Document 6520963
Transcription
Document 6520963
٩٠٥٧٢١ א א Outline א א א א aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan א א א א Lecture 05 Independent Variables V and T א . aalmatar@ju.edu.jo Why use V-T instead of P-T. Pressure effect on S and U. Derivation of thermodynamic properties. Required information. The pure component limit. Transforming to density dependence. Deriving fugacity for vdW EOS. Analysis of EOS capabilities. Phase equilibrium from volumetric properties. Adv. Thermo -Lecture 05: V-T Specified Why use V-T instead of P-T? Pressure Effects At a constant temperature and composition, we can The P-T description is the most natural. (EOS) are P-explicit. Consequently, it is more convenient to use V-T description instead of P-T description. 3 aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan However, the majority of equations of state Adv. Thermo -Lecture 05: V-T Specified 2 use one of Maxwell relations to obtain the effect of volume on entropy and entropy. ∂P dU = T − P dV ∂T V , nT (5-1) ∂P dS = dV ∂T V , nT (5-2) From the entropy and energy we can obtain by simple integration all other relevant thermodynamic properties Adv. Thermo -Lecture 05: V-T Specified 4 1 Thermodynamic Properties Required Information (5-3) m ∂P 0 H = ∫ P − T dV + PV + ∑ ni ui ∂T V ,nT i =1 V (5-4) ∞ n R ∂P V + ∑ ni si0 S = ∫ T − dV + R ∑ ni ln ni RT i =1 ∂T V ,nT i =1 V V ∞ m m (5-5) ∞ m m n RT V + ∑ ni (ui0 − Tsi0 ) A = ∫ P − T dV − RT ∑ ni ln V n RT i =1 V i i =1 (5-6) ∞ m m n RT V G = ∫ P − T dV − RT ∑ ni ln + PV + ∑ ni (ui0 − Tsi0 ) V ni RT i =1 i =1 V ∞ ∂P RT V dV − RT ln − + RT + ui0 − Tsi0 V ni RT ∂n i T ,V ,ni≠ j (5-7) µ i = ∫ (5-8) ∞ ∂P RT dV − RT ln z RT ln φi = ∫ − V ∂ni T ,V ,n V i≠ j (5-9) V Adv. Thermo -Lecture 05: V-T Specified aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan ∞ m ∂P 0 U = ∫ P − T dV + ∑ ni ui ∂T V ,nT i =1 V Volumetric behavior in the form of an equation of state that is P-explicitP = P(T ,V , n) (5-10) In the P-T case we ended up requiring the partial molar volume. In the V-T case, we end up requiring ∂P which is not a partial molar ∂n quantity! T ,V , ni ≠ j 6 Transforming to Density: Prelude For a pure component the fugacity coefficient It is desirable to work in terms of density (specific (5-11) Notice that this is not a convenient form compared to the expression obtained from the P-T description. P (4-12) aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan is given by: Adv. Thermo -Lecture 05: V-T Specified Adv. Thermo -Lecture 05: V-T Specified Pure Component Limit RT f RT ln φi = RT ln dP = ∫ vi − P P pure i 0 thermodynamic properties require the availability of volumetric behavior i 5 ∞ P RT f RT ln = ∫ − dV − RT ln z + RT ( z − 1) P P pure i V ni All the equations obtained for the volume) instead of the total volume of the mixture. We carry out the transformation procedure to end up with expressions containing derivatives instead of integrals for the fugacity Derivatives are easier than integrals. Not all functions are analytically integrable. To utilize this transformation, we need to have a model for the Helmholtz free energy as a function of temperature, pressure and density, A=A(T,ρ,x). D. Dimitrelis, and J. M. Prausnitz, 1986, Fluid Phase Equilibria, 31: 1. R. J. D. Topliss, D. Dimitrelis, and J. M. Prausnitz, 1988, Computers and Chemical Engineering, 12: 483. 7 Adv. Thermo -Lecture 05: V-T Specified 8 2 Transforming to Density: Definitions Start with the definition of the compressibility z= P ( ρ , T , x) ρ RT (5-12) Define the reduced molar residual Helmholtz energy ρ A − AIG Ar z ( ρ , T , x) − 1 A = dρ = = ρ nT RT nT RT ∫0 (5-13) Adv. Thermo -Lecture 05: V-T Specified aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan factor for a mixture as a function of the mole (mass) fraction vector, temperature, and pressure 9 (5-14) 10 Application: vdW EOS-Differentiation (5-15) The derivative of the residual Helmholtz free energy with respect to the number of moles of component i is (5-16) 11 aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan coefficient of component i becomes Adv. Thermo -Lecture 05: V-T Specified DA DA = Dxi ρ ,T , x j Dxi ρ ,T , xi ≠ x j Find an expression for the fugacity coefficient for the The associated expression for the fugacity m ∂ (nT A ) DA DA = A + − ∑ xj Dxi ρ ,T , x j j =1 Dxi ρ ,T , xi ∂ni ρ ,T ,ni≠ j indicates that differentiation is carried out with respect to xi while all other xj are held constant. Adv. Thermo -Lecture 05: V-T Specified Transforming to Density: Derivation ∂ (n A ) + ( z − 1) − ln z ln φi = T ∂ni ρ ,T ,ni≠ j Define the differential operator D, which van der Waal’s equation of state. RT a − P= v − b v2 Transform the EOS from molar to total basis P= (5-17) nT RT n2 a − T V − nT b V 2 Differentiate the transformed EOS w.r.t. the number of moles of component ni: ∂P RT = + ∂ni T ,V ,n j V − nT b Adv. Thermo -Lecture 05: V-T Specified ∂(nT b) nT RT ∂ni T ,V ,n j (V − nT b)2 − 1 ∂ (nT2 a ) V 2 ∂ni T ,V ,n j 12 3 Application: vdW EOS-Integration Application: vdW EOS-Mixing Rules ∞ ∂(nT b) V − nT b 1 − nT RT V V ∂ni T ,V ,n j V − nT b V ∞ RT ln φi = RT ln ∞ ∂ (nT2 a) 1 − RT ln z + ∂ni T ,V ,n j V V Apply the integration limits RT ln φi = RT ln ∂ (nT b) V 1 + nT RT V − nT b ∂ni T ,V ,n V − nT b j ∂(nT2 a ) 1 − − RT ln z ∂ni T ,V ,n j V aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan Substitute in the fugacity expression (Eq. 5-9) and carry out the integration Adv. Thermo -Lecture 05: V-T Specified vRT − ln z (5-18) 15 aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan m j =1 m i =1 The b term can be interpreted as a term proportional to the strength of attraction between two molecules. m m 14 Application: Analysis Substitute the derivative of mixing rules in the fugacity expression to obtain the final form of the fugacity coefficient for the vdW EOS fi b v = ln + i − yi P v −b v −b m i =1 b1/ 3 = ∑ yi bi1/ 3 vs. b = ∑ yi bi Adv. Thermo -Lecture 05: V-T Specified Application: vdW EOS-Final Form ln φi = ln The b term can be interpreted as a term proportional to the size of the molecule. Under the assumption of molecules being spherical i =1 j =1 13 2ai1/ 2 ∑ y j a1/j 2 a = ∑∑ yi y j aij , and aij = (aii a jj )1/ 2 Adv. Thermo -Lecture 05: V-T Specified To proceed further we need to specify the composition dependence of the parameters a and b (mixing rules). To calculate φ(T,P,x) in a mixture Compute the constants a, and b for the mixture using any proper mixing rule. Using the constants a, and b and the EOS, find the molar volume v of the mixture using Analytical roots of the cubic equation, or Numerical solutions. Calculate the compressibility factor z from the given T, and P and the calculated v. Find the fugacity f or φ from the proper expression (Eq. 5-18 for vdW EOS). Adv. Thermo -Lecture 05: V-T Specified 16 4 Phase Equilibrium Which EOS? There are literally hundreds, if not thousands, of EOS Adv. Thermo -Lecture 05: V-T Specified The conditions for equilibria requires, thermal, aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan in the literature. A rule of thumb says that the more complicated in form an EOS is, and the more constants it contains, the better it represents the PVT behavior of a pure substance. However, to predict the behavior of mixtures from pure component data alone, the more constants and mixing rules which are subject to much uncertainty are involved in the computations. Consequently, it happens that the use of simple EOS (e.g. Cubic) performs better than multi-parameter, complicated EOS. 17 mechanical and chemical equilibrium to be established among different phases. T (1) = T (2) = " = T (π ) P (1) = P ( 2) = " = P (π ) (3.17) f i (1) = f i ( 2) = " = f i (π ) , i = 1," , m Usually, we specify T and P, which leaves us with finding a logical systematic way to find the fugacities of each component in every phase. Adv. Thermo -Lecture 05: V-T Specified 18 Concept Summary Framework to (Fluid) Phase equilibria Introduce the independent variables (T,V) and understand their significance. A framework for the solutions to the phase equilibria Derive pressure effects on thermodynamic entropy and energy, and Equilibrium conditions, An equation of state. An expression for the fugacity of species in any phase. The fundamental difficulty is that we do not have an EOS that is: applicable to mixtures, and performs satisfactorily from zero density (ideal gas limit) to liquid densities. Adv. Thermo -Lecture 05: V-T Specified 19 aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan aalmatar@ju.edu.jo اﻟﺠﺎﻡﻌﺔ اﻻردﻥﻴﺔ, ﻗﺴﻢ اﻟﻬﻨﺪﺳﺔ اﻟﻜﻴﻤﻴﺎﺋﻴﺔ, ﻋﻠﻲ ﺧﻠﻒ اﻟﻤﻄﺮ.د ©2003: Ali Al-Matar, Chemical Engineering Dept., University of Jordan problem, can in principle be laid with a combination of: derive the rest of thermodynamic properties Know the required information for the equations derived, and how to obtain them Apply logical reasoning and mathematical equations for the derivations of expressions for the fugacity of the van der Waal’s EOS. Be able to derive an expression for the fugacity from equations of state. Implement these expressions to obtain physically meaningful results. Distinguish between different EOS and their limitations. Lay a framework for the phase equilibria using the expressions of fugacity obtained, and implement it. As a side objective: apply their math and computer skills in obtaining the roots of cubic or general nonlinear single equation. Adv. Thermo -Lecture 05: V-T Specified 20 5