Human Movement Science How Martin ,

Transcription

Human Movement Science How Martin ,
Human Movement Science 32 (2013) 1270–1287
Contents lists available at ScienceDirect
Human Movement Science
journal homepage: www.elsevier.com/locate/humov
How to detect the yips in golf
Martin K. Klämpfl a,⇑, Babett H. Lobinger a, Markus Raab a,b
a
Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Am Sportpark Müngersdorf
6, Cologne NRW 50933, Germany
b
Department of Applied Sciences, London South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
a r t i c l e
i n f o
Article history:
Available online 7 September 2013
PsycINFO classification:
2223
2225
2320
2330
3100
3200
3700
Keywords:
Focal dystonia
Choking under pressure
Kinematics
Electromyography
Putting
a b s t r a c t
The yips is a multi-aetiological phenomenon that is characterized
by an involuntary movement that can affect a golfer’s putting performance. Diagnostics are crucial for a better understanding of
what causes the yips but are still lacking. The purpose of the present study was therefore to identify sensitive methods for detecting
the yips and evaluating its aetiology. Forty participants, 20 yipsaffected golfers and 20 nonaffected golfers, completed a psychometric testing battery and performed a putting session in the laboratory. They answered questions about their golfing and yips
experience and filled in standardized questionnaires measuring
trait anxiety, perfectionism, stress-coping strategies, somatic complaints, and movement and decision reinvestment. In the laboratory, they had to putt in five different conditions that might elicit
the yips: as usual with both arms, under pressure, with one (the
dominant) arm, with a unihockey racket, and with latex gloves.
Measures included putting performance, situational anxiety, kinematic parameters of the putter, electromyography of the arm muscles, and electrocardiography. The groups were separated only by
putting performance and kinematic parameters when putting with
the dominant arm. Future research should use kinematics to investigate the aetiology of the yips and possible interventions.
Ó 2013 Elsevier B.V. All rights reserved.
1. Introduction
Tony Jackling, Sam Snead, Arnold Palmer, Tom Watson, and Bernhard Langer are very successful
golfers, and they all suffered from the infamous yips. The yips occurs mostly in putting and consists
⇑ Corresponding author. Tel.: +49 (0)221 4982 5721; fax: +49 (0)221 4982 8320.
E-mail address: m.klaempfl@dshs-koeln.de (M.K. Klämpfl).
0167-9457/$ - see front matter Ó 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.humov.2013.04.004
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
1271
of involuntary movements appearing shortly before hitting the ball that result in loss of control and
usually missing the putt (McDaniel, Cummings, & Shain, 1989; Smith et al., 2000; Stinear et al.,
2006). Such loss of control has a large impact on golf performance and has consequences for the athlete’s career, as the putt represents the most important stroke in high-level golf. The yips is a common
phenomenon in golf, affecting 28 to 48% of golfers (McDaniel et al., 1989; Smith et al., 2000). However,
the use of samples covering different performance levels as well as reliance on subjective reports may
explain the high discrepancy in reported prevalence rates. A standardized method for diagnosing the
yips is needed to form the basis of a scientific approach dealing with this controversial phenomenon.
We therefore propose psychometric measurements and a putting experiment as a sensitive method
for detecting yips-affected golfers.
1.1. Aetiology of the yips—Neurological origin
The literature examining the aetiology of yips is equivocal. Contemporary research places the yips
on a continuum between a neurological origin connected to focal dystonia and a psychological origin
linked to choking under pressure (Smith et al., 2003; Stinear et al., 2006). The yips was first categorised as a task-specific focal dystonia (Adler, Crews, Hentz, Smith, & Caviness, 2005; McDaniel et al.,
1989; Sachdev, 1992; Smith et al., 2000). Focal dystonia describes a neuromuscular movement disorder whose symptoms include involuntary muscular contractions resulting in twisting and repetitive
movements or abnormal postures occurring exclusively in one body part and during the performance
of a task (Pont-Sunyer, Martí, & Tolosa, 2010). Commonly affected tasks are writing, playing a musical
instrument, and others requiring highly repetitive fine motor skills (Torres-Russotto & Perlmutter,
2008). Reported dystonia-affected sports other than golf include table tennis (Le Floch et al., 2010),
pistol shooting (Sitburana & Ondo, 2008), petanque (Lagueny et al., 2002), and tennis (Mayer, Topka,
Boose, Horstmann, & Dickhuth, 1999).
The mechanisms of dystonia are still unclear but are assumed to involve abnormalities within the
basal ganglia, inhibitory and processing dysfunction of the sensorimotor system, and abnormal plasticity (Rosenkranz et al., 2008). Clinical signs of task-specific focal dystonia include the presence of a
phasic dystonic movement and the following accompanying signs (Albanese & Lalli, 2009): First, an
overflow that describes a coactivation of neighbouring muscles not normally involved. The occurrence
of such cocontractions has been shown in some yips-affected golfers (Adler et al., 2005, 2011). Second,
mirror dystonia defined as the appearance of the dystonic muscle activation in the affected limb even
if the movement is performed with the opposite side. Third, effective sensory tricks that cause a temporal absence of symptoms due to a change in the sensory pathways through additional tactile input
(Abbruzzese & Berardelli, 2003; Tinazzi, Rosso, & Fiaschi, 2003). For instance, symptoms are reduced
when affected pianists play with gloves (Altenmüller & Jabusch, 2009). Besides clinical signs, specific
rating scales are used to diagnose dystonia, such as Fahn’s Arm Dystonia Disability Scale (ADDS; Burke
et al., 1985). The genetic disposition of an affected patient can be assessed by the occurrence of dystonia-like symptoms in the family (Schmidt et al., 2009).
Reported yips prevalence rates are about 30 times higher than the 1% prevalence of musician’s dystonia (Altenmüller, 2003) and up to 5,000 times higher than those of other forms of focal dystonias
such as writer’s cramp and facial dystonia (Fukuda, Kusumi, & Nakashima, 2006; Nutt, Muenter,
Aronson, Kurland, & Melton, 1988), indicating that dystonia might only partially explain the yips.
1.2. Aetiology of the yips—Psychological origin
Yips-affected golfers reported that the symptoms often occur in pressure situations (McDaniel
et al., 1989; Philippen & Lobinger, 2012; Smith et al., 2003). At the same time, performance anxiety
is thought to play a major role in both triggering the yips and exacerbating its symptoms (McDaniel
et al., 1989; Smith et al., 2000). The yips is therefore also associated with choking under pressure,
which is defined as the ‘‘process, whereby the individual perceives their resources are insufficient
to meet the demands of the situation, and concludes with a significant drop in performance—a choke’’
(Hill, Hanton, Fleming, & Matthews, 2009, p. 209). The yips can be seen as a severe form of choking
(Masters, 1992) or at least exhibits ‘‘many characteristics similar to a severe form of choking’’ (Bawden
1272
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
& Maynard, 2001, p. 937). However, rather than describing an acute or sudden drop in performance,
the yips may represent a chronic form of severe choking because its symptoms occur more steadily
over time. The existence of a chronic form of choking in golf was first mentioned without the connection to the yips by Gucciardi, Longbottom, Jackson, and Dimmock (2010).
Two types of attentional theories have been proposed to explain the mechanisms of choking under
pressure (see Hill, Hanton, Matthews, & Fleming, 2010, for a review): distraction theories and self-focus theories. Distraction theories, such as Eysenck and Calvo’s (1992) processing efficiency theory,
claim that a choke results from pressure-induced anxiety that shifts the focus of attention of the individual away from task-relevant information. This mechanism is thought to apply primarily to cognitive tasks. Self-focus theories perhaps come closer to explaining the occurrence of the yips because
they assume that performance anxiety causes the athlete to shift the focus of attention inward or
to consciously monitor the skill, which detrimentally affects the well-learned, automated action (Baumeister, 1984). This is also the basis of reinvestment theory, which tries to unite all self-focus theories
(see Masters & Maxwell, 2008, for a review). Reinvestment is defined as the ‘‘manipulation of conscious, explicit, rule based knowledge, by working memory, to control the mechanics of one’s movements during motor output’’ (Masters, 1992, p. 208). The more explicit knowledge the athlete has, the
more likely it is that the movement will be disrupted when attempting to consciously control it. This
usually happens when the athlete perceives pressure and tries to ensure high performance by consciously intervening in a movement that normally runs automatically. Rotheram, Maynard, Thomas,
and Bawden (2007) found through a questionnaire-based study that yips-affected athletes had an increased tendency both to consciously control (reinvest in) their movements and to be perfectionist.
The occurrence of choking under pressure also depends on two appraisals, according to the classic
stress model (Lazarus, 1974). The primary appraisal clarifies if the situation represents an individual
threat. The secondary appraisal focuses on the resources the individual needs to be able to cope with
the situation. Therefore, positively perceived stress-coping strategies such as positive self-instruction,
situational control, and reaction control seem to be beneficial in the avoidance of choking (Janke &
Erdmann, 2008). Yips-affected golfers might therefore use more negative or maladaptive stress-coping
strategies, such as cognitive rumination, resignation, and self-blaming, than their nonaffected
colleagues.
1.3. Gaps in yips research and aims of the present study
From the descriptions of dystonia and choking under pressure it appears that the yips can be explained by two independent theories. We assume that both dystonia and a more severe form of choking under pressure might result in involuntary movements during the execution of the skill—the yips.
To the best of our knowledge, no difference in the appearance of the yips depending on its aetiology
has been postulated. Separating the yips according to the two presented aetiologies is difficult to do,
and the distinction between them has been evaluated rather than studied so far (Smith et al., 2000,
2003; Stinear et al., 2006). These studies grouped the yips as either neurologically based (Type I) or
psychologically based (Type II), relying only on the subjective descriptions of the participants. In
the following we will not use such a classification because its validity has not yet been confirmed.
Alternative explanations of the yips might be possible. For instance, Marquardt (2009) described
the yips as a contextual movement disorder, which can be learned by fatal movement strategies such
as practicing the wrong movement technique. Furthermore, earlier studies selected their yips-affected
participants by relying on self-reports of the participants about their yips symptoms. No standardized
selection criterion, for example, on the basis of the phenomenological appearance of the yips, has yet
been used.
Many different measurement methods have been used to investigate the yips, including recording
muscle activity, grip force, heart rate, putting performance, and kinematic parameters. Yips-affected
golfers exhibited an increased muscle activity (Smith et al., 2000; Stinear et al., 2006) and cocontractions of the lower forearm muscles (Adler et al., 2005, 2011). While Smith et al. (2000) found that yipsaffected golfers had a decreased performance accuracy compared to nonaffected golfers, Stinear et al.
(2006) could not find a difference in performance. Moreover, yips-affected golfers showed an increased grip force and increased mean heart rate during the execution of putts (Smith et al., 2000).
1273
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
Although Marquardt and Fischer (2008) found a more objective way (compared to self-reports) to
identify the yips using a vague kinematic template of yips-affected golfers, they examined only kinematic differences between affected and nonaffected golfers. They discovered that especially the rotation rate and the face angle of the putter around ball impact are inconsistent in yips-affected golfers.
Other studies on the yips focused on psychometric measures. For instance, McDaniel et al. (1989)
found a tendency toward obsessional thinking in yips-affected golfers. Sachdev (1992) used a battery
of different psychometric measures to look at trait anxiety, somatic complaints, depression, and obsession. No differences between the affected and nonaffected golfers were found, but once again, the
study did not use clear criteria to distinguish between the golfers. For instance, it may not be necessary for golfers to have played at least 5 years to be categorized as yips affected. Philippen, Klämpfl,
and Lobinger (2012) argued that beginners and golfers with less experience and a higher handicap
can also suffer from the yips. Rotheram et al. (2007) reported differences between yips-affected and
nonaffected athletes in perfectionism and reinvestment, but they did not include a description of their
selection criterion.
To sum up, findings have been reported so far with no standardized method to identify yips-affected golfers in the first place. A standardized method is, however, required for further investigations
of the yips. We sought to overcome the limitations of previous studies by comparing yips-affected
golfers with nonaffected golfers who were grouped according to a more reliable selection criterion
based on the phenomenological appearance of the yips. This is the first study in this field that combines a wide range of diagnostic tools, including psychometric as well as psychophysiological, behavioral, and kinematic measures. The main purpose of the present study was to find sensitive methods to
diagnose the yips independent of its aetiology. The application of these diagnostic tools in five different putting conditions, which are explained in the Methods section, might further reveal the aetiology
of the yips (Table 1).
We hypothesized that yips-affected golfers would have higher values than nonaffected golfers in
psychometric measures, including trait performance anxiety, perfectionism, reinvestment, and somatic complaints. We also expected that they would use more negative and fewer positive stress-coping strategies than nonaffected golfers. In regard to the putting experiment, we hypothesized that
yips-affected golfers would exhibit higher muscle activity, higher inconsistency in the kinematic
parameters, and lower putting performance than nonaffected golfers. Yips-affected golfers were expected to show higher values in the kinematic and psychophysiological parameters and a decrease
Table 1
Overview of measures and methods.
Pre-experiment (online survey)
Experiment (putting session in laboratory)
General measures
Standardised
questionnaires
Measures and scales
Pre-putting
Putting
Post-putting
Informed consent
Trait-anxiety (WAI-T)
Heart activity (LF/HF ratio, heart rate)
EMG (MVC 2)
Demographics
Decision reinvestment
(DSRS)
Movement
reinvestment (MSRS)
Perfectionism MPS-F
Somatic complaints
(SCL-90)
Putting test
with one arm
Heart activity
at rest
EMG (MVC 1)
EMG (RMS, cocontraction)
FeedbackInterview
Golf experience
Yips experience
Neurological
questions and
ADDS
Stress-coping strategies
(SVF-78)
Kinematics (SDs of rotation, face angle
velocity, and acceleration at impact)
Anxiety Thermometer
State-anxiety (WAI-S)
Performance accuracy (holed putts,
distance)
Note. ADDS: Fahn’s Arm Dystonia Disability Scale; DSRS: Decision-Specific Reinvestment Scale; EMG: electromyography. LF/HF:
low frequency/high frequency; MPS-F: German version of Frost’s Multidimensional Perfectionism Scale; MSRS: MovementSpecific Reinvestment Scale; MVC: maximum voluntary contraction; RMS: root mean square; SCL-90: subscale of the Symptom
Checklist; SVF-78: German Stress-coping Questionnaire; WAI-S: German State Competition Anxiety Inventory; WAI-T: German
Trait Competition Anxiety Inventory.
1274
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
Table 2
Participant characteristics.
Characteristic
Yips
M ± SD
No yips
M ± SD
Age (in years)
Handicap
Golf experience
In years
Hours per week
Sex ratio (female/male)
53.9 ± 13.9
27.4 ± 17.5
51.3 ± 14.1
33.5 ± 18.7
7.6 ± 5.2
6.0 ± 3.5
2/18
12.0 ± 13.1
5.7 ± 5.4
2/18
Note. MANOVA showed no significant differences between groups.
in putting performance in the pressure and one-arm putting condition compared to the control
putting condition. The opposite was expected for the sensory trick and context change conditions,
as explained in the following section.
2. Methods
2.1. Participants
The sample size was limited to 40 participants for practical reasons. The 40 golfers (36 males, 4 females) were assigned to either a yips-affected group (n = 20) or a nonaffected group (n = 20). Participant characteristics are presented in Table 2. It was explicitly searched for yips-affected and
nonaffected golfers. They were recruited by flyers in local golf clubs and from previous studies. The
yips criterion was established according to the advice of a professional golf coach who had approximately 15 years’ experience dealing with the yips in golf. Following his advice, we identified golfers
as yips-affected when they exhibited obvious twists of the wrist while putting up to five times with
only the dominant arm in a pre-test. A video clip of a one-handed putt by a yips-affected golfer can
be seen in the supplementary content. The assignment of participants to either the yips-affected or
nonaffected group was completed by the first author, whereas the golfers were not told about their
grouping. In contrast to previous investigations, not only expert golfers, but also golfers with higher
handicaps, that is, at a lower performance level, were included in the study, because the yips is not
restricted to expert golfers (Philippen et al., 2012). All participants were identified as right-handed
with the Edinburgh Handedness Inventory (Oldfield, 1971). They all putted with their right arm in
the laboratory experiment. Each participant was informed of the requirements of the investigation
and all provided informed consent before testing commenced. Ethical clearance to conduct the study
was provided by the national psychology association and the authors’ university ethics board.
2.2. Online survey
The online survey consisted of items to obtain the informed consent, demographic information, and
golfing and yips experience. In the yips experience section, the participants were provided with a yips
definition by Smith et al. (2000) and subsequently had to indicate whether they had ever experienced
the yips. The survey also contained the ADDS (Burke et al., 1985) and questions about known neurological disorders in the family and current medication to determine if there was a link to focal dystonia. The neurological scale contained questions about impairment in daily activities, such as grasping
an object or writing. Participants had to rate their impairment on a Likert scale from 0 (no impairment)
to 3 (strong impairment).
The participants filled in randomized, standardized questionnaires about the following psychometric measures. Trait anxiety was measured with the German Trait Competition Anxiety Inventory (WAIT; Brand, Ehrlenspiel, & Graf, 2009); participants had to answer such items as ‘‘Before competitions, I
worry about failing under pressure’’. The reported Cronbach’s alpha values for the three subscales were
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
1275
all higher than .72. Perfectionism was estimated with the German version of Frost’s Multidimensional
Perfectionism Scale (MPS-F; Altstötter-Gleich & Bergemann, 2006). Cronbach’s alpha values for the six
subscales ranged from .70 to .90. A sample item for the subscale performance-related doubts would be
‘‘Even if I do something very thoroughly, I often have the feeling that it is not fully correct’’. Validated
German versions of the movement-specific (a = .77) and decision-specific reinvestment (a = .84)
scales (MSRS and DSRS; Laborde, Musculus, Kalicinski, Klämpfl, & Lobinger, 2013) were used to determine the reinvestment level of the golfers. Sample items for the reinvestment scales include ‘‘I am always trying to think about my movements when I carry them out’’ and ‘‘I rarely forget the times when I
have made a bad decision, even about minor things’’, respectively. The short form of the German
stress-coping questionnaire (SVF-78; Janke & Erdmann, 2008) covered positive (a = .89) and negative
(a = .94) coping strategies. Positive coping strategies such as distraction are characterized by, for instance, the item ‘‘I try to shift my thoughts to something different’’. Negative strategies are characterized
by, for example, ‘‘I wonder what I did wrong again’’ for the subscale self-blaming. Finally, somatic
complaints were obtained with the subscale (a = .83) of the Symptom Checklist (SCL-90; Derogatis,
Lipman, & Covi, 1973). There, the participants were asked to rate how much they had suffered from,
for example, headaches or muscle pain within the last 7 days. For data analysis, only the main scales of
the questionnaires were considered.
2.3. Putting experiment
The experimental part took place in a laboratory. The participants putted on an artificial putting
green from a distance of 1.5 m. This distance is within the range most likely to elicit symptoms (Smith
et al., 2000). The participants had to putt in five different conditions, which have the potential to reveal or alleviate the yips.
2.3.1. Putting conditions
In the control condition, participants were instructed to putt as they would on the putting green.
Thepressure condition consisted of putting while being exposed to three defined stressors: monetary
incentive (Mullen & Hardy, 2000; Wang, Marchant, Morris, & Gibbs, 2004) video taping of putts (Mesagno, Marchant, & Morris, 2009), and the monotonous repeating of a soccer audience booing (Laborde,
Brüll, Weber, & Anders, 2011). The rationale behind using all these stressors was to ensure that at least
one would increase perceived pressure in the participants. The detailed instructions for the pressure
condition were as follows:
‘‘Try to hole the next 15 putts. You have 15 euros in your account. For every missed putt, you lose
one euro. Any money you still have at the end we will donate to a charity for kids in Africa. One
euro is enough to ensure that a child survives one week. Every putt counts. The putts will be conducted under hindered conditions. Noise from an audience will be played throughout the whole
condition. A video camera placed behind the hole will record your movements, which will be
assessed later by a golf professional with respect to the putting technique.’’
Losing one euro was acoustically accompanied by the sound of the researcher dropping a coin into
a metal box. The raised money was donated to a charity. In the sensory trick condition, participants
were required to putt with latex gloves on both hands. In the context change condition, the golfers
putted with a unihockey racket using their normal putting grip. With this condition, we tested how
stable the yips is when small changes in the context are made but the movement remains the same.
A unihockey racket was chosen because it was assumed that all participants had little or no experience
in using it, guaranteeing no bias from this aspect. In the one-arm condition, the golfers putted with only
their dominant (right) arm, while the left arm was held motionless at the side of the body. Yips-affected golfers would consequently have no chance to compensate for the jerk by applying the second
supporting arm.
2.3.2. Putting performance
Putting performance was measured by both the number of holed putts and the distance from the
ball to the hole in centimeters after each putt. A webcam fixed on the ceiling above the hole captured
1276
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
the putting performance. Footage was analyzed via the video-analysis software utiliusÒ easyinspect
(ccc Gmbh, Markkleeberg, Germany). Participants were instructed to use their own putter and preferred putting grip. Forcing the participants to use a standardized putter and the conventional grip instead could have influenced the yips behavior.
2.3.3. Kinematic analysis
Kinematic parameters of the putters were derived by means of the ultrasound-based SAM PuttLab
Pro Wireless 2010 System (Science&Motion GmbH, Munich, Germany), which was used in earlier
putting studies (Karlsen, Smith, & Nilsson, 2008; Marquardt, 2007; Marquardt & Fischer, 2008). Data
was processed and analyzed with the accompanying software. The standard deviations of directionally
relevant parameters, including rotation rate and face angle, and speed-related parameters, specifically
velocity and acceleration, of the putter at impact were calculated and indicate the movement
consistency.
2.3.4. Electromyography
Electromyograms (EMGs) of the flexor carpi radialis (FCR), extensor carpi radialis (ECR), and biceps
brachii (BB; Smith et al., 2000; Stinear et al., 2006) were bilaterally recorded at 1024 Hz with ASA Lab
(ANT B.V., Enschede, The Netherlands), a neurophysiological multirecording system. Bipolar surface
electrodes (Ag/AgCl) were placed according to the European Recommendations for Surface Electromyography (Hermens et al., 1999). Recordings were stored for each putting condition. These were processed offline (bandpass filter: 20–250 Hz; bandstop filter: 49–51 Hz) with ASA software (ANT B.V.,
Enschede, The Netherlands) and subsequently in Matlab (The MathWorks, Inc., Natick, Mass.). The yips
is usually observed in the front swing shortly before ball contact during the putt. All participants,
across all putting trials, had a forward-swing-to-impact phase lasting at least 150 ms (M = 316 ms,
SD = 68 ms). Therefore, the root mean square (RMS) of the muscle activity was estimated for the time
frame of 150 ms before ball contact to ball contact for each trial and muscle. Ball contact was triggered
by a synchronized recording microphone. To enable a group comparison, the RMS was put in relation
to the maximum RMS derived in individual maximum voluntary contraction (MVC) tests. This test was
conducted twice for each muscle, once before and once after the putting session, to control for muscle
fatigue. For data analysis, the mean relative RMS for each muscle and the cocontraction ratio (Lohse,
Sherwood, & Healy, 2011) of the ECR and FCR for each putting condition were used.
2.3.5. Manipulation check, stress level, and state anxiety
State anxiety was measured with the validated Anxiety Thermometer (Bakker, Vanden Auweele, &
van Mele, 2003; Houtman & Bakker, 1989; Oudejans & Pijpers, 2010), in which the participants had to
subjectively rate their anxiety on a scale from 0 (not at all) to 10 (panic). In each condition, participants
were asked twice, once before the first and once after the 10th putt, how nervous they felt at the moment. The mean of these two values counted as the subjective nervousness indicator for each condition. Electrocardiograms (ECGs) were derived as an objective index of stress with a recording rate of
256 Hz with the portable multi-recording system NeXus-4 (Mind Media BVÒ, Roermond-Herten, The
Netherlands). Raw ECG signals were stored in Biotrace software (Mind Media BVÒ, Roermond-Herten,
The Netherlands) and processed with Matlab-based Kubios HRV software (Biosignal Analysis and
Medical Imaging Group, University of Kuopio, Finland). The last 3 min of each recording, each representing a putting condition, were used to calculate mean heart rate and the low- and high-frequency
band ratio of the heart rate variability (HRV). Temperature and breathing frequency as possible confounding factors for ECG were recorded (Neumann & Thomas, 2011). The standardised German State
Competition Anxiety Inventory (WAI-S; Ehrlenspiel, Brand, & Graf, 2009) served as an additional
manipulation check for the pressure putting condition.
2.4. Procedure
A link to a personalized online survey was sent to recruited participants. After completing the questionnaire, they were invited to the laboratory for the putting experiment. Filling in the online survey
and participating in the putting experiment took place on different days. Golfers gave their informed
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
1277
consent and assurance that they had followed the preparation instructions for avoiding possible confounding factors for the physiological measurements, such as following their usual sleeping routine,
not training the day before, and not consuming caffeine or tobacco (Laborde et al., 2011; Nakahara, Furuya, Francis, & Kinoshita, 2010). After the golfers performed a one-handed putting pre-test, they were
immediately grouped without telling them as either yips-affected or nonaffected without consideration of their indication on the online survey. As previously mentioned, they were grouped as yips-affected, when they exhibited obvious twists of the wrist while performing the putting pre-test. They
were then prepared for the EMG and ECG measurements. Afterwards, the participants performed the
first MVC test, in which they had to isometrically contract each muscle (consecutively) twice for 3 s.
The actual putting experiment started with 10 warm-up putts followed by 15 putts in each of the
five putting conditions presented in an incomplete counterbalanced order by means of two mirrored
Latin squares. In each condition, the golfers had to twice rate their level of anxiety on the Anxiety
Thermometer. They filled in the WAI-S questionnaire about state anxiety after receiving the instructions for the pressure and the control condition. The video camera was set up in the pressure putting
condition only and then removed again. Putting performance was captured after each putt. EMG and
ECG were recorded for each condition. After putting, the second MVC test containing the same script
as the first one followed. Finally, a short, recorded feedback interview was completed to get information about the effectiveness of each single stressor used in the pressure condition. The participants
were asked to shortly describe, how they perceived the applied stressors.
After the completion of the study, the participants received via email individual feedback on their
performance and a putting technique report created by the professional golf coach using the kinematic
data derived in the control putting condition. The individual putting technique report included no
indication of yips, but general advices on how to improve the putting technique.
2.5. Statistical analysis
Multivariate analyses of variance (MANOVAs) were used to find differences between the yips-affected and nonaffected groups regarding demographics and psychometric measures. In all calculated
MANOVAs, Pillai’s trace was chosen to indicate the critical value because of its conservativeness and
robustness to assumption violations, such as no homogeneity of covariances, if equal sample sizes are
compared. Main effects and interaction effects were tested for group (yips, no yips) as the betweengroups factor and condition (control, pressure, one arm, sensory trick, context change) as a withingroup factor via repeated-measures MANOVAs for the various parameters derived from the putting
experiment. A main effect of group would indicate that the measure distinguishes the groups independent of the putting condition and could be powerful in detecting the yips. A main effect of condition
would signal that conditions differed from each other according to the measure used. An interaction
effect between group and condition would reveal that specific putting conditions cause different putting behaviors in the groups and might be useful to diagnose the yips. In the case of sphericity violation,
the Greenhouse–Geisser correction was applied. Follow-up analyses of variance (ANOVAs) were conducted after significant findings in the main analysis to gain further insight into the parameters causing the significant effect. Significant ANOVAs followed planned simple contrasts with the control
condition as the reference putting condition. The significance level was set to .05. Outliers (4.1%) were
corrected by Winsorisation, the replacement of the discarded values by the most extreme retained values (Wilcox, 2005), here represented by the values two standard deviations away from the group
mean. Missing values (3.2%) including all derived data were then replaced by the group mean. Deleting these values would not have changed the results.
3. Results
3.1. Online survey
The 40 participants needed on average 47 min to complete the survey. Eighteen (yips group 17;
nonaffected group: 1) indicated in the online survey having already experienced the yips, meaning
1278
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
Table 3
Scores on the standardized questionnaires.
Psychometric measure
Trait anxiety
Somatic complaints
Movement-specific reinvestment
Decision-specific reinvestment
Perfectionism
Positive stress coping
Negative stress coping
Questionnaire
Scale
WAI-T
SCL-90
MSRS
DSRS
MPS-F
1
0
1
1
1
to
to
to
to
to
4
4
6
5
6
SVF-78
0 to 4
Scale scores
Yips
No yips
2.09 ± 0.42
0.34 ± 0.32
3.16 ± 0.94
2.61 ± 0.72
2.27 ± 0.47
2.02 ± 0.44
1.43 ± 0.72
2.05 ± 0.57
0.27 ± 0.24
3.36 ± 0.78
2.50 ± 0.77
2.30 ± 0.57
2.16 ± 0.49
1.35 ± 0.53
Note. DSRS: Decision-Specific Reinvestment Scale; MPS-F: German version of Frost’s Multidimensional Perfectionism Scale;
MSRS: Movement-specific Reinvestment Scale; SCL-90: subscale of the Symptom Checklist; SVF-78: German Stress-Coping
Questionnaire; WAI-T: German Trait Competition Anxiety Inventory.
that 15% of the yips-affected participants as detected by the pre-test were not aware of being affected
and 5% of the nonaffected participants rated themselves wrongly as yips affected. At the same time,
35% of the nonaffected golfers reported having putting problems unrelated to the yips. One participant
who was formerly affected by the yips did not meet the yips grouping criterion and was consequently
put into the nonaffected group.
3.1.1. Neurological questions
No impairment in the execution of daily activities could be detected within the self-reported yipsaffected golfers. The mean score on the ADDS was 1.03 ± 0.21. None of the participants indicated that
they had to cope with a neurological disorder. One participant in each group reported a family member having hand tremors.
3.1.2. Standardised questionnaires
A one-factorial MANOVA with trait anxiety, perfectionism, movement reinvestment, decision reinvestment, somatic complaints, negative coping strategies, and positive coping strategies as dependent
variables showed no main effect of group on these psychometric measures (Table 3), F(7, 32) = 0.42,
p > .05, gp2 = .083.
3.2. Putting experiment
3.2.1. Manipulation check of pressure condition
A 2 (Group: yips, no yips) 2 (Condition: control, pressure) repeated-measures MANOVA with the
subscales of the WAI-S as dependent variables showed only a significant main effect of group. However, there was no significance on the univariate level because of apparent correlations between the
WAI-S subscales. Only a tendency of an effective pressure manipulation was found, indicated by scores
on the subscales somatic anxiety and concern, but not optimism. An overview of the descriptive statistics of all derived parameters can be seen in Table 4. F values and effect sizes are given in Table 5
and statistical parameters of the planned simple contrasts in Table 6.
3.2.2. Stress level and state anxiety in all conditions
A 2 (Group: yips, no yips) 5 (Condition: control, pressure, one arm, sensory trick, context change)
repeated-measures MANOVA with LF/HF ratio, heart rate, and Anxiety Thermometer as dependent
variables revealed main effects of group and condition, but no interaction effect. Follow-up ANOVAs
of between-subjects effects indicate that the yips-affected group had across all conditions a lower
heart rate (M = 78.4, SE = 2.2) than the nonaffected group (M = 88.3, SE = 2.2). The main effect of condition occurred due to heart rate and the score on the Anxiety Thermometer. Simple contrasts uncovered that heart rate was substantially higher in the pressure condition (M = 85.9, SE = 1.7) and lower in
the one arm putting condition (M = 81.7, SE = 1.6) than in the control condition (M = 83.6, SE = 1.5).
Table 4
Descriptive statistics of parameters derived in the putting experiment.
Measure
Putting condition
Yips
WAI-S
Somatic anxiety
Concern
Optimism
Anxiety Thermometer
ECG
LF/HF ratio [%]
HR [bpm]
EMG
Cocontraction right
Cocontraction left
FCR right [%MVC]
ECR right [%MVC]
BB right [%MVC]
FCR left [%MVC]
ECR left [%MVC]
BB left [%MVC]
Kinematics (impact)
Velocity SD [mm/s]
Acceleration SD [m/s2]
Face angle SD [°]
Pressure
No yips
Yips
One arm
No yips
Yips
Sensory trick
No yips
Yips
Context change
No yips
Yips
No yips
1.4 ± 0.5
1.4 ± 0.5
2.8 ± 0.6
3.0 ± 1.4
1.3 ± 0.4
1.5 ± 0.5
3.0 ± 0.6
3.0 ± 1.8
1.6 ± 0.4
1.6 ± 0.5
2.7 ± 0.6
4.0 ± 1.4
1.4 ± 0.4
1.7 ± 0.6
2.8 ± 0.7
4.1 ± 2.3
3.9 ± 1.5
3.4 ± 1.7
2.8 ± 1.3
2.9 ± 1.4
3.1 ± 1.5
3.7 ± 1.8
5.69 ± 4.43
78.3 ± 7.7
6.45 ± 4.55
88.9 ± 11.3
4.00 ± 2.75
80.5 ± 9.8
7 .08 ± 6.18
91.3 ± 11.8
7.21 ± 6.18
76.9 ± 8.5
6.98 ± 5.54
86.5 ± 11.0
6.20 ± 6.29
78.2 ± 9.1
6.07 ± 4.00
87.8 ± 11.1
6.85 ± 6.13
78.1 ± 8.8
5.39 ± 4.47
86.8 ± 10.8
1.44 ± 1.23
1.00 ± 0.45
13.8 ± 11.0
9.6 ± 3.8
4.4 ± 2.3
12.0 ± 4.2
12.8 ± 4.5
9.5 ± 4.6
1.31 ± 1.03
1.07 ± 0.49
9.6 ± 7.3
8.3 ± 3.4
4.0 ± 2.3
12.8 ± 6.7
12.2 ± 4.6
7.8 ± 3.1
1.24 ± 0.94
0.96 ± 0.51
13.3 ± 10.4
10.2 ± 4.8
5.8 ± 3.9
15.6 ± 13.9
17.3 ± 12.2
12.4 ± 11.5
1.20 ± 0.94
1.15 ± 0.64
9.1 ± 7.4
8.3 ± 3.3
4.1 ± 2.6
13.7 ± 8.2
12.7 ± 5.2
8.5 ± 3.8
1.11 ± 1.05
1.01 ± 0.51
15.0 ± 12.2
14.2 ± 4.6
5.4 ± 3.0
5.7 ± 3.0
7.0 ± 4.7
4.5 ± 2.6
0.93 ± 0.51
1.04 ± 0.28
11.3 ± 6.8
13.3 ± 5.2
4.6 ± 2.4
4.3 ± 2.3
6.6 ± 8.9
2.5 ± 1.4
1.22 ± 1.13
1.00 ± 0.51
15.0 ± 14.7
10.4 ± 6.3
5.8 ± 3.9
12.8 ± 7.5
13.3 ± 7.6
9.1 ± 5.7
1.22 ± 0.89
1.16 ± 0.57
9.8 ± 6.7
8.7 ± 3.1
3.9 ± 2.2
13.7 ± 7.7
12.2 ± 4.2
8.4 ± 3.4
1.31 ± 0.93
1.03 ± 0.47
16.0 ± 12.8
11.8 ± 5.6
5.1 ± 3.0
15.0 ± 7.7
14.7 ± 6.1
11.1 ± 6.1
1.26 ± 1.00
1.22 ± 0.64
12.9 ± 9.0
11.8 ± 5.0
4.6 ± 2.9
17.0 ± 10.2
14.9 ± 6.4
10.6 ± 4.5
68.3 ± 32.1
2.00 ± 1.31
1.35 ± 1.00
65.8 ± 18.1
1.29 ± 0.76
0.87 ± 0.30
75.6 ± 28.5
1.89 ± 1.05
1.14 ± 0.46
62.2 ± 16.2
1.21 ± 0.95
1.00 ± 0.26
144.0 ± 81.9
3.76 ± 2.54
5.45 ± 4.12
66.9 ± 23.0
1.44 ± 0.86
1.51 ± 0.45
73.1 ± 28.6
1.96 ± 1.17
1.26 ± 0.58
60.3 ± 14.6
1.37 ± 1.06
0.86 ± 0.25
135.4 ± 43.7
4.15 ± 2.09
1.14 ± 0.38
125.5 ± 36.0
3.96 ± 2.08
1.03 ± 0.30
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
Control
Note. BB: biceps brachii; bpm: beats per minute; ECG: electrocardiography; ECR: extensor carpi radialis; EMG: electrocardiography; FCR: flexor carpi radialis; HR: heart rate; LF/HF: low
frequency/high frequency; MVC: maximum voluntary contraction; WAI-S: German State Competition Anxiety Inventory.
1279
1280
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
Table 5
F values and effect sizes of multivariate and univariate statistics.
Source
F
df, df error
gp 2
Manipulation check of pressure condition
Group
Conditiona
Somatic anxiety
Concern
Optimism
Conditiona Group
4.32*
2.74
5.54*
7.49**
1.92
0.11
3,
3,
1,
1,
1,
3,
.265
.186
.127
.165
.048
.009
Stress level and state anxiety in all conditions
Group
LF/HF ratio
Heart rate
Anxiety Thermometer
Conditionb
LF/HF ratio
Heart rate
Anxiety Thermometer
Conditionb Group
3.37*
0.11
10.06**
0.04
7.70***
0.89
18.10***
8.65***
1.66
3, 36
1, 38
1, 38
1, 38
12, 456
4, 152
2.957, 112.359
4, 152
12, 456
.219
.003
.209
.001
.168
.023
.324
.185
.042
Putting performance
Group
Conditionb
Holed putts
Distance
Conditionb Group
Holed putts
Distance
0.82
6.19***
6.58***
6.66**
5.74***
4.49**
8.29***
2, 37
8, 304
4, 152
2.437, 92.589
8, 304
4, 152
2.437, 92.589
.043
.140
.148
.149
.131
.106
.179
Muscle activity
Group
Conditionb
FCR right
ECR right
BB right
FCR left
ECR left
BB left
Conditionb Group
1.00
6.02***
2.46
20.94***
1.19
19.70***
14.42***
21.12***
0.76
6, 33
24, 600
3.029, 115.119
2.565, 97.456
2.260, 85.894
2.302, 87.488
2.578, 97.979
1.786, 67.886
24, 600
.154
.194
.061
.355
.030
.341
.275
.357
.030
Cocontraction
Group
Conditionb
Cocontraction right
Cocontraction left
Conditionb Group
0.64
2.40*
4.16*
0.87
0.47
2, 37
8, 304
2.554, 97.051
2.104, 79.945
8, 304
.033
.059
.099
.022
.012
Kinematics
Group
Velocity SD
Acceleration SD
Face angle SD
Rotation SD
Conditionb
Velocity SD
Acceleration SD
Face angle SD
Rotation SD
Conditionb Group
Velocity SD
Acceleration SD
Face angle SD
Rotation SD
6.37**
8.53**
8.18**
18.07***
24.89***
15.68***
35.79***
28.43***
28.49***
34.47***
3.14**
9.91***
4.21*
16.61***
22.54***
4, 35
1, 38
1, 38
1, 38
1, 38
16, 608
2.151, 81.745
2.290, 87.035
1.091, 41.463
1.034, 39.274
16, 608
2.151, 81.745
2.290, 87.035
1.091, 41.463
1.034, 39.274
.421
.180
.177
.322
.396
.290
.485
.428
.429
.476
.103
.207
.100
.304
.372
36
36
38
38
38
36
Note. BB: biceps brachii; ECR: extensor carpi radialis; FCR: flexor carpi radialis; LF/HF:low frequency/high frequency.
a
Control and pressure condition.
b
Control, pressure, one-arm, sensory-trick, and context-change condition.
*
p < .05.
**
p < .01.
***
p < .001.
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
1281
Table 6
F values and effect sizes of planned simple contrasts.
F
gp 2
Stress level and state anxiety in all conditions
Heart rate
Condition
Pressure
Condition
One arm
24.74***
27.91***
.394
.423
Anxiety Thermometer
Condition
Condition
Pressure
One arm
22.84***
9.17**
.375
.194
One arm
Context change
One arm
9.70**
11.29**
8.13**
.203
.229
.176
One arm
One arm
9.64**
15.05***
.202
.284
One arm
Context change
84.80***
22.74***
.691
.374
One arm
Context change
96.02***
13.00**
.716
.255
One arm
Context change
24.98***
10.78**
.397
.221
One arm
Context change
109.36***
12.03**
.742
.240
One arm
7.474**
.164
One arm
Context change
One arm
21.94***
95.25***
20.79***
.366
.715
.354
One arm
Context change
One arm
9.48**
69.54***
6.66*
.200
.647
.149
One arm
One arm
33.44***
17.92***
.468
.320
One arm
One arm
Context change
37.05***
23.23***
7.05*
.494
.379
.156
Source
Putting performance
Holed putts
Condition
Condition
Condition Group
Distance of missed putts
Condition
Condition Group
Muscle activity
ECR right
Condition
Condition
FCR left
Condition
Condition
ECR left
Condition
Condition
BB left
Condition
Condition
Cocontraction
Cocontraction right
Condition
Kinematics
Velocity SD
Condition
Condition
Condition Group
Acceleration SD
Condition
Condition
Condition Group
Face angle SD
Condition
Condition Group
Rotation SD
Condition
Condition Group
Condition Group
Condition vs. Control
Note. df, df error = 1, 38. BB: biceps brachii; ECR: extensor carpi radialis; FCR: flexor carpi radialis.
p < .05.
p < .01.
***
p < .001.
*
**
The scores on the Anxiety Thermometer were significantly higher in the pressure (M = 4.0, SE = 0.26)
and the one arm putting (M = 3.6, SE = 0.30) conditions than in the control condition (M = 3.0,
SE = 0.26).
70
140
60
120
50
100
40
80
30
60
20
40
10
20
0
Distance of Missed Putt [cm]
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
Holed Putts [%]
1282
Holed - Yips
Holed - No Yips
Distance - Yips
Distance - No Yips
0
Control
Pressure
One Arm
Sensory
Trick
Context
Change
Putting Condition
Fig. 1. Putting performance of the two groups in the different putting conditions.
3.2.3. Putting performance
A 2 (Group) 5 (Condition) repeated-measures MANOVA with number of holed putts and distance
of missed putts from hole as dependent variables showed no main effect of group but a significant
main effect of condition as well as a significant interaction effect. A more detailed inspection of the
variables uncovered that these significant effects can be seen in both the holed putts and the distance
parameter. The participants holed substantially fewer putts in the one arm (M = 45.7, SE = 3.7) and
context change (M = 45.7, SE = 2.4) conditions than in the control condition (M = 57.5, SE = 2.4). They
also missed the hole with a larger distance in the one-arm condition (M = 29.1, SE = 3.1) compared to
the control condition (M = 20.3, SE = 2.1). The yips group holed significantly fewer putts compared to
the nonaffected group in the one-arm condition and missed the hole with a larger distance at the same
time (Fig. 1).
3.2.4. Electromyography
A 2 (Group) 5 (Condition) repeated-measures MANOVA with relative RMSs of six muscles as
dependent variables indicated a significant main effect of condition only. Univariate tests showed a
highly significant effect of condition in all tested muscles of the left arm and in the right ECR. The participants had lower muscle activity in all tested muscles of the left arm in the one-arm condition compared to the control condition. In contrast, they had higher muscle activity in these muscles in the
context change condition. Higher muscle activity was also observed in the right ECR in the one arm
(M = 13.8, SE = 0.77) and the context change (M = 11.8, SE = 0.84) conditions than in the control condition (M = 9.0, SE = 0.57). A 2 (Group) 5 (Condition) repeated-measures MANOVA with the indices for
cocontraction for the left and right arm signalled only a main effect of condition. The cocontraction
index of the right arm was substantially lower in the one-arm condition (M = 1.02, SE = 0.13) than
in the control condition (M = 1.4, SE = 0.18).
3.2.5. Kinematics
A 2 (Group) 5 (Condition) repeated-measures MANOVA with the standard deviations of face angle, rotation, velocity, acceleration as dependent variables exhibited significant main effects of group
and condition, and an interaction effect. All four kinematic parameters showed their contribution to
these effects on the univariate level. Yips-affected participants had across all putting conditions higher
values than nonaffected participants. The increase in inconsistency was larger for yips-affected participants than for nonaffected participants when the one-arm condition was compared to the control
condition. Fig. 2 shows descriptive statistics for impact rotation standard deviation. Whereas the
1283
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
Impact Rotation SD [ /s]
160
140
120
100
80
60
Yips
40
No Yips
20
0
Control
Pressure
One Arm
Sensory
Trick
Context
Change
Putting Condition
Fig. 2. Inconsistency in rotation during impact.
inconsistency in rotation decreased from the control to the context change condition for affected participants, the opposite was apparent for the nonaffected participants. Considering all participants,
higher values of all four kinematic parameters occurred in the one-arm condition than in the control
condition. They also showed higher inconsistency in impact velocity and acceleration in the context
change condition.
4. Discussion
The goal of this study was to find sensitive methods to detect the yips independent of its aetiology.
A range of different methods, which can be classified as psychometric, behavioral, and physiological
measurements, were applied to find differences between yips-affected and nonaffected golfers. The
online survey asked for self-reports, neurological symptoms, and psychometric measures via standardised questionnaires. First, without the grouping criterion based on the one-arm putting test before
the actual experiment, 15% of the yips-affected golfers would have been wrongly assigned to the nonaffected group. Results of previous studies using only self-reports for yips grouping might be subsequently interpreted with caution (Adler et al., 2005; McDaniel et al., 1989; Sachdev, 1992; Smith
et al., 2000; Stinear et al., 2006). There are several reasons why some yips-affected golfers might
not be aware of being affected: The symptoms can be subtle, or these golfers might have poor body
perception. Alternatively, these golfers might not know much about the yips and explain their putting
problems by just bad putting technique or low skill ability.
The classification of the yips as a focal dystonia was not supported by this study; the neurological
items in the online survey, including the ADDS, questions about other neurological disorders, and family history, did not indicate a neurological basis of the yips in our sample. The sensory trick putting
condition did not show any effect. Originally, it was assumed that the sensory trick would cause a
temporal absence of the yips symptoms and that cocontractions would appear in yips-affected golfers
as typical signs of focal dystonia (Albanese & Lalli, 2009). We consequently assume that our sample
consisted mostly of golfers affected with the yips of no neurological origin. A more detailed neurological examination might have uncovered some cases.
Psychometric measures that characterize yips-affected golfers and separate them from the nonaffected golfers were not found in this study. The two groups did not differ in anxiety, perfectionism,
movement or decision reinvestment, somatic complaints, or stress-coping strategies, in contrast to results of previous studies (McDaniel et al., 1989; Rotheram et al., 2007). Many reasons for finding no
results in the present study are conceivable: First, our sample probably differs from those in previous
studies because of different yips grouping criteria. Second, various yips aetiologies in the sample
might confound the results. Third, psychometric measures could be not sensitive enough to diagnose
the yips.
1284
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
In the putting experiment, participants had to putt in a control, pressure, one-arm, sensory-trick,
and context-change condition. The pressure manipulation was effective according to the Anxiety Thermometer and heart rate and tendentially according to the WAI-S, but not in regards to the indicator of
mental stress, the LF/HF ratio. Typical pressure effects such as detriments in putting performance,
higher muscle activation, and changes in kinematics were observed (Cooke, Kavussanu, McIntyre, &
Ring, 2010). The feedback interviews suggested that the applied stressors might have confounded
themselves. For instance, the monotonous booing of the audience might have distracted the participants from the monetary incentive. This effect could be similar to music, which was previously used
as an intervention to reduce self-awareness in choking-susceptible athletes (Mesagno et al., 2009).
To interpret the results appropriately, it is also important to know the general differences between
the putting conditions and the control condition. For instance, the one-arm condition was characterized by lower putting performance, more inconsistent execution, lower muscle activity of the left arm,
lower heart rate, and higher state anxiety as measured by the Anxiety Thermometer. Furthermore,
activation of the right ECR was higher, leading to a lower cocontraction index. It approached the value
of an equal activation of the flexors and extensors. The sensory-trick condition did not differ from the
control condition in any estimated parameter. The context-change condition was described by lower
putting performance, measured by the number of holed putts, and higher inconsistency in speed-related kinematic parameters. Future investigations using these conditions should be aware of these
differences.
We searched for sensitive methods for distinguishing the yips-affected from the nonaffected group.
Both performance parameters, that is, number of holed putts and distance of missed putts to the hole,
and all four kinematic parameters could separate the groups in the one-arm putting condition. Smith
et al. (2000) also found this putting performance effect, but when the groups putted normally with
both arms. Kinematic parameters such as rotation SD and face angle SD at impact have been previously
reported to be sensitive methods for differentiating between yips-affected and nonaffected golfers
(Marquardt & Fischer, 2008). In contrast to results in this study, impact velocity SD and acceleration
SD were also able to separate the groups, indicating that the yips affects both the control of direction
and the control of speed. Moreover, in contrast to the nonaffected golfers, yips-affected golfers showed
an increase in stability with respect to the impact rotation when putting with the unihockey racket.
This might be an indicator of the yips being very task specific and disappearing when changes are
made to the putting context (Marquardt, 2009). Against expectations, none of the other parameters
and conditions could distinguish between yips-affected golfers and nonaffected golfers, possibly because they did not have this feature.
As an alternative explanation, the participants might have been able to compensate for the yips in
the other putting conditions with the nonaffected arm, the use of their individual putter, and their preferred putting style. Muscle activity and the cocontraction ratio did not distinguish the groups, contradicting previous studies that detected greater forearm muscle activity either in general (Smith
et al., 2000) or in the forearm extensors of the nondominant putting arm (Stinear et al., 2006). The
appearance of cocontraction has been shown for a few yips-affected golfers before (Adler et al.,
2005, 2011) but could not been confirmed in this study, possibly because different ways of estimating
cocontraction were used. In the present study the ratio of the flexor and extensor forearm activity was
used. Previous studies (Adler et al., 2005, 2011) defined a cocontraction as the appearance of phasic
peaks of extensor and flexor forearm muscles within 50 ms, estimated via a subjective and uneconomic procedure. Subjective anxiety rating (Anxiety Thermometer) and stress level parameters (HR,
LF/HF ratio) also could not distinguish the two groups in any putting condition. Instead, HR was lower
for the yips group across all conditions, probably because more members in the yips group regularly
took beta blocker medication, which lowers blood pressure.
The present study has some limitations that should be considered in future investigations.
Although the grouping criterion was not based on self-reports as it was in previous studies, the chosen
criterion relying on a pre-test was not an optimal solution. The first author was trained to judge obvious twists and jerks before the ball was hit during the execution of a one-handed putt. Future investigations should implement an even more objective criterion such as relying on kinematic data to
improve the accuracy of the separation between yips-affected and nonaffected golfers. Moreover, letting the participants putt with their usual putter and grip style could have helped them to compensate
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
1285
for the yips symptoms. The sample size was limited to 40 participants for practical reasons, which
might have led to lower power of the psychometric measures. Future studies on psychometric measures of yips-affected golfers are encouraged to use a larger sample size. Although the questionnaires
were randomly presented in the online survey, the long period needed to fill in the survey could have
resulted in fatigue, which could have confounded the scores of the participants in the psychometric
measures. Finally, future studies explaining the yips by the reinvestment theory could only include
skilled participants, who could suffer from the detrimental effect of the attempt to consciously control
the own movement.
5. Conclusions
Many different methods have been used to detect the yips in golf. Estimation of putting performance and putter kinematics while the golfer putts with the dominant arm have been found to be sensitive to detect the yips. Future investigations of the yips should use such tests as a foundation to
increase the validity of the yips diagnosis before actual manipulation of the golfers, such as with sensory tricks or intervention. Progress in understanding the yips phenomenon relies on such a standardized screening test. As a next step, future studies should focus on finding a way to distinguish yipsaffected golfers by their aetiologies to be able to subsequently test aetiology-dependent interventions.
Acknowledgments
This work was funded by the German Research Foundation (DFG) and is part of a larger project
called ‘‘Focal Dystonia in Musicians and Athletes’’. The authors would like to thank Alice Heinrich
and Dr. Wolfgang Engel for data collection and Dr. Thomas Heinen for assistance in setting up the
experiment. Many thanks to Philipp Philippen and Bernd Gerland for their advisory support. The
authors also appreciate the insightful comments and discussions of the whole group at the Department of Performance Psychology.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in the online version, at http://
dx.doi.org/10.1016/j.humov.2013.04.004.
References
Abbruzzese, G., & Berardelli, A. (2003). Sensorimotor integration in movement disorders. Movement Disorders, 18, 231–240.
Adler, C. H., Crews, D., Hentz, J. G., Smith, A. M., & Caviness, J. N. (2005). Abnormal co-contraction in yips-affected but not
unaffected golfers: Evidence for focal dystonia. Neurology, 64, 1813–1814.
Adler, C. H., Crews, D., Kahol, K., Santello, M., Noble, B., Hentz, J. G., et al (2011). Are the yips a task-specific dystonia or golfer’s
cramp? Movement Disorders, 26, 1993–1996.
Albanese, A., & Lalli, S. (2009). Is this dystonia? Movement Disorders, 24, 1725–1731.
Altenmüller, E. (2003). Focal dystonia: Advances in brain imaging and understanding of fine motor control in musicians. Hand
Clinics, 19, 523–538.
Altenmüller, E., & Jabusch, H.-C. (2009). Focal hand dystonia in musicians: Phenomenology, etiology, and psychological trigger
factors. Journal of Hand Therapy, 22, 144–155.
Altstötter-Gleich, C., & Bergemann, N. (2006). Testgüte einer deutschsprachigen Version der mehrdimensionalen
Perfektionism-Skala von Frost, Marten, Lahart und Rosenblate (MPS-F). Diagnostica, 52, 105–118.
Bakker, F. C., Vanden Auweele, Y., & van Mele, V. (2003). Manual for the Dutch version of the sport competition anxiety test (SCAT)
and the Dutch version of the competitive state anxiety inventory-2 (CSAI-2). Leuven, Belgium: Acco.
Baumeister, R. F. (1984). Choking under pressure—Self-consciousness and paradoxical effects of incentives on skillful
performance. Journal of Personality and Social Psychology, 46, 610–620.
Bawden, M., & Maynard, I. (2001). Towards an understanding of the personal experience of the yips in cricketers. Journal of
Sports Sciences, 19, 937–953.
Brand, R., Ehrlenspiel, F., & Graf, K. (2009). Das Wettkampfangst-Inventar (WAI). Manual zur komprehensiven Eingangsdiagnostik
von Wettkampfangst, Wettkampfängstlichkeit und Angstbewältigungsmodus im Sport. Bonn, Germany: Bundesinstitut für
Sportwissenschaften.
Burke, R. E., Fahn, S., Marsden, C. D., Bressman, S. B., Moskowitz, C., & Friedman, J. (1985). Validity and reliability of a rating scale
for the primary torsion dystonias. Neurology, 35, 73–77.
1286
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
Cooke, A., Kavussanu, M., McIntyre, D., & Ring, C. (2010). Psychological, muscular and kinematic factors mediate performance
under pressure. Psychophysiology, 47, 1109–1118.
Derogatis, L. R., Lipman, R. S., & Covi, L. (1973). The SCL-90: An outpatient psychiatric rating scale. Psychopharmacology Bulletin,
9, 13–28.
Ehrlenspiel, F., Brand, R., & Graf, K. (2009). Fragebogen zum Wettkampferleben [WAI-S]. In R. Brand, F. Ehrlenspiel, & K. Graf
(Eds.), Das Wettkampfangst-Inventar (WAI). Manual zur komprehensiven Eingangsdiagnostik von Wettkampfangst,
Wettkampfängstlichkeit und Angstbewältigungsmodus im Sport (pp. 98–99). Bonn, Germany: Bundesinstitut für
Sportwissenschaften.
Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & Emotion, 6,
409–434.
Fukuda, H., Kusumi, M., & Nakashima, K. (2006). Epidemiology of primary focal dystonias in the western area of Tottori
Prefecture in Japan: Comparison with prevalence evaluated in 1993. Movement Disorders, 21, 1503–1506.
Gucciardi, D. F., Longbottom, J. L., Jackson, B., & Dimmock, J. A. (2010). Experienced golfers’ perspectives on choking under
pressure. Journal of Sport & Exercise Psychology, 32, 61–83.
Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., et al (1999). European recommendations for surface
electromyography. Enschede, The Netherlands: Roessingh Research and Development.
Hill, D. M., Hanton, S., Fleming, S., & Matthews, N. (2009). A re-examination of choking in sport. European Journal of Sport Science,
9, 203–212.
Hill, D. M., Hanton, S., Matthews, N., & Fleming, S. (2010). Choking in sport: A review. International Review of Sport and Exercise
Psychology, 3, 24–39.
Houtman, I. L. D., & Bakker, F. C. (1989). The anxiety thermometer: A validation study. Journal of Personality Assessment, 53,
575–582.
Janke, W., & Erdmann, G. (2008). SVF-Stressverarbeitungsfragebogen (4th ed.). Göttingen, Germany: Hogrefe.
Karlsen, J., Smith, G., & Nilsson, J. (2008). The stroke has only a minor influence on direction consistency in golf putting among
elite players. Journal of Sports Sciences, 26, 243–250.
Laborde, S., Brüll, A., Weber, J., & Anders, L. S. (2011). Trait emotional intelligence in sports: A protective role against stress
through heart rate variability? Personality and Individual Differences, 51, 23–27.
Laborde, S., Musculus, L., Kalicinski, M., Klämpfl, M. K., & Lobinger, B. H. (2013). Understanding further reinvestment: convergent,
discriminant, and criterion validity using psychometric and behavioral measures. Manuscript submitted for publication.
Lagueny, A., Burbaud, P., Dubos, J. L., le Masson, G., Guelh, D., Macia, F., et al (2002). Freezing of shoulder flexion impeding boule
throwing: A form of task-specific focal dystonia in petanque players. Movement Disorders, 17, 1092–1095.
Lazarus, R. S. (1974). Psychological stress and coping in adaptation and illness. International Journal of Psychiatry in Medicine, 5,
321–333.
Le Floch, A., Vidailhet, M., Flamand-Rouviere, C., Grabli, D., Mayer, J. M., Gonce, M., et al (2010). Table tennis dystonia. Movement
Disorders, 25, 394–397.
Lohse, K. R., Sherwood, D. E., & Healy, A. F. (2011). Neuromuscular effects of shifting the focus of attention in a simple force
production task. Journal of Motor Behavior, 43, 173–184.
Marquardt, C. (2007). The SAM PuttLab: Concept and PGA Tour data. International Journal of Sports Science and Coaching, 2,
101–120.
Marquardt, C. (2009). The vicious circle involved in the development of the yips. International Journal of Sports Science and
Coaching, 4, 67–88.
Marquardt, C., & Fischer, M. (2008). Movement kinematics of the golfer’s yips. In D. Crews & L. Rafer (Eds.), Science and golf V:
Proceedings of the World Scientific Congress of Golf (pp. 216–223). Mesa, USA: Energy in Motion.
Masters, R., & Maxwell, J. (2008). The theory of reinvestment. International Review of Sport and Exercise Psychology, 1, 160–183.
Masters, R. S. W. (1992). Knowledge, knerves and know-how: The role of explicit versus implicit knowledge in the breakdown of
a complex motor skill under pressure. British Journal of Psychology, 83, 343–358.
Mayer, F., Topka, H., Boose, A., Horstmann, T., & Dickhuth, H. H. (1999). Bilateral segmental dystonia in a professional tennis
player. Medicine & Science in Sports & Exercise, 31, 1085–1087.
McDaniel, K. D., Cummings, J. L., & Shain, S. (1989). The yips: A focal dystonia of golfers. Neurology, 39, 192–195.
Mesagno, C., Marchant, D., & Morris, T. (2009). Alleviating choking: The sounds of distraction. Journal of Applied Sport Psychology,
21, 131–147.
Mullen, R., & Hardy, L. (2000). State anxiety and motor performance: Testing the conscious processing hypothesis. Journal of
Sports Sciences, 18, 785–799.
Nakahara, H., Furuya, S., Francis, P. R., & Kinoshita, H. (2010). Psycho-physiological responses to expressive piano performance.
International Journal of Psychophysiology, 75, 268–276.
Neumann, D. L., & Thomas, P. R. (2011). Cardiac and respiratory activity and golf putting performance under attentional focus
instructions. Psychology of Sport and Exercise, 12, 451–459.
Nutt, J. G., Muenter, M. D., Aronson, A., Kurland, L. T., & Melton, L. J. (1988). Epidemiology of focal and generalized dystonia in
Rochester, Minnesota. Movement Disorders, 3, 188–194.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.
Oudejans, R. R. D., & Pijpers, J. R. (2010). Training with mild anxiety may prevent choking under higher levels of anxiety.
Psychology of Sport and Exercise, 11, 44–50.
Philippen, P. B., Klämpfl, M. K., & Lobinger, B. H. (2012). Prevalence of the yips in golf across the entire skill range. Manuscript
submitted for publication.
Philippen, P. B., & Lobinger, B. H. (2012). Understanding yips in golf: Thoughts, feelings, and focus of attention in yips-affected
golfers. The Sport Psychologist, 26, 325–340.
Pont-Sunyer, C., Martí, M. J., & Tolosa, E. (2010). Focal limb dystonia. European Journal of Neurology, 17, 22–27.
Rosenkranz, K., Butler, K., Williamon, A., Cordivari, C., Lees, A. J., & Rothwell, J. C. (2008). Sensorimotor reorganization by
proprioceptive training in musician’s dystonia and writer’s cramp. Neurology, 70, 304–315.
M.K. Klämpfl et al. / Human Movement Science 32 (2013) 1270–1287
1287
Rotheram, M., Maynard, I., Thomas, O., & Bawden, M. (2007). To yip or not to yip, that is the question. Journal of Sports Sciences,
25(Suppl. 2), S5–S6.
Sachdev, P. (1992). Golfers’ cramp: Clinical characteristics and evidence against it being an anxiety disorder. Movement
Disorders, 7, 326–332.
Schmidt, A., Jabusch, H. C., Altenmüller, E., Hagenah, J., Brüggemann, N., Lohmann, K., et al (2009). Etiology of musician’s
dystonia: Familial or environmental? Neurology, 72, 1248–1254.
Sitburana, O., & Ondo, W. G. (2008). Task-specific focal hand dystonia in a professional pistol-shooter. Clinical Neurology and
Neurosurgery, 110, 423–424.
Smith, A. M., Adler, C. H., Crews, D., Wharen, R. E., Laskowski, E. R., Barnes, K., et al (2003). The yips in golf: A continuum between
a focal dystonia and choking. Sports Medicine, 33, 13–31.
Smith, A. M., Malo, S. A., Laskowski, E. R., Sabick, M., Cooney, W. P. I. I. I., Finnie, S. B., et al (2000). A multidisciplinary study of the
yips phenomenon in golf: An exploratory analysis. Sports Medicine, 30, 423–437.
Stinear, C. M., Coxon, J. P., Fleming, M. K., Lim, V. K., Prapavessis, H., & Byblow, W. D. (2006). The yips in golf: Multimodal
evidence for two subtypes. Medicine and Science in Sports and Exercise, 38, 1980–1989.
Tinazzi, M., Rosso, T., & Fiaschi, A. (2003). Role of the somatosensory system in primary dystonia. Movement Disorders, 18,
605–622.
Torres-Russotto, D., & Perlmutter, J. S. (2008). Task-specific dystonias. A review. Annals of the New York Academy of Sciences,
1142, 179–199.
Wang, J., Marchant, D., Morris, T., & Gibbs, P. (2004). Self-consciousness and trait anxiety as predictors of choking in sport.
Journal of Science and Medicine in Sport, 7, 174–185.
Wilcox, R. (2005). Trimming and Winsorization. In P. Armitage & T. Colton (Eds.), Encyclopedia of biostatistics (2nd ed..
Chichester, UK: Wiley.