Das Benford
Transcription
Das Benford
Das Benford-Gesetz Vorträge im Proseminar/Wintersemester 2011/12 Vortrag-Nr. 0 Matrikel-Nr. Thema Newcomb/Benford: Historisches Literatur [1, 5, 9] (J.B.) 1 4492342 (M.D.) Gleichverteilung modulo 1 [7], Seiten 1-4, 7-8 2 4428992 (C.M.) Gleichverteilung modulo 1 [7], Seiten 8-9, 13-15 3 4524061 (P.G.) Gleichverteilung modulo 1 [7], Seiten 25-29 4 4221461 (S.L.) Benfordverteilung und Gleichverteilung modulo 1 [3] 5 3663664 (E.T.) Fibonacci-Zahlen sind Benfordverteilt/I [4, 6] 6 4727509 (C.Q.) Fibonacci-Zahlen sind Benfordverteilt/II [2, 8] Verbrecherjagd mit der Benfordverteilung [5] 7 (J.B.) Zusammenarbeit bietet sich an bei den Vorträgen 1,2,3,4 und 5,6 Literatur [1] F. Benford. The law of anomalous numbers. Proceedings of the American Philosophical Society, 78:551–572, 1938. [2] F.L. Brown and R.L. Duncan. Modulo one uniform distribution of the sequences of logarithms of certain recursive sequences. Fibonacci Quarterly, 8:482–486, 1970. [3] P. Diaconis. The distribution of leading digits and uniform distribution mod 1. The Annals of Probability, pages 72–81, 1977. [4] R.L. Duncan. An application of uniform distributions to the Fibonacci numbers. Fibonacci Quarterly, 5:137–140, 1967. [5] N. Hungerbühler. Benfords Gesetz über führende Ziffern, 2007. [6] L. Kuipers. Remark on a paper by R.L. Duncan concerning the uniform distribution mod 1 of the sequence of the logarithms of the Fibonacci numbers. Fibonacci Quarterly, 7:465–466, 1969. [7] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Wiley, New York, 1974. [8] L. Kuipers and J.S. Shiue. Remark on a paper by Duncan and Brown on the sequence of logarithms of certain recursive sequences. Fibonacci Quarterly, 11:292–294, 1973. [9] S. Newcomb. Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics, 4:39–40, 1981.