Spring 2014--CALCULUS 101A -- Test #1 (Ch 1) ... f . Find the following
Transcription
Spring 2014--CALCULUS 101A -- Test #1 (Ch 1) ... f . Find the following
Spring 2014--CALCULUS 101A -- Test #1 (Ch 1) NAME:----------------------------------- Total: 100 points 1. For the function f (x) = x 2 + 6 , where x ≥ 0 . Find the following a) Find the inverse of the function. b) Verify the relationships: f ( f −1 (x)) = x and f −1 ( f (x)) = x . (12 pts.) 2. When the Celsius temperature is 15 degrees, the corresponding Fahrenheit temperature is 59 degrees. When the Celsius temperature is 110 degrees, the corresponding Fahrenheit temperature is 230 degrees. Let C represent the Celsius temperature and F the Fahrenheit temperature. (10 pts.) a) Express F as an exact linear function of C. b) Solve the equation in part (a) for C. c) For what temperature is F = C 3. Verify that the following are identities: a) cos 2 θ (1+ tan 2 θ ) = 1 cos(A − B) b) = tan A + cot B cos Asin B c) sin 2A cos2A = sin 2A − 4sin 3 A cos A (6 pts. ea.) 4. Give the equations of any vertical, horizontal asymptotes and find the X-Y intercepts x2 − 5x + 4 of: f ( x) = . (10 pts.) x2 − 4 5. Find the exact value of the following without using a calculator. "− 3% '= a. sin −1 $$ ' # 2 & "− 2 % " −1 % ' b. cos−1 $ ' + sin −1 $$ ' 2 #2& # & (5 pts. ea) 6. Solve for x: log4 ( x + 3) + log4 (2 − x) = 1 (6 pts.) 7. Solve: 4 x − 2 x +1 = 3 3 2 8. Solve: (2 x + 1) = 64 (6 pts.) (6 pts.) ln(1 + e2 x ) = 2 x + ln(1 + e−2 x ). (6 pts.) 10. Solve the equation for exact solutions over the interval [0,2π). 8cos2 x − 6 = 0 . (6pts.) 9. Show that 11. Find the amplitude, period, and the phase shift, then sketch one cycle of the graph: π y = −2sin(2x − ) 2