Der Positronenmessplatz EPOS an der Elektronenquelle ELBE
Transcription
Der Positronenmessplatz EPOS an der Elektronenquelle ELBE
Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Der Positronenmessplatz EPOS an der Elektronenquelle ELBE – Aktueller Stand – Arnold Krille (Dipl. Phys. & “Father-of-one”) Institut für Physik, Martin-Luther-Universität Halle-Wittenberg May 21th, 2008 EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Introduction EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Introduction 1 Introduction 2 Positrons in 5 Minutes 3 Current state of EPOS 4 Digital Positron Lifetime The task Different extraction methods Simulations with gauss-pulses Measurements on Si with BaF2 -Scintillators Evaluation of α-Fe-data from Prague Measuring Si with LSO-Scintillators 5 Conclusion EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Positrons in 5 Minutes A proof-of-concept (mini-)talk How to explain positrons in 5 minutes (or less). EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Antimater and Albert Einstein Dirac[1] found solutions with positive charge in his electron-theory (1928) Anderson[2] found that the particle was not the proton and postulated the positron, anti-particle of the electron (in 1933) positrons annihilate with electrons, always one e + with one e − thanks to Einstein[3] the annihilation results in γ-Radiation where Eγ = (me + + me − )c 2 Figure: Einstein 1921 EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Conservation of the pulse Another physics law P pi = 0 The pulse of a system has to be conserved. Effect on positron-electron-annihilation: Two γ-quants are emitted in opposite directions Both have energy of 511keV EPOS an ELBE – Aktueller Stand Figure: Feynman-diagram of electron-positron-annihilation Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Conservation of the pulse Another physics law P pi = 0 The pulse of a system has to be conserved. Effect on positron-electron-annihilation: Two γ-quants are emitted in opposite directions Both have energy of 511keV Positron is in ground-state But: Electron is in excited state → γ-energy changes due to p of the electron → Electron-energy depends on the state, core-electrons have higher energy than valence-electrons EPOS an ELBE – Aktueller Stand Figure: Feynman-diagram of electron-positron-annihilation (extended) Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Statistics (More or less:) Important Positroneneinfang durch Kristalldefekte Electron-positron-annihilation is a highly statistical process! Because the diffusion of the positron in the solid is a random-walk. Annihilation-probability is influenced by: Electron density Electron energy Atomic structure für 22-Na: J Quant (1.27 MeV) J Quant (511 keV) • Positronen-Wellenfunktion wird im Defekt lokalisiert • A nnihilationsparameter ändern sich, wenn Positron im Defekt zerstrahlt • Defekte können nachgewiesen werden (Identifizierung und Quantifizieru Figure: Positrons in the solid Defects, voids, charge EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Lifetime Lifetime of the positron is influenced mainly by two effects: 1 2 The lower the electron density the lower the chance to hit an electron the higher the lifetime. One (or many) missing atoms/cores build a potential well the positron can’t escape (because normal cores repulse the positron). → positron lifetime increases but this only works in neutral or negativ traps EPOS an ELBE – Aktueller Stand 10000 Si; 90degree-setup; 1.5cm BaF2 1000 100 10 1 -2 -1 0 1 2 3 4 5 6 Time in samples (1 sample = 250ps) 7 8 Figure: Positron-Lifetime in Cz-Silicon Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Doppler-broadening and Angular-correlation Doppler-broadening: measures the energy-shift in γ-direction (usually pz ) can be measured with one detector, →gives high background two detectors in coincidence give low background but longer measurement-time energy-range is 511keV ± 10 keV While the spectra can be calculated theoretically, most times results are compared to a defect-free spectrum. EPOS an ELBE – Aktueller Stand 22 2 Experimental Techniques GaAs 513 514 515 Plastically deformed Reference Intensity [arbitrary units] two techniques for one effect both measure the electron-energy from the energy-shift of the γ-quants Aw As 504 506 508 510 512 514 516 J–ray energy [keV] Fig. 2.11. Doppler-broadening spectra of as-grown zinc-doped gallium positron trapping (reference) compared with plastically deformed 1997b). The line shape parameters S and W are determined by the ind divided by the area below the whole curve. The curves are normalized Figure: Doppler-Spectrum[4] The background correction is often performed as the subt line. More sophisticated treatments use a realistic backgroun eled by a non-linear function. This function takes into account at a given J-ray energy is proportional to the sum of anni higher energies. Despite such a background reduction, the Do slightly unsymmetrical. The calculation of the W paramete quently carried out only in the high-energy wing of the D quality Doppler-broadening spectra are obtained by the coi preferably with a setup using two Ge detectors. In this case, t Arnold Krille be taken on both sides of the curve. Introduction Positrons in 5 Minutes Current state of EPOS trapping, for capture of all positrons in defects, is necessary. This Digitali.e.Positron Lifetime Conclusion by correlated positron lifetime measurements, which provide the fract trons trapped in the defect. Such contour plots can also be directly com theoretical calculations to improve the understanding of the electronic the defect. The first depth-resolved measurements of the two-dimensional angu tion of annihilation radiation were reported by Peng et al. (1996). The d ture of the SiO2/Si interface was studied by the combination of slo beam measurements and 2D-ACAR. The positron beam system used krypton moderator and an initial positron beam flux of about 6 107 s 1 resolution was obtained by the variation of the incident positron en Doppler-broadening and Angular-correlation two techniques for one effect both measure the electron-energy from the energy-shift of the γ-quants Angular-correlation: measures the energy-shift perpendicular to the γ-direction (px and py ) has to be done in coincidence 1D- and 2D-measurements are possible typical range is ±10 − 20mrad, resolution is 0, 2mrad measurement for one spectrum is typically several days Gives good results on the electronic structure, but evaluating the spectra requires many theoretical calculations. EPOS an ELBE – Aktueller Stand Fig. 2.15. Combined perspective and contour plots of the measurement of two angular correlation of annihilation radiation in gallium arsenide exhibiting no ping in defects (Tanigawa et al. 1995). The upper panel shows the contour m mentum distribution p in the (100) plane. Figure: ACAR-Spectrum[4] Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Overview 6 2 Experimental Techniques Birth J-ray Annihilation J-rays 1.27 MeV 0.511 MeV 4 't 1. Positron lifetime Sample 2. Angular correlation px , y 4xx,,yy 4 m0 c e+ source 22 Na Diffusion L+ | 100 nm a100 µm Thermalization (1012 s) 3. Doppler broadening 0.511 MeV ± 'E, 'E = pzc/2 Fig. 2.1. Scheme of different positron experiments. Positrons from an isotope source ( EPOS an ELBE – Aktueller22 Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion ELBE-Overview EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion ELBE-Overview: ELBE-Layout EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion ELBE-Overview: ELBE-Command-Center EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion ELBE-Overview: Buncher of the electron-beam EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS Schema des EPOSEPOS-Systems EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Electron beamline in Cave 111b EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: RKR explaining the system EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Connection to the lab EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Corner-stone-ceremony EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Marco at normal working speed EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Lead-shield & vacuum tests EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Lead-saw EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Problems with leaks... EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Status of the lab EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Current-sources in place EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: A fun place to work at EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Current state of EPOS: Whats next? 1 2 3 Marco is finishing his diploma-thesis on the beam-system Test of the first part of the guidance-system with an electron-“beam” (Its only ∼ 20 currents to adjust.) Test of the same parts with a conventional positron-beam 6 Install the real converter and generate the EPOS-beam from ELBE-diagnostic mode Finish the lab. (Chopper, buncher, vacuum, conventional source, final acceleration, sample chamber, detector setup,...) Get external users to send in samples to measure 7 Get the nobel prize. Or at least a publication in science/nature... 4 5 EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Digital Positron Lifetime The Setup: Detektor Detektor In1 In2 Digitizer PC EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion The task Extract the timing information from a “smeared”, digitized signal Be as accurate as possible... (FHWM should be <100ps) ...as fast as possible (should do >1000 events per second) 0.5 0.4 Input Voltage [V] 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -1e-08 Channel 0 (moved +0.4V) Channel 1 -5e-09 0 5e-09 1e-08 1.5e-08 2e-08 Time [s] EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Different extraction methods Interpolation is needed, different methods are possible: 0.5 Constant-Fraction with Polynom-Interpolation Spline-Interpolation Gauss-Interpolation ...all combined with “Moving average” 0.4 0.3 Input Voltage [V] 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 integral-Constant-Fraction -0.5 -1e-08 Channel 0 (moved +0.4V) Channel 1 -5e-09 0 5e-09 Time [s] 1e-08 1.5e-08 2e-08 Signed-integral-Constant-Fraction Deconvolution of pulses Polar-like plots Figure: Pulse-pair of startand stop-signal Resolutions from literature range from 120ps 200ps. EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Simulations with gauss-pulses EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Simulations with gauss-pulses: Noise-Levels 1.2 Extracted timing sigma 1 Identity (should-be function) Noise 0.2 Noise 0.1 Noise 0.05 Noise 0.01 Noise 0.00 0.8 0.6 0.4 0.2 0 0.01 0.1 Artificial timing sigma 1 0.01 ≡ 51dB SNR ≡ 8bit, 0.05 ≡ 37dB SNR ∼ = 6bit EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Simulations with gauss-pulses: Averaging 1 Extracted timing sigma 0.8 Avg 1 Avg 2 Identity (should-be function) Noise 0.1 Noise 0.05 0.6 0.4 0.2 0 0.01 EPOS an ELBE – Aktueller Stand 0.1 Artificial timing sigma 1 Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Simulations with gauss-pulses: Samplingrates 0.3 Extracted timing sigma 0.25 Identity (should-be function) 8GS 4GS 2GS 1GS 0.2 0.15 0.1 0.05 0 0.001 EPOS an ELBE – Aktueller Stand 0.01 0.1 Artificial timing sigma 1 Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Measurements on Si with BaF2 -Scintillators: Polynom-CF Sample Source FWHM 213,4ps 203,6ps Intensity 73,49% 21,88 % 4,61 % 0,02 % Silizium-Probe 3 Komponenten-Fit t1 = 0.218 ns, t2 = 0.38 ns, t3 = 1.5 ns I1 = 97 %, I2 = 2 %, I3 = 0 % A1 = 115275 x1 = 0.0992275 ns e1 = 0.177226 ns 100000 10000 Counts Error-functions: Intensity Shift 0 70,5 % 29,5 % 192ps Lifetime 219ps 165ps 380ps 1,5ns Silizium Aluminium Salz (Bulk) Salz (nano-Pores) 1000 Resulting Error FWHM = ∼ 290ps With simple polynom-interpolation. EPOS an ELBE – Aktueller Stand 100 10 -1 0 1 2 3 4 Time [ns] Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Measurements on Si with BaF2 -Scintillators: Averaging Running a moving-average on the raw-dataset before processing: CF Lifetime Overall-FWHM should be 219ps Cf 0,1 214,8(6)ps 211(1)ps Cf 0,2 235(2)ps 203(1)ps Cf 0,3 201(4)ps 196(1)ps Resulting Error 196-211ps Better then just simple polynom. But still not good enough... EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Measurements on Si with BaF2 -Scintillators: iCF Start 20 Counts^-1 Testing the integral-Constant-Fraction-Method[5]: Integrierte Energie 25 15 10 5 Integration of the pulse around the extremum (= the real signal) 0 0 0.5 - slow + better energy resolution 1 Normale Energie 1.5 2 1.5 2 Stopp 20 Counts^-1 Integrierte Energie 25 + finds “real” energy of some pulses. + allows to filter on risetime, actually means pulse-shape-discrimination 15 10 5 0 0 EPOS an ELBE – Aktueller Stand 0.5 1 Normale Energie Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Measurements on Si with BaF2 -Scintillators: iCF Lifetime (LT#3) - Si-Reference-Sample - BaF2 - iCF 0.1 1e+06 100000 10000 Counts Resulting FWHM 248,5ps 244,8ps 233,5ps 235,8ps 227,8ps 236,8ps 255,4ps 253,1ps 243,5ps -5 0 2 3 5 10 1000 100 10 -2 -1 0 1 4 5 Time [ns] Lifetime (LT#3) - Si-Reference-Sample - BaF2 - iCF 0.2 1e+06 without RTF with RTF 1 with RTF 2 100000 10000 Counts Method CF 0,1 CF 0,1 rt1 CF 0,1 rt2 CF 0,2 CF 0,2 rt1 CF 0,2 rt2 CF 0,3 CF 0,3 rt1 CF 0,3 rt2 without RTF with RTF 1 with RTF 2 -5 0 2 3 5 10 1000 100 10 -2 -1 0 1 4 5 Time [ns] Lifetime (LT#3) - Si-Reference-Sample - BaF2 - iCF 0.3 1e+06 Resulting Error 10000 Counts 227 - 255ps Not that good... without RTF with RTF 1 with RTF 2 100000 -5 0 2 3 5 10 1000 100 Risetime-filter is good to filter pile-up at t < 0. EPOS an ELBE – Aktueller Stand 10 -2 -1 0 1 4 5 Time [ns] Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Evaluation of α-Fe-data from Prague: Polynom-CF dataset of α-Fe used as reference-sample in Prague[5] no dedicated start-/stop-tubes, can be evaluated in both directions Method pCf 0,1 pCf 0,2 pCf 0,3 FWHM Start-Stop 193(2)ps 167(2)ps 159(2)ps Stop-Start 200(2)ps 171(2)ps 159(2)ps Resulting Error FWHM of 160ps is actually as good as the analog setup in Prague. ⇒ My Polynom-CF-Method should be right and give good results. Probably my windows are to wide-open. EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Evaluation of α-Fe-data from Prague: iCF FWHM 0,1 0,1 0,1 0,2 0,2 0,2 0,3 0,3 0,3 rt rt4 rt rt4 rt rt4 135(2)ps 134(2)ps 137(2)ps 12±50ps 8±55ps 8±10ps 100,1(4)ps 100,4(4)ps 99,9(5)ps 563(2)ps 549(2)ps 538(2)ps 547(2)ps 538(2)ps 535(2)ps 259(2)ps 257(2)ps 255(2)ps Whats wrong? Seems to indicate that something on the implementation isn’t right. EPOS an ELBE – Aktueller Stand Counts - CF 0.1 Should be 106ps iCf iCf iCf iCf iCf iCf iCf iCf iCf HL - Start-Stopp L 100000 100000 10000 10000 1000 1000 100 100 10 10 -2 -1 Counts - CF 0.2 Lifetime 0 1 2 3 4 5 6 100000 100000 10000 10000 1000 1000 100 100 10 -2 -1 0 -2 -1 0 -2 -1 0 10 -2 -1 Counts - CF 0.3 Method 0 1 2 3 4 5 6 100000 100000 10000 10000 1000 1000 100 100 10 10 -2 -1 0 1 2 3 Time [ns] 4 5 6 Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Measuring Si with LSO-Scintillators New scintillator-material Comparing to BaF2 : 10000 + Better energy-resolution + ∼ 6× higher efficiency - Pulse-shape un-usable for analog electronics 1000 Counts + Pulse-risetime similar LSO normal LSO integriert, skaliert 1/24 100 10 1 Timing resolution Current test-spectra show bad timing-resolution. But with wide-open energy-windows. EPOS an ELBE – Aktueller Stand -5 -4.5 -4 -3.5 -3 -2.5 -2 Input Voltage [a.u.] -1.5 -1 -0.5 0 Figure: LSO energy spectrum Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Conclusion: Plans for next measurements Roadmap: More measurements with LSO. Test the new XP20Z8-photomultipliers. More simulations on noise/bit-depth vs. timing-resolution, combined with measurements using a 14bit digitizer, maybe even combined with measurements using a 24bit digitizer? Fix the external coincidence-unit. Build up the system at EPOS. EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Conclusion: Light at the end of the tunnel EPOS an ELBE – Aktueller Stand Arnold Krille Introduction Positrons in 5 Minutes Current state of EPOS Digital Positron Lifetime Conclusion Conclusion: Literature, Links, Thanks Thanks for your attention! Get the slides at http://positron.physik.uni-halle.de/. P. A. M. Dirac. The quantum theory of the electron. Proc. R. Soc. London, Ser. A, 118:351–361, 1928. C. D. Anderson. The positive electron. Phys. Rev., 43:491–494, 1933. A. Einstein. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Annalen der Physik, 323:639–641, 1905. R. Krause-Rehberg and H. Leipner. Positrons in Solids. Springer-Verlag, 2001. F. Bečvář. Methodology of positron lifetime spectroscopy: Present status and perspectives. Nuclear Instruments and Methods in Physics Research B, 261:871–874, 2007. EPOS an ELBE – Aktueller Stand Arnold Krille