Ecological assessment of groundwater ecosystems

Transcription

Ecological assessment of groundwater ecosystems
Ecological assessment of groundwater ecosystems
Christian Griebler
Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center of
Environmental Health, D-85764 Neuherberg/Munich, Germany
e-mail: christian.griebler@helmholtz-muenchen.de
Healthy aquifers deliver important ecosystem services, e.g. the purification of infiltrating water
and the storage of high quality water over decades in significant quantities (Danielopol et al.,
2003). Also the functioning of terrestrial and surface aquatic ecosystems directly depends on
groundwater and vice versa. Nowadays, legislation in many parts of the world has started to
consider groundwater not only as a resource but as a living ecosystem. To our opinion, the assessment of ecosystems requires consideration of ecological criteria (Danielopol et al., 2004). So far,
such criteria are not available for groundwater systems. In the framework of a project supported
by the German Federal Environment Agency (UBA), a first concept for the ecological assessment
of groundwater ecosystems is developed, with a focus on microbes and invertebrates as potential
bioindicators. There are various steps in concept development, including (i) the typology of groundwater ecosystems from an ecological point of view, (ii) the derivation of natural background and
threshold values, (iii) the identification of potential bioindicators, and finally, (iv) the merging of
this information into an assessment model (Steube et al., 2008). Successes and difficulties associated with these challenges, e.g. the lack of simple correlations between abiotic and biotic variables
in groundwater ecosystems, are discussed on the basis of data sets from two different groundwater landscapes in Germany, i.e. the sands and gravels of the Lower Rhine (Rur- and Erftmassif
in the Kölner Bucht) and karstic limestone of the alpine region (Swaebian Alb), each distinguished
into a local and a regional aquifer. The need for collaboration between ecologists, microbiologists,
hydrogeologists and geochemists, for the successful derivation of integrative, ecological criteria,
as well as the application of multivariate statistics, is emphasized.
References
Danielopol, D.L., Griebler, C., Gunatilaka, A. & Notenboom, J. (2003) Present state and future prospects for groundwater ecosystems.
Environmental Conservation 30: 104-130.
Danielopol, D.L., Gibert, J., Griebler, C., Gunatilaka, A., Hahn, H.J., Messana, G., Notenboom, J. & Sket, B. (2004) Incorporating ecological perspectives in European groundwater management policy. Environmental Conservation 31: 1-5.
Steube, C., Richter, S. & Griebler, C. (2008) First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeology Journal, early online: DOI 10.1007/s10040-008-0346-6.
Key words
Bioindication, ecological assessment, groundwater fauna, microbial communities, monitoring schemes
1
PowerPoint
Ecological assessment of groundwater
ecosystems
Society & Health
„Protect GW Quality by protecting
Ecosystem Functions“ (Job & Simons,
1994; US-EPA)
Christian Griebler
Institute of Groundwater Ecology, Helmholtz
Zentrum München (HMGU), German Research
Center for Environmental Health,
Ingolstädter Landstrasse 1, D-85764 Neuherberg
Organisms in
groundwater
systems
Groundwater
resources
SEITE 1
Groundwater ecological aspects in national and
international regulations, directives and guidelines
ƒ 1998 Swiss Water Protection Ordinance mentions the ecological
status: “the biocenosis in groundwater should be in a natural state
adapted to the habitat and characteristic of water that is not or only
slightly polluted”
ƒ 2003 Western Australian Guidance for the assessment of
environmental factors – “Consideration of subterranean fauna in
groundwater and caves during environmental impact assessment”
ƒ 2006 EU-GWD - “Research should be conducted in order to provide
better criteria for ensuring groundwater ecosystem quality “
SEITE 2
2
Do we need an ecological assessment scheme?
Advantages
ƒ Physical-chemical analysis generally describe the
conditions at a certain time point and can only cover a
selected number of parameters.
ƒ Biological and ecological parameters have the potential to
provide a time-integrated picture of the system’s status.
Indirect detection of ‘unknown’ threats is possible.
ƒ Impacts present may be categorized according to their
influence on ecosystem functions and services.
ƒ Biological and ecological parameters are extremely
especially useful subsequent to an impact – help to
document the return to natural conditions.
SEITE 3
Do we need an ecological assessment scheme?
Disadvantages
ƒ Physical-chemical parameters are standardized (from
sampling to analysis) while biological and ecological
parameters in most cases lack routine protocols.
ƒ We know comparable little about the distribution of
individual groundwater organisms, their sensitivity towards
certain impacts, and their autecology.
ƒ Additional ‘new’ parameters cause ‘new’ additional costs.
Can this be argued by the improved information?
It requires ecological criteria to assess an ecosystem!
SEITE 4
3
Ecological criteria are routine in the
assessment of surface waters
Implementation into the EU-Waterframework Directive
Groups of organisms considered
?
… not really useful in groundwater assessment
SEITE 5
Biocenoses in groundwater ecosystems
Bacteria and Archaea
Protozoa
Invertebrates
Microbial communities contain promising indicators for …
… Eutrophication (Pearl et al. 2003)
… the impact by organic compounds and heavy metals (Solé et al. 2008)
… the impact by pathogenic microbes and viruses (Lucena et al. 2006)
… the ecological assessment of the hyphorheic zone (US-EPA 1998)
… active degradation pathways (natural attenuation)(Winderl et al. 2007)
SEITE 6
4
Biocenoses in groundwater ecosystems
Bacteria and Archaea
Protozoa
Invertebrates
Within the fauna we have indicators for …
… Influence from surface waters (Husmann 1971; Sket 1973; Malard et al. 2004; Hahn 2006)
… Eutrophication (Holsinger 1966; Sket 1973; Culver et al. 1992; u.a.)
… Sediment structure and porosity (Mösslacher 1998, Paran et al. 2004; u.a.)
… Redox conditions (Mösslacher 1998, Dole-Olivier et al. 2004; u.a.)
… Biogeographic aspects (Dole-Olivier et al. 2004; u.a.)
SEITE 7
The UBA Project
„Ecological assessment of groundwater ecosystems“
(2007 – 2008)
4 Steps to an ecological assessment scheme
1. Typology of aquifers (groundwater
ecosystems)
2. Definition of a reference status (Natural
Background Values)
3. Identification of bioindicators and definition
of NBTs (Natural Background Thresholds)
4. Evaluation model
SEITE 8
5
4 Steps to an ecological assessment scheme
1. Typology of aquifers (groundwater
ecosystems)
2. Definition of a reference status (Natural
Background Values)
3. Identification of bioindicators and definition
of NBTs (Natural Background Thresholds)
4. Evaluation model
SEITE 9
Typology of groundwater systems in the EU
Wendtland et al. 2007 Environmental Geology – compile part of the outcome of the EU-Projekt BRIDGE
SEITE 10
6
Typology of
groundwater
systems in
Germany
Sande und Kiese des Norddeutschen Flachlandes
Schotter und Kiese des Niederrheins
Schotter und Kiese des Oberrheins
Schotter und Moränen des Alpenvorlands
Tertiäre Sedimente
Kalksteine der Oberen Jura
Kalksteine des Muschelkalks
Kalksteine des alpinen Raums
Paläozoische Kalksteine
Karbonatische Wechselfolgen
Sandsteine und silikatische Wechselfolgen
Sandsteinfolgen des Buntsandsteins
Paläozoische Sedimentgesteine
Vulkanite
Saure Magmatite und Metamorphite
Übergangsbereich Fest- Lockergestein
SEITE 11
The UBA Project
„Ecological assessment of
groundwater ecosystems“
(2007 – 2008)
We selected 3 groundwater
landscapes and sampled 20 wells
each two times a year (spring and
autumn).
Cologne
20 wells were located in the ErftRegion near Cologne
• Groundwater landscape: ‘Sands &
gravels of the Lower Rhine’
Stuttgart
40 wells were located at the
Swabean Alb
• Groundwater landscape: Karst of
the alpine region’
• Groundwater landscape: ‘Alluvial
sediments of the Danube River’
Munich
SEITE 12
7
20 wells
2 geohydrol. Units (massifs)
Lumped wells
Quatenary aquifers
Erfmassif
Rurmassif
Rur- and Erftmassif
(Kölner Bucht)
Messstellen
Rheintalscholle
Erftscholle
Rurscholle
Eifelscholle
‘Sands & gravels of the Lower Rhine’
SEITE 13
4 Steps to an ecological assessment scheme
1. Typology of aquifers (groundwater
ecosystems)
2. Definition of a reference status (Natural
Background Values)
3. Identification of bioindicators and definition
of NBTs (Natural Background Thresholds)
4. Evaluation model
SEITE 14
8
Definition of a reference status
(Natural Background Values)
The ecological reference status has to be defined for every
type of groundwater ecosystem (or even for sub-units)
How to do that:
ƒ 1. Investigation of natural (pristine) zones of aquifers
If not available
ƒ 2. Use of data from comparable aquifers
If not available
ƒ 3. Use of historical data
If 1-3 not available
ƒ 4. Experience of experts
SEITE 15
Definition of a reference status
(Natural Background Values)
The ecological reference status of a local or a regional
aquifer may be defined based on natural background
values (NBVs) for individual abiotic and biotic parameters.
Combining of individual NBVs to a holistic picture.
Definition of a good ecological status.
SEITE 16
9
W
94
51
51
86
(2
)
5m
)
m
)
)
m
)
2m
82
.4
3.
(7
(1
)
m
)
3m
07
1.1
4.
(1
(1
)
m
)
7m
13
4m
07
7.0
1.
(1
(2
4.3
4.
(2
(2
)
)
m
)
9m
9m
)
97
4.1
2.
.9
.9
(8
(7
(2
21
21
51
11
75
82
94
W
94
W
21
61
02
22
84
42
12
1
0
m
)
0m
02
0.0
6.
n.b.
n.b.
W
W
94
1
51
86
.4
)
5m
)
m
)
)
m
)
2m
82
1.1
3.
(7
(1
)
m
)
3m
07
7.0
4.
(1
(1
(1
)
m
)
7m
13
4m
07
4.3
1.
(2
(2
4.
7m
)
)
9m
)
m
)
9m
2.9
.9
.9
00
)
)
2m
2m
4 .1
(2
(2
21
21
51
1
75
82
94
W
94
W
51
42
12
61
02
21
22
84
W
84
W
02
02
02
34
34
34
(7
(8
)
)
7m
)
1m
)
)
2m
6m
6.0
.1
0.
(2
1
02
65
02
.0
.0
(9
(4
(2
.1
2.0
(5
(3
0
82
65
30
34
W
34
W
W
W
W
W
30
04
53
51
51
72
03
00
60
69
W
W
W
34
50
(8
(1
41
01
00
10
77
W
39
W
99
34
34
84
94
0
m
m
)
)
5m
82
.4
)
)
)
)
)
)
)
2m
)
m
3m
07
1.1
3.
(7
(1
m
7m
07
7.0
4.
(1
(1
m
4m
13
4.3
1.
(1
(2
4.1
4.
(2
(2
(2
)
)
)
)
)
)
9m
)
9m
0m
m
2m
7m
97
.9
.9
2.
(8
(7
(2
21
21
51
11
51
61
51
42
12
86
82
75
22
21
02
02
02
02
W
94
W
94
W
W
84
W
W
34
W
W
34
02
)
m
)
1m
02
0.0
6.
(3
1
65
82
.0
.1
)
)
6m
02
.0
(4
(9
(2
53
51
72
m
m
)
7m
04
71
.1
2.
(5
(1
51
65
02
W
30
W
34
W
04
00
W
30
34
W
69
W
00
03
39
W
60
W
(8
0.
2.9
0.
(1
(1
41
01
50
77
W
10
W
99
81
76
91
75
75
W
99
W
99
(3
u.N.
u.N.
u.N.
u.N.
u.N.
u.N.
u.N.
u.N.
73
75
34
34
84
94
65
0
(7
)
)
)
)
)
)
m
)
)
5m
m
12
82
.4
)
)
m
)
m
03
07
1.
3.
(7
(1
m
m
7m
13
7.
4.
(1
(1
m
4m
07
4.3
1.
(1
(2
4.1
4.
(2
(2
(2
)
9m
)
97
.9
)
)
)
)
9m
0m
m
)
)
2m
.9
2.
(8
(2
m
7m
02
0.0
6.
(3
1
.0
.1
)
)
m
)
1m
02
.0
(4
(9
(2
21
21
51
11
51
61
51
42
12
02
86
82
75
22
21
02
02
02
W
94
W
94
W
W
84
W
W
34
W
02
02
W
30
W
34
W
65
82
3
51
35
m
6m
71
7m
04
.1
2.
(5
(1
51
72
30
04
00
W
34
W
34
W
W
69
50
00
00
39
W
6
W
01
0.
(8
(1
2.9
0.
(1
(3
41
91
81
91
76
77
W
10
W
99
W
99
75
99
W
99
W
W
99
Nitrate
[mg l-1]
Nitrat [mg/l]
n.b.
n.b.
DO
[mg l-1]
Sauerstoff [mg/l]
Rurscholle
Rurmassif
W
84
W
02
34
W
34
W
02
02
34
W
34
(2
(3
5
02
65
65
30
02
W
82
)
2m
)
7m
1m
)
m
)
W
)
91
0
W
04
.0
.1
(4
(9
02
.0
m
)
6m
)
m
m
)
m
73
6
W
30
34
51
72
(5
2.
.1
71
97
04
2.
0.
(1
(1
99
8
W
34
W
00
53
00
51
(1
(8
91
81
76
75
99
W
W
99
Ammonia
[mg l-1]
Ammonium [mg/l]
NBT
W
69
03
39
W
60
W
41
01
W
W
99
0.
10
50
77
W
10
W
99
)
m
)
71
7m
04
0.
30
2.9
(3
120
(1
91
35
(1
75
73
140
91
81
99
20
76
W
W
99
DOC
[mg l-1]
DOC [mg/l]
0
160
75
75
0.
120
W
99
(3
140
99
91
160
W
73
99
Impacts ?
W
W
99
Frequency
Derivation of natural background values
Natural Background Ranges (NBR) und Threshholds (NBT)
NBR
Natural component
Actually measured
distribution
Impacted component
Concentration
Modified from Kunkel et al. 2004
SEITE 17
12
Erftscholle
Erfmassif
4
Frühjahr
Spring
Herbst
Autumn
2
100
80
60
40
100
80
60
40
20
0
25
20
15
10
0
SEITE 18
10
1
99
76
75
91
(1
0
(1
2.
(3
0.
97
m
04
m
)
)
86
)
5m
)
m
)
)
m
)
2m
82
.4
3.
(7
(1
)
m
)
3m
07
1.1
4.
(1
(1
)
m
)
7m
13
07
7.0
1.
(1
(2
4.3
4.
)
)
m
)
4m
97
4.1
2.
(2
(2
21
21
51
(2
(2
9m
9m
)
n.b.
n.b.
W
W
94
86
.4
)
5m
)
m
)
)
m
)
2m
82
1.1
3.
(7
(1
)
m
)
3m
07
7.0
4.
(1
(1
(1
)
m
)
7m
13
4m
07
4.3
1.
(2
(2
4.
7m
)
)
9m
)
m
)
9m
2.9
.9
.9
00
)
)
2m
2m
4 .1
(2
(2
21
21
51
1
51
1
75
82
94
W
94
W
51
42
12
61
02
21
22
84
W
84
W
02
02
02
34
34
34
(7
(8
(2
1
)
)
7m
)
1m
6.0
.1
0.
(2
(3
0
02
65
02
30
34
W
34
W
W
W
W
82
65
04
W
30
.0
.0
(9
(4
(5
)
)
2m
6m
2.0
.1
)
34
34
84
94
0
m
)
)
)
)
)
m
)
)
5m
82
.4
m
)
)
)
)
)
2m
)
07
3m
m
7m
13
1.1
3.
(7
(1
m
4m
07
7.0
4.
(1
(1
)
)
)
9m
)
4.3
1.
(1
(2
m
0m
9m
4.1
4.
(2
(2
(2
7m
2m
97
.9
.9
2.
(8
(7
(2
21
21
51
11
51
61
51
42
12
86
82
75
22
21
02
02
02
W
94
W
94
W
W
84
W
W
34
W
02
02
)
m
)
1m
02
0.0
6.
(3
1
65
82
.0
.1
(4
(9
(2
53
51
72
)
)
6m
02
.0
2.
(5
(1
51
65
02
W
30
W
34
W
04
00
W
30
34
W
34
W
W
69
00
03
39
W
60
W
m
m
)
7m
04
71
.1
0.
(8
(1
2.9
0.
(1
(3
41
01
50
77
W
10
W
99
81
76
91
75
75
W
99
W
99
91
u.N.
u.N.
u.N.
u.N.
u.N.
u.N.
u.N.
u.N.
73
75
34
34
84
94
65
0
)
)
)
)
m
)
)
5m
m
12
82
)
)
)
)
)
m
)
m
03
.4
3.
(7
(1
m
m
7m
07
1.
4.
(1
(1
m
4m
13
7.
)
9m
)
07
4.3
1.
(1
(2
4.1
)
)
)
9m
97
.9
4.
(2
(2
(2
m
0m
)
)
2m
.9
2.
(8
(7
(2
m
7m
02
0.0
6.
(3
1
.0
.1
)
)
m
)
1m
02
.0
(4
(9
(2
21
21
51
11
51
61
51
42
12
02
86
82
75
22
21
02
02
02
W
94
W
94
W
W
84
W
W
34
W
02
02
W
30
W
34
W
65
82
3
51
35
m
6m
71
7m
04
.1
2.
(5
(1
51
72
30
04
00
W
34
W
34
W
W
69
00
50
00
39
W
6
W
01
0.
(8
(1
2.9
0.
(1
(3
41
91
81
91
76
77
W
10
W
99
W
99
75
99
W
99
W
W
99
Nitrate
[mg l-1]
Nitrat [mg/l]
n.b.
n.b.
DO
[mg l-1]
Sauerstoff [mg/l]
4
40
Erftscholle
Erfmassif
n.a.
W
94
51
11
75
82
94
W
94
W
51
61
02
42
21
22
84
W
84
W
02
34
12
.9
.9
(8
(7
m
)
0m
02
53
51
51
72
03
00
60
69
W
W
34
W
50
(8
(1
41
01
00
10
77
W
39
W
99
m
m
)
m
73
Frühjahr
Spring
Herbst
Autumn
n.a.
208
W
34
W
02
02
34
W
34
1
0
)
2m
)
7m
1m
)
0.0
6.
(3
(2
.0
.1
m
)
5
02
65
65
30
02
W
82
(9
(4
.0
W
71
97
04
2.
0.
(1
(1
99
0
W
04
W
30
34
W
34
W
51
53
72
03
00
W
60
W
69
(5
m
)
6m
)
02
.1
2.
(8
(1
51
00
50
39
41
01
91
81
76
75
99
W
W
99
Ammonia
[mg l-1]
Ammonium [mg/l]
Rurscholle
Rurmassif
n.a.
n.a.
n.a.
303
W
W
10
77
W
W
99
0.
6
n.a.
n.a.
Rurscholle
Rurmassif
W
99
)
m
)
71
7m
04
0.
30
2.9
(3
120
(1
91
35
(1
75
73
140
91
81
99
20
76
W
W
99
DOC
[mg l-1]
DOC [mg/l]
0
160
75
0.
120
W
99
(3
140
99
91
NBVs from
Kunkel et al. 2004
75
73
99
160
W
W
W
99
8
n.b.
-1
10
n.b.
n.a.
n.a.
Total bacterial counts
[cells x 104 ml-1] 4
Bakterielle Abundanz [Zellen x 10 ml ]
.7
1m
)
41
W
(8
99
.1
77
6m
01
)
(1
W
2.
10
02
50
m
)
51
(5
W
.0
39
1m
00
)
51
(4
W
.0
60
7m
03
)
53
W
(
9.
69
12
00
m
72
)
W
(2
6.
34
02
04
m
82
)
(3
0.
W
00
30
m
65
)
0
(7
W
.
99
30
m
65
)
1
W
(8
34
.9
02
9m
02
)
(2
W
2.
34
97
02
m
12
)
(2
W
4.
34
14
02
m
42
)
(2
W
4.
34
13
02
m
51
)
W
(2
4.
34
37
02
m
61
)
W
(2
1.
84
07
21
m
51
)
W
(1
7.
84
03
22
m
11
)
(1
W
4.
94
07
75
m
51
)
(1
W
1.
94
12
82
m
21
)
(1
W
3.
94
82
86
m
)
21
(7
.4
5m
)
W
W
99
39
1
75
8
99
7
W
99
W
Impacts ?
12
Erftscholle
Erfmassif
2
NBV 0.1 to 9.1
100
80
60
40
NBV 13
100
80
60
40
20
0
25
20
15
10
0
NBV 2.5
SEITE 19
Rur- and Erftmassif
?
50
No NBV so far
Frühjahr
Spring
Herbst
Autumn
30
20
10
0
Microbial biomass ‚sometimes‘ agree with chemistry!
SEITE 20
11
20
Wells
)
0
6m
)
(1
2.
10
02
50
m
51
)
W
(5
39
.0
1m
00
51
)
W
(4
60
.0
7m
03
53
)
W
(9
69
.1
00
2m
72
)
W
(2
34
6.
02
04
m
82
)
(3
0.
W
00
30
m
65
)
0
(7
W
.9
30
9m
65
)
1
(8
.9
9m
)
50
W
b.d.
b.d.
50
150
140
13
n.d.
n.d.
n.d.
n.d.
1500
b.d.
n.d.
Bacterial carbon production
Bak. Produktion
]
[ngC l-1 h-1[ngC/l/h]
Rurscholle
Rurmassif
b.d.
n.d.
100
71
m
171
(8
.1
150
64
1
S vs. A p=1.000
L vs. R p=0.791
70
1
0
350
99
7
200
3500
99
7
W
99
7
W 39
99 1
7 (3
W 58 0.0
99 1
4
75 (12 m )
W 91 .97
9 9 (1 m
W 76 0. )
9 9 4 71
77 1 ( m
W 01 8.1 )
1 0 (1 6m
2
5
W 05 .02 )
39 1
m
)
0 (5
W 05 .01
1
6
m
W 003 (4. )
6 9 53 07
m
0
W 07 (9. )
3 4 2 12
04 (26 m )
8
.
W 2 ( 02m
3 0 30
)
W 650 .00
m
3
W 06 (7. )
9
3 4 51 9
m
0
W 20 (8. )
3 4 2 99
02 (22 m)
W
3 4 12 .97
0 (2 m
W 24 4.1 )
34 2
4
0 (2 m
W 25 4.1 )
34 1
3
02 (24 m )
W
8 4 61 .37
m
(
W 215 21. )
8 4 1 07
22 (17 m )
W
9 4 11 .03
7 (1 m
W 55 4.0 )
94 1
7
82 (11 m )
W 21 .12
9 4 (1 m
3
)
86
21 .82
(7 m )
.4
5m
)
1
W
0
b.d.
b.d.
300
)
2
)
4
97
m
350
4000
(1
0.
0.1-9.1
(1
2.
6
58
1
8
59
1
S vs. A p=0.952
L vs. R p=0.003*
99
7
-1
EC [mS cm ]
Rurmassif
W
500
W
10
Chloride [mg L ]
6
Nitrate [mg L ]
12
04
m
6.6
(3
0.
7
39
1
6.8
99
7
1000
6.2
n.d.
S vs. A p=0.238
L vs. R p=0.404
99
7
-1
7.8
W
250
-1
7.2
W
6.4
n.d.
6.4-7.2
n.d.
n.d.
pH
7.6
n.d.
n.d.
-1
DO [mg L ]
7.4
n.d.
-1
Sulfate [mg L ]
1.2
0.6
0.4
0.2
2500
2000
1161
400
0
300
S vs. A p=0.545
L vs. R p=0.496
250
200
100
106
0
160
120
S vs. A p=0.911
L vs. R p=0.015*
100
80
Steube et al. (2008) Hydrogeol. J. (early online)
W
99
73
91
W
(3
0.
99
04
75
m
81
)
W
(1
99
2.
97
75
m
91
)
(1
W
0.
99
71
76
m
41
)
W
(8
99
.1
77
6m
01
)
(1
W
2 .0
10
2
50
m
51
)
W
(5
.0
39
1m
00
51
)
W
(4
.0
60
7m
03
)
53
W
(9
69
.1
00
2m
72
)
W
(2
34
6.
02
04
m
82
)
(3
0 .0
W
30
0m
65
)
0
(
7 .9
W
30
9m
65
)
1
(8
.9
9m
)
Rur- and Erftmassif
1.4
Erftscholle
Erfmassif
Frühjahr
0.8
Herbst
No NBV
so far
?
0
Microbial activity does not perform like chemistry!
SEITE 21
Spring vs. Autumn samples
Local vs. Regional wells
4500
S vs. A p=0.892
L vs. R p=0.473
3000
60
40
0
0
SEITE 22
Wells
12
Rur- and Erftmassif
Summarizing first results from the UBA project
ƒ Significant correlation ocurred so far only between individual physicalchemical variables
ƒ Hardly any direct correlation between biological variables and abiotic
ones
ƒ Bacterial abundance sucessfully indicated organic impact, CFUs and
BCP did not.
ƒ Almost no variables show a significant difference between spring and
autumn values, neither in trends (Spearman Rank Correlation analysis)
nor in mean values (Student‘s t-Test bzw. Mann-Whitney-U Test).
ƒ No significant differences for most parameters between locally
lumped wells and those distributed regionally (Student‘s t-Test bzw.
Mann-Whitney-U Test).
SEITE 23
Derivation of natural background values
Natural Background Ranges (NBR) und Threshholds (NBT)
NBR
10
9
NBT
8
Frequency
Häufigkeit
Häufigkeitsverteilung
7
?
6
More data are needed
5
4
3
Swaebian
Alb
Ostalb
und Donauried
2
1
0
0
1
2
3
4
5
-1 -1
BCP [ngC l h ]
SEITE 24
13
4 Steps to an ecological assessment scheme
1. Typology of aquifers (groundwater
ecosystems)
2. Definition of a reference status (Natural
Background Values)
3. Identification of bioindicators and definition
of NBTs (Natural Background Thresholds)
4. Evaluation model
SEITE 25
Microbial indicators
From single analysis to routine
Fingerprint
Sample
Bakteriendichte x 10^4 [Zellen/ml]
50
40
Rurmassif
Rurscholle
Erftscholle
Erfmassif
Genetic fingerprint of a
bacterial community
30
20
Frühjahr
Herbst
10
W
99
W 739
99 1
W 758 (30
99 1 .0
4
7
W 591 (12.9 m)
9
W 976 (10 7m
99 4 .7 )
7 1 1
W 701 (8.1 m)
10
6
W 505(12.0 m)
39 1 2
W 005 (5.0 m)
6
W 003 1 (4 1m
69 5 .0 )
W 007 3 (9 7m
34 2 .1 )
0 (2 2m
W 482 6.0 )
30 (3 2m
W 65 0.0 )
W 306 0 (7 0m
34 5 .9 )
W 020 1 (8 9m)
34 2 .9
W 021 (22 9m)
34 2 .9
W 024 (24 7m
34 2 .1 )
W 025 (24 4m
34 1 .1 )
W 026 (24 3m
84 1 .3 )
W 215 (21 7m
84 1 .0 )
W 221 (17 7m
94 1 .0 )
W 755 (14 3m
94 1 .0 )
7
8
W 221 (11.1 m)
94 ( 2
86 13 m)
21 .82
(7 m)
.4
5m
)
0
Indicator sequences
DNA – Chip (Phylochip)
Phylogenetic tree
SEITE 26
14
Identification of indicator fragments (T-RFs) by means of
Canonical Correspondence analysis (CCA)
Example from a recent geothermy project
(Brielmann, Schmidt, Griebler & Lüders, FEMS Microbiol. Ecol., accepted)
SEITE 27
Identification of indicator fragments (T-RFs)
Example from a recent geothermy project
(Brielmann, Schmidt, Griebler & Lüders, FEMS Microbiol. Ecol., accepted)
SEITE 28
15
Identification of indicator groups within the fauna by
means of Canonical Correspondence analysis (CCA)
Example from a recent geothermy project
(Brielmann, Schmidt, Griebler & Lüders, FEMS Microbiol. Ecol., accepted)
SEITE 29
Identification of indicator groups within the fauna by
means of Canonical Correspondence analysis (CCA)
Turb
Nem
Ostra
Cyclo
Amphi
Iso
Harp
Temperature gradient
11°C
18°C
Example from a recent geothermy project
(Brielmann, Schmidt, Griebler & Lüders, FEMS Microbiol. Ecol., accepted)
SEITE 30
16
4 Steps to an ecological assessment scheme
1. Typology of aquifers (groundwater
ecosystems)
2. Definition of a reference status (Natural
Background Values)
3. Identification of bioindicators and definition
of NBTs (Natural Background Thresholds)
4. Evaluation model
SEITE 31
Concept for an evaluation scheme
Local scale
Aquifer typology
and classification
Regional scale
“4 p i l l a r s”
Physical-chemical
parameters
General microbiol. Microbial community
parameters
structure
Groundwater
fauna
Natural Background Ranges, Reference Status
NO3-
SO42-
DOC
metals
Index 1
Bathynella sp.
Microbial
indicators
DNA array
Index 2
Index 3
Index 4
SEITE 32
17
The future will show !
?
Aquifer typology
and classification
“4 p i l l a r s”
Physical-chemical
parameters
General microbiol. Microbial community
parameters
structure
Groundwater
fauna
Natural Background Ranges, Reference status
NO3-
SO42-
DOC
metals
Index 1
Bathynella sp.
Microbial
indicators
DNA array
Index 2
Index 3
Index 4
SEITE 33
Thanks goes to …
UBA – Federal Environmental Agency
Life Science Foundation
for financial support
¾ Christian Steube (Helmholtz Zentrum München)
¾ Heide Stein, Andreas Fuchs, Hans-Jürgen Hahn (University of
Koblenz-Landau, Germany)
¾ Simone Richter (UBA) and the scientific committee of the UBA
project
for collaboration
SEITE 34
18