Sample Exam Papers and Solutions
Transcription
Sample Exam Papers and Solutions
Sample Exam Papers and Solutions The midterm and final exam paper of the 2103241 (thermodynamics I) course is composed of two parts as follows: PART A This is an analytical part. Students must demonstrate the step-by-step procedure for analyzing and solving thermodynamic problems such as choosing the system under consideration, choosing a right thermodynamic model, drawing a diagram to help understanding the process, writing appropriate thermodynamic laws, etc. In order to obtain a full credit, students must show all details of calculation and provide sufficiently accurate results. PART B This is a conceptual part. The exam question is focused on the basic concept and fundamentals of thermodynamics. Students need not to show any of the calculations but can draw diagrams or equations as a supplement. However, students must provide the theoretical supports to their answers in order to obtain a full credit. PART A: จงแสดงวิธีทําอยางละเอียด 1) A cylindrical tank with 0.5-m diameter and 0.8-m height contains CO2 at 5.9 MPa, 92oC. Estimate the mass of CO2 in the tank. (10 points) Given: Find: Solution: D, H, P, T m Model: The compressibility-factor generalized chart for CO2 Properties of CO2, R = 0.1889 kJ/kg-K, Pc = 7.38 MPa, Tc = 304.1 K We notice that the value of P is relatively comparable to Pc. Therefore, we will choose the compressibility-factor generalized chart as a model to find the property of CO2 5.9 MPa P Pr = = = 0.80 Pc 7.38 MPa T 365.15 K Tr = = = 1.20 Tc 304.1 K Go to the compressibility-factor generalized chart shown below Z = 0.83 From the compressibility-factor generalized chart, we have Z = 0.83 Find the volume of the tank which is equal to that of CO2 π π V = D 2 H = (0.52 m 2 )(0.8 m ) 4 4 3 V = 0.15708 m State of CO2: P = 5.9 MPa, T = 92oC = 365.15 K, V = 0.15708 m3 P V = Zm R T (5,900 kPa )(0.15708 m ) 3 kJ ⎞ ⎛ = ( 0.83) ( m ) ⎜ 0.1889 ⎟ (365.15 K ) kg − K ⎠ ⎝ m = 16.188 kg Answer Note: If the ideal gas law is used to find the mass of CO2, its value will deviate from the one obtained by the answer above by 17 percent. 2) Oxygen is compressed in a piston/cylinder device under the polytropic process with n = 1.4. The initial pressure and temperature of the oxygen is 100 kPa and 30oC, respectively. The specific work done on this process is 200 kJ/kg. Determine the final temperature and pressure. (10 points) Given: Find: Solution: n, P1, T1, 1w2 T2, P2 CM O2 Control mass: Oxygen in the piston/cylinder device Process: Polytropic with n=1.4 Model: Ideal gas for oxygen Properties of oxygen at 25oC: R = 0.2598 kJ/kg-K State 1: P1 = 100 kPa, T1 = 30oC = 303.15 K Ideal gas law P1 v 1 = R T2 (1) State 2: Ideal gas law (2) P2 v 2 = R T2 In case of a polytropic relation: PVn = constant, we can substitute this relation into the moving boundary work equation and obtain 2 1W2 = ∫ P dV = 1 P2 V2 − P1 V1 1− n P 2 Polytropic n=1.4 Rewriting the equation by dividing by m gives 1 w2 P v −Pv = 2 2 1 1 1− n 1 100 kPa V2 We can substitute the ideal gas law, i.e., equations (1) and (2) into the above equation. 1 w2 = RT2 − RT1 R (T2 − T1 ) = 1− n 1− n W2 1 V1 V We substitute all known variables into the previous equation to determine T2. Remind that the value of the specific work is negative due to the compression process (dV < 0). − 200 kJ (T2 − 303.15 K ) kJ = 0.2598 kg 1 − 1.4 kg T2 = 611.08 K Answer From the polytropic relation (per unit mass) P1 v 1 n = P2 v 2 n (3) Dividing equation (2) by equation (1) gives Pv P1 v 1 = 2 2 T2 T1 We raise the above equation to the nth power. P1n v 1n P2n v 2n = n T1n T2 (4) Dividing equation (4) by equation (3) to eliminate v1 and v2 and rearranging the equation yields n -1 ⎛ P2 ⎞ ⎛T ⎞ ⎜⎜ ⎟⎟ = ⎜⎜ 2 ⎟⎟ ⎝ P1 ⎠ ⎝ T1 ⎠ n ⎛T ⎞ P2 = ⎜⎜ 2 ⎟⎟ P1 ⎝ T1 ⎠ n/(n -1) Since P1, T1, and T2 are known, we can solve for P2 as follows: 611.08 ⎞1.4/0.4 P2 ⎛ = ⎜ ⎟ 100 kPa ⎝ 303.15 ⎠ P2 = 1,162.9 kPa Answer 3) N2 initially at 110 K is heated in a 30-L rigid tank until it reaches the critical point. Determine the heat transfer of this process. (10 points) Given: Find: Solution: T1, V, P2, T2 1Q2 CM N2 Control mass: N2 in the rigid tank Process: Isochoric Model: Table of thermodynamics for N2 Since the process is isochoric from an initial state to the critical point, it will be very useful to draw the PV diagram of this process as follows: P Psat@110 K 2 (critical point) 1 v1 = v2 v It can be seen that in order to heat N2 to the critical point by an isochoric process, the initial state must be a two-phase mixture. First, we find the properties at the critical point which is the final state. State 2 (final state): P2 = Pc = 3.3978 MPa T2 = Tc = 126.2 K fixed state: critical point v2 = vc = 0.003194 m3/kg u2 = uc = 18.94 kJ/kg We can find the mass inside the tank from here. Note that V = constant = 30 L =0.03 m3 0.03 m 3 V m= = = 9.3926 kg v 1 0.003194 m 3 / kg State 1 (initial state): T1 = 110 K v2 = v1 = 0.003194 m3/kg v 1 = (1 − x 1 ) v f + x 1 v g fixed state: two-phase mixture 3 v 1 − v f 0.003194 − 0.001610 m / kg x1 = = v g − v f 0.01595 − 0.001610 m 3 / kg x 1 = 0.11046 kJ ⎞ kJ ⎞ ⎛ ⎛ u 1 = (1 − x 1 ) u f + x 1 u g = ( 0.88954 )⎜ − 50.81 ⎟ + ( 0.11046 )⎜ 62.31 ⎟ kg ⎠ kg ⎠ ⎝ ⎝ kJ u 1 = − 38.3147 kg The moving boundary work in this problem is zero since the process is isochoric or dV = 0. 2 1W2 = ∫ P dV = 0 1 From the first law of thermodynamics for a control mass, we can write 1 Q 2 − 1W2 = ∆E = ∆U + ∆KE + ∆PE Since there is no change in the kinetic and potential energy, ∆KE = 0 and ∆PE = 0. In addition, 1W2 = 0 from the above equation. The first law becomes 1 Q2 = ∆U = m ( u 2 − u 1 ) kJ ⎞ ⎛ Q 2 = 9.3926 kg ⎜ 18.94 − ( − 38.3184 ) ⎟ kg ⎠ ⎝ 1 Q 2 = 537.8 kJ 1 Answer Note: In this problem, we use table of thermodynamics for nitrogen table to find the properties. However, the common mistake arises here because most students always think about applying the ideal gas equation to substances appearing in gaseous phase under the atmospheric condition such as air, N2, O2 etc. without paying attention on the P-V diagram. 4) Steam flows into a steam turbine at a rate of 2 kg/s, and the heat transfer from the turbine to the surrounding is 11 kW. The following data in the table on the right are known for the steam entering and leaving the turbine. Determine the power output of the turbine in kW. (10 points) Given: Find: Solution: Pressure Temperature Quality Velocity Elevation above a reference plane Inlet Conditions 2.0 MPa 350oC Exit Conditions 0.1 MPa 100 % 100 m/s 3m 50 m/s 6m steam P1, T1, V1, Z1, P2, x2, V2, Z2, m& , Q& W& CV 1 Control volume: Steam turbine Process: Steady-state Model: Table of thermodynamics for water W& Q& 2 From the given data, we can find the properties of state 1 and state 2. State 1: State 2: P1 = 2 MPa T1 = 350oC h1 = 3,136.96 kJ/kg fixed state: superheat vapor P2 = 1 MPa x2 = 1 h2 = 2,778.08 kJ/kg fixed state: saturated vapor Since there is only one inlet and one exit for the turbine, we can write Conservation of mass m& 1 = m& 2 = m& = 2 kg / s For the first law of thermodynamics for a control volume, we have information related to the kinetic and potential energy. The heat loss from the turbine is also included. Thus, we can write The first law of thermodynamics 0 = Q& − W& + ∑ V2 m& i ⎛⎜ h i + i + gZ i ⎞⎟ − 2 ⎠ ⎝ ∑ V2 m& e ⎛⎜ h e + e + gZ e ⎞⎟ 2 ⎝ ⎠ V1 2 V2 2 ⎛ ⎛ ⎞ W& = Q& + m& ⎜ h 1 + + gZ1 ⎟ − m& ⎜ h 2 + + gZ 2 ⎞⎟ 2 2 ⎠ ⎝ ⎠ ⎝ V1 2 − V2 2 ⎞ ⎡ ⎤ ⎛ W& = Q& + m& ⎢(h 1 − h 2 ) + ⎜ ⎟ + g (Z1 − Z 2 )⎥ ⎝ 2 ⎠ ⎣ ⎦ kJ ⎞ kg ⎡⎛ − 3 , 136 . 96 2 , 778 . 08 ⎜ ⎟ kg ⎠ s ⎢⎣⎝ ⎛ 50 2 − 100 2 m 2 1 kJ / kg ⎞ ⎛ m 1 kJ / kg ⎞⎤ ⎜ ⎟ ⎜ ⎟ + × + 9.81 2 (6 − 3 m )× 2 2 2 ⎟ ⎜ 2 2 ⎟⎥ ⎜ 2 s 1,000 m / s ⎠ ⎝ s 1,000 m / s ⎠⎦⎥ ⎝ W& = − 11 kW + 2 W& = − 11 kW + 2 kg ⎡⎛ kJ ⎞ ⎛ kJ ⎞ ⎛ kJ ⎞⎤ 358 . 88 3 . 75 0 . 02943 + − + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ s ⎢⎣⎝ kg ⎠ ⎝ kg ⎠ ⎝ kg ⎠⎥⎦ W& = − 11 kW + 710.319 kW W& = 699.319 kW Answer Note: It is clear that the change of kinetic and potential energy is much smaller than the change of enthalpy of the steam. By assuming that the change of kinetic and potential energy is negligible, the error relative to the above answer is approximately 1 percent. Thus, this assumption is always employed in most engineering practice. 6) In winter, an actual heat pump supplies 120 kW of heat to a building at 300 K. The ambient air temperature is 270 K outside the building. If the coefficient of performance of this heat pump is 60 percent of the coefficient of performance of a Carnot heat pump operating between the same temperatures above. Find the input power of this heat pump. (10 points) Given: Find: Solution: Q& H , TH, TL, β′actual / β′ideal W& in We can draw the diagram representing this heat pump shown on the right side. Since TL and TH are given, we can calculate β′ideal as follows: TH β′ideal = TH − TL 300 β′ideal = 300 − 270 β′ideal = 10 Building TH = 300 K Q& H =120 kW Heat Pump W& in Q& L Ambient TL = 270 K Next, β′actual can be determined according to the given ratio between β′actual and β′ideal . β′actual = 0.6 β′ideal β′actual = 0.6 β′ideal = 0.6 ( 10 ) β′actual = 6 Finally, we use the definition of β′ to find the input power Q& β′actual = H W& in 120 kW Q& W& in = H = 6 β′actual W& in = 20 kW Answer Note: since β′actual = 6, it means that to produce 1 unit of heat, a heat pump requires 1/6 unit of the electrical work whereas an electric heater requires 1 unit of that, resulting in more efficient work-to-heat conversion. 7) A piston/cylinder has ammonia at 2,000 kPa, 80oC with a volume of 0.1 m3. This piston is loaded with a linear spring, and the outside ambient is at 20oC. The ammonia now cools down to 20oC at which point it has a quality of 10%. Find (a) the work, (b) the heat transfer, and (c) the total entropy generation in the process. (10 points) Given: Find: Solution: P1, T1, V1, T0, T2, x2 1W2, 1Q2, Sgen total CM Control mass: Ammonia Process: Linear spring Model: Table of thermodynamics for ammonia The process is under the influence of the linear spring attached on the top of the piston. We can determine the properties of ammonia as follows: NH3 Q T0 State 1 (initial state): P1 = 2 MPa fixed state: superheat vapor T1 = 80oC 3 v1 = 0.07595 m /kg u1 = 1,421.6 kJ/kg s1 = 5.0707 kJ/kg-K We can find the mass of ammonia inside the cylinder. 0.1 m 3 V1 = 1.31666 kg m= = v 1 0.07595 m 3 / kg State 2 (final state): T2 = 20oC x2 = 0.1 P2 = Psat = 857.5 kPa fixed state: two-phase mixture m3 m3 v 2 = (1 − x 2 ) v f + x 2 v g = ( 1 − 0.1) 0.001638 + ( 0.1) 0.14922 kg kg m3 v 2 = 0.016396 kg kJ kJ u 2 = (1 − x 2 ) u f + x 2 u g = ( 1 − 0.1) 272.89 + ( 0.1) 1,332.2 kg kg kJ u 2 = 378.821 kg s 2 = (1 − x 2 ) s f + x 2 s g = ( 1 − 0.1) 1.0408 s 2 = 1.44532 kJ kg − K kJ kJ + ( 0.1) 5.0860 kg − K kg − K Because the area under the P-v diagram has a trapezoidal shape as shown, it can be calculated as follows: 2 1W2 = ∫ PdV = 0.5 (P1 + P2 )(V2 − V1 ) 1 W = 0.5 m (P1 + P2 )(v 2 − v 1 ) P 1 2,000 kPa 2 857.5 kPa 1 2 W = 0.5 (1.31666 kg )(2,000 + 857.5 kPa ) 1 2 × (0.016396 − 0.07595 m 3 / kg ) 0.016396 m3/kg W = − 112.031 kJ 1 2 0.07595 m3/kg Answer From the first law of thermodynamics for a control mass 1 Q 2 − 1W2 = ∆E = ∆U + ∆KE + ∆PE Because there is no change in the kinetic and potential energy, ∆KE = 0 and ∆PE = 0. The first law becomes 1 Q 2 − 1W2 = ∆U = m (u 2 − u 1 ) kJ ⎞ ⎛ ( ) ( ) Q − − 112 . 031 kJ = 1 . 31666 kg 378 . 821 − 1 , 421 . 6 ⎜ ⎟ 1 2 kg ⎝ ⎠ 1 Q 2 = − 1, 485.01 kJ Answer From the second law of thermodynamics for a control mass and surrounding Q S gen total = (S 2 − S1 ) − 1 2 T0 Q S gen total = m (s 2 − s1 ) − 1 2 T0 kJ ⎞ − 1,485.01 kJ ⎛ S gen total = (1.31666 kg )⎜ 1.44532 − 5.0707 ⎟− kg − K ⎠ 20 + 273.15 K ⎝ kJ Answer S gen total = 0.2923 K v 8) CO2 at 100 kPa, 300 K is compressed by a steady-state uninsulated compressor to 800 kPa, 450 K. The input power is 1.7 MW. The flow rate of CO2 is measured to be 10 kg/s. If the ambient temperature is at 300 K, determine the total rate of entropy generation. (10 points) Given: Find: Solution: P1, T1, P2, T2, W& , m& , T0 S& gen total CV T0 Control volume: Compressor Process: Steady-state Model: Ideal gas for carbon dioxide 2 W& Q& 1 CO2 There is only one inlet and one exit in this compressor. Thus, we can write Conservation of mass m& 1 = m& 2 = m& = 10 kg / s For the first law of thermodynamics, the kinetic and potential energy is negligible. However, the heat transfer may occur because of the uninsulated compressor. Thus, we can write The first law of thermodynamics Vi 2 ⎛ + gZ i ⎞⎟ − m& i ⎜ h i + 2 ⎝ ⎠ 0 = Q& − W& + m& (h 1 ) − m& (h 2 ) 0 = Q& − W& + ∑ ∑ Ve 2 ⎛ + gZ e ⎞⎟ m& e ⎜ h e + 2 ⎝ ⎠ Q& = W& + m& (h 2 − h 1 ) To find the change of enthalpy of CO2, we use table of the ideal-gas properties of CO2: State 1: T1 = 300 K h1 = 214.38 kJ/kg s 0T1 = 4.8631 kJ/kg-K State 2: T2 = 450 K h2 = 351.70 kJ/kg s 0T 2 = 5.2325 kJ/kg-K Then, substituting into the first law of thermodynamics gives kg ⎛ kJ ⎞ Q& = − 1,700 kW + ⎛⎜ 10 ⎞⎟ ⎜ 351.70 − 214.38 ⎟ kg ⎠ ⎝ s ⎠⎝ Q& = − 326.8 kW For the second law of thermodynamics for a control volume and surrounding, the total rate of entropy generation can be written as The second law of thermodynamics Q& cv T0 Q& = m& 2 (s 2 ) − m& 1 (s1 ) − cv T0 Q& = m& (s 2 − s1 ) − cv T0 S& gen total = S& gen total S& gen total ∑ m& e s e − ∑ m& i s i − The change of entropy of CO2 can be determined as follows: P s 2 − s1 = s 0T 2 − s 0T1 − R ln 2 P1 kJ ⎞ ⎛ kJ ⎞ ⎛⎜ 800 kPa ⎞⎟ ⎛ s 2 − s1 = ⎜ 5.2325 − 4.8631 ⎟ ln ⎟ − ⎜ 0.1889 kg − K ⎠ ⎝ kg − K ⎠ ⎝⎜ 100 kPa ⎟⎠ ⎝ kJ s 2 − s1 = − 0.023407 kg − K Substituting into the second law of thermodynamics yields − 326.8 kW kg ⎛ kJ ⎞ S& gen total = ⎛⎜ 10 ⎞⎟ ⎜ − 0.023407 ⎟− ⎝ s ⎠⎝ kg − K ⎠ 300 K kW S& gen total = − 0.23407 + 1.08933 K kW Answer S& gen total = 0.85527 K Note: If we choose to find the change of enthalpy and entropy of CO2 by assuming that the value CP0 of CO2 is a constant at an average temperature between T1 and T2, which is 375 K. By using the third degree polynomial of CO2, we will have CP0 = 0.91822 kJ/kg-K. Then, substituting into the first and second law of thermodynamics gives Q& = W& + m& C P 0 (T2 − T1 ) = − 322.67 kW S& gen total = m& (s 2 − s1 ) − ⎛ Q& cv T P ⎞ Q& kW = m& ⎜⎜ C P 0 ln 2 − R ln 2 ⎟⎟ − cv = 0.87058 T0 T1 P1 ⎠ T0 K ⎝ The error from this method is approximately less than 2% from the first one. 9) An ideal Diesel cycle with air as a working fluid has a compression ratio of 18.2. Air is at 0.1 MPa, 300 K at the beginning of the compression process. The maximum temperature is 2,000 K. Determine (a) the heat addition (per unit mass) and (b) the thermal efficiency. (10 points) Given: Find: Solution: P rV, T1, P1, T3 qH, ηth 6,000 kPa 2 4 Assumptions: 1) Ideal Diesel cycle 2) ∆KE and ∆PE are negligible. 3) Cold air-standard cycle 95 kPa 1 Vmin(TDC) Properties of air at 25oC: R=0.287 kJ/kg-K, CP0=1.004 kJ/kg-K, k=1.4 State 1: P1 = 100 kPa, T1 = 300 K P1 v 1 = R T1 Ideal gas equation (100 kPa ) v kJ ⎞ ⎛ = ⎜ 0.287 ⎟ (300 K ) kg K − ⎝ ⎠ 3 v 1 = 0.861 m / kg State 2: 3 1 rV = 18.2 = v1/v2 k −1 T2 ⎛ v 1 ⎞ = ⎜⎜ ⎟⎟ = (rV )k −1 = ( 18.2 )1.4 −1 = 3.1917 T1 ⎝ v 2 ⎠ T2 = 3.1917 (300 K ) = 957.52 K k P2 ⎛ v 1 ⎞ = ⎜⎜ ⎟⎟ = (rV )k = ( 18.2 )1.4 = 58.0898 P1 ⎝ v 2 ⎠ P2 = 58.0898 (100 kPa ) = 5,808.98 kPa State 3: P3 = P2 = 5,808.98 kPa, T3 = 2,000 K Ideal gas equation P3 v 3 = R T3 (5,808.98 kPa ) v kJ ⎞ ⎛ 0 . 287 = ⎜ ⎟ (2 ,000 K ) 3 kg − K ⎠ ⎝ v 3 = 0.098813 m 3 / kg Vmax(BDC) V State 4: v4 = v1 = 0.861 m3/kg For the isentropic process from state 3 to state 4, we can write 1.4 −1 k −1 ⎛ 0.098813 m 3 / kg ⎞ ⎛ v3 ⎞ T4 ⎟ =⎜ ⎟ =⎜ ⎜ 0.861 m 3 / kg ⎟ T3 ⎜⎝ v 4 ⎟⎠ ⎝ ⎠ T4 = 0.42065 (2,000 K ) = 841.31 K k = 0.42065 1.4 3 ⎛ v 3 ⎞ ⎜⎛ 0.098813 m / kg ⎞⎟ P4 = 0.048276 =⎜ ⎟ = P3 ⎜⎝ v 4 ⎟⎠ ⎜⎝ 0.861 m 3 / kg ⎠⎟ P4 = 0.048276 (5,808.98 kPa ) = 280.44 kPa Apply the first law of thermodynamics to the individual process Process: Isobaric from state 2 to state 3 2 q3 = q H = h 3 − h 2 = C P 0 (T3 − T2 ) kJ (2,000 − 957.52 K ) kg − K kJ q H = 1,046.65 kg q H = 1.004 Answer Process: Isochoric from state 4 to state 1 q = q L = u 1 − u 4 = C V 0 (T1 − T4 ) 4 1 kJ (300 − 841.31 K ) kg − K kJ q L = − 388.12 kg To obtain the net specific work, applying the first law of thermodynamics for the entire cycle yields q L = 0.717 w net = q H + q L = 1,046.65 + ( − 388.12 ) kJ / kg = 658.53 kJ / kg The thermal efficiency of the cycle can be determined. 658.53 kJ / kg w ηth = net = qH 1,046.65 kJ / kg ηth = 0.6292 = 62.92 % Answer 10) A vapor-compression refrigerator for industrial applications uses ammonia as a refrigerant. The evaporating temperature is −5oC whereas the pressure after the compression process is 1.6 MPa. The compressor has an isentropic efficiency of 80%. Determine (a) the quality of ammonia before entering the evaporator and (b) the COP of the refrigerator. (10 points) Given: Find: Solution: T1, P2, ηcomp. x4, β P2 = P3 = 1.6 MPa 2 2s T 3 Assumptions: 1) Ideal vapor compression refrigeration cycle except the compressor 2) ∆KE and ∆PE are negligible. 3) From the conservation of mass, m& is constant throughout the cycle. State 1: T1 = −5oC x1 = 0 Fixed state: saturated vapor h1 = hg = 1,436.7 kJ/kg s1 = sg = 5.3977 kJ/kg-K P1 = P4 −5oC 1 4 s Q& H 3 2 Condenser W& comp. Expansion valve Compressor 4 Evaporator 1 Due to the actual compressor, state 2s is determined as follows: Q& L State 2s: P2s = P2 = 1,600 kPa s2s = s1 = 5.3977 kJ/kg-K Fixed state: superheat vapor h2s = 1,656.99 kJ/kg (by linear interpolation) By using the definition of the isentropic efficiency of the compressor, we can find the enthalpy of state 2. State 2: P2 = 1,600 kPa, ηcomp. = 0.8 h −h ηcomp . = 1 2 s h1 − h 2 1,436.7 − 1,656.99 kJ / kg 0.8 = 1,436.7 − h 2 kJ / kg h 2 = 1,712.06 kJ / kg State 3: P3 = P2 = 1,600 kPa x3 = 0 h3 = 376.37 kJ/kg Fixed state: saturated liquid State 4: T4 = T1 = −15oC h4 = h3 = 376.37 kJ/kg Fixed state: two-phase mixture h 4 = (1 − x 4 ) h f + x 4 h g h − h 376.37 − 157.31 kJ / kg x4 = 4 f = h g − h f 1,436.7 − 157.31 kJ / kg x 4 = 0.1712 Answer The next step is to apply the first law of thermodynamics to each device in our interest. Control volume: Evaporator Process: Isobaric The first law of thermodynamics per unit mass flow rate will be simplified as follows: q evap . = q L = h 1 − h 4 q L = 1,436.7 − 376.37 kJ / kg = 1,060.33 kJ / kg Control volume: Compressor Process: Isentropic The first law of thermodynamics per unit mass flow rate will be simplified as follows: w comp . = h 1 − h 2 w comp . = 1,436.7 − 1,712.06 kJ / kg = − 275.36 kJ / kg If we substitute the work with the negative sign and qL with the positive sign into the definition of the coefficient of performance, we will get the negative value of the coefficient of performance which does not make any sense. Therefore, we have to substitute only the magnitude of the work and qL into the definition of the coefficient of performance. 1,060.33 kJ / kg q qL β = L = = 275.36 kJ / kg w net w comp . β = 3.851 Answer 11) Steam enters the turbine of a power plant at 5 MPa and 400oC and exhausts to the condenser at 10 kPa. The turbine produces a power output of 20,000 kW with an isentropic efficiency of 85%. Determine (a) the mass flow rate of steam around the cycle and (b) the thermal efficiency. (10 points) Given: Find: Solution: P2 = P3, P1, W& net , ηturb . m& , ηth T 3 400oC Assumptions: 1) Ideal Rankine cycle except the turbine 2) ∆KE and ∆PE are negligible. 3) From the conservation of mass, m& is constant throughout the cycle. State 1: P1 = 10 kPa x1 = 0 Fixed state: saturated liquid v1 = vf = 0.001010 m3/kg h1 = hf = 191.81 kJ/kg State 2: P2 = P3 = 5 MPa P1 = P4 = 10 kPa 2 1 4s 4 s 3 Q& H W& turbine Turbine Boiler 4 2 P2 = P3 = 3 MPa s 2 = s1 Fixed state: compressed liquid Pump W& pump Condenser Q& L 1 However, since most thermodynamic tables do not include the compressed liquid table, we need to find h2 by using the thermodynamic property relation: T ds = dh − v dP . Under the isentropic relation (ds = 0) and incompressible substance (v ≈ constant), we take the definite integration as follows: 2 0 = 2 ∫ dh − ∫ v dP = (h − h ) − v (P − P ) 2 1 1 1 2 1 1 h 2 = h 1 + v 1 (P2 − P1 ) kJ ⎛ m3 ⎞ h 2 = 191.81 + ⎜ 0.001010 ⎟ (5,000 − 10 kPa ) kg ⎝ kg ⎠ h 2 = 196.85 kJ / kg State 3: P3 = 5 MPa T3 = 400oC h3 = 3,195.64 kJ/kg s3 = 6.6458 kJ/kg-K Fixed state: superheat vapor Due to the actual turbine, state 4s can be determined. State 4s: P4s = P4 = P1 = 10 kPa s4s = s3 = 6.6458 kJ/kg-K Fixed state: two-phase mixture s − s 6.6458 − 0.6492 kJ / kg − K = 0.7995 x 4s = 4s f = s g − s f 8.1501 − 0.6492 kJ / kg − K kJ kJ h 4 s = (1 − x 4 s ) h f + x 4 s h g = ( 1 − 0.7995) 191.81 + ( 0.7995) 2 ,584.63 kg kg h4s = 2,104.75 kJ/kg By using the definition of the isentropic efficiency of the turbine, we can find the enthalpy of state 4. State 4: P4 = P1 = 10 kPa, ηturb . = 0.85 h −h η turb . = 3 4 h 3 − h 4s 3,195.64 − h 4 kJ / kg 0.85 = 3,195.64 − 2,104.75 kJ / kg h 4 = 2,268.38 kJ / kg The next step is to apply the first law of thermodynamics to each device in our interest. Control volume: Turbine Process: Adiabatic By applying the first law of thermodynamics, we can substitute Q& H to find m& as follows: W& turb . = m& (h 3 − h 4 ) 20,000 kW = ( m& ) (3,195.64 − 2 ,268.38 kJ / kg ) m& = 21.569 kg / s Answer Control volume: Pump Process: Isentropic The first law of thermodynamics can be written as follows: W& pump = m& (h 1 − h 2 ) W& pump = (21.569 kg / s )(191.81 − 196.85 kJ / kg ) W& pump = − 108.71 kW Control volume: Boiler Process: Isobaric The first law of thermodynamics can be written as follows: Q& boiler = Q& H = ( m& ) (h 3 − h 2 ) Q& H = (21.569 kg / s )(3,195.64 − 196.85 kJ / kg ) Q& H = 64 ,681.02 kW The net specific work can be determined by combine the power from the turbine and the pump. W& net = W& turb . + W& pump = 20,000 + ( − 108.71) kW = 19,891.29 kW Finally, the thermal efficiency of the cycle is 20,000 kW W& ηth = net = Q& H 64 ,681.02 kW ηth = 0.3075 = 30.75 % Answer PART B: ตอบคําตอบโดยไมตองมีการคํานวณลงในพื้นที่ที่กําหนดใหเทานั้น การตอบนอกพื้นที่ที่ กําหนดใหหรือเขียนตัวอักษรเล็กเกินไปจนอานไมได จะไมตรวจคําตอบในขอนั้นเชนกัน 1) จงอธิบายและใหเหตุผลโดยสังเขปวาทําไมเราจึงไมเห็นคารบอนไดออกไซดปรากฏอยูในรูปของของเหลวในสภาวะ อากาศปกติบนโลก พื้นที่สําหรับคําตอบขอที่ 1 เฉลย: หากพิจารณา phase diagram ของคารบอนไดออกไซด จะพบวาความดันที่จุดรวมสาม (triple point pressure หรือ Ptriple) สูงกวาความดันบรรยากาศบนโลก ดังนั้นจะเห็นจากใน phase diagram วาถา P < Ptriple ผลที่ไดก็คือเมื่ออุณหภูมิเปลี่ยนไปตาม เสน A-B ก็จะทําใหคารบอนไดออกไซดเปลี่ยนสถานะจาก ของแข็งผานเสนระเหิด (sublimation line) และกลายไปเปนไอ โดยที่ไมผานสถานะของเหลว จึงเปนเหตุใหคารบอนไดออกไซด ไมปรากฏเปนของเหลวที่สภาวะอากาศปกติบนโลก P Fusion line Solid Vaporization line Liquid Triple point Ptriple Patm A Sublimation line B Gas T 2) คา Z ที่ปรากฏอยูใน generalized chart มีความหมายทางกายภาพอยางไร และกาซที่มีโครงสรางโมเลกุลอยางงายทุก ชนิดจะมีคา Z จะมีคาเขาใกล 1 ภายใตเงื่อนไขใด พื้นที่สําหรับคําตอบขอที่ 2 เฉลย: คา Z เปนตัวแปรที่แสดงถึงการเบี่ยงเบนของพฤติกรรมของแกสจริงที่มีตอพฤติกรรมของแกสอุดมคติ (ideal gas) โดยที่หากคา Z = 1 ยอมหมายความวาแกสนั้นมีพฤติกรรมเปนเชนเดียวกับแกสอุดมคติ หากพิจาณาสมการของคา Z ตามนิยามจะพบวา Pv = ZRT คา Z อาจเปรียบไดเปนตัวประกอบแกไข (correction factor) สําหรับสมการแกสอุดมคติก็ได สําหรับกาซที่มีโครงสรางโมเลกุลอยางงายทุกชนิดนั้น คา Z จะเขาใกล 1 เมื่อ 1) แกสมีนั้นมีคา Pr << 1 โดยที่ไมขึ้นกับอุณหภูมิ 2) แกสมีนั้นมีคา Tr > 2 ยกเวนในกรณีที่ Pr >> 1 (ประมาณมากกวา 4) 3) มอเตอรไฟฟาเปนอุปกรณที่ใชกระแสไฟฟาเหนี่ยวนําใหเกิดสนามแมเหล็กตัดผานขดลวดทองแดงจนทําใหเกิดการ หมุนของเพลาและสามารถสรางงานขึ้นได มอเตอรไฟฟานั้นถือวาเปน Heat Engine หรือไม อธิบาย พื้นที่สําหรับคําตอบขอที่ 3 เฉลย: จากแผนภาพของ heat engine ดานขาง จะเห็นไดวาองคประกอบ ของ heat engine ก็คือจะตองมี QH ซึ่งทําหนาที่เปนความรอนซึ่งปอนเขาจาก heat source ที่อุณหภูมิสูง TH จากนั้น QH บางสวนก็จะเปลี่ยนไปเปนงาน หรือ Wnet ในขณะที่ความรอนสวนที่เหลือก็จะกลายเปน QL ทิ้งลงสู heat sink ที่อุณหภูมิสูง TL ในกรณีของมอเตอรไฟฟานั้นไมมี QH ปรากฏอยู มี แตเพียงพลังงานที่ปอนเขาในรูปของงานทางไฟฟาซึ่งจะถูกเปลี่ยนในเปน งานทางกลเทานั้น ดังนั้นมอเตอรไฟฟาจึงไมใช heat engine TH QH Heat Engine Wnet QL TL 4) จงวาด component diagram ของ ideal Brayton cycle (open cycle) with a regenerator ซึ่งอุปกรณตางๆ ใน cycle มี ประสิทธิภาพ 100% ทุกชิ้น ทั้งนี้ component diagram เปน diagram ที่แสดงใหเห็นถึงอุปกรณตางๆที่มีอยูใน cycle พรอมทั้งวาด T-s diagram ประกอบเพื่อแสดงถึงตําแหนง state ตางๆ ที่ปรากฏอยูใน component diagram ดวย พื้นที่สําหรับคําตอบขอที่ 4 เฉลย: เราสามารถวาด component diagram และ T-s diagram ไดดังแผนภาพดานลาง T y Regenerator x 2 1 3 Combustion chamber Q& H Compressor P1 = Py = P4 4 x 4 3 W& net Turbine P2 = Px = P3 2 1 y s จะเห็นไดวาหาก regenerator เปนอุปกรณที่อุดมคติ เราจะไดวา Tx = T4 นั่นคืออุณหภูมิอากาศที่ถูกอุนกอนเขาสู combustion chamber จะมีอุณหภูมิเทากับอุณหภูมิของไอเสียที่ออกจาก turbine ซึ่งจะเปนคาสูงสุดที่เปนไปได และหาก เราใช cold air-standard assumption เราก็จะไดวา Ty = T2 เนื่องจากผลของ first law of thermodynamics ที่ regenerator