holland Post setzten gesund Kleine rechtzeitig offene Leider besseren Betrag Akademie Bald klingt einverstanden bezahlt Firmen Faust jung Damals NZZ russische langem Erinnerungen Eingang Laden Freunden Gehalt steigt Autor Senat Ausstellung Sonst Banken entscheidende Verstand Glaube Bundestag zahlen unendlich Ahnung lachen arbeiten aufnehmen kg merkte Kann Kleidung weg Tee morgens auftreten warm arme frisch lebendig Frankfurter leiden Vorgehen jederzeit Berg falsche fremd Abends getrennt teil Minute untereinander aufzunehmen kleineren Berichte Daseins erlaubt muss gewachsen Initiative Dokumente gerufen Auskunft Weiter beitragen bleibe Verlangen fallen Hausfrau Andererseits Eintritt Angestellten schlagen Kartoffeln Anwesenheit Wagner Bedarf Konsequenzen Wolfgang Ideal Ernst Paar Vorteile Weitere Sollte spanischen Fast Gestern andre Beschreibung Kommunikation klassischen bezahlen Wohl Entspannung gefahren reichen Dritten Winkel genaue Neuen benutzen bedeutende genauso trinken ansehen absolute klaren bringen eingeladen dienen schlechten gestalten verbreitet Kunden Chance genauer Treffen treiben lebenden Jugendlichen ergriffen entwickelte stimmte wisse verkauft Themen Kaum verliert Kandidaten liebt Gut Reisen erinnere lieb laufen Wohnungen anfangen Erwartung Kette Ost fern Strecke Bauch verfolgen Klarheit stelle traurig einziger Halle polnische unterwegs kleinere Vorsicht vorgeschlagen Rock antworten frage Mittag schwierig Hamburger aufgebaut anfangs entsprechen denken angebracht Gesetzen erworben ehemalige erledigt Problemen klare Besucher Lauf schlechte geregelt Spuren Oh geglaubt besuchen Gleich Inseln Aufsatz bewahren Michael Messe net dreimal liest Franken Besitzer Hochschule verkaufen Keller vorbei Irrtum Stolz Verzicht tun vierten Darin Kleid besitzen Kurs Wachstum Krankheiten heutige Symbol Kurz kostet bestanden direkte dankbar Kontakt Dunkel achten Bein Kleider Strukturen Begeisterung entscheidend Umgang suchen Auflage bestimmt VON Fremde West Auftreten freiwillig Streben Schuhe Begegnung Temperatur wartet bedeutend Gleichgewicht erstaunt Leidenschaft besuchte hohem angeboten Objekte Haupt aufgegeben schicken Urlaub Anpassung Bewohner lieben unternehmen Fremden Produkt Lieber vereinbart Bibliothek interessant laufen Ausgleich Verkauf Berlins beziehen gerechnet bestehe wirken Austausch entstehen Wurzeln Philosophen positive Erlaubnis dauert Loch meldete Region erleben Mitteilungen dorthin Mathematik Bauten Physik Oft Aussprache Tendenzen Alkohol lernte un Wahrscheinlich liebsten Bescheid vertraut bauen Fest Wichtigkeit begegnet gewohnt Empfang positiven Andere verlassen Bestandteil Gedichte beachten Reichtum Oder Verwandten Flugzeug Einkommen Bulgarien wichtiger schwerer ausgehen Erlebnis gekauft kleiner identisch verwirklichen Sport Bilde verlangen Ansehen Normen weisen Rhein Bemerkungen ehrlich Architektur Integration Geschehen Allgemeine herzustellen bezogen Tanz gelebt speziell verraten Wirt Geduld Orte teilnehmen Nationalen Patienten berichten sollst gebrochen erlassen vorkommen Hunde gestrigen Niveau Deutscher Motor Daneben Schwierigkeit gewaltige Fisch Haushalt denkbar verdient Ankunft Danach versuchen lustig Katastrophe daraufhin Einwohner Kenntnisse Vermittlung Lohn aktiv besonderes verbinden chinesische legen Stern hell Wollen Jan geschenkt verschwinden untersuchen nennen Verdienst Museum Polen finanziellen danke fahren Nachweis Gutes mehrmals Suche Auswirkungen All absoluten schlimm ausgegeben Kauf Faktor wenden Halle Niederlande Tausende Demokratischen Gehen verbessern Viertel Erste Davon Anzeige bedeutenden Versuchen positiv wilden Ausnahmen organisiert Horizont Orten davor Reaktionen nach seltsam AP verstehen Bereichen August Fenstern ausgezeichnet Danach Adel Hochzeit behauptete begriff Kloster fordern Erwartungen entscheidet UN Nie sag erleichtern umfassende Transport unterrichtet ertragen normale japanische Telefon beeinflussen sauber leid Positionen Samstag Amsterdam Musiker Komm Fabrik Ewigkeit schritt merken Bonner goldenen Bach reiche Heiligen teuer vermieden empfehlen Mischung Situationen wohnte Antworten Reiche heilige gespannt schlimmer Ersten Kontakte Geschenk vorausgesetzt Bad gegenseitige est strenge Autos kalte Sehen Bereiche geeignet Angabe Adresse Schatz folgender heiraten Deutsch Generationen Eben Feier Weihnachten Hemd Tuch Versicherung echt amtlichen ausreichend eingehen studierte geplant siehst internationaler Wissenschaftler blaue Gewohnheit Bereits Gute wertvolle offizielle sowieso Harmonie bieten verheiratet Arbeitslosigkeit beantworten Dazu Werkzeug pflegen weich wichtiger stammen Momente ginge aktiven hoffen Unsinn Bisher sicher Kinde Chemie folgen besucht Spiele Orientierung Westberlin passiert Meinungen interessiert beginnen angefangen Speisen seitdem rufen Australien versprochen Anders Reihenfolge Einsamkeit weh Geister herzlich ganzer DIE automatisch eventuell Iran Nachfrage Park erkennbar erwartet schwerer gelben Schiller altes ungarischen umsonst wohnt Sitte hervorgerufen letztlich dortigen flog wagen Fernsehen melden solcher Asien Vielmehr Kolonien peinlich Kindheit Schritten Internationale Kredit verwandt Luxemburg vergleichen Steuer ausgestattet Werbung Lebensmittel Mitarbeit schriftlich Fabriken Bekannten vierte Goethes angeht deutsches Datum kulturelle Projekt Finanzierung Laune komm neulich liebe Will Konflikte parallel beherrscht leere geeignete Etwa aussehen Theodor nachmittag Villa Gerichte angekommen Argument Personal lieben steigen Leid Arbeitnehmer Miene passieren bequem Computer Krankenhaus Bezirk Armut entsprach finanzielle Lehren lege westdeutschen Eigentlich erwerben Wirken gesammelt spreche beschreiben Stamm fremder untergebracht antwortet unsicher Durchschnitt getrunken lebe verdienen Insgesamt individuelle merkt Erkenntnisse Dialog Veranstaltungen entsprechen entdecken entstanden Duft beigetragen Chancen besorgt verhalten Statistik lernt ordentlich greifen Einzelnen geholfen Hinweise erwartete abgeben verdient schaut Kredite aktive Arbeitgeber befassen Lassen Insekten Veranstaltung Aussehen freuen prinzipiell Essen davon tanzen helle Wiese systematisch studieren Aspekte Jedoch Entwicklungen bereitet erstens Aussichten spanische UND wirksame dauern Gemeinschaften Kleinen blind Katze kommst Daraus letztes seiten traditionellen betrachtet regeln Sogar frische unterschiedlichen Geste Brasilien entwickelt schenken sinnlos Guten nachweisen erlauben Leibe Garantie Ofen goldene gesunde geh geschafft Ganzes eigenem bringe unterschieden Denkmal Medien Schaffen riesige Preisen Dom interessante Vormittag spezielle geteilt Klima Kuba Aspekt Kollege Leere Kino entnehmen billig grundlegenden Respekt bedeute normal Suppe Unterschrift Besuche schnelle theoretische Mannschaft geschlossene Kissen drin blau Hotels begrenzt aufgeben nutzen Benehmen Melodie bitter bedenken Ingenieur Engel hoffen Alten Risiko gewartet erfahren Polens on angestellt schrecklich Sprechen Verstehen Alternative sozial entschieden sagst Nationale springt Korea Schlafzimmer schlagen Einzelne vermitteln Tabelle Hierzu Heim Ball wohnen Kommen fragen Takt Klavier Termin fortzusetzen Geldes Irak wollt bisweilen Bilanz Konzert Jugendliche Interview Beschwerden kennengelernt komisch Kontinent Heilige Wissen Darf behandelt Koch schwierige wiederholt unterschiedliche erweitert verhandeln Vorliebe Lesen bekommen endet geredet eintritt Hofe mindesten entstandenen befinden nah interessiert bereiten unangenehm hoffte ausgegangen nicht weinen sammeln innerer formuliert grossen Gebirge Brille nett Jahrhunderten wahren Willy gegessen junges Instrumente Langsam Institution sichere aufgeregt Unterlagen reichen Student Traditionen freut Insbesondere Hose Erlebnisse gefeiert billiger Guten beantwortet leidet treffen Aufschwung vermittelt Treiben einsam reden Ah gewandt danken organisieren beraten fortsetzen Nachteil au Klagen egal Arbeitszeit schreiben eine geantwortet bestimmtes geschickt teilzunehmen schlechter New Rad mitgebracht Export Wiesen ergaben Nehmen Gelegenheiten holt Obst freundlichen Erstens Innere weitaus Gute bekommen Ideale mach meinst erlaubt unterscheiden Distanz kritisch suche beliebt lese hiermit geschossen Rote warte erweitern Seitdem Sitten erfolgreichen entnommen Nachbarschaft Futter Noten Sicher ungeduldig Politische Lokal erschienen brauchst Geschehens Entsprechend Teppich entschlossen Anwalt Niederlanden Wohl wertvoll Mozart jetzige Schulz Hoffentlich Gemeinsamen widmen Blau Restaurant hofft ineinander Abreise erreicht Anfrage logisch genutzt verbessert Kulturen Hessen Spanier bunte sehn Platze hinweisen Hingabe Wollen teilen mitteilen empfindlich Sofa schickt kaufte Empfehlung dachten vermuten Beschwerde gepflegt beziehen vorlegen typische gedient starkes ruhiger einfacher gezeichnet Wende verzeichnen warten diskutiert empfindet lieben Feste Gibt Tun niedrig machst hilflos reisen begleiten Berater schreibe unterliegt negative umgehen ruhigen wunderbar Irland Willst angemessene Niemals Habe Entschuldigung Anhang kleinste ungarische reduziert Neugier Geht unterschiedlich Mexiko freue interessiert Genau interessieren verspricht Haaren wich Wohnzimmer lebende lieber Sklaven geschlafen Deutscher entschied Freuden Sofort begeistert unterhalten setze Geschenke freundliche Vorfahren gelitten Engel heben besprechen festzuhalten monatlich friedlich versichert versuche Bestehen verwirrt Mittagessen fordern vorzubereiten erfolgreiche anwenden gefallen eingetragen Bezirke Ferien Alltag Viel bemerkt wichtiges beenden Schlange negativ Daumen willkommen kosten rufen auszusprechen Abendessen konkret Raketen Weisen akzeptieren studiert erledigen Teils Beispielen Kriterien ma Herr gezahlt sinnvoll ist vormittag Erkennen Marokko Wegen arm Wichtig isoliert wiederholt Elbe voraus Flug unheimlich Spielen sparen heutzutage Berichten Richtig Gastgeber Werten Schwere schauen Gymnasium herrlich teilgenommen Jacke oftmals Stefan lokalen umfangreichen fliegen Meist Vereine Fliegen ausgezeichnete Beethoven grob normalerweise hinterlassen Regionen geheime Heiligen fahre vorzustellen Nachteile total unterrichten Bezahlung Komponisten Tabak Projekte Lebensbedingungen Schopenhauer dulden Sendung Rathaus dichten angesprochen erwecken international Warten Strenge Start Erster Verwandlung besonderem Kummer betrachten funktioniert Engels Kanada andres Details irgendwann reagieren Nachbar genannte bezeichnen Grammatik schlechter Brauch Lehrerin Budget schwieriger psychische Baby Allgemeinen Erleben folglich Kennzeichen mitnehmen gesunken Enkel Abgesehen Mach Schwerpunkt behaupten gekostet korrekt Dienstleistungen akzeptiert Schade unbekannte lohnt medizinischen Wirklich Wohlstand Karriere Bruders Agentur Gabe Mag Geh besitze Stehen los Hof erwarte wechseln Software Ostern Strand mochten ermittelt angemessenen lehren Freie gefehlt offener kostete Schwein indische erinnern passiert heben kriegen anderseits Bekannte Mitarbeitern erkennen Motiven Kuchen Sagen Olga Terrasse bester Besonderes existieren nenne Nordamerika jeweilige greifen niedriger waschen kauft besessen Internet Party trinkt langweilig jugendlichen Tieres brachen intensiv Enden Wiesbaden beibehalten Morgens Original gewohnten geweckt Weinen informiert Taufe Mutti Siehst Oben Schulung Gunst Museen angegebenen Vertrags vergleichbar Reis Eingreifen bestanden musste Sitzen anbieten gelacht Gefallen Kerze Ja bemerkenswert Tiefen beherrschen entwickelte Weit Besondere Minderheiten Barcelona wenden ruhige unentbehrlich Katharina feiern Anzeigen geheiratet beschriebenen Balkon enden freiwilligen Freud Vielfalt Ehepaar stammte bestimmte nacht vorbereiten Becker vorgehen Moderne schaden dei Arbeitslosen Verwandte besseres Sinnen Junge Mieter sollen Hohe begrenzten Regensburg fliegt relative Sizilien hoben Serbien grosse oh psychologisch Ehefrau Atelier beruflichen Fach Spaziergang freudig schade Kommt Leber regionalen CH Einfachheit Engagement verpflichtet Regisseur schlechtes reichen Hirn Sage garantieren gereicht Kandidat vorteilhaft sicherer Seide Vorfall wandern Kurse Offenheit Kriterium Freizeit do anzupassen Arbeitsplatz bekomme englisch Wiedersehen Bette Lange einigen benutzt Trinken Nachdenken Katzen GmbH Wichtigste angerufen geduldig Reichen Unordnung steigen verbreiten Angesicht lernen hie kluge verbracht einfacher Trotz Religionen mittags teilen verbrachte herrschen Seife beherrschen Nein anzufangen radikale Kochen denkst Daraufhin erfahren gehst Architekt Entstehen Gewohnheiten Gemeinsame spazieren aufstehen Wohnsitz antreten Institute passen beleuchtet Grimm Kleinigkeit Berger totalen Auftrage schlimmsten verbringen betrachte als unsichtbar aktuelle ferne Besonderheiten Hab Betreuung begrenzte gemischt gestimmt Einwohnern kompliziert Weiterhin wohnen gelassen alleine erreichbar Daran Glauben abgelegt erwachsen beinah Bewerber Ukraine Minimum sollt Vergleiche beherrscht betonen Eden Schokolade Sei Varianten erwarb Service dran erobern Lernen Rate pflegen definieren erwarten unterschiedlicher Auswirkung Quartier Letzte flache getrennt Lagen komplizierte Wochenende Suchen Beste Seen Schwager Einzug Kannst Nicaragua Unzufriedenheit verletzen Luxus Rufe Kompetenz billige Kunstwerke Konferenzen erregen Krach schriftliche ideale Los sammelte wechselt Kambodscha si Sollen grobe traditionelle tu Wunsche ausgesprochene versichern orientiert Beilage abnehmen Erwachsene leichter schlage gewechselt wahrzunehmen hoffentlich Umgekehrt totale verloren Klein per regieren Toilette Solche bestellen Dante Kluft Verschwinden gesperrt kennst Erzieherin Bar Albanien helfen verpflichten verlieren Tausend bekannte Semester Mexico eingehalten Gar bunt Interessenten Landsleute vertiefen produzieren Freie Verpflegung Besseres besetzen ankam Vergessen gib Nachher erstatten Langeweile wiesen schen gekocht maximal Sekt Miete Bezirken schrien betrogen Wurst feiert Herausforderung kriegen Besser angenehme verdienen Ratten Fotos Technischen Schlage Fort Paare Schnell ankommen Jung Sollten Julia unterbrechen formell Saft modern Historie Anne esse medizinische seltene Vorher Dolmetscher geographischen frischer gedenken Toleranz bar Entgegenkommen Wollte generell Industrien festlegen volles herzlichen Schlachten Somit vergleiche eingreifen Fahrrad Versprechungen organisatorischen bezogen Marktwirtschaft Perspektiven Siedlungen Gib Telephon nimm Richtige richtiges Eins rufe Fachleute Anderen lokale spontan mittag Linz Dorfe Freundlichkeit Dritte sprachliche Ostberlin Anfangs Konto SPIEGEL beten begegnet geachtet schweizerischen unglaublich gewaltiger informieren einheimischen streichen ablegen tauchen Spezialisierung Weiterbildung orientieren Vorurteile Ankara Hast geforderten schreckliche verlorene arbeite Allen passen Deutsches ablehnen beraten erinnert Mitten verwandten Sicherlich treiben KM man einsetzt Trier streben Sauberkeit berichten Portier dringende drauf extrem hervorragend entwickeln Schafe lateinische Los betonen Abends Freundinnen lesen Backen Kriegen so Erfolgen Slowakei romantische Winters Litauen Speise faul vergleicht unterschied verbreiteten Sag Halten lg interpretiert Gerichten Abfahrt Wenigstens unbedingt besorgt weltweit Kompetenzen beleidigt lauten anpassen Riesen intensive behilflich Tragen verlassen anziehen bereitet solltest lebend Starke extra werd Foto teurer kochen schaffen Machen Anruf bewegen Wiege bitten Bereicherung Angebote vereinbaren ab fordere Verschiedene Latein Technische Bureau Heine be Un Bissen Sieht komplexe Orient bevorzugt beklagen Touristen fliegen wende lauten weise Buchhandlung Lange Vorsprung bearbeiten brav Kur respektieren verstecken senden Komplexe Dortmund Verlassen Forum denk Einstellungen passende Spezialisten schauen Links hinnehmen anrufen General Bedeutungen wahnsinnig steigende sympathisch Flughafen Morgens durchschnittliche wolltest aufpassen bedeuten Ausstellungen geschilderten nachdenken Peru Rotwein erfreut vereinigten auswendig grad privat Schlimmste Lesern Salat beginne verfehlt sage Profil seht Wolle Vorkommen MA Ausflug erlebt Englisch anzubieten erlassen Besichtigung sorgen aktuell Panik Konflikten Kleinigkeiten klagen Entscheidend islamischen Branche beigebracht baldige Vermutlich gleich teure trinken unzufrieden lernten einen Hunden erweitert tiefes angemeldet schadet Tom DES abgebaut berufen Stimmt klappt Schlafen Erachtens Abitur Einwanderung wiedergeben lustige spiele erlauben viermal Besten Unterkunft identifizieren wechseln nette bilde gewinnen Ebenfalls Berufsausbildung vermittelt Oma Einerseits vereinen frisches International fertige vorschlagen ausgeben fremdes Nachwuchs erwartete Lebenden zahllose ten Halbjahr Dokumentation Bitten Kommt Husten bauen erstattet existieren meinen Bus Eintreten Kleinen KONKRET streiten Bleibt toll erheben berufliche Sektoren verkaufte Programmen Nimm merke Neuer Wenig Irgendwo Thailand Kopie uralte Lediglich bereiten Gans Fahren Kamin weint geflogen Pfalz Vorurteil Fasten Neu Muttersprache scheiden Neuen erfreut Betrachten beantragen schonen entsprochen Lange Fremder Fliege kennenzulernen Museums Hingegen falle jugendliche Englischen Deswegen Weltwirtschaft auskommen unterschreiben nochmal Is verbesserte Ausweis Argumenten drittens Dana gelandet Fallen Soziale nachgedacht Befinden Waschen Beste Klar hoffentlich sprachlich echtes rauchen St Aspekten Kandidatur bewohnt Siemens anhalten Einkauf Momenten Ach Mars Job schwimmen Taxi Sagen tschechische Etage ER festes Einzelnen einladen vorstellt beweisen Konnte Meier erwarteten Aufenthaltes demzufolge beschlossen Arabischen Rauchen Bleiben Allgemeinen verschwinden mitwirken Nichte integriert Partnerschaft belasten rechnen erholen werden vertieft leiden Losung Hilfen vermeidet Patriotismus Laufen Sehen Warte diene Hunderten angenommene Volksschule Filmen umgehend nirgendwo Restaurants verhalten Sprichwort College intensiven Schachtel Seht kaputt unbestimmt Vorabend orientiert nahe Vereinigte Wichtige Venezuela kostenlos betrieb liess genauer achtet lasen Au schritten schmutzig Hunderttausende vermittelte Sucht scheiden Nord hingehen Wolle engagiert begabt heisst Schinken getanzt funktionieren konfrontiert geschrien Vertrieb Pech Berufen kennenlernen Heimweh respektiert erworbenen holen gezogenen Liegt eigne Bayern voran mitbringen verwandte beliebten biete Gemeinsam FRAU erleben Nigeria WO essen erkundigen kontinuierlich Fax Wesentlichen Kamm KB erfinden Interessant Rucksack befolgen bauten richte Worauf erlernen aufgewachsen Hofmann Altstadt Kabel ansonsten entsprechendes Erlebnissen Tourismus gefreut hole Bemerkenswert war Spiegel Meinen breites angehen ablehnen Dialekt Internationale merken Folgende andernfalls dortige offenes werten Studiums Wissenschaftlern erreichen beiden Allgemein einzubeziehen Beliebtheit benennen leisten Prestige bereichert Nimmt Bekleidung angebaut falsches freuen schlimmste nimmst besichtigen Irgend kochen lachen Trend band bestens Gummi Steht Westeuropas abholen Club treffe umzugehen Umzug Jungs Arbeitseinsatz einzuhalten brauchen Besitze Lamm Badezimmer geehrter langfristig Opa Tanzen laden Main Sonntags itvor interpretieren Kaninchen Kolumbien kocht raten Auswanderung Themas Inserat hat bezeugen tragisch gereist stimme Meistens ausgesehen Tageblatt Lang verbinden landen weiss Denkweise wohne kriege Quadratmeter dynamischen geschlossen Qualifikation Vierteljahr Funktionieren Besuchen DAS kosten weise unbequem vorlesen auszugeben Gesuch Keller Pazifik umzusetzen putzen problematisch gerichtlichen Wichtiger baldigen herzliche ausgesucht enorm afrikanische Gleiche versichert einbringen English laufe Kurze Aufstehen Inder Dekoration kritisieren reist reserviert korrekte kombiniert Eher teile Freiwilligen Sagt eroberten schweiz schwierigsten Alex Heizung schnellsten besucht magst Feiern Denk formuliert erwachsene Wesentlich raucht solide sein dramatisch sinnvolle Selbst Tags Perle stammen Sag Schriftstellern schlesischen Schlafe eigenartig Drittens erlaube verwandt achten optimale Diskretion Gesichte aktiviert Kennen Neulich solche lieber Rufen Entscheidende anordnen To Lieferanten Kenntnissen Feiertag gekriegt behalten Niederlassung DE Folglich Alt verpflichten Seine VI bedeutungsvoll anzeigen dauerhaft Jemen schweizerische Wichtiges Mittags wertvoller schicke empfehlen Motivation schlimme mei findest Hinterkopf Schaum momentan Offensichtlich Setzen Krankenschwester markiert kulturell Besten Reizen Festes beizubringen Schwimmen Daran Mindestens Andre Eigene Tief Goldenen Schwere riechen melden Werks globalen Gasthaus Gewisse IN qm Geschwistern Aufenthalts Dialogs Kinos wird fange ausgebildete sammeln Karneval Bar Art Irgendwann geehrt wiedersehen mitmachen dichter folge gerichtlich Quadrat vergesse traditionell Erinnern Informatik Verwahrung Schumacher Dei Festen Genau frohen Ostdeutschland Angestellter meiden Leicht gesprungen schlafen Kindergarten anschauen Vereinen Kanne Post anbietet Lieben perfekt netten vietnamesischen bleib ferne mitzunehmen vereinigte schreibst regen reagieren Termine reiche aufmachen gesundes reizt spitze elektronischen ausgezeichnet gebieten freundliches Kartoffel helfe verwalten naher main raus freundlicher Lebenslauf Still Mutterland leide Laut ausgegebenen ausnutzen Kolonisation Kommunen Vermieter Hiermit verfolgen Geben ostdeutschen entdeckt sicherer Wissenschaftliche Stadtteil Madagaskar us Bestes sobald Fang wundervoll relevanten ausziehen Frische unbegrenzt Bewahrung Unterwegs schlafe entsprachen Privatleben heulen niedriger Eigener Selten Spektrum achte vertieft beleidigt Hoch Schlagen Affe frohe Schwer beachtete arbeitslos Einzelpersonen Bleib hilfreich nutzte Uganda interessieren Hin auseinandersetzen Rundschau Raten wand Tun erfahre Mithilfe aussuchen Kleiner bunter Hart verkauft getaucht ledig psychisch Tu Globalisierung Irgendwie Vorsichtig benehmen Erwarten bezahlte Kroatien weisen Option werfe verbreitet diskret Kenia positiver Sammeln DOS Ca Handtuch behalte antworteten bevorzugt benutzen Daraus Lieber reizen Rio Osteuropas Geheime Heimatstadt Praktisch zahlen ganzem not Kriegs einheimische kenn fragst Schleifen unwichtig Inserate Mieten Meinst komplett Schal KaM Unbekannte Meinen trinke kaufen Strasse Schultz sechste sonntags wusste Goldene Garage Jens Tiergarten Vorort Preises empfehle einziehen Reich Kinderzimmer elektronische unterhalten tolle Verkehrsmittel Steigen Tobias gibst NZZ administrative konservativ verhalten Kleines Fazit gemietet klingelt telefonisch Gen sog existierenden heiratet bevorzugt Infrastruktur Schenke Gab Fernseher New definitiv probieren wertvolles Ernst Schauen Erreichen Kosovo Etwas Berg unvorstellbar Anderseits Innenstadt herrschen stecke Hoher Gepflogenheiten Eingehen mangelt bring find Buchhalter Rechnen Wenden Vitamin Neuigkeiten May Halb Samt tags Genug anstrengend verschmelzen lerne gleichen pflanzen Studio verwenden Neujahr Handelt plaudern anzurufen Beispielsweise Schulzeit Spree Hofe Air Andernfalls modernes einhalten Parks Liebe Fotografie giebt Visum Absolute handeln Bauen hatte Gedenken Studierte riesiges erworbene Aller Frei typischer SO verraten Moderne Kellnerin Helle Plus antworte dichter Si mussten Hauptbahnhof dauern Hase erlernt Packung berliner haben behandeln Landen Heulen brauch feierlicher SCHMIDT raten abzuholen seltsames Englisch bisschen Fischer Sibylle Oberschule bekannteste verdiene beziehe Deutlich News Krankenversicherung In Badewanne Anrecht tollen Setzt Ober Historischen Postkarte rauchen Bracke Kahn gross Seide Elektronik vorletzten Heiraten betreut Wollt Begreifen vermute abzubauen ausbauen lauten darlegen Schweizerische Geben Unterschieden tauschen Familienleben Denkt Mann Wirtschaftliche transportieren weiterentwickelt Hamburger EU sorge Vorstellen Besseren klettern Labor Parallel Kanton Beten sind Schimmel beschweren hessischen Bekannt beriet interessantes danken profitieren einkaufen begrenzt fortsetzt Umgangsformen interessanter versprachen Lebensart Geborgenheit regionaler Jungen Einfach kaufe Polnischen neunten Geschenken MANN ausruhen effektiv vorzubringen Entbindung Gern Einheimischen beinhaltet Hundes erfolge anerkenne verliere ideal feiern Betrages empfehlenswert Seltsam trockener schicken Michail Blaue potentielle optimal prima bevorzugen wars Arbeitsmarkt bedanken Westberlins Ansonsten normales streiten Lektion rate Tut ferner angestellten Einzige lockere unfreundlich pure Sex Historische versichern Neustadt Istanbul schaue House Vase Genauso Ging Elektrotechnik bestimmten erwachsen langwierigen auszutauschen Winter Frisch Roma fachlichen Einfluss entspannt Management klagen teilweise Konzepte Central bedeutet Fragt ge sprache AM Erstmals Team gegessen feierten Schwimmer ausbreiten Praktische russisch woll fachliche beruflich Lift monatlichen vereinigten Server Wohnort passend schwimmen Wortschatz Kanton On konntest verheirateten Beweisen Innere auftreten Grippe Kopftuch Hundert Werden Extrem Weh herausfinden Gitarre FRAGE Stadion have Notwendige Deswegen Freundschaften fiele Glaubt Hinweisen Wilden Filiale passe Taschengeld geeignetes Feiertagen gelungene intelligent Schweizerischen wundervolle Bestimmtes Ritual Stolz Hospital Faust Kollegin umgeht SIE technologische integrieren ruhiges Schluss Manipulation Einwanderer bewahre nutzen spannend Finden College Vergleichen BMW planen Bosch Camp wertvoller Letzten Bewerbung Schlechte Gestern Fr technisches Isolation massiv Bade Stark will beauftragen austauschen privates Nimm Feuerwerk Bisweilen Kennst pries was Geburtstage studiert erfahrener Beginnen motiviert Erkennung Feiertage beobachten aufgestiegen angeeignet Papagei Postkarten Institute Place tagen ERSTER stattdessen Dreimal koste Englische Optionen Weltmacht heimische Hardware Falsch Pflegerin Folgende ausbilden Mochte Mache Lokale qualifizierte begeistert Langen Absoluten Wandern Ma Kneipen Grosse Office originell wiederzusehen benehmen Bestimmte Via speisen Gegebenen Cousine anmerken Komisch ander freundlicher Assimilation alle Sicher entgegenkommen Kultusministerium mitkommen vermitteln weiblich berufen we marokkanischen mexikanische bereite abschaffen Science IM gesprochene interessanter bezahlte bestes Macht soviel aufgeschlossen Soweit gewundert loyal exportiert Studentin sehn da durchgehen gebt Gebt anzuschauen besessen variieren Briefkasten Sinnlosigkeit entschieden einschalten Bestimmt backen obligatorisch fachlich traue Oberschlesien Chinesischen Greifen par Sibylle deutschsprachigen Umfeld teilweise Spanisch Mehr Angebots Storm absolviert Brasiliens Fantasie Photos Ab Christlichen Gleichen Russland Babys Heimatland Hausarbeit Russisch achte Bon armenischen Wechseln befassen Volksgruppe ereignen verbringt Wegs Stern Normalerweise lohnen haste vertrete Bringt Gluck Aussprachen Delhi gucken begreifen verwandte schenke Kleinere Kurden stell Lehrgang preisen Einwohnerzahl erstmal Sagte Gewinnen bringst Ganze Grillen Aug jetz ausprobiert passender Haustiere Besteht Dahin Liegen alternative Wissenschaftlichen aufziehen grad verbreiteten anmelden Leisten Sog Grundes organisiert Russische italienisch diversen Diplom Andree Andres Lauten idealer Vorbei Gemeint Erstattung niedrigere dynamisch gewissenhafte Entsprechende einleitend Makler entschlossen Fremdes Absprache DEN Datenverarbeitung wunderbarer Direkt Sauerkraut Agenturen mieten Diana laden Einfache Aussterben Findet Nam reparieren hinterlassen bekannten Aktiven Geburtsort Guter em Nichtsdestoweniger beleidigen hilf beantwortet Stell Sparen Medikamenten Anschauen betreuen qualifizierten stamme Wohnungsnot schwieriger Abschluss Vorlesen schreib Basler ch eingestuft gefreut ES engagieren Meisterwerke ausserdem Modern Palme Lieb Mail Gegenseitige Ostblock angeschaut Westdeutschen entscheiden investieren nachlesen Fischers Wohnen Balance Letzten Lade mann ausbilden hausen Fuss Mob elften gratulieren Notwendig Bundesbahn vertrieb Kam Klappen Hoffen Schauen gesamtes teuersten Neuem Alls Parkplatz Will vietnamesische Umsiedlung Beobachten Denke Eins Be entscheidendes Dichten Bleibe EMail mitzubringen Kluge telefonieren Schlechtes US anstrengen Computers melde selbe lokal Vati Besondere Wollten Heben mobil Aufsatzes unterschieden asiatische Erinnern Lieben weiter Reine bad Bangkok Schlimmer spanisch Uni verschwenden wandern Nahost Exkurs nichtsdestoweniger einsteigen verkaufen Volkslieder schreibe Kaution reise obengenannten schwieriges Gemach super letztemal Weiteres Echte weitergeben SR nettes Fahrkarte bezahlt angebotene gebacken beklagen Kaufpreis abenteuerlichen unternehmen siebzehnten verlockend Positive Angeboten planen konventionell Dusche Besonderen interessiere Anziehen bewusst Ehrlich Spezialist Gaste Italienische Muslime fahr Entschuldige Arbeitstag billigste wagen eingefangen produzieren prima Wetters Komm Gross reisen Opel geheizt beschreiben Datums Monika Bekanntschaften Konfirmation geschiedene Schenken Negative Solcher Junger Falsche Bella bon DIREKTOR Silvester Garn bekanntgemacht Ungarischen unterrichtet Realschule andren lehren Rome such Beilagen post Unklarheiten Individuelle Neustadt begleiten Beginne Herausforderungen grosser Teilweise reduziert beispielhaft Bahnhofs Computern krieg Italienisch besuchen Polnische Einzelner Betreuer Tomate Do Strassen niedrigste Egal Fremdwort erleichtern sportlich polnisch Funden Negativ repariert Erlauben Verboten erinnerst Treten Word Fehlt Studentinnen RS schwierigste ostdeutsche attraktiv Heine Ich Box grosse SHULTZ Service OH Folgenden Liegen Denkern achten Vielen fanatisch gleichen regional Lebenserfahrung Miteinander Fachschule Wunderbar Betrachtet bewerben kriminelle Speziell Eigenes schen Hoch Raus its ausprobieren Pkw Kuchen nehm Nord Ansporn Sardinien vereinigte Italienischen Willkommen wissenschaft Centrum Stamme PL Kolleginnen bewundere Park anspruchsvollen flexibel Ostblocks Offen Kontrakt verloren Tokyo voller Pech ausverkauft verpflichtet grammatischen beteiligt einzuschalten exotischen Letztes enden Hell unbequeme ANTWORT grosses gebraucht tunesische senden Itsei GENERAL unter garnichts dauernd Dorthin Tanze Biere unangebracht schwerster Radikale suchst Klare Eins has Hie ergreifend Entsprechendes Stadtgebiet Spanische Folgendes Kannen weiss schleifen kW regen totes Einatmen Anhalten Feuern Weiss Defekt Aquarium Cd Arbeitsstunden Auswanderer unverletzt minus Privat Erscheinungsbild Streichen Geboren ANNA Order AB theoretisches annehmen Lebensstil abbauen sondern schicke Habe eingeschrieben Geh Okay Jobs kommunikativ verzichten besuche Englische gelernte differenzieren Clubs Gehe klappen Abnehmen Lassen sehne Euro Lebt angst auswendig Legen Seher mitmachen trunken circa Des Stadtrand Knapp vertraut Privaten damit auslaufen system schlag Stellt Spanischen modernste Weiten Einstieg Ostdeutschen Anfangs Kusine harren Falls welt gewandt DEUTSCHEN Schneller separaten Schwager kennenlernen Medizinische Kindesalter Mach ertragen entschuldige THEODOR DB art litauische Beiden beten Nahe Helle Einsatzbereitschaft Anfange Lebende Po geschmeckt Gebrauche vergessen Auskommen Anderer Lokalen Planen schick Mal vie Ganzes Population Umsonst Fahrkarten liebevolle Nennen verdient wurde Voll Do Helferin Stellt KG Nirgendwo regeln Modernen Viet Aufenthaltserlaubnis lauf Geschossen Stattdessen MIT Bringen erledigt Arbeitsstelle koreanische Formulare Ausweise Erlernen markiert Hase Hallo Sprechen schlaffen schlaf Grundschule OB eingeschlichen Annonce ende Total funktionierenden Befremden Heutzutage probiert Kommenden Wiederholt Innovation kanns Hertz Fried Katz Dan Aus Sprach Offene ST Richtiges gucken ergriffen vermietet Tot par Radfahren Anzeiger Festtag Wiedersehn Wertvolle Kommst Putzen Anlass bild flexible Chips angenehmes entspannen akzeptiert International Armenien Halte Fern Kam Telefonnummer Spielplatz Stadtteile getestet gebucht gelaunt global Aufgeben Krankenhause wunder aktives Kennt dos perfekte trink Sollen billigere versprochenen sprechende Kantons Oftmals Industriegebiet Ungarische unterlagen geehrte Ausserdem landen Kalte Altes genau offener Schattenseiten Sommerferien Fertig Bedeutende verstecken Wahren Davor Fremdsprache Verkaufs Chinesische billige passendes beworben erreiche Scheiden vermuten verstehenden eingekauft kroatische tausende Normale Vierten Bracke weiter Mei Germanistik Genannten Kommen schade habe Katz Einkaufen Gesellschaftliche Generell weiterzugeben Folgt Interessantes teuerste Blieb Fata preiswert Meerschweinchen Mehrmals schaden Voller Schnelle Solchen Vergleicht Familienkreis alkoholische Verstecken umziehen Vorname Reiche husten informiert Stadtviertel new Spricht Ruhig Medizinischen durchsuchen behauptete Schrieb worden Bunte Hobby aufgeschlossen freundlichem aufsteht separat Schaut AN Segment wirklichkeit Ausruhen vielmals interner Traurig Lang lade Salat Sage AUF kommunizieren weckten Kleinste Prinzipiell motivieren verreisen Letztlich klettern beleidigen Richtige feuern Gesunde Assistentin entscheide motivierte Bessere beendet Versteht solide Technology gratuliert auswandern klarstellen Falsches bitt Allgemeinbildung wahnsinnige bezeugen fasziniert Helfen FISCHER Schaffen auseinandersetzt ausgewandert Burger Ruhig Hilf liebst baue par Informationsaustausch funktionieren absagen Kaufen flucht alleinstehende beschneiden Bozen Linguistik gehts Schrecklich fliege aussprachen interpretiert Diaspora verbesserte exotische Nehmen Liber Mitt Ratschlag Stadtteilen Schlimm EIN Bestande Museum We antworten Genauer anfange plus Kulturleben schlachten Herzliche bezahlen Erinnerst Liebsten reichere Prozess mia Betriebswirtschaftslehre Schlesischen Schlecht Gilt Volkshochschule verschmelzen wohlhabende Besonderen Konditionen absolvieren schlimmere Bars Gelben gebrauche Jetz Vermeiden Mietzins vorhat Arme Weil gratulierte ehrgeizig may langfristiges ukrainische schenken Herrlich Merken Nachbarland verstanden verhalten bezahle Konkret Denkst Alt Genaue Offenen Gerne elektronischer Immobilien Kulturkreis verbinde tolles Good Sitte Sitzt Weinberge arbeitslosen mithalten Nairobi Lesen solltet dB Schlimme Schreib vergleichen ehrgeizige erregen Morgen good bedauerlicherweise entwickeltes besuchte bestellen aufwarten Ge Ch umgezogen gar akzeptiere Streng Verkehrsmitteln Hochhaus kulturelles Komme Bali Her Sportplatz Auslaufen Schweden All deutschsprachige Einsteigen Mitarbeiterin schlesische berichte Klettern Data ruhe hilfsbereit Studienzeit Religionsgeschichte bevorzugen Verlockung okay promoviert Achten Alter Schlechten Cousin ICH sparen Lebensbereiche Nachteilen Voraus Rusch Vierte Achte Tut Studienjahr aufzumachen frischer Stell Entscheidendes Pollen Putzfrau Vorausgesetzt fertiges hochentwickelte strukturierten orientieren melodisch Absolut Dachte Kundin hand vitae hinfahren Sehn preisen studiere Banane wurzeln science PERSONEN Super Sehe Vergessen Langer Japanische Journalistik Unendlich einatmen Plaudern Reicht sende Raus Studieren kompetent Internationaler Herzlichen Anschluss Ausblicke vermisse Heeren Mehr ville Sozialen Ober angebracht gratuliere Demzufolge Lateinische menschen bereichert Kummer Passen Aktive Halbe Visa Las anruft Sie Sprachkenntnisse erledigen original weiterentwickeln Theoretische Ineinander sinnvoller Machen Braucht Tourist Leben Hoch geregnet grosser messe waren Unglaublich einigen Psychische Vollkommen Normalen Verlorene fang Villa passend Spezielle Einschalten beherrsche vermeiden schriebe schulen Leiden Positiv Wesel Kaufvertrag informellen ruf Stadtzentrum Gastarbeiter Schreibe MARTIN Sozialen DEM ORT einzigartiger Tagblatt Familienlebens Einverstanden Heimatlandes verhandeln verbunden verbreiten Probieren vermieten Konnten tauchen Wessen Wille Rheinufer Scheint Streite aufzupassen musst Language Lege Wertvolles unwohl befristeten Schick tanze geschichte Fingers Aserbaidschan muslimischen wohl Erfolgt empfahlen Urlaubs TU Kennenlernen streben mittel Bank India Aufgabengebiet vorzufinden frauen KONKRET augen Privatwohnung Motivationen Hessischen Falschen Finanz Minus Eng pauschal Sieben erweitern arbeitest stabiles tolerant Ausbildungszeit ungebildet Heutigen Ablegen telefoniert verfehlt form Ohre Soll very Haustieren Achtzehn variieren ermittelt beliebt verantwortungsvolle Einziger eigner SOHN sont unverzichtbar verbessert erwecken studieren Halten Notwendige gewachsen eingebildet Schwimmbad Offizielle Gesamt aufgegebenen gefeierte og alternativ verletzen Brauchst Erhalten Haustier Wonnen Wartet harren Faxen idea Privilegs besorgt peruanischen Temple wort Beschreiben Duschen renoviert Leichter Wetter alls Verantwortungen Mietvertrag weglassen Regieren Sehne Clan spannende Vorspeisen Sonntagabend Eintauchen Erstaunt wolltet decke Fahr Weh land telefoniert fasziniert eingeben gekaufte werten Hauptprobleme gewesen mitbekommen kommuniziert unterschreibt besetzen Antreten Weiteres arabisch belasten Lichtbild Weise Fluss Kahn Lebe Afrikanische definieren AUS Leistungsbereitschaft probiert Islamischen sinnvoller riechen Lehr Aufnehmen anfallende Gleiche Trink Argumentationen Arbeitskollegen Vorgesehen Ingo preiswerte Doktorarbeit Fachwissen beibehalten Ausziehen Passieren Peinlich koche Schulbesuch Gehst Nachmittagen religion anfangen Landessprache Spielt REPUBLIK Klassenkameraden Vollkornbrot Verhandeln Praktikum Eventuell Hamster Findest Merke Prima schal Tram ERNST FRANZ Schuler Badeanzug verbringen gibts auto respektiere verbleibe Anderen Mochten hinzieht Hinaus House Freut Dar Mia elfte Gans Streu Wohnungsamt Lustig must Handelsschule nachvollziehen obdachlos trainieren sammle Email lernst Verbs also hatt unfreundliche defekt Chefin Cola Ir Ausgehen unterschieden Verantwortlich Einheimische bestandenen tauschen allein Liest Nike For fremder betreff Schreckliche Ausgeschlossen Bundesgericht gleiche Typische Orangensaft profitieren kennenlernten Arbeitsleben verschicken lehrreichen Freundlich Dankbar bewohnt Machte Direkte Kamen wieviel Fust Net Art fahrt fall VATER satz Renovierung spiel Ansichtskarte Einsam Echt vie Setze Einzigen Einzelperson were Waschraum Bedeutend Erlassen behalten Werder betreut wohnst Rituale Kleine reizen MORGEN Schreibt Marketing Schwierig Geplant Hochdeutsch Besonderer reichend heilende Brauche arbeit Schweizern GROSSE Schell CHR gestalten Buchung eigner presse Elektronische verzeichnen Brauchen Bedeutet Laborant Merz passt ALS OG Km DA verraten akzeptieren Sage durchschnitt kurdischen sichere Wirtschaftlichen erforschten fasten AH Morgenpost Fremdsprachen Komplexe Reisekosten Erscheint Verboten Verstehe Keinerlei Indische Relativ Haste Pro GENERAL hingeht Verfolgen max Rechnen Aktuelle Erinnert Wertvoll Hute freu Schlimmsten TEIL EDV garantieren Bewegen Eigenen Strenge nor hochdeutsch Behandeln betrachtet Wunder Bilden about Wahr Nich Info SCHWESTER Sowas tanzen Ausgezeichnet Absagen Umlage Magst Hausaufgaben Knapp Collegen Arbeitszeiten Verbinden Klaren Lasse viel Culture Grosse Freitagabend ausgeliehen regieren Metropolen priesen Gegeben Steigt Aufpassen beliebteste Istambul dichten Krank Aber Supermarkt Betriebswirtschaft Souvenirs Grossen Garden PARIS EINE Hilf Luxembourg eingebildet Hilfsorganisationen Historische aktuelles Radikale wurzeln trainiert Leserin Letzter sache Froh ok wussten worte sont physik eingefangen Besprechen positiver Steigen Entscheidende verabreden unsauber Versucht einzieht Winkels Traums Miene Voran Bitter kan Befindet hilfst DOLMETSCHER Studentenzeit Selber Grille Verstanden Entdecken Verstehen Dienen Freuen erlaubt Priese online lass wo filmen Ruft LONDON Setzen staat Beginnt Typische Ursprache Asiatische schicken Tauchen Einen Fand And Abs Grob FR tag true Notwendigen ruhiger Heilige untersuchen Produzieren Leserinnen streichen einander motiviert Popular bestelle parken Parken Wilden Daine Lieb Kalt Seltsames Bildungspolitik general Klingt Bedauerlicherweise Interessante lobenswert Hausen Mantel Haben Ehlich Melde Diem Weill ohn Telefonieren sogen Gesunde Sauber warn Wahnsinnige Riesige Verheirateten assimilieren nachfragen isoliert Danke Denke duzen weile zahl Erforderlich Schimmel Online Order Such teueren Nachbarinnen Italienische beleuchtet Beachten dominant Behalten Erinnere Weitaus Fahren bunter Maine Roma Denk bella ober wills passieren exportiert verkaufte DICHTER Schwerer Ausgeschlossen Montagmorgen beantworten aussterben trockener welschen Yorkshire beraten Bozen sicht Nachfragen freitags BUCH WELT MfG PO TV Hilft ser ertragen MUTTER Hochachtungsvoll hinterlassen geniessen Badehose gangbare Franken Finde Dran Gastlandes Gestorben Schicken Ganzen Solltest PKW DO Sybil see moment Kundendienst erwachsen Kriminelle abschnitt Positiven winters Besitzt Weis Volle tisch kind alls Toll Negativ identifizieren Schlesische Ganzem Sollst sprecht po genannter Interessante kennenlernt Entschluss Entwickeln ausbreiten hunderten vorbereite Kulturelle Blaue mongolische Vergleichen Unbedingt Freitags Bring Krankenpfleger Seht BEI IST Geburtstagsgeschenk Arzneimitteln Kondition ausleben Kubaner verleihe eben Liber Nah sinn Aufmerksam Ungeduldig Abgelehnt Aufziehen Anzuge Junges Schattenseite Global Wohngemeinschaft japanisch quellen Samstagabend Spanischen natur stern Herrschen schweizer Benutzen diskutiert Arbeitet bischen Fordert Machst bissen Lieber Warm Liebe her informieren Hoffen Psychologisch geregeltes Eigenartig Reagieren language MONIKA Frage Shultz Ste Sogenannte Schlag grossem werte Problematisch Modernes attraktive erlernten Herzlich Vorhand meiden backen service weiten Ticket bau Einbringen engagiert Streiten ACh Erfolgreiche nachgefragt Geburtstags Spatz Fachkenntnisse vereinbaren verlockend tolerieren Dauernd situation heiraten heissen wurden Richtet bracht Hunt mai Informatiker Kaufe NACH HA IR ausgeschlossen verbringe Logisch Handy Einschiffung aufgaben Weltsprache trotzt Unheimlich Abenteuerlust Brasilianer Einhalten erwerben Brache March Lasse Wicht Links Loch blick here Erfinden kaufst Ostdeutsche Schachtel Gold Verbringen gesicht Bringe place Gegebenen schrumpfen nutze rat Unterscheiden Vorkenntnisse Landeskultur bestandene kritisieren Verlieren erobern sinnen werde Werd haus Aller Brav Silvesternacht Ofen GE Angenehme beantragen gedenken gemach Angefangen korrespondieren nachschauen Praktikanten muslimische Verzichten adressiert Einziehen beurteile Teuerste allererst Nahm Holen Tel Betrifft Schlechter ERSTE Schickt Stand DREI Freiwillig gekriegt Lustige langen giebt Entspricht Gewaltige Freundliches Bearbeiten Italienerin Lebende Bucher Dauert Lebte Esse vorauf Geschrieben Gesucht KLEINE gerade pflanzen adressiert Einleitend beamtete verwalten Australia Polnisch weisen Bester Bietet studio Teure Karol Kalt lest Perfekt Betreff fach off Gewohnten Geschickt gestorbene Ehemalige Neuburg Tags paradiesische Ausprobieren respektieren punktuell Organisationstalent Gefragt name wiedersehen Bedeutende Bezeichnen entnehmen Verwenden ausleihen schriebst Beider Passe Prima Bildet Einfachen Einfacher umfasst Osterreich Geblieben October Stocke WC Ausstattungen Angenehmes gedanken Dringend giebt Aufgeregt Schwieriger sex Belastbarkeit beschweren Klassischen erweitertem bewohnbar Finanzielle bedenken Betrachte Verlassen Tausende studierte Weltweit Herze Herre Audi liber Mus Ville air systems vorfahren Kauft kauf Gesund Stau IDE Ausgezeichnet plaudern pendeln Sozusagen Kleinkindern touristische vielleicht Herbst Lerne Lohnt Fiel STAATEN Gastland Server Gebe spare gebacken Eindeutig Eigenem Neuburg gebrach Freudig gehet giebt besprechen probiere Entschlossen Entscheiden unzumutbar beschreibe Fachblatt Erheben Riechen machts hinnen Einem Nennt Totale sinne Bohn Tiefes Souvenir Sechste pass Ursprungsland Ledig gefragt Diplome Sonntags teurer ca Gespannt Feststellen kurdische waschen Zahllose beende strecke order Ire Wohnt herumzulaufen Hilflos Trinkt rufst fast Gehalten Gedacht VOLK ROM Einarbeitung angeschaut ausgesucht Homepage begeistert geguckt quellen neusten Ukrainische Unsicher traditionalen hektischen vermieden eroberten teilnehme bedanke Normale Viermal trainiert verletzt Wollen hatten Lands Pizza Pass Nett DVD Eigentumswohnungen wiege orten Topfpflanzen Tschechische Technisches Vermittlerin Wundervoll Bewahren Bekommt Arabisch Formell wunder Fremd hause Leide Hole liber seh befremden Anrufen Stadtmitte Glaubte Glass VOR gesprungen Mongolische Rechtzeitig Popo Gesagt JA Verschmelzen Industrieland eintauchen Verstanden Bezahlen austeilen Denkbar Verloren Praktika Daniela Nimmst besetzt hausen schalte Rutsch weinen recht Lese Idea seh Alt Verkaufen Guitarre MAN Drin US Elf gesamt Begeistert Ertragen gebiete gesellschaft Entsprechende Metropol problem Gegeben Ginge aussehen Besitzen Frisches Arbeite sachen Richte nation musik Parke Disco uni differenzieren fortschritt Stiefsohn Gemach Sinnlos Ann CHI got Eigentlichen geworden Bisherige gehabt Hobbys werten Bahnhofsplatz Shop Passendes Weltkultur Dames wollen Muller Neste Merkt Mach hast Est bin Befremden Vorteilhaft feststelle MENSCH Gesehen BERLIN Schaum LANGE Schick Chine Stock irrs anstrengt weitergehend begrenzt punkt schrumpfen Untersuchen Familienstand durchzulesen besondern Polnischen Bewahre Mamma stunden rahmen Achten Kamen Bracht hastet Kusse Marks Bitten Ende mitte Aktiv Wirkt JUNGER Gelten Selten ung Ungarischen lebendigste dinge etc Psychische Langfristig interpretieren Gesprochen Verschiedenen Interessanter unterbrechen Entstanden Interessiert Annehmen Verbunden verdienst erweitert Verliert lohnen Lokale Haber Macht Frohe Teils Einfamilienhaus funktioniert Perfekt BEZIEHUNGEN Gratuliere Suchte ODER WIR fr get vergessen grossen wegen verantwortungsvoll Lebendig einstieg Geeignet Bestimmten schwimme Russlands Danken Verwirrt Anhieb haben Dirndl viele Wan Erfindern helf Contra Ganz SI tage Weglassen ungarisch reagiere vergisst gold Party spannender klappen DU Deutschland vorkommen renovieren bewarben Erwartete Alternativ ausleben Anbieten betreuen duschen mensch Normal Lieder Lernt diem Hab stad Via frustriert freund SICH Silke geschmeckt Eigner gibts Baujahr jahre jahr Hauptschule Appel Geduldig wos Gespielt lachendes Amtlichen arbeitsam Passende Kleineren beenden Number Website Kritisch Essen Lamm Weich Leere Volle Fest stil Grundkenntnisse Schonen Sauber Stelen ALLE GOtt Ain CD vorzusetzen Ausgezeichnete linguistische bedeutung umgehen Bezogen angaben single lange Kg par Schwieriger Unterschreiben Entschieden Mitnehmen Verheiratet Verdienen Mitwirken Betonen inklusive Kurzem Lieben bilder Halte Eller Pfefferminztee Schweizerin DRITTE Sowieso Sozial Sehn Sonn VOM Statt Get Bir TV passte teuerer teuere Mietwohnungen engagiert Lieblings Organisieren Geeignete Single NUR Fernverkehr monatliches verbessere Welschen Arbeitete hinweise heissen Domen Lassen Harren culture kreativ Horen Liebst Fahre Extra Altes Weist Liebt Freu wien rolle chef rauf Schwerer Schien wil geregnet ausgeschriebene vorprogrammiert Unangenehm Begonnen allergisch eigentlich anzeigen Legen plan Unterschiedliche Deutschunterricht hunderttausende Arbeitserlaubnis Romantische anschreiben verabreden verboten Privates chance Dulden Palme Naher Nahm Kleid Rolle Breit stadt Its Tool verfehlt fur Schriftliche JUNGE Gehen WIRT RAD Sr geste west note amt Unterstutzung Vorschlagen Unbedingt gereicht Heutige jungen gehts Anfangen jahren Workshop Hope Sagst po Beherrschen Entscheidet Lateinische bedanken Verbreiten Ausleben Einzelne Weiterer Erreicht vereine schone Massiv Achter Rocke beide einen heim Breit Fern dien Mall Camp telefoniere Gastronomie Gesundes Gruss NRW vil entspannen entspannt Immigranten Folgendes Umgehen Vorlegen Fertiges Erledigt Lebenserfahrungen fremdsprachigen Berufserfahrung Erfolgreich Hauptplatz plus Unvorstellbar Jederzeit Lebenssituationen Besonderem besondern Existieren schlachtet Friedlich versucht Erreicht welsche bezahlt Bruche Beinah Nenne mietet lecker kunst buch Tut cd Gegenargument Schulungen Fro Empfehlenswert Systematisch information Erfahren Gelassen Garden PETER ICE Hochachtungsvoll Wohnungsmiete portugiesisch angestellter Bevorzugt gebracht Program riesigem Billige Dinge NEUE unterentwickelt weltbekannten Anschreiben Mitmachen Ablehnen Bestehen Anderem ansehen Weiteren Echtes preise Lieber Marks Have bello Bunt umzog wasser eu Offener Gerner START Stele MAI INS werte Wohnungsmarkt Unterrichten Fachhochschule Nachweisen kulinarische Freundliche Hinnehmen eintreten Passiert Fordern studium Austria Wiesen Ehrlich central house Neue seien since Wars unde seite seh Akzeptieren politik Rauf gezwungene Geehrter grenze Starkes ANS WIE MIT Spass film Mietwohnung weiterbringen erkundigen Migration gegeben grillen grund Billig giebt UM Nebenkosten Bekannteste Entscheide bewahren mitmache Bestimmt Beziehen Erheblich wahrheit widmen Warten Festes vielen Voran bade Blind siech Kuss Erde vertiefen produkt feuern feiere HAMBURG Genannt Senden Sichere Schuss Grobe Stehe Got HR Gegenargumente Gingen namen Spanierin Spanish Sprecht ausgegrenzt angepasst Hunderttausende ausdrucken Wirksame Verbreitet Behalten Nochmal Probiere Denken Freibad Hessen Beliebt Markts Bereit Damit Prima Totes send Bild File Privatwohnungen Portugiesisch Tanzgruppe Bisherige ereignen Negative ordnung bildung Fertig Tage Verkauft Offiziellen MOSKAU Sinnvoll PALME ALTE Gibst summe personen Jets kommunikation Alleinstehende Kolonisatoren Festzuhalten Reklamation einwandern herstammt Mindesten besuchst trainieren einleben Entsteht Paletten Modern Wolltest number verwirrt Tickets Packet Teurer Recht kunst wurd Mari Tolle Wirtschaftlichen angeeignet engagieren Ferientage ausgehen Muttertag Umlagen Heutige geplant Kaufhof langen Fange gibts Gesuchen WINTER MICH Order LG Aufenthaltsbewilligung Behaupten Sprechende Unsichtbar Umziehen Elektronischen Romantische Monatslohn ausserhalb wiedersehn Momentan Brauches Aktuelles orientiere Bereiten Besucht souvenir zimmer besetzt Bester achter Reden Hasso Liebst Baue Mette Man tier Elften trefft Geschlossene REGIERUNG VEREINIGTE Gefeierte Gelernte WERKE ENDE WIEN MAX XXX MIR Vertragsbedingungen Praktizierung Abgeben mitbringe Besorgt Allergie lage gefallen spannender Geldanlage Spielen sont Unterschied Jahrs Einkommensteuern insbesonders Mitkommen Faulenzen vermittelte Brauchte Daumen Herrscht Mobilien bischen Erlaube Weiblich tradition Erlaubt Neuber Nehme theorie boden Meiste sinnen Kostet Lands streite Bello Wenn Lasst Teuer unde mari idee True box vie is Genannte Stauer SEIN Em IS Kostenerstattung Psychologin gratulieren Ausgeben Fragen glaab geld Tiefgarage gefallt Schwierige sonne raum Sprachliche antwortest FREUND mitbekommen strukturierter entdecken Betrachtet Westlichen charakter Antworte reserviert schenkst Pommes schonen Behalte Finland Letzter indem Freue Worte Habe weise Nette koch Lest Mus Mai feierlicher faulenzen Kauffrau office franz fille Gesellschaftliche Chemieindustrie VEREINIGTEN Seidenstoff Schreib Starke Stress IHRE Chi XY IT Neubauwohnung Bedeutungsvoll Hervorragend Wichtigsten beitragen Bringst Eng Baugenossenschaften anfang Reparaturkosten Anpassen persisch popular Kaputt warum ansonst verdienenden Aussuchen Bezeichnet Erwarteten hinweisen Kommerz Beenden Verwandt Abholen Bemerkt erhalten Verloren anders Neuem Misch Hobe latein leute Wills wein Bitt Treffen futtern Infos BECKER Schadet SAG BIS benachteiligte obengenannte Ungarische bewegung Vorsorgen Wichtigen wohnung Engen logik Family Wohnplatz probieren probiert Staatssprache wege wiederkommst Beantworten kennenlerne interessierst abnehmen Vorbereiten Ausnutzen Basketball Wohnblock Badetuch Monatlich Erwartet Anderer mitteilen wahrend Erstmal umzieht Heuser konntet Halben dulden cousin Kenne Yoruba kinder Nehm Wisse markt Tollen KaM niest lasst Total Ede Vie ha mit frustriert Schreckliche Gutschein TOURIST GLAUBE Gerecht Stammt CHINA Bikini Sinne WAS Sinn TAG eingeladen Linguisten giebt gibts Schwierigste Springt Sept aussage gruppe person FRANKFURT beantwortende Diskrimination schlachten konkretem Vereinbart Ramadan Bestellen Verwalten Bessere anziehe Blieben Wartete Anders endlich Korrekt Alleine Kurzen Achter herzen Reiche technik schickt Einzel Treten misch Extra word ober Holt Au Vie Umfassende Einkaufszentren Aufmachen Nebenfach antragen fenster Stadtzentrums LEBEN Stunde Surfen DASS WIRD AND WG deutschsprachiger vergangenheit Einziges meinung Billiger gehts aufgeben erfahrung befolgen korrespondieren Heilpraktiker Paap Schwierige Streng Preisunterschied Beschneiden Weltsituation einkommen weiterbilden verwandten Investment anwenden Kritisieren Mehreren Variieren Neunten Frischer Benutzt Diskos Father Wollen italien Keins Dien data Abe bett Kan Tat Rs fernsehen telefoniert Entfernt unfroh luft ENTWICKLUNG Gebraucht Ordentlich Chinesin Studierte WENN Stelle OST party Hingewiesen Durchgehen vorgesehen Langweilig richtung Lang Ung einpassen Originell perfektes Unterbrechen MUTTER Verwirklichen Italienischen Winkelmann Nachname Teamarbeit traditionale Erwerben Wirksame nachdem einladen verbliebe Anreise stunden trainiert Passen Bestes schritte Meiner Market Assen Nettes Ander dienst Mitten krach Woch Verkaufen Befinden Einfach Drauf hilfe FRANKREICH Centrums Gewesen Schreibst Gelben NOCH PARK Oda Off gegenwart Personalabteilung entwicklung Regional Einiges Dingen Wohngemeinschaften praxis platz Schwieriges Sontag nam wan Spontan programm const Unentbehrlich mitbekommen Theoretisches Kondominium Beschlossen unterschiede Denkmalen bewusster beinhaltet Bestimmt beachten ausdruck innovativ Machten Pendeln meldest Meiden Twelve Dubai thema Nette Tolle Has wellt lern Par Via DEUTSCHLAND Stattfinden Geheime Getrennt ARBEIT MENEM Gesenk Shan HAT Sollt Om putze Feuerzangenbowle Hingewiesen Wahnsinnig Einziges Junges Vorigen Lustige Engen Menge giebt bayerisch Befolgen Interpretieren Reparieren pendeln position Klappt Computerprogramme nass mus Spreche Super papa worten autos Urlaubsort Maschinenbauindustrie beschliessen ausnahmen beschwere Kroatische Kulturelles Bedeuten Praktikant Falsche besuch Achten Bester Basler Hause duzen Weich Leber Nutze werke Kenn Weint Marz Lass lust Au ch via tel wirt Helfen Wolfen GESCHICHTE Geschlossen FRIEDRICH Gestorbene BERGER SCHMidT Gefallen Schicke KOCH SIND ALT Ch Dreizimmerwohnung Reisegruppe organisation Erkundigen organisiert Verhaltung gebieten Billigste Vorigen regle Pflegen Heldenplatz Fischsuppe Beispielhaft unseren Schrumpfen Spazieren menge tea Job Industriebereiche Kommunizieren benutzenden Kulturkreisen Traditionelle Tschechien Verbrechen Benennen Behandelt teilnehmen Ausleihen Reisebuch bewerben Praktische Existieren Besuchte Bezahlen draussen Intensive Bemerkt balance Leichter Aktives mensch dichten Babies Herzen Achtet Bitten Haste Meins Disko Bahn Pasta Hello stock Wem Alte herz Fish Dos blut Pair uhr beeinflussen Hilfreich vertiefe BUNDESREPUBLIK SCHOPENHAUER Schwimmer Gelesen STIMME MITTAG Seltene Stimme BILD NEW Er Ausgesprochene Wohnungssuche Abgeschlossen Notwendigen Vergleichbar hamburger Bevorzugt vorstellung Festlegen Politologie Langen Niedrig gehts Very forschung ergriffen Entspannen plan Steigende Gesagt Empfehlen Sprachkurse tante tanz Nichtsdestotrotz kommunizieren Klassischen Verschieden Konservativ Anerkannt Freundlich vorbereiten Traditional vereinbart Einladen Passend Erinnert Mitteilen Fordern Korean heulen lebens schein Merkt Trinke Bilde Klare Wohn Ana Das herr wahl ain Dokumentarfilme Einfache wirtschaft Erfreut Kraft ALLGEMEINE Geschiedene DEUTSCHE Schlechten Schriftliche BRIEFE KINDER Stunden Sammle Oracle GELD LANG DICH ABE APP Senn WER IHR Chi strenge Freitagnachmittag verbindung leistungen Betrogen gerade dingen Ruhige Engl hingefahren deutschsprechenden Entsprechen Apartment passender praktiziere Japanisch spazieren Bequem beispiel aufpassen news Sprachlich camp Uralte Us Durchsuchen Verstehenden Auswandern Automatisch Miteinanders unterrichten Anwenden Mitmachen Praktikums Einzelkind Vorbereitet Exklusion interesse toleranter Wertvolle Erwarte vereinen Bezahlt Bleiben Relative Austria wochen nativen Ferner schule Halbe kannt Pasta haar Kiez lala Na Einkaufszentrum feststellen stattfinden erfinden surfen farbe Helf SCHILLER SPANIEN POLITIK MACHT Gucken Offenes BONN AUCH GOTT Starke ABS Ciao GOtt WAR AIR VIA Sei computer Amortisierung beschreibung Begleiten sociologie Tragisch Wagen junge Aufgaben finger Bruttoinlandsprodukt Komplizierte respektiert Europa hope Guttenberg Computerbranche ste Untereinander LITERATUR Univers AU Mitbewohnern mitbekommen Anzunehmen Existierenden Wochenendes Verschwinden Alkoholische Beschweren Ausdrucken Bekommen Miteinander menschheit Niederland interessen Traditionell Beziehen Vermieten Trainieren vermieten Tauschen erlernten Romantic vorstellen interview Wahrend Maximal tatsache Relative Zahllose Verdient Beliebt Heeren dames unwohl wahlen duch Totes Elter Reist hate Alls dan Eva bist Eu ch Dior Woll telefonieren taufe ABSCHNITT MENSCHEN Gefunden WAGNER Gemacht Christos Geehrte Sicherer KLEINE Charts KIND Garn NEIN HErr BLZ VEIL ON argument Vorgeschlagen beziehungen Entschuldige ausbildung geschehen Umgehend Mitbringen mitbringen Beleidigt gedanke anzeige gemeint lediglich heiligen Ruhiger Tragen Mage giebt gibts Lege Erfolgreichen speise Grundaufgaben Stromsystem manner namen Sprachstamm tom ort June alleinstehender Verkehrsmittels unterschreiben abschliessen Austauschen Monatliches Erwachsen verschieden maschinen Verbessern Antwortet motivieren Vorhanden einleitend Modernen Bestimmt Bestellen Austeilen draussen innerhalb revolution Entdeckt Konntest Kulturell Telecom Flache Nahost Verletzt verletzt cAMP Touch Muss Pries Lass dan linie rock Wos Wiel Pair Auslandsaufenthalt umfasst Hoffe Elfte fille fer Schlimmere Grosses Gewinnt ITALIEN Grosser MERKE Grimm ABER BACH HERR Stecke MUSS Solide Staus SMS KW Wi pommes Bewerbungsunterlagen Ausgesprochene gastronomische Angemessene schwierigkeiten gestanden gegenteil Langen Fertige Folgen gewalt giebt Psychisch Ergreifend Ergriffen anfangt personal papier platze Singles Verpflichtet anne antwort rate Unterschiedlich Ukrainische NEUEN beherrschst Bekommen Interessiert armenisch Ausbauen Erkennbar ausruhen Diskutiert Bemerkt Michaela Fremder industrie wahrend Frieden Erlaubt Diskret Lachen Melden dialekt Bieten nahme minute weitere Worten Kenne mehre dauer durch Werke urlaub bank leider Nahe Falle touch tollen reihe Kind wisst Toch mail Neh Won Par Unzufrieden Berufliche hilfsbereit schleifen freunde filmen feien WEITERE FRAGEN Schriftlich LUDWIG Schade Suchst Const TOTAL HIER FREI VIER RAT EM Ah WE TO wi fil gruppen gott sept hochachtungsvoll hochgestiegen ausgeben integrieren Begegnet Intelligent gebrauch anlagen Erledigt Fertige grunde Mittags einige Wege gibts Aufgenommen hingefahren Begriff entsprechend einspart Geographischen Sagt Spatz erstaunt strasse mutter Tschechische Beibehalten Wesentlichen Koreanische Ankommen ankommen nachdenken Entwickelte verwandtem Erworbene Arbeitsort Entwickelt Kulturellen Exotische Erweitern vorbereitet Absolute Fasnacht Normales Wertvoller eindruck souvenirs Dachten abstand betracht aktiviert Russisch Wechselt abreise erlebnis Dauern Flexible Manner handel Meiner umwelt Endet Nettes kirche lecker heine Merkt Reise Kenn Here Nach weise mark tollen biss Hole wohn Vitae unde Fur isst villa ch Definieren fleisch verkauf Kaffe GEMEINSAME PRODUKTION BUNDESTAG WIRTSCHAFT ANDEREN Orientieren BILDUNG ENGELS SCHULZ KINDER Gefehlt MARIA KOMM Stehen Schule MEHR OHNE LAGE Cab Stark Gan MAL Chi Wi vorsorgen anpasse ap garten vertrag gott bekanntgemacht Kinderbetreuung Renovierungen gelegenheit Festgestellt Folgender Eingeben Vergessen Ungarisch stimmung prozentig vergleich Einigen dingen Ruhige geit erfolg job komplettieren produktion family Computerprogrammen seen Spare Sept mut etc Unternehmen Umladen JAPAN Alleinstehende Verschiedenen Verschwenden Mexikanische Freundliche ausziehen Teilnehmen Wohnheime Fasziniert belastbar Fachliche beliebten Ramadan bewerbe kroatisch allererst Anderer Vermuten Bezahle cousine reichend Verstand Herrlich Intensiv Erlaubt Verraten literatur Nehme Bieten Duzen Lander Trinken Ferne lands Tolles Nette Vatter Ruhe Warm winter Fahr Vieler union leser Find Hatt Lala Ice sint Ven vie Umfassende aufmerksamkeit Informieren traumhaftes informiere radfahren famille Treffe schiff Studentenaustausch INTERNATIONALE Chinesischen Gezeichnet ANHANG MENSCH Gemacht ALLEN Stimmte Gelernt STERN Check UNION WEISS Sechs MEIN GIBT Stam IHM UNS Wil auge par gesetze vorstellungen Allgemeine Eingeladen geschmack Erledigen eingehen Niedrigste Niedriger Erledigt leistung beginn spiegel berg Jugendzeitschrift sorgenfrei Weltsprachen Kompliziert repariert spitze pl Gewaltiger Geeignete Gelungen Gestrigen Sontag opfer mamma meer om Spezialisation Sporthallen Sprachkurs arten meter etc text JAHRE UNI Durchschnittliche Entschlossen Arbeitssuche Kommenden Erworbenen Theoretische Dramatisch Reiseleiterin Erschienen Ausbreiten Exotischen Viertausend Frankreich investieren Anordnen kombiniert Besetzen anziehen draussen Falschen strukturen krankheit Tauschen arbeiter isolation Welsche Lebend Verdient Wenden Merken Dienst husten Merkte Totalen Leidet Letzte siezen disch bette Fahrt vorbild lernet Reihe kultur woche bein bzw Reizt Faul Ten herr kille liste Es Vie aufnehmen Telefonisch defekter Vertiefen freiheit freude schrift often GESELLSCHAFT WISSENSCHAFT KAMBODSCHA Stromkosten Geschenkt Garnichts VERTRAG GOETHE ERSTEN HANDEL Gewohnt KIRCHE NACHT VIERTE BAND Starkes WORD Sonne Schritt ART Samt WAN KuS TIFF BE wi vorgang par verbindungen Wiedergeben Mongolische Besichtigen Weitergeben begeistere erinnerung Begrenzte Angehen gelungen Mangelt Ruhiges Burger Billige Fliegt gehts Mage glas hobby Aufgenommen erfahrungen auffassung Versprochen probleme speisen Stadtgraben Gezeigt perfektionieren Empfindlich pflichten Sprachliche Opferfest staaten mutter autor NEUER Immobilienmarkt Bedeutenden multikulturelle Arbeitsklima Interessieren Entschieden Elternabend Kindertraum kenianische Bestanden attraktives Bekomme Entwickelt Freizeiten sehnsucht Teamwork Einleben Nachlass erlernen Hobbies Dessen Markten erholen Bucher Aktuell anzahl Frohen bezahl Trunken datum Raucht Bunte Nation Kleine maine rechte stocke Kocht ecke verein erde halle Find Fort Pure Total Volle wille seh sint still Verkaufte Hilfst BEDEUTUNG MITGLIEDER PROGRAMM Gezeichnet Genannten Gratulieren MAROKKO BONNER SCHWEIZ SCHULTZ FORUM GROSS WISSEN Studiere Charm Garten Schaue Seltene MACH GAST Gehet WAHL STE VILLA IRAK Grob CM IHN Seh OK Ser kin wi gan par management angst tages anstrengendes globalisierten handlungen organisieren Eingesetzt Dringende generation erziehung Hingehen England Freudig english Einiger Mittage Weniger Riesige gebiet Junge Tagen Dynamisch baby Aufgewachsen kontaktfreudig hoffnung Komplizierte Versprochen Entsprach punkte paris pair Schlachtungen Geeignetes Schmutzig Gesprochene ausnutzen starte traum wurst tema NUMMER anwesenheit Bekannteste Bestimmten Medizinische inbesondere ausserhalb Beherrscht Betrachten bearbeiten mathematik Arbeitslos Ausbilden Kombiniert Nachbaren Fortschritt Verstanden draussen Verheiratet institution Normales industriel schweizer Bereitet minimum Erobern traditional Denken kenntnis Korrekte Verhalten Maschin Verletzen Heiratet Demen Breites Direkte hundert Lockere Manner Denke vermisst Kleiner Lander Isoliert berlin Rechte mieten Weitere klasse schiller Bach Dane Bitter univers March Kennt stunde miete hund Nahe Ten learn abs winkel Vierte Tolles unde Her Per weh solt Tea Biro kino informationen Herausfinden Entfernt Walldorf Laufen briefe feuer brief Rufen fuss Rufe mitt fort DEUTSCHLAND Ostdeutschland BULGARIEN SICHERHEIT Schlesischen Geschenkt BERICHT ANDERE MICHAEL GRUPPE Schlechte Schriebe Siamese Gebaut SELBST Ganzer LEBER POLEN Summe HABE Offene STADT DOM Giebt Sende Solltet WEST Since BIN SOG NIE SEI Ok wi spuren spass partner putzen Krebserkrankung Wohnungsmieten Benachteiligte Technologische ausgeliehen Ehemaligen Lebendigste Eingeladen ablehnung beziehung Ehrgeizige Ergebniss ungemischt gratuliert Beteiligt Unterliegt Begabt einigen Langem Fliegen einiges wegzieht Engels Jungen gehalt Folge grund gehts Lustig richtig Typischer Wochenendausflug Aufgebaut erfolgen Akzeptiert Unbequem Tierparks quartier quadrat papier shop Orientierungsstufe Gezwungen Gegessen Organisiert Sociologie Sorge mussen pflicht ana mus won Optimal Unterhalten FRAUEN Jetzt Administrative Freundlichen verschwenden Monatsmiete Erschienen diskussion adressiert Fortsetzen akademie Wundervolle Einleitend Modernste draussen Einzelner anhalten Immobilie abreiten auswahl vorbereitet allererst mochtest Benutzt bereich Erkannt Fordere hundred Bekam bereite Persisch einreist melodie Frohen Bunter historie altere solution Isoliert Klasse herren Wahren Verletzt Dona Wohnst Biete wahren Naher duze nichte Bunt herrn Meier Biss Bed Neun leere woher worde Traue kleid habt bild bus Be unde wirst Welt rad Veil Beruflich Hauskauf fata LANDWIRTSCHAFT UNTERSCHRIFT GRUNDLAGEN Gewissenhafte WIRKLICHKEIT LUXEMBURG ANDEREN Schlesische Gearbeitet SPRACHE Sinnvoller NIGERIA Stammen SYSTEM Gebiete WAHLEN Sinnvolle Gelacht MENGE Gelernt WIEDER Gefehlt Glaube KUNST WebSite DANA Schritte Schone ROLLE GEHT Solltest HILFE GUTE KLEIN Guter Grus GUT OFF CA TOM THE Kin OK Pfr systeme peter Wohnungsmarktes Burgermeister bedingungen entscheidung Ausgestattet Begrenzten grammatik Antragen regierung Mitgeteilt geguckt stellung wirkung gabe Lg okay Erfolgt fertige gefahr flug hauptsachlich Komplett chips App Tipps Gegenseitig Organisiert Geregelt profil museum mama ann ven Spannend Spiele Spitze erstatten momento samt Unterschieden KAUFMANN Administrative nichtsdestotrotz Deutschlands Armenischen Ausreichend Freundlicher Dezembers austausch Behandelt Bewerben beachtete Vereinbaren Renovieren Heimische einziehen Abbauen Exotische Arbeitest Preiswerte Litauische Erweitert erlassen Kulturelle Deutsch sicherheit Vermitteln Besetzt sicherlich Erholen Verreisen betreut Markiert verreisen Eberlin Rahmen Futtern Weiteren Enorm Hohem bauch Flache Altere Verloren Melden Machts Vertraut struktur klasse Vollsinn Frend schicht verkehr niveau Leben Ales Pollen tasche toilette bein Marai Parks Alle Treten eller Mobil Dier Muss Dos Volles letze hunt Lern reine wiese Hoh Waldi katz nord Rom Fer seits Rois db oda Was Po vile Wissenschaftlichen Katzenfutter Einfachen Hinfahren familie freie stufe GEMEINSAMEN Geschrieben INDUSTRIE FORDERT NATIONEN CHANCE DESSEN FREMDE Geschafft EUROPA Gestalten Gewisse Gekocht Geredet ALTER SCHULE SCHUTZ Schreibe Cousin FARBE INDIEN Standart WINTER KRAFT Streben FOTO REICH KANN LISTE LAND Stellen FALL Gast EVA SOLL Send Solle Ohn mA XYZ TAT So Pl wi entspannt Arbeitsgenehmigung Deutschsprachige hochachtungsvoll Hauptargumente Angemessene Fortgesetzt Wahnsinnige ereignisse Vereinigten Niedrigere Religiosen gestimmt hingehen umgebung Baldige gewohnt Einigen Morgens regisseur Eigene heiligen berger Junges Fragst Eigne Kriege glass jungs Husky symbol Verkaufsabteilung nachfrage jahres Aja Transportieren phantasie kaput Organisatorischen Gelungene mars nase neus om Sprachkursen Sprechende Optimale Ostpolen strassen mozart steuer strom MULLER KULTUR HEUTE JEMEN KUBA RUHE Immobilienmakler Multikulturalismus Entscheidendes Vietnamesischen Armenischen Nachvollziehen Handelsketten durchsuchen Freundlichen interkulturelle deutschland Freundlicher ausserhalb Beschreibe Bezeichnet Beherrscht besondern Wohlhabende Bestimmte Behandelt Trockenraum benennen ausweise Kurdischen Investieren Traditionelle Verbesserte Winkelmann bescheid anbieten Abreiten einatmen Nachlesen verschenke Motivieren allererst Erweitert Kurdische Entdeckt Bestehe Beraten Frisches Erinnert Handeln traditional Brauch Traditions bericht bureau About Dalles kindern Versucht bilanz Innerer Merken Verraten bahn institut market Vertraut Doch Duch verzicht Presse Lernte haber Vorteile Freut theater abe Reden Eine schutz dom Preiss bed Weisst Als Reine Worde labor Has Wann wohin womit Lebt Pure vieler obst tiere rois Par seh ire Vie Kommunikationswissenschaft Konstruktionsfehler Beeinflussen Ausverkauft Abschaffen Frankfort einfluss fremde frieden funden Verkauft Helfen faxen Helfe hof RECHTSANWALT DONNERSTAG ORGANISATION ABLEHNUNG AUSTRALIEN FORDERUNG DEUTSCHER BEWEGUNG Geschlossene MITTELALTER Geschilderten AUFGABEN Christlichen ALBANIEN Gesamtnote Geforderten AUSLAND BEKANNT EINFLUSS FREMDEN PROBLEME BURGER FISCHER NACHBAR Gefunden GEBIETE FREITAG WERBUNG AFRIKA Gefahren Getroffen GEBIET BELLA KOMMT LETZTE Sinnvolle Czech JUNGE DENN SCHON REDEN Offener NIMMT Bikini DAK KINO POST EST HOF Chr ESt Senn hirn Solle SEH Serr VHS Im Wi prozess pause suppe par entgegensetze sport Dachwohnung Erdgeschoss Begrenzte gutsituierte Beitragen Registration integration Flugticket ergebnis Einzige linguistik vorschlag betrag vorgehen garden Joggen Ruhigen grunde alltag mangel Ruhiger Legen Flog gibts olga Mfg jan beispielweise komplettieren Abstellplatz versprechend population Europas patienten Komplet produkte republik kapital haupt punkt Gelungene Gegessen Geeignet Sorgenfrei Gezeigt qualifizierte Sympathisch Spannende Gespannt Ostpolen antreten centrum arzt stress etc vater sont Qualifizierte Qm Unterschiedlicher FEUER NATUR JETZT RUFE NUN Jula Auseinandersetzen Lebensmittelladen Beibehalten Einwohners einwandert besondern Wohlhabende Ruhestunde Beweisen Praktikantin Eroberten Erwecken Bedeutet Kulturellen Abstand verschicken Arbeiten Eventuell allererst Attraktiv denkmal Basilica Fachlich Heilende alkohol Fussball Bezahlt Hundred Frischer Preiswert Mannlich Bereite Betrieb Vermeidet millionen Flexibel initiative Echtes Fitness Kostete klarheit Freuet reaktion Menem Band Meines Flucht Wenden Klaren london Kanns Kurtze Laden Fiele Koste vielmal Here Wolltet Reine dier Putze strand Waren tourist nahe Bis seele Holt ch trend unde wolte wicht West Veile Nor Par seh sint Beschwerdebrief aufzuwachsen Arbeitsumfeld konfrontiert schriftsteller Befassen Auftreten Traumberuf freunden fremden freundin entfernt fantasie software fasten freuet Hoffte firma feien Hofft Trefft off FINANZIERUNG INSTITUTIONEN ABSCHLUSS BERLINER POLITISCHE DIENSTAG GROSSEN ANDERE Geheiratet ANLAGE BESUCH FRIEDEN PROBLEM Ordentlich Gebieten SCHLUSS Gefallen DANTE ESSEN Gefeiert RECHTE Gekauft UNGARN Ortsteile Schaden DOCH IMMER LANGE REISEN EUCH Sommer BEIM Solution KRIEG MARIA EINS STERN Schaut Cola REISE LASS LINIE Selber KEIN BID Starte Selbe Gar ODA Samt NOT WILL kw spuren par gesamt pasta Angenommene anerkennung verbesserung Bezeugen Kleidungen Beklagen versicherung Integrieren beleidigt gesichter Hamburg ahnung Heutigen umgekehrt verwaltung garantie kleidung gehts tragedy Kluge gebs regel Dynamischen Bayerisch eigenschaften Hervorgerufen fotografiere Aufgeben folgender aufgabe Traumjob jobs Hauptsprachen Lebenspartner diplomierter komponisten Respektieren philosophen Metropolie aspekte spatzieren personal polizei park Pipi Geburtstagsparty Strenge Berufspraktikum Empfindet Hauptfeste kampf wann serr Sportzentrum erstattet const ant worten etc wurst Unbestimmt FREUND JAHR TRUE Uralte JE Auswahlkriterium Durchschnittliche Aussenseiter Personalwesen internationaler assimilieren Entschieden Entstanden architektur Bauchtanz Fahrkosten erwachsen Abschnitt mitkommen verwirklichen Draussen Ansehen Fanatisch Bewerbe Intensiven weiterlernen Verschicken Harmonie Erwarten allererst Fremden Kostenlos situationen Potentielle Erheben Reserviert verbrechen Benutzt Menchen blumen Vorsichten Dunker anlass Korrekte Teuersten bucher Positiven Trockener hobbies toleranter Holland Lockere Positiver romantic traditions erlernt Landen Arten check Denkt Websites aben Immen Kurzen Kosten china schulen vermisst Vermute Acht trainiere Lecker Verdient Versteht Musse Holen Lautet kurtze Rutsch student Dien Wohnte Platze katze tochter Markt Leibe Werder Reich Bie Neus Feb Weisst stehts Frie mutti Teilen chi sitten Warte ritual lohn loch Wand Rote Ide Par uber reis leit Ist seh Tea welt Wirtschaftshochschule Identifizieren Verwandschaft Berufliche Einfacher auflisten Frankfurt bahnhof fabriken Erfreut forum umfasst ferne durft WIRTSCHAFTLICHE FORTSETZUNG Gemeinsamen BUNDESRAT GESCHENKE ERZIEHUNG Geschiedene Globalization PARLAMENT Gewachsen Gebrochen ANFANG BILDER SONNTAG MACHEN Getrennt ALLER MONTAG RAHMEN Geehrte TERMINE GEHEN Genutzt TECHNIK MEXIKO FAHRT ACHT BRIEF Schonen Grenze Schlecht FORM Sarrazin Sowieso DIEM MEINS PERLE MUSIK STELLT Circa Schade HAUS Scheint HART Studiert SPORT Schnell HErrn WORTE Stellten BOX KUSS Gibts Sende DIR ROTE NAM PRO NET FR Offe ITS Sher WEG Om xy aug gans paar gesetzen gast export prozent Abgeschlossen selbstgebackenem Wohnungssituation Freizeitangebot angemieteten Hervorragend Bevorzugen geborgenheit Begrenzten Ehemaligen Auswendig Linguistische Freiwilligen geborenem grundlagen hintergrund Angaben Begrenzt betrogen georgisch Regionalen Einzigen luxemburg beteiligt eingang Erregen geehrter technology integriert Kleidung budget Engen Unwichtig gehest Jetzige Vergesse werkzeug Ruhigen geburt engel neugier Tragedy giebt Dynamischen Physiotherapie sibylle Turkey Aufgeregt jahrhundert auftrag Erfolge Verfugung juni Korrespondieren beispielweise Appartment perspektiven kompliziert Unbequeme Aprils kneipen perle Schlussfolgerung Gezwungene Schwierigsten Einkaufspreise assen vermesse mussen normen sommer names server meer mars WorkShop Sportlich arten monate wetter streu stat tee QM Unterschieden Unverzichtbar FEBRUAR BRUDER KAPUTT FREUD TRAUM Ukraina FUR MUT Hochentwickelte Bedeutenden Elektronische Kundenkontakt Besonderer Vietnamesische ausserhalb Einkommen kommuniziert Finanziellen Attraktives Absoluten besondern Funktioniert krankenhaus selbstbewusst Bedanken Erleichtern kontaktieren Erworbene Doktorand erbrachter Erreichbar austeilen Bezahlen Lobenswert Anderes Belasten draussen adresse Mietkosten Voneinander bessere Basilica duschen Bestelle branche industrien Andren Berliner Erinnere Litauische Ermittelt Bezahlt Alleine reaktionen Tunesische motivierte Erleben Normalen dusche Inklusive bessre Assen Beider schwester nachweis Polnische artikel nachricht verheiratet Frische Verwandte studenten Aben anteil Trockener Broch markten renoviert Flasch schneller Neusten Hinnen Erlebt Vermittelt vermietet Verwandt schnelle ales medien herbst hunde Names mantel tausend schluss blatt Lernet Lernst irrtum Verleihe Lasen schuhe Hertz weshalb Lasse Falls Leicht vielleich Merke Winkels schatz Maria Fille Koch rutsch Lebe chi Kats Mars bir Etc Tauch Kille db weiten Man radio Wiede weisst tieren Tema loss Tisch Wider ticket hut Kur Vielle Villas unde Wisst Teile Ma Wich wier horizont Bon volk Artz wirt Differenzieren erforschten Musikfestival fortsetzen Erfahren Effektiv Pflanzen frische futtern ferma offnen fare Rufen worauf Rufst info hof DEUTSCHLANDS BEDINGUNGEN VERBESSERUNG VERSCHIEDENE GESUNDHEIT GESCHEHEN COMPUTER BERATUNG ANDERER BRASILIEN AUFLAGE Gesammelt GEBIETEN Geschehen HAUSHALT BEGRIFF BELGIEN Geschlafen ARTIKEL EUROPAS REGELUNG Gearbeitet DAMALS WOLFGANG EUROPA Christos BOSCH EINMAL SCHRITTE Getroffen LETZTEN GEWALT SOZIALEN HERBST SAMSTAG NORDEN Schreiben KELLER THEATER AUTO HERRN Check THEORIE Ganzer FALLE Gummi FREIE NICHTS KUNST Schenke MITTEL Schlafen STARKE Geteilt STEFAN NEUES DIES ALL KENIA Schicke PALME JUNG ZAHLEN Setzten WOCHE WAGEN Giebt NAME REIHE GAN Chr Oma PER Seh Stat genommen wegs par genennt tagen sept auseinandersetzung Finanzierungssystem datenverarbeitung beziehungsweise Angesprochen angelegenheit Eingeschrieben Ausgegangen bemerkungen bedeutungen Kennengelernt Erziehungen begegnung Vorausetzungen angesicht Ehrgeizige Beginnen Einsteigen abgeben gesundheit Unangebracht beratung gesundere Ehrgeizig Folgender dringend Beteiligt geniesse gesunde hamburg weitergeben Migranten mitglieder gekocht Heiligen guitarre sociologie dialog goethe Verbringe ordnung Riesiges grimm gehts Wichtige gibts Mittag gud Wassersystem Anforderungsprofil aufgenommen Angefangen gesellschaften Aufgegeben Begreifen Aja projekte pflichtig Muttersprachen acceptiert Einpassen aspekten Entspannt transportieren reparieren Ap Tropical Papier sprech temple parke Popo Pipi tipp Schwimmanzug Sontags nummer wozu um sr on Computerwelt Gesperrt Spannende Spielt const mette team vater stat Qualifizierten Jobs NEU TUN Abenteuerlichen Beschriebenen Elektronischer austauschen einzuwandern Fachsemester beschneiden Absolvieren Kundenservice ausserhalb absolviere Einwandern bedeutend Beleuchtet Finanziellen Entnehmen Bereichert Heimatlands Bedenken Aussehen Entwickelte Nachschauen bereichen Besuchen einsamkeit Besessen Antworte kontaktieren Finanzielle Feierlicher Bedanke krankheiten amerika bereiche Erwartete kanarische Evamaria Brachen LeserInnen Erlernten Basilica Bestens Erlauben nachwuchs Weihnachten harmonie Erwartet wochenende Touristische Verzeichnen Beliebt direktor wunderbarer Identisch Intensive vorzustellen Dunker Diesen Fremde schlimmer Verlockend Verbessert traditionen Reduziert Enden Versuchen Liebsten Naturlich kummer Adel ukrainisch kindheit Essen teamwork vermutlich Herzen Innerer Dona eltern Meldete wachstum herzen brille Lernten konnen kirchen Feiert Blau dona Leisten Ecke Kucher Karten verstehet Probiert kloster kulture club Musste Verbinde Positive brot indien kissen bier Freie heren Mache dise mantel kinder Nutzen Hartz Laune ideen Halte versucht vermisst martin Karte kaine marks Reisen termine hose chi Misch Treiben Preise Wurzeln lieder vorsicht kette Wolltest Muhe ch Worden Liess Kuss Heir rituale Raten milch Recht Polen Wirken kurs Mba Note Zahlen Mier Pass mall Nett Wisse vieles seite Wicht leit vielle Par Wais wald oH volk Daueraufenthalt Wissenschaftliche aufstechen Beruflichen befremden Erforschten Auflisten Konfrontiert frankfurter informiert Erfahre vorschriften Dorfen flasche firmen Elften father Perfekte Kaufte Kaufst dorf fisch feier fitter Laufe Verfehlt telefon Vertieft Vorauf stoff willt DEUTSCHLANDS CHINESISCHE DISKUSSION INFORMATION GEGENWART CROISSANT NIEDERLANDE EINZELNEN NATIONALEN TECHNISCHE AutoCAD UNSICHTBAR BUCHER EINTRITT BUDGET Croissant GELESEN Gebraucht Gerichtlich MITTWOCH MILLIONEN FREIHEIT BEIDEN BEREIT BAUCH VERGLEICH Geschafft KINDHEIT Grosstadt EIGENE DIENST ELTERN Geholfen GRENZE FAMILIE Getaucht SCHWERE VERBOTEN Schiffsfahrt KREDITE LETZTER JOHANN KAPITAL Check EINEN LERNEN NORMAL CHEF DANN Gehabt Orientiert EDEN AMT WIRKLICH KAMPF LETZTE SPIELEN KOREA BAR Streichen FANG FEST CAB Gehts CHF HERZ REDEN SACHE Gibts LIEBE Chi IDEA IRAN REICH SENAT Stamm Stehen NOTE STAAT Orten PLAN TISCH MAG SEHE Schrit Selbe LAS VIELE Fil WORT Kin PAR Stufe Seer Kw hr IS Seh TEE VIEL Sint TEL Tv wi genomen anpassen engagement erwartung gemusst segment gutte temperatur Deutschsprachigen Angemessenen Angesprochen Angekommen Ausgebildete arbeitgeber erinnerungen besichtigen Begeistert Angebaut Wohnungsuchen gleichseitig eingeben Besorgt mittagessen gewaltiger anlage grossartig begabt Billiger weitergehend unterhaltung Einiger Jeweilige Unbegrenzt gerecht Mitbringe geduld Ungebildet rechnung heilige joggen wichtigkeit Vorgehen Wichtigen Frog kriegs ludwig Regeln lage Wegen Wenig Typischer Wyborcza Loyal Berufsabteilung Aufgegebenen Beauftragen beauftragen ferngesehen Erfolgreiche entfernung fortsetzung Langfristiges auftrage Verzweifelung Ergriffen johann projekt jets Deutschsprechenden Akzeptieren Behauptete muttersprache komplizierte hauptstadt aspekt Kompetent versprechend diplom standpunkt Passport spektrum Verspricht Haupt speziale kaput Obengenannten Gezwungen Geburstag Geflogen Gepflegt Signalfeuer Sociologie Schlagen Sorgen Og Verpflichten nue Sprachenlernen Sprachschule monaten monat noten stamm storm traum mut orte stau ost Qualifizierten Quellen JAHRHUNDERT DAUER AUDI AJA BAU HUNDE HEUTE Ukrainisch VERKAUF HUNT UMWELT KURZ RAUM Unde UHR Automobilbranche Deutschkenntnisse beschwerden Marokkanischen Brasilianerin Beherrsche Bewundere Armenisch Deutschand Einzelkinder Bestanden Entnommen Bereichert albanisch einkommen erlebnissen Interessanter Besuchst Historischen entschluss architekt Paradiesische Aktuelle Bisschen nachschauen Besuche Bezahlte erlebnisse Beendet Entwickelt Lebensarten Draussen bereiten Formuliert absicht Bischen Diversen Fachliche Besetzt Bruders Entdeckt Achen kommunen Disaster Verdienenden kenntnisse Lachendes nachrichten interessire Verstehenden innovation Erreiche Bruche harmonie Fischers brache vorzubereiten interessirt Aleks Herzliche Deines Erkannt Erlaube Bracht Passendes bezirk Heilende Beten Kleineren Melodisch Danke Diskos Alles details Dalles Decke Verwandtem cAMP Wunderbarer einlebt bach Bette november blaue Alex renovieren entlich Madchen disem Finden Diese Nationale bohn verbrechen Reduziert hauses Bitte kriterien Verstecken Famili Einer Motiviert Verheiratet Biss Kinders Leichter dona Dani blatt Mussten Potenzial Plaudern verbrachte Husten Mitwoch Reichere Hastet Passend Vereinbart Kusche Tolerieren Bist letztlich kontakt Fluss Kleider Esse Kloster Versichert Heisst modern Bie Halbe katzen tolerieren huben kredite Vorletzten Klaren bie hotels Probiert eier Normal Koche Kriese hemd inseln Hand schwein Laden Messe Halle Lieber Mehre Helle leuten ein Meine ch db Leere Frei hund Punkte Kann Trainiert Reisen schuss Wussten Paare Muss Totalen sieben Parke riesen Warum Wusste twelve stehts seele Leit Wohne Weisst obst weider solch tauch Parr weisst sohn Volles visum solte Werte seht unde Weile Per sitte Warn Were Wird viet vie Anwort Po Ausverkauft aufstehen herausfinden Dauerhaft Erfahrener fantastisch leidenschaft faulenzen frankreich schriftstellern Wirtschaftliche ablauf Bedarf Kaufmann hinfahren Briefe beruf famille fabrik fehler Perfekte faust fried fille vielfalt seife CHINESISCHEN WIRTSCHAFTLICHEN AMSTERDAM ANTWORTEN EINSTELLUNG Gastronomische WIRTSCHAFTLICHE BEHANDELT DEUTSCHEN EINKOMMEN FORSCHUNG FINANZIELLE EREIGNISSE Gewissenhafte Gastarbeiterin EINLADUNG ANGABEN HAUPTSTADT BERICHTE AUFGABE ASPEKTE VORBEREITUNG CENTRUM CHANCEN BEGINNT ERINNERN ERGEBNIS DEUTSCH Schulabschluss Garantieren ENGLAND Gekommen INTERVIEW MOTIVATION Gesammelt STANDPUNKT ABEND ANDRE WICHTIGSTEN AUGEN Geniessen FREIHEIT ARTEN Geheiratet MITTWOCH Getrunken ALTEN SCHWEIZER ENGELS FRIEDEN SCHWEDEN BLEIBT HOLLAND Geschoss PFLICHTEN WESTBERLIN OSTBLOCK Gemischt GEBURT FLUCHT VORSCHLAG ORDNUNG RUSSLAND SCHLECHT RICHTUNG BREIT Gewandt ETWAS FRISCH WIESBADEN BLIEB EINEM Geweckt KLEINEN WACHSTUM Getestet EINER BROT VERBOTEN Geredet GANZE ANA Akin Schwimme Chine Getanzt FAUST Gefreut Ganzer BIER ECKE Offiziellen Gehabt IRLAND BZW MEINEN CCA Gelebt TELEFON Club FORT LIEBER FAST NAMEN HOCH TRINKEN FIND FILM LOKAL UGANDA Stammte WAGNER Chi Gutte HEIM TASCHE Gibts RECHT STIMMT LIEGT MITTE MARK GeH MEER KOPF Schone Schalte Stabiles VOLKES Studiert SEELE HErr NASE OBST STAND Sinnen OPEL STUFE Hirn PAAR Oben PASS MFG MAY TISCH Schrit MIA Orte SEIT Om Okt Stad RIO Seh Sint TOT Soll Vil wi xyz europa paare papa gegensatz august genannter gespannt verantwortung voraussetzung apartment transport Ausbildungsbetrieb Angemessenen durchgeschrieben Entgegenkommen benachteiligte Anstrengend Ausgebildete Burgermeister Angebotene Angemeldet Angegeben Enttauschung bewahrung einzigartiger Beleidigen Eingetragen Kulturmischung gleichgewicht Engagieren allerding ablegen Anlagen einstellung Anzeige Fortgesetzt Bezogen gewohnheit Eingehen Bulgaria Billigere Berger untersuchungen billiger ewigkeit Dingen gemischt burger Mittagessen Freitags Bringt Warmherzigkeit hamburg gebirge gegend berg gestellt engel Fliege spaziergang Weitergehend nahgelegt weiterbildung Jungen gabe Jetzige Niedriger Klagen Langen joggen Mietung Umgehend gibts grille regelung Unterwegs Prestige kriegs sendung Verlangen gud Wohnungs Tatigkeit Regen region Wagner Husky Auslandserfahrung anforderungen Aufgegeben aufgeregt anfrage wohngemeinschaft forderung empfang festlegen nachfragen reihenfolge vierteljahr objekt jahr beispielsweise Akzeptiert Entsprachen Exportiert manipulation april Versprochenen mittelpunkt Metropolie kneipen haupt kaput politiker photos teppich Tipp Gangbare Geregelt Sportanlage aufpasst Empfehle Kaufpreisen annonce an evo musse nase raum Syrian sona vase vonn usa Sprachaustausch Sprachlernen Sprachen Suppe armut momente etc ratten tomate strom unnett motor QATAR Qatar BLUMEN FREUNDE BUNT BLUT HIERZU JANUAR Unterrichtet NEUER JULI LUFT Unter Unde Uber Architekturstudenten Bemerkenswert anschliessend Deutschkurse besonderten Alternative beibehalten Entschlossen ausserhalb Beliebteste Anmelden Discotheken absolviert ausnahme erkenntnisse Bekannten beherrscht bestandteil Antworter Bestimmte Praktikantenstelle Elektroniker Eindrucken Besessen Faxnummer Bekannte bewehren Beliebten interkultureller Erschienen besucher Ansonst Abreise Exotischen Insbesonders Beurteile Bedeute Beendet Bezahlte Heimatsland Dominant Draussen Feierlicher Kontinuierlich elektronik endecken brauchts Bestens Konventionell draussen Besucht basilica Erkennen Arbeits besitzer Achen Mitbekommen Erworben chancen Dauernd Folkmusik achen Besetzt institutionen instrumente daumen Erweitert babies becker Erlassen Haustieren hinsichtlich Kulinarische Bauch Erhalten Dichten Frustriert Interessiert Dreimal chemie Peruanischen Besse Lehrreichen abar bruder Muslimische boden Monatlichen Kombiniert charm Konkretem hardware Nachrichten bach diskos Famille nachrichten audi Ans Frische Firmen bars Diene dante chine Disch Einen Ball eNDe Erlebt Liebevolle Herzlich Indische Freind kontinent Bod bzw haaren hessen blut Interner heeren Potentielle Bie Fitter Haben Fatih heimat Hatten bie Heben kulturen Wiedersehen Komme untertreiben Hoben Kleines Hunds Hollen chi Heute Fille Vorzustellen Verwandten minuten ch melodie Huete kleider Lohnen db Wundervolle Etc Lauten lockere Verlockend Haar Nennen landes Verbessert verwanden Vermieden Mobilia Hast heist hello inder sektoren Probiert Lesen Muche Kalte Klare slowakei Kette kredit Musse Weinkultur Versichert lehrer norden Istas Meine laune Netten unterricht Verlorene komt Letze Verdienst varianten labor Lade Metre Wertvoller hoh Land Musst schnee Vermittelt Tauchen hist Links Vorurteile Trainiere Portier schicht sklaven Telecom Muter kuss Verdiene vorbreitet Reche Mark statistik Nahe Versucht Vorbereit Leid ice Ins Nass Lieb Nicht themen onkel siezen lehr Welsche Leit Vertrete Vereine Verliere Teilzeit libe Widmen tasche Verwirrt risiko Reist Rock stehts Werden stelen Tobias Wortlich Weinen leit sitten Wetters wunsch sohn Wieviel Wartet Weisst Par weisst Vieler Wohnt Wieso Voller Wisse wiede wieso tuch Tool Wurst wider West Wurd Toll Wier VIa wiel Vie Unfreundlich niht Trinkt Aufstechen Anfallende Hotelfachschule Beruflichen auskunft anrufen erfahrener landwirtschaft Definitiv festellen konfrontiert Hilfsbereit einkauf Informiere Kaufmans freuden famille hinfahre freund Traumhaftes freun duft fluss officielles Perfektes radfahren fish fon telefonier offnen stefan Vertieft stoff Werfe ABGESCHLOSSEN GESELLSCHAFTLICHE KRANKENSCHWESTER GEMEINSCHAFTEN BEMERKUNGEN ABENDESSEN INTERNATIONALER BOTSCHAFTER ALLGEMEINE GESCHLOSSENE ABGELEHNT ANTWORTET GEGENSEITIGE BESONDERE WISSENSCHAFTLICHE ACHTZEHN BEZAHLUNG INSBESONDERE ERINNERUNG BOTSCHAFT VORAUSSETZUNGEN BEZIEHUNG AGENTUR ARBEITEN ARBEITER BEHALTEN SCHRIFTSTELLER FERNSEHEN KONFIRMATION Chinesische EINFACHER ABSICHT ACHTER INTEGRATION Gemeinsame ITALIENISCHE AUGUST AutoCAD GEFUNDEN NORDAMERIKA MADAGASKAR BERGER Globalization Geforderten NIEDERLANDE BLEIBEN ALLEIN EIGENEN CHANCE FORDERN MITTELALTER LEISTUNGEN Gekommen Croissant HOFFNUNG Gebrauche FENSTER GEGEBEN Geschlafen UNTERSCHIEDE INTERESSE GEFRAGT GROSSEM GROSSEN GROSSER FREIZEIT HORIZONT TECHNISCHEN Geschrien Gesunken AUGE HANDELN Gescheck MANCHMAL Gemeldet BILLIG FALSCH INITIATIVE BANK Gebracht Gefeierte BERG GEFAHR NICARAGUA Gratuliere Geehrter EINIGE FINDEN GROSSE DIANA Gratuliert NATIONALE Gebucht KONFLIKT VERHEIRATET SCHNELLER BETT Globalen EINER AUG FERNE Gereicht SCHREIBEN GEBEN GENUG SCHWEDEN DORT Grunden BIRO Chine PERSONAL Const GLEICH INSERAT Grossen STUDENTEN KOMMEN Geheizt Am Getanzt VEREINBART ORDNUNG Gezahlt WILLKOMMEN POLITIKER JUNGEN Grosser Siebzehnten GRIMM FREIE GUTEN Schuhmarkt INNERE EIER KOSTEN DAN KLASSE LANGER TAGEBLATT SPEZIELLE VERHALTEN HALLE STRUKTUR GMBH PROZESS LEBENS KRIEGE STELLUNG Gehts NEHMEN KLEINE KAMPF MUSSTE JUNGE Chr ETC GLAS MEDIEN Chi INDER SONNTAG PERSON HOHE GAR Orientiert Ch LIEBER OFFENE HOPE HOSE Giebt Gibts THAILAND MOTOR SYSTEMS REGELN KRIEG LESEN SERVICE LESER LASST SACHEN NATION GET GILT Ortsteile STELLEN WOHNUNG NACHT VERKEHR SOZIALE Schonen TREFFEN Schritten MEIER HAB PREISE Schnelle hiER REISEN MAMA OPFER LINKS Stiefsohn Gud STRENG KATZ ONKEL Schwein STEHEN Schreibt LOCH MERZ Sicherer LEBE SOLLTE SECHS NORD SCHAL Senden RADIO MAIN PLATZ hiN WebSites Sweden Studiert SETZT SOLLE SUPER ROCK NICH Siezen MAn Sehen SEITE MAI Solide Schrit SPIEL Obst Solter OFT TRIER SPAS Offe TEILE Send STAD Sona TAGE TAGS WEIST TEXT SEX WALD Off Stad See Seh WILLE WILLY Sint VOLL WEIL ZAHL WOs Will wi fR xy anpassung auge gegen gerner gruss program vorsprung umgang presse par spas ausgegrenzt gett sonntag vergesst vertrags vortrag computern computers Angenommene beziehungsweise Anstrengendes Datenverbindung Anstrengend Benachteiligte Ausgegeben begeisterung angestellter buchhandlung Angesehen Anstrengen Ausgesucht ausstellung Beantragen Auswendig Abgelegt lebensbedingungen angehen ausgleich bezahlung Begegnet Eingetragen begegnet Aussage Begrenzt Entschuldig einrichtung Beleidigt beilagen generationen hochgestiegen Festgestellt erkennung Engagiert gewunschen geschreiben geschehens dienstag Erledigen Engineer engineer Bringe Ertragen gewohnten gymnasium Verantwortungsvolle geschenk kindergarten gratulierte geniesen grossartig Einige Lebensalltag geheert gerichte Nachgedacht Jeweiligen keinesweg mitteilungen Mitgebracht mitgebracht Integriert langeweile guittare meinungen hingabe veranstaltungen orientierung neuigkeiten gehts logischste Heilige Teilgenommen marketing Registration gmbh schwierigkeit mischung Mitburger migration Untergebracht giebt gibts Junger gund gud Lagen weiterbringen Jung verwandlung Morger verwendung Unterlagen lager Winkelgasse vermittlung Liegt wohnungen Regle Vergesst Wichtiger wielange werbung Bays Wisky Aufgegebenen empfehlung Befolgen ferngesehen auflage ausflug Wohnungsgesellschaften eingreifen Wohnungsgemeinschaft kontaktfreudige Ergriffen Erfolgen flughafen flugzeug gepflegt freitag Nachgefragt frog jahrlich jacke objekte Pflegen juli Mfg Wolfgang Anspruchsvollen Fremdsprachenlernen Beispielweise ausprobiert Besprechen Behauptete Entspannt appel konsequenzen Komplettieren hauptsache Kompliziert schopenhauer personlich problemen parlament personnal kaput priester preises provinz spazierst option Papa sprech Temple tropical Geographischen Grundlegenden Gegenseitige Gezwungene Gesprungen Gegangen Selbstgebackenem Gleichseitig Gewaltiger Georgisch Gelungen Geflogen Geglaubt Gepflegt Obligatorisch Sogenannte Sonnstag partnerschaft qualifizierten qualifikation Kipfel Verpflichtet pflichte anna normen nemen nue uneres wassa xxxxx om rom Computerkenntnisse Gesprochene Spannender Spanische Speisen Spuren Sprech Spater Spas erwartet momenten etc ostern verraten temer stam sont tram stat ANKUNFT BAUTEN BERUF FREUDEN KULTURELLE KULTUREN EURE JAHREN HAUPT KUMMER KUNDEN PUTZFRAU HUND JETZE JETZT Unterschreibt Unterschiede VENEZUELA Jahrs Untersuchen Untertreiben JUNI Unzumutbar NEUEN PUTZEN Julis Unterrichtet Unverletzt PERU NUR Uhrlaub WUNDER Unde TUT UsA Usa Bedauerlicherweise Alleinstehender Anschliessend anschliessend Beschriebenen arbeitnehmer Alkoholische Bestandenen Arabischen Beantwortet Ausserhalb Immobilienmarktes Anmerken ausserhalb brasilianisch Antworten deutschlands aussichten Entstandenen Beherrscht ausleihen besondern Attraktive Durchschnitt Existierenden Beamtete Aktiviert beherscht bereichert Beachten allererst bewusster Entscheiden austeilen bewohner Benutzen bekanten discutieren ausweis Entstanden ansicht Arbeite Heimatslandes Basilica Bewohnt dezember Arbeits achen Brotchen Haushaltarbeit Beende Backen Erwachsen Fantastisch banken brauchts Diskusion Erwarteten abitur Bauten Draussen Akins Endecken Allein kundenorientiert Entstehen atelier Industriemarkt berater Fernsehen Bauen Betreut bewerb excellente Besser Erkennen Erreichen Bonner Brauch erlaubnis Heimatkultur disaster ales bucher Erstatten Beide Einhaus Intensivkurse Beriet essentiel Kommunikativ herzustellen erzahlen beser aLs drinken Darvor Dauert inbesondere Fenstern distanz Blaue charts Erinnert darvor Erholen Interessierst hochschule Danie bonn Heimkultur Heimische brille clubs Kontaktieren Extrem Interessiert kenntnissen Koreanische Familia Echte Deke cirka disce disco Erwart bett Mitzunehmen herrschen dises exkurs Muslimischen Fleisch hertzliche handtuch brot bzw email clan cola Bid Interresse Faxen kaninchen Fahre Echt interessirt Hamster dise Peruanischen Drei Industriel Haustier Eier Finde chi Kentnisse Heissen hochzeit Vietnamesischen ch Fitter Haaren dE insekten mitnehmen Kurdische Fare Mitmachen db hauses Fata kommerz nocheinmal Faul Kroatisch heeren rechtsanwalt hunden Haben hattest Mindesten Hinnen inklusiv internet kriterium motivation Multikultur Weiterentwickelt Hoben Idealer Immen Huben Heren kannen Mietraum Motivierte Landern hastu Kurzzeit Mithalten Lokation Holen kirchen Vietnamesisch Verschiedener konnen strukturierter Kamm konzert mitarbeit Traditionellen herre Landen Milionen Hate Machen wiederzusehen kamm Kreativ helle klavier Mitwoch naturlich Rundhaus Kaser inder Lehren Lauten verheirateten Lernen lebend lebens motiven musiker insel Lehrer Hat Normen kerze keller karte manch kinde schachtel Keler Technische Rechnen Verschieden Verbesserte klima Positiver Polnisch Passiert Learn Nachte Moche march lehrer Norden Nechte Hut Kats Verabreden Leide tendenzen Muslin katz Mitten maria Wunderbarer ide Marai Preisen ien leber lerne luxus rahmen weiterbilden Verbrachte leide miten raketen leste schaum Liste Nennt Wiedersehn Vermittelte verheiratet Loss Versichern Versuchen schmidt studiums schicke Libe neien luter milte mba mier Mall Must Prada Tausend kur Vorletzten Verbleibe Wiederholt Telecom Vermisse nord leit Trainiert Vielleicht rusch neh raise themas selten Vielmals rhein Rate rucht RAd Teuere vieleicht Wunsche Par Weshalb Per termin Weitaus vorteile solte Werden vierten Wiesen Wassa Wende Tanz Weisst Wieder weider volkes Wohen Tolle weisst Winkel Voller Wiese Wass werks Tee Warn Trei weita wald WeIt visa Viel VIa Vie vie wel Evo Fon konto komt Wohin Vorm tool Eintritt Bitt Unfreundliche niht trinkt willt Auslandsaufenthalts Aufwiedersehen Befremden Aufwarten Blumenfest briefkasten ankunft einfachheit anfand botschaft aufsatz Berufen freundinnen Eifelturm defekter Erfahren fahrkarte betriff funfzehn familien frustriert fremden Brief Erfreut konferenzen Hoffentlich flasche familia famille freiheit Informiert faktor Elfte Kaufmans Haushof fehler dorf duft herkunft kartoffeln freud freun fotos schlafzimmer fata unterschriftlich fille fax fust Kaufen fer Kauft Telefoniert offnen Pazifik schlafe schafe luft vorfahren offe Verfehlt surfen verlauft Vertieft vertieft sofa ANFORDERUNGEN ANGELEGENHEIT ALLGEMEINEN BESCHREIBUNG ALTERNATIVE GEOGRAPHISCHEN AUFFASSUNG ARABISCHEN AUSBILDUNG CHRISTLICHEN ENTSCHEIDUNG ERFOLGREICHE ENTSPANNUNG BEDINGUNG AUSGLEICH FORDERUNGEN AUSNAHME AUSDRUCK ERFOLGREICH EMPFEHLUNG ENTSCHEidEN BEDENKEN BIBLIOTHEK ANDERES SCHLUSSFOLGERUNG BESTEHEN INTERNATIONALE BEZAHLEN INFORMATIONEN EINSAMKEIT BEKOMMT ACHTER DORTMUND ANDRES ERKENNBAR ZIMMER DEUTSCHE BEKANNT GEBURTSTAG ANZAHL BEISPIEL BEREICH ALLTAG BANKEN FRANKFORT ACHTE ERKENNEN BAYERN ERLERNEN ENTSTEHT HOCHSCHULE BEGINN ALTEN Geschilderten EINZELNE FAKTOREN HISTORISCHE BEIDER AUTOR KAPITALISMUS PARTNERSCHAFT GEDANKEN EIGENEN HAUSARBEIT ASIEN DANACH APRIL ALSO AFFE DRITTEN ARME WISSENSCHAFTLICHE GRAMMATIK GEMELDET DETAILS COUSIN BODEN ENDLICH BEZUG Geschossen FUSSBALL INTERESSEN GEBOREN DIALOG FAMILIEN BABY TEN MONGOLISCHE GEGEBEN BALD KANDIDATEN ARM MADAGASKAR EINZUG BALL EINMAL INSGESAMT VERANTWORTLICH BLICK BITTE PERSPEKTIVEN Gebacken Genannter GESEHEN FLEISCH FERNER Ste Gewundert CAMP DAMIT GESTERN KRITISIEREN GEPLANT DINGE Gerechnet BEIN FOLGEN GROSSER GOLDENE GRUPPEN ENGEL SCHWIERIGKEIT DELHI GLAUBEN HEUTIGEN GARTEN GEDULD Geworden CLUB PHILOSOPHEN Gratulierte Gelassen Gemischt DARF HOFMANN BIST HEIMWEH Gekaufte Gelandet FINDET Gemietet BON Gestimmt KRANKHEIT Gekostet VIETNAMESISCHE Ganzem EBEN INSEKTEN EDES Goldenen VERSCHIEDENEN DATA Gelernte Genauer BUS FOLGE FESTE ERDE Gratuliert Gedient CUS Bzw EURO KENNTNIS Gleichen THEORETISCHE SCHUMACHER FIRMA KONTAKTE Gekauft TSCHECHISCHE Getestet Geheizt MODERNEN ERST Gebaut GENAU Gerufen Genutzt MODERNES INSTITUT MONATLICH Bin Grundes PRAKTISCHE NACHRICHT Cus REAKTIONEN HESSEN FREIE DOs HALTEN SOGENANNTE REVOLUTION ENG Chi Gestellt Cm GOTHE LEISTUNG NOVEMBER GANZ Ch GUTER HEIMAT ELF FUSS OFFIZIELLE OSTBERLIN SCHWIERIGE POLNISCHE HAUSE Gehts KLEINEN KANNST KOCHEN VERWENDUNG Gehe SPANISCHEN VERMITTLUNG FOR KUCHEN KONNTE FAX GAB Gmbh Gothe GEH HAND SCHENKEN KOMME LOHNEN GEN Gutes Gern LASSEN Obdachlos VERBINDUNG Giebt UNTERRICHT Gaz Gibts MUSEUM SCHLAGEN MELDEN FIL KARTE REAKTION KENNT StudentInnen TRANSPORT RAMADAN NEULICH MONATE SEKTOREN Fill MOZART STREICHEN TEAMWORK Schnellsten NAHOST HOLT LADEN SCHREIBT RICHTIGE RELATIVE MACHT SITUATION MARKS SLOWAKEI Gud WESTLICHEN STRASSEN IDEE KLEID MARKT REICHEN Schlechter Schlachtet Sammelte Gilt KALT SOZIALEN SECHSTE NAHER Schweizer ONLINE RECHTE MILCH NENNT POLIZEI LIEBE SCHRIFT SCHRITT KAN STUNDEN RATTEN Schenkst THAILAND VERTRAGS Schlaffen STRASSE PRAXIS Schicken Schleifen HR TOCHTER LUST Schenke RIESEN Hir POLEN WOLFGANG Schweitz PERLE SOFORT Streichen KIN TABELLE WEITERER OBER SAGEN Hr MAN Schulen SAGTE ROLLE SEITEN PECH Schlafe RHEIN Schickt TASCHE SEHEN Senden Schuss Sichere TRETEN mim NOR SEELE RAUS STROM Stadten WIRKUNG Schen WEITERE SAGE Seines SEINE Strecke TEILEN SPASS STEHT WASSER WARTEN Schun THEMA STOFF WOHNEN Offe REIS VOLKES Schiff Schrit Schik Sitzen Seele OM Om WEITEN WEITER WOLLEN Suche Seen WIRKEN SINN TIPPS On Sucht TANZ Stele Sind Stolz WEISS STIL WAHR WAND WANN WEGE Sint VILLA Stat UNG THE WERT WEIN WEIT WEN Xxx WI Wi lift fill 0 2000 4000 6000 8000 10000 12000 Index Figure 6: Log Annotated Type Frequencies. up in the custom dlexDB. For each type of frequency score (ATF, .. , LLF) the scores of all types in an essay were summed up. They were then divided by the total number of types that had been found in the custom dlexDB (M = matches). We used the matches as a denominator in the ratios rather than the number of types in the essay: the more types are found in dlexDB, the more items add to the sum of scores. Hence creating ratios with all types in an essay as a denominator would not be fair, since they do not reflect the number of types that actually contributed to the sum of scores. Additionally we calculated the ratio of words occurring in a specific frequency band of LATF. To decide on frequency bands, the LATFs of the whole custom dlexDB were plotted using R (Figure 6). It can be seen that 32 dlexDB Frequency Features Annotated Type Ratio Type Ratio Lemma Ratio Log Annotated Type Ratio Log Type Ratio Log Lemma Ratio Ratio of Words In Log Frequency Band Ratio of Lex. Types not in Dlex Formulas sum(ATF) / # M sum(TF) / # M sum(LF) / #M sum(LATF) / # M sum(LTF) / # M sum(LLF) / # M sum(LATFinFrequencyBandN / # M # not M / #T ypLex Table 9: Lexical frequency features using dlexDB there are many words with a log frequency between zero and one. Above one, a relatively linear curve ascends up to four, and a steep rise follows up to five. Between five and six the items become more sparse. The types are mainly adverbs or modals. Consequently six frequency band were assumed, one for each step from zero to six. The ratio of all lexical types that were not found in dlexDB was included as a measure of orthographical or lexical errors. A summary of all frequency features can be seen in Table 9. Lexical Relatedness. Conceptual relations between lexical items are important for the organization of lexical knowledge in the human mind. Hypernymy is a relation of more specific terms (hyponyms - subordinate words) to less specific terms (hypernyms - superordinate words) (Crossley et al., 2009). Hypernyms can have a grouping function or be an umbrella term for hyponyms (e.g., flower is an umbrella term for roses, lilies, daisies ...). Crossley et al. (2009) claimed that hypernymic relations are good indicators for lexical organization and the depth of lexical knowledge. The results of their study indicated that in second language learning, the number of hypernymic relations increases as the learner makes progress. Crossley et al. (2009, 2011b) used WordNet 23 (Miller, 1995) to retrieve hypernymy scores. WordNet’s organization is hierarchical: Hypernymy scores, that measure the distance to the root node, are provided. More abstract words have lower scores (Crossley et al., 2009). Polysemous words have several related senses (Crossley et al., 2011b). Polysemy plays a role in the conceptual organization of lexical knowledge because overlapping word senses relate concepts to each other, and can thus form connections between lexical items (Crossley et al., 2010). In a longitudinal study of second language learners, Crossley et al. (2010) retrieved information about polysemy from WordNet synsets (groups of related lexical 23 http://wordnet.princeton.edu/ 33 items) to measure “the production of words with multiple senses over time”. They found out that there is a correlation between growing lexical proficiency and the production of multiple word senses. In this work GermaNet 7.0 was used to retrieve information about lexical relatedness. GermaNet is a machine readable lexical-semantic resource for German that is similar to WordNet for English. It is structured as a net or graph of concepts that are interlinked by semantic relations. Concepts are organized in synsets. Synsets are sets of lexical units with a closely related meaning. Most words belong to more than one synset. GermaNet also offers information about conceptual relations such as hypernymy or partwhole relations (Henrich and Hinrichs, 2010). GermaNet 7.0 consists of 74612 synsets and covers 99523 lexical units24 . It is free for academic use after signing a license agreement, and a Java API25 is available. Six lexical relatedness features were implemented with information from GermaNet. The lexicon was queried with the lemma and word category of each noun and verb type in an essay. For all matches M (= lemma and word category combinations that were found in GermaNet) all synsets (SynS) were retrieved. All retrieved synsets were considered, as word sense disambiguation could not be implemented in the scope of this work. For each synset all immediate hypernyms and hyponyms were retrieved - that is hypernyms and hyponyms with a node distance of 1 from the synset. The general connectedness of a word was measured by the average number of relations per synset that a word belongs to. The average number of hypernyms per match and average number of hyponyms per match measure the number of immediate super- and subordinate terms of a match, and are another index for a word’s connectedness. Polysemy measures were based on synset scores. The average number or word senses per word was calculated by using the number of synsets each match belonged to (= number of word senses). Additionally, the number of lexical units belonging to each of the synsets might be interesting. Synsets that contain more lexical units establish more relations and connections in the lexical network. Additionally the number of frames per verb found in GermaNet (VM) was included as a feature. GermaNet frames encode the subcategorization information of a verb. Table 10 shows a summary of all lexical connectedness features. 24 Info on GermaNet 7.0 on the project website http://www.sfs.uni-tuebingen.de/ lsd/index.shtml 25 Here: Java API 7.0 http://www.sfs.uni-tuebingen.de/lsd/tools.shtml 34 Lexical Connectedness Features Avg. Num. Synsets per Match Avg. Num. Lexical Units per Synset Avg. Num. Relations per Synset Avg. Num. Hypernyms per Match Avg. Num. Hyponyms per Match Avg. Num. Frames per Verb Formulas # SynS / # M sum(# LexUnit in SynS) / # SynS sum(# RelSynS of SynS)/ # SynS sum(# Hyper per Syns)/ # M sum(# Hypo per Syns) / # M # Frames / # VerbalM Table 10: Lexical features measuring the connectedness of lexical items. 5.1.3 Shallow Measures and Error Measures. As two shallow measures of lexical complexity, syllable count26 and word length in characters were included. Those measures were used in language acquisition studies (Crossley et al., 2011a), but were also part of traditional readability formulas (Kincaid et al., 1975). Finally, errors on the word level were measured by counting the spelling errors found by Google Spell Check. Formulas # Tok # Char / # Tok # Syll / # Tok # Spell Erros / # Tok Other Lexical Measures Text Length Avg. Num. Characters per Word Avg. Num. Syllables per Word Google Spell Check Error Rate Table 11: Shallow measures of lexical proficiency. 5.2 Language Model Features Ngram language models can predict the probability of a specific sequence of words based on its history (Schwarm and Ostendorf, 2005). P (w) = P (w1 )P (w2 |w1 ) m Y P (wi |wi−1 , wi−2 ) (2) i=3 Language models can be deployed to measure textual complexity, as the distribution of word sequences tends to differ with complexity. Therefore they have been widely used in readability assessment (e.g., Schwarm and Ostendorf (2005); Petersen and Ostendorf (2009); Feng (2010)). Ngram frequency 26 Syllable counts were obtained by simple heuristics: In German, a syllable mostly contains exactly one vowel - phonetically speaking. This means that in written language diphthongs, double vowels and the combination vowel+e, which indicates a long vowel, have to be counted as one vowel. 35 features are closely related to language models. They have been included in the approaches of Briscoe et al. (2010) and Yannakoudakis et al. (2011) to capture lexical and - in the case of higher order ngrams - structural information. Language models draw their power form distributional probabilities and thus work best when a large amount of domain specific training data is available. This was not the case for the MERLIN data. Petersen and Ostendorf (2009) faced the same problem, when training readability models on the Weekly Reader, an educational magazine at different grade levels. As a solution they trained their language models on separate data sets (Petersen and Ostendorf, 2009). Feng (2010) who, like Petersen and Ostendorf (2009), worked with the Weekly Reader data, criticized this approach and proposed a leave-one-out approach for training language models directly on the Weekly Reader data. We rejected the idea of Feng (2010)’s leave-one-out approach, because the amount of data offered by the MERLIN data would probably still be too small. Compared to the Weekly Reader data set used by Feng (2010), there are less documents - 1000 MERLIN essays in total compared to 1629 articles (Feng, 2010, 46) form the Weekly Reader. Additionally, the average number of words per document is much larger in the Weekly Reader (about 130-330 words) than in MERLIN (about 33-218 words). Another reason for using a separate data set for language model training is that the essays in MERLIN were written on three different tasks per exam level. It can be assumed that an essay shares more vocabulary with essays that were written on the same task than with those written on different tasks. This could cause the language model scores to represent the tasks rather than the proficiency levels. Therefore separate training corpora, that we collected from the web, were used for language modeling. 2000 articles from News4Kids (http://www. news4kids.de), a German website which adapts news for children was used to represent easy texts. The difficult language model was trained on 2000 articles from the website of the German news channel NTV (http://www. n-tv.de). The same data has been used for building language models for German readability classification by Hancke et al. (2012). Schwarm and Ostendorf (2005) and Feng (2010) suggested that mixed models, that combine words and parts-of-speech, are more effective for readability assessment than simple word based models. But Petersen and Ostendorf (2009) reached the opposite conclusion. Therefore both types of models were included. The language models were prepared and evaluated as described in Hancke et al. (2012): All words were converted to lowercase and except for sentence 36 final punctuation, all punctuation was removed. As proposed by Petersen and Ostendorf (2009), a bag-of-words classifier was first trained with the language modeling data set (News4Kids and NTV ). Information Gain (Yang and Pedersen, 1997) was used for feature selection. All words below an empirically determined threshold were replaced by their part of speech. SRI Language Modeling Toolkit (Stolcke, 2002) was used for training unigram, bigram and trigram models on the words-only and mixed word/part of speech corpora representing easy and difficult texts. For all models, Kneyser-Ney smoothing (Chen and Goodman, 1999) was selected as smoothing technique. This resulted in twelve language models. The perplexity scores (Equation 3) from all twelve language models were included as features for proficiency assessment. Perplexity is an informationtheoretic measure that indicates the fit between a text and a language model. To obtain these scores the spelling-corrected version of the MERLIN data was used. This should minimize cases where ngrams were not recognized due to spelling errors. All language model score features can be seen in Table 12. P P = 2H(t|c) , whereH(t|c) = Level of Difficulty Easy Difficult 1 log2 P (t|c) m Word Based Model Unigram perplexity Bigram perplexity Trigram perplexity Unigram perplexity Bigram perplexity Trigram perplexity (3) Mixed Model Unigram perplexity Bigram perplexity Trigram perplexity Unigram perplexity Bigram perplexity Trigram perplexity Table 12: The twelve perplexity scores used as language model features 5.3 Syntactic Features Syntactic characteristics and measures have been deployed as features for proficiency assessment (Briscoe et al., 2010), but also in L2 developmental studies (Hawkins and Buttery, 2009, 2010; Lu, 2010; Biber et al., 2011) and readability assessment (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala and Meurers, 2012). However, all these approaches worked with English texts. Hancke et al. (2012) adapted a number of syntactic features previously used in L2 developmental studies (Lu, 2010) and readability assessment (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala and Meurers, 2012) 37 for readability assessment on German texts. We used these features as the foundation of our syntactic feature set and added several new indices. 5.3.1 Parse Rule Features Briscoe et al. (2010) and Yannakoudakis et al. (2011) used the frequencies of parse rule names to gain information about the grammatical structures in learner texts. They extracted parse rule names from the parse trees produced by the RASP parser. While these types of features are not theoretically well informed, they allow a very comprehensive inclusion of the syntactic structures used by the learners. Looking at the distributions of those structures might point to indicative constellations. We included similar features, based on the trees produced by the Stanford Parser. Parse tree rules were extract by the means of listing all local trees (Figure 7) for all parse trees. As a corpus for parse rule name extraction a subset of 700 articles form the NTV corpus was used. From the extracted parse rule names, a vector was formed. For each essay in the MERLIN corpus, the frequencies of the parse rule names in this vector were counted and divided by the number of words in the essay. Additionally experiments were made with just indicating whether a parse rule was present in an essay or not by putting the value to either zero or one. (NUR PWAV $.) (VP PP ADJD NP-OA VVPP) (CNP-SB NE $, NN KON NN) (PP APPR PRF) (S KOUS NP-DA NP-OA VVFIN) (VP PP NP-OA PP VVINF) (PP APPR CNP PP) (S CARD VVFIN NP-SB PP) (NP ART NN PP $.) (AP PP) Figure 7: Examples for parse tree rules. 5.3.2 Dependency Features Yannakoudakis et al. (2011) included the sum of the longest distances in word tokens between a head and a dependent in a grammatical relation as an indicator of syntactic sophistication. In readability assessment, the length of dependencies has also been used in various shades. Dell’Orletta et al. (2011) suggested the average length of dependencies in words as a 38 dependency-based alternative to phrase length. Additionally they examined the number of dependents per verb as an indicator of readability. Vor der Brück and Hartrumpf (2007); Vor der Brück et al. (2008) used the length of dependencies headed by specific parts-of-speech, such as number of words per NP and VP, as features for their readability classifier. In this work, the following dependency based features were included: the maximum number of words between a head and a dependent in a text, the average number of words between a head and a dependent per sentence, the average number of dependents per verb (in words) including and excluding modifiers, and the number of dependents per NP (in words). 5.3.3 Parse Tree Complexity and Specific Syntactic Constructions. As a starting point, we included the syntactic features that Hancke et al. (2012) adapted for German readability assessment from various sources. Features adapted from readability assessment comprised average parse tree height and the average length and number of NPs, VPs and PPs per sentence (Petersen and Ostendorf, 2009; Feng, 2010). To this set Hancke et al. (2012) added VZs (‘zu’-marked infinitive phrases) per phrase as a language specific feature. Syntactic Features from SLA Avg. Length of a Clause Avg. Sentence Length Avg. Length of a T-Unit Avg. Num. Clauses per Sentence Avg. Num. T-Units per Sentence Avg. Num. Clauses per T-Unit Avg. Num. Complex-T-Units per T-Unit Avg. Num. Dep. Clause per Clause Avg. Num. Dep. Clause per T-Unit Avg. Num. Co-ordinate Phrases per Clause Avg. Num. Co-ordinate Phrases per T-Unit Avg. Num. Complex Nominals per Clause Avg. Num. Complex Nominals per T-Unit Avg. Num. VPs per T-Unit Formulas #W/#C #W/#S # W / # TU #C/#S # TU / # S #C / # TU # comp. TU / # TU # DC / # C # DC / # TU # CP / # C # CP / # TU # compl. Nom. / # C # compl. Nom. / # TU # VP / # TU Table 13: Syntactic features from Hancke et al. (2012) based on features form SLA. The measures from second language acquisition adapted by Hancke et al. 39 (2012)27 aim at capturing a learner’s syntactic development by examining specific syntactic properties. Complexity as reflected in the length of production units is measured by average length of sentences, clauses and T-Units (Lu, 2010; Vajjala and Meurers, 2012). Sentence complexity is reflected by the number of clauses per sentence. Ratios like dependent clauses per clause and number of complex T-Units per T-Unit are used to capture the amount of embedding, while the amount of coordination is represented by e.g., the number of coordinated phrases per clause and the number of T-Units per sentence. Finally, the complexity of particular structures is considered (e.g., complex nominals per clause). Syntactic features from readability assessment Avg. Num. NPs per Sentence Avg. Num. VPs per Sentence Avg. Num. PPs per Sentence Avg. Num. VZs per Sentence Avg. Num. NPs per Clause Avg. Num. VPs per Clause Avg. Num. PPs per Clause Avg. Num. VZs per Clause Avg. Length of a NP Avg. Length of a VP Avg. Length of a PP Avg. Num. Dep. Clauses per Sentence Avg. Num. Complex T-Units per Sentence Avg. Num. Co-ordinate Phrases per Sentence Avg. Parse Tree Height Formulas #NP / # S # VP / # S # VZ / # S # PP / # S # NP / # C # VP / # C # PP / # C # VZ / # C sum(len(NP)) / # NP sum(len(VP)) / # NP sum(len(PP)) / # NP # DC / # S #compl. TU/ # S # CP / # S sum(parseTreeHeight) / # S Table 14: Syntactic Features from Hancke et al. (2012) based on previous work on readability assessment. Inspired by different sources, we added several other syntactic features. The average number of non-terminal nodes per sentence, clause and word were included following Feng (2010). The internal complexity of NPs was measured by taking into account the number of modifiers per NP as was suggested by Graesser et al. (2004). Additionally the complexity of VPs was measured in the same way. The number of passive voice constructions was counted per clause and by sentence. This feature was inspired by work on text simplification: Siddharthan (2002) identified passive constructions to transform them into ac27 They follow Vajjala and Meurers (2012) who first deployed these measures for readability assessment 40 passive : (wird|werden|wurden)/VAFIN .* */VVPP Futur 2 : (wird|werden|wurden)/VAFIN .* */VVPP haben/VAINF Figure 8: Regular expressions used to identify passive voice tive voice, because active voice is supposedly simpler. Grounded on this hypothesis it was interesting to investigate passive voice as a feature for proficiency assessment. In German, there is also the ‘Zustandspassiv’ (Das Fenster ist geöffnet.), which we did not included here. To identify passive voice, we used dependency parsing and regular expressions (Figure 8). In passive voice, the inflected verb is a form of werden followed by a participle. The same construction is also part of Futur 2, where it is, however, followed by haben. For each verb in a sentence, all its verbal dependents were extracted from the dependency parse. Each verb was represented by its form and part of speech (wordform/POS-Tag). The head verb was concatenated into a string with its dependents. On this string, the regular expressions described above was applied to find passive voice. A more detailed analysis of other specific constructions was inspired by Biber et al. (2011). In their article they challenged the common practice of relying on T-Unit and clausal subordination based measures for the assessment of grammatical complexity in writing. They investigated 28 grammatical features that were based on the grammatical types and grammatical functions of clauses and phrases (Biber et al., 2011). In this work, it was not possible to include the full range of Biber et al. (2011)’s indicators of complexity. Biber et al. (2011) identified some features manually such as the syntactic functions of prepositional phrases. For other features, external resources would be needed, e.g., a list of nouns that control complement clauses28 (Biber et al., 2011). Inspired by Biber et al. (2011)’s work, we included a more fine grained analysis of dependent clauses. Finite dependent clauses that start with a conjunction or pronoun, finite dependent clauses that do not start with a conjunction or pronoun, and non-finite dependent clauses (‘satzwertige Infinitive’) were set apart. Finite clauses that start with a conjunction or pronoun were further differentiated into interrogative, conjunctional and relative clauses. 28 GermaNet verb frames, that contain subcategorization information for the verbs could be used to enable a more fine grained analyzes. However an implementation was not possible within the bounds of this work. 41 Other Syntactic Features Avg. Num. Non-Terminals Per Sentence Avg. Num. Non-Terminal Per Words Avg. Num. Modifiers Per NP Avg. Num. Modifiers Per VP Passive Voice - Sentence Ratio Passive Voice - Clause Ratio Dep. Clauses with Conj. to dep. Clause Ratio Conjunctional Clauses Ratio Interrogative Clauses Ratio Relative Clauses Ratio Dep. Clauses w.o. Conj. to dep. Clause Ratio ‘satzwertige Infinitive’ to Clause Ratio Formulas # NTs / # S # NTs / # W # modifiersInNPs / # NPs # modifiersInVPs / # VPs # passiveVoice / # S # passiveVoice /# C # DC w. Conj. / # DC # Conj. C / # dep. C w. Conj. # Inter. C / # dep. C w. Conj. # Rel. C / # DC w. Conj. # DC w.o. Conj. / # DC # satzInf / # DC Table 15: Other syntactic features that measure parse tree complexity and examine specific constructions. 5.4 Morphological Features Morphological indicators have proven to be valuable features for proficiency classification for Estonian (Vajjala and Loo, 2013) and for readability assessment for various languages with a rich morphology (Dell’Orletta et al., 2011; Francois and Fairon, 2012; Vor der Brück and Hartrumpf, 2007; Vor der Brück et al., 2008; Hancke et al., 2012). German,too, has a rich inflectional and derivational morphology. Inflectional morphemes convey a range of grammatical meanings. German nominal declension has four cases and several different declension paradigms. Different verb forms and inflectional morphemes of the finite verb express person and number (e.g., ich gehe [I go], du gehst [you go]) as well as tense and mood. Compounding is very productive in German word formation. Words with different parts-of-speech can be combined (e.g., Mauseloch [mouse hole], Schwimmbad [swimming pool ], Grosseltern [grandparents]). Prefixation (Gebäude [Building]) and suffixation are also very common and diverse. For example, there is nominalization with overt suffixes (regieren[govern] – Regierung [government]) or without an overt suffix (laufen [to run] – der Lauf [the run]) (Hancke et al., 2012). In this work, the morphological features proposed for readability assessment by Hancke et al. (2012) were taken as a vantage point for exploring the impact of morphological features on proficiency assessment. Additionally, tense was explored in more detail, using automatically extracted tense patterns. 42 5.4.1 Inflectional Morphology of the Verb and Noun Following Hancke et al. (2012) we extracted a broad range of features based on verbal inflection including person, mood and type of verb (finite, nonfinite, auxiliary). Additionally we included nominal case information as features. All inflectional features (Tables 16 and 17) were automatically extracted from the output of the RFTagger. Verb Features Infinitive-Verb Ratio Participle-Verb Ratio Imperative-Verb Ratio First Person-Verb Ratio Second Person-Verb Ratio Third Person-Verb Ratio Subjunctive-Verb Ratio Finite Verb-Verb Ratio Modal-Verb Ratio Auxiliary-Verb Ratio Avg num. Verbs per Sentence Formulas # infinitive Vs / # Vs # participle Vs / # Vs # imperative Vs / # Vs # 1st person Vs / # finite Vs # 2nd person Vs / # finite Vs # 3rd person Vs / # finite Vs # subjunctive Vs / # finite Vs # finite Vs / # Vs # modal Vs / # Vs # auxiliary Vs / # Vs # Vs / # S Table 16: The features based on the inflectional morphology of the verb Noun Features Accusative-Noun Ratio Dative-Noun Ratio Genetive-Noun Ratio Nominative-Noun Ratio Formulas # accusative Ns / # Ns # dative. Ns / # Ns # genitive Ns / # Ns # nominative Ns / # Ns Table 17: The features based on inflectional morphology of the noun 5.4.2 Derivational Morphology of the Noun Examining nominal suffixes is not only interesting because derived words are supposedly more complex than simple words (Vor der Brück et al., 2008). Word stems of Germanic origin can often be combined with other suffixes than word stems that have Greek or Latin roots (e.g., Linguist vs. Sprachwissenschaftler ). To capture the information encoded in nominal suffixes, we counted the occurrence of each suffix in a list (Table 18) originally compiled by Hancke 43 et al. (2012). The list includes all different gender and number forms for each suffix. The counts for all forms of a suffix were accumulated in order to not get different counts for the plural and singular forms or for different genders of the same suffix. Only polysyllabic words were considered in order to exclude simple nouns that are homomorphs of a derivational morpheme (e.g., Ei [egg] vs. suffix -ei ). Suffix ant arium ast at ator atur ei er ent enz eur heit Suffix ist ion ismus ität keit ling nis schaft tum ung ur werk wesen Further Suffix Forms anten, antin, antinnen arien asten, astin, astinnen ate atoren, atorin, atorinnen aturen eien erin, erinnen ents enzen eure, eurin, eurinnen heiten Further Suffix Forms isten, istin, istinnen ionen ismen itäten keiten lingen nisse schaften tümer ungen werke Table 18: List of German derivational suffixes used Hancke et al. (2012)’s experiments with different ratios showed that the best results were obtained by dividing the suffix counts by the number of tokens in an essay. Therefore the suffix features were calculated by counting the frequencies of all suffixes in an essay and then dividing these counts by the number of all tokens in the essay. Additionally the ratio of all derived nouns to all nouns was included as a feature. 5.4.3 Nominal Compounds Following Hancke et al. (2012) the ratio of compound nouns to all nouns and the average number of words in a compound were included as features. Compounds were identified and split into their components with JWordSplitter 3.429 . It is unclear whether the use of compounds is indicative of a learner’s linguistic proficiency. However, we think it is worth investigating. Especially for learners with native languages that do not use this word formation mechanism, compounds may be a stumbling block. 29 http://www.danielnaber.de/jwordsplitter 44 5.4.4 Tense To capture the usage of tense, ‘tense patters’ (Figure 9) based on the morphologically rich tags of the RFTagger were extracted. This approach was preferred to using regular expression for matching pre-defined tenses because we believe that it allows a better coverage of possible constellations. The tense patterns could be very interesting for a linguistic characterization of the CEFR levels, because they might reveal what tenses the learners know at each level. John fragt den Mann, VFIN.Full.Pres der neben ihm gewohnt hat, VFIN.Haben.Pres VPP.Full.Psp ob er die Katze füttern kann. VFIN.Mod.Pres VINF.Full.- Figure 9: Example for tense patterns The patterns were extracted from the same subset of the NTV corpus as the parse rules (section 5.3). From the dependency parse, all those verbal children of all verbs were collected, where the relation did not cross the boundaries of a subordinated clause (tags KOUS, KOUI) or a conjunction (tags KON). This restriction was necessary because subordinated clauses are often the dependent of the finite verb in the main clause. Relative clauses were not considered boundaries, since they do not attach to verbs. The verb’s children found in this way were substituted by their RFTagger tags. The information about number, person and mood was removed, so that only the tense information remained. To make sure that only the longest pattern was included, the extraction routine checked whether the previous match was included in the current match. If so, the current pattern replaced the previous pattern instead of being added as a new pattern. For each script, the frequency of each pattern was counted and divided by the number of tokens in the script. Alternatively, we experimented with using a binary scale, where one indicates that a pattern was present in an essay, and zero indicates that it was not present. 45 Figure 10: Number of samples per class in the training and test set 6 6.1 Experiments and Results Experimental Setup All experiments were conducted on the MERLIN data set described in section 3. The data was preprocessed as described in Section 4.1. For supplementing statistical analysis we used R. The WEKA machine learning toolkit (version 3.7.6) (Hall et al., 2009) was used for all experiments involving machine learning. All feature values were normalized with the WEKA filter Normalize, such that all values fall into the interval [0,1]. Most experiments were performed with 10-fold cross validation on the whole data set, as well as on a separate training and test set. For creating the training and test set, 2/3 randomly chosen samples from each class were added to the training set and 1/3 to the test set. Splitting the data set regarding no other factor than class (= essay rating level) resulted in an uneven distribution of exam types across the classes and the training and test set (Figure 11). While in theory this should not have any influence on the results, in practice it is quite likely that the essay rating level (=class) is not independent of the exam type. The correlation between exam type and essay rating level is 0.8 (Pearson’s correlation). 46 Figure 11: Exam type distribution across the classes in the training and test set. 6.2 Comparison of different Algorithms for Classification As a first step we experimented with different machine learning algorithms. We tested SMO, Naive Bayes and J48 Decision Tree. Naive Bayes and J48 were used with their standard configurations30 in WEKA, except that for SMO, the normalization of the input was turned off since the data was already normalized. All features were used for building the models. The results can be compared to a majority baseline, which represents the performance if every sample would be classified as the class with the most samples. For the sake of comparison we also built a regression model with WEKA’s Linear Regression (LinearRegression 31 ) using cross validation for training and testing. It resulted in a good correlation (r =0.78) but also in a relatively high root mean squared error (0.68). Comparing the results of the three different classification algorithms showed that SMO performed better than the other classifiers. Therefore it was chosen for all further experiments. This result was expected since Support Vec30 Naive Bayes: weka.classifiers.bayes.NaiveBayes ; J48: weka.classifiers.trees.J48 -C 0.25 -M 2 ; SMO: weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 2 -V -1 -W 1 -K ”weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0” 31 Automatic feature selection and the elimination of redundant features was turned off in the configuration 47 Classifier Majority Baseline SMO Naive Bayes J48 Holdout Accuracy F-Measure 33.0 16.3 57.2 56.4 41.17 40.3 48.7 47.8 CV on all data Accuracy F-Measure 33.0 16.3 64.5 64.0 48.2 49.3 56.5 56.2 Table 19: Comparison of different classifier algorithms. tor Machines are especially suitable for numeric features and larger feature spaces. They have been previously used for similar problems with good results (Petersen and Ostendorf (2009); Vajjala and Meurers (2012)). It is remarkable that irrespective of the classifier, the cross validation results were persistently about 7 % better than the results with the separate training and test set. There are several possible explanations. The models built with cross validation were probably more accurate because more training data was available. The models’ variance could be high, which would mean that they probably over-fit the training data and therefore do not generalize well on different test sets. The unequal distribution of exam types across training and test set could be another reason. We examined the SMO model in more detail by looking at the performance of each cross validation fold separately. The highest accuracy was 10.7 % better than the worst (59.2 %). The worst result for a fold in cross validation, however, was still 2 % better than the accuracy for our holdout test set. This indicates that the relatively high variance of the model is responsible for the difference in results between cross validation and holdout estimation in a greater degree than the amount of training data. 6.3 SMO Configuration and Optimization For all further experiments we used SMO with a polynomial kernel of exponent 1. We also experimented with other exponents and with RBF kernel, but the polynomial kernel with exponent 1 exceeded the other options. The polynomial kernel implements a function (xy)n , which computes the dot product of the vectors x and y and raises it to the power of n. Choosing n = 1 in fact results in a linear model (Witten and Frank, 2005). One of the disadvantages of Support Vector Machines is their sensitivity to the tuning of certain parameters. When using the polynomial kernel, once an exponent is chosen, the cost parameter C should be optimized in order to get robust results (Harrington, 2012). The cost parameter manages the trade 48 off between making the margin as large as possible and keeping a distance of at least one between the samples (Harrington, 2012). If C is too large the model will tend to over-fit. If it is too small it tends to under-fit. In order to optimize the cost parameter in our experiments we used WEKA’s meta classifier CVParameterSelection. It performs 10 fold cross validation on the training data to find the optimal parameter value in a specified range. We chose a range from 1 to 10 in steps of 1. One of the main advantages of using the meta classifier is that it allows the use of 10 fold cross validation for parameter selection and for model building / performance evaluation. It performs an ”inner” cross validation for parameter selection on each ”outer” cross validation for model building / performance evaluation. The disadvantage is, that this procedure is computationally expensive and time consuming. 6.4 Measuring the Contribution of Different Feature Types Syntactic Features Avg. Num. Dep. Clause per Clause Avg. Length of a T-Unit Avg. Num. Dep. Clause per T-Unit Avg. Num. VZs per Sentence Avg. Num. Complex-T-Units per T-Unit Avg. Num. VPs per T-Unit Avg. Num. Dep. Clauses per Sentence Avg. Num. VZs per Clause Dep. Clauses with Conj. to dep. Clause Ratio Avg. Num. Clauses per T-Unit r 0.58 0.57 0.56 0.55 0.54 0.54 0.53 0.52 0.50 0.50 Table 20: The ten syntactic features that correlate best with proficiency level. To enhance our understanding of the feature groups we calculated the correlation of each feature with proficiency level (= essay rating level), based on the training set. The 10 features of each group that correlated best with proficiency level are shown in Tables 20 - 23. Although the parse rule (PR) and tense features (TEN) conceptually belong to the syntactic and morphological feature group respectively, they were treated as separate groups because they differ from the other groups in several respects. While the other features are mostly theory driven, the tense and parse rule features are data driven. Additionally they contain a far larger amount of features than the other groups, and there is more sparsity. Features like average sentence 49 Morphological Features Derived Nouns-Nouns Ratio Nominative-Noun Ratio Second Person-Verb Ratio Avg. Compound Depth Dative-Noun Ratio Avg. Num. Verbs Per Sentence Infinitive-Verb Ratio keit ion Third Person-Verb Ratio r 0.59 -0.54 -0.46 0.45 0.40 0.40 0.38 0.37 0.35 0.35 Table 21: The ten morphological features that correlate best with proficiency level. length and Type-Token Ratio can be reliably calculated for every text while many tense constellations and parse rules occur only in some texts. Lexical Features Text Length Root Type-Token Ratio Corrected Type-Token Ratio Corrected Verb Variation 1 Squared Verb Variation 1 Type-Token Ratio HDD Google Spell Check Error Rate Avg. Num. Characters per Word Avg. Num. Syllables per Word r 0.81 0.78 0.78 0.75 0.74 -0.57 0.54 -0.47 0.47 0.44 Language Model Features Unigram Plain Difficult Unigram Plain Easy Bigram Mixed Difficult Trigram Mixed Easy Bigram Mixed Easy Bigram Plain Difficult Trigram Plain Easy Bigram Plain Easy Unigram Mixed Difficult Trigram Mixed Difficult r -0.47 -0.46 0.42 0.34 0.33 0.32 0.25 0.15 0.09 0.07 Table 22: Ten lexical and language model features that correlate best with proficiency level. The lexical group contains 5 features that correlate better than the best correlations in all other groups (r > 0.7). The other 5 features among the 10 best of this group still have good correlation values. Notably Type-Token Ratio has a negative correlation with proficiency level, while its variants show positive correlations. This may be explained with Type-Token Ratio’s dependency on text length. For extremely short texts it is easier to obtain a high Type-Token Ratio than for longer texts. This negative correlation might indicate that the increase in text length in the higher levels is greater than the increase in the richness of vocabulary. Text length and Type-Token Ratio have a correlation of -0.65. Notably the correlation of other features with 50 text length are much higher: Root Type Token Ratio (r = 0.86), Squared Verb Variation (r = 0.81) and Corrected Verb Variation (r = 0.84). This might indicate that they are not actually good measures for proficiency but encode text length instead. In the syntactic group none of the features correlate as highly with proficiency level as the 5 best features in the lexical group. However, all ten values are above 0.5. More than half of the top 10 correlating syntactic features encode embedding. The features of the morphological group all in all correlate slightly worse than those in the syntactic group. Most notable is the relatively high (r = 0.59) correlation of Derived Nouns-Noun Ratio which encodes the overall use of nominal derivation and nominalization. Nominative-Noun Ratio has a negative correlation and could either encode the use of conceptually simple sentences or grammar mistakes - another case might have been correct in some places where nominative appeared. A detailed study would be interesting. Second Person-Verb Ratio might be seen as a sign of personal and non-formal style. It is to be suspected that its use depends on the task, the essays were written for. The fact that it correlates better with exam type (r =-0.58) than with proficiency level supports this claim. From the parse rule group ROOT NUR had a high negative correlation with proficiency level. NUR means “Non Unary Root”. It is an artifact used by the Stanford Parser when converting trees from NEGRA to Penn Treebank format trees. It is introduced if a tree has multiple children under the ROOT node (personal correspondence with Christopher Manning). It is hard to interpret this in the context of proficiency levels, but the negative correlation and its occurrence in non standard trees indicate that it reflects word order mistakes or missing punctuation. The parse rule feature with the second highest correlation encodes ‘satzwertige Infinitive’ like Computer zu spielen. It should be mentioned that most of the over 3000 parse rule features exhibited a correlation of lower than 0.1. In the language model group the easy and difficult Plain Text Unigram Perplexity scores were the most indicative features. It is however intriguing that both correlations are negative. It would have been expected to see a negative correlation for the model that represents easy language and a positive correlation for the model that represents difficult language. In the tense group all correlations were quite low. The best values were achieved by an infinite modal followed by an infinite verb as in Sie können gehen. [You may go.] and by infinitives with ‘zu’. To further examine the predictive power of each group of indicators we built a classifier with each feature group individually. Text length was chosen as an additional baseline due to its high correlation with proficiency level. The results showed that all feature groups outperformed the majority base51 Parse Rule Features ROOT NUR VZ PTKZU VVINF S NP-SB VVFIN PRF NP-SB $. NP-SB ADJA ADJA NN PP NP-SB NN NE NP-OA PPER VP VVPP $, CVP VP NP-DA NP-OA VVIZU NP-OA NE ROOT NP r -0.62 0.49 -0.40 -0.39 -0.32 -0.31 0.31 0.31 -0.28 -0.28 Tense Feature VINF.Mod.- VINF.Full.VINF.Full.zu VFIN.Aux.Pres VPP.Full.Psp VFIN.Full.Pres VINF.Aux.- VPP.Full.Psp VFIN.Mod.Pres.VFIN.Sein.Pres VINF.Full.- VFIN.Full.Past VFIN.Mod.Pres.VINF.Sein.VFIN.Mod.Pres VIMP.Full.Sg r 0.21 0.21 0.18 -0.17 0.15 0.14 0.14 0.13 -0.12 -0.12 Table 23: Ten parse rule and tense features that correlate best with proficiency level. line, but only the lexical feature group performed better than the text length baseline in terms of accuracy in the cross validation scenario. The lexical and morphological group performed better than text length when comparing F-measure. In the holdout scenario no feature outperformed the baseline of text length in terms of accuracy, and only the lexical group exceeded it in terms of F-measure. With both methods of evaluation the lexical and morphological groups performed best, and parse rule and tense features yielded the poorest results. The results were mostly congruent with the insights gathered from looking at the ten best correlating features from each group. The lexical features performed best. Although displaying slightly lower correlations with proficiency level among the top 10 features, the classifier built with the morphological features exceeded the classifier built with the syntactic features. As expected the parse rule, language model and tense groups performed worst. Further investigating the parse rule and tense feature groups however, we found out that representing those features as binary instead of frequency weighted vectors immensely improved their performance (7 % and 18 % respectively). Looking at the values of the tense features before normalization revealed that they were mostly 0 and even the non zero values were mostly close to 0. The maximum value was 2. For the parse rule features the situation was similar, with the maximum feature value being 0.17. This could explain why they yield better result when used as binary features: if the feature values are mostly very close to zero they may not be separable by the support vector machine, especially when mixed with larger values. We conclude that it would be optimal to use the tense and parse rule features as binary features. However, combining binary and numeric features 52 Holdout Name # Accuracy F-Measure Majority Baseline 33.0 16.3 Text Length (BL) 1 61.4 55.7 SYN 47 53.6 49.9 PR 3445 49.0 47.2 LEX 46 60.5 58.9 LM 12 50.0 46.7 MORPH 41 56.82 55.7 TEN 230 38.5 36.8 CV on all data Accuracy F-Measure 33.0 16.3 63.9 59.4 58.2 54.5 57.1 56.0 68.7 67.4 54.6 51.0 61.8 60.1 44.2 41.7 Table 24: Performance of each group of features individually. Name Accuracy F-Measure PR 61.1 60.5 TEN 56.8 54.7 Table 25: Performance of the tense and parse rule groups as binary features. Training and testing with 10-fold CV on all data. into one model would require more sophisticated machine learning techniques and is not manageable in the scope of this work. It is still an interesting fact that might be picked up in the future. 6.5 Combining Different Feature Groups After having examined the performance of each feature group individually we tested the performance of all possible combinations of feature groups. This experiment might offer some insights on which of the feature groups complement each other. For each two, three and four class combinations, the three most successful combinations are reported in addition to the combination of all feature groups. The experiment was conducted with the separate training and test as well as with cross validation on the whole data set. In comparison to using the groups individually, the performance mostly improved when combining two or three feature groups . However, for four groups and when using all features, the performance of the classifiers dropped considerably below the performance of the best individual group. This suggests that too much useless features accumulated, which can have a negative effect on the models’ predictive power. The best combination of feature groups with cross validation as evaluation was LEX LM MORPH. When using holdout estimation, the LEX MORPH 53 CV on all data Name Accuracy F-Measure SYN LEX 69.7 67.3 LEX MORPH 69.4 69.1 LEX LM 69.1 68.0 LEX LM MORPH 70.1 69.9 SYN LEX LM 69.9 66.9 SYN LEX MORPH 68.5 67.9 SYN LEX LM MORPH 68.9 68.6 LEX LM MORPH TEN 68.8 68.3 SYN LEX LM TEN 65.5 64.0 ALL 64.5 64.0 Table 26: Three best performing two, three and four class combinations and the performance of all features (CV). Holdout Name Accuracy F-Measure LEX MORPH 61.1 60.8 LEX TEN 59.8 59.3 LEX LM 59.4 59.0 LEX LM MORPH 61.1 60.58 SYN LEX MORPH 58.5 58.0 LEX LM TEN 57.8 57.6 SYN LEX LM MORPH 58.8 58.4 SYN LEX LM PR 57.8 57.3 LEX LM MORPH TEN 57.8 57.2 ALL 57.2 56.4 Table 27: Three best performing two, three and four class combinations and the performance of all features (holdout). and LEX LM MORPH were equal in accuracy. It is interesting to see that the different methods for model training and testing produced different rankings. Investigating the reasons for these discrepancies would be very interesting, but has to be deferred to future work. In addition to the classification experiments, we examined the intercorrelations of individual features, mainly to detect high intercorrelations across groups. Notably, Average Number of Verbs per Sentence from the morphological group correlated highly with several syntactic features, for instance Average Sentence Length (r = 0.91) and Average Longest Depen54 dency per Sentence (r = 0.86). Furthermore there was a high correlation between Participle-Verb Ratio and Passive Voice per Clause (r = 0.86). Unsurprisingly there were high intercorrelations between some elements of the syntactic and parse rule group, for example Average VZ Frequency and the corresponding parser tag VZ PTKZU VVINF (r = 0.89). Many high intercorrelations also occurred between features of the tense and the parse rule group. From the declining results for combinations of more than three groups it can be concluded that these combinations have potential but that too much noise disturbs the SMO. Feature selection can be applied to find a good combination of features. For future work it might be interesting to train an ensemble classifier instead of combining feature groups. 6.6 Feature Selection As the previous section has illustrated, using all available features together in one model does not result in the best classifier. Irrelevant features have a negative impact on most machine learning algorithms, slow them down and make the resulting models harder to interpret. It is therefore a common practice to perform attribute selection before classification (Witten and Frank, 2005). We used the WEKA implementation of correlation based feature selection (CfsSubsetEval ). This method is independent of the machine learning algorithm used. It evaluates the merit of each feature in terms of correlation with the class but also takes redundancy among the features into account. Features that correlate highest with the class but have a low intercorrelation are preferred (Witten and Frank, 2005). Name LEX LM MORPH SYN LEX LM MORPH ALL # 30 34 88 CV on Training Set Accuracy F-Measure 71.2 70.7 72.5 72.4 71.6 71.2 Holdout Accuracy F-Measure 61.7 61.3 62.7 62.2 61.8 60.7 Table 28: Results after Feature Selection with CfsSubset Evaluation We applied feature selection to the most successful combinations of three and four feature groups and to the whole feature set. Since CfsSubsetEval uses the whole training set for feature selection we conducted the following experiment on the separate training and test set only. Since the test set should not be used for judging the success of feature selection, the results are shown for 10 fold cross validation on the training set. Choosing a feature 55 set should based on these results only. However, since this is experimental work, we also show the results on the heldout test set to be able to compare their performance to their non feature-selected counterparts. Interpretation Length / sophistication of production units Embedding Verb phrase complexity Coordination Use of passive voice Script length Lexical richness Lexical richness w. respect to verbs Nominal style Word length / difficulty Frequency of the words used in the script / Vocabulary Ease Spelling errors Nominalization, use of derivational suffixes, use of words with Germanic stems Nominal case Verbal mood and person Features Avg. Sentence Length, Avg. Length of a T-Unit Dep. Clauses with Conj. to dep. Clause Ratio, Avg. Num. Non-Terminal Per Words Avg. Num. VZs per Sentence, Avg. Length of a VP Avg. Num. Co-ordinate Phrases per Sentence Passive Voice - Sentence Ratio Text Length Type-Token Ratio, Root Type-Token Ratio, Corrected Type-Token Ratio, HDD, MTLD Squared Verb Variation 1, Corrected Verb Variation 1 Noun Token Ratio Avg. Num. Syllables per Word, Avg. Num. Characters per Word Annotated Type Ratio, Ratio of Words In Log Frequency Band Two, Ratio of Words In Log Frequency Band Four, Unigram Plain Easy Ratio of Lex. Types not in Dlex, Google Spell Check Error Rate keit, ung, werk, Derived Nouns To Nouns Ratio Genetive-Noun Ratio, Nominative-Noun Ratio Subjunctive-Verb Ratio , Second PersonVerb Ratio , Third Person-Verb Ratio Table 29: The 34 features constituting the best performing model after feature selection. The results showed that feature selection improved all three models. Generally it can be observed that with feature selection the performance of the 56 models became more similar. Their accuracies varied less than 1 %, while the difference between the best and the worst of the models before feature selection was 3.9 %. This suggests that feature selection indeed made the models more robust. With feature selection SYN LEX LM MORPH (Best34 ) is the best performing model instead of LEX LM MORPH (Best30 ). The second best model consists of the 88 features selected from the whole dataset (Best88 ). Table 29 shows all features in Best34. They were summarized into groups according to their possible interpretation. It can be observed that although CfsSubsetEval prefers features with a low intercorrelation, it still keeps intercorrelating features to a certain extent if their predictive power is convincing. Selected features with a highly intercorrelation were for example Squared Verb Variation and Corrected Verb Variation (r = 0.97) or Average Number of Characters per Word and Average Number of Syllables per Word (r = 0.94). Best34 comprises 7 syntactic, 16 lexical, 1 language model and 9 morphological features. It is remarkable that most linguistic aspects, that were encoded in the model previous to feature selection, are represented in Best34. It has already been mentioned that text length has a high correlation with proficiency level. Consequently it was among the selected features. Vocabulary difficulty and lexical richness also seemed to be particularly indicative. They are represented by shallow features like the Average Number of Characters per Word but also by the general frequency of the vocabulary used in the essays as measured by dlexDB scores and by the Easy Plain Unigram language model. Additionally several Type-Token Ratio variations, that measure lexical richness, were selected, as well as lexical variation measures and Noun-Token Ratio. Notably also both features that measure spelling errors were among the best 34 features. On the syntactic level shallow indicators such as Average Sentence Length were included as well as parse tree based measures of embedding and coordination, and the use of passive voice. From the morphological group, features that encode verbal mood and person, nominal declension and nominal suffixes were added. Finally it can be seen that none of the lexical relatedness measures or morphological noun compounding features were present in Best34, nor in fact Best30 or Best88. It can be concluded that they are not particularly predictive of proficiency level. To check if the model had become more stable after feature selection, we trained and tested a model based on Best34 with cross validation on the whole data set, and examined the accuracies of each fold separately. Compared to the 10.7 % difference between the highest and lowest accuracy for a fold in the initial model (see section 6.2), the different between the 57 highest and lowest result was reduced to 8.56 %. This indicates that Best34 is more robust. The experiments showed that feature selection with CfsSubsetEval improved the classification results and lead to a feature set that encodes proficiency at different, conceptually satisfactory levels. Additionally the model became more robust. Therefore we conclude that applying feature selection with CfsSubsetEval for model optimization is a recommendable step. 6.7 Pass or Fail Classification for Each Exam Type Separately In a real world scenario users might not want to consider all essays regardless of their exam type. They might want to know which people passed or failed a particular exam. Imagine a group of students had just finished an A2 exam. A student passes the exam if the essay is assigned at least the rating level that equals the exam type. As an example, if a student took an A2 exam, and was graded as A2 or above, she would have passed the exam. If she was graded as A1 she would have failed. While a user could still successfully use the classifier that we built in the previous sections to obtain the CEFR levels, and then decide who passed and failed, we also examined binary “pass or fail” classification for each exam type separately. The performance might be better as the classifier can be attuned specifically to a pass of fail scenario. Figure 12: Distribution of classes for each exam level. 58 Figure 12 shows, that the class (essay rating level) distributions over each individual exam type are very unequal. Distributions, that are enormously skewed and offer very little samples for some classes, have an negative impact on machine learning algorithms. As most algorithms optimize the overall cost, for a distribution like 7 fail - 200 pass most algorithms would almost certainly learn a majority classifier (classify all examples as pass). Cost sensitive learning can be used to compensate an uneven distribution, or to take into account that misclassifying one class can be more expensive or problematic than the other. Usually all types of errors have the same cost. Giving different weights to instances of different classes can be used to make some classification errors more expensive than others (Harrington, 2012; Witten and Frank, 2005). While adjusting the weights is relatively straightforward for a two class problem, it is much more complicated when multiple classes are involved. Also, it has been noticed that the same methods, that work well for two class problems, do often not perform as expected for multiclass problems (Abe et al., 2004). For more detailed information on cost sensitive classification in general see Ling and Sheng (2010). For a discussion of applying it to multiclass problems see Abe et al. (2004). For cost sensitive classification we used WEKA’s meta classifier CostSensitiveClassifier with SMO as a base classifier and the option for re-weighting training instances according to the cost matrix. This implementation uses bagging to make the base classifier cost sensitive (Witten and Frank, 2005, 319-320) and is based on the approach described in Domingos (1999). All experiments were conducted with the Best34 feature set. Because there were only about 200 samples per exam type, we chose leave-one-out for building and evaluating the classifiers. CVParameterSelection with 10 folds was used for selecting SMO’s C parameter. In addition to accuracy, we report precision and recall per class. The numbers in Table 30 show the results of experimenting with cost sensitive learning. As the exact costs are not known to us, we aimed at balancing the uneven distributions. The weights that we chose were guided by the class distributions. In a real world scenario statistics about the fail rate of an exam or expert knowledge might be used instead. It can be seen that the accuracies, and the precision values for the minority classes dropped when the costs were adjusted, but the precision values for the majority classes increased. Most importantly, the recall values for the minority classes improved. The experiment with A2 (Table 31) shows a classifier that was not designed to merely balance the distribution, but to prioritize the detection of “fail” cases. Therefore the cost for misclassifying “fail” as “pass” was set to twice the number of instances in the majority class. We conclude, that for two class problems, cost sensitive learning provides 59 Name B1 fail B1 pass B1-c fail B1-c pass B2 fail B2 pass B2-c fail B2-c pass C1 fail C1 pass C1-c fail C1-c pass Accuracy 82.8 82.8 74.3 74.3 77.9 77.9 73.5 73.5 68.7 68.7 67.7 67.7 Precision 75.6 84.6 51.9 88.4 68.8 80.8 55.2 87.2 73.7 57.4 77.9 54.1 Recall 54.4 93.5 73.7 74.5 52.4 89.4 76.2 72.3 79.5 49.3 69.3 67.7 Cost-Matrix 03 10 0 153 57 0 0 71 127 0 Table 30: Balancing skewed distributions with cost sensitive learning. Name A2 fail A2 pass A2-c fail A2-c pass Accuracy 96.6 96.6 85.1 85.1 Precision 0 96.6 14.7 98.9 Recall 0 1 71.4 85.6 Cost-Matrix 0 400 10 Table 31: Training a classifier that gives a higher priority to detecting “fail” cases. an interesting opportunity to balance skewed data sets and influence the classification in favour of a particular class. How exactly this device should be used in automatic language proficiency assessment depends on the situation and has to be decided individually. 6.8 Classification with Rasch Corrected Scores In addition to the actual ratings assigned by human annotators, the MERLIN project also offered a corrected version of the ratings. Multifaceted RASCH analysis was used to model effects that are associated with the properties of individual raters and generate the corrected scores (Bärenfänger, 2012). Classification is expected to work better with the RASCH corrected scores, since they are supposed to be more consistent (Briscoe et al., 2010). For comparison’s sake we trained a classifier with all features on the whole data set using 10 fold cross validation. With an accuracy of 67.9 % and F-measure of 66.7 % the classifier built on the corrected data indeed performed better than the model previously built under the same conditions on the actual 60 human ratings (64.5 % accuracy, 64.0 % F-Measure). This result indicates, that some classification errors in our approach can be attributed to the inconsistencies of the human ratings. A more detailed analyses, that would include the manual inspection of some essays, could be enlightening. 6.9 Predicting the Exam Type In this experiment we built a classifier for predicting the exam type instead of the essay rating level. There are several reasons why this is interesting. In section 6.1 we mentioned that the exam type might have an influence on the CEFR levels assigned by the human raters. Raters might form expectations about the essays at certain exam types, that might influence the ratings. All other considerations set aside, it is common that most people that take a test for a certain level, also achieved this level - more people pass an exam than fail it. The experiment was conducted with 10 fold cross validation on the whole data set and with all features. The resulting classifier predicted the exam type with an accuracy of 88.9 % and an F-measure of 88 %. This indicates that our feature set can more accurately predict the exam type than the essay rating level. It cannot be concluded from this experiment however, as the conditions are not equal. For instance, the class distribution is different. While the exam type classifier has an equal amount of data for each class, the essay rating level classifier was trained on a skewed data set, which could be one reason that the essay rating level classifier performed worse. We leave the investigation of the exact reasons for future work. 7 Conclusion During the initial phase of this work, we explored the MERLIN data set and identified some interesting characteristics and challenges, in particular the high amount of spelling errors and frequently spurious punctuation. We addressed the spelling errors by integrating Google Spell Check into our preprocessing pipeline. We surveyed methods for sentence boundary detection that, unlike conventional tools, do not mainly rely on punctuation. Finally we implemented a tool for automatically identifying missing sentence boundaries. Although the results seemed promising, the tool was not reliable enough to use it in this work. We learned that the texts in the MERLIN corpus vary immensely in length between the CEFR levels (exam types as well as essay rating levels). There are roughly the same number of texts for each of the CEFR exam types 61 A1-C1, but not for the actual CEFR levels assigned by the human raters. As the ratings represent the actual proficiency, the data set for our proficiency classifier did not have an even class distribution. We implemented a wide range of theory driven lexical, syntactic and morphological features as well as data driven tense and parse rule features. They were mainly inspired by previous research on proficiency assessment, essay grading, readability classification and SLA studies. This resulted in a feature set of more than 3000 features. We addressed proficiency assessment as a classification problem, using each of the five essay rating levels as one class. SMO was chosen for building our classifiers. We trained one classifier for each feature group to find the most predictive group. The lexical classifier performed best (holdout 60.5 %, CV 68.7 % accuracy), followed by the morphological and syntactic classifiers. The language model, tense and parse rule features performed rather poorly. However, the tense and parse rule features achieved much better results when represented as binary instead of frequency weighted vectors (+18 % and +7 % accuracy respectively). When combining several feature groups we found out that combinations of two or three groups mostly performed better than one group alone. Particularly, the lexical and morphological group (holdout 61.1 %, CV 69.4 % accuracy) seemed to complement to each other. The best three class combination consisted of the lexical, morphological and language model groups (holdout 61.1 %, CV 70.1 % accuracy). When combining more than three groups, the classifiers’ performances dropped. We attribute this to the accumulation of too many redundant features. A supplementary statistical analysis showed that particularly in the data driven classes there are many features with a correlation below 0.1. On the other hand there were hardly any high (r > 0.7) intercorrelations between features belonging to different groups. We applied correlation based feature selection on the best combinations of three and four feature groups and on the whole feature set. The best model (holdout 62.7 %, CV on training set 72.5 % accuracy) contained 34 features from the syntactic, lexical, language model and morphological groups. Interpreting the model showed that it contained most of the linguistic aspects that are encoded in our entire feature set. We experimented with a two class “pass or fail” scenario for each of the exam types. For most exam types there were significantly more “pass” than “fail” samples. We showed that cost sensitive learning can be used to simulate a more equal class distribution or to give more priority to detecting the “fail” class. Additional experiments showed that our classifier performed better when 62 using RASCH corrected scores for training and testing (67.9 % compared to 64.5 % accuracy). This implies that some of the classifier errors might be due to inconsistent human ratings in the original data set. Finally we used our feature set to train a classifier for predicting the exam type. Strikingly, it performed better than our proficiency classifier (88.9 % compared to 64.5 % accuracy). The implications of this could not be examined further in the course of this work, but will be an interesting topic for further research. In summary it can be said that we gained interesting insights not only into the performance of particular features, but also into the issues associated with the task and the data set. As this was a first attempt at language proficiency classification for German there is no previous work that we could directly compare our work to. However, the performance of our classifiers seemed promising. 8 Perspectives for Future Work We conducted a wide range of experiments and many of our results led to new questions. With respect to machine learning it would be interesting to investigate, why different combinations of feature groups performed best in the holdout and in the cross validation scenario. It was mentioned in section 6.4 that some features might encode text length rather than language proficiency. For clarification, the experiments in this work should be repeated with samples that are controlled for text length. It is also worth investigating why our feature set seemed to be more useful for detecting the exam type than the essay rating level. If the system was going to be used in a real life scenario, it would be necessary to test its robustness against score manipulation by students who figured out the criteria on which the essay ratings are assigned. However, since the number of our criteria is rather large, we think that tricking the system would be hard. Furthermore, it would be desirable to experiment with different ways of handling the uneven class distribution in the multiclass scenario. Also, more sophisticated machine learning techniques such as ensemble classifier should be employed. For example, if one classifier was built for each group of features and then combined into an ensemble, the tense and parse rule groups could be used as binary features. In addition to more machine learning experiments a thorough statistical analysis would help to arrive at a better understanding of the data set and might reveal the influence of exam type, L1 background or effect of different tasks on the essay rating level. 63 Finally the tool for missing sentence boundary detection could be further developed. References Naoki Abe, Bianca Zadrozny, and John Langford. An iterative method for multi-class cost-sensitive learning. In In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 3–11, Florida, USA, 2004. AAAI Press. Yigal Attali and Jill Burstein. Automated essay scoring with e-rater v.2. Journal of Technology, Learning, and Assessment, 4(3), February 2006. URL http://escholarship.bc.edu/cgi/viewcontent.cgi? article=1049&context=jtla. R. H. Baayen, R. Piepenbrock, and L. Gulikers. The CELEX lexical database (cd-rom). CDROM, http://www.ldc.upenn.edu/Catalog/ readme_files/celex.readme.html, 1995. R. Harald Baayen. Analyzing Linguistic Data. A Practical Introduction to Statistics using R. Cambridge University Press, 2008. Olaf Bärenfänger. Assessing the reliability and scale functionality of the merlin written speech sample ratings. Technical report, European Academy, Bolzano, Italy, 2012. Gunnar Bech. Studien über das deutsche verbum infinitum. Historiskfilologiske Meddelelser udgivet af Det Kongelige Danske Videnskabernes Selskab. Bind 35, no. 2, 1955; Bind 36, no. 6, 1957; Kopenhagen, 1955. Reprinted 1983, Tübingen: Max Niemeyer Verlag. Jared Bernstein, John De Jong, David Pisoni, and Brent Townshend. Two experiments on automatic scoring of spoken language proficiency. In Proceedings of InSTIL2000 (Integrating Speech Tech. in Learning), pages 57– 61, Dundee, Scotland, 2000. D. Biber, B. Gray, and K. Poonpon. Should we use characteristics of conversation to measure grammatical complexity in l2 writing development? TESOL QUARTERLY, 54:5–35, 2011. Bernd Bohnet. Top accuracy and fast dependency parsing is not a contradiction. In Proceedings of the 24th International Conference on Computational Linguistics (COLING), pages 89–97, Beijing, China, 2010. 64 E. Briscoe, J. Carroll, and R. Watson. The second release of the rasp system. In In Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, Sydney, Australia, 2006. Ted Briscoe, B. Medlock, and O. Andersen. Automated assessment of esol free text examinations. Technical report, University of Cambridge Computer Laboratory, 2010. Stanley F. Chen and Joshua T. Goodman. An empirical study of smoothing techniques for language modeling. Computer Speech and Language, 13: 359–394, October 1999. Kevyn Collins-Thompson and Jamie Callan. A language modeling approach to predicting reading difficulty. In Proceedings of HLT/NAACL 2004, Boston, USA, 2004. URL http://www.cs.cmu.edu/~callan/Papers/ hlt04-kct.pdf. Scott Crossley, Tom Salsbury, and Danielle McNamara. Measuring l2 lexical growth using hyperniymic relationships. Language Learning, 59:307–334, 2009. Scott Crossley, Tom Salsbury, and Danielle McNamara. The development of polysemy and frequency use in english second language speakers. Language Learning, 60:573–605, 2010. Scott A. Crossley, Tom Salsbury, and Danielle S. McNamara. Predicting the proficiency level of language learners using lexical indices. In Language Testing, 2011a. Scott A. Crossley, Tom Salsbury, Danielle S. McNamara, and Scott Jarvis. Predicting lexical proficiency in language learners using computational indices. Language Testing, 28:561–580, 2011b. Chris Culy, Corina Dima, and Emanuel Dima. Through the looking glass: Two approaches to visualizing linguistic syntax trees. presented at IV2012, July 2012. Febe de Wet, Christa van der Walt, and Thomas Niesler. Automatic largescale oral language proficiency assessment. In INTERSPEECH 2007, 8th Annual Conference of the International Speech Communication Association, Antwerp, Belgium, 2007. Felice Dell’Orletta, Simonetta Montemagni, and Giulia Venturi. Read-it: Assessing readability of italian texts with a view to text simplification. In 65 Proceedings of the 2nd Workshop on Speech and Language Processing for Assistive Technologies, pages 73–83, 2011. Semire Dikli. An overview of automated scoring of essays. The Journal of Technology, Learning, and Assessment (JTLA), 5(1):4–35, August 2006. URL http://escholarship.bc.edu/cgi/viewcontent.cgi? article=1044&context=jtla. Pedro Domingos. Metacost: A general method for making classifiers costsensitive. In Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, pages 155–164, San Diego, CA, USA, 1999. B. Favre, D. Hakkani-Tr, S. Petrov, and D. Klein. Efficient sentence segmentation using syntactic features. In Spoken Language Technology Workshop (SLT), 2008. Lijun Feng. Automatic Readability Assessment. PhD thesis, City University of New York (CUNY), 2010. URL http://lijun.symptotic.com/files/ thesis.pdf?attredirects=0. Thomas Francois and Cedrick Fairon. An ai readability formula for french as a foreign language. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 2012. Peter Gallmann and Horst Sitta. Deutsche Grammatik. Interkantonale Lehrmittelzentrale. Lehrmittelverlag des Kantons Zrich., 2004. Y. Gotoh and S. Renals. Sentence boundary detection in broadcast speech transcripts. In Proceedings of the International Speech Communication Association (ISCA) Workshop: Automatic Speech Recognition: Challenges for the New Millennium (ASR-2000), pages 228–235, Paris, 2000. Arthur C. Graesser, Danielle S. McNamara, Max M. Louweerse, and Zhiqiang Cai. Coh-metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments and Computers, 36:193–202, 2004. URL http://home.autotutor.org/graesser/publications/bsc505.pdf. Günther Grewendorf, Fritz Hamm, and Wolfgang Sternefeld. Sprachliches Wissen. Eine Einführung in moderne Theorien der grammatischen Beschreibung. Surhkamp, 1989. 66 Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. The weka data mining software: An update. In The SIGKDD Explorations, volume 11, pages 10–18, 2009. Julia Hancke, Detmar Meurers, and Sowmya Vajjala. Readability classification for german using lexical, syntactic, and morphological features. In Proceedings of the 24th International Conference on Computational Linguistics (COLING), pages 1063–1080, Mumbay, India, 2012. Peter Harrington. Machine Learning in Action. Manning Publications Co., 2012. John A. Hawkins and Paula Buttery. Using learner language from corpora to profile levels of proficiency – Insights from the English Profile Programme. In Studies in Language Testing: The Social and Educational Impact of Language Assessment. Cambridge University Press, Cambridge, 2009. John A. Hawkins and Paula Buttery. Criterial features in learner corpora: Theory and illustrations. English Profile Journal, 2010. Michael Heilman, Kevyn Collins-Thompson, Jamie Callan, and Maxine Eskenazi. Combining lexical and grammatical features to improve readability measures for first and second language texts. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL-07), pages 460–467, Rochester, New York, 2007. Michael Heilman, Kevyn Collins-Thompson, and Maxine Eskenazi. An analysis of statistical models and features for reading difficulty prediction. In Proceedings of the 3rd Workshop on Innovative Use of NLP for Building Educational Applications at ACL-08, Columbus, Ohio, 2008. J. Heister, K.-M. Würzner, J. Bubenzer, E. Pohl, T. Hanneforth, A. Geyken, and R. Kliegl. dlexdb - eine lexikalische datenbank fr die psychologische und linguistische forschung. Psychologische Rundschau, 62:10–20, 2011. Verena Henrich and Erhard Hinrichs. Gernedit - the germanet editing tool. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), 2010. Kellogg W. Hunt. Grammatical structures written at three grade levels. NCTE Research Report No. 3, 1965. 67 Kellogg W. Hunt. Do sentences in the second language grow like those in the first? TESOL Quarterly, 4(3):195–202, 1970. J. P. Kincaid, R. P. Jr. Fishburne, R. L. Rogers, and B. S Chissom. Derivation of new readability formulas (Automated Readability Index, Fog Count and Flesch Reading Ease formula) for Navy enlisted personnel. Research Branch Report 8-75, Naval Technical Training Command, Millington, TN, 1975. T. Landauer, D. Laham, and P. Foltz. Automated scoring and annotation of essays with the intelligent essay assessor. In M.D. Shermis and J. Burstein, editors, Automated Essay Scoring: A cross-disciplinary perspective, pages 87–112. Law, 2003. Roger Levy and Galen Andrew. Tregex and tsurgeon: tools for querying and manipulating tree data structures. In 5th International Conference on Language Resources and Evaluation, Genoa, Italy, 2006. Charles X. Ling and Victor S. Sheng. Class imbalance problem. In Encyclopedia of Machine Learning, page 171. 2010. Y. Liu, A. Stolcke, E. Shriberg, and M. Harper. Using conditional random fields for sentence boundary detection in speech. In In Proceedings of ACL, pages 451–458. Y. Liu, A. Stolcke, Shriberg E., and Harper M. Comparing and combining generative and posterior probability models: Some advances in sentence boundary detection in speec. In In Proceedings of 2004 Conference on Empirical Methods in Natural Language Processing, pages 64–71, 2004. Xiaofei Lu. Automatic analysis of syntactic complexity in second language writing. International Journal of Corpus Linguistics, 15(4):474–496, 2010. Xiaofei Lu. The relationship of lexical richness to the quality of ESL learners’ oral narratives. The Modern Languages Journal, 2012. Christopher Manning and Hinrich Schütze. Foundations of statistical Natural Language Processing. MIT, 1999. P. M. McCarthy and S. Jarvis. A theoretical and empirical evaluation of vocd. Language Testing, 24:459–488, 2007. URL https://umdrive.memphis. edu/pmmccrth/public/Papers/080767_LTJ_459-488.pdf?uniq=czcyb. 68 Philip McCarthy and Scott Jarvis. Mtld, vocd-d, and hd-d: A validation study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods, 42(2):381–392, 2010. ISSN 1554-351X. doi: 10.3758/BRM.42.2.381. URL https://serifos.sfs.uni-tuebingen. de/svn/resources/trunk/papers/McCarthy.Jarvis-10.pdf. Walt Detmar Meurers. Lexical Generalizations in the Syntax of German Non-Finite Constructions. Phil. dissertation, Eberhard-KarlsUniversität Tübingen, 2000. URL http://www.sfs.uni-tuebingen.de/ ~dm/papers/partI-2up.pdf. Published as: Arbeitspapiere des SFB 340, Nr. 145. George Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, November 1995. URL http://aclweb.org/ anthology/H94-1111. Thomas M. Mitchell. Machine Learning. McGraw-Hill, 1997. R. Nagata, J. Kakegawa, and T. Kutsuwa. Detecting missing sentence boundaries in learner english. In S. Bolasco, I. Chiari, and L. Giuliano, editors, Statistical Analysis of Textual Data. Proceedings of the 10th International Conference (JADT 2010)., volume Volume 2, 2010. S. Palmer and M. Hearst. Adaptive multilingual sentence boundary disambiguation. Computational Linguistics, 23:241–267, 1997. Sarah E. Petersen and Mari Ostendorf. A machine learning approach to reading level assessment. Computer Speech and Language, 23:86–106, 2009. Anna N. Rafferty and Christopher D. Manning. Parsing three German treebanks: lexicalized and unlexicalized baselines. In Proceedings of the Workshop on Parsing German, PaGe ’08, pages 40–46, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=1621401.1621407. Marga Reis. Bilden modalverben im deutschen eine syntaktische klasse? Modalitt und Modalverben im Deutschen / hrsg. von Reimar Müller, 2001. Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach to identifying sentence boundaries. In Proceedings of the fifth conference on Applied natural language processing, ANLC ’97, pages 16–19, Stroudsburg, PA, USA, 1997. Association for Computational Linguistics. doi: 10.3115/ 974557.974561. URL http://dx.doi.org/10.3115/974557.974561. 69 Helmut Schmid. Improvements in part-of-speech tagging with an application to german. In Proceedings of the ACL SIGDAT-Workshop, Dublin, Ireland, 1995. URL http://www.ims.uni-stuttgart.de/ftp/ pub/corpora/tree-tagger2.pdf. Helmut Schmid and Florian Laws. Estimation of conditional probabilities with decision trees and an application to fine-grained pos tagging. In COLING ’08 Proceedings of the 22nd International Conference on Computational Linguistics, volume 1, pages 777– 784, Stroudsburg, PA, 2008. Association for Computational Linguistics. URL http://www.ims.uni-stuttgart.de/projekte/gramotron/ PAPERS/COLING08/Schmid-Laws.pdf. Bernhard Schölkopf and Alexander J. Smola. A short introduction to learning with kernels. In Advanced Lectures on Machine Learning. Springer-Verlag, 2003. Sarah Schwarm and Mari Ostendorf. Reading level assessment using support vector machines and statistical language models. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL05), pages 523–530, Ann Arbor, Michigan, 2005. doi: http://dx.doi.org/ 10.3115/1219840.1219905. Wolfgang Seeker and Jonas Kuhn. Making ellipses explicit in dependency conversion for a german treebank. In In Proceedings of the 8th International Conference on Language Resources and Evaluation, 31323139. Istanbul, Turkey: European Language Resources Association (ELRA), 2012. Luo Si and Jamie Callan. A statistical model for scientific readability. In Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM), pages 574–576. ACM, 2001. Advaith Siddharthan. An architecture for a text simplification system. In In Proceedings of the Language Engineering Conference 2002 (LEC 2002), 2002. Wojciech Skut, Brigitte Kreen, Torsten Brants, and Hans Uszkoreit. An annotation scheme for free word order languages. In Proceedings of the Fith Conference on Applied Natural Language, Washington, D.C., 1997. URL http://www.coli.uni-sb.de/publikationen/softcopies/Skut: 1997:ASF.pdf. A. Stolcke and E. Shriberg. Automatic linguistic segmentation of conversational speech. In Proceedings of ICSLP, 1996. 70 Andreas Stolcke. SRILM – an extensible language modeling toolkit. In Proceedings of ICSLP, volume 2, pages 901–904, Denver, USA, 2002. URL http://www.speech.sri.com/cgi-bin/run-distill? papers/icslp2002-srilm.ps.gz. Sowmya Vajjala and Kaidi Loo. Role of morpho-syntactic features in estonian proficiency classification. In Proceedings of the 8th Workshop on Innovative Use of NLP for Building Educational Applications (BEA8), Association for Computational Linguistics, 2013. Sowmya Vajjala and Detmar Meurers. On improving the accuracy of readability classification using insights from second language acquisition. In Joel Tetreault, Jill Burstein, and Claudial Leacock, editors, Proceedings of the 7th Workshop on Innovative Use of NLP for Building Educational Applications (BEA7) at NAACL-HLT, pages 163–173, Montral, Canada, June 2012. Association for Computational Linguistics. URL http://aclweb.org/anthology/W12-2019.pdf. Tim Vor der Brück and Sven Hartrumpf. A semantically oriented readability checker for german. In Proceedings of the 3rd Language & Technology Conference, 2007. Tim Vor der Brück, Sven Hartrumpf, and Hermann Helbig. A readability checker with supervised learning using deep syntactic and semantic indicators. Informatica, 32(4):429–435, 2008. Katrin Wisniewski, Andrea Abel, and Detmar Meurers. Merlin. multilingual platform for the european reference levels: Interlanguage exploration in context. eu lifelong learning project 518989-llp-1-2011-1-de-ka2-ka2mp. eu llp proposal. Proposal, 2011. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Amsterdam; Boston, MA, 2nd edition, 2005. Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text categorization. In Proceedings of the Fourteenth International Conference on Machine Learning, ICML ’97, pages 412–420, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc. URL http://dl.acm.org/citation.cfm?id=645526.657137. Helen Yannakoudakis, Ted Briscoe, and Ben Medlock. A new dataset and method for automatically grading ESOL texts. In Proceedings of the 49th 71 Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 180–189, Stroudsburg, PA, USA, 2011. Association for Computational Linguistics. ISBN 9781-932432-87-9. URL http://dl.acm.org/citation.cfm?id=2002472. 2002496. Corpus available from http://ilexir.co.uk/applications/ clc-fce-dataset. Heike Zinsmeister, Marc Reznicek, Julia Ricart Brede, Christina Rosn, and Dirk Skiba. Wissenschaftliches netzwerk: Annotation und analyse argumentativer lernertexte. konvergierende zugange zu einem schriftlichen korpus des deutschen als fremdsprache. wissenschaftliches netzwerk kobaltdaf, dfg antrag. Proposal, 2011. 72