VERD Table of contents Sample Printout

Transcription

VERD Table of contents Sample Printout
VERD
2014
Sample Printout
Table of contents
Table of contents ................................................................1
Vaporization of pure substances in shell-and-tube heat exchangers ................2
Design of the tube sheet Determination of the tube sheet data ....................4
Determination of properties ......................................................6
Properties of water ..............................................................7
Real logarithmic temperature difference for different exchanger types ............9
Pressure drop in flow through evaporator tubes ..................................10
Heat transfer during boiling of saturated liquids - flow patterns - .............12
Heat transfer during boiling of saturated liquids -nucleate boiling horizontal- .14
CAD program for shell and tube heat exchangers ..................................16
Layout
Input values:
Calculated values:
Critical values:
Estimated values:
Lauterbach Verfahrenstechnik GmbH
1.234
1.234
1.234
1.234
or
or
or
or
1
1.234
1.234
1.234
1.234
2014
VERD
2014
Sample Printout
Vaporization of pure substances in shell-and-tube heat exchangers
Tube-side:
Tube-side vaporization
Medium: n-pentane
Mass flow
mi
7200 kg/h
Volume flow
Vi
13.22 m³/h
Pressure in abs. Pi
5 bar
Inlet temp.
92.49 °C
ϑei
Outlet temp.
92.69 °C
ϑai
Mean temp.
m
92.59 °C
i
ϑ
Shell-side:
(Condensation)
Medium: Steam condensation
Mass flow
ma
1038
Volume flow
Va
388.9
Pressure in abs. Pa
5
Inlet temp.
151.9
ϑea
Outlet temp.
151.7
ϑaa
Mean temp.
m
151.8
a
ϑ
Liquid fraction
(Inlet)
Liquid fraction
(Outlet)
xi
1
-
xo
0
-
Vapour fraction
(Inlet)
Vapour fraction
(Outlet)
Heat duty
Qi
607.9
Fouling
fi
0
Liquid phase
Density
ρi
Spec. heat cap. cpi
Dyn. viscosity
ηi
Thermal cond.
λi
Surface tension σi
Critical press. Pc
Molecular weight MW
544.8
2679
0.1248
0.1059
8.241
3370000
72.15
Vapour phase
Density
13.75
ρi
Spec. heat cap. cpi
2118
Dyn. viscosity
0.008833
i
η
Thermal cond.
0.0216
λi
Heat of
evaporation
303400
∆hv
Reference
Reference
Reference
Reference
Reference
Reference
Reference
kW
Heat duty
Heat loss
m²·K/W
Fouling
1
-
xo
0
-
Qa
Qva
-607.9
0
fa
0
Vapour phase
kg/m³
Density
ρa
J/(kg·K)Spec. heat cap. cpa
mPa·s
Dyn. viscosity
ηa
W/(m·K) Thermal cond.
λa
Heat of
J/kg
evaporation
∆hv
Final bundle length
Heat transfer area
Performance factor of the heat exchanger
Lauterbach Verfahrenstechnik GmbH
xi
Liquid phase
kg/m³
Density
915
ρa
J/(kg·K)Spec. heat cap. cpa
4315
mPa·s
Dyn. viscosity
0.1802
ηa
W/(m·K) Thermal cond.
0.6833
λa
mN/m
Surface tension σa
48.36
Pa
Critical press. Pc 2.206E+7
kg/kmol Molecular weight MW
18.02
data:
heat flux
heat transfer coefficient
heat of evaporation
density of the liquid
density of the vapour
surface tension
2
q0
α0
∆hv0
ρ F,0
ρ D,0
σ0
20000
3070
321200
564.4
9.341
9.882
la
A
1512
2.945
1.15
kg/h
m³/h
bar
°C
°C
°C
kW
kW
m²·K/W
kg/m³
J/(kg·K)
mPa·s
W/(m·K)
mN/m
Pa
kg/kmol
2.669
2413
0.01402
0.03103
kg/m³
J/(kg·K)
mPa·s
W/(m·K)
2107420
J/kg
W/m²
W/(m²·K)
J/kg
kg/m³
kg/m³
mN/m
(at
(at
(at
(at
Pc/10)
Pc/10)
Pc/10)
Pc/10)
mm
m²
-
2014
VERD
2014
Sample Printout
Geometry:
Description of type:
Installation position: horizontal
Straight tubes with fixed tubesheets
Shell outside diam. Do
Shell inside diam.
Di
Bundle-shell distance
Tube outside diam.
do
Tube inside diam.
di
Tube pitch (crosswise)
Pitch angle
Φ
188.9
176.3
12
20
16
25
60
mm
mm
mm
mm
mm
mm
°
Shell without baffles
Shell wall thickness sa
6.3
mm
Min. bundle-shell dist.
Tube wall thickness si
12
2
mm
mm
21.65
40
0.002
mm
mm
mm
Tube pitch (lengthwise)
Lane width
b
Arithmetic mean
Ra
roughness height of tubes
—
Tube material
Thermal conductivity of tube material
Steel
λt
Number of tube-side passes
1
Results:
Number of tubes
Heat transfer coefficient (tube-side)
Heat transfer coefficient (shell-side)
Overall heat transfer coefficient
Logarithmic mean temperature diff. LMTD
FN Factor (Correction factor for LMTD)
Total fouling resistance
Allowable superheating for condensation
Tube-side:
Velocity (Inlet)
Velocity (Outlet)
Pressure drop
∆pi
Wall temperature ϑwi
0.589
23.34
12017
113
Inlet nozzle
Nominal width
Outside diameter
Inside diameter
Velocity
DN 50
60.3
54.5
1.574
Outlet nozzle
Nominal width
Outside diameter
Inside diameter
Velocity
DN 100
114.3
107.1
16.15
Valuation:
Actual performance
Nominal performance
Performance factor
Actual heat flux
Critical heat flux
Lauterbach Verfahrenstechnik GmbH
699.1
607.9
1.15
237354
374375
52
m/s
m/s
Pa
°C
mm
mm
m/s
mm
mm
m/s
R
αi
αο
k
∆ϑ
FN
f
ϑs
31
14523
8287
4006
59.25
1
0
5.781
W/(m·K)
-
W/(m²·K)
W/(m²·K)
W/(m²·K)
K
m²·K/W
°C
Shell-side:
Velocity shell-side
7.364
m/s
Pressure drop
∆pa
Wall temperature ϑwa
123.2
Pa
°C
Inlet nozzle
Nominal width
Outside diameter
Inside diameter
Velocity
ρ ·v² Inlet nozzle
DN 80
88.9
82.5
20.21
1090
mm
mm
m/s
kg/(m·s²)
Outlet nozzle
Nominal width
Outside diameter
Inside diameter
Velocity
DN 20
26.9
22.3
0.8068
mm
mm
m/s
kW
kW
W/m²
W/m²
3
2014
VERD
2014
Sample Printout
Design of the tube sheet Determination of the tube sheet data
Name of type:
Baffle-type: Without baffles
Design = D; Rating / Simulation = R
< R
>
Outside shell diameter
Inside shell diameter
Bundle diameter
Minimum distance bundle - shell
Distance between bundle - shell
Do
Di
Db
Dm
D
188.9
176.3
152.3
12
12
mm
mm
mm
mm
mm
Outside tube diameter
Inside tube diameter
Pitch crosswise to direction of flow
Pitch in direction of flow
Pitch angle
da
di
sq
sl
Φ
20
16
25
21.65
60
mm
mm
mm
mm
°
Tube pattern: aligned = a / staggered = s
< S
Arrangement: around central tube
= 0
staggered by 1/2 pitch = 1
<
0 >
-
<
1
1
0 >
40
40
mm
mm
Number of tube-side passes
Number of shell-side passes
Bundle type
Tube lane width (horizontal)
Tube lane width (vertical)
Outside head diameter
Bolt-circle diameter
Number of bolts on the bolt-circle
Rotation angle for bolt-hole pattern
>
Da
Dt
mm
mm
°
Number of tubes
Number of dummy tubes
Number of tie rods
Total number of tubes, dummy tubes and tie rods
Number of boundary tubes required/actual RR
n
nB
nZ
nG
Sum of the shortest connecting paths in the center
Shortest connecting path between tube and tube
Shortest connecting path between tube and shell
Number of connecting paths
Mean distance boundary tubes-envelope circle centre
Le
e
e1
nV
rh
/
Number of tubes, dummy tubes and tie rods per pass
Pass-No.
1
2
3
4
5
31
0
0
0
0
Final tube length
Total area
Number of exchangers in series
la
A
Nozzles:
Inside diameter of the inlet nozzle
Inside diameter of the outlet nozzle
1512
2.945
1
31
0
0
31
26
76.29
5
28.14
4
53.98
6
0
-
mm
mm
mm
mm
7
0
8
0
mm
m²
-
Tube-side
54.5 mm
107.1 mm
Shell-side
82.5 mm
22.3 mm
—
Lauterbach Verfahrenstechnik GmbH
4
2014
VERD
2014
Sample Printout
Lauterbach Verfahrenstechnik GmbH
5
2014
VERD
2014
Sample Printout
Determination of properties
Properties
Name:
Tube-side medium: n-pentane
Temperature
ϑ
92.59
°C
Pressure
p
500000
Pa
Properties of the boiling liquid:
Density
Specific heat capacity
Dynamic viscosity
Kinematic viscosity
Thermal conductivity
Prandtl number
Surface tension
545
ρ
cp
2679
0.1248
η
2.29E-07
ν
0.1059
λ
Pr
3.157
8.241
σ
kg/m³
J/(kg·K)
mPa·s
m²/s
W/(m·K)
mN/m
13.76
ρ
cp
2118
0.00883
η
ν 6.417E-7
0.0216
λ
Pr
0.8658
kg/m³
J/(kg·K)
mPa·s
m²/s
W/(m·K)
-
Properties of the saturated vapour:
Density
Specific heat capacity
Dynamic viscosity
Kinematic viscosity
Thermal conductivity
Prandtl number
Heat of evaporation
Critical pressure
Molecular weight
∆hv
303400
Pc
M
33.7
72.15
J/kg
bar
kg/kmol
Reference values at a reduced pressure of 0.1 · Pc :
Reduced
Heat of
Density
Density
Surface
pressure
evaporation
of boiling liquid
of saturated vapour
tension
Lauterbach Verfahrenstechnik GmbH
pr = Pc /10
∆hv*
ρL
ρG
σ∗
6
337000
Pa
J/kg
kg/m³
kg/m³
mN/m
2014
VERD
2014
Sample Printout
Properties of water
Properties of Water and Steam
State 1
Calculation for saturation?
(Yes = Y / No = N)
Temperature
Pressure
ϑ1
p1
< Y
State 2
>
151.8
5.001
< N
°C
bar
ϑ1
p2
Properties of liquid water or superheated steam:
State 1
Liquid
ρ
cp
λ
η
ν
Pr
a
v
cv
h
u
s
Z
σ
β
κ
w
ε
Properties of vapour fraction of wet steam:
State 1
Density
2.669 kg/m³
ρ
Spec.isob.heat capacity
cp
2413 J/(kg·K)
Thermal conductivity
0.03103 W/(m·K)
λ
Dynamic viscosity
0.01402 mPa·s
η
Kinematic viscosity
m²/s
0.000005
ν
Prandtl number
Pr
1.09 Thermal diffusivity
a 4.82E-06 m²/s
Specific volume
v
0.3747 m³/kg
Spec.isoc.heat capacity
cv
1761 J/(kg·K)
Specific enthalpy
h
2748117 J/kg
Spec. internal energy
u
2560712 J/kg
Specific entropy
s
6821 J/(kg·K)
Compressibility
Z
0.9554 C. of therm. expansion
β 0.002935 1/K
Isentropic exponent
1.301 κ
Speed of sound
w
493.8 m/s
Dielectric constant
1.023 ε
ρ
cp
λ
η
ν
Pr
a
v
cv
h
u
s
Z
β
κ
w
ε
Lauterbach Verfahrenstechnik GmbH
ρ
cp
λ
η
ν
Pr
a
v
cv
h
u
s
Z
σ
β
κ
w
ε
915.3
4315
0.6836
0.1802
1.969E-7
1.138
1.731E-7
0.001093
3518
640218
639671
1861
0.002786
48.35
0.001037
3912
1462
43.65
7
123.3
5
°C
bar
State 2
Liquid
kg/m³
J/(kg·K)
W/(m·K)
mPa·s
m²/s
m²/s
m³/kg
J/(kg·K)
J/kg
J/kg
J/(kg·K)
mN/m
1/K
m/s
-
Density
Spec.isob.heat capacity
Thermal conductivity
Dynamic viscosity
Kinematic viscosity
Prandtl number
Thermal diffusivity
Specific volume
Spec.isoc.heat capacity
Specific enthalpy
Spec. internal energy
Specific entropy
Compressibility
Surface tension
C. of therm. expansion
Isentropic exponent
Speed of sound
Dielectric constant
>
940.6
4251
0.6843
0.2255
2.398E-7
1.401
1.711E-7
0.001063
3652
517867
517336
1563
0.002906
54.31
0.000875
4327
1517
49.87
kg/m³
J/(kg·K)
W/(m·K)
mPa·s
m²/s
m²/s
m³/kg
J/(kg·K)
J/kg
J/kg
J/(kg·K)
mN/m
1/K
m/s
-
State 2
kg/m³
J/(kg·K)
W/(m·K)
mPa·s
m²/s
m²/s
m³/kg
J/(kg·K)
J/kg
J/kg
J/(kg·K)
1/K
m/s
-
2014
VERD
2014
Sample Printout
Heat of evaporation
Entropy of evaporation
Fraction vaporized
Enthalpy of wet steam
Entropy of wet steam
Characteristics:
Molar mass
Gas constant
Critical temp.
Critical pressure
Critical density
∆hv
∆sv
x
hx
sx
M
18.02
R
461.5
Tc
373.9
pc 2.206E+7
322
ρc
Lauterbach Verfahrenstechnik GmbH
2107899
4960
J/kg
J/(kg·K)
J/kg
J/(kg·K)
g/mol
J/(kg·K)
°C
Pa
kg/m³
8
∆hv
∆sv
x
hx
sx
Validity:
0.01 °C ≤ ϑ
0.00612 bar
0.01 °C ≤ ϑ
0.00612 bar
J/kg
J/(kg·K)
J/kg
J/(kg·K)
≤
≤
≤
≤
800 °C
p ≤ 1000 bar
2000 °C
p ≤ 500 bar
2014
VERD
2014
Sample Printout
Real logarithmic temperature difference for different exchanger types
Real logarithmic temperature difference for different heat exchanger types
Shell and tube heat exchanger
Code number for exchanger type
<
50 >
Inlet temperature outside
Outlet temperature outside
ϑa1
ϑa2
151.9
151.7
°C
°C
Inlet temperature inside
Outlet temperature inside
ϑi1
ϑi2
92.49
92.69
°C
°C
Logarithmic temperature difference
(counterflow)
Correction factor
dϑ =
59.25
K
FN =
1
-
⇒ Real logarithmic temperature difference
dϑm =
59.25
K
Lauterbach Verfahrenstechnik GmbH
9
2014
VERD
2014
Sample Printout
Pressure drop in flow through evaporator tubes
Calculation of local variables
Properties:
Density of the liquid phase
Density of the vapor phase
Dynamic viscosity of the liquid phase
Dynamic viscosity of the vapor phase
ρ _l
ρ _g
η_l
η_g
544.8
13.75
0.1248
0.008833
Geometrie:
Length of evaporator tube
Inside tube diameter
Relative tube roughness
Angle of inclination of tubes
l
d
k/d
θ
1512
16
0.00625
0
Boundary conditions:
Mass flow
Vapour mass fraction
Vapour mass fraction at the inlet
Vapour mass fraction at the outlet
Number of iteration steps
Speed of sound in vapour
m
x
x1
x2
n
a =
⇒ Froude number
⇒ Auxiliary value of Froude number
⇒
⇒ Liquid volume fraction
Fr
HW
1/β
β
320.9
0.5
0
1
4
211.1
=
87.57
=
48.05
= 3.910E+7
= 2.557E-8
kg/m³
kg/m³
mPa·s
mPa·s
mm
mm
°
kg/(m²·s)
m/s
-
[3]
[2b]
[2a]
Determination of either disperse or coherent phase:
1/β
3.910E+7
≤
HW
48.05
coherent
⇒
[2]
1. Local fluid friction pressure drop
a) Vapour phase disperse
⇒
⇒
⇒
⇒
Two phase Reynolds number
Drag coefficient
K2 for β ≤ 0.4 or β > 0.4
Local fluid friction pressure drop
Re_ZP
ξ
K2
dp/dl
=
=
=
=
53587
0.034
1.007
1999
Pa/m
[6]
[5]
[7]/[8]
[4]
Fr_1
Re_1
ψ
ε _2
ε _1
ε
γ _E
γ _F
E
Φ
ξ
dp/dl
=
=
=
=
=
=
=
=
=
=
=
=
2.27E-12
0.04168
0.000001
0.000013
0.001288
0.000013
0.002286
0.002292
0.7809
1.005
0.01281
3011
Pa/m
[21]
[20]
[19]
[18]
[16]/[17]
[15]
[14]
[13]
[12]
[11]
[10]
[9]
b) Vapour phase coherent
⇒ Froude number 1
⇒ Reynolds number 1
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒ Drag coefficient
⇒ Local fluid friction pressure drop
—
Lauterbach Verfahrenstechnik GmbH
10
2014
VERD
2014
Sample Printout
2. Local static pressure drop
Range differentiation for 1/β :
Range
Range
Range
Range
1:
2:
3:
4:
1/β
HW
500
1/β
≤
<
<
>
HW
1/β ≤ 500
1/β ≤ 10000
10000
1/β = 3.910E+7
HW =
48.05
Range 4
⇒
Range
K
κ _tt
H2
H1
H
α
⇒
⇒
⇒
⇒
⇒
⇒ Vapour volume fraction
⇒ Local static pressure drop
1
=
0.9839
= 0.08459
= 0.07799
=
0.0822
= 2.557E-8
=
1
dp/dl =
0
2
3
4
[24]
[29]
[28]
[27]
[26] [30] [31]
[23] [25] [25] [25]
Pa/m
[22]
kg·m/s²
[33]
3. Acceleration pressure drop
·
Momentum flux
I =
1.506
4. Integration with the evaporator tube length
∆p_R =
∆p_S =
∆p_B =
4718
0
7299
Pa
Pa
Pa
[21a]
∆p_tot =
12017
Pa
[1]
⇒ Fluid friction pressure drop
⇒ Static pressure drop
⇒ Acceleration pressure drop
⇒ Total pressure drop
Lauterbach Verfahrenstechnik GmbH
11
[34a]
2014
VERD
2014
Sample Printout
Heat transfer during boiling of saturated liquids - flow patterns Flow patterns in horizontal and slightly inclined tubes
Input variables:
Hydraulic diameter of the pipe
d
mm
16
·
Flow vapour content
x
0.9
kg/kg
·
Mass flow density
m
320.9
kg/(m²·s)
Surface tension of the fluid
σ
8.241
mN/m
Density of the liquid phase
ρL
544.8
kg/m³
Density of the vapour phase
ρG
13.75
kg/m³
Dynamic viscosity of liquid phase
ηL
0.1248
mPa·s
Dynamic viscosity of vapour phase
ηG 0.008833
mPa·s
Angle of inclination of the pipe
Θ
° ( ≤ 10° )
0
Design variables:
·
X = f (
x
¡ f (
¡
0.9
;
ρG
;
ρL
;
ηG
;
;
13.75
;
544.8
;
0.008833
;
)
)
0.1248
0.03235
ξ L = 0.3164 / ReL 0.25 ¡ 0.3164 /
·
m
· (1 -
ReL =
320.9
· (1 -
·
0.25
¡
0.03951
x
) ·
0.9 ) ·
d
/
0.016
/
ηL
0.1248
¡
4114
·
ReG =
m
·
ReG =
320.9
·
(ReL FrG ')0.5
4114
·
ReL =
x
0.9
·
d
/
ηG
·
0.016
/
0.008833
¡
523110
¡
·
·
¡ f (
m
¡ f (
320.9 ;
¡
ηL
;
x
0.9
;
ρG
;
ρL
;
;
13.75
;
544.8
;
ηL
0.1248
;
;
Θ
)
0 )
547.1
—
Lauterbach Verfahrenstechnik GmbH
12
2014
VERD
2014
Sample Printout
FrGm 0.5 ¡
·
¡ f (
¡ f (
¡
·
m
;
320.9
x
;
;
0.9
d
;
0.016
;
ρL
;
ρG
)
;
544.8
;
13.75
)
;
ρL
;
;
544.8
;
8.422
(Fr Eu)L 0.5 ¡
·
¡ f (
¡ f (
¡
ξL
ρG
;
;
;
;
0.03951
13.75
·
m
Θ
320.9
0
;
)
x
;
;
)
0.9
;
d
0.016
0.02116
(We/Fr)L ¡ f (
d
¡ f (
~
h =
0.05859
0.016
ε =
~
~
fL = f ( h ) ¡ f (
;
0.05859
;
Φ =
) ¡
8.241
)
) ¡
166
5.445
0.01857
0.01857
0.05859
σ
;
544.8
0.9848
~
~
fG = π / 4 - fL ¡ π / 4 ~
~
Ui = f ( h ) = f (
ρL
;
) ¡
¡
0.7668
0.4697
Flow pattern:
0
1
2
3
4
5
6
7
=
=
=
=
=
=
=
=
Unknown flow
Stratified flow
Wave flow
Bubble flow
Slug / plug flow
Turbulent gas and laminar liquid flow
Mist flow
Annular flow
⇒ Flow pattern:
Lauterbach Verfahrenstechnik GmbH
7
13
2014
VERD
2014
Sample Printout
Heat transfer during boiling of saturated liquids -nucleate boiling horizontalNucleate boiling in horizontal tubes
Boundary conditions:
0 = Constant wall temperature
1 = Constant heat flux
0
Type of substance: 0 = Non-cryogen
1 = Cryogen
0
Input variables:
Mass flow
Number of tubes
Inside tube diameter
Tube wall thickness
Thermal conductivity of tube
⇒ Wall heat conduction
Arithmetic mean roughness height
m
n
di
s
λw
λ w ·s
Ra
16
2
52
0.104
0.002
kg/h
mm
mm
W/(m·K)
W/K
mm
320.9
kg/(m²·s)
·
Mass velocity
m
·
Vapour mass fraction
x
0.9
kg/kg
·
Heat flux
Pressure
Critical pressure
Reduced pressure
p / pc
q
p
pc
= p*
Properties:
Density of the liquid phase
Density of the vapour phase
Heat of evaporation
Surface tension of the medium
237354
500000
3370000
0.1484
W/m²
Pa
Pa
-
ρL
ρG
∆hv
σ
544.8
13.75
303400
8.241
kg/m³
kg/m³
J/kg
mN/m
Properties at reference
boiling pressure p0 = 0.1 · pc :
Density of the liquid phase
Density of the vapour phase
Heat of evaporation
Surface tension of the medium
p0 =
337000
Pa
ρ L0
ρ G0
∆hv0
σ0
564.4
9.341
321200
9.882
kg/m³
kg/m³
J/kg
mN/m
Molecular weight of the medium
Correction factor
M
CF
72.15
1.169
kg/kmol
-
d0
Ra0
10
0.001
mm
mm
20000
3070
W/m²
W/(m²·K)
Reference values:
Tube diameter
Arithmetic mean roughness height
·
Heat flux
Heat transfer coefficient
q0
α0
(Reference value for the heat transfer coefficient in nucleate boiling
at q0 , p0 and Ra0 = 1.0 µm)
Correction factors:
Correction factor κ
1
Coordinate in direction of flow
z =
Correction factor ψ
327.6
mm
1
—
Lauterbach Verfahrenstechnik GmbH
14
2014
VERD
2014
Sample Printout
Flow patterns:
1 = Stratified flow
2 = Wavy flow
3 = Bubble flow
4 = Slug or plug flow
5 = Turbulent gas and laminar liquid flow
6 = Mist flow
7 = Annular flow
⇒ Flow pattern:
7
-
Design variables:
p*
=
p / pc
=
n(p*)
=
0.6191
F(p*)
=
1.185
F(d)
=
0.7906
=
1.097
=
0.4761
F(W)
·
500000 /
·
α(z)B
n
q
= ψ
·
CF
·
·
·
· F(p*) · F(d) · F(W) · F(m;x)
·
q0
237354
=
0.1484
·
F(m;x)
α0
3370000 =
1 ·
0.6191
1.169 ·
·
1.185 · 0.7906 ·
1.097 · 0.4761
20000
=
2.646
⇒ α(z)B =
8122
Lauterbach Verfahrenstechnik GmbH
W/(m²·K)
15
2014
VERD
2014
Sample Printout
CAD program for shell and tube heat exchangers
Tube-side
TEMA type
AEL
TEMA: Front end:
A
Medium
Inlet pressure
Pressure stage
Inlet temperature
Outlet temperature
Mean temperature
Design temperature
Design pressure
Shell:
Shell-side
E
Rear end:
n-pentane
pi
ϑe,i
ϑa,i
ϑm,i
L
Steam condensation
500000
800000
92.49
92.69
92.59
110
600000
Pa
Pa
°C
°C
°C
°C
Pa
50
60.3
2.9
54.5
mm
mm
mm
100
114.3
3.6
107.1
mm
mm
mm
pa
ϑe,a
ϑa,a
ϑm,a
500000
800000
151.9
151.7
151.8
180
600000
Pa
Pa
°C
°C
°C
°C
Pa
80
88.9
3.2
82.5
mm
mm
mm
20
26.9
2.3
22.3
mm
mm
mm
Inlet nozzle:
Flange connection n.w.*
Outside diameter
Nozzle wall thickness
Inside diameter
DN
DN
Outlet nozzle:
Flange connection n.w.*
Outside diameter
Nozzle wall thickness
Inside diameter
DN
DN
* n.w. = nominal width
Geometry:
Shell outside diam. Do
Shell inside diam.
Di
Bundle - shell distance
Tube outside diam.
do
Tube pitch (crosswise)
Pitch angle
Φ
Central baffle spacing
Inlet baffle spacing
Baffle borehole
Sealing strips pairs
188.9
176.3
12
20
25
60
mm
mm
mm
mm
mm
°
mm
mm
mm
-
Number of passes (tube-side)
Number of passes (shell-side)
6.3
mm
Tube inside diameter di
Tube pitch(lengthwise)
Pass lane width
b
Number of baffles/pass
Baffle diameter
Baffle cut
16
21.65
40
mm
mm
mm
mm
%
1
1
Final bundle length
Final shell length
la
la
Number of tubes
Expansion joint diameter
Plate thickness (fixed plate)
Plate thickness (free plate)
R
Lauterbach Verfahrenstechnik GmbH
Shell wall thickness sa
1512
1512
mm
mm
31
30
30
16
-
mm
mm
mm
2014

Similar documents