INSTRUCTION MANUAL HIGH-IMPEDANCE DIFFERENTIAL RELAY GRB150 - D
Transcription
INSTRUCTION MANUAL HIGH-IMPEDANCE DIFFERENTIAL RELAY GRB150 - D
6 F 2 S 0 9 0 0 INSTRUCTION MANUAL HIGH-IMPEDANCE DIFFERENTIAL RELAY GRB150 - ∗∗∗D © TOSHIBA Corporation 2010 All Rights Reserved. ( Ver. 3.0) 6 F 2 S 0 9 0 0 Safety Precautions Before using this product, please read this chapter carefully. This chapter describes the safety precautions recommended when using the GRB150. Before installing and using the equipment, this chapter must be thoroughly read and understood. Explanation of symbols used Signal words such as DANGER, WARNING and two kinds of CAUTION, will be followed by important safety information that must be carefully reviewed. DANGER Indicates an imminently hazardous situation which will result in death or serious injury if you do not follow the instructions. WARNING Indicates a potentially hazardous situation which could result in death or serious injury if you do not follow the instructions. CAUTION CAUTION Indicates a potentially hazardous situation which if not avoided, may result in minor injury or moderate injury. Indicates a potentially hazardous situation which if not avoided, may result in property damage. ⎯1⎯ 6 F 2 S 0 9 0 0 DANGER • Current transformer circuit Never allow the current transformer (CT) secondary circuit connected to this equipment to be opened while the primary system is live. Opening the CT circuit will produce a dangerously high voltage. WARNING • Exposed terminals Do not touch the terminals of this equipment while the power is on, as the high voltage generated is dangerous. • Residual voltage Hazardous voltage can be present in the DC circuit just after switching off the DC power supply. It takes approximately 30 seconds for the voltage to discharge. • Fiber optic When connecting this equipment via an optical fibre, do not look directly at the optical signal. CAUTION • Earth The earthing terminal of the equipment must be securely earthed. CAUTION • Operating environment The equipment must only used within the range of ambient temperature, humidity and dust detailed in the specification and in an environment free of abnormal vibration. • Ratings Before applying AC voltage and current or the DC power supply to the equipment, check that they conform to the equipment ratings. • Printed circuit board Do not attach and remove printed circuit boards when the DC power to the equipment is on, as this may cause the equipment to malfunction. • External circuit When connecting the output contacts of the equipment to an external circuit, carefully check the supply voltage used in order to prevent the connected circuit from overheating. • Connection cable Carefully handle the connection cable without applying excessive force. • Modification Do not modify this equipment, as this may cause the equipment to malfunction. • Disposal This product does not contain expendable supplies nor parts that can be recycled. When disposing of this equipment, do so in a safe manner according to local regulations as an industrial waste. If ⎯2⎯ 6 F 2 S 0 9 0 0 any points are unclear, please contact our sales representatives. • Plastics material This product contains the following plastics material. - ABS, Polycarbonate, Acrylic resins ⎯3⎯ 6 F 2 S 0 9 0 0 Contents Safety Precautions 1 1. Introduction 8 2. Application Notes 10 2.1 10 10 10 12 12 13 13 14 14 14 16 16 2.2 2.3 2.4 3. Technical Description 17 3.1 3.2 17 22 22 22 23 25 26 26 26 27 27 28 28 28 30 30 31 31 32 32 33 3.3 3.4 3.5 4. High-impedance Differential Protection 2.1.1 Principle of operation 2.1.2 Through Fault Stability 2.1.3 Current Transformer Requirements 2.1.4 Fault Setting or Primary Operating Current 2.1.5 Peak Voltage Developed under Internal Fault Conditions 2.1.6 CT Supervision Scheme Logic 2.2.1 High-impedance Differential Protection 2.2.2 Cold Load Protection Setting Tripping Output Hardware Description Input and Output Signals 3.2.1 Input Signals 3.2.2 Binary Input Signals 3.2.3 Binary Output Signals 3.2.4 PLC (Programmable Logic Controller) Function Automatic Supervision 3.3.1 Basic Concept of Supervision 3.3.2 Relay Monitoring 3.3.3 Trip Circuit Supervision 3.3.4 Circuit Breaker Monitoring 3.3.5 PLC Data and IEC61850 Mapping Data Monitoring 3.3.6 IEC61850 Communication Monitoring 3.3.7 Failure Alarms 3.3.8 Trip Blocking 3.3.9 Setting Recording Function 3.4.1 Fault Recording 3.4.2 Event Recording 3.4.3 Disturbance Recording Metering Function User Interface 34 4.1 34 Outline of User Interface ⎯4⎯ 6 F 2 S 0 9 0 0 4.2 4.3 4.4 4.5 4.6 4.7 5. 6. 4.1.1 Front Panel 4.1.2 Communication Ports Operation of the User Interface 4.2.1 LCD and LED Displays 4.2.2 Relay Menu 4.2.3 Displaying Records 4.2.4 Displaying the Status Information 4.2.5 Viewing the Settings 4.2.6 Changing the Settings 4.2.7 Testing Personal Computer Interface Relay Setting and Monitoring System IEC 60870-5-103 Interface IEC 61850 Communication Clock Function 34 36 37 37 40 42 45 48 50 68 71 71 72 72 73 Installation 74 5.1 5.2 5.3 5.4 5.5 Receipt of Relays Relay Mounting Electrostatic Discharge Handling Precautions External Connections 74 74 74 74 75 Commissioning and Maintenance 76 6.1 6.2 76 77 77 77 78 79 79 80 80 81 83 83 86 86 87 87 87 88 88 88 89 6.3 6.4 6.5 6.6 6.7 Outline of Commissioning Tests Cautions 6.2.1 Safety Precautions 6.2.2 Precautions for Testing Preparations Hardware Tests 6.4.1 User Interfaces 6.4.2 Binary Input Circuit 6.4.3 Binary Output Circuit 6.4.4 AC Input Circuits Function Test 6.5.1 Measuring Element 6.5.2 Protection Scheme 6.5.3 Metering and Recording Conjunctive Tests 6.6.1 On Load Test 6.6.2 Tripping Circuit Test Maintenance 6.7.1 Regular Testing 6.7.2 Failure Tracing and Repair 6.7.3 Replacing a Failed Relay Unit ⎯5⎯ 6 F 2 S 0 9 0 0 6.7.4 Resumption of Service 6.7.5 Storage 7. Putting Relay into Service 90 90 91 ⎯6⎯ 6 F 2 S 0 9 0 0 Appendix A Block Diagram 93 Appendix B Signal List 95 Appendix C Binary Output Default Setting List 123 Appendix D Details of Relay Menu and LCD & Button Operation Instruction 127 Appendix E Outline of GRB150 and EB-101, -102 137 Appendix F External Connection 141 Appendix G Relay Setting Sheet 145 Appendix H Commissioning Test Sheet (sample) 175 Appendix I 179 Return Repair Form Appendix J Technical Data 183 Appendix K Symbols Used in Scheme Logic 189 Appendix L Setting Calculation 193 Appendix M IEC60870-5-103: Interoperability and Troubleshooting 197 Appendix N Timing Chart of Cold Load Condition Judgment 209 Appendix O IEC61850: MICS & PICS 211 Appendix P Ordering 243 The data given in this manual are subject to change without notice. (Ver. 3.0) ⎯7⎯ 6 F 2 S 0 9 0 0 1. Introduction The GRB150 provides high-impedance differential protection scheme and is applied for the following protections: • Restricted earth fault protection • Single or one-and-a-half busbar protection • T zone protection of one-and-a-half busbar arrangement • Short line cable protection The high-impedance differential protection detects a fault even if the CT is saturated by fault current. A user-friendly HMI is provided through a backlit LCD, programmable LEDs, keypad and menu-based operating system. PC access is also provided, either for local connection via a front-mounted RS232 port, or for remote connection via a rear-mounted RS485, fibre optic port or Ethernet LAN port. The communication system allows the user to read and modify the relay settings, and to access data gathered by the relay’s metering and recording functions. Further, data communication with substation control and automation systems is supported according to the IEC 61850 and IEC 60870-5-103 standards. Data available either via the relay HMI or communications ports includes the following functions. The GRB150 provides the following metering and recording functions. • Metering • Fault records • Event records • Disturbance recording (available via communications ports) The GRB150 has two models, model 101 and model 201. The model 101 is used for single-phase applications and for restricted earth fault protection. The model 201 is used for three-phase applications and for three-phase busbar, T zone and short line cable protection. Table 1.1.1 shows the members of the GRB150 series and identifies the functions to be provided by each member. ⎯8⎯ 6 F 2 S 0 9 0 0 Table 1.1.1 Series Members and Functions GRB150 - Model Number 101D High-impedance differential (DIF: single-phase) 201D 9 High-impedance differential (DIF: three-phase) 9 Cold Load Protection 9 9 CT Supervision (DIFSV) 9 9 Self supervision 9 9 Trip circuit supervision 9 9 CB State Monitoring 9 9 Eight settings groups 9 9 Metering 9 9 Fault records 9 9 Event records 9 9 Disturbance records 9 9 IEC60870-5-103 Communication 9 9 IEC61850 communication 9 9 ⎯9⎯ 6 F 2 S 0 9 0 0 2. Application Notes 2.1 High-impedance Differential Protection 2.1.1 Principle of operation The operating principle of high-impedance differential protection is depicted in Figure 2.1.1. Under normal operating conditions or in the event of an external fault the primary currents entering and leaving the protected zone will summate to zero. The current transformers are connected in parallel hence if their ratios are the same the secondary currents will also sum to zero. According to the direction of the respective secondary current for each current transformer their driving voltages are in opposition and hence a low voltage is generated in the differential circuit such that under ideal conditions the voltage across the relay is zero. Busbar Busbar EB-101 or Resistor EB102 EB-101 or Resistor EB102 GRB150 Varistor GRB150 Varistor Figure 2.1.1 High-Impedance Differential Protection In the case of an internal fault the current transformer secondary currents will be in the same direction and their sum will correspond to the total primary fault current. The corresponding driving voltages will be in the same direction and a high voltage will be developed in the differential circuit as it attempts to drive the secondary current through the burden presented by the high-impedance relay. Dependent upon its setting the voltage relay will operate. Note that in Figure 2.1.1 an external unit, either type EB-101 for single-phase protection or EB-102 for three-phase protection has been shown. These include a varistor to limit the high voltage developed in the differential circuit during internal faults and a series resistor to fix the relay input impedance at 667ohms. Refer to Sections, 2.1.4 “Fault Setting or Primary Operating Current” and 2.1.5 “Peak Voltage Developed under Internal Fault Conditions”. 2.1.2 Through Fault Stability The stability of a current differential system using a high-impedance relay and low reactance current transformers is determined by means of calculation. If the relay setting voltage is made equal to or greater than the maximum voltage that can appear across the relay circuit for a given value of through fault current the current differential system will be stable. In calculating the required setting voltage for the relay it is assumed that one current transformer will become fully saturated and that the remaining current transformers will maintain their ratio. An example to illustrate this point is shown in Figure 2.1.2 for a current differential system for a busbar with several feeders. ⎯ 10 ⎯ 6 F 2 S 0 9 0 0 Busbar EB-101 or EB102 Resistor GRB150 Varistor Figure 2.1.2 External Fault – Busbar with Several Feeders In this example an external fault is fed through a single circuit with the fault current being supplied through all of the other circuits connected to the busbar. Since the total busbar current has to be transformed by the current transformer on the faulted feeder there is a high probability of this current transformer saturating whilst the current transformers on the other more lightly loaded circuits remain unsaturated. Under these conditions a secondary current will flow in the differential circuit that is equivalent to the primary fault current. The voltage drop caused by the secondary current that flows in the differential circuit therefore determines the voltage input at the relay. In the equivalent circuit the shunt impedance for the fully saturated CT is negligible and the CT will not produce an output, this is shown as a short circuit across the excitation impedance in Figure 2.1.3. Busbar RS1 RL1 RL2 GRB150 + ZR EB-101/ EB-102 CT1 ZE1 Figure 2.1.3 RS2 ZE2 CT2 Equivalent Circuit of the Differential Circuit for an External Fault The total voltage drop is therefore due to the secondary fault current through the secondary winding resistance of the saturated CT together with the wiring connecting it to the relay circuit terminals. Provided that the relay setting voltage exceeds the value of VR in Equation (1) the scheme will remain stable. ⎯ 11 ⎯ 6 F 2 S 0 9 0 0 VR ≥ K1 (RS2 + RL2) IFmax/N (1) where, VR : maximum voltage developed across the relay circuit K1 : safety factor – for the GRB150, K1=1.2 RS : resistance of current transformer secondary winding RL : resistance of secondary wiring for CT connecting lead loop – most onerous case IFmax : maximum through fault current N : CT ratio Factor K1 is associated with the design of the GRB150 relay and directly relates to its inherent capability to block the unidirectional transient component of the fault current. This is based on previous service experience and extensive laboratory tests. In addition to K1 an inherent safety factor exists because the basic assumption of complete saturation of one current transformer with no ratio error of the complementary one is an extreme case of unbalance. In practice it is unlikely to occur as when one current transformer begins to saturate its burden is transferred to the other current transformer(s) due to the fact that they are of the same construction and experience the same secondary voltage. 2.1.3 Current Transformer Requirements • All current transformers used in the scheme shall have the same turns ratio • All current transformers shall be of the low reactance type class X as specified in B.S.3938 in terms of turns ratio, knee point voltage, secondary winding resistance and secondary exciting current • Bushing or toroidal current transformers with fully distributed windings and low leakage flux shall be used. • The secondary winding resistance must be kept to a minimum • It is preferable that the current transformers are of similar design • Other devices must not be connected to the same CT core • CT knee-point voltage, Vk ≥ 2×VR For an internal fault it is essential that the current transformer(s) produce sufficient output to operate the relay. In order to achieve this, cater for any current transformer ratio errors and ensure a high speed of operation the current transformers should have a VK of at least twice that of the relay setting voltage as stated above. A setting example is provided in Appendix L. 2.1.4 Fault Setting or Primary Operating Current During an internal fault, the fault current must provide the exciting current for all of the connected current transformers as well as the relay circuit current. To ensure positive operation, the current requirement of the relay and the magnetising current requirement of all of the connected current transformers at the relay setting voltage must be less than the minimum fault current that the relay ⎯ 12 ⎯ 6 F 2 S 0 9 0 0 is required to detect. Therefore the secondary effective setting is the sum of the relay minimum operating current and the excitation losses in all parallel connected current transformers. The currents are not in-phase and hence the summation should be vectorial. However, an arithmetic addition is acceptable resulting in the calculated setting being slightly higher than the actual setting. Imin = (n.Ie + Ir + I)N (2) where, Imin : minimum primary operating current n : number of current transformers connected to the GRB150 relay Ie : value of current transformer secondary exciting current at GRB150 setting voltage I : relay current at setting voltage where, I = VR /ZR and ZR is the GRB150 input impedance of 667 ohms with varistor unit EB-101 for single-phase protection or EB-102 for three-phase protection Ir : varistor current at GRB150 setting voltage, this is obtained from the varistor V-I characteristic N : CT ratio If the value calculated for Imin is too low the sensitivity can be reduced by the use of a shunt resistor connected across the relay/varistor unit input. A setting example is provided in Appendix L. 2.1.5 Peak Voltage Developed under Internal Fault Conditions Under internal fault conditions a high voltage is developed in the differential circuit by the current transformer so a varistor, (non-linear resistor) is connected in parallel to the relay to limit the overvoltage. A varistor unit EB-101 is provided for single-phase protection and the EB-102 unit for three-phase protection. Note: It is our standard practice to use the EB-101 and EB-102 varistor units when applying the GRB150. For those who prefer the more traditional approach of using externally mounted components in place of the EB-101 and EB-102 units the GRB150 can be applied with externally mounted suitably rated, linear and non-linear devices provided that the input impedance is maintained at 667 ohms. 2.1.6 CT Supervision The DIFSV element provides CT supervision to detect any unbalance in the CT secondary circuit in the event of a fault in the wiring or the CT itself. The voltage setting of this element must be greater than any erroneous voltage that can be developed under normal service conditions. The two main sources of error are: • CT turns ratio error • Differences in the respective lengths of the CT secondary connecting leads to the paralleling point of the differential circuit The setting of the DIFSV element is best illustrated with an example which is given in Appendix L. ⎯ 13 ⎯ 6 F 2 S 0 9 0 0 2.2 Scheme Logic 2.2.1 High-impedance Differential Protection Figure 2.2.1 shows the scheme logic for the high-impedance differential protection type GRB150. The differential protection operates on a per phase basis, although output signals of the high-impedance differential element DIF can perform instantaneous three-phase tripping of the circuit breaker. The supervisory element DIFSV will detect any erroneous differential voltage appearing as a result of CT circuit failure. The tripping output signal of the DIF elements can be blocked when the DIFSV element output is maintained for the setting time of TVDSV. To block the tripping output with DIFSV operation, set scheme switch [VDCHK] to “ON” and set [SVCNT] to “ALM&BLK”. The output signal VD ERR of DIFSV element is used for alarm purposes. The DIF and DIFSV can be disabled by the PLC signals DIF_BLOCK and DIFSV_BLOCK respectively. Model 101 DIF-OR 11 ≥1 A DIF 447 ≥1 DIF 21 & 12 B & 13 C DIF TRIP-A 22 DIF TRIP-B 23 DIF TRIP-C & Model 201 1 1536 DIF_BLOCK + COLD LOAD from Figure 2.2.2. & "ALM&BLK" Model 101 ≥1 DIFSV 448 TVDSV 24 t 0 & 15 DIFSV B 16 C Model 201 1 & t 0 & t 0 ≥1 VD ERR 25 26 0.10 - 60.00s [VDCHK] "ON" 1537 DIFSV_BLOCK 1 Figure 2.2.1 Scheme Logic of High-impedance Differential Protection 2.2.2 Cold Load Protection Cold load protection provides the following functions: • Cold load status judgment • DIF characteristic modification during cold load status 2.2.2.1 DIF TRIP 27 A.M.F ON + 28 DIFSV-OR 14 ≥1 A ≥1 [SVCNT] Cold-load status judgment Figure 2.2.2 shows the cold load status judgment logic. ⎯ 14 ⎯ 6 F 2 S 0 9 0 0 Function 1 1538 CB_FOR_CLP 10 TCLP & ≧1 & COLD LOAD 0.01–100.00s By PLC Function 2 769 BI2 COMMAND 1 [CLEN] F1 F2 Off & TCLE t 0 TCLR 0 t 0.00–100.00s 0.00–100.00s [CLPTST] Off CL N-CL 1 1 Figure 2.2.2 Cold Load Status Judgment Logic Two separate operational functions are available and they depend on the status of the PLC signal CB_FOR_CLP. (Refer to Appendix N.) - Function 1: used when ‘CB closing command’ is allocated to the PLC signal CB_FOR_CLP”. - Function 2: used when ‘CB contact’ is allocated to the PLC signal CB_FOR_CLP. These functions are selected by the scheme switch [CLEN]. When using the ’CB close command’ function, set [CLEN] to “F1”. When using the ’CB contact’, set [CLEN] to “F2”. If the cold load protection is disabled, set [CLEN] to “OFF”. The [CLPTST] switch is used for testing purposes – please refer to Section 4.2.7.1. The timing chart of cold load status judgment is shown in Appendix N. 2.2.2.2 DIF characteristic modification during cold load status If cold load status has been determined, then the operation sensitivity of DIF is modified from ([DIF] setting value) to ([DIF] setting × [DIFCC] setting value). ⎯ 15 ⎯ 6 F 2 S 0 9 0 0 2.3 Setting The following list shows the setting elements for the high-impedance differential protection and their setting ranges. Element Range Step Default Off / On - On [CLEN] Off / F1 / F2 - Off [SVCNT] ALM&BLK / ALM - ALM&BLK DIF 10 - 600V 1V 100 V DIFSV 5 - 100V 1V 50 V TVDSV 0.10 - 60.00s 0.01s 0.50 s DIFCC 1.00 – 10.00 0.01 1.00 TCLP 0.01 – 100.00s 0.01s 0.01 s TCLE 0.00 – 100.00s 0.01s 0.00 s TCLR 0.00 – 100.00s 0.01s 0.00 s [VDCHK] 2.4 Tripping Output GRB150 provides 6 auxiliary relays and 4 high-speed auxiliary relays for alarm and trip as described in Section 3.2.7. These auxiliary relays can be assigned to any protection or alarm outputs by setting. After the trip signal disappears by clearing the fault, the reset time of the tripping output relay can be programmed by PLC function. The setting is respective for each output relay. When the relay is latched, it can be reset with the RESET key on the relay front panel or a binary input by PLC signal. This resetting resets all the output relays collectively. For the tripping output relay, a check must be made to ensure that the tripping circuit is open by monitoring the` status of a circuit breaker auxiliary contact prior to the tripping output relay resetting, in order to prevent the tripping output relay from directly interrupting the circuit breaker tripping coil current. ⎯ 16 ⎯ 6 F 2 S 0 9 0 0 3. Technical Description 3.1 Hardware Description Case outlines of GRB150, EB-101 and EB-102 are shown in Appendix E. The hardware structure of GRB150 is shown in Figure 3.1.1. The GRB150 relay unit consists of the following hardware modules. These modules are fixed to the front panel and cannot be taken off individually. The human machine interface module is provided with the front panel. • Power module (POWD) • Signal processing module (SPMD) • Human machine interface module (HMI) The hardware block diagram of GRB150 is shown in Figure 3.1.2. SPMD POWD HMI IN SERVI CE TR IP ALARM VIEW RESET A Handle for relay withdrawal B 0V CAN CEL ENTER END Figure 3.1.1 Hardware Structure without Case ⎯ 17 ⎯ 6 F 2 S 0 9 0 0 DC supply Binary input AC input POWD ETH Ethernet LAN I/F ×1 SPMD DC/DC Converter Photo-coupler ×8 CT × 1 or 3 Analogue filter Multiplexer A/D converter MPU RAM ROM Remote PC RS485 or Optical fibre port × 1 Remote PC Auxiliary relay × 11 Binary output (Trip command etc.) IRIG-B port External clock Human machine Interface (HMI) Liquid crystal display 16 characters × 2 lines LEDs Local personal computer RS232C I/F Operation keys Monitoring jacks Figure 3.1.2 Hardware Block Diagram POWD Module The POWD module insulates between the internal and external circuits through an auxiliary transformer and transforms the magnitude of AC input signals to suit the electronic circuits. The AC input signals may be one to three phase currents and a residual current depending on the relay model. This module incorporates 1 or 2 auxiliary CTs depending on the relay model, DC/DC converter and 8 photo-coupler circuits for binary input signals. The available input voltage ratings of the DC/DC converter are, 48V, 110V/125V or 220/250V. The normal range of input voltage is −20% to +20%. SPMD Module The SPMD module consists of analogue filter, multiplexer, analogue to digital (A/D) converter, main processing unit (MPU), random access memory (RAM) and read only memory (ROM) and executes all kinds of processing such as protection, measurement, recording and display. The analogue filter performs low-pass filtering for the corresponding current signals. The A/D converter has a resolution of 12 bits and samples input signals at sampling frequencies of 2400 Hz (at 50 Hz) and 2880 Hz (at 60 Hz). ⎯ 18 ⎯ 6 F 2 S 0 9 0 0 The SPMD module also incorporates 7 auxiliary relays (BO1-BO6 and FAIL) and 4 high-speed auxiliary relays (HBO1- HBO4) for binary output signals. BO1 to BO6 and HBO1 to HBO4 are user configurable output signals and have one normally open contact. The auxiliary relay FAIL has one normally open and one normally closed contacts, and operates when a relay failure or abnormality in the DC circuit is detected. RS485, fibre optic and/or Ethernet LAN serial ports are provided for communication to a remote PC, and IRIG-B port also can be provided for external clock. Ethernet LAN ports are mounted on ETH sub-module. Human Machine Interface (HMI) Module The operator can access the GRB150 via the human machine interface (HMI) module. As shown in Figure 3.1.3, the HMI panel has a liquid crystal display (LCD), light emitting diodes (LED), view and reset keys, operation keys, monitoring jacks and an RS232C connector on the front panel. The LCD consists of 16 columns by 2 rows with a back-light and displays recording, status and setting data. There are a total of 9 LED indicators and their signal labels and LED colors are defined as follows: Label Color Remarks IN SERVICE Green Lit when the relay is in service and flickered when the relay is in “Test” menu. TRIP Red Lit when a trip command is issued. ALARM Red Lit when a failure is detected. (LED1) Yellow (LED2) Yellow (LED3) Yellow (LED4) Yellow (LED5) Yellow (LED6) Yellow LED1 to LED6 are user-configurable. Each is driven via a logic gate which can be programmed for OR gate or AND gate operation. Further, each LED has a programmable reset characteristic, settable for instantaneous drop-off, or for latching operation. A configurable LED can be programmed to indicate the OR combination of a maximum of 4 elements, the individual statuses of which can be viewed on the LCD screen as “Virtual LEDs.” For the setting, see Section 4.2.6.10. For the operation, see Section 4.2.1. The TRIP LED and an operated LED if latching operation is selected, must be reset by user, either by pressing the RESET key, by energising a binary input which has been programmed for ‘Remote Reset’ operation, or by a communications command. Other LEDs operate as long as a signal is present. The RESET key is ineffective for these LEDs. Further, the TRIP LED is controlled with the scheme switch [AOLED] whether it is lit or not by an output of alarm element such as OC4 ALARM, EF4 ALARM, etc.. The VIEW key starts the LCD indication and switches between windows. The RESET key clears the LCD indication and turns off the LCD back-light. The operation keys are used to display the record, status and setting data on the LCD, input the ⎯ 19 ⎯ 6 F 2 S 0 9 0 0 settings or change the settings. The monitoring jacks and two pairs of LEDs, A and B, on top of the jacks can be used while the test mode is selected in the LCD window. Signals can be displayed on LED A or LED B by selecting the signal to be observed from the "Signal List" and setting it in the window and the signals can be transmitted to an oscilloscope via the monitoring jacks. (For the "Signal List", see Appendix C.) The RS232C connector is a 9-way D-type connector for serial RS232C connection. This connector is used for connection with a local personal computer. Screw for cover Liquid crystal display IN SERVICE TRIP ALARM Light emitting diodes (LED) VIEW RESET Operation keys Ligh emitting diodes Monitoring Jacks A B RS232C connector 0V CAN CEL ENTER END Screw for handle To a local PC Screw for cover Figure 3.1.3 Front Panel ⎯ 20 ⎯ 6 F 2 S 0 9 0 0 EB-101 and EB-102 Varistor unit EB101 or 102 is connected in parallel to the GRB150 to prevent an overvoltage generated at the differential circuit during a fault. Figure 3.1.4 shows an internal circuit of the varistor unit. The EB-101 is coupled with the GRB150 model 101 for single-phase protection, and the EB-102 is coupled with the GRB150 model 201 for three-phase protection. 2 kΩ TB1-1 2 kΩ TB1-4 2 kΩ 11Ω Varistor TB1-2 TB1-8 TB1-5 Earth (a) EB-101 2 kΩ TB1-1 2 kΩ TB2-1 2 kΩ 11Ω Varistor TB1-2 A phase TB22 kΩ TB1-3 2 kΩ TB2-3 2 kΩ 11Ω TB2- Varistor TB1-4 B phase 2 kΩ 2 kΩ TB1-5 TB2-5 2 kΩ 11Ω Varistor TB1-6 C phase TB2- TB1-8 Earth (b) EB-102 Figure 3.1.4 Internal Circuit of Varistor Unit ⎯ 21 ⎯ 6 F 2 S 0 9 0 0 3.2 Input and Output Signals 3.2.1 Input Signals AC input signals Table 3.2.1 shows the AC input signals necessary for each of the GRB150 models and their respective input terminal numbers. Table 3.2.1 AC Input Signals 3.2.2 Terminal No. of TB1 GRB150-101 GRB150-201 1-2 3-4 5-6 Current A phase current B phase current C phase current - - Binary Input Signals The GRB150 provides eight programmable binary input circuits. Each binary input circuit is programmable by PLC function, and provided with the function of Logic level inversion. The binary input circuit of the GRB150 is provided with a logic level inversion function and a pick-up and drop-off delay timer function as shown in Figure 3.2.1. Each input circuit has a binary switch BISNS which can be used to select either normal or inverted operation. This allows the inputs to be driven either by normally open or normally closed contacts. Where the driving contact meets the contact conditions then the BISNS can be set to “Norm” (normal). If not, then “Inv” (inverted) should be selected. The pick-up and drop-off delay times can be set 0.0 to 300.00s respectively. Logic level inversion function, and pick-up and drop-off delay timer settings are as follow: Element Contents Range Step Default BI1SNS - BI8SNS Binary switch Norm/ Inv BI1PUD - BI8PUD Delayed pick-up timer 0.00 - 300.00s 0.01s 0.00 BI1DOD - BI8DOD Delayed drop-off timer 0.00 - 300.00s 0.01s 0.00 Norm The operating voltage of binary input signal is typical 74V DC at 110V/125V DC rating and 138V DC at 220/250V DC. The minimum operating voltage is 70V DC at 110/125V DC rating and 125V DC at 220/250V DC. The binary input signals can be programmed to switch between eight settings groups. Change of active setting group is performed by PLC (Signal No. 2640 to 2647). Four alarm messages (Alarm1 to Alarm4) can be set. The user can define a text message within 16 characters for each alarm. The messages are valid for any of the input signals BI1 to BI8 by setting. Then when inputs associated with that alarm are raised, the defined text is displayed on the LCD. These alarm output signals are signal Nos. 2560 to 2563. ⎯ 22 ⎯ 6 F 2 S 0 9 0 0 (+) (−) BI1 1284 BI1PUD BI1DOD t 0 0 [BI1SNS] t 768 BI1 "Norm" 1 "Inv" BI2 1285 BI2PUD BI2DOD t 0 0 t BI2 [BI2SNS] 769 "Norm" 1 "Inv" BI8 1291 BI8PUD BI8DOD t 0 0 [BI8SNS] t 775 BI8 "Norm" 1 "Inv" 1 0V Figure 3.2.1 Logic Level Inversion 3.2.3 Binary Output Signals The number of binary output signals and their output terminals are as shown in Appendix F. All outputs, except the relay failure signal, can be configured. GRB150 provides 4 high-speed auxiliary relays HBO1 to HBO4 and provides 6 auxiliary relays which is composed of one auxiliary relay FAIL for relay fail output and seven programmable auxiliary relays BO1 to BO6. HBO1 to HBO4 and BO1 to BO6 can be programmed. The reset time of the tripping output relay following fault clearance can be programmed. The setting is respective for each output relay. The signals shown in the signal list in Appendix B can be assigned to the 11 output relays above individually or in arbitrary combinations. Signals can be combined using either an AND circuit or OR circuit with 6 gates each as shown in Figure 3.2.2. The output circuit can be configured according to the setting menu. Appendix H shows the factory default settings. Further, each BO has a programmable reset characteristic, settable for instantaneous drop-off “Inst”, for delayed drop-off “Dl”, for dwell operation “Dw” or for latching operation “Latch” by the scheme switch [RESET]. The time of the delayed drop-off “Dl” or dwell operation “Dw” can be set by TBO. When “Dw” selected, the BO outputs for the TBO set time if the input signal does not continue on the TBO set time. If the input signal continues more, the BO output is continuous for the input signal time. When the relay is latched, it can be reset with the RESET key on the relay front panel or a binary input. This resetting resets all the output relays collectively. The relay failure contact closes when a relay defect or abnormality in the DC power supply circuit is detected. ⎯ 23 ⎯ 6 F 2 S 0 9 0 0 Signal List & Appendix B Auxiliary relay 6 GATES ≥1 or ≥1 6 GATES & TBO & [RESET] + "Dw" 0 t 0.00 – 10.00s "Dl" & S F/F "Lat" R Reset button + ≥ By PLC 768 1639 IND.RESET BI1_COMMAND Figure 3.2.3 Configurable Output Settings The setting elements necessary for binary output relays and their setting ranges are as follows: Element [RESET] Range Inst / Dl / Dw / Lat Step Default See Appendix C TBO 0.00 – 10.00s 0.01s See Appendix C ⎯ 24 ⎯ Remarks Output relay reset time. Instantaneous, delayed, dwell or latched. 6 F 2 S 0 9 0 0 3.2.4 PLC (Programmable Logic Controller) Function GRB150 is provided with a PLC function allowing user-configurable sequence logic on binary signals. The sequence logic with timers, flip-flops, AND, OR, XOR, NOT logic, etc. can be produced by using the PC software “PLC tool” and linked to signals corresponding to relay elements or binary circuits. Configurable binary inputs and the initiation trigger of fault records and disturbance records are programmed using the PLC function. Temporary signals are provided for complicated logic or for using a user-configured signal in many logic sequences. PLC logic is assigned to protection signals by using the PLC tool. For PLC tool, refer to the PLC tool instruction manual. Figure 3.2.4 Sample Screen for PLC Tool ⎯ 25 ⎯ 6 F 2 S 0 9 0 0 3.3 Automatic Supervision 3.3.1 Basic Concept of Supervision Though the protection system is in a non-operating state under normal conditions, it is waiting for a power system fault to occur at any time and must operate without fail when it occurs. Therefore, the automatic supervision function, which checks the health of the protection system during normal operation, plays an important role. A numerical relay based on the microprocessor operations is suitable for implementing this automatic supervision function of the protection system. The GRB150 implements the automatic supervision function taking advantage of this feature based on the following concept: • The supervising function should not affect the protection performance. • Perform supervision with no omissions wherever possible. • When a relay failure occurs, it should be able to easily identify the location of the failure. 3.3.2 Relay Monitoring The relay is supervised with the following items. Differential voltage monitoring The supervisory element DIFSV is provided to check the health of CT circuits. The DIFSV element detects the erroneous differential voltage that appears under a CT circuit failure. A/D accuracy checking An analogue reference voltage is input to a prescribed channel in the analogue-to-digital (A/D) converter, and it is checked that the data after A/D conversion is within a prescribed range and that the A/D conversion characteristics are correct. Memory monitoring The memories are monitored as follows depending on the type of memory, and checked that the memory circuits are healthy: • Random access memory monitoring: Writes/reads prescribed data and checks the storage function. • Program memory monitoring: Checks the checksum value of the written data. • Setting value monitoring: Checks the discrepancy between the setting values stored in duplicate. Watchdog timer A hardware timer which is cleared periodically by software is provided and it is checked that the software is running normally. DC Supply Monitoring The secondary voltage level of the built-in DC/DC converter is monitored and checks that the DC voltage is within a prescribed range. ⎯ 26 ⎯ 6 F 2 S 0 9 0 0 3.3.3 Trip Circuit Supervision The circuit breaker tripping control circuit can be monitored by a binary input. Figure 3.3.1 shows a typical scheme. A binary input BIn is assigned to No.1632:TC_FAIL signal by PLC. When the trip circuit is complete, a small current flows through the binary input and the trip circuit. Then logic signal of the binary input circuit BIn is "1". If the trip supply is lost or if a connection becomes an open circuit, then the binary input resets and the BIn output is "0". A trip circuit fail alarm TCSV is output when the BIn output is "0". If the trip circuit failure is detected, then “ALARM” LED is lit and “Err: TC” is displayed in LCD message. The monitoring is enabled by setting the scheme switch [TCSPEN] to "ON" or "OPT-ON". When "OPT-ON" is selected, the monitoring is enabled only while CB is closed. (+) Trip circuit supervision BIn Trip output 1632 TC_FAIL Figure 3.3.1 3.3.4 & "OPT-ON" 1270 TCSV ≥1 "ON" + CB trip coil 0 & 0.4s CB CLOSE [TCSPEN] t 1 Trip Circuit Supervision Scheme Logic Circuit Breaker Monitoring The relay provides the following circuit breaker monitoring functions. Circuit Breaker State Monitoring Circuit breaker state monitoring is provided for checking the health of circuit breaker (CB). If two binary inputs are programmed to the functions ‘CB_N/O_CONT’ and ‘CB_N/C_CONT’, then the CB state monitoring function becomes active. In normal circumstances these inputs are in opposite states. Figure 3.3.2 shows the scheme logic. If both show the same state during five seconds, then a CB state alarm CBSV operates and “Err:CB” and “CB err” are displayed in LCD message and event record message respectively. The monitoring can be enabled or disabled by setting the scheme switch [CBSMEN]. 1633 CB_N/O_CONT =1 1 t 0 & 1271 CBSV 5.0s 1634 CB_N/C_CONT [CBSMEN] + "ON" Figure 3.3.2 CB State Monitoring Scheme Logic Normally open and normally closed contacts of the CB are connected to binary inputs BIm and BIn respectively, and functions of BIm and BIn are assigned to “CB_N/O_CONT” and “CB_N/C_CONT” by PLC. ⎯ 27 ⎯ 6 F 2 S 0 9 0 0 Circuit Breaker Condition Monitoring Periodic maintenance of CB is required for checking of the trip circuit and the operation mechanism. Generally, maintenance is based on a time interval or a number of fault current interruptions. The following CB condition monitoring functions are provided to determine the time for maintenance of CB: • Trip is counted for maintenance of the trip circuit and CB operation mechanism. The trip counter increments the number of tripping operations performed. An alarm is issued and informs user of time for maintenance when the count exceeds a user-defined setting TCALM. The trip count alarm can be enabled or disabled by setting the scheme switch [TCAEN]. The counter can be initiated by PLC signals TP_COUNT. The default setting is the TP_COUNT is assigned to the DIF_TRIP signal. 3.3.5 PLC Data and IEC61850 Mapping Data Monitoring If there is a failure in PLC data or IEC61850 mapping data, the function may be prevented. Therefore, PLC data and IEC61850 mapping data are monitored and the respective alarms "PLC stop" and "MAP stop" are issued if a failure is detected. 3.3.6 IEC61850 Communication Monitoring The sending and receiving functions on the Ethernet LAN communication are monitored. The receiving function is executed by checking GOOSE message receiving status, and the sending function is executed by checking a “Ping” response to the other party. If a failure is detected, an alarm of "GOOSE stop" or "Ping err" is issued. These functions are disabled by setting the scheme switches [GSECHK] and [PINGCHK]. 3.3.7 Failure Alarms When a failure is detected by the automatic supervision, it is followed with an LCD message, “ALARM” LED indication, external alarm and event recording. Table 3.3.1 summarises the supervision items and alarms. The alarms are retained until the failure is recovered. The alarms can be disabled collectively by setting the scheme switch [AMF] (Automatic Monitoring Function) to OFF. The setting is used to block unnecessary alarms during commissioning, testing or maintenance. When the watchdog timer detects that the software is not running normally, the LCD display and event recording of the failure may not function normally. ⎯ 28 ⎯ 6 F 2 S 0 9 0 0 Table 3.3.1 Supervision Items and Alarms LED "IN SERVICE" LED "ALARM" Off On On On (1) Off Watchdog Timer ---- DC supply monitoring Supervision Item [SVCNT] switch* Differential voltage monitoring ALM & BLK LCD Message Event record Message (2) Vd err On (3) Relay fail Off On (3) ---- ---- Off (4) (3) ---- Trip circuit supervision Err:TC On On Off TC err, Relay fail-A CB state monitoring Err:CB On On Off CB err, Relay fail-A ALM:TP COUNT On On Off TP COUNT ALM, Relay fail-A Err: PLC, Err: MAP On On (4) Relay fail-A Err: GOOSE On On (4) Relay fail-A Err: Ping On On (4) Relay fail-A ALM A/D accuracy check Memory monitoring Trip count alarm PLC data or IEC61850 mapping data monitoring GOOSE message check Ping response check (1) Ext. alarm *: For [SVCNT] (supervision control) switch, see Appendix G and for its scheme logic, see Appendix A. (1) Diverse messages are provided as expressed with " Err:---" in the table in Section 6.7.2. (2) The configurable signal “VD ERR” operates. (See Appendix B.) (3) The binary output relay "FAIL" operates. (4) Whether the LED is lit or not depends on the degree of the voltage drop. ⎯ 29 ⎯ 6 F 2 S 0 9 0 0 3.3.8 Trip Blocking When a failure is detected by the following supervision items, the trip function is blocked for as long as the failure exists and is restored when the failure is removed. • Differential voltage monitoring (selectable) • A/D accuracy check • Memory monitoring • Watchdog Timer • DC supply monitoring When a failure is detected by the differential voltage monitoring, the scheme switch [SVCNT] setting can be used to determine if both tripping is blocked and an alarm is initiated, or, if only an alarm is initiated. (For the setting, see Section 4.2.6.7) 3.3.9 Setting The setting elements necessary for the automatic supervision and their setting range are shown in the table below. Element Range [SVCNT] ALM&BLK/ALM Step Default Remarks ALM&BLK Alarming and/or blocking selection ⎯ 30 ⎯ 6 F 2 S 0 9 0 0 3.4 Recording Function The GRB150 is provided with the following recording functions: Fault recording Event recording Disturbance recording These records are displayed on the LCD of the relay front panel or on the local or remote PC. 3.4.1 Fault Recording Fault recording is started by a tripping command of the GRB150 and the following items are recorded for one fault: Date and time Trip mode Operating phase Relevant events Power system quantities User configurable initiation User can configure four fault record triggers (Signal No.:2624 to 2627) by PLC. Any of input signals as shown in Appendix B is assigned to these fault record trigger signals. Up to 8 most-recent faults are stored as fault records. If a new fault occurs when 8 faults have been stored, the record of the oldest fault is deleted and the latest fault one is then stored. Date and time of fault occurrence The time resolution is 1 ms using the relay internal clock. To be precise, this is the time at which a tripping command has been initiated, and thus it is approximately 10ms after the occurrence of the fault. Operating phase (for Model 201) The phase is indicated by differential element (DIF) operating phase(s). Relevant events Such events as for evolving faults are recorded with time-tags. Power system quantities The differential voltages in pre-faults and post-faults are recorded. The following power system quantities are not recorded during evolving faults. - Magnitude of differential voltage (Vd) for model 101 or phase differential voltage (Vda, Vdb, Vdc) for model 201 ⎯ 31 ⎯ 6 F 2 S 0 9 0 0 3.4.2 Event Recording The events shown are recorded with a 1 ms resolution time-tag when the status changes. Up to 1024 records can be stored. If an additional event occurs when 1024 records have been stored, the oldest event record is deleted and the latest event record is then stored. The user can set a maximum of 128 recording items, and their status change mode. The event items can be assigned to a signal number in the signal list. The status change mode is set to “On” (only recording On transitions) or “On/Off”(recording both On and Off transitions) mode by setting. The “On/Off” mode events are specified by “Bi-trigger events” setting. If the “Bi-trigger events” is set to “100”, No.1 to 100 events are “On/Off” mode and No.101 to 128 events are “On” mode. The name of an event can be set by RSM100. Maximum 22 characters can be set, but the LCD displays only 11 characters. Therefore, it is recommended the maximum 11 characters are set. The set name can be viewed on the Set.(view) screen. The elements necessary for event recording and their setting ranges are shown in the table below. The default setting of event record is shown in Appendix G. 3.4.3 Element Range Step Default Remarks BITRN 0 - 128 1 100 Number of bi-trigger(on/off) events EV1 – EV128 0 - 3071 Assign the signal number Disturbance Recording Disturbance recording is started when the supervisory element DIFSV operates or a tripping command is initiated. Further, disturbance recording is started when a start command by the PLC is initiated. The user can configure four disturbance record triggers (Signal No.:2632 to 2635) by PLC. The records include maximum 3 analogue signals as shown in Table 3.4.1, 32 binary signals and the dates and times at which recording started. Any binary signal shown in Appendix G can be assigned by the binary signal setting of disturbance record. Table 3.4.1 Analog Signals for Disturbance Recording Model 101D 201D Analog signal Vd Vda, Vdb, Vdc The LCD display only shows the dates and times of the disturbance records stored. Details can be displayed on a PC. For how to obtain disturbance records on the PC, see the “Instruction Manual PC Interface, RSM100”. The pre-fault recording time is fixed at 0.3s and post-fault recording time can be set between 0.1 and 5.0s. The number of records stored depends on the post-fault recording time. The approximate relationship between the post-fault recording time and the number of records stored is shown in Table 3.4.2. Note: If the recording time setting is changed, the records stored so far are deleted. ⎯ 32 ⎯ 6 F 2 S 0 9 0 0 Table 3.4.2 Post Fault Recording Time and Number of Disturbance Records Stored Recording time 0.1s 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s 3.5s 4.0s 4.5s 5.0s 50Hz 50 25 15 11 8 7 6 5 4 4 3 60Hz 42 21 13 9 7 6 5 4 3 3 3 Settings The elements necessary for initiating a disturbance recording and their setting ranges are shown in the table below. Element Range Step Default Remarks Timer 0.1-5.0 s 0.1 s 2.0 s Post-fault recording time Starting the disturbance recording by a tripping command or the starter element listed above is enabled or disabled by setting the following scheme switches. 3.5 Element Range [Trip] [Vd err] Step Default Remarks OFF/ON ON Start by tripping command OFF/ON ON Start by Binary Input signal Metering Function The GRB150 performs continuous measurement of the analogue input quantities. The magnitudes of the phase differential voltage (Vda, Vdb, Vdc) or differential voltage (Vd) are renewed every second and displayed on the LCD of the relay front panel or on the local or remote PC. The model 101 series measures a single phase quantity only. ⎯ 33 ⎯ 6 F 2 S 0 9 0 0 4. User Interface 4.1 Outline of User Interface The user can access the relay from the front panel. Local communication with the relay is also possible using a personal computer (PC) via an RS232C port. Furthermore, remote communication is also possible using RSM (Relay Setting and Monitoring), IEC61850 communication or IEC60870-5-103 communication via Ethernet LAN port or RS485 port. This section describes the front panel configuration and the basic configuration of the menu tree of the local human machine communication ports and HMI (Human Machine Interface). 4.1.1 Front Panel As shown in Figure 3.1.3, the front panel is provided with a liquid crystal display (LCD), light emitting diodes (LED), operation keys, VIEW and RESET keys, monitoring jacks and an RS232C connector. LCD The LCD screen, provided with a 2-line, 16-character display and back-light, provides the user with information such as records, statuses and settings. The LCD screen is normally unlit, but pressing the VIEW key will display the digest screen and pressing any key other than VIEW and RESET will display the menu screen. These screens are turned off by pressing the RESET key or END key. If any display is left for 5 minutes or longer without operation, the back-light will go off. LED There are 9 LED displays. The signal labels and LED colors are defined as follows: Label Color Remarks IN SERVICE Green Lit when the relay is in service and flickered when the relay is in “Test” menu. TRIP ALARM (LED1) (LED2) (LED3) (LED4) (LED5) (LED6) Red Red Yellow Yellow Yellow Yellow Yellow Yellow Lit when a trip command is issued. Lit when a failure is detected. Configurable LED to assign signals with or without latch when relay operates. Configurable LED to assign signals with or without latch when relay operates. Configurable LED to assign signals with or without latch when relay operates. Configurable LED to assign signals with or without latch when relay operates. Configurable LED to assign signals with or without latch when relay operates. Configurable LED to assign signals with or without latch when relay operates. LED1 to LED6 are configurable. For the setting, see Section 4.2.6.10. The TRIP LED lights up once the relay is operating and remains lit even after the trip command goes off. The TRIP LED can be turned off by pressing the RESET key. Other LEDs are lit as long as a signal is present and the RESET key is invalid while the signal is being maintained. ⎯ 34 ⎯ 6 F 2 S 0 9 0 0 Operation keys The operation keys are used to display records, statuses, and setting values on the LCD, as well as to input or change setting values. The functions of each operation key are as follows: c , , , : Used to move lines displayed on an LCD screen. Keys used to enter numerical values. and are also d CANCEL : Used to cancel entries or return to the upper (previous) screen. e END : Used to end entering operation, or return to the upper (previous) screen or turn off the display. f ENTER : Used to store or establish entries. VIEW and RESET keys Pressing VIEW key displays digest screens such as "Metering", "Latest fault" and "Auto-supervision", "Alarm display" and "Indication" Pressing RESET key turns off the display. Monitoring jacks The two monitoring jacks A and B and their respective LEDs can be used when the test mode is selected on the LCD screen. By selecting the signal to be observed from the "Signal List" (See Appendix B) and setting it on the screen, the signal can be displayed on LED A or LED B, or transmitted to an oscilloscope via the monitoring jacks. RS232C connector The RS232C connector is a 9-way D-type connector for serial RS232C connection with a local personal computer. ⎯ 35 ⎯ 6 F 2 S 0 9 0 0 4.1.2 Communication Ports The following two interfaces are mounted as communication ports: • RS232C port • RS485, Fibre optic or Ethernet LAN port for serial communication • IRIG-B port RS232C port This connector is a standard 9-way D-type connector for serial port RS232C transmission and is mounted on the front panel. By connecting a personal computer to this connector, setting operation and display functions can be performed. (See Figure 3.1.3.) RS485, Fibre optic or Ethernet LAN port The RS485 port or the fibre optic port is connected to the IEC60870-5-103 communication via BCU/RTU (Bay Control Unit / Remote Terminal Unit) to connect between relays and to construct a network communication system. (See Figure 4.4.1 in Section 4.4.) The RS485 port is a screw terminal and the fibre optic port is the ST connector. Ethernet LAN port is connected to the substation automation system via Ethernet communication networks using IEC 61850 protocol. This port can also be connected to the RSM. 100Base-TX (T1: RJ-45 connector) or 100Base-FX (F1: SC connector) for Ethernet LAN is provided on the back of the relay as shown in Figure 4.1.1. IRIG-B port The IRIG-B port collects serial IRIG-B format data from the external clock to synchronize the relay calendar clock. The IRIG-B port is isolated from the external circuit by a photo-coupler. This port is on the back of the relay, as shown in Figure 4.1.1. RS485 connection terminal TB3 TB1 Fibre Optic (ST) IRIG-B TB2 OPT T TB1 R TB3 IRIG-B TB2 T1 F1 R T E E Rear view (a) RS485 + 100BASE-TX Rear view (b) Fibre optic port + 100BASE-FX Figure 4.1.1 Location of Communication Port ⎯ 36 ⎯ 6 F 2 S 0 9 0 0 4.2 Operation of the User Interface The user can access such functions as recording, measurement, relay setting and testing with the LCD display and operation keys. Note: LCD screens depend on the relay model and the scheme switch setting. Therefore, LCD screens described in this section are samples of typical model. 4.2.1 LCD and LED Displays Displays during normal operation When the GRB150 is operating normally, the green "IN SERVICE" LED is lit and the LCD is off. Press the VIEW key when the LCD is off to display the digest screens which are "Indication", "Metering1", "Metering2", "Metering3", "Latest fault", "Auto-supervision" and "Alarm Display" screens in turn. "Latest fault", "Auto-supervision" and "Alarm Display" screens are displayed only when there is some data. The following are the digest screens and can be displayed without entering the menu screens. Indication I N D 1 [ 0 0 0 0 I N D 2 [ 0 0 0 1 0 0 0 0 ] 0 0 0 0 ] Metering 1 V d ∗ ∗ ∗ . ∗ V For Model 101 V d a ∗ ∗ ∗ . ∗ V For Model 201 V d b ∗ ∗ ∗ . ∗ V For Model 201 V d c ∗ ∗ ∗ . ∗ V For Model 201 Metering 2 Metering 3 To clear the latched indications (latched LEDs, LCD screen of Latest fault), press RESET key for 3 seconds or more. For any display, the back-light is automatically turned off after five minutes. Indication This screen shows the status of elements assigned as a virtual LED. I N D 1 [ 0 0 0 0 I N D 2 [ 0 0 0 1 0 0 0 0 ] 0 0 0 0 ] Status of element, Elements depend on user setting. 1: Operate, 0: Not operate (Reset) ⎯ 37 ⎯ 6 F 2 S 0 9 0 0 Displays in tripping Latest fault T r i p For Model 101 D I F - A B C T r i p For Model 201 If a fault occurs and a tripping command is output when the LCD is off, the red "TRIP" LED and other configurable LED if signals assigned to trigger by tripping Press the VIEW key to scroll the LCD screen to read the rest of messages. Press the RESET key to turn off the LEDs and LCD display. Notes: 1) When configurable LEDs (LED1 through LED6) are assigned to latch signals by trigger of tripping, press the RESET key more than 3s until the LCD screens relight. Confirm turning off the configurable LEDs. Refer to Table 4.2.1 Step 1. 2) Then, press the RESET key again on the "Latest fault" screen in short period, confirm turning off the "TRIP" LED. Refer to Table 4.2.1 Step 2. 3) When only the "TRIP" LED is go off by pressing the RESET key in short period, press the RESET key again to reset remained LEDs in the manner 1) on the "Latest fault" screen or other digest screens. LED1 through LED6 will remain lit in case the assigned signals are still active state. Table 4.2.1 Turning off latch LED operation LED lighting status Operation Step 1 "TRIP" LED Press the RESET key more than 3s on the "Latest fault" screen continue to lit Step 2 Configurable LED (LED1 - LED6) turn off Then, press the RESET key in short period on the "Latest fault" screen turn off When any of the menu screens is displayed, the VIEW and RESET keys do not function. To return from menu screen to the digest "Latest fault" screen, do the following: • Return to the top screen of the menu by repeatedly pressing the END key. • Press the END key to turn off the LCD. ⎯ 38 ⎯ 6 F 2 S 0 9 0 0 • Press the VIEW key to display the digest "Latest fault" screen. Auto-supervision E r r : R OM , A / D If the automatic supervision function detects a failure while the LCD is off, the "Auto-supervision" screen is displayed automatically, showing the location of the failure, and the "ALARM" LED lights. Press the VIEW key to display other digest screens in turn including the "Metering" and "Latest fault" screens. Press the RESET key to turn off the LEDs and LCD display. However, if the failure continues, the "ALARM" LED remains lit. After recovery from a failure, the "ALARM" LED and "Auto-supervision" display turn off automatically. If a failure is detected while any of the screens is displayed, the current screen remains displayed and the "ALARM" LED lights. Notes: 1) When configurable LEDs (LED1 through LED6) are assigned to latch signals by issuing an alarm, press the RESET key more than 3s until all LEDs reset except "IN SERVICE" LED. 2) When configurable LED is still lit by pressing RESET key in short period, press RESET key again to reset remained LED in the above manner. 3) LED1 through LED6 will remain lit in case the assigned signals are still active state. While any of the menu screens is displayed, the VIEW and RESET keys do not function. To return to the digest "Auto-supervision" screen, do the following: • Return to the top screen of the menu by repeatedly pressing the END key. • Press the END key to turn off the LCD. • Press the VIEW key to display the digest screen. Alarm Display Alarm Display (ALM1 to ALM4) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ : A L M 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ The four alarm screens can be provided, and their text messages are defined by user. (For setting, see Section 4.2.6.8) These alarms are raised by associated binary inputs. Press the VIEW key to display other digest screens in turn including the "Metering" and "Latest fault" screens. To clear the Alarm Display, press RESET key. The clearing is available after displaying up to ALM4. ⎯ 39 ⎯ 6 F 2 S 0 9 0 0 4.2.2 Relay Menu Figure 4.2.1 shows the menu hierarchy in the GRB150. The menu has five sub-menus, "Record", "Status", "Set. (view)", "Set. (change)", and "Test". For details of the menu hierarchy, see Appendix D. Menu Record F. record E. record D. record Status Metering Binary I/O Ry element Time synch. Clock adjust. LCD contrast Set. (view) Version Description Comms Record Status Protection Binary I/P Binary O/P LED Set. (change) Password Description Comms Record Status Protection (Protected by password) Binary I/P Binary O/P LED Test Switch Binary O/P Logic circuit Figure 4.2.1 Relay Menu ⎯ 40 ⎯ 6 F 2 S 0 9 0 0 Record In the "Record" menu, the fault record, event record and disturbance record can be displayed or erased. Status The "Status" menu displays the power system quantities, binary input and output status, relay measuring element status, signal source for time synchronisation (BI, RSM, IEC60870-5-103 or SNTP), clock adjustment and LCD contrast. Set. (view) The "Set. (view)" menu displays the relay version, plant name and the current settings of relay address, IP address and RS232C baud rate in communication, record, status, protection, configurable binary inputs, configurable binary outputs and configurable LEDs. Set. (change) The "Set. (change)" menu is used to set or change the settings of password, plant name, relay address, IP address and RS232C baud rate in communication, record, status, protection, configurable binary inputs, configurable binary outputs and configurable LEDs. Since this is an important menu and is used to set or change settings related to relay tripping, it has password security protection. Test The "Test" menu is used to set testing switches and to forcibly operate binary output relays. The "Test" menu also has password security protection. When the LCD is off, press any key other than the VIEW and RESET keys to display the top "MENU" screen and then proceed to the relay menus. • • • • • R S S S T e t e e e M c a t t s E N U o r d t u s . ( v i e w ) . ( c h a n g e ) t To display the "MENU" screen when the digest screen is displayed, press the RESET key to turn off the LCD, then press any key other than the VIEW and RESET keys. Press the END key when the top screen is displayed to turn off the LCD. An example of the sub-menu screen is shown below. The top line shows the hierarchical layer. The last item is not displayed for all the screens. "/4" displayed on the far left means that the screen is in the fourth hierarchical layer, while " " or " " displayed on the far right shows that upper or lower lines exist. To move the cursor downward or upward for setting or for viewing other lines not displayed on or key. the window, use / 4 S c h e m e ⎯ 41 ⎯ s w 6 F 2 S 0 9 0 0 T O V O r i p f f / O n d e r r f f / O n 1 _ 1 _ To return to the higher screen or move from the right side screen to the left side screen in Appendix D, press the END key. The CANCEL key can also be used to return to the higher screen but it must be used carefully because it may cancel entries made so far. To move between screens of the same hierarchical depth, first return to the higher screen and then move to the lower screen. 4.2.3 Displaying Records The sub-menu of "Record" is used to display fault records, event records, disturbance records and counts such as trip count, ΣIy count and reclose count. 4.2.3.1 Displaying Fault Records To display fault records, do the following: • Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys. • Select "Record" to display the "Record" sub-menu. / • • • • 1 F E D C . . . o R r r r u e e e e n c c c c t o o o o e d r d r d r d r • Select "F. record" to display the "Fault record" screen. / 2 F . r e c o r d • D i s p l a y • C l e a r • Select "Display" to display the dates and times of fault records stored in the relay from the top in new-to-old sequence. / 3 F . r e c o r d # 1 1 1 2 1 0 1 2 0 # 2 # 3 # 4 6 8 0 5 4 1 8 7 / : / : / : / : O 1 S 2 J 5 F 3 c 3 e 9 u 4 e 0 t : p : l : b : / 5 / 2 / 5 / 1 1 7 1 2 1 3 1 8 9 . 9 . 9 . 9 . 9 0 9 1 9 2 9 4 7 3 7 0 7 9 7 1 1 1 9 2 • Move the cursor to the fault record line to be displayed using the the ENTER key to display the details of the fault record. ⎯ 42 ⎯ and keys and press 6 F 2 S 0 9 0 0 / 1 1 D T P V V V F V V V 3 6 8 I r r d d d a d d d / : F i e a b c u a b c F O 1 p f . c 3 A r t : B a ∗ ∗ ∗ l t ∗ ∗ ∗ u ∗ ∗ ∗ e c o r d # 1 / 1 9 9 7 5 7 . 0 3 1 C l ∗ ∗ ∗ v ∗ ∗ ∗ ∗ ∗ ∗ t . . . a . . . v a l u e s V ∗ V ∗ V ∗ l u e s V ∗ V ∗ V ∗ The lines which are not displayed in the window can be displayed by pressing the and keys. To clear fault records, do the following: • Open the "Record" sub-menu. • Select "F. record" to display the "Fault record" screen. • Select "Clear" to display the following confirmation screen. C l e a r E N D = Y r e c o r d ? C A N C E L = N • Press the END (= Y) key to clear all the fault records stored in non-volatile memory. If all fault records have been cleared, the "Latest fault" screen of the digest screens is not displayed. 4.2.3.2 Displaying Event Records To display event records, do the following: • Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys. • Select "Record" to display the "Record" sub-menu. • Select "E. record" to display the "Event record" screen. / 2 E . r e c o r d • D i s p l a y • C l e a r • Select "Display" to display the events with date from the top in new-to-old sequence. / 3 1 T 1 V 1 R 6 r 6 d 6 l E . r e c o r d / O c i p / O c e r / O c y . t / 1 9 9 7 O n t / 1 9 9 7 r t / 1 9 9 7 c h a n g e The time is displayed by pressing the key. ⎯ 43 ⎯ O n 6 F 2 S 0 9 0 0 / 3 1 T 1 V 1 R Press the 8 r 8 d 8 l E . r e c o r d : 1 3 i p : 1 3 e r : 1 3 y . : 5 8 . 2 5 5 O n : 5 8 . 0 2 8 r O n : 5 8 . 5 2 8 c h a n g e key to return the screen with date. The lines which are not displayed in the window can be displayed by pressing the and keys. To clear event records, do the following: • Open the "Record" sub-menu. • Select "E. record" to display the "Event record" screen. • Select "Clear" to display the following confirmation screen. C l e a r E N D = Y r e c o r d ? C A N C E L = N • Press the END (= Y) key to clear all the event records stored in non-volatile memory. 4.2.3.3 Displaying Disturbance Records Details of disturbance records can be displayed on the PC screen only (*); the LCD displays only the recorded date and time for all disturbances stored in the relay. They are displayed in the following sequence. (*) For the display on the PC screen, refer to the RSM100 manual. • Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys. • Select "Record" to display the "Record" sub-menu. • Select "D. record" to display the "Disturbance record" screen. / 2 D . r e c o r d • D i s p l a y • C l e a r • Select "Display" to display the date and time of the disturbance records from the top in new-to-old sequence. / 3 D . r e c o r d # 1 1 1 2 1 0 1 2 0 # 2 # 3 # 4 6 8 0 5 4 1 8 7 / : / : / : / : O 1 S 2 J 5 F 3 c 3 e 9 u 4 e 0 t : p : l : b : / 5 / 2 / 5 / 1 1 7 1 2 1 3 1 8 9 . 9 . 9 . 9 . 9 4 9 3 9 4 9 8 7 0 7 8 7 4 7 7 1 8 4 6 The lines which are not displayed in the window can be displayed by pressing the ⎯ 44 ⎯ and 6 F 2 S 0 9 0 0 keys. To clear disturbance records, do the following: • Open the "Record" sub-menu. • Select "D. record" to display the "Disturbance record" screen. • Select "Clear" to display the following confirmation screen. C l e a r E N D = Y r e c o r d ? C A N C E L = N • Press the END (= Y) key to clear all the disturbance records stored in non-volatile memory. 4.2.3.4 Displaying Counter • Open the top "MENU" screen by pressing any keys other than the VIEW and RESET keys. • Select "Record" to display the "Record" sub-menu. • Select "Counter" to display the "Counter" screen. / 2 C o u n t e r • D i s p l a y T r i p s • C l e a r • Select "Display" to display the counts stored in the relay. / 3 C o u n t e r T r i p s ∗ ∗ ∗ ∗ ∗ The lines which are not displayed in the window can be displayed by pressing the keys. and To clear each count, do the following: • Open the "Record" sub-menu. • Select "Counter" to display the "Counter" screen. • Select "Clear Trips" to display the following confirmation screen. C l e a r E N D = Y T r i p s ? C A N C E L = N • Press the END (= Y) key to clear the count stored in non-volatile memory. 4.2.4 Displaying the Status Information From the sub-menu of "Status", the following status condition can be displayed on the LCD and is updated every second: Metering data of the protected line Status of binary inputs and outputs Status of relay elements ⎯ 45 ⎯ 6 F 2 S 0 9 0 0 Status of time synchronisation source The user can also adjust the time of the internal clock and the LCD contrast in this sub-menu. 4.2.4.1 Displaying Metering Data To display metering data on the LCD, do the following: • Select "Status" on the top "MENU" screen to display the "Status" screen. / • • • • • • 1 M B R T C L e i e i l C S t n l m o D t e a a e c a t u s r i n g r y I / y e l e s y n k a d j c o n t r O m c u a e n t . s t . s t • Select "Metering" to display the "Metering" screen. / 2 V d M e t e r i n g V ∗ ∗ ∗ . ∗ (Model 101) / 2 M e V d a ∗ V d b ∗ V d c ∗ (Model 201) 4.2.4.2 t ∗ ∗ ∗ e ∗ ∗ ∗ r . . . i n g V ∗ V ∗ V ∗ Displaying the Status of Binary Inputs and Outputs To display the binary input and output status, do the following: • Select "Status" on the top "MENU" screen to display the "Status" screen. • Select "Binary I/O" to display the binary inputs and outputs status. / I O O 2 P P P 2 B [ [ [ i 0 0 0 n 0 0 0 a 0 0 0 r y I / O 0 0 0 0 0 ] 0 0 0 0 ] 0 ] The display format is shown below. [ ] Input (IP) BI1 BI2 BI3 BI4 BI5 BI6 BI7 BI8 Output (OP) BO1 BO2 BO3 BO4 BO5 BO6 FAIL — Output (OP2) HBO1 HBO2 HBO3 HBO4 — — — — Line 1 shows the binary input status. BI1 to BI8 correspond to a binary input signal. For the binary input signal, see Appendix F. The status is expressed with logical level "1" or "0" at the photo-coupler output circuit. Lines 2 and 3 show the binary output statuses. BO1 to BO6 of line 2 corresponding to the binary outputs are a normal auxiliary relay, which are configurable. FAIL of line 3 corresponds to the relay failure output. HBO1 to HBO4 of line 3 are a high-speed auxiliary relay, which are configurable. The status of these outputs is expressed with logical level "1" or "0" at the input ⎯ 46 ⎯ 6 F 2 S 0 9 0 0 circuit of the output relay driver. That is, the output relay is energised when the status is "1". and To display all the lines, press the 4.2.4.3 keys. Displaying the Status of Relay Elements To display the status of measuring elements on the LCD, do the following: • Select "Status" on the top "MENU" screen to display the "Status" screen. • Select "Relay element" to display the status of the relay elements. Model 101: / 2 R y e l e m e n t 0 0 [ ] R y e l e m e n t 0 0 0 [ 0 0 0 ] Model 201: / 2 The display format is as shown below. Model 101: DIF, DIFSV [ DIF DIFSV [ A B DIF C A B DIFSV C ] ] Model 201: DIF, DIFSV This shows the operation status of differential elements and the supervisory element. The status of each element is expressed with logical level "1" or "0". Status "1" means the element is in operation. 4.2.4.4 Displaying the Status of the Time Synchronisation Source The internal clock of the GRB150 can be synchronised with external clocks such as the binary input signal clock, IEC60870-5-103 or SNTP server. To display on the LCD whether these clocks are active (=Act.) or inactive (=Inact.) and which clock the relay is synchronised with, do the following: • Select "Status" on the top "MENU" screen to display the "Status" screen. • Select "Time sync." to display the status of time synchronisation sources. / 2 B I I ∗ S T i I R I G E C N T P m : : : : e I I I A n n n c s a a a t y c c c . n c . t . t . t . ( S r v 1 ) The asterisk on the far left shows that the internal clock is synchronised with the marked source clock. If the marked source clock is inactive, the internal clock runs locally. ⎯ 47 ⎯ 6 F 2 S 0 9 0 0 Note: If the Binary input signal has not been detected for one hour or more after the last detection, the status becomes "inactive". For details of the setting time synchronisation, see Section 4.2.6.6. 4.2.4.5 Clock Adjustment To adjust the clock when the internal clock is running locally, do the following: • Select "Status" on the top "MENU" screen to display the "Status" screen. • Select "Clock adjust." to display the setting screen. / 2 M i H o D a M o Y e 1 2 / N o v / 2 0 0 1 2 2 : 5 6 : 1 9 L o c n u t e 5 6 _ u r 2 2 y 1 2 n t h 1 1 a r 2 0 0 1 Loc:Local, BI:BI, IRI:IRIG-B, IEC:IEC103, SNT:SNTP Line 1 and 2 show the current date and time. The time can be adjusted only when the clock is running locally. When [BI], [IEC] or [RSM] is active, the adjustment is invalid. • Enter a numerical value for each item and press the ENTER key. For details to enter a numerical value, see 4.2.6.1. • Press the END key to adjust the internal clock to the set hours without fractions and return to the previous screen. If a date which does not exist in the calendar is set and END is pressed, "**** Error ****" is displayed on the top line and the adjustment is discarded. Return to the normal screen by pressing the CANCEL key and adjust again. 4.2.4.6 LCD Contrast To adjust the contrast of LCD screen, do the following: • Select "Status" on the top "MENU" screen to display the "Status" screen. • Select "LCD contrast" to display the setting screen. L C D c o n t r a s t • Press the or key to adjust the contrast. The screen becomes dark by pressing the key and light by pressing the key. 4.2.5 Viewing the Settings The sub-menu "Set. (view)" is used to view the settings set in the sub-menu "Set. (change)". The following items are displayed: ⎯ 48 ⎯ 6 F 2 S 0 9 0 0 Relay version Description Communication (Relay address, IP address and baud rate in the RSM or IEC60870-5-103) Record setting Status setting Protection setting Binary input setting Binary output setting LED setting Enter an item on the LCD to display each item as described in the previous sections. 4.2.5.1 Relay Version To view the relay version, do the following. • Select the "Set.(view)" on the main menu. / • • • • • • • • • 1 V D C R S P B B L e e o e t r i i E S r s m c a o n n D e s c m o t t a a t i r s r u e r r . ( v i e w ) o n i p t i o n d s c t i o n y I / P y O / P • Select "Version" to display the relay version screen. / 2 V e r s i o n t y p e • R e l a y N o . • S e r i a l • S o f t w a r e • Select "Relay type" to display the relay type form and model number. G R B 1 5 0 - 1 0 1 D - 1 0 - A 0 • Select "Serial number" to display the relay manufacturing number. • Select "Software" to display the relay software type form. • M G • I ∗ • P ∗ ( • I ∗ a S E ∗ L ∗ ∗ E ∗ i P C ∗ C ∗ ∗ C ∗ n s o ∗ ∗ ∗ 6 1 8 5 ∗ ∗ ∗ d a t ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 3 ∗ ∗ ∗ ∗ f ∗ 0 ∗ a ∗ ∗ d ∗ t w a r e ∗ - ∗ e n g . ∗ - ∗ ∗ ∗ a ∗ ⎯ 49 ⎯ ∗ ∗ ∗ ) t a ∗ ∗ ∗ 6 F 2 S 0 9 0 0 ( • I ∗ ( G • ∗ ( 4.2.5.2 ∗ E ∗ ∗ O ∗ ∗ ∗ C ∗ ∗ O ∗ ∗ ∗ 6 ∗ ∗ S ∗ ∗ ∗ 1 ∗ ∗ E ∗ ∗ ∗ 8 ∗ ∗ ∗ 5 ∗ ∗ s ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ u ∗ ∗ ∗ ) d ∗ ∗ ∗ ) b s ∗ ∗ ∗ ) a t a ∗ ∗ c . ∗ ∗ Settings The "Description", "Comms", "Record", "Status", "Protection", "Binary I/P", "Binary O/P" and "LED" screens display the current settings input using the "Set. (change)" sub-menu. 4.2.6 Changing the Settings The "Set. (change)" sub-menu is used to make or change settings for the following items: Password Description Communication (Relay address, IP address and baud rate in the RSM or IEC60870-5-103) Recording setting Status setting Protection setting Binary input setting Binary output setting LED setting All of the above settings except the password can be seen using the "Set. (view)" sub-menu. CAUTION Care should be taken when modifying settings for "active group", Modification of settings : "scheme switch" and "protection element" in the "Protection" menu. Dependencies exist between the settings in the various menus, with settings in one menu becoming active (or inactive) depending on the selection made in another menu. Therefore, it is recommended that all necessary settings changes be made while the circuit breaker tripping circuit is disconnected. Alternatively, if it is necessary to make settings changes with the tripping circuit active, then it is recommended to enter the new settings into a different settings group, and then change the "active group" setting, thus ensuring that all new settings become valid simultaneously. 4.2.6.1 Setting Method There are three setting methods to enter as follows: - A selective item - A text string - Numerical values To enter a selected item If a screen below is displayed, perform the settings as follows. ⎯ 50 ⎯ 6 F 2 S 0 9 0 0 The cursor can be moved to upper or lower lines within the screen by pressing the keys. If a setting (change) is not required, skip the line with the and keys. / • • • • • • • • • 1 P D C R S P B B L a e o e t r i i E S s s m c a o n n D e s c m o t t a a t w r s r u e r r and . ( c h a n g e) o r d i p t i o n d s c t i o n y I / P y O / P • Move the cursor to a setting item. • Press the ENTER key. To enter a text string Text strings are entered under "Plant name" or "Description" screen. / 2 D e s c r i p t i o n n a m e • P l a n t • D e s c r i p t i o n To select a character, use keys , , and to move the blinking cursor down, left, up and right. "→" and "←" on each of lines 4, 8 and 10 indicate a space and backspace, respectively. A maximum of 22 characters can be entered within the brackets. A B C D E F G H O V a h o v 0 7 ( } > ‘ I P W b i p w 1 8 ) ∗ ! : L Q X c j q x 2 9 [ / “ ; K R Y d k r y 3 ] + # , L S Z e l s z 4 M N T U ←→ f g m n t u ←→ 5 6 ←→ @_ { − < = $ %& . ˆ ` • Set the cursor position in the bracket by selecting "→" or "←" and pressing the ENTER key. • Move the blinking cursor to a selecting character. • Press the ENTER key to enter the blinking character at the cursor position in the brackets. • Press the END key to confirm the entry and return to the upper screen. ⎯ 51 ⎯ 6 F 2 S 0 9 0 0 To correct the entered character, do either of the following: • Discard the character by selecting "←" and pressing the ENTER key and enter the new character. • Discard the whole entry by pressing the CANCEL key and restart the entry from the first step. To enter numerical values When a screen shown below is displayed, perform the settings as follows: The number to the left of the cursor shows the current setting or default setting set at shipment. The cursor can be moved to the upper or lower lines within the screen by pressing the and keys. If a setting (change) is not required, skip the line with the and keys. / 6 P r o t . e l e m e n t D I F D I F T V D 0 D I F 1 T C L 0 T C L 0 T C L 0 V 1 0 S V 5 S V . 5 0 C C . 0 0 P . 0 1 E . 0 0 R . 0 0 _ V _ s _ _ s _ s _ s _ • Move the cursor to a setting line. • Press the key. or key to set a desired value. The value is up or down by pressing the or • Press the ENTER key to confirm the entry. • After completing the setting on the screen, press the END key to return to the upper screen. To correct the entered numerical value, do the following. • If it is before pressing the ENTER key, press the CANCEL key and enter the new numerical value. • If it is after pressing the ENTER key, move the cursor to the correcting line by pressing the and keys and enter the new numerical value. Note: If the CANCEL key is pressed after any of the entry is confirmed by pressing the ENTER key, all the entries made so far on the screen concerned are canceled and screen returns to the upper one. To complete the setting After making entries on each setting screen by pressing the ENTER key, the new settings are ⎯ 52 ⎯ 6 F 2 S 0 9 0 0 not yet used for operation, though stored in the memory. To validate the new settings, take the following steps. • Press the END key to return to the upper screen. Repeat this until the confirmation screen shown below is displayed. The confirmation screen is displayed just before returning to the "Set. (change)" sub-menu. C h a n g e s e t t i n g s ? E N T E R = Y C A N C E L = N • When the screen is displayed, press the ENTER key to start operation using the new settings, or press the CANCEL key to correct or cancel the entries. In the latter case, the screen turns back to the setting screen to enable re-entries. Press the CANCEL key to cancel entries made so far and to turn to the "Set. (change)" sub-menu. 4.2.6.2 Password For the sake of security of Setting changes and Testing, password protection can be set as follows: • Select "Set. (change)" on the main "MENU" screen to display the "Setting change" screen. • Select "Password" to display the "Password" screen. / 2 P a s s w o r d • S e t t i n g • T e s t • Select "Setting" to set the password for the setting change. • Enter a 4-digit number within the brackets after "Input" and press the ENTER key. I n p u t [ _ 0 1 2 3 4 5 6 7 8 9 ← ] • For confirmation, enter the same 4-digit number in the brackets after "Retype". R e t y p e [ _ 0 1 2 3 4 5 6 7 8 9 ← ] • Press the END key to display the confirmation screen. If the retyped number is different from that first entered, the following message is displayed on the bottom of the "Password" screen before returning to the upper screen. "Unmatch password!" Re-entry is then requested. • Select "Test" to set the password for the test. Set the password the same manner as that of the "Setting" above. Password trap After the password has been set, the password must be entered in order to enter the setting change screens. If "Set. (change)" is entered on the top "MENU" screen, the password trap screen "Password" is displayed. If the password is not entered correctly, it is not possible to move to the "Set. (change)" sub-menu screens. ⎯ 53 ⎯ 6 F 2 S 0 9 0 0 P a s s w o r d [ _ 0 1 2 3 4 5 6 7 8 9 ← ] Canceling or changing the password To cancel the password protection, enter "0000" in the two brackets on the "Password" screen. The "Set. (change)" screen is then displayed without having to enter a password. The password can be changed by entering a new 4-digit number on the "Password" screen in the same way as the first password setting. If you forget the password Press CANCEL and RESET keys together for one second on the top "MENU" screen. The screen goes off, and the password protection of the GRB150 is canceled. Set the password again. 4.2.6.3 Description To enter the plant name and other data, do the following. These data are attached to records. • Select "Set. (change)" on the main "MENU" screen to display the "Set. (change)" screen. • Select "Description" to display the "Description" screen. / 2 D e s c r i p t i o n n a m e • P l a n t • • • • • D A A A A e l l l l s a a a a c r r r r r m m m m i p t i o n 1 T e x t 2 T e x t 3 T e x t 4 T e x t • To enter the plant name, select "Plant name" on the "Description" screen. • To enter special items, select "Description" on the "Description" screen. • To enter the name for Alarm∗, select "Alarm∗" on the "Description" screen. _ A H O V a h o v 0 7 ( } > ‘ B I P W b i p w 1 8 ) ∗ ! : C J Q X c j q x 2 9 [ / “ ; D K R Y d k r y 3 ] + # , E L S Z e l s z 4 F G M N T U ←→ f g m n t u ←→ 5 6 ←→ @_ { − < = $ %& . ˆ ` • Enter the text string (up to 22 characters) according to the text setting method The plant name and special items entered are viewed with the "Set.(view)" sub-menu and attached to disturbance records when they are displayed on a local or a remote PC. ⎯ 54 ⎯ 6 F 2 S 0 9 0 0 4.2.6.4 Communication If the relay is linked with RSM (relay setting and monitoring system) or IEC60870-5-103 communication, the relay address must be set. Do this as follows: Note: The settings related to IEC60870-5-103 communication are available for the relay with dual RS485 port. • Select "Set. (change)" on the main "MENU" screen to display the " Set. (change)" screen. • Select "Comms" to display the "Comms" screen. / 2 C o m m s • A d d r . / P a r a m . • S w i t c h • Select "Addr./Param." on the "Comms" screen to enter the relay address number. / 3 A d d r . / P a r a m I E C 2 _ S Y A D J 0 I P 1 1 I P 1 1 I P 1 I P 1 1 S M 1 2 S M 1 2 S M 1 2 S M 1 - 1 9 2 6 3 1 4 7 1 5 2 5 3 5 4 2 8 9 2 5 5 5 0 1 9 2 2 6 8 3 1 9 1 - 4 1 : : 4 - 1 0 4 - 2 0 4 - 3 0 4 - 4 0 O D E G W1 1 G W1 1 G W1 G W S I S I S I S I S M ⎯ 55 ⎯ 6 F 2 S 0 9 0 0 0 D E A D T 1 2 0 G O I N T 6 0 P G 1 - 1 0 P G 1 - 2 0 P G 1 - 3 0 P G 1 - 4 0 P G 2 - 1 0 P G 2 - 2 0 P G 2 - 3 0 P G 2 - 4 0 m i n s • Enter the address number on "IEC" column for IEC60870-5-103 and the compensation value on "SYADJ" column for adjustment of time synchronization of protocol used (−: lags the time, +: leads the time). Enter IP address for IP1-1 to IP1-4, Subnet mask for SM1-1 to SM1-4, Default gateway for GW1-1 to GW1-4, and SNTP server address for SI1-1 to SI4-4. Four SNTP servers are available. Enter "0" or "1" on "SMODE" column to set the standard time synchronized mode for SNTP server. Using low accuracy level of time server, synchronized compensation to maintain synchronization accuracy may not be done automatically. Therefore enter "1", and synchronized compensation is done forcibly. The default setting is "0". Enter the time on "GOINT" to set the maximum GOOSE message publishing term if GOOSE message receive checked. Enter the time on "DEADT" to set the Keep Alive time. Enter the IP address of the device for PG1-1 to PG1-4 if Ping response is checked. IP address: ∗∗∗, ∗∗∗, ∗∗∗, ∗∗∗ IP1-1 IP1-2 IP1-3 IP1-4 SM1-1 to SM1-4, GW1-1 to GW1-4, SI1-1 to SI4-4, PG1-1 to PG1-4: same as above. • Press the ENTER key. CAUTION Do not overlap the relay address number. • Select "Switch" on the "Comms" screen to select the protocol and transmission speed (baud rate), etc., of the RSM or IEC60870-5-103 or IEC61850. / 3 2 9 I 9 I N 8 3 . E . E o 5 S w i t c h 2 6 C 6 C r 0 C / B / B m B 1 R 1 L a L . 0 9 . 2 / 5 7 . 6 1 9 . 2 K 0 l / B l o c k e d K 0 ⎯ 56 ⎯ 6 F 2 S 0 9 0 0 N 8 O T O G O P O o 5 f S f S f I f r 0 f T f E f N f m A / M / C / G / a U O O O H O C O l / B l o c k e d T 0 n D 0 n K n H K n • Select the number and press the ENTER key. <232C> This line is to select the RS-232C baud rate when the RSM system applied. Note: default setting of the 232C is 9.6kbps. The 57.6kbps setting, if possible, is recommended to serve user for comfortable operation. The setting of RSM100 is also set to the same baud rate. <IECBR> This line is to select the baud rate when the IEC60870-5-103 system applied. <IECBLK> Select 2 (=Blocked) to block the monitor direction for IEC60870-5-103 communication. <850BLK> Select 2 (=Blocked) to block the monitor direction for IEC61850 communication. <850AUT> With IEC61850 communication, GRB150 provides access restriction which permits a client access only if an authentication parameter matches with a valid parameter (password). The password is a 4-digit number shared with RSM100. Select 1 (=On) to use the authentication function. <TSTMOD> Select 1 (=On) to set the test mode in IEC61850 communication. <GSECHK> This function is to alarm if any one of the GOOSE messages written in a GOOSE subscribe file cannot be received. Select 1 (=On) to execute a GOOSE receive check for IEC61850 communication. <PINGCHK> This function is to check the health of the network by regularly sending a ‘Ping’ to IP address which is set on PG∗-∗. Select 1 (=On) to execute a ‘Ping’ response check. 4.2.6.5 Setting the Recording function To set the recording function as described in Section 4.2.3, do the following: • Select "Set. (change)" on the main "MENU" screen to display the "Set. (change)" screen. • Select "Record" to display the "Record" screen. / 2 R e c o r d ⎯ 57 ⎯ 6 F 2 S 0 9 0 0 • E . r e c o r d • D . r e c o r d • C o u n t e r Setting the event recording • Select "E. record" to display the "Event record" screen. / 3 E . r e c o r d B I T R 1 E V 1 3 0 E V 2 3 0 E V 3 3 0 : : E V 1 2 3 1 E V 1 2 3 1 N 0 0 _ 0 1 _ 0 2 _ 0 3 _ 7 2 7 8 2 8 _ _ <BITRN> Enter the number of event to record the status change both to "On" and "Off". If 20 is entered, both status change is recorded for EV1 to EV20 events and only the status change to "On" is recorded for EV21 to EV128 events. <EV∗> Enter the signal number in Appendix C to record as the event. It is recommended that this setting can be performed by RSM100 because the signal name cannot be entered by LCD screen. (Refer to Section 3.4.2.) Setting the disturbance recording • Select "D. record" to display the "Disturbance record" screen. / • • • 3 D . T i m e S c h e B i n a r / m r e c o r d s t a r t e r e s w y s i g . • Select "Time/starter" to display the "Time/starter" screen. / 4 T i m e / s t a r t e r T i m e 2 . 0 s _ • Enter the recording time setting. To set each starter to use or not to use, do the following: • Select "Scheme sw" on the "Disturbance record" screen to display the "Scheme switch" screen. ⎯ 58 ⎯ 6 F 2 S 0 9 0 0 / 4 T O V O S c h e m e s w R I P f f / O n d e r r f f / O n 1 _ 1 _ • Enter 1 to use as a starter. • If the selected switch is not used as a starter, enter 0. To set each signal number to record binary signals, do the following: • Select "Binary sig." on the "D. record" screen to display the "Binary sig." screen. / 4 B i n a r y S I G 3 S I G 3 S I G 3 1 0 0 1 2 0 0 2 3 0 0 3 s i g . _ S I G 3 2 3 0 3 2 • Enter the signal number to record binary signals in Appendix C. Setting the counter • Select "Counter" to display the "Counter" screen. / 3 C o u n t e r s w • S c h e m e • A l a r m s e t To set each counter to use or not to use, do the following: • Select "Scheme sw" on the "Counter" screen to display the "Scheme sw" screen. / 4 T O C O T O C f B f C f S c h e m e S f S f A f P / M / E / E O E O N O s w N 0 _ n / O p t - O n N 0 n 0 n • Enter 1 to use as a counter. If not to be used as a counter, enter 0. To set threshold setting, do the following: • Select "Alarm set" on the "Counter" screen to display the "Alarm set" screen. / 4 A l a r m T C A L M 1 0 0 0 0 s e t _ • Enter the threshold settings. ⎯ 59 ⎯ 6 F 2 S 0 9 0 0 4.2.6.6 Status To set the status display described in Section 4.2.4, do the following: Select "Status" on the "Set. (change)" sub-menu to display the "Status setting" screen. / 2 S t a t u s s y n c • T i m e z o n e • T i m e Setting the time synchronisation The calendar clock can run locally or be synchronised with the external IRIG-B time standard signal, RSM clock, or by an IEC60870-5-103. This is selected by setting as follows. • Select "Time sync" to display the "Time synchronisation" screen. / 3 T i m e s y n c . T i m e s y n c 0 _ O f / B I / I R I / I E C / S N • Enter 0 or 1 or 2 and press the ENTER key. Enter 0 (=of) not to be synchronised with any external signals. Enter 1(=BI) to be synchronised with the binary input signal. Enter 2(=IRI) to be synchronised with IRIG-B time signal. Enter 3(=IEC) to be synchronised with IEC60870-5-103. Enter 4(=SN) to be synchronised with SNTP. Note: When selecting BI, IRIG-B, IEC60870-5-103 or SNTP, check that they are active on the "Status" screen in "Status" sub-menu. If BI is selected, the BI command trigger setting should be “None” because event records will become full soon. (See Section 4.2.6.5.) If it is set to an inactive BI, IRIG-B, IEC60870-5-103 or SNTP, the calendar clock runs locally. Setting the time zone When the calendar clock is synchronised with the IRIG-B time standard, it is possible to transform GMT to the local time. • Select "Time zone" to display the "Time zone" screen. / 3 T i m e z o n e G M T h r s + 9 _ G M T m M i n + 0 • Enter the difference between GMT and local time. Enter numerical values to GMT (hrs) and GMTm (min), and press the ENTER key. 4.2.6.7 Protection The GRB150 can have 4 setting groups for protection in order to accommodate changes in the ⎯ 60 ⎯ 6 F 2 S 0 9 0 0 operation of the power system, one setting group is assigned active. To set protection, do the following: • Select "Protection" on the "Set. (change)" screen to display the "Protection" screen. / • • • 2 P r o t e C h a n g e C h a n g e C o p y g p c t i o n a c t . g p . s e t . Changing the active group • Select "Change act. gp." to display the "Change active group" screen. / 3 C h a n g e a c t . g p . A c t i v e g p . 1 _ • Enter the group number and press the ENTER key. Changing the settings All the setting items have default values that are set when the product was shipped except names and descriptions specified by the user. For the default values, see Appendix C and G. To change the settings, do the following: • Select "Change set." to display the "Change setting" screen. / • • • • • • • • 3 G G G G G G G G r r r r r r r r A o o o o o o o o c u u u u u u u u t p p p p p p p p g p . = ∗ 1 2 3 4 5 6 7 8 • Select the group number to change the settings and press the ENTER key. / 4 G r o u p ∗ P a r a m e t e r • • T r i p Setting the parameter Enter the line name as follows: • Select "Parameter" on the "Group ∗" screen to display the "Parameter" screen. / 5 P a r a m e t e r n a m e • L i n e • Select "Line name" to display the "Line name" screen. • Enter the line name as a text string and press the END key. ⎯ 61 ⎯ 6 F 2 S 0 9 0 0 Setting the trip function To set the scheme switches and protection elements, do the following. • Select "Trip" on the "Group ∗" screen to display the "Trip" screen. / 5 T r i p s w • S c h e m e • P r o t . e l e m e n t Setting the scheme switch • Select "Scheme sw" to display the "Scheme switch" screen. / 6 V O S A C O D f V L L f S c h e m e C f C M E f H / N & N / s w K 1 O n T 0 B L K / A L M 0 F 1 / F 2 _ <VDCHK> • Enter 1 to perform the differential voltage supervision or enter 0 if you do not need to perform it, and press the ENTER key. <SVCNT> • Enter 0 (= ALM&BLK) to output an alarm and to block the trip function by the differential voltage monitoring. <CLEN> • Enter 1 (= F1) to use BI1 for the function 1 of the cold load protection. • Enter 2 (= F2) to use BI1 for the function 2 of the cold load protection. • Enter 0 (= Off) not to use BI1 for the cold load protection. • Press the END key to return to the "Trip" screen. Setting the protection elements • Select "Prot. element" to display the "Protection element" screen. / 6 P r o t . e l e m e n t D I F D I F T V D 0 D I F 1 T C L 0 V 1 0 S V 5 S V . 5 0 C C . 0 0 P . 0 1 _ V _ s _ s ⎯ 62 ⎯ 6 F 2 S 0 9 0 0 T C L 0 T C L 0 E . 0 0 R . 0 0 s s • Enter the numerical value and press the ENTER key. • After setting, press the END key to display the following confirmation screen. C h a n g e s e t t i n g s ? E N T E R = Y C A N C E L = N • Press the ENTER (=Y) key to change settings and return to the "Trip" screen. Setting group copy To copy the settings of one group and overwrite them to another group, do the following: • Select "Copy gp" on the "Protection" screen to display the "Copy A to B" screen. / 3 C o p y A t o A B B _ _ • Enter the group number to be copied in line A and press the ENTER key. • Enter the group number to be overwritten by the copy in line B and press the ENTER key. 4.2.6.8 Binary Input The logic level of binary input signals can be inverted by setting before entering the scheme logic. Inversion is used when the input contact cannot meet the requirements described in Table 3.2.2. • Select "Binary I/P" on the "Set. (change)" sub-menu to display the "Binary I/P" screen. / . . . . . . . . 2 B B B B B B B B I I I I I I I I B i n a r y 1 2 3 4 5 6 7 8 I / P Selection of Binary Input • Select the input number (BI number) on the "Binary I/P" screen. After setting, press the ENTER key to display the "BI∗" screen. / 3 B I ∗ • T i m e r s • F u n c t i o n s ⎯ 63 ⎯ 6 F 2 S 0 9 0 0 Setting timers • Select "Timers" on the "BI" screen to display the "Timers" screen. / 4 T i m e r s P U D 0 . 0 0 D O D 0 . 0 0 s Pick-up delay setting s Drop-off delay setting _ • Enter the numerical value and press the ENTER key. • After setting, press the END key to return to the "BI∗" screen. Setting Functions • Select "Functions" on the "BI" screen to display the "Functions" screen. / 4 F u n c t i o n s S N S N o r m / I n v 1 _ • To set the Binary Input Sense, enter 0(=Normal) or 1(=Inverted) and press the ENTER key. • After setting, press the END key to return to the "BI∗" screen. 4.2.6.9 Binary Output All the binary outputs of the GRB150 except the relay failure signal are user-configurable. It is possible to assign one signal or up to four ANDing or ORing signals to one output relay. Available signals are listed in Appendix B. It is also possible to attach Instantaneous or delayed or latched reset timing to these signals. Appendix H shows the factory default settings. CAUTION When having changed the binary output settings, release the latch state on a digest screen by pressing the RESET key for more than 3 seconds. To configure the binary output signals, do the following: Selection of output relay • Select "Binary O/P" on the "Set. (change)" screen to display the "Binary O/P" screen. / • • • • • • • 2 B B B B B B H O O O O O O B B i n a r y 1 2 3 4 5 6 O 1 ⎯ 64 ⎯ O / P 6 F 2 S 0 9 0 0 • H B O 2 • H B O 3 • H B O 4 Note: The setting is required for all the binary outputs. If any of the binary outputs are not used, enter 0 to logic gates #1 to #6 in assigning signals. • Select the output relay number (BO number) and press the ENTER key to display the "BO∗" screen. / 3 B O ∗ • L o g i c / R e s e t • F u n c t i o n s Setting the logic gate type and timer • Select "Logic/Reset" to display the "Logic/Reset" screen. / 4 L O R I o R e n L o g i c / R e s e t g / s s i A e / c 0 _ N D t 0 D l / D w / L a t • Enter 0(=OR) or 1(=AND) to use an OR gate or AND gate and press the ENTER key. • Enter 0(=Instantaneous) or 1(=Delayed) or 2(=Dwell) or 3(=Latched) to select the reset timing and press the ENTER key. • Press the END key to return to the "BO∗" screen. Note: To release the latch state, push the [RESET] key for more than 3 seconds. Assigning signals • Select "Functions" on the "BO∗" screen to display the "Functions" screen. / 4 I n I n I n I n I n I n T B F u n c t i o n s # 1 0 # 1 0 # 1 0 # 1 0 # 1 0 # 1 0 O 0 . 1 0 2 0 3 0 4 0 5 0 6 0 0 _ 1 2 3 4 5 s 2 0 • Assign signals to gates (In #1 to #6) by entering the number corresponding to each signal referring to Appendix C. Do not assign the signal numbers 471 to 476 and 487 to 490 (signal names: "BO1_OP" to "BO6_OP" and "HBO1_OP" to "HBO4_OP"). And set the ⎯ 65 ⎯ 6 F 2 S 0 9 0 0 delay time of timer TBO. Note: If signals are not assigned to all the gates #1 to #6, enter 0 for the unassigned gate(s). Repeat this process for the outputs to be configured. 4.2.6.10 LEDs Six LEDs of the GRB150 are user-configurable. A configurable LED can be programmed to indicate the OR combination of a maximum of 4 elements, the individual statuses of which can be viewed on the LED screen as “Virtual LEDs.” The signals listed in Appendix B can be assigned to each LED as follows. CAUTION When having changed the LED settings, must release the latch state on a digest screen by pressing the RESET key for more than 3 seconds. Selection of LEDs • Select "LED" on the "Set. (change)" screen to display the "LED" screen. / 2 L E D • L E D • V i r t u a l L E D Selection of real LEDs • Select "LED" on the "/2 LED" screen to display the "/3 LED" screen. / • • • • • • 3 L L L L L L E E E E E E L D D D D D D E D 1 2 3 4 5 6 • Select the LED number and press the ENTER key to display the "LED∗" screen. / 4 L E D ∗ • L o g i c / R e s e t • F u n c t i o n s Setting the logic gate type and reset type • Select "Logic/Reset" to display the "Logic/Reset" screen. / 5 L O R I o R e n L o g i c / R e s e t g / s s i A e t c N D t / L a t c h 0 _ 0 • Enter 0(=OR) or 1(=AND) to use an OR gate or AND gate and press the ENTER key. • Enter 0(=Instantaneous) or 1(=Latched) to select the reset timing and press the ENTER key. ⎯ 66 ⎯ 6 F 2 S 0 9 0 0 • Press the END key to return to the "LED∗" screen. Note: To release the latch state, refer to Section 4.2.1. Assigning signals • Select "Functions" on the "LED∗" screen to display the "Functions" screen. / 5 I n F u n c t i o n s # 1 0 I n # 1 0 I n # 1 0 I n # 1 0 1 0 2 0 3 0 4 0 0 _ 1 2 3 • Assign signals to gates (In #1 to #4) by entering the number corresponding to each signal referring to Appendix C. Note: If signals are not assigned to all the gates #1 to #4, enter 0 for the unassigned gate(s). • Press the END key to return to the "LED∗" screen. Repeat this process for the outputs to be configured. Selection of virtual LEDs • Select "Virtual LED" on the "/2 LED" screen to display the "Virtual LED" screen. / 3 V i r t u a l • I N D 1 • I N D 2 L E D • Select the IND number and press the ENTER key to display the "IND∗" screen. / 4 I N D ∗ • R e s e t • F u n c t i o n s Setting the reset timing • Select "Reset" to display the "Reset" screen. / 5 R e s e t R e s e t I n s t / L a t c h 0 _ • Enter 0(=Instantaneous) or 1(=Latched) to select the reset timing and press the ENTER key. • Press the END key to return to the "IND∗" screen. Note: To release the latch state, push the [RESET] key for more than 3 seconds. ⎯ 67 ⎯ 6 F 2 S 0 9 0 0 Assigning signals • Select "Functions" on the "IND∗" screen to display the "Functions" screen. / 5 F u n c t i o n s B I T 1 B I T 1 1 0 0 0 2 0 0 1 _ B I T 8 1 0 0 7 • Assign signals to bits (1 to 8) by entering the number corresponding to each signal referring to Appendix C. Note: If signals are not assigned to all the bits 1 to 8, enter 0 for the unassigned bit(s). • Press the END key to return to the "IND∗" screen. Repeat this process for the outputs to be configured. 4.2.7 Testing The sub-menu "Test" provides such functions as disabling the automatic monitoring function and forced operation of binary outputs. The password, if set, must be entered in order to enter the test screens because the "Test" menu has password security protection. (See the section 4.2.6.2.) If the password trap ser, enter the password in the following screen. P a s s w o r d [ _ 1 2 3 4 5 6 7 8 9 0 ← ] Note: When operating the "Test" menu, the "IN SERVICE" LED is flickering. But if an alarm occurs during the test, the flickering stops. The "IN SERVICE" LED flickers only in a lighting state. 4.2.7.1 Scheme switch The automatic monitoring function (A.M.F.) can be disabled by setting the switch [A.M.F] to "OFF". Disabling the A.M.F. inhibits trip blocking even in the event of a failure in the items being monitored by this function. It also prevents failures from being displayed on the "ALARM" LED and LCD described in Section 4.2.1. No events related to A.M.F. are recorded, either. Disabling the A.M.F. is useful for blocking the output of unnecessary alarms during testing. • Select "Test" on the top "MENU" screen to display the "Test" screen. / • • • 1 T e S w i t B i n a L o g i s t c h r y O / P c c i r c u i t • Select "Switch" to display the "Switch" screen. / 2 S w i t c h A . M . F . O f f / O n 1 ⎯ 68 ⎯ _ 6 F 2 S 0 9 0 0 C O I O L f E f P f C f T / T / S N S O T - C L / C L T n 0 • Enter 0 or 1 to disable the A.M.F. or not and press the ENTER key for each switch. • Enter 0(=Off) to disable the cold load protection, or enter 1(=N-CL) forcibly to set to “No-cold load condition” or enter 2(=CL) forcibly to set to “Cold load condition”. And press the ENTER key. • Enter 1(=On) for IECTST to transmit ‘test mode’ to the control system by IEC60870-5-103 communication when testing the local relay, and press the ENTER key. • Press the END key to return to the "Test" screen. 4.2.7.2 Binary Output Relay It is possible to forcibly operate all binary output relays for checking connections with the external devices. Forced operation can be performed on one or more binary outputs at a time. • Select "Binary O/P" on the "Test" screen to display the "Binary O/P" screen. Then the LCD displays the name of the output relay. / 2 B D B D B D B D B D B D H D H D H D H D F D O i O i O i O i O i O i B i B i B i B i A i B i n a r y 1 s 2 s 3 s 4 s 5 s 6 s O s O s O s O s I s O / P 0 a b l e / E n a b 0 a b l e / E n a b 0 a b l e / E n a b 0 a b l e / E n a b 0 a b l e / E n a b 0 a b l e / E n a b 1 0 a b l e / E n a b 2 0 a b l e / E n a b 3 0 a b l e / E n a b 4 0 a b l e / E n a b L 0 a b l e / E n a b _ l e _ l e _ l e _ l e _ l e _ l e _ l e _ l e _ l e _ l e _ l e • Enter 1 and press the ENTER key to operate the output relay(s) forcibly. • After completing the entries, press the END key. Then the LCD displays the screen shown below. O p e r a t e ? E N T E R = Y C A N C E L = N • Keep pressing the ENTER key to operate the assigned output relay(s). ⎯ 69 ⎯ 6 F 2 S 0 9 0 0 • Release pressing the ENTER key to reset the operation. • Press the CANCEL key to return to the upper "Binary O/P" screen. 4.2.7.3 Logic Circuit It is possible to observe the binary signal level on the signals listed in Appendix B with monitoring jacks A and B. • Select "Logic circuit" on the "Test" screen to display the "Logic circuit" screen. / 2 L o g i c c i r c u i t T e r m A 1 _ T e r m B 4 8 _ • Enter a signal number to be observed at monitoring jack A and press the ENTER key. • Enter the other signal number to be observed at monitoring jack B and press the ENTER key. After completing the setting, the signals can be observed by the binary logic level at monitoring jacks A and B or by the LEDs above the jacks. On screens other than the above screen, observation with the monitoring jacks is disabled. ⎯ 70 ⎯ 6 F 2 S 0 9 0 0 4.3 Personal Computer Interface The relay can be operated from a personal computer using an RS232C port on the front panel. On the personal computer, the following analysis and display of the differential voltage are available in addition to the items available on the LCD screen. • Display of differential voltage waveform: Oscillograph, vector display • Harmonic analysis: On arbitrary time span For the details, see the separate instruction manual "PC INTERFACE RSM100". 4.4 Relay Setting and Monitoring System The Relay Setting and Monitoring (RSM) system is a system that retrieves and analyses the data on power system quantities, fault and event records and views or changes settings in individual relays via Ethernet LAN networks using a remote PC as shown in Figure 4.4.1. TCP/IP (LAN cable) HUB Figure 4.4.1 Relay Setting and Monitoring System ⎯ 71 ⎯ 6 F 2 S 0 9 0 0 4.5 IEC 60870-5-103 Interface The GRB150 supports the IEC60870-5-103 communication protocol. This protocol is mainly used when the relay communicates with a control system and is used to transfer the following measurand and status data from the relay to the control system. (For details, see Appendix M.) • Measurand data: differential voltage • Status data: events, fault indications, etc. The protocol can be used through the RS485 port or the Fibre optic port on the relay rear panel. The relay supports two baud-rates 9.6kbps and 19.2kbps, and supports two normalizing factors 1.2 and 2.4 for measurand. These are selected by setting. See Section 4.2.6.4. The data transfer from the relay can be blocked by the setting. For the settings, see the Section 4.2.6. 4.6 IEC 61850 Communication GRB150 can also support data communication according to the IEC 61850 standard. Station bus communication as specified in IEC 61850-8-1 facilitates integration of the relays within substation control and automation systems via Ethernet LAN. Figure 4.6.1 shows an example of a substation automation system using Ethernet-based IEC 61850 communication. Figure 4.6.1 IEC 61850 Communication Network ⎯ 72 ⎯ 6 F 2 S 0 9 0 0 4.7 Clock Function The clock function (Calendar clock) is used for time-tagging for the following purposes: • Event records • Disturbance records • Fault records The calendar clock can run locally or be synchronised with an external clock such as the binary time standard input signal, RSM clock or IEC60870-5-103. This can be selected by setting. The “clock synchronise” function synchronises the relay internal clock to the BI (connected to PLC input No.2576 SYNC_CLOCK) by the following method. Since the BI signal is an “ON” or “OFF” signal which cannot express year-month-day and hour-minute-second etc, synchronising is achieved by setting the number of milliseconds to zero. This method will give accurate timing if the synchronising BI signal is input every second. Synchronisation is triggered by an “OFF” to “ON” (rising edge) transition of the BI signal. When the trigger is detected, the millisecond value of the internal clock is checked, and if the value is between 0~500ms then it is rounded down. If it is between 500~999ms then it is rounded up (ie the number of seconds is incremented). n sec (n+1) sec 500ms corrected to (n+1) sec corrected to n sec t When the relays are connected with the RSM system as shown in Figure 4.4.1 and selected "RSM" in the time synchronisation setting, the calendar clock of each relay is synchronised with the RSM clock. If the RSM clock is synchronised with the external time standard, then all the relay clocks are synchronised with the external time standard. ⎯ 73 ⎯ 6 F 2 S 0 9 0 0 5. Installation 5.1 Receipt of Relays When relays are received, carry out the acceptance inspection immediately. In particular, check for damage during transportation, and if any damage is found, contact the vendor. Check that the following accessories are attached. • 3 pins for the monitoring jack, packed in a plastic bag. Always store the relays in a clean, dry environment. 5.2 Relay Mounting A flush mounting relay is delivered. Appendix E shows the case outlines. For details of relay withdrawal and insertion, see Section 6.7.3. 5.3 Electrostatic Discharge CAUTION Do not take out the relay unit outside the relay case since electronic components on the modules are very sensitive to electrostatic discharge. If it is absolutely essential to take the modules out of the case, do not touch the electronic components and terminals with your bare hands. Additionally, always put the module in a conductive anti-static bag when storing it. 5.4 Handling Precautions A person's normal movements can easily generate electrostatic potentials of several thousand volts. Discharge of these voltages into semiconductor devices when handling electronic circuits can cause serious damage, which often may not be immediately apparent but the reliability of the circuit will have been reduced. The electronic circuits are completely safe from electrostatic discharge when housed in the case. Do not expose them to risk of damage by withdrawing relay unit unnecessarily. The relay unit incorporates the highest practicable protection for its semiconductor devices. However, if it becomes necessary to withdraw the relay unit, the precautions should be taken to preserve the high reliability and long life for which the equipment has been designed and manufactured. CAUTION • Before removing the relay unit, ensure that you are at the same electrostatic potential as the equipment by touching the case. • Use the handle to draw out the relay unit. Avoid touching the electronic components, printed circuit board or connectors. • Do not pass the relay unit to another person without first ensuring you are both at the same electrostatic potential. Shaking hands achieves equipotential. ⎯ 74 ⎯ 6 F 2 S 0 9 0 0 • Place the relay unit on an anti-static surface, or on a conducting surface which is at the same potential as yourself. • Do not place the relay unit in polystyrene trays. It is strongly recommended that detailed investigations on electronic circuitry should be carried out in a Special Handling Area. 5.5 External Connections External connections for each relay model are shown in Appendix F. ⎯ 75 ⎯ 6 F 2 S 0 9 0 0 6. Commissioning and Maintenance 6.1 Outline of Commissioning Tests The GRB150 is fully numerical and the hardware is continuously monitored. Commissioning tests can be kept to a minimum and need only include hardware tests and the conjunctive tests. The function tests are at the user’s discretion. In these tests, user interfaces on the front panel of the relay or a local PC can be fully applied. Test personnel must be familiar with general relay testing practices and safety precautions to avoid personal injuries or equipment damage. Hardware tests These tests are performed for the following hardware to ensure that there is no hardware defect. Defects of hardware circuits other than the following can be detected by monitoring which circuits function when the DC power is supplied. User interfaces Binary input circuits and output circuits AC input circuits Function tests These tests are performed for the following functions that are fully software-based. Measuring elements Metering and recording Human interface Conjunctive tests The tests are performed after the relay is connected with the primary equipment and other external equipment. The following tests are included: On load test: phase sequence check and polarity check Tripping circuit test ⎯ 76 ⎯ 6 F 2 S 0 9 0 0 6.2 Cautions 6.2.1 Safety Precautions CAUTION • The relay rack is provided with an earthing terminal. Before starting the work, always make sure the relay rack is earthed. • When connecting the cable to the back of the relay, firmly fix it to the terminal block and attach the cover provided on top of it. • Before checking the interior of the relay, be sure to turn off the power. Failure to observe any of the precautions above may cause electric shock or malfunction. 6.2.2 Precautions for Testing CAUTION • When testing the relay, house it in the case and test it. • While the power is on, do not draw out/insert the relay unit. • Before turning on the power, check the followings: - Make sure the polarity and voltage of the power supply are correct. - Make sure the CT circuit is not open. • If dc power has not been supplied to the relay for two days or more, then it is recommended that all fault records, event records and disturbance records be cleared soon after restoring the power. This is because the back-up RAM may have discharged and may contain uncertain data. • Be careful that the relay is not damaged due to an overcurrent or overvoltage. • If settings are changed for testing, remember to reset them to the original settings. Failure to observe any of the precautions above may cause damage or malfunction of the relay. ⎯ 77 ⎯ 6 F 2 S 0 9 0 0 6.3 Preparations Test equipment The following test equipment is required for the commissioning tests. 1 Single-phase voltage source 1 DC power supply 1 AC voltmeter 1 DC voltmeter 1 Time counter, precision timer 1 PC (not essential) Relay settings Before starting the tests, it must be specified whether the tests will use the user’s settings or the default settings. For the default settings, see the following appendixes: Appendix C Binary Output Default Setting List Appendix G Relay Setting Sheet Visual inspection After unpacking the product, check for any damage to the relay case. If there is any damage, the internal module might also have been affected. Contact the vendor. Relay ratings Check that the items described on the nameplate on the front of the relay conform to the user’s specification. The items are: relay type and model, AC voltage, current and frequency ratings, and auxiliary DC supply voltage rating. Local PC When using a local PC, connect it with the relay via the RS232C port on the front of the relay. RSM100 software is required to run the PC. For details, see separate volume "PC INTERFACE RSM100". ⎯ 78 ⎯ 6 F 2 S 0 9 0 0 6.4 Hardware Tests The tests can be performed without external wiring, but a DC power supply and AC voltage source are required. 6.4.1 User Interfaces This test ensures that the LCD, LEDs and keys function correctly. LCD display • Apply the rated DC voltage and check that the LCD is off. Note: If there is a failure, the LCD will display the "Err: " screen when the DC voltage is applied. • Press the RESET key and check that black dots appear on the whole screen. LED display • Apply the rated DC voltage and check that the "IN SERVICE" LED is lit in green. • Press the RESET key for one second or more and check that remaining five LEDs are lit in red or yellow. (Programmable LEDs are yellow.) VIEW and RESET keys • Press the VIEW key when the LCD is off and check that the "Virtual LED" and "Metering" screens are sequentially displayed on the LCD. • Press the RESET key and check that the LCD turns off. Other operation keys • Press any key when the LCD is off and check that the LCD displays the "MENU" screen. Press the END key to turn off the LCD. • Repeat this for all keys. ⎯ 79 ⎯ 6 F 2 S 0 9 0 0 6.4.2 Binary Input Circuit The testing circuit is shown in Figure 6.4.1. GRB150 TB2 -A1 BI1 -B1 DC power supply + TB2 -A9 − -B9 E Figure 6.4.1 Testing Binary Input Circuit • Display the "Binary I/O" screen from the "Status" sub-menu. / I O O 2 P P P 2 B [ [ [ i 0 0 0 n 0 0 0 a 0 0 0 r y I / O 0 0 0 0 0 ] 0 0 0 0 ] 0 ] • Apply the rated DC voltage to terminal A1-B1, A2-B2, ..., A8-B8 of terminal block TB2. Check that the status display corresponding to the input signal (IP) changes from 0 to 1. (For details of the binary input status display, see Section 4.2.4.2.) The user will be able to perform this test for one terminal to another or for all the terminals at once. 6.4.3 Binary Output Circuit This test can be performed by using the "Test" sub-menu and forcibly operating the relay drivers and output relays. Operation of the output contacts is monitored at the output terminal. The output contact and corresponding terminal number are shown in Appendix F. • Select "Binary O/P" on the "Test" screen to display the "Binary O/P" screen. The LCD will display the name of the output relay. / 2 B D B D B D B D B D O i O i O i O i O i B i n a r y 1 s 2 s 3 s 4 s 5 s O / P 0 a b l e / E n a b 0 a b l e / E n a b 0 a b l e / E n a b 0 a b l e / E n a b 0 a b l e / E n a b ⎯ 80 ⎯ _ l e _ l e _ l e _ l e _ l e 6 F 2 S 0 9 0 0 B D H D H D H D H D F D O i B i B i B i B i A i 6 s O s O s O s O s I s a 1 a 2 a 3 a 4 a L a 0 b l e / E n a b 0 b l e / E n a b 0 b l e / E n a b 0 b l e / E n a b 0 b l e / E n a b 0 b l e / E n a b _ l e _ l e _ l e _ l e _ l e _ l e • Enter 1 at any B/O(s) tested and press the ENTER key. • After completing the entries, press the END key. The LCD will display the screen shown below. If 1 is entered for all the output relays, the following forcible operation can be performed collectively. O p e r a t e ? E N T E R = Y C A N C E L = N • Keep pressing the ENTER key to operate the output relays forcibly. • Check that the output contacts operate at the terminal. • Stop pressing the ENTER key to reset the operation. 6.4.4 AC Input Circuits This test can be performed by applying the checking voltages to the AC input circuits and verifying that the values applied coincide with the values displayed on the LCD screen. The testing circuit is shown in Figure 6.4.2. A single-phase voltage source is required. GRB150 EB-10∗ V Single-phase voltage source TB1-1 -2 TB2-1 Va -3 -4 -5 -6 Vb Vc -2 TB1 -1 -2 -3 -4 -5 -6 -3 -4 -5 -6 -8 DC power supply Va + TB2 -A9 − -B9 Vb Vc E *(Note) EB-101: single-phase, EB-102: three-phase Figure 6.4.2 Testing AC Input Circuit • Check the metering data on the "Metering" screen. "Setting (view)" sub-menu → "Status" setting screen → "Metering" screen ⎯ 81 ⎯ 6 F 2 S 0 9 0 0 • Open the Metering screen in the Status sub-menu. "Status" sub-menu → "Metering" screen • Apply AC voltages and check that the displayed values are within ±5% of the input values. ⎯ 82 ⎯ 6 F 2 S 0 9 0 0 6.5 Function Test 6.5.1 Measuring Element Measuring element characteristics are realised by software, so it is possible to verify the overall characteristics by checking representative points. Operation of the element under test is observed by the binary output signal at monitoring jacks A or B or by the LED indications above the jacks. In any case, the signal number corresponding to each element output must be set on the "Logic circuit" screen of the "Test" sub-menu. / 2 L o g i c c i r c u i t T e r m A 1 _ T e r m B 4 8 _ When a signal number is entered for the Term A line, the signal is observed at monitoring jack A and when entered for the Term B line, it is observed at monitoring jack B. Note: The voltage level at the monitoring jacks is +5V for logic level "1" and less than 0.1V for logic level "0". CAUTION • Use test equipment with more than 1 kΩ of internal impedance when observing the output signal at the monitoring jacks. • Do not apply an external voltage to the monitoring jacks. • Do not leave the A or B terminal shorted to 0V terminal for a long time. In case of a three-phase element, it is sufficient to test for a representative phase. The A-phase element is selected hereafter. ⎯ 83 ⎯ 6 F 2 S 0 9 0 0 6.5.1.1 Differential element DIF The differential element is checked for the following: • Operating voltage value • Operating time Operating voltage value Figure 6.5.1 shows a testing circuit. The minimum operating voltage value is checked by increasing the magnitude of the voltage applied. GRB150 V EB-10∗ TB1-1(TB1-1) + Single-phase voltage source − TB1-4(TB2-1) TB1 -1 TB1-5(TB2-2) -2 Va TB1-2(TB1-2) -3 -4 -5 -8 Monitoring jack A 0V -6 DC power supply + TB3 -A5 − -B5 E DC voltmeter + − *(Note) EB-101: single-phase, EB-102: three-phase. The terminal No. shown in the parentheses are in the case of EB-102. Figure 6.5.1 Operating Voltage Value Test Circuit The output signal numbers of the DIF elements are as follows: Element Signal number DIF-A (DIF) 11 DIF-B 12 DIF-C 13 Remarks • Select "Logic circuit" on the "Test" sub-menu screen to display the "Logic circuit" screen. • Enter signal number 11 to observe the DIF-A operation at monitoring jack A and press the ENTER key. • Apply a test voltage and change the magnitude of the voltage applied and measure the value at which the element operates. Check that the measured value is within 10% of the setting value. ⎯ 84 ⎯ 6 F 2 S 0 9 0 0 Operating time The testing circuit is shown in Figure 6.5.2. V TB1-1 (TB1-1) Single-phase voltage source GRB150 EB-10∗ Va TB1-2 (TB1-2) TB1-4 TB1 -1 (TB2-1) TB1-5 (TB2-2) -2 Monitoring jack 0V -8 DC power supply A + TB3 -A5 − -B5 E Start Time counter Stop 0V *(Note) EB-101: single-phase, EB-102: three-phase. The terminal No. shown in the parentheses are in the case of EB-102. Figure 6.5.2 Operating Time Test • Set the test current to 2 times the DIF setting value. • Apply the test voltage and measure the operating time. • Check that the operating time is 20 ms or less. 6.5.1.2 Supervisory element DIFSV The supervisory element is checked for the operating voltage value. Operating voltage value Figure 6.5.1 shows a testing circuit. The minimum operating voltage value is checked by increasing the magnitude of the voltage applied. The output signal numbers of the DIF elements are as follows: Element Signal number DIFSV-A (DIFSV) 14 DIFSV-B 15 DIFSV-C 16 Remarks • Select "Logic circuit" on the "Test" sub-menu screen to display the "Logic circuit" screen. • Enter signal number 14 to observe the DIFSV-A operation at monitoring jack A and press ⎯ 85 ⎯ 6 F 2 S 0 9 0 0 the ENTER key. • Apply a test voltage and change the magnitude of the voltage applied and measure the value at which the element operates. Check that the measured value is within 10% of the setting value. 6.5.2 Protection Scheme In the protection scheme tests, a dynamic test set is required to simulate power system pre-fault, fault and post-fault conditions. Tripping is observed with the tripping command output relay HBO∗ assigned. Differential tripping The tripping should be checked for the voltage which is two times or larger than the minimum operating voltage DIF. Operating time is measured by the operating time of the tripping command output relay. It is usually 20ms. Check that the indications and recordings are correct. 6.5.3 Metering and Recording The metering function can be checked while testing the AC input circuit. See Section 6.4.4. Fault recording can be checked while testing the protection schemes. Open the "Fault records" screen and check that the descriptions are correct for the fault concerned. Recording events are listed in Table 3.4.1. The top event is an external event and others are internal events. Event recording on the external event can be checked by changing the status of binary input signals. Change the status in the same way as the binary input circuit test (see Section 6.4.2) and check that the description displayed on the "Event Records" screen is correct. Note: Whether to record or not can be set for each event. Change the status of the binary input signal after confirming that the related event is set to record. (The default setting enables all the events to be recorded.) Some of the internal events can be checked in the protection scheme tests. Disturbance recording can be checked while testing the protection schemes. The LCD display only shows the date and time when a disturbance is recorded. Open the "Disturbance records" screen and check that the descriptions are correct. Details can be displayed on the PC with the RSM100 software. Check that the descriptions on the PC are correct. For details on how to obtain disturbance records on the PC, see the RSM100 Manual. ⎯ 86 ⎯ 6 F 2 S 0 9 0 0 6.6 Conjunctive Tests 6.6.1 On Load Test With the relay connected to the line which is carrying a load current, it is possible to check the polarity of the current transformer with the metering displays on the LCD screen. • Open the following "Metering" screen from the "Status" sub-menu. / 2 V d M e t e r i n g V ∗ ∗ ∗ . ∗ (Model 101) / 2 M e V d a ∗ V d b ∗ V d c ∗ (Model 201) t ∗ ∗ ∗ e ∗ ∗ ∗ r . . . i n g V ∗ V ∗ V ∗ • Check that the differential voltage Vd or Vda, Vdb and Vdc are sufficiently smaller than the DIF and DIFSV setting values. 6.6.2 Tripping Circuit Test The tripping circuit including the circuit breaker is checked by forcibly operating the output relay and monitoring the circuit breaker to confirm that it is tripped. Forcible operation of the output relay is performed on the "Binary O/P" screen of the "Test" sub-menu as described in Section 6.4.3. Tripping circuit • Set the breaker to be closed. • Select "Binary O/P" on the "Test" sub-menu screen to display the "Binary O/P" screen. HBO1 is a tripping command output relay with one normally open contact. • Enter 1 for HBO1 and press the ENTER key. • Press the END key. Then the LCD displays the screen shown below. O p e r a t e ? E N T E R = Y C A N C E L = N • Keep pressing the ENTER key to operate the output relay HBO1 and check that the No.1 breaker is tripped. • Stop pressing the ENTER key to reset the operation. • Repeat the above for other HBOs. ⎯ 87 ⎯ 6 F 2 S 0 9 0 0 6.7 Maintenance 6.7.1 Regular Testing The relay is almost completely self-supervised. The circuits that can not be supervised are binary input and output circuits and human interfaces. Therefore, regular testing is minimised to checking the unsupervised circuits. The test procedures are the same as described in Sections 6.4.1, 6.4.2 and 6.4.3. 6.7.2 Failure Tracing and Repair Failures will be detected by automatic supervision or regular testing. When a failure is detected by supervision, a remote alarm is issued with the binary output relay of FAIL and the failure is indicated on the front panel with LED indicators or LCD display. It is also recorded in the event record. Failures detected by supervision are traced by checking the "Err: " screen on the LCD. Table 6.7.1 shows LCD messages and failure locations. The locations marked with (1) have a higher probability than locations marked with (2). Table 6.7.1 LCD Message and Failure Location Message Relay Unit Err: SUM Err: ROM Err: RAM Err: CPU Err: Invalid Err: NMI Err: BRAM Err: EEP Err: A/D Err: SP Err: PCI Err: DC Err: TC ×(Flash memory) ×(ROM data) ×(SRAM) ×(CPU) × × ×(Backup RAM) ×(EEPROM) ×(A/D converter) ×(Sampling) × ×(DC power supply circuit) ×(Tripping circuit)(1) Err: CB Err: Vd Err: PLC × (Circuit breaker)(1) × (1) Failure location CB or AC cable cable PLC, IEC61850 data × (2) × (2) × (2) ×(PLC data) Err: MAP ×(IEC61850 mapping data) Err: RTC ×(SNTP setting) Err: LAN ×(Ethernet LAN) Err: GOOSE ×(GOOSE subscribe) Err: Ping ×(Ping response) ( ): Probable failure location in the relay unit including its peripheral circuits. If no message is shown on the LCD, this means that the failure location is either in the DC power ⎯ 88 ⎯ 6 F 2 S 0 9 0 0 supply circuit or in the microprocessors. If the "ALARM" LED is off, the failure is in the DC power supply circuit. If the LED is lit, the failure is in the microprocessors. Replace the relay unit in both cases after checking if the correct DC voltage is applied to the relay. If a failure is detected by automatic supervision or regular testing, replace the failed relay unit. Note: When a failure or an abnormality is detected during the regular test, confirm the following first: - Test circuit connections are correct. - Modules are securely inserted in position. - Correct DC power voltage is applied. - Correct AC inputs are applied. - Test procedures comply with those stated in the manual. 6.7.3 Replacing a Failed Relay Unit If a failure is identified in the relay unit and the user has a spare relay unit, the user can recover the protection by replacing the failed relay unit. Repair at the site should be limited to relay unit replacement. Maintenance at the component level is not recommended. Check that the replacement relay unit has an identical Model No. and relay version (software type form) as the removed relay. The Model No. is indicated on the front of the relay. For the relay version, see Section 4.2.5.1 Replacing the relay unit CAUTION After replacing the relay unit, check the settings. The procedure of relay withdrawal and insertion is as follows: • Switch off the DC power supply. WARNING Hazardous voltage may remain in the DC circuit just after switching off the DC power supply. It takes approximately 30 seconds for the voltage to discharge. • • • • • Disconnect the trip outputs. Short-circuit all AC current inputs. Unscrew the relay front cover. Unscrew the binding screw on the handle. To remove the relay unit from its case, pull up the handle and pull the handle towards you. (See Figure 6.7.1.) • Insert the (spare) relay unit in the reverse procedure. CAUTION To avoid risk of damage: • Keep the handle up when inserting the relay unit into the case. • Do not catch the handle when carrying the relay unit. ⎯ 89 ⎯ 6 F 2 S 0 9 0 0 A IN SERVICE VIEW TRIP ALARM IN SERVICE VIEW TRIP ALARM RESET RESET B 0V CAN ENTER CEL A B END 0V CAN ENTER CEL END Handle Pull up handle Bind screw Figure 6.7.1 Handle of Relay Unit 6.7.4 Resumption of Service After replacing the failed relay unit or repairing failed external circuits, take the following procedures to put the relay into service. • Switch on the DC power supply and confirm that the "IN SERVICE" green LED is lit and the "ALARM" red LED is not lit. • Supply the AC inputs and reconnect the trip outputs. 6.7.5 Storage The spare relay should be stored in a dry and clean room. Based on IEC Standard 60255-6 the storage temperature should be between −25°C and +70°C, but the temperature of 0°C to +40°C is recommended for long-term storage. ⎯ 90 ⎯ 6 F 2 S 0 9 0 0 7. Putting Relay into Service The following procedure must be adhered to when putting the relay into service after finishing the commissioning tests or maintenance tests. • Check that all external connections are correct. • Check the settings of all measuring elements, timers, scheme switches, recordings and clock are correct. In particular, when settings are changed temporarily for testing, be sure to restore them. • Clear any unnecessary records on faults, events and disturbances which are recorded during the tests. CAUTION: If dc power has not been supplied to the relay for two days or more, then it is recommended that all fault records, event records and disturbance records be cleared soon after restoring the power. This is because the back-up RAM may have discharged and may contain uncertain data. • Press the VIEW key and check that no failure message is displayed on the "Auto-supervision" screen. • Check that the green "IN SERVICE" LED is lit and no other LEDs are lit on the front panel. ⎯ 91 ⎯ 6 F 2 S 0 9 0 0 ⎯ 92 ⎯ 6 F 2 S 0 9 0 0 Appendix A Block Diagram ⎯ 93 ⎯ 6 F 2 S 0 9 0 0 Model 101 ≥1 A DIF 447 ≥1 DIF DIF-OR 11 & 12 B & 13 C 21 DIF TRIP-A 22 DIF TRIP-B 23 DIF TRIP-C & Model 201 1 1536 DIF_BLOCK + COLD LOAD from Figure 2.2.2. "ALM&BLK" Model 101 ≥1 DIFSV ≥1 A [SVCNT] & 16 C Model 201 & 1 TVDSV 24 t 0 & t 0 & t 0 27 ≥1 25 26 0.10 - 60.00s A.M.F ON + [VDCHK] "ON" 1537 DIFSV_BLOCK 28 DIF TRIP DIFSV-OR 14 15 DIFSV B 448 ≥1 1 Block Diagram of GRB150-101, -201 DIF: Differential element DIFSV: Supervisory element of DIF VDCHK: Vd check SVCNT: Supervision control switch VD ERR: Voltage differential error ⎯ 94 ⎯ VD ERR 6 F 2 S 0 9 0 0 Appendix B Signal List ⎯ 95 ⎯ 6 F 2 S 0 9 0 0 No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 : : 349 350 Signal Name CONSTANT_0 CONSTANT_1 Contents constant 0 constant 1 COLD_LOAD DIF-A DIF-B DIF-C DIFSV-A DIFSV-B DIFSV-C COLD LOAD relay element output DIF-A relay element output DIF-B relay element output DIF-C relay element output DIFSV-A relay element output DIFSV-B relay element output DIFSV-C relay element output DIF_TRIP-A DIF_TRIP-B DIF_TRIP-C VD_ERR-A VD_ERR-B VD_ERR-C VD_ERR DIF_TRIP DIF trip command (A Phase) DIF trip command (B Phase) DIF trip command (C Phase) VD_ERR command (A Phase) VD_ERR command (B Phase) VD_ERR command (C Phase) VD_ERR command DIF trip command DIF-AT DIF-BT DIF-CT FAULT RECORD DATA ditto ditto ⎯ 96 ⎯ 6 F 2 S 0 9 0 0 No. 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 : : 439 440 Signal Name Contents CB_CLOSE CB_OPEN CB closed status CB opened status ⎯ 97 ⎯ 6 F 2 S 0 9 0 0 No. 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 : : 759 760 Signal Name Contents DIF-OR DIFSV-OR DIF relay (3PHASE OR) DIFSV relay (3PHASE OR) BO1_OP BO2_OP BO3_OP BO4_OP BO5_OP BO6_OP Binary output 1 Binary output 2 Binary output 3 Binary output 4 Binary output 5 Binary output 6 HBO1_OP HBO2_OP HBO3_OP HBO4_OP High speed binary output 1 High speed binary output 2 High speed binary output 3 High speed binary output 4 ⎯ 98 ⎯ 6 F 2 S 0 9 0 0 No. 761 762 763 764 765 766 767 Signal Name Contents 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 : : 998 999 1000 BI1_COMMAND BI2_COMMAND BI3_COMMAND BI4_COMMAND BI5_COMMAND BI6_COMMAND BI7_COMMAND BI8_COMMAND Binary input signal BI1 Binary input signal BI2 Binary input signal BI3 Binary input signal BI4 Binary input signal BI5 Binary input signal BI6 Binary input signal BI7 Binary input signal BI8 ⎯ 99 ⎯ 6 F 2 S 0 9 0 0 No. 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 : : 1239 1240 Signal Name Contents FAULT_PHA_A FAULT_PHA_B FAULT_PHA_C fault_phase_A fault_phase_B fault_phase_C ⎯ 100 ⎯ 6 F 2 S 0 9 0 0 No. 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 Signal Name IEC_MDBLK IEC_TESTMODE GROUP1_ACTIVE GROUP2_ACTIVE GROUP3_ACTIVE GROUP4_ACTIVE GROUP5_ACTIVE GROUP6_ACTIVE GROUP7_ACTIVE GROUP8_ACTIVE RLY_FAIL RLY_OP_BLK AMF_OFF Contents monitor direction blocked IEC61870-5-103 testmode group1 active group2 active group3 active group4 active group5 active group6 active group7 active group8 active RELAY FAILURE RELAY OUTPUT BLOCK SV BLOCK RELAY_FAIL-A TRIP-H Trip signal hold TCSV CBSV TC_ALARM Trip circuit supervision failure Circuit breaker status monitoring failure Trip counter alarm GEN_PICKUP General start/pick-up BI1_COM_UF BI2_COM_UF BI3_COM_UF BI4_COM_UF BI5_COM_UF BI6_COM_UF BI7_COM_UF BI8_COM_UF Binary input signal BI1 (unfiltered) Binary input signal BI2 (unfiltered) Binary input signal BI3 (unfiltered) Binary input signal BI4 (unfiltered) Binary input signal BI5 (unfiltered) Binary input signal BI6 (unfiltered) Binary input signal BI7 (unfiltered) Binary input signal BI8 (unfiltered) ⎯ 101 ⎯ 6 F 2 S 0 9 0 0 No. 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 Signal Name Contents GOOSE_IN_Q1 GOOSE_IN_Q2 GOOSE_IN_Q3 GOOSE_IN_Q4 GOOSE_IN_Q5 GOOSE_IN_Q6 GOOSE_IN_Q7 GOOSE_IN_Q8 GOOSE_IN_Q9 GOOSE_IN_Q10 GOOSE_IN_Q11 GOOSE_IN_Q12 GOOSE_IN_Q13 GOOSE_IN_Q14 GOOSE_IN_Q15 GOOSE_IN_Q16 GOOSE_IN_Q17 GOOSE_IN_Q18 GOOSE_IN_Q19 GOOSE_IN_Q20 GOOSE_IN_Q21 GOOSE_IN_Q22 GOOSE_IN_Q23 GOOSE_IN_Q24 GOOSE_IN_Q25 GOOSE_IN_Q26 GOOSE_IN_Q27 GOOSE_IN_Q28 GOOSE_IN_Q29 GOOSE_IN_Q30 GOOSE_IN_Q31 GOOSE_IN_Q32 GOOSE_IN_1 GOOSE_IN_2 GOOSE_IN_3 GOOSE_IN_4 GOOSE_IN_5 GOOSE_IN_6 GOOSE_IN_7 GOOSE_IN_8 GOOSE_IN_9 GOOSE_IN_10 GOOSE_IN_11 GOOSE_IN_12 GOOSE_IN_13 GOOSE_IN_14 GOOSE_IN_15 GOOSE_IN_16 GOOSE_IN_17 GOOSE_IN_18 GOOSE_IN_19 GOOSE_IN_20 GOOSE_IN_21 Goose Input Quality #1 Goose Input Quality #2 Goose Input Quality #3 Goose Input Quality #4 Goose Input Quality #5 Goose Input Quality #6 Goose Input Quality #7 Goose Input Quality #8 Goose Input Quality #9 Goose Input Quality #10 Goose Input Quality #11 Goose Input Quality #12 Goose Input Quality #13 Goose Input Quality #14 Goose Input Quality #15 Goose Input Quality #16 Goose Input Quality #17 Goose Input Quality #18 Goose Input Quality #19 Goose Input Quality #20 Goose Input Quality #21 Goose Input Quality #22 Goose Input Quality #23 Goose Input Quality #24 Goose Input Quality #25 Goose Input Quality #26 Goose Input Quality #27 Goose Input Quality #28 Goose Input Quality #29 Goose Input Quality #30 Goose Input Quality #31 Goose Input Quality #32 Goose Input #1 Goose Input #2 Goose Input #3 Goose Input #4 Goose Input #5 Goose Input #6 Goose Input #7 Goose Input #8 Goose Input #9 Goose Input #10 Goose Input #11 Goose Input #12 Goose Input #13 Goose Input #14 Goose Input #15 Goose Input #16 Goose Input #17 Goose Input #18 Goose Input #19 Goose Input #20 Goose Input #21 ⎯ 102 ⎯ 6 F 2 S 0 9 0 0 No. 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 Signal Name GOOSE_IN_22 GOOSE_IN_23 GOOSE_IN_24 GOOSE_IN_25 GOOSE_IN_26 GOOSE_IN_27 GOOSE_IN_28 GOOSE_IN_29 GOOSE_IN_30 GOOSE_IN_31 GOOSE_IN_32 Contents Goose Input #22 Goose Input #23 Goose Input #24 Goose Input #25 Goose Input #26 Goose Input #27 Goose Input #28 Goose Input #29 Goose Input #30 Goose Input #31 Goose Input #32 LOCAL_OP_ACT REMOTE_OP_ACT NORM_LED_ON ALM_LED_ON TRIP_LED_ON TEST_LED_ON local operation active remote operation active IN-SERVICE LED ON ALARM LED ON TRIP LED ON TEST LED ON PRG_LED_RESET LED_RESET Latched programmable LED RESET TRIP LED RESET PROT_COM_ON PRG_LED1_ON PRG_LED2_ON PRG_LED3_ON PRG_LED4_ON PRG_LED5_ON PRG_LED6_ON IEC103 communication command PROGRAMMABLE LED1 ON PROGRAMMABLE LED2 ON PROGRAMMABLE LED3 ON PROGRAMMABLE LED4 ON PROGRAMMABLE LED5 ON PROGRAMMABLE LED6 ON LCD_IND. LCD_IND1. LCD_IND2. VirLCD indication(Virtual LED) command LCD indication1(Virtual LED) command LCD indication2(Virtual LED) command F.Record_CLR E.Record_CLR D.Record_CLR Data_Lost TP_COUNT_CLR Fault record clear Event record clear Disturbance record clear Data clear by BU-RAM memory monitoring error Trip counter cleared PLC_data_CHG IEC103_data_CHG IEC850_data_CHG Sys.set_change Rly.set_change Grp.set_change PLC data change IEC-103 data change IEC-850 data change System setting change Relay setting change Group setting change ⎯ 103 ⎯ 6 F 2 S 0 9 0 0 No. 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 Signal Name Contents KEY-VIEW KEY-RESET KEY-ENTER KEY-END KEY-CANCEL VIEW key status (1:pressed) RESET key status (2:pressed) ENTER key status (3:pressed) END key status (4:pressed) CANCEL key status (5:pressed) DC_supply_err RTC_err DC supply error RTC stopped GOOSE_stop Ping_err PLC_err 61850_err SUM_err ROM_RAM_err SRAM_err BU_RAM_err GOOSE stopped Ping no anwer PLC stopeed 61850 stopped Program ROM checksum error Rom - Ram mismatch error SRAM memory monitoring error BU-RAM memory monitoring error EEPROM_err EEPROM memory monitoring error A/D_err CPU_err Invalid NMI Sampling_err DIO_err LAN_err LCD_err ROM_data_err A/D accuracy checking error Program error Invalid error NMI Sampling error DIO card connection error LAN error LCD panel connection error 8M Romdata error ⎯ 104 ⎯ 6 F 2 S 0 9 0 0 No. Signal Name 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 Contents ⎯ 105 ⎯ 6 F 2 S 0 9 0 0 No. 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 Signal Name DIF_BLOCK DIFSV_BLOCK CB_FOR_CLP Contents DIF trip block command DIFSV trip block command CLP command ⎯ 106 ⎯ 6 F 2 S 0 9 0 0 No. 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 : : 2558 2559 Signal Name Contents TC_FAIL CB_N/O_CONT CB_N/C_CONT Trip circuit Fail Alarm commamd CB N/O contact commamd CB N/C contact commamd IND.RESET Indication reset command TP_COUNT Trip counter count up command ⎯ 107 ⎯ 6 F 2 S 0 9 0 0 No. 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 Signal Name Contents DISP.ALARM1 DISP.ALARM2 DISP.ALARM3 DISP.ALARM4 Indicate the alarm display ditto ditto ditto SYNC_CLOCK Synchronise clock commamd ALARM_LED_SET Alarm LED set F.RECORD1 F.RECORD2 F.RECORD3 F.RECORD4 Fault record stored command 1 2 3 4 ⎯ 108 ⎯ 6 F 2 S 0 9 0 0 No. 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 : : 2799 2800 Signal Name Contents D.RECORD1 D.RECORD2 D.RECORD3 D.RECORD4 Disturbance record stored command 1 2 3 4 SET.GROUP1 SET.GROUP2 SET.GROUP3 SET.GROUP4 SET.GROUP5 SET.GROUP6 SET.GROUP7 SET.GROUP8 Active setting group changed command (Change to group1) 2 3 4 5 6 7 8 CON_TPMD1 CON_TPMD2 CON_TPMD3 CON_TPMD4 CON_TPMD5 CON_TPMD6 CON_TPMD7 CON_TPMD8 User configurable trip mode in fault record ditto ditto ditto ditto ditto ditto ditto PROT_COM_RECV protection inactivate command received TPLED_RST_RCV TRIP LED RESET command received ⎯ 109 ⎯ 6 F 2 S 0 9 0 0 No. Signal Name Contents 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 TEMP001 TEMP002 TEMP003 TEMP004 TEMP005 TEMP006 TEMP007 TEMP008 TEMP009 TEMP010 TEMP011 TEMP012 TEMP013 TEMP014 TEMP015 TEMP016 TEMP017 TEMP018 TEMP019 TEMP020 TEMP021 TEMP022 TEMP023 TEMP024 TEMP025 TEMP026 TEMP027 TEMP028 TEMP029 TEMP030 TEMP031 TEMP032 TEMP033 TEMP034 TEMP035 TEMP036 TEMP037 TEMP038 TEMP039 TEMP040 TEMP041 TEMP042 TEMP043 TEMP044 TEMP045 TEMP046 TEMP047 TEMP048 TEMP049 TEMP050 TEMP051 TEMP052 TEMP053 TEMP054 TEMP055 ⎯ 110 ⎯ 6 F 2 S 0 9 0 0 No. 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 Signal Name Contents TEMP056 TEMP057 TEMP058 TEMP059 TEMP060 TEMP061 TEMP062 TEMP063 TEMP064 TEMP065 TEMP066 TEMP067 TEMP068 TEMP069 TEMP070 TEMP071 TEMP072 TEMP073 TEMP074 TEMP075 TEMP076 TEMP077 TEMP078 TEMP079 TEMP080 TEMP081 TEMP082 TEMP083 TEMP084 TEMP085 TEMP086 TEMP087 TEMP088 TEMP089 TEMP090 TEMP091 TEMP092 TEMP093 TEMP094 TEMP095 TEMP096 TEMP097 TEMP098 TEMP099 TEMP100 TEMP101 TEMP102 TEMP103 TEMP104 TEMP105 TEMP106 TEMP107 TEMP108 TEMP109 TEMP110 TEMP111 TEMP112 TEMP113 TEMP114 TEMP115 TEMP116 TEMP117 TEMP118 TEMP119 TEMP120 TEMP121 TEMP122 TEMP123 TEMP124 TEMP125 ⎯ 111 ⎯ 6 F 2 S 0 9 0 0 No. 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 Signal Name Contents TEMP126 TEMP127 TEMP128 TEMP129 TEMP130 TEMP131 TEMP132 TEMP133 TEMP134 TEMP135 TEMP136 TEMP137 TEMP138 TEMP139 TEMP140 TEMP141 TEMP142 TEMP143 TEMP144 TEMP145 TEMP146 TEMP147 TEMP148 TEMP149 TEMP150 TEMP151 TEMP152 TEMP153 TEMP154 TEMP155 TEMP156 TEMP157 TEMP158 TEMP159 TEMP160 TEMP161 TEMP162 TEMP163 TEMP164 TEMP165 TEMP166 TEMP167 TEMP168 TEMP169 TEMP170 TEMP171 TEMP172 TEMP173 TEMP174 TEMP175 TEMP176 TEMP177 TEMP178 TEMP179 TEMP180 TEMP181 TEMP182 TEMP183 TEMP184 TEMP185 TEMP186 TEMP187 TEMP188 TEMP189 TEMP190 TEMP191 TEMP192 TEMP193 TEMP194 TEMP195 ⎯ 112 ⎯ 6 F 2 S 0 9 0 0 No. 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 Signal Name TEMP196 TEMP197 TEMP198 TEMP199 TEMP200 TEMP201 TEMP202 TEMP203 TEMP204 TEMP205 TEMP206 TEMP207 TEMP208 TEMP209 TEMP210 TEMP211 TEMP212 TEMP213 TEMP214 TEMP215 TEMP216 TEMP217 TEMP218 TEMP219 TEMP220 TEMP221 TEMP222 TEMP223 TEMP224 TEMP225 TEMP226 TEMP227 TEMP228 TEMP229 TEMP230 TEMP231 TEMP232 TEMP233 TEMP234 TEMP235 TEMP236 TEMP237 TEMP238 TEMP239 TEMP240 TEMP241 TEMP242 TEMP243 TEMP244 TEMP245 TEMP246 TEMP247 TEMP248 TEMP249 TEMP250 TEMP251 TEMP252 TEMP253 TEMP254 TEMP255 TEMP256 Contents ⎯ 113 ⎯ 6 F 2 S 0 9 0 0 For IEC61850 Measure Table NO SIGNAL NAME 0 Vda_mag 1 Vdb_mag 2 Vdc_mag CONTENTS Vda magnitude Vdb magnitude Vdc magnitude ⎯ 114 ⎯ 6 F 2 S 0 9 0 0 Setting Table NO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 SIGNAL NAME CONTENTS GROUP_NO ACT_GROUP EDIT_GROUP CHG_GROUP number of groups active group number edit group number change active group ⎯ 115 ⎯ NO 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 SIGNAL NAME CONTENTS 1A2_5A1 1A1_5A2 1A1_5A0 1A0_5A1 1A3_5A2 1A:2 5A:1 1A:1 5A:2 1A:1 5A:0 1A:0 5A:1 1A:3 5A:2 SoftType MappingName Vendor Software type Mapping info venfor name Const0 Const1 Const2 Const3 Always 0 Always 1 Always 2 Always 3 6 F 2 S 0 9 0 0 Status Table NO SIGNAL NAME CONTENTS NO SIGNAL NAME CONTENTS 0 GOOSE_V_001 GOOSE_Value_001 51 GOOSE_V_052 GOOSE_Value_052 1 GOOSE_V_002 GOOSE_Value_002 52 GOOSE_V_053 GOOSE_Value_053 2 GOOSE_V_003 GOOSE_Value_003 53 GOOSE_V_054 GOOSE_Value_054 3 GOOSE_V_004 4 GOOSE_V_005 GOOSE_Value_004 GOOSE_Value_005 54 GOOSE_V_055 55 GOOSE_V_056 GOOSE_Value_055 GOOSE_Value_056 5 GOOSE_V_006 GOOSE_Value_006 56 GOOSE_V_057 GOOSE_Value_057 6 GOOSE_V_007 GOOSE_Value_007 57 GOOSE_V_058 GOOSE_Value_058 7 GOOSE_V_008 8 GOOSE_V_009 GOOSE_Value_008 GOOSE_Value_009 58 GOOSE_V_059 59 GOOSE_V_060 GOOSE_Value_059 GOOSE_Value_060 9 GOOSE_V_010 GOOSE_Value_010 60 GOOSE_V_061 GOOSE_Value_061 10 GOOSE_V_011 GOOSE_Value_011 61 GOOSE_V_062 GOOSE_Value_062 11 GOOSE_V_012 12 GOOSE_V_013 GOOSE_Value_012 GOOSE_Value_013 62 GOOSE_V_063 63 GOOSE_V_064 GOOSE_Value_063 GOOSE_Value_064 13 GOOSE_V_014 GOOSE_Value_014 64 GOOSE_V_065 GOOSE_Value_065 14 GOOSE_V_015 GOOSE_Value_015 65 GOOSE_V_066 GOOSE_Value_066 15 GOOSE_V_016 16 GOOSE_V_017 GOOSE_Value_016 GOOSE_Value_017 66 GOOSE_V_067 67 GOOSE_V_068 GOOSE_Value_067 GOOSE_Value_068 17 GOOSE_V_018 GOOSE_Value_018 68 GOOSE_V_069 GOOSE_Value_069 18 GOOSE_V_019 GOOSE_Value_019 69 GOOSE_V_070 GOOSE_Value_070 19 GOOSE_V_020 20 GOOSE_V_021 GOOSE_Value_020 GOOSE_Value_021 70 GOOSE_V_071 71 GOOSE_V_072 GOOSE_Value_071 GOOSE_Value_072 21 GOOSE_V_022 GOOSE_Value_022 72 GOOSE_V_073 GOOSE_Value_073 22 GOOSE_V_023 GOOSE_Value_023 73 GOOSE_V_074 GOOSE_Value_074 23 GOOSE_V_024 24 GOOSE_V_025 GOOSE_Value_024 GOOSE_Value_025 74 GOOSE_V_075 75 GOOSE_V_076 GOOSE_Value_075 GOOSE_Value_076 25 GOOSE_V_026 GOOSE_Value_026 76 GOOSE_V_077 GOOSE_Value_077 26 GOOSE_V_027 GOOSE_Value_027 77 GOOSE_V_078 GOOSE_Value_078 27 GOOSE_V_028 28 GOOSE_V_029 GOOSE_Value_028 GOOSE_Value_029 78 GOOSE_V_079 79 GOOSE_V_080 GOOSE_Value_079 GOOSE_Value_080 29 GOOSE_V_030 GOOSE_Value_030 80 GOOSE_V_081 GOOSE_Value_081 30 GOOSE_V_031 GOOSE_Value_031 81 GOOSE_V_082 GOOSE_Value_082 31 GOOSE_V_032 32 GOOSE_V_033 GOOSE_Value_032 GOOSE_Value_033 82 GOOSE_V_083 83 GOOSE_V_084 GOOSE_Value_083 GOOSE_Value_084 33 GOOSE_V_034 GOOSE_Value_034 84 GOOSE_V_085 GOOSE_Value_085 34 GOOSE_V_035 GOOSE_Value_035 85 GOOSE_V_086 GOOSE_Value_086 35 GOOSE_V_036 36 GOOSE_V_037 GOOSE_Value_036 GOOSE_Value_037 86 GOOSE_V_087 87 GOOSE_V_088 GOOSE_Value_087 GOOSE_Value_088 37 GOOSE_V_038 GOOSE_Value_038 88 GOOSE_V_089 GOOSE_Value_089 38 GOOSE_V_039 GOOSE_Value_039 89 GOOSE_V_090 GOOSE_Value_090 39 GOOSE_V_040 40 GOOSE_V_041 GOOSE_Value_040 GOOSE_Value_041 90 GOOSE_V_091 91 GOOSE_V_092 GOOSE_Value_091 GOOSE_Value_092 41 GOOSE_V_042 GOOSE_Value_042 92 GOOSE_V_093 GOOSE_Value_093 42 GOOSE_V_043 GOOSE_Value_043 93 GOOSE_V_094 GOOSE_Value_094 43 GOOSE_V_044 44 GOOSE_V_045 GOOSE_Value_044 GOOSE_Value_045 94 GOOSE_V_095 95 GOOSE_V_096 GOOSE_Value_095 GOOSE_Value_096 45 GOOSE_V_046 GOOSE_Value_046 96 GOOSE_V_097 GOOSE_Value_097 46 GOOSE_V_047 GOOSE_Value_047 97 GOOSE_V_098 GOOSE_Value_098 47 GOOSE_V_048 48 GOOSE_V_049 GOOSE_Value_048 GOOSE_Value_049 98 GOOSE_V_099 99 GOOSE_V_100 GOOSE_Value_099 GOOSE_Value_100 49 GOOSE_V_050 GOOSE_Value_050 100 GOOSE_V_101 GOOSE_Value_101 50 GOOSE_V_051 GOOSE_Value_051 101 GOOSE_V_102 GOOSE_Value_102 ⎯ 116 ⎯ 6 F 2 S 0 9 0 0 NO SIGNAL NAME 101 GOOSE_V_102 102 GOOSE_V_103 CONTENTS GOOSE_Value_102 GOOSE_Value_103 103 GOOSE_V_104 104 GOOSE_V_105 105 GOOSE_V_106 GOOSE_Value_104 GOOSE_Value_105 GOOSE_Value_106 153 154 155 106 GOOSE_V_107 107 GOOSE_V_108 108 GOOSE_V_109 GOOSE_Value_107 GOOSE_Value_108 GOOSE_Value_109 156 157 158 109 GOOSE_V_110 110 GOOSE_V_111 111 GOOSE_V_112 GOOSE_Value_110 GOOSE_Value_111 GOOSE_Value_112 159 160 161 112 113 114 115 GOOSE_V_113 GOOSE_V_114 GOOSE_V_115 GOOSE_V_116 GOOSE_Value_113 GOOSE_Value_114 GOOSE_Value_115 GOOSE_Value_116 162 163 164 165 116 GOOSE_V_117 117 GOOSE_V_118 118 GOOSE_V_119 GOOSE_Value_117 GOOSE_Value_118 GOOSE_Value_119 166 167 168 119 GOOSE_V_120 120 GOOSE_V_121 121 GOOSE_V_122 GOOSE_Value_120 GOOSE_Value_121 GOOSE_Value_122 169 170 171 122 GOOSE_V_123 123 GOOSE_V_124 124 GOOSE_V_125 GOOSE_Value_123 GOOSE_Value_124 GOOSE_Value_125 172 173 174 125 GOOSE_V_126 126 GOOSE_V_127 127 GOOSE_V_128 GOOSE_Value_126 GOOSE_Value_127 GOOSE_Value_128 175 176 177 128 XCBR_POS0 129 130 XCBR_POS0 178 179 180 131 132 133 134 135 LEDRST_EXEC 136 137 138 139 XCBR_OPCNT0 140 NO SIGNAL NAME 181 182 183 184 LEDRST_EXEC XCBR_OPCNT0 185 186 187 188 189 190 141 142 143 191 192 193 144 145 146 194 195 196 147 148 149 197 198 199 150 HEALTH CONTENTS 151 152 HEALTH 200 MOD_001 ⎯ 117 ⎯ IEC-MODE_001 6 F 2 S 0 9 0 0 NO SIGNAL NAME 201 MOD_002 202 MOD_003 CONTENTS IEC-MODE_002 IEC-MODE_003 203 MOD_004 204 MOD_005 205 MOD_006 NO SIGNAL NAME 251 MOD_052 252 MOD_053 CONTENTS IEC-MODE_052 IEC-MODE_053 IEC-MODE_004 IEC-MODE_005 IEC-MODE_006 253 MOD_054 254 MOD_055 255 MOD_056 IEC-MODE_054 IEC-MODE_055 IEC-MODE_056 206 MOD_007 207 MOD_008 208 MOD_009 IEC-MODE_007 IEC-MODE_008 IEC-MODE_009 256 MOD_057 257 MOD_058 258 MOD_059 IEC-MODE_057 IEC-MODE_058 IEC-MODE_059 209 MOD_010 210 MOD_011 211 MOD_012 IEC-MODE_010 IEC-MODE_011 IEC-MODE_012 259 MOD_060 260 MOD_061 261 MOD_062 IEC-MODE_060 IEC-MODE_061 IEC-MODE_062 212 213 214 215 MOD_013 MOD_014 MOD_015 MOD_016 IEC-MODE_013 IEC-MODE_014 IEC-MODE_015 IEC-MODE_016 262 263 264 265 MOD_063 MOD_064 MOD_065 MOD_066 IEC-MODE_063 IEC-MODE_064 IEC-MODE_065 IEC-MODE_066 216 MOD_017 217 MOD_018 218 MOD_019 IEC-MODE_017 IEC-MODE_018 IEC-MODE_019 266 MOD_067 267 MOD_068 268 MOD_069 IEC-MODE_067 IEC-MODE_068 IEC-MODE_069 219 MOD_020 220 MOD_021 221 MOD_022 IEC-MODE_020 IEC-MODE_021 IEC-MODE_022 269 MOD_070 270 MOD_071 271 MOD_072 IEC-MODE_070 IEC-MODE_071 IEC-MODE_072 222 MOD_023 223 MOD_024 224 MOD_025 IEC-MODE_023 IEC-MODE_024 IEC-MODE_025 272 MOD_073 273 MOD_074 274 MOD_075 IEC-MODE_073 IEC-MODE_074 IEC-MODE_075 225 MOD_026 226 MOD_027 227 MOD_028 IEC-MODE_026 IEC-MODE_027 IEC-MODE_028 275 MOD_076 276 MOD_077 277 MOD_078 IEC-MODE_076 IEC-MODE_077 IEC-MODE_078 228 MOD_029 229 MOD_030 230 MOD_031 IEC-MODE_029 IEC-MODE_030 IEC-MODE_031 278 MOD_079 279 MOD_080 280 MOD_081 IEC-MODE_079 IEC-MODE_080 IEC-MODE_081 231 232 233 234 MOD_032 MOD_033 MOD_034 MOD_035 IEC-MODE_032 IEC-MODE_033 IEC-MODE_034 IEC-MODE_035 281 282 283 284 MOD_082 MOD_083 MOD_084 MOD_085 IEC-MODE_082 IEC-MODE_083 IEC-MODE_084 IEC-MODE_085 235 MOD_036 236 MOD_037 237 MOD_038 IEC-MODE_036 IEC-MODE_037 IEC-MODE_038 285 MOD_086 286 MOD_087 287 MOD_088 IEC-MODE_086 IEC-MODE_087 IEC-MODE_088 238 MOD_039 239 MOD_040 240 MOD_041 IEC-MODE_039 IEC-MODE_040 IEC-MODE_041 288 MOD_089 289 MOD_090 290 MOD_091 IEC-MODE_089 IEC-MODE_090 IEC-MODE_091 241 MOD_042 242 MOD_043 243 MOD_044 IEC-MODE_042 IEC-MODE_043 IEC-MODE_044 291 MOD_092 292 MOD_093 293 MOD_094 IEC-MODE_092 IEC-MODE_093 IEC-MODE_094 244 MOD_045 245 MOD_046 246 MOD_047 IEC-MODE_045 IEC-MODE_046 IEC-MODE_047 294 MOD_095 295 MOD_096 296 MOD_097 IEC-MODE_095 IEC-MODE_096 IEC-MODE_097 247 MOD_048 248 MOD_049 249 MOD_050 IEC-MODE_048 IEC-MODE_049 IEC-MODE_050 297 MOD_098 298 MOD_099 299 MOD_100 IEC-MODE_098 IEC-MODE_099 IEC-MODE_100 250 MOD_051 IEC-MODE_051 300 BEH_001 IEC-Behavier_001 ⎯ 118 ⎯ 6 F 2 S 0 9 0 0 NO SIGNAL NAME 301 BEH_002 302 BEH_003 CONTENTS IEC-Behavier_002 IEC-Behavier_003 303 BEH_004 304 BEH_005 305 BEH_006 NO SIGNAL NAME 351 BEH_052 352 BEH_053 CONTENTS IEC-Behavier_052 IEC-Behavier_053 IEC-Behavier_004 IEC-Behavier_005 IEC-Behavier_006 353 BEH_054 354 BEH_055 355 BEH_056 IEC-Behavier_054 IEC-Behavier_055 IEC-Behavier_056 306 BEH_007 307 BEH_008 308 BEH_009 IEC-Behavier_007 IEC-Behavier_008 IEC-Behavier_009 356 BEH_057 357 BEH_058 358 BEH_059 IEC-Behavier_057 IEC-Behavier_058 IEC-Behavier_059 309 BEH_010 310 BEH_011 311 BEH_012 IEC-Behavier_010 IEC-Behavier_011 IEC-Behavier_012 359 BEH_060 360 BEH_061 361 BEH_062 IEC-Behavier_060 IEC-Behavier_061 IEC-Behavier_062 312 313 314 315 BEH_013 BEH_014 BEH_015 BEH_016 IEC-Behavier_013 IEC-Behavier_014 IEC-Behavier_015 IEC-Behavier_016 362 363 364 365 BEH_063 BEH_064 BEH_065 BEH_066 IEC-Behavier_063 IEC-Behavier_064 IEC-Behavier_065 IEC-Behavier_066 316 BEH_017 317 BEH_018 318 BEH_019 IEC-Behavier_017 IEC-Behavier_018 IEC-Behavier_019 366 BEH_067 367 BEH_068 368 BEH_069 IEC-Behavier_067 IEC-Behavier_068 IEC-Behavier_069 319 BEH_020 320 BEH_021 321 BEH_022 IEC-Behavier_020 IEC-Behavier_021 IEC-Behavier_022 369 BEH_070 370 BEH_071 371 BEH_072 IEC-Behavier_070 IEC-Behavier_071 IEC-Behavier_072 322 BEH_023 323 BEH_024 324 BEH_025 IEC-Behavier_023 IEC-Behavier_024 IEC-Behavier_025 372 BEH_073 373 BEH_074 374 BEH_075 IEC-Behavier_073 IEC-Behavier_074 IEC-Behavier_075 325 BEH_026 326 BEH_027 327 BEH_028 IEC-Behavier_026 IEC-Behavier_027 IEC-Behavier_028 375 BEH_076 376 BEH_077 377 BEH_078 IEC-Behavier_076 IEC-Behavier_077 IEC-Behavier_078 328 BEH_029 329 BEH_030 330 BEH_031 IEC-Behavier_029 IEC-Behavier_030 IEC-Behavier_031 378 BEH_079 379 BEH_080 380 BEH_081 IEC-Behavier_079 IEC-Behavier_080 IEC-Behavier_081 331 332 333 334 BEH_032 BEH_033 BEH_034 BEH_035 IEC-Behavier_032 IEC-Behavier_033 IEC-Behavier_034 IEC-Behavier_035 381 382 383 384 BEH_082 BEH_083 BEH_084 BEH_085 IEC-Behavier_082 IEC-Behavier_083 IEC-Behavier_084 IEC-Behavier_085 335 BEH_036 336 BEH_037 337 BEH_038 IEC-Behavier_036 IEC-Behavier_037 IEC-Behavier_038 385 BEH_086 386 BEH_087 387 BEH_088 IEC-Behavier_086 IEC-Behavier_087 IEC-Behavier_088 338 BEH_039 339 BEH_040 340 BEH_041 IEC-Behavier_039 IEC-Behavier_040 IEC-Behavier_041 388 BEH_089 389 BEH_090 390 BEH_091 IEC-Behavier_089 IEC-Behavier_090 IEC-Behavier_091 341 BEH_042 342 BEH_043 343 BEH_044 IEC-Behavier_042 IEC-Behavier_043 IEC-Behavier_044 391 BEH_092 392 BEH_093 393 BEH_094 IEC-Behavier_092 IEC-Behavier_093 IEC-Behavier_094 344 BEH_045 345 BEH_046 346 BEH_047 IEC-Behavier_045 IEC-Behavier_046 IEC-Behavier_047 394 BEH_095 395 BEH_096 396 BEH_097 IEC-Behavier_095 IEC-Behavier_096 IEC-Behavier_097 347 BEH_048 348 BEH_049 349 BEH_050 IEC-Behavier_048 IEC-Behavier_049 IEC-Behavier_050 397 BEH_098 398 BEH_099 399 BEH_100 IEC-Behavier_098 IEC-Behavier_099 IEC-Behavier_100 350 BEH_051 IEC-Behavier_051 400 Const0 Const0 ⎯ 119 ⎯ 6 F 2 S 0 9 0 0 NO SIGNAL NAME 401 Const1 402 Const2 CONTENTS Const1 Const2 403 Const3 404 Const4 405 Const5 Const3 Const4 Const5 NO SIGNAL NAME 451 452 453 454 455 406 407 408 456 457 458 409 410 411 459 460 461 412 413 414 462 463 464 415 416 417 465 466 467 418 419 420 468 469 470 421 422 423 471 472 473 424 425 426 474 475 476 477 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 450 ⎯ 120 ⎯ CONTENTS 6 F 2 S 0 9 0 0 Control Table NO SIGNAL NAME 0 LEDRST_SIG 1 LEDRST_ORCAT CONTENTS LED Reset Control - LED Reset Originator category 2 LEDRST_ORID Control - LED Reset Originator category 3 LEDRST_ORCAT_ST Status - LED Rst Originator category 4 LEDRST_ORID_ST Status - LED Rst Originator category 5 RESERVE Reserve 6 RESERVE Reserve 7 RESERVE Reserve 8 RESERVE Reserve 9 RESERVE Reserve 10 MOD_CHECK MOD_CHECK 11 MOD_CTLNUM MOD_CTLNUM 12 MOD_CTLVAL MOD_CTLVAL 13 MOD_ORCAT MOD_ORCAT 14 MOD_ORIDENT MOD_ORIDENT 15 MOD_TEST MOD_TEST 16 MOD_CTLMDL MOD_CTLMDL 17 MOD_ST_ORCAT MOD_ST_ORCAT 18 MOD_ST_ORIDENT MOD_ST_ORIDENT 19 MOD_SELECT MOD_SELECT 20 MOD_SBOTIMEOUT MOD_SBOTIMEOUT 21 MOD_SBOCLASS MOD_SBOCLASS ⎯ 121 ⎯ 6 F 2 S 0 9 0 0 ⎯ 122 ⎯ 6 F 2 S 0 9 0 0 Appendix C Binary Output Default Setting List ⎯ 123 ⎯ 6 F 2 S 0 9 0 0 BO1 BO2 BO3 BO4 BO5 BO6 Setting Device Name Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Range Unit OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 - - - - - - - - s - - - - - - - - s - - - - - - - - s - - - - - - - - s - - - - - - - - s - - - - - - - - s Contents Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer ⎯ 124 ⎯ Default Setting 101 Setting Signal Name Setting OR -OR Dl -Dl 27 VD_ERR 24 0 0 0 0 0 0 0 0 0 0 0.20 -0.20 OR -OR Dl -Dl 27 VD_ERR 25 0 0 0 0 0 0 0 0 0 0 0.20 -0.20 OR -OR Dl -Dl 27 VD_ERR 26 0 0 0 0 0 0 0 0 0 0 0.20 -0.20 OR -OR Dl -Dl 28 DIF_TRIP 21 0 0 0 0 0 0 0 0 0 0 0.20 -0.20 OR -OR Dl -Dl 28 DIF_TRIP 22 0 0 0 0 0 0 0 0 0 0 0.20 -0.20 OR -OR Dl -Dl 28 DIF_TRIP 23 0 0 0 0 0 0 0 0 0 0 0.20 -0.20 201 Signal Name --VD_ERR-A ---VD_ERR-B ---VD_ERR-C ---DIF_TRIP-A ---DIF_TRIP-B ---DIF_TRIP-C -- 6 F 2 S 0 9 0 0 HBO1 HBO2 HBO3 HBO4 Setting Dev ice Name Range Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO Logic Reset In #1 In #2 In #3 In #4 In #5 In #6 TBO OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 OR - AND Ins - Dl - Dw - Lat 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0.00 - 10.00 Unit - - - - - - - - s - - - - - - - - s - - - - - - - - s - - - - - - - - s Contents Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer Logic gate Reset application Output signal ditto ditto ditto ditto ditto Dl/Dw timer ⎯ 125 ⎯ Setting OR Dl 28 0 0 0 0 0 0.20 OR Dl 28 0 0 0 0 0 0.20 OR Dl 28 0 0 0 0 0 0.20 OR Dl 28 0 0 0 0 0 0.20 Def ault Setting 101 Signal Name Setting -OR -Dl DIF_TRIP 28 0 0 0 0 0 -0.20 -OR -Dl DIF_TRIP 28 0 0 0 0 0 -0.20 -OR -Dl DIF_TRIP 28 0 0 0 0 0 -0.20 -OR -Dl DIF_TRIP 28 0 0 0 0 0 -0.20 201 Signal Name --DIF_TRIP ---DIF_TRIP ---DIF_TRIP ---DIF_TRIP -- 6 F 2 S 0 9 0 0 ⎯ 126 ⎯ 6 F 2 S 0 9 0 0 Appendix D Details of Relay Menu and LCD & Button Operation Instruction ⎯ 127 ⎯ 6 F 2 S 0 9 0 0 MENU xRecord xStatus xSet. (view) xSet. (change) xTest /1 Record xF. record xE. record xD. record xCounter /2 F.record xDisplay /3 F.record xClear #1 16/Oct/1997 18:13:57.031 Refer to Section 4.2.3.1. /4 F.record #1 16/Oct/1997 Clear records? END=Y CANCEL=N /2 E.record xDisplay /3 E.record xClear 16/Oct/1997 Ext. trip A Refer to Section 4.2.3.2. On Clear records? END=Y CANCEL=N /2 D.record xDisplay /3 D.record xClear #1 16/Oct/1997 18:13:57.401 Refer to Section 4.2.3.3. Clear records? END=Y CANCEL=N /2 Counter xDisplay xClear Trips Refer to Section 4.2.3.3. /3 D.record Clear Trips? END=Y CANCEL=N a-1 ⎯ 128 ⎯ 6 F 2 S 0 9 0 0 a-1 /1 Status xMetering xBinary I/O xRelay element xTime sync. xClock adjust. xLCD contrast /2 Metering Vda ***.* V /2 Binary I/O IP [00000000 ] /2 Ry element [000 000 ] Refer to Section 4.2.4. /2 Time sync. *BI: Inact /2 12/Nov/1999 22:56:19 [L] /2 LCD contrast /1 Set. (view) xVersion xDescription xComms xRecord xStatus xProtection xBinary I/P xBinary O/P xLED /2 Version xRelay type xSerial No. xSoftware /2 Description xPlant name Refer to Section 4.2.5 GRB150-201D-20 -B0 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗ G*****-**-* xDescription xAlarm1 Text : /3 Addr./Param. /2 Comms xAddr./Param. /3 Switch xSwitch a-1, b-1 ⎯ 129 ⎯ 6 F 2 S 0 9 0 0 a-1 b-1 /2 Record xE.record /3 E.record xSignal No. /4 Signal No. xD.record xCounter xEvent name /4 Event name /3 D.record xTime/starter /4 Time/starter Time 2.0s xScheme sw xBinary sig. xSignal name /4 Signal name /3 Counter xScheme sw xAlarm set /2 Status xTime sync. /4 Scheme sw /4 Alarm set /3 Time sync. xTime zone /2 Act. gp. =* xGroup1 /3 Time zone GMT +9hrs xGroup2 : xGroup8 /3 Group1 xParameter xTrip /4 Parameter xLine name ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗ /4 Trip xScheme sw /5 Scheme sw xProt.element /3 Group2 xParameter /5 Prot.element DIF 10V /3 Group4 xParameter a-1 b-1 ⎯ 130 ⎯ 6 F 2 S 0 9 0 0 a-1 b-1 /2 Binary I/P xTimers /3 Timers xFunctions /3 Functions /2 Binary O/P BO1 AND, I 1000, 1001, 1002, 1003, 1004, 1005 HBO4TBO 0.20s /3 LED LED1 AND, I /2 LED xLED xVirtual LED /3 Virtual LED xIND1 /4 IND* BIT1 I, 1000 xIND2 /1 Set.(change) xPassword xDescription xComms xRecord xStatus xProtection xBinary I/O xBinary O/P xLED Input [_ 1234567890← : Password trap Password [_ 1234567890← ] : Confirmation trap Change settings? ENTER=Y CANCEL=N ] Retype [_ 1234567890← ] Refer to Section 4.2.6.2. /2 Description xPlant name xDescription xAlarm1 Text : a-1 b-2 _ ABCDEFG _ ABCDEFG Refer to Section 4.2.6.3. ⎯ 131 ⎯ 6 F 2 S 0 9 0 0 a-1 b-2 /2 Comms xAddr./Param. xSwitch /3 Addr./Param. /3 Switch Refer to Section 4.2.6.4. /2 Record xE.record /3 E.record xD.record xCounter BITRN 100 _ Refer to Section 4.2.6.5. EV128 3128 _ /4 Time/Starter /3 D.record xTime/Starter xScheme sw xBinary sig. /4 Scheme sw /3 Counter xScheme sw /4 Scheme sw xAlarm set /2 Status xTime sync. xTime zone /3 Time sync. /3 Time zone Refer to Section 4.2.6.6. /2 Protection xChange act. gp. xChange set. xCopy gp. Refer to Section 4.2.6.7. /3 Change act. gp. /3 Act gp.=1 xGroup1 xGroup2 : xGroup8 a-1 b-2 c-1 d-1 ⎯ 132 ⎯ /4 Alarm set 6 F 2 S 0 9 0 0 a-1 b-2 c-1 d-1 /4 Group* xParameter xTrip /5 Parameter xLine name _ /5 Trip xScheme sw xProt.element /6 Scheme sw ABCDEFG VDCHK Off/On SVCNT ALM&BLK/ALM IND.R Off/On CLEN Off/N-CL/CL 1 _ 0 _ 1 _ 0 _ /6 Prot.element DIF V 10 _ DIFSV /4 Group2 xParameter 5 _ /4 Group4 xParameter /3 Copy A to B A B /2 Binary I/P xBI1 : xBI8 V _ _ TVDSV 0.50 DIFCC 1.00 TCLP 0.01 TCLE 0.00 TCLR 0.00 /3 BI∗ xTimers xFunctions Refer to Section 4.2.6.8. a-1, b-2 ⎯ 133 ⎯ s _ _ s _ s _ s _ /4 Timers /4 Functions 6 F 2 S 0 9 0 0 a-1, b-2 /4 Logic/Reset /2 Binary O/P xBO1 xBO2 : xHBO4 /3 BO∗ xLogic/Reset xFunctions Refer to Section 4.2.6.9. /4 Functions In #1 1000 _ : TBO 0.20 _ /2 LED xLED xVirtual LED Refer to Section 4.2.6.10. /3 LED xLED1 xLED2 : xLED6 Logic 0 _ OR/AND Reset 0 _ Ins/Dl/Dw/Lat /4 LED∗ xLogic/Reset xFunctions s /5 Logic/Reset Logic OR/AND Reset Ins/Lat 0 _ 0 _ /5 Functions In #1 1000 _ : In #4 1003 _ /3 Virtual LED xIND1 xIND2 /4 LED∗ xLogic/Reset xFunctions /5 Logic/Reset Reset Ins/Lat 0 _ /5 Functions BIT1 1000 _ : BIT8 1007_ a-1, ⎯ 134 ⎯ 6 F 2 S 0 9 0 0 a-1, /1 Test xSwitch /2 Switch xBinary O/P xLogic circuit A.M.F. Off/On CLPTST Off/N-CL/CL IECTST Off/On Refer to Section 4.2.7. : Password trap Password [_ 1234567890← ] 1 _ 0 0 /2 Binary O/P BO1 0 _ Disable/Enable FAIL 0 _ Disable/Enable /2 Logic circuit TermA 1 _ TermB 100 ⎯ 135 ⎯ Operate? ENTER=Y CANCEL=N 6 F 2 S 0 9 0 0 LCD AND BUTTON OPERATION INSTRUCTION 1. PRESS ARROW KEY TO MOVE TO EACH DISPLAYED ITEMS 2. PRESS "END" KEY TO BACK TO PREVIOUS SCREEN MANUAL MODE 1=RECORD 1=FAULT RECORD 2=EVENT RECORD 3=DISTURBANCE RECORD NORMAL (DISPLAY OFF) VIEW PRESS ANY BUTTON EXCEPT FOR "VIEW" AND "RESET" MENU ( DISPLAY ON ) 2=STATUS 1=METERING 2=BINARY INPUT&OUPUT METERING (DISPLAY ON) AUTOMODE 1 3=RELAY ELELMENT 4=TIME SYNC SOURCE 5=CLOCK ADJUSTMENT TRIP OUTPUT ISSUED ! VIEW RESET TRIP ( LED ON ) 3=SETTING (VIEW) 1=RELAY VERSION LATEST FAULT * (DISPLAY ON) 2=DESCRIPTION AUTOMODE 2 3=RSM COMMUNICATION 4=RECORD RELAY FAILED ! VIEW 5=STATUS RESET ALARM ( LED ON ) 6=PROTECTION 7=BINARY INPUT 8=BINARY OUTPUT AUTO SUPERVISION * (DISPLAY ON) 9=LED *. "LATEST FAULT" AND "AUTO SUPERVISION" SCREEN IS DISPLAYED ONLY IF DATA IS STORED VIEW RESET 4=SETTING (CHANGE) Same as SETTING (VIEW) menu 5=TEST 1=SWITCH 2=BINARY O 3=LOGIC CIRCUIT ⎯ 136 ⎯ 6 F 2 S 0 9 0 0 Appendix E Outline of GRB150 and EB-101, -102 • Case Type of GRB150: Flush Mount Type • EB-101 and EB-102 ⎯ 137 ⎯ 6 F 2 S 0 9 0 0 IN SER VIC E R ESET A B 25 8 VIEW TRIP ALARM 0V CAN CEL ENTER END 15.6 104 185.2 32 Side view Front view 4 holes-φ5.5 4 holes-φ4.5 OPT T TB1 TB3 TB1 TB2 R TB3 F1 R T E E 56 Rear view for Fibre optic port + 100BASE-FX Rear view for RS485 + 100BASE-TX 102 Panel cut-out TB3 TB1 1 3 5 7 A1 A1 2 4 6 8 TB2 B1 B1 Terminal Application TB3: A1 – A3 RS485 I/F TB3: B1 – B2 IRIG-B OPT Fibre optic for IEC 60870-5-103 T1 100BASE-TX F1 100BASE-FX TB1,TB2,TB3: Screw terminal (M3.5 Ring) T1: RJ45 A10 OPT: ST connector B10 F1: SC connector A18 B18 Terminal block Case Outline of GRB150-xxxD: Flush Mount Type ⎯ 138 ⎯ 24 9 T1 239 TB2 6 F 2 S 0 9 0 0 M4 Ring terminal TB1 1 205 226.5 8 Terminal block Top view 6-φ5.5 for mounting TB1 70 225 70 42.5 214.4 234 252 Side view Front view (a) EB-101 M4 Ring terminal M4 Ring terminal TB2 TB1 1 1 205 226.5 8 12 Terminal block Top view 6-φ5.5 for mounting TB2 TB1 70 225 70 42.5 362.4 382 400 Front view Side view (b) EB-102 Note: When mounting varistor units longitudinally, the TB1 should be located in the down side. Outline of varistor unit ⎯ 139 ⎯ 6 F 2 S 0 9 0 0 ⎯ 140 ⎯ 6 F 2 S 0 9 0 0 Appendix F External Connection ⎯ 141 ⎯ 6 F 2 S 0 9 0 0 GRB150-101D EB-101 TB1 -1 TB1 -4 TB3A4 TB1 -1 (∗1) HBO1 -2 (+) B4 TB1 -2 TB1 -5 A5 TB1 -8 (∗1) HBO2 (+) B5 A6 FRAME EARTH (∗1) HBO3 (+) B6 A8 (∗1) HBO4 (+) B8 TB3A10 BO1 B10 A11 BO2 B11 A12 (P) TB2A1 BI1 COMMAND B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8 B8 BI2 COMMAND BI3 COMMAND BI4 COMMAND BI5 COMMAND BI6 COMMAND BI7 COMMAND BI8 COMMAND BO3 B12 BI1 A13 BI2 BO4 B13 BI3 A14 BO5 BI4 B14 A15 BI5 BO6 B15 BI6 B17 BI7 A17 A18 B18 FAIL BI8 (N) RELAY FAIL. ≥1 COM-A TB3-A2 DD FAIL. DC TB2- A9 (+) +5Vdc B9 (-) RS485 I/F for IEC60870-5-103 - option (Sheathed cable) 0V A3 COM-0V A10 OPT B10 (∗2) A1 COM-B DC-DC T R Opt. I/F for IEC60870-5-103 (option) FRAME EARTH E CASE EARTH TX FX TB3-B2 B1 Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option) Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option) IRIG-B (∗1) HBO1 to HBO4: High-speed relay (∗2) These connections are connected by short-bars before shipment. Note: In AC circuit wiring, the wires of the relay side should be separated from these of the CT side to avoid the influence of noise. External connection of Model 101 ⎯ 142 ⎯ 6 F 2 S 0 9 0 0 GRB150-201D TB3A4 BUSBAR A-phase TB1-1 TB1-2 B-phase TB1-3 TB1-4 EB-102 TB2-1 TB2-2 FAn FA1 A5 (∗1) HBO2 2 (∗1) HBO3 A8 6 (+) B6 5 TB2-5 TB2-6 (+) B5 A6 4 (+) B4 3 TB2-3 TB2-4 C-phase TB1-5 TB1-6 (∗1) HBO1 TB11 (∗1) HBO4 (+) B8 TB1-8 TB3A10 FRAME EARTH BO1 B10 A11 BO2 B11 A12 (P) TB2A1 BI1 COMMAND B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8 B8 BI2 COMMAND BI3 COMMAND BI4 COMMAND BI5 COMMAND BI6 COMMAND BI7 COMMAND BI8 COMMAND BO3 B12 BI1 A13 BI2 BO4 B13 BI3 A14 BO5 BI4 B14 A15 BI5 BO6 B15 BI6 B17 BI7 A17 A18 B18 FAIL BI8 (N) RELAY FAIL. ≥1 DD FAIL. DC COM-A TB2- A9 (+) B9 (-) DC-DC RS485 I/F for IEC60870-5-103 - option (Sheathed cable) A3 COM-0V A10 FRAME EARTH E A1 COM-B 0V B10 (∗2) TB3-A2 +5Vdc CASE EARTH OPT T R TX FX TB3-B2 B1 Opt. I/F for IEC60870-5-103 (option) Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option) Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option) IRIG-B (∗1) HBO1 to HBO4: High-speed relay (∗2) These connections are connected by short-bars before shipment. Note: In AC circuit wiring, the wires of the relay side should be separated from these of the CT side to avoid the influence of noise. External connection of Model 201 ⎯ 143 ⎯ 6 F 2 S 0 9 0 0 ⎯ 144 ⎯ 6 F 2 S 0 9 0 0 Appendix G Relay Setting Sheet 1. Relay Identification 2. Busbar parameters 3. Contacts setting 4. Relay setting sheet ⎯ 145 ⎯ 6 F 2 S 0 9 0 0 Relay Setting Sheets 1. Relay Identification Date: Relay type Serial Number Frequency AC voltage DC supply voltage Password Active setting group 2. Busbar parameters CT ratio 3. Contacts setting (1) BO1 BO2 BO3 BO4 BO5 BO6 HBO1 HBO2 HBO3 HBO4 ⎯ 146 ⎯ 6 F 2 S 0 9 0 0 4. Relay setting sheet № Setting Dev ice Name Range Def ault Setting of Relay Series Units Contents World wide 101 201 1 Activ e group 1-8 - Activ e setting group 2 Line name Specif ied by user - Line name 3 VDCHK Of f - On - Vd check use or not On 4 5 SVCNT CLEN ALM&BLK - ALM Of f - F1 - F2 Superv isor control Cold Load Protection ALM&BLK Of f 6 DIF 10 - 600 - - V Dif f erential relay 100 7 8 9 10 11 12 DIFSV TVDSV DIFCC TCLP TCLE TCLR 5 - 100 0.10 - 60.00 1.00 - 10.00 0.01 - 100.00 0.00 - 100.00 0.00 - 100.00 V s Dif f erential relay f or superv isor VD err timer DIF setting coef f icient in CLP mode. Cold load duration timer. Cold load enable timer. Cold load reset timer. 50 0.50 1.00 0.01 0.00 0.00 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 BI1 BI2 BI3 BI4 BI5 BI6 BI7 BI8 LED1 LED2 LED3 LED4 LED5 LED6 - s s s 1 no-name PUD 0.00 - 300.00 s Binary Input Pick-up delay 0.00 DOD SNS PUD DOD SNS PUD DOD SNS PUD DOD SNS PUD DOD SNS PUD DOD SNS PUD DOD SNS PUD DOD SNS 0.00 - 300.00 Norm - Inv 0.00 - 300.00 0.00 - 300.00 Norm - Inv 0.00 - 300.00 0.00 - 300.00 Norm - Inv 0.00 - 300.00 0.00 - 300.00 Norm - Inv 0.00 - 300.00 0.00 - 300.00 Norm - Inv 0.00 - 300.00 0.00 - 300.00 Norm - Inv 0.00 - 300.00 0.00 - 300.00 Norm - Inv 0.00 - 300.00 0.00 - 300.00 Norm - Inv s - Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary Binary 0.00 Norm 0.00 0.00 Norm 0.00 0.00 Norm 0.00 0.00 Norm 0.00 0.00 Norm 0.00 0.00 Norm 0.00 0.00 Norm 0.00 0.00 Norm Logic OR - AND - LED1 Logic Gate Ty pe OR Reset In #1 In #2 In #3 In #4 Logic Reset In #1 In #2 In #3 In #4 Logic Reset In #1 In #2 In #3 In #4 Logic Reset In #1 In #2 In #3 In #4 Logic Reset In #1 In #2 In #3 In #4 Logic Reset In #1 In #2 In #3 In #4 Inst - Latch 0 - 3071 0 - 3071 0 - 3071 0 - 3071 OR - AND Inst - Latch 0 - 3071 0 - 3071 0 - 3071 0 - 3071 OR - AND Inst - Latch 0 - 3071 0 - 3071 0 - 3071 0 - 3071 OR - AND Inst - Latch 0 - 3071 0 - 3071 0 - 3071 0 - 3071 OR - AND Inst - Latch 0 - 3071 0 - 3071 0 - 3071 0 - 3071 OR - AND Inst - Latch 0 - 3071 0 - 3071 0 - 3071 0 - 3071 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - LED1 LED1 ditto ditto ditto LED2 LED2 LED2 ditto ditto ditto LED3 LED3 LED3 ditto ditto ditto LED4 LED4 LED4 ditto ditto ditto LED5 LED5 LED5 ditto ditto ditto LED6 LED6 LED6 ditto ditto ditto Inst 0 0 0 0 OR Inst 0 0 0 0 OR Inst 0 0 0 0 OR Inst 0 0 0 0 OR Inst 0 0 0 0 OR Inst 0 0 0 0 - s s - s s - s s - s s - s s - s s - s s ⎯ 147 ⎯ Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Input Drop-of f delay Sense Pick-up delay Drop-of f delay Sense Pick-up delay Drop-of f delay Sense Pick-up delay Drop-of f delay Sense Pick-up delay Drop-of f delay Sense Pick-up delay Drop-of f delay Sense Pick-up delay Drop-of f delay Sense Pick-up delay Drop-of f delay Sense Reset operation Functions Logic Gate Ty pe Reset operation Functions Logic Gate Ty pe Reset operation Functions Logic Gate Ty pe Reset operation Functions Logic Gate Ty pe Reset operation Functions Logic Gate Ty pe Reset operation Functions 6 F 2 S 0 9 0 0 № 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 Setting Device Name IND1 Reset BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 IND2 Reset BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 Plant name Description Alarm1 Text Alarm2 Text Alarm3 Text Alarm4 Text IEC(注) SYADJ IP1-1 IP1-2 IP1-3 IP1-4 SM1-1 SM1-2 SM1-3 SM1-4 GW1-1 GW1-2 GW1-3 GW1-4 IP2-1 IP2-2 IP2-3 IP2-4 SM2-1 SM2-2 SM2-3 SM2-4 GW2-1 GW2-2 GW2-3 GW2-4 SI1-1 SI1-2 SI1-3 SI1-4 SI2-1 SI2-2 SI2-3 SI2-4 SI3-1 SI3-2 SI3-3 SI3-4 SI4-1 SI4-2 SI4-3 SI4-4 SMODE DEADT GOINT Range Inst - Latch 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 Inst - Latch 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 Specified by user ditto Specified by user Specified by user Specified by user Specified by user 0 - 254 -9999 - 9999 0 - 254 0 - 254 0 - 254 0 - 254 0 - 255 0 - 255 0 - 255 0 - 255 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 255 0 - 255 0 - 255 0 - 255 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0-1 1 - 120 1 - 60 Units - - - - - - - - - - - - - - - - - - - - - - - - - ms - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - min s Contents Virtual LED1 Reset operation Virtual LED1 Functions ditto ditto ditto ditto ditto ditto ditto Virtual LED2 Reset operation Virtual LED2 Functions ditto ditto ditto ditto ditto ditto ditto Plant name Memorandum for user Alarm1 Text Alarm2 Text Alarm3 Text Alarm4 Text Station address for IEC103 Time sync. Compensation CH1 IP address CH1 Subnet mask CH1 Gateway IP Address of CH#2 Subnet Mask of CH#2 Gateway Address of CH#2 SNTP Server1 Address SNTP Server2 Address SNTP Server3 Address SNTP Server4 Address TCP KeepAlive Time ⎯ 148 ⎯ Default Setting of Relay Series World wide 101 201 Inst 0 0 0 0 0 0 0 0 Inst 0 0 0 0 0 0 0 0 no-name no-data ALARM1 ALARM2 ALARM3 ALARM4 2 0 192 168 19 172 255 255 255 0 192 168 19 1 192 168 19 173 255 255 255 0 192 168 19 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120 60 6 F 2 S 0 9 0 0 № 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 Setting Device Name PG1-1 PG1-2 PG1-3 PG1-4 PG2-1 PG2-2 PG2-3 PG2-4 232C IECBR IECBLK 850BLK 850AUT TSTMOD GSECHK PINGCHK BITRN Time TRIP Vd err TCSPEN CBSMEN TCAEN TCALM Time sync GMT GMTm Range 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 0 - 254 9.6 - 19.2 - 57.6 9.6 - 19.2 Normal - Blocked Normal - Blocked Off - On Off - On Off - On Off - On 0 - 128 0.1 - 5.0 Off - On Off - On Off - On - Opt-On Off - On Off - On 1 - 10000 Of - BI - IRI - IEC - SN -12 - +12 -59 - +59 Units Contents - - - - - - - - - - - - - - - - - s - - - - - - - hrs min Ping check addrs port#1 Ping check addrs port#2 RS-232C baud rate IEC103 baud rate Monitor direction blocked IEC61850 Block IEC61850 Authorize IEC61850 Test mode GOOSE receive check Ping check Number of bi-trigger (on/off) events Disturbance record Disturbance record trigger use or not ditto Trip Circuit Supervision Enable CB condition super visor enable Trip CounterAlarm Enable Trip Count Alarm Threshold Time sync. Time Time ⎯ 149 ⎯ Default Setting of Relay Series World wide 101 201 0 0 0 0 0 0 0 0 9.6 19.2 Normal Normal Off Off Off Off 100 2.0 On On Off Off Off 10000 Of 0 0 6 F 2 S 0 9 0 0 5. PLC default setting Output № Signal 1536 DIF_BLOCK 1537 DIFSV_BLOCK 1538 CB_FOR_CLP 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 Timing Cycle 30 X 90 User Logic expression Turn -- Delay Time / Flip Flop Back Norm Up [769]BI2_COMMAND ⎯ 150 ⎯ Flip Flop Release Signal Timer Off On One Time Value Delay Delay Shot None X 6 F 2 S 0 9 0 0 Output № Signal 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 TC_FAIL 1633 CB_N/O_CONT 1634 CB_N/C_CONT 1635 1636 1637 1638 1639 IND.RESET 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 TP_COUNT 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- Timer Off On One Time Value Delay Delay Shot None X [768]BI1_COMMAND X X [28]DIF_TRIP X ⎯ 151 ⎯ 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 ⎯ 152 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 ⎯ 153 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 ⎯ 154 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 ⎯ 155 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 ⎯ 156 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 ⎯ 157 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 ⎯ 158 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 ⎯ 159 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 ⎯ 160 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 ⎯ 161 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 ⎯ 162 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 DISP.ALARM1 2561 DISP.ALARM2 2562 DISP.ALARM3 2563 DISP.ALARM4 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 SYNC_CLOCK 2577 2578 2579 2580 2581 2582 2583 2584 2585 ⎯ 163 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 ALARM_LED_SET 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 F.RECORD1 2625 F.RECORD2 2626 F.RECORD3 2627 F.RECORD4 2628 2629 2630 2631 2632 D.RECORD1 2633 D.RECORD2 2634 D.RECORD3 2635 D.RECORD4 2636 2637 2638 2639 2640 SET.GROUP1 2641 SET.GROUP2 2642 SET.GROUP3 2643 SET.GROUP4 2644 SET.GROUP5 2645 SET.GROUP6 2646 SET.GROUP7 2647 SET.GROUP8 2648 2649 2650 2651 2652 2653 2654 2655 2656 CON_TPMD1 2657 CON_TPMD2 2658 CON_TPMD3 2659 CON_TPMD4 2660 CON_TPMD5 ⎯ 164 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2661 CON_TPMD6 2662 CON_TPMD7 2663 CON_TPMD8 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 PROT_COM_RECV 2687 2688 TPLED_RST_RCV 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 ⎯ 165 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 ⎯ 166 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2811 2812 2813 2814 2815 2816 TEMP001 2817 TEMP002 2818 TEMP003 2819 TEMP004 2820 TEMP005 2821 TEMP006 2822 TEMP007 2823 TEMP008 2824 TEMP009 2825 TEMP010 2826 TEMP011 2827 TEMP012 2828 TEMP013 2829 TEMP014 2830 TEMP015 2831 TEMP016 2832 TEMP017 2833 TEMP018 2834 TEMP019 2835 TEMP020 2836 TEMP021 2837 TEMP022 2838 TEMP023 2839 TEMP024 2840 TEMP025 2841 TEMP026 2842 TEMP027 2843 TEMP028 2844 TEMP029 2845 TEMP030 2846 TEMP031 2847 TEMP032 2848 TEMP033 2849 TEMP034 2850 TEMP035 2851 TEMP036 2852 TEMP037 2853 TEMP038 2854 TEMP039 2855 TEMP040 2856 TEMP041 2857 TEMP042 2858 TEMP043 2859 TEMP044 2860 TEMP045 2861 TEMP046 2862 TEMP047 2863 TEMP048 2864 TEMP049 2865 TEMP050 2866 TEMP051 2867 TEMP052 2868 TEMP053 2869 TEMP054 2870 TEMP055 2871 TEMP056 2872 TEMP057 2873 TEMP058 2874 TEMP059 2875 TEMP060 2876 TEMP061 2877 TEMP062 2878 TEMP063 2879 TEMP064 2880 TEMP065 2881 TEMP066 2882 TEMP067 2883 TEMP068 2884 TEMP069 2885 TEMP070 ⎯ 167 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2886 TEMP071 2887 TEMP072 2888 TEMP073 2889 TEMP074 2890 TEMP075 2891 TEMP076 2892 TEMP077 2893 TEMP078 2894 TEMP079 2895 TEMP080 2896 TEMP081 2897 TEMP082 2898 TEMP083 2899 TEMP084 2900 TEMP085 2901 TEMP086 2902 TEMP087 2903 TEMP088 2904 TEMP089 2905 TEMP090 2906 TEMP091 2907 TEMP092 2908 TEMP093 2909 TEMP094 2910 TEMP095 2911 TEMP096 2912 TEMP097 2913 TEMP098 2914 TEMP099 2915 TEMP100 2916 TEMP101 2917 TEMP102 2918 TEMP103 2919 TEMP104 2920 TEMP105 2921 TEMP106 2922 TEMP107 2923 TEMP108 2924 TEMP109 2925 TEMP110 2926 TEMP111 2927 TEMP112 2928 TEMP113 2929 TEMP114 2930 TEMP115 2931 TEMP116 2932 TEMP117 2933 TEMP118 2934 TEMP119 2935 TEMP120 2936 TEMP121 2937 TEMP122 2938 TEMP123 2939 TEMP124 2940 TEMP125 2941 TEMP126 2942 TEMP127 2943 TEMP128 2944 TEMP129 2945 TEMP130 2946 TEMP131 2947 TEMP132 2948 TEMP133 2949 TEMP134 2950 TEMP135 2951 TEMP136 2952 TEMP137 2953 TEMP138 2954 TEMP139 2955 TEMP140 2956 TEMP141 2957 TEMP142 2958 TEMP143 2959 TEMP144 2960 TEMP145 ⎯ 168 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Back Release Norm Signal Up -- 2961 TEMP146 2962 TEMP147 2963 TEMP148 2964 TEMP149 2965 TEMP150 2966 TEMP151 2967 TEMP152 2968 TEMP153 2969 TEMP154 2970 TEMP155 2971 TEMP156 2972 TEMP157 2973 TEMP158 2974 TEMP159 2975 TEMP160 2976 TEMP161 2977 TEMP162 2978 TEMP163 2979 TEMP164 2980 TEMP165 2981 TEMP166 2982 TEMP167 2983 TEMP168 2984 TEMP169 2985 TEMP170 2986 TEMP171 2987 TEMP172 2988 TEMP173 2989 TEMP174 2990 TEMP175 2991 TEMP176 2992 TEMP177 2993 TEMP178 2994 TEMP179 2995 TEMP180 2996 TEMP181 2997 TEMP182 2998 TEMP183 2999 TEMP184 3000 TEMP185 3001 TEMP186 3002 TEMP187 3003 TEMP188 3004 TEMP189 3005 TEMP190 3006 TEMP191 3007 TEMP192 3008 TEMP193 3009 TEMP194 3010 TEMP195 3011 TEMP196 3012 TEMP197 3013 TEMP198 3014 TEMP199 3015 TEMP200 3016 TEMP201 3017 TEMP202 3018 TEMP203 3019 TEMP204 3020 TEMP205 3021 TEMP206 3022 TEMP207 3023 TEMP208 3024 TEMP209 3025 TEMP210 3026 TEMP211 3027 TEMP212 3028 TEMP213 3029 TEMP214 3030 TEMP215 3031 TEMP216 3032 TEMP217 3033 TEMP218 3034 TEMP219 3035 TEMP220 ⎯ 169 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 Output № Signal Timing Cycle 30 90 User Logic expression Turn Delay Time / Flip Flop Flip Flop Release Back Norm Signal Up -- 3036 TEMP221 3037 TEMP222 3038 TEMP223 3039 TEMP224 3040 TEMP225 3041 TEMP226 3042 TEMP227 3043 TEMP228 3044 TEMP229 3045 TEMP230 3046 TEMP231 3047 TEMP232 3048 TEMP233 3049 TEMP234 3050 TEMP235 3051 TEMP236 3052 TEMP237 3053 TEMP238 3054 TEMP239 3055 TEMP240 3056 TEMP241 3057 TEMP242 3058 TEMP243 3059 TEMP244 3060 TEMP245 3061 TEMP246 3062 TEMP247 3063 TEMP248 3064 TEMP249 3065 TEMP250 3066 TEMP251 3067 TEMP252 3068 TEMP253 3069 TEMP254 3070 TEMP255 3071 TEMP256 ⎯ 170 ⎯ Timer Off On One Time Value Delay Delay Shot None 6 F 2 S 0 9 0 0 6. Evente record setting Event record Default setting No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Name EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10 EV11 EV12 EV13 EV14 EV15 EV16 EV17 EV18 EV19 EV20 EV21 EV22 EV23 EV24 EV25 EV26 EV27 EV28 EV29 EV30 EV31 EV32 EV33 EV34 EV35 EV36 EV37 EV38 EV39 EV40 EV41 EV42 EV43 EV44 EV45 EV46 EV47 EV48 EV49 EV50 EV51 EV52 EV53 EV54 EV55 EV56 EV57 EV58 EV59 EV60 EV61 EV62 EV63 EV64 Range 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 Unit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Contents Signal No. Signal name Signal No. Event record signal 768 ditto 769 ditto 770 ditto 771 ditto 772 ditto 773 ditto 774 ditto 775 ditto 1639 ditto 28 ditto 10 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 1251 ditto 27 ditto 0 ditto 0 ditto 1270 ditto 1271 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 1258 ditto 1438 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 ditto 0 Signal Name BI1 command BI2 command BI3 command BI4 command BI5 command BI6 command BI7 command BI8 command Ind reset Trip Cold load Model 101D x x x x x x x x x x x Relay fail Vd err x x TCSV CBSV x x Ry fail-A Data lost x x ⎯ 171 ⎯ Type 201D On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off On/Off 6 F 2 S 0 9 0 0 Event record Default setting No. Name Range Unit Contents Signal No. Signal name Signal No. Signal Name Model 101D Type 201D 65 EV65 0 - 3071 - ditto 0 On/Off 66 EV66 0 - 3071 - ditto 0 On/Off 67 EV67 0 - 3071 - ditto 0 On/Off 68 EV68 0 - 3071 - ditto 0 On/Off 69 EV69 0 - 3071 - ditto 0 On/Off 70 EV70 0 - 3071 - ditto 0 On/Off 71 EV71 0 - 3071 - ditto 0 On/Off 72 EV72 0 - 3071 - ditto 0 On/Off 73 EV73 0 - 3071 - ditto 0 On/Off 74 EV74 0 - 3071 - ditto 0 On/Off 75 EV75 0 - 3071 - ditto 0 On/Off 76 EV76 0 - 3071 - ditto 0 On/Off 77 EV77 0 - 3071 - ditto 0 On/Off 78 EV78 0 - 3071 - ditto 0 On/Off 79 EV79 0 - 3071 - ditto 0 On/Off 80 EV80 0 - 3071 - ditto 0 On/Off 81 EV81 0 - 3071 - ditto 0 On/Off 82 EV82 0 - 3071 - ditto 0 On/Off 83 EV83 0 - 3071 - ditto 0 On/Off 84 EV84 0 - 3071 - ditto 0 On/Off 85 EV85 0 - 3071 - ditto 0 On/Off 86 EV86 0 - 3071 - ditto 0 On/Off 87 EV87 0 - 3071 - ditto 0 On/Off 88 EV88 0 - 3071 - ditto 0 89 EV89 0 - 3071 - ditto 471 BO1 operate x On/Off 90 EV90 0 - 3071 - ditto 472 BO2 operate x On/Off 91 EV91 0 - 3071 - ditto 473 BO3 operate x On/Off 92 EV92 0 - 3071 - ditto 474 BO4 operate x On/Off 93 EV93 0 - 3071 - ditto 475 BO5 operate x On/Off 94 EV94 0 - 3071 - ditto 476 BO6 operate x On/Off 95 EV95 0 - 3071 - ditto 0 96 EV96 0 - 3071 - ditto 487 HBO1 operate x On/Off On/Off On/Off 97 EV97 0 - 3071 - ditto 488 HBO2 operate x On/Off 98 EV98 0 - 3071 - ditto 489 HBO3 operate x On/Off 99 EV99 0 - 3071 - ditto 490 HBO4 operate x On/Off 100 EV100 0 - 3071 - ditto 0 101 EV101 0 - 3071 - ditto 2640 SET.GROUP1 x On 102 EV102 0 - 3071 - ditto 2641 SET.GROUP2 x On 103 EV103 0 - 3071 - ditto 2642 SET.GROUP3 x On 104 EV104 0 - 3071 - ditto 2643 SET.GROUP4 x On On/Off 105 EV105 0 - 3071 - ditto 2644 SET.GROUP5 x On 106 EV106 0 - 3071 - ditto 2645 SET.GROUP6 x On 107 EV107 0 - 3071 - ditto 2646 SET.GROUP7 x On 108 EV108 0 - 3071 - ditto 2647 SET.GROUP8 x On 109 EV109 0 - 3071 - ditto 1448 Sys. change x On 110 EV110 0 - 3071 - ditto 1449 Rly. change x On 111 EV111 0 - 3071 - ditto 1450 Grp. change x On 112 EV112 0 - 3071 - ditto 0 113 EV113 0 - 3071 - ditto 1272 TC alarm x On On 114 EV114 0 - 3071 - ditto 0 On 115 EV115 0 - 3071 - ditto 0 On 116 EV116 0 - 3071 - ditto 0 On 117 EV117 0 - 3071 - ditto 0 On 118 EV118 0 - 3071 - ditto 0 119 EV119 0 - 3071 - ditto 1445 On PLC data CHG x On x On 120 EV120 0 - 3071 - ditto 0 121 EV121 0 - 3071 - ditto 1409 LED RST On 122 EV122 0 - 3071 - ditto 1435 F.record_CLR x On 123 EV123 0 - 3071 - ditto 1436 E.record_CLR x On 124 EV124 0 - 3071 - ditto 1437 D.record_CLR x On 125 EV125 0 - 3071 - ditto 1439 TP_COUNT_CLR x On 126 EV126 0 - 3071 - ditto 0 127 EV127 0 - 3071 - ditto 0 On 128 EV128 0 - 3071 - ditto 0 On On ⎯ 172 ⎯ 6 F 2 S 0 9 0 0 7. Disturbance record setting 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Setting Device Name Signal No. Signal Name Range SIG1 0 - 3071 Signal name1 SIG2 0 - 3071 Signal name2 SIG3 0 - 3071 Signal name3 SIG4 0 - 3071 Signal name4 SIG5 0 - 3071 Signal name5 SIG6 0 - 3071 Signal name6 SIG7 0 - 3071 Signal name7 SIG8 0 - 3071 Signal name8 SIG9 0 - 3071 Signal name9 SIG10 0 - 3071 Signal name10 SIG11 0 - 3071 Signal name11 SIG12 0 - 3071 Signal name12 SIG13 0 - 3071 Signal name13 SIG14 0 - 3071 Signal name14 SIG15 0 - 3071 Signal name15 SIG16 0 - 3071 Signal name16 SIG17 0 - 3071 Signal name17 ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 SIG18 SIG19 SIG20 SIG21 SIG22 SIG23 SIG24 SIG25 SIG26 SIG27 SIG28 SIG29 SIG30 SIG31 SIG32 ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto ditto No. 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 0 - 3071 Signal name18 Signal name19 Signal name20 Signal name21 Signal name22 Signal name23 Signal name24 Signal name25 Signal name26 Signal name27 Signal name28 Signal name29 Signal name30 Signal name31 Signal name32 Contents Disturbance record signal Default Setting of Relay Series World wide 101 World wide 201 Signal No. Signal Name Signal No. Signal Name 11 DIF 11 DIF-A 0 NA 12 DIF-B 0 NA 13 DIF-C 14 DIFSV 14 DIFSV-A 0 NA 15 DIFSV-B 0 NA 16 DIFSV-C 28 Trip 28 Trip 10 Cold load 10 Cold load 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎯ 173 ⎯ NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 6 F 2 S 0 9 0 0 ⎯ 174 ⎯ 6 F 2 S 0 9 0 0 Appendix H Commissioning Test Sheet (sample) 1. Relay identification 2. Preliminary check 3. Hardware test 3.1 User interface check 3.2 Binary input/Binary output circuit check 3.3 AC input circuit check 4. Function test 4.1 Differential element DIF test 4.2 Supervisory element DIFSV test 5. Protection scheme test 6. Metering and recording check 7. Conjunctive test ⎯ 175 ⎯ 6 F 2 S 0 9 0 0 1. Relay identification Type Serial number Model System frequency Station Date Circuit Engineer Protection scheme Witness Active settings group number 2. Preliminary check Ratings CT shorting contacts DC power supply Power up Wiring Relay inoperative alarm contact Calendar and clock 3. Hardware test 3.1 User interface check 3.2 Binary input/Binary output circuit check Binary input circuit Binary output circuit 3.3 AC input circuit check ⎯ 176 ⎯ 6 F 2 S 0 9 0 0 4. Function test 4.1 Differential element DIF test (1) Minimum operating value test Tap setting Measured voltage (2) Operating time test Tap setting Test voltage Measured time 4.2 Supervisory element DIFSV test (1) Minimum operating value test Tap setting 5. Protection scheme test 6. Metering and recording check 7. Conjunctive test Measured voltage Scheme Results On load Tripping circuit ⎯ 177 ⎯ 6 F 2 S 0 9 0 0 ⎯ 178 ⎯ 6 F 2 S 0 9 0 0 Appendix I Return Repair Form ⎯ 179 ⎯ 6 F 2 S 0 9 0 0 RETURN / REPAIR FORM Please fill in this form and return it to Toshiba Corporation with the GRB150 to be repaired. TOSHIBA CORPORATION Fuchu Operations – Industrial and Power Systems & Services 1, Toshiba-cho, Fuchu-shi, Tokyo, Japan For: Power Systems Protection & Control Department Quality Assurance Section Type: GRB150 (Example: Type: Model: Sub No. Model: GRB150 201D-20-B0 ) Product No.: Serial No.: Date: 1. Reason for returning the relay mal-function does not operate increased error investigation others 2. Fault records, event records or disturbance records stored in the relay and relay settings are very helpful information to investigate the incident. Please provide relevant information regarding the incident on floppy disk, or fill in the attached fault record sheet and relay setting sheet. Fault Record Date/Month/Year Time / / (Example: 04/ Nov./ 1997 / : 15:09:58.442) Faulty phase: Prefault values Vda: V Vdb: V Vdc: V ⎯ 180 ⎯ : . 6 F 2 S 0 9 0 0 Fault values Prefault values Vda: V Vdb: V Vdc: V 3. What was the message on the LCD display at the time of the incident? 4. Describe the details of the incident: 5. Date incident occurred Day/Month/Year: / / / (Example: 10/July/1998) 6. Give any comments about the GRB150, including the documents: ⎯ 181 ⎯ 6 F 2 S 0 9 0 0 Customer Name: Company Name: Address: Telephone No.: Facsimile No.: Signature: ⎯ 182 ⎯ 6 F 2 S 0 9 0 0 Appendix J Technical Data ⎯ 183 ⎯ 6 F 2 S 0 9 0 0 TECHNICAL DATA Ratings AC current Frequency DC power supply AC ripple on DC supply IEC 60255-11 DC supply interruption IEC 60255-11 Permissive duration of DC supply voltage interruption to maintain normal operation Restart time Binary input circuit DC voltage Overload rating AC voltage input for varistor unit EB-101 or EB-102 Burden Input impedance DC power supply Binary input circuit High impedance differential protection Differential protection Supervisory Operating time Resetting time Accuracy Differential protection Supervisory 1A 50Hz or 60Hz 110Vdc/125Vdc (Operative range: 88 to 150Vdc) 220Vdc/250Vdc (Operative range: 176 to 300Vdc) 48Vdc/54Vdc/60Vdc (Operative range: 38.4 to 72Vdc) maximum 12% maximum 50ms at 110Vdc less than 10s 110Vdc/125Vdc (Operative range: 88 to 150Vdc) 220Vdc/250Vdc (Operative range: 176 to 300Vdc) 48Vdc/54Vdc/60Vdc (Operative range: 38.4 to 72Vdc) 300V continuous 1kVrms for 0.4s 667Ω with EB-101 or -102 less than 10W (quiescent) less than 15W(operation) 0.5W/input at 110Vdc 10 to 600V in 1V step 5 to 100V in 1V step Typical 15ms Less than 100ms ±5% at more than 50V ±5% at more than 20V Front Communication port - local PC (RS232) Connection: Cable type: Point to point Multi-core (straight) Cable length: 15m (max.) Connector: RS232C 9-way D-type female Rear Communication port – remote PC RS485 I/F for IEC60870-5-103: Connection Cable type Cable length Connection Isolation Transmission rate Fibre optic I/F for IEC60870-5-103: Cable type Connector Transmission rate Ethernet LAN I/F for IEC61850 or RSM100: Multidrop (max. 32 relays) Twisted pair cable with shield 1200m (max.) Screw terminals 1kVac for 1 min. 9.6, 19.2kbps Graded-index multi-mode 50/125 or 62.5/125μm fibre ST 9.6, 19.2kbps 100BASE-TX: RJ-45 connector 100BASE-FX: SC connector ⎯ 184 ⎯ 6 F 2 S 0 9 0 0 Time synchronization port Connection: Time code: Binary Inputs Operating voltage Binary Outputs (Contact ratings) Auxiliary relay Ratings: Operating time High-speed auxiliary relay Ratings: Operating time Mechanical design Weight Case colour Installation Screw terminals IRIG-B (AM modulated, TTL) Typical 74Vdc(min. 70Vdc) for 110V/125Vdc rating Typical 138Vdc(min. 125Vdc) for 220V/250Vdc rating Typical 31Vdc(min. 28Vdc) for 48V/54V/60Vdc rating BO1 to BO6, FAIL Make and carry: 4A continuously Make and carry: 20A, 290Vdc for 0.2s (L/R≥5ms) Break: 0.1A, 290Vdc (L/R=40ms) Approx. 5ms HBO1 to HBO4 Make and carry: 5A continuously Make and carry: 20A, 290Vdc for 0.5s (L/R≥5ms) Break: 0.15A, 290Vdc (L/R=40ms) Approx. 3ms 4.5kg 2.5Y7.5/1(approximation to Munsell value) Flush mounting ⎯ 185 ⎯ 6 F 2 S 0 9 0 0 ENVIRONMENTAL PERFORMANCE Test Standards Details Atmospheric Environment Temperature IEC60068-2-1/2 Operating range: -10°C to +55°C. Storage / Transit: -25°C to +70°C. Humidity IEC60068-2-3 56 days at 40°C and 93% relative humidity. Enclosure Protection IEC60529 IP51 Mechanical Environment Vibration IEC60255-21-1 Response - Class 1 Endurance - Class 1 Shock and Bump IEC60255-21-2 Shock Response Class 1 Shock Withstand Class 1 Bump Class 1 Seismic IEC60255-21-3 Class 1 Dielectric Withstand IEC60255-5 2kVrms for 1 minute between all terminals and earth. 2kVrms for 1 minute between independent circuits. 1kVrms for 1 minute across normally open contacts. High Voltage Impulse IEC60255-5 Three positive and three negative impulses of 5kV(peak), 1.2/50μs, 0.5J between all terminals and between all terminals and earth. Electrical Environment Electromagnetic Environment High Frequency Disturbance / Damped Oscillatory Wave IEC60255-22-1 Class 3, IEC61000-4-12 / EN61000-4-12 1MHz 2.5kV applied to all ports in common mode. 1MHz 1.0kV applied to all ports in differential mode. Electrostatic Discharge IEC60255-22-2 Class 4, IEC61000-4-2 / EN61000-4-2 8kV contact discharge, 15kV air discharge. Radiated RF Electromagnetic Disturbance IEC60255-22-3 Class 3, IEC61000-4-3 / EN61000-4-3 Field strength 10V/m for frequency sweeps of 80MHz to 1GHz and 1.4GHz to 4.0GHz. Additional spot tests at 80, 160, 380, 450, 900, 1860 and 2150MHz. Fast Transient Disturbance IEC60255-22-4, IEC61000-4-4 / EN61000-4-4 4kV, 5k/100kHz, 5/50ns 2kV, 5k/100kHz, 5/50ns applied to com ports (RS485, etc.) Surge Immunity IEC60255-22-5, IEC61000-4-5 / EN61000-4-5 1.2/50μs surge in common/differential modes: Conducted RF Electromagnetic Disturbance IEC60255-22-6 Class 3, IEC61000-4-6 / EN61000-4-6 10Vrms applied over frequency range 150kHz to 100MHz. Additional spot tests at 27 and 68MHz. Power Frequency Disturbance IEC60255-22-7, IEC61000-4-16 / EN61000-4-16 300V 50Hz for 10s applied to ports in common mode. 150V 50Hz for 10s applied to ports in differential mode. Not applicable to AC inputs. Conducted and Radiated Emissions IEC60255-25 Class A, EN55022 Class A, IEC61000-6-4 / EN61000-6-4 Conducted emissions: 0.15 to 0.50MHz: <79dB (peak) or <66dB (mean) 0.50 to 30MHz: <73dB (peak) or <60dB (mean) Radiated emissions (at 10m): 30 to 230MHz: <40dB 230 to 1000MHz: <47dB HV ports: 2kV/1kV PSU and I/O ports: 2kV/1kV RS485 port: 1kV/ - ⎯ 186 ⎯ 6 F 2 S 0 9 0 0 European Commission Directives 89/336/EEC Compliance with the European Commission Electromagnetic Compatibility Directive is demonstrated according to EN 61000-6-2 and EN 61000-6-4. 73/23/EEC Compliance with the European Commission Low Voltage Directive is demonstrated according to EN 50178 and EN 60255-5. ⎯ 187 ⎯ 6 F 2 S 0 9 0 0 ⎯ 188 ⎯ 6 F 2 S 0 9 0 0 Appendix K Symbols Used in Scheme Logic ⎯ 189 ⎯ 6 F 2 S 0 9 0 0 Symbols used in the scheme logic and their meanings are as follows: Signal names Marked with : Measuring element output signal Marked with : Signal number Marked with : Signal number and name of binary input by PLC function Signal No. Signal name Marked with [ ] : Scheme switch Marked with " " : Scheme switch position Unmarked : Internal scheme logic signal AND gates A B Output A 1 B C 1 1 Other cases Output 1 0 & Output A 1 B C 1 0 Other cases Output 1 0 & Output A 1 B C 0 0 Other cases Output 1 0 ≥1 Output A 0 B C 0 0 Other cases Output 0 1 ≥1 Output A 0 B C 0 1 Other cases Output 0 1 ≥1 Output A 0 B C 1 1 Other cases Output 0 1 & C A B C A B C OR gates A B C A B C A B C ⎯ 190 ⎯ 6 F 2 S 0 9 0 0 Signal inversion A 1 A 0 1 Output Output 1 0 Timer t Delayed pick-up timer with fixed setting 0 XXX: Set time XXX 0 Delayed drop-off timer with fixed setting t XXX: Set time XXX t Delayed pick-up timer with variable setting 0 XXX - YYY: Setting range XXX - YYY 0 Delayed drop-off timer with variable setting t XXX - YYY: Setting range XXX - YYY One-shot timer A A Output Output XXX - YYY XXX - YYY: Setting range Flip-flop S 0 1 0 1 S F/F Output R R 0 0 1 1 Output No change 1 0 0 Scheme switch A Output ON + Output ON ⎯ 191 ⎯ A Switch 1 ON Other cases Switch ON OFF Output 1 0 Output 1 0 6 F 2 S 0 9 0 0 ⎯ 192 ⎯ 6 F 2 S 0 9 0 0 Appendix L Setting Calculation ⎯ 193 ⎯ 6 F 2 S 0 9 0 0 1. Setting of DIF Model circuit: Busbar RS1 CT1 RL1 RL2 ZR ZE1 RS2 GRB150+ EB-101/EB-102 ZE2 CT2 IFmax Constants: 1) Resistance of CT secondary winding ............................... RS2 = 1.5 ohms 2) Resistance of secondary wiring for CT connecting lead loop – most onerous case .................................................................................. RL2 = 1.0 ohm 3) Maximum through fault current ...................................... IFmax = 50kA 4) CT ratio ............................................................................ N = 800 5) Number of CTs connected to GRB150 ............................ n = 14 6) CT secondary excitation current at GRB150 setting voltage .......................................................................................... Ie = 3mA 7) GRB150 input impedance................................................. ZR = 667 ohms 8) CT knee-point voltage ...................................................... Vk= 1000V 9) Minimum internal fault current ........................................ IFmin = 1000A Setting calculations : 1) Calculate voltage setting value. VR ≥ 1.2 (RS2 + RL2) × IFmax / N ≥ 1.2 × (1.5 ohms + 1.0 ohm) × 50000 / 800 ≥ 188V 2) Calculate minimum operating current value for internal fault. Imin = (n Ie + Ir + I) N = (n Ie + Ir + VR / ZR) N = (14 × 0.003 A + 188 / 667 ohms) × 800 ⎯ 194 ⎯ 6 F 2 S 0 9 0 0 = 259A Ir is neglected because it is less than 0.1 mA referring to voltage-current characteristic of the varistor shown below. Setting checks: 1) Check that the setting voltage value VR is smaller than half of the CT knee-point voltage Vk . 1000 / 2 = 500 V > 188V 2) Check that the minimum internal fault current IFmin is larger than the minimum operating current value Imin. 1000A > 259A Note: The current sensitivity Imin can be reduced by connecting a shunt resistor across the relay/varistor unit input. To reduce it from 259A to 400A for example, connect a resistor of 1067 ohms[= 188V×800/(400A-259A)]. 2000 1800 1600 1400 Voltage (V) 1200 1000 800 600 400 200 0.0001 0.001 0.01 0.1 1 Current (A) ⎯ 195 ⎯ 10 100 1000 10000 6 F 2 S 0 9 0 0 2. Setting of DIFSV The setting of DIFSV is determined from the maximum erroneous voltage which is generated due to the following two factors under normal service conditions. • CT turns ratio errors • Error due to differences in the respective lengths of the CT secondary connecting leads to the paralleling point of the differential circuit Erroneous voltage Ver1 due to CT turns ratio errors: The maximum erroneous voltage Ver1 is given by the following equation: Ver1 = ZR × ILmax × CTer where, ZR: relay impedance ILmax: maximum load current (= rated current, for example) CTer: maximum CT turns ratio error (= 0.25 %, for example) Then, Ver1 = 667 ohms × 5 A × 0.0025 ≒8V When the busbar is configured with parallel feeders, the maximum load current of the feeder may increase by up to 1.8 times rated current when one of the feeders is opened. Then, Ver1 = 667 ohms × 1.8 × 5 A × 0.0025 ≒15 V Erroneous voltage Ver2 due to differences in the respective lengths of the CT secondary connecting leads to the paralleling point of the differential circuit: The maximum erroneous voltage Ver2 must not exceed (RS + RL) × ILmax for the most onerous case, Ver2 < (RS + RL) × ILmax < (1.5 ohms + 1.0 ohm) × 5A < 12.5 V In a busbar configured with parallel feeders, the load current may increase transiently by up to 1.8 times when one of the parallel feeders is opened. Then assuming that the feeders are fully loaded under normal conditions, Ver2 < (1.5 ohms + 1.0 ohm) × 1.8 × 5A < 22.5 V DIFSV should be set to satisfy the following equation: DIFSV > Ver1 + Ver2 = 15 V + 12.5 V = 27.5 V for single feeder busbar = 15 V + 22.5 V = 37.5 V for parallel feeder busbar Then, DIFSV = 30 V for single feeder busbar = 40 V for parallel feeder busbar ⎯ 196 ⎯ 6 F 2 S 0 9 0 0 Appendix M IEC60870-5-103: Interoperability and Troubleshooting ⎯ 197 ⎯ 6 F 2 S 0 9 0 0 IEC60870-5-103 Configurator IEC103 configurator software is included in a same CD as RSM100, and can be installed easily as follows: Installation of IEC103 Configurator Insert the CD-ROM (RSM100) into a CDROM drive to install this software on a PC. Double click the “Setup.exe” of the folder “\IEC103Conf” under the root directory, and operate it according to the message. When installation has been completed, the IEC103 Configurator will be registered in the start menu. Starting IEC103 Configurator Click [Start]→[Programs]→[IEC103 Configurator]→[IECConf] to the IEC103 Configurator software. Note: The instruction manual of IEC103 Configurator can be viewed by clicking [Help]→[Manual] on IEC103 Configurator. IEC60870-5-103: Interoperability 1. Physical Layer 1.1 Electrical interface: EIA RS-485 Number of loads, 32 for one protection equipment 1.2 Optical interface Glass fibre (option) ST type connector (option) 1.3 Transmission speed User setting: 9600 or 19200 bit/s 2. Application Layer COMMON ADDRESS of ASDU One COMMON ADDRESS OF ASDU (identical with station address) 3. List of Information The following items can be customized with the original software tool “IEC103 configurator”. (For details, refer to “IEC103 configurator” manual No.6F2S0839.) - Items for “Time-tagged message”: Type ID(1/2), INF, FUN, Transmission condition(Signal number), COT - Items for “Time-tagged measurands”: INF, FUN, Transmission condition(Signal number), COT, Type of measurand quantities - Items for “General command”: INF, FUN, Control condition(Signal number) - Items for “Measurands”: Type ID(3/9), INF, FUN, Number of measurand, Type of ⎯ 198 ⎯ 6 F 2 S 0 9 0 0 measurand quantities - Common setting • Transmission cycle of Measurand frame • FUN of System function • Test mode, etc. Note: To be effective the setting data written via the RS232C, turn off the DC supply of the relay and turn on again. 3. 1 IEC60870-5-103 Interface 3.1.1 Spontaneous events The events created by the relay will be sent using Function type (FUN) / Information numbers (INF) to the IEC60870-5-103 master station. 3.1.2 General interrogation The GI request can be used to read the status of the relay, the Function types and Information numbers that will be returned during the GI cycle are shown in the table below. For details, refer to the standard IEC60870-5-103 section 7.4.3. 3.1.3 Cyclic measurements The relay will produce measured values using Type ID=3 or 9 on a cyclical basis, this can be read from the relay using a Class 2 poll. The rate at which the relay produces new measured values can be customized. 3.1.4 Commands The supported commands can be customized. The relay will respond to non-supported commands with a cause of transmission (COT) of negative acknowledgement of a command. For details, refer to the standard IEC60870-5-103 section 7.4.4. 3.1.5 Test mode In test mode, both spontaneous messages and polled measured values, intended for processing in the control system, are designated by means of the CAUSE OF TRANSMISSION ‘test mode’. This means that CAUSE OF TRANSMISSION = 7 ‘test mode’ is used for messages normally transmitted with COT=1 (spontaneous) or COT=2 (cyclic). For details, refer to the standard IEC60870-5-103 section 7.4.5. 3.1.6 Blocking of monitor direction If the blocking of the monitor direction is activated in the protection equipment, all indications and measurands are no longer transmitted. For details, refer to the standard IEC60870-5-103 section 7.4.6. 3.2 List of Information The followings are the default settings. ⎯ 199 ⎯ 6 F 2 S 0 9 0 0 List of Information IEC103 Configurator Default setting INF Description Contents GI Type COT FUN ID DPI Signal No. OFF ON Standard Information numbers in monitor direction System Function 0 End of General Interrogation Transmission completion of GI items. -- 8 10 255 -- -- -- 0 Time Synchronization Time Synchronization ACK. -- 6 8 255 -- -- -- 2 Reset FCB Reset FCB(toggle bit) ACK -- 5 3 217 -- -- -- 3 Reset CU Reset CU ACK -- 5 4 217 -- -- -- 4 Start/Restart Relay start/restart -- 5 5 217 -- -- -- 5 Pow er On Relay pow er on. Not supported 16 Auto-recloser active If it is possible to use auto-recloser, this item is set active, if impossible, inactive. Not supported 17 Teleprotection active If protection using telecommunication is available, this item is set to active. If not, set to inactive. Not supported 18 Protection active If the protection is available, this item is set to active. If not, set to inactive. GI 1 1, 7, 12 217 1413 1 2 19 LED reset Reset of latched LEDs -- 1 1, 7, 11, 12 217 1409 -- 2 20 Monitor direction blocked Block the 103 transmission from a relay to control system. IECBLK: "Blocked" settimg. GI 1 11 217 1241 1 2 21 Test mode Transmission of testmode situation froma relay to control system. IECTST "ON" setting. GI 1 11 217 1242 1 2 22 Local parameter Setting When a setting change has done at the local, the event is sent to control system. 23 Characteristic1 Setting group 1 active GI 1 1, 7, 11, 12 217 1243 1 2 24 Characteristic2 Setting group 2 active GI 1 1, 7, 11, 12 217 1244 1 2 25 Characteristic3 Setting group 3 active GI 1 1, 7, 11, 12 217 1245 1 2 26 Characteristic4 Setting group 4 active GI 1 1, 7, 11, 12 217 1246 1 2 27 Auxiliary input1 Binary input 1 No set 28 Auxiliary input2 Binary input 2 No set 29 Auxiliary input3 Binary input 3 No set 30 Auxiliary input4 Binary input 4 No set Status Indications Not supported Supervision Indications 32 Measurand supervision I Zero sequence current supervision Not supported 33 Measurand supervision V Zero sequence voltage supervision Not supported 35 Phase sequence supervision Negative sequence voltage supevision Not supported 36 Trip circuit supervision Output circuit supervision Not supported 37 I>>backup operation Not supported 38 VT fuse failure VT failure Not supported 39 Teleprotection disturbed CF(Communication system Fail) supervision Not supported 46 Group w arning Only alarming GI 1 1, 7 217 1258 1 2 47 Group alarm Trip blocking and alarming GI 1 1, 7 217 1252 1 2 Earth Fault Indications 48 Earth Fault L1 A phase earth fault Not supported 49 Earth Fault L2 B phase earth fault Not supported 50 Earth Fault L3 C phase earth fault Not supported 51 Earth Fault Fw d Earth fault forw ard Not supported 52 Earth Fault Rev Earth fault reverse Not supported ⎯ 200 ⎯ 6 F 2 S 0 9 0 0 IEC103 Configurator Default setting INF Description Contents GI Type COT FUN ID DPI Signal NO. OFF ON Fault Indications 64 Start/pick-up L1 A phase, A-B phase or C-A phase element pick-up 65 Start/pick-up L2 B phase, A-B phase or B-C phase element pick-up No set No set 66 Start/pick-up L3 C phase, B-C phase or C-A phase element pick-up No set 67 Start/pick-up N Earth fault element pick-up 68 General trip Any trip 69 Trip L1 A phase, A-B phase or C-A phase trip 70 Trip L2 B phase, A-B phase or B-C phase trip No set 71 Trip L3 C phase, B-C phase or C-A phase trip No set No set -- 2 1, 7 217 No set 72 Trip I>>(back-up) Back up trip No set 73 Fault location X In ohms Fault location Not supported 74 Fault forw ard/line Forw ard fault Not supported 75 Fault reverse/Busbar Reverse fault 76 Teleprotection Signal transmitted Carrier signal sending Not supported 77 Teleprotection Signal received Carrier signal receiving Not supported 78 Zone1 Zone 1 trip Not supported 79 Zone2 Zone 2 trip Not supported 80 Zone3 Zone 3 trip Not supported 81 Zone4 Zone 4 trip Not supported 82 Zone5 Zone 5 trip Not supported 83 Zone6 Zone 6 trip Not supported 84 General Start/Pick-up Any elements pick-up No set 85 Breaker Failure CBF trip or CBF retrip Not supported 86 Trip measuring system L1 Not supported 87 Trip measuring system L2 Not supported 88 Trip measuring system L3 Not supported 89 Trip measuring system E 90 Trip I> 91 Trip I>> Definite time OC trip Not supported 92 Trip IN> Inverse time earth fault OC trip Not supported 93 Trip IN>> Definite time earth fault OC trip Not supported CB close command output Not supported Not supported Not supported Inverse time OC trip Not supported Autoreclose indications 128 CB 'ON' by Autoreclose 129 CB 'ON' by long-time Autoreclose 130 Autoreclose Blocked Not supported Autoreclose block Not supported ⎯ 201 ⎯ 28 -- 2 6 F 2 S 0 9 0 0 IEC103 configurator Default setting INF Description Contents GI Type ID COT FUN Max. No. Measurands 144 Measurand I <meaurand I> No 0 145 Measurand I,V <meaurand I> No 0 146 Measurand I,V,P,Q <meaurand I> No 0 147 Measurand IN,VEN <meaurand I> No 0 148 Measurand IL1,2,3, VL1,2,3, P,Q,f Vda, Vdb, Vdc measurand <meaurand II> -- 9 2, 7 217 9 Generic Function 240 Read Headings Not supported 241 Read attributes of all entries of a group Not supported 243 Read directory of entry Not supported 244 Real attribute of entry Not supported 245 End of GGI Not supported 249 Write entry w ith confirm Not supported 250 Write entry w ith execute Not supported 251 Write entry aborted Not supported Details of MEA settings in IEC103 configurator INF 148 MEA Tbl Offset Data type Limit Coeff Lower Upper (empty) (empty) (empty) Vda 1 12 short 0 4096 14.5134 (*) Vdb 1 16 short 0 4096 14.5134 (*) Vdc 1 20 short 0 4096 14.5134 (*) (empty) (empty) (empty) (*): In default setting, when the voltage level is 63.5V, “Coeff” is calculated by the following equation: LSB Coeff = (0.27V / 63.3V / 1.2) × 212 ⎯ 202 ⎯ 6 F 2 S 0 9 0 0 IEC103 Configurator Default setting INF Description Contents Control Type ID direction COT FUN Selection of standard information numbers in control direction System functions 0 Initiation of general interrogation -- 7 9 255 0 Time synchronization -- 6 8 255 General commands 16 Auto-recloser on/off 17 Teleprotection on/off Not supported 18 Protection on/off (*1) 19 LED reset 23 24 Not supported ON/OFF 20 20 217 Reset indication of latched LEDs. ON 20 20 217 Activate characteristic 1 Setting Group 1 ON 20 20 217 Activate characteristic 2 Setting Group 2 ON 20 20 217 25 Activate characteristic 3 Setting Group 3 ON 20 20 217 26 Activate characteristic 4 Setting Group 4 ON 20 20 217 Generic functions Read headings of all defined 240 groups Not supported 241 Read values or attributes of all entries of one group Not supported 243 Read directory of a single entry Not supported 244 Read values or attributes of a single entry Not supported 245 General Interrogation of generic data Not supported 248 Write entry Not supported 249 Write entry w ith confirmation Not supported 250 Write entry w ith execution Not supported (∗1) Note: While the relay receives the "Protection off" command, " IN SERVICE LED" is off. Details of Command settings in IEC103 configurator DCO INF Sig off Sig on 18 2686 2686 19 0 2688 200 23 0 2640 1000 24 0 2641 1000 25 0 2642 1000 26 0 2643 1000 Rev ✓ Valid time 0 ✓: signal reverse ⎯ 203 ⎯ 6 F 2 S 0 9 0 0 Description Contents GRD140 supported Basic application functions Test mode Yes Blocking of monitor direction Yes Disturbance data No Generic services No Private data Yes Miscellaneous Max. MVAL = rated value times Measurand Current L1 Ia No set Current L2 Ib No set Current L3 Ic No set Voltage L1-E Vda Configurable Voltage L2-E Vdb Configurable Voltage L3-E Vdc Configurable Active pow er P P No set Reactive pow er Q Q No set Frequency f f No set Voltage L1 - L2 Vab No set Details of Common settings in IEC103 configurator - Setting file’s remark: IGRB150DA000 - Remote operation valid time [ms]: 4000 - Local operation valid time [ms]: 4000 - Measurand period [s]: 2 - Function type of System functions: 217 - Signal No. of Test mode: 1242 - Signal No. for Real time and Fault number: 1279 ⎯ 204 ⎯ Comment 6 F 2 S 0 9 0 0 [Legend] GI: General Interrogation (refer to IEC60870-5-103 section 7.4.3) Type ID: Type Identification (refer to IEC60870-5-103 section 7.2.1) 1 : time-tagged message 2 : time-tagged message with relative time 3 : measurands I 4 : time-tagged measurands with relative time 5 : identification 6 : time synchronization 8 : general interrogation termination 9 : measurands II 10: generic data 11: generic identification 20: general command 23: list of recorded disturbances 26: ready for transmission for disturbance data 27: ready for transmission of a channel 28: ready for transmission of tags 29: transmission of tags 30: transmission of disturbance values 31: end of transmission COT: Cause of Transmission (refer to IEC60870-5-103 section 7.2.3) 1: spontaneous 2: cyclic 3: reset frame count bit (FCB) 4: reset communication unit (CU) 5: start / restart 6: power on 7: test mode 8: time synchronization 9: general interrogation 10: termination of general interrogation 11: local operation 12: remote operation 20: positive acknowledgement of command 21: negative acknowledgement of command 31: transmission of disturbance data 40: positive acknowledgement of generic write command 41: negative acknowledgement of generic write command 42: valid data response to generic read command 43: invalid data response to generic read command 44: generic write confirmation FUN: Function type (refer to IEC60870-5-103 section 7.2.5.1) DPI: Double-point Information (refer to IEC60870-5-103 section 7.2.6.5) DCO: Double Command (refer to IEC60870-5-103 section 7.2.6.4) ⎯ 205 ⎯ 6 F 2 S 0 9 0 0 IEC103 setting data is recommended to be saved as follows: (1) Naming for IEC103setting data The file extension of IEC103 setting data is “.csv”. The version name is recommended to be provided with a revision number in order to be changed in future as follows: First draft: ∗∗∗∗∗∗_01.csv Second draft: ∗∗∗∗∗∗_02.csv Third draft: ∗∗∗∗∗∗_03.csv Revision number The name “∗∗∗∗∗∗” is recommended to be able to discriminate the relay type such as GRZ100 or GRL100, etc. The setting files remark field of IEC103 is able to enter up to 12 one-byte characters. It is utilized for control of IEC103 setting data. (2) Saving theIEC103 setting data The IEC103 setting data is recommended to be saved in external media such as FD (floppy disk) or CD-R, not to remain in the folder. ⎯ 206 ⎯ 6 F 2 S 0 9 0 0 Troubleshooting No. Phenomena Supposed causes Check / Confirmation Object 1 Communication trouble (IEC103 communication is not available.) Address setting is incorrect. BCU RY BCU RY BCU Match address setting between BCU and relay. Avoid duplication of address with other relay. Match transmission baud rate setting between BCU and relay. RS485 or optical cable interconnection is incorrect. Cable - Check the connection port. - Check the interconnection of RS485 A/B/COM - Check the send and received interconnection of optical cable. The setting of converter is incorrect. (RS485/optic conversion is executed with the transmission channel, etc.) Converter In the event of using G1IF2, change the DIPSW setting in reference to INSTRUCTION MANUAL (6F2S0794). The relationship between logical “0/1” of the signal and Sig.on/off is incorrect. (In the event of using optical cable) BCU Check the following; Logical0 : Sig.on Logical1:Sig.off Terminal resistor is not offered. (Especially when RS485 cable is long.) cable Impose terminal resistor (150[ohms]) to both ends of RS 485 cable. Relay cannot receive the requirement frame from BCU. BCU Check to secure the margin more than 15ms between receiving the reply frame from the relay and transmitting the next requirement frame on BCU. BCU Check to set the time-out of reply frame from the relay. Transmission baud rate setting is incorrect. Start bit, stop bit and parity settings of data that BCU transmits to relay is incorrect. (The timing coordination of sending and receiving switch control is irregular in half-duplex communication.) The requirement frame from BCU and the reply frame from relay contend. (The sending and receiving timing coordination is irregular in half-duplex communication.) 2 HMI does not display IEC103 event on the SAS side. Procedure Go over the following settings by BCU. Relay setting is fixed as following settings. - Start bit: 1bit - Stop bit: 1bit - Parity setting: even Time-out setting: more than 100ms (acceptable value of response time 50ms plus margin) The relevant event sending condition is not valid. RY Change the event sending condition (signal number) of IEC103 configurator if there is a setting error. When the setting is correct, check the signal condition by programmable LED, etc. The relevant event Information Number (INF) and/or Function Type (FUN) may be different between the relay and SAS. RY Match the relevant event Information Number (INF) or Function Type (FUN) between the relay and SAS. SAS ⎯ 207 ⎯ 6 F 2 S 0 9 0 0 No. Phenomena Supposed causes Check / Confirmation Object 3 Time can be synchronised with IEC103 communication . Procedure The relay is not initialised after writing IEC103 configurator setting. RY Check the sum value of IEC103 setting data from the LCD screen. When differing from the sum value on IEC103 configurator, initialise the relay. It changes to the block mode. RY Change the IECBR settling to Normal. BCU does not transmit the frame of time synchronisation. BCU Transmit the frame of time synchronisation. The settling of time synchronisation source is set to other than IEC. RY Change the settling of time synchronisation source to IEC. (Note) BCU: Bay control unit, RY: Relay ⎯ 208 ⎯ 6 F 2 S 0 9 0 0 Appendix N Timing Chart of Cold load Condition Judgment ⎯ 209 ⎯ 6 F 2 S 0 9 0 0 Timing Chart of Cold Load Status Judgment (1) Function 1: Setting: [TCLP]= should be set. [TCLE],[TCLR]=Not applied. From CB close command output, the cold load condition is judged for a time. CB closing CB open CB closing command (“CB_FOR_CLP”) COLD LOAD TCLP one-shot timer (3) Function 2: Setting: [TCLP]=Not applied. [TCLE],[TCLR]=should be set. From CB contact closing, the cold load condition is judged for a time. CB closing CB contact (CB_FOR_CLP) CB open CLOSE OPEN COLD LOAD TCLR Off-delay timer ⎯ 210 ⎯ TCLE On-delay timer 6 F 2 S 0 9 0 0 Appendix O IEC61850: MICS & PICS ⎯ 211 ⎯ 6 F 2 S 0 9 0 0 PICS: The GRB150 relay supports IEC 61850 logical nodes and common data classes as indicated in the following tables. Logical nodes in IEC 61850-7-4 Logical Nodes GRB150 L: System Logical Nodes LPHD Yes Common Logical Node Yes LLN0 Yes P: Logical Nodes for Protection functions PDIF Yes PDIR --PDIS --PDOP --PDUP --PFRC --PHAR --PHIZ --PIOC --PMRI --PMSS --POPE --PPAM --PSCH --PSDE --PTEF --PTOC --PTOF --PTOV --PTRC Yes PTTR --PTUC --PTUV --PUPF --PTUF --PVOC --PVPH --PZSU --R: Logical Nodes for protection related functions RDRE --RADR --RBDR --RDRS --RBRF --RDIR --RFLO --RPSB --RREC --RSYN --C: Logical Nodes for Control CALH --CCGR --CILO --CPOW --CSWI --G: Logical Nodes for Generic references GAPC --GGIO Yes Nodes GRB150 GGIO_GOOSE Yes GSAL --I: Logical Nodes for Interfacing and archiving IARC --IHMI --ITCI --ITMI --A: Logical Nodes for Automatic control ANCR --ARCO --ATCC --AVCO --M: Logical Nodes for Metering and measurement MDIF --MHAI --MHAN --MMTR --MMXN --MMXU --MSQI --MSTA --S: Logical Nodes for Sensors and monitoring SARC --SIMG --SIML --SPDC --X: Logical Nodes for Switchgear XCBR Yes XSWI --T: Logical Nodes for Instrument transformers TCTR --TVTR --Y: Logical Nodes for Power transformers YEFN --YLTC --YPSH --YPTR --Z: Logical Nodes for Further power system equipment ZAXN --ZBAT --ZCAB --ZCAP --ZCON --ZGEN --ZGIL --ZLIN --ZMOT --ZREA --ZRRC --ZSAR --ZTCF --ZTCR --- ⎯ 212 ⎯ 6 F 2 S 0 9 0 0 Common data classes in IEC61850-7-3 Common data classes Status information SPS DPS INS ACT ACT_ABC ACD ACD_ABC SEC BCR Measured information MV CMV SAV WYE WYE_ABCN DEL SEQ HMV HWYE HDEL Controllable status information SPC DPC INC BSC ISC Controllable analogue information APC Status settings SPG ING Analogue settings ASG CURVE Description information DPL LPL CSD GRB150 Yes --Yes Yes Yes Yes Yes ----Yes Yes --Yes Yes Yes Yes ------Yes Yes Yes --------Yes Yes --Yes Yes --- ⎯ 213 ⎯ 6 F 2 S 0 9 0 0 LPHD class Attribute Name LNName Data PhyName PhyHealth OutOv Proxy InOv NumPwrUp WrmStr WacTrg PwrUp PwrDn PwrSupAlm RsStat Attr. Type Explanation Shall be inherited from Logical-Node Class (see IEC 61850-7-2) DPL INS SPS SPS SPS INS INS INS SPS SPS SPS SPC Physical device name plate Physical device health Output communications buffer overflow Indicates if this LN is a proxy Input communications buffer overflow Number of Power ups Number of Warm Starts Number of watchdog device resets detected Power Up detected Power Down detected External power supply alarm Reset device statistics Common Logical Node class Attribute Name Attr. Type Explanation LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2) Data Mandatory Logical Node Information (Shall be inherited by ALL LN but LPHD) Mod INC Mode Beh INS Behaviour Health INS Health NamPlt LPL Name plate Optional Logical Node Information Loc SPS Local operation EEHealth INS External equipment health EEName DPL External equipment name plate OpCntRs INC Operation counter resetable OpCnt INS Operation counter OpTmh INS Operation time Data Sets (see IEC 61850-7-2) Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2) Control Blocks (see IEC 61850-7-2) Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2) Services (see IEC 61850-7-2) Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2) T M/O GRB150 T M M O M O O O O O O O O Y Y N Y N N N N N N N N T M/O GRB150 M M M M Y Y Y Y O O O O O O N N N N N N LLNO class Attribute Name Attr. Type Explanation T M/O GRB150 LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2) Data Common Logical Node Information LN shall inherit all Mandatory Data from Common Logical Node M Class Loc SPS Local operation for complete logical device O Y OpTmh INS Operation time O N Controls Diag SPC Run Diagnostics O Y LEDRs SPC LED reset T O Y ⎯ 214 ⎯ 6 F 2 S 0 9 0 0 PDIF class Attribute Name Attr. Type Explanation T LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2) Data Common Logical Node Information LN shall inherit all Mandatory Data from Common Logical Node Class OpCntRs INC Resetable operation counter Status Information Str ACD Start Op ACT Operate T TmAst CSD Active curve charactristic Measured Values DifAClc WYE Differential Current RstA WYE Restraint Current Settings LinCapac ASG Line capacitance (for load currents) LoSet ING Low operate value, percentage of the nominal current HiSet ING High operate value, percentage of the nominal current MinOpTmms ING Minimum Operate Time MaxOpTmms ING Maximum Operate Time RstMod ING Restraint Mode RsDlTmms ING Reset Delay Time TmACrv CURVE Operating Curve Type PTRC class Attribute Name Attr. Type Explanation T LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2) Data Common Logical Node Information LN shall inherit all Mandatory Data from Common Logical Node Class OpCntRs INC Resetable operation counter Status Information Tr ACT_ABC Trip Op ACT Operate (combination of subscribed Op from protection functions) Str ACD Sum of all starts of all connected Logical Nodes Settings TrMod ING Trip Mode TrPlsTmms ING Trip Pulse Time Condition C: At least one of the two status information (Tr, Op) shall be used. ⎯ 215 ⎯ M/O GRB150 M O N M M O Y Y N O O Y N O O O O O O O O N N N N N N N N M/O GRB150 M O N C C O Y N N O O N N 6 F 2 S 0 9 0 0 GGIO class Attribute Name Attr. Type Explanation T LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2) Data Common Logical Node Information LN shall inherit all Mandatory Data from Common Logical Node Class EEHealth INS External equipment health (external sensor) EEName DPL External equipment name plate Loc SPS Local operation OpCntRs INC Resetable operation counter Measured values AnIn MV Analogue input Controls SPCSO SPC Single point controllable status output DPCSO DPC Double point controllable status output ISCSO INC Integer status controllable status output Status Information IntIn INS Integer status input Alm SPS General single alarm Ind1 SPS General indication (binary input) Ind2 SPS General indication (binary input) Ind3 SPS General indication (binary input) Ind4 SPS General indication (binary input) Ind5 SPS General indication (binary input) Ind6 SPS General indication (binary input) Ind7 SPS General indication (binary input) Ind8 SPS General indication (binary input) Ind9 SPS General indication (binary input) Ind10 SPS General indication (binary input) : : : Ind64 SPS General indication (binary input) ⎯ 216 ⎯ M/O GRB150 M O O O O N N N N O N O O O N N N O O O O O O O O O O O O N N Y Y Y Y Y Y Y Y Y Y O Y 6 F 2 S 0 9 0 0 GGIO_GOOSE class Attribute Name Attr. Type Explanation T LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2) Data Common Logical Node Information LN shall inherit all Mandatory Data from Common Logical Node Class EEHealth INS External equipment health (external sensor) EEName DPL External equipment name plate Loc SPS Local operation OpCntRs INC Resetable operation counter Measured values AnIn MV Analogue input Controls SPCSO SPC Single point controllable status output DPCSO DPC Double point controllable status output ISCSO INC Integer status controllable status output Status Information IntIn INS Integer status input Alm SPS General single alarm Ind1 SPS General indication (binary input) Ind2 SPS General indication (binary input) Ind3 SPS General indication (binary input) Ind4 SPS General indication (binary input) Ind5 SPS General indication (binary input) Ind6 SPS General indication (binary input) Ind7 SPS General indication (binary input) Ind8 SPS General indication (binary input) Ind9 SPS General indication (binary input) Ind10 SPS General indication (binary input) Ind11 SPS General indication (binary input) Ind12 SPS General indication (binary input) Ind13 SPS General indication (binary input) Ind14 SPS General indication (binary input) Ind15 SPS General indication (binary input) Ind16 SPS General indication (binary input) ⎯ 217 ⎯ M/O GRB150 M O O O O N N N N O N O O O N N N O O O O O O O O O O O O O O O O O O N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 6 F 2 S 0 9 0 0 XCBR class Attribute Name Attr. Type Explanation T LNName Shall be inherited from Logical-Node Class (see IEC 61850-7-2) Data Common Logical Node Information LN shall inherit all Mandatory Data from Common Logical Node Class EEHealth INS External equipment health (external sensor) EEName DPL External equipment name plate OpCnt INS Operation counter Controls Pos DPC Switch position BlkOpn SPC Block opening BlkCls SPC Block closing ChaMotEna SPC Charger motor enabled Metered Values SumSwARs BCR Sum of Switched Amperes, resetable Status Information CBOpCap INS Circuit breaker operating capability POWCap INS Point On Wave switching capability MaxOpCap INS Circuit breaker operating capability when fully charged ⎯ 218 ⎯ M/O GRB150 M O O M N N Y M M M O Y Y Y N O N M O O Y N N 6 F 2 S 0 9 0 0 SPS class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute status stVal BOOLEAN ST dchg TRUE | FALSE q Quality ST qchg t TimeStamp ST substitution subEna BOOLEAN SV subVal BOOLEAN SV TRUE | FALSE subQ Quality SV subID VISIBLE STRING64 SV configuration, description and extension d VISIBLE STRING255 DC Text dU UNICODE STRING255 DC cdcNs VISIBLE STRING255 EX cdcName VISIBLE STRING255 EX dataNs VISIBLE STRING255 EX Services As defined in Table 13 INS class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute status stVal INT32 ST dchg q Quality ST qchg t TimeStamp ST Substitution subEna BOOLEAN SV subVal INT32 SV subQ Quality SV subID VISIBLE STRING64 SV configuration, description and extension d VISIBLE STRING255 DC Text dU UNICODE STRING255 DC cdcNs VISIBLE STRING255 EX cdcName VISIBLE STRING255 EX dataNs VISIBLE STRING255 EX Services As defined in Table 13 (*1): “ENUM” type is also used. ⎯ 219 ⎯ M/O/C GRB150 M M M Y Y Y PICS_SUBST PICS_SUBST PICS_SUBST PICS_SUBST N N N N O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M N N N N N M/O/C GRB150 M M M Y(*1) Y Y PICS_SUBST PICS_SUBST PICS_SUBST PICS_SUBST N N N N O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M N N N N N 6 F 2 S 0 9 0 0 ACT class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute status general BOOLEAN ST dchg phsA BOOLEAN ST dchg phsB BOOLEAN ST dchg phsC BOOLEAN ST dchg neut BOOLEAN ST dchg q Quality ST qchg t TimeStamp ST configuration, description and extension operTm TimeStamp CF d VISIBLE STRING255 DC Text dU UNICODE STRING255 DC cdcNs VISIBLE STRING255 EX cdcName VISIBLE STRING255 EX dataNs VISIBLE STRING255 EX Services As defined in Table 13 ACT_ABC class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute status general BOOLEAN ST dchg phsA BOOLEAN ST dchg phsB BOOLEAN ST dchg phsC BOOLEAN ST dchg neut BOOLEAN ST dchg q Quality ST qchg t TimeStamp ST configuration, description and extension operTm TimeStamp CF d VISIBLE STRING255 DC Text dU UNICODE STRING255 DC cdcNs VISIBLE STRING255 EX cdcName VISIBLE STRING255 EX dataNs VISIBLE STRING255 EX Services As defined in Table 13 ⎯ 220 ⎯ M/O/C GRB150 M O O O O M M Y N N N N Y Y O O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M N N N N N N M/O/C GRB150 M O O O O M M Y Y Y Y N Y Y O O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M N N N N N N 6 F 2 S 0 9 0 0 ACD class Attribute Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute status general BOOLEAN ST dchg M Y dirGeneral ENUMERATED ST dchg unknown | forward | backward M Y | both phsA BOOLEAN ST dchg GC_2 (1) N dirPhsA ENUMERATED ST dchg unknown | forward | backward GC_2 (1) N phsB BOOLEAN ST dchg GC_2 (2) N dirPhsB ENUMERATED ST dchg unknown | forward | backward GC_2 (2) N phsC BOOLEAN ST dchg GC_2 (3) N dirPhsC ENUMERATED ST dchg unknown | forward | backward GC_2 (3) N neut BOOLEAN ST dchg GC_2 (4) N dirNeut ENUMERATED ST dchg unknown | forward | backward GC_2 (4) N q Quality ST qchg M Y t TimeStamp ST M Y configuration, description and extension d VISIBLE STRING255 DC Text O N dU UNICODE STRING255 DC O N cdcNs VISIBLE STRING255 EX AC_DLNDA_M N cdcName VISIBLE STRING255 EX AC_DLNDA_M N dataNs VISIBLE STRING255 EX AC_DLN_M N Services As defined in Table 13 ACD_ABC class Attribute Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute status general BOOLEAN ST dchg M Y dirGeneral ENUMERATED ST dchg unknown | forward | backward M Y | both phsA BOOLEAN ST dchg GC_2 (1) Y dirPhsA ENUMERATED ST dchg unknown | forward | backward GC_2 (1) Y phsB BOOLEAN ST dchg GC_2 (2) Y dirPhsB ENUMERATED ST dchg unknown | forward | backward GC_2 (2) Y phsC BOOLEAN ST dchg GC_2 (3) Y dirPhsC ENUMERATED ST dchg unknown | forward | backward GC_2 (3) Y neut BOOLEAN ST dchg GC_2 (4) N dirNeut ENUMERATED ST dchg unknown | forward | backward GC_2 (4) N q Quality ST qchg M Y t TimeStamp ST M Y configuration, description and extension d VISIBLE STRING255 DC Text O N dU UNICODE STRING255 DC O N cdcNs VISIBLE STRING255 EX AC_DLNDA_M N cdcName VISIBLE STRING255 EX AC_DLNDA_M N dataNs VISIBLE STRING255 EX AC_DLN_M N Services As defined in Table 13 ⎯ 221 ⎯ 6 F 2 S 0 9 0 0 MV class Attribute Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute measured values instMag AnalogueValue MX O N mag AnalogueValue MX dchg M Y range ENUMERATED MX dchg normal | high | low | high-high | O N low-low |… q Quality MX qchg M Y t TimeStamp MX M Y substitution subEna BOOLEAN SV PICS_SUBST N subVal AnalogueValue SV PICS_SUBST N subQ Quality SV PICS_SUBST N subID VISIBLE STRING64 SV PICS_SUBST N configuration, description and extension units Unit CF see Annex A O Y db INT32U CF 0 … 100 000 O N zeroDb INT32U CF 0 … 100 000 O N sVC ScaledValueConfig CF AC_SCAV N rangeC RangeConfig CF GC_CON N smpRate INT32U CF O N d VISIBLE STRING255 DC Text O N dU UNICODE STRING255 DC O N cdcNs VISIBLE STRING255 EX AC_DLNDA_M N cdcName VISIBLE STRING255 EX AC_DLNDA_M N dataNs VISIBLE STRING255 EX AC_DLN_M N Services As defined in Table 21 ⎯ 222 ⎯ 6 F 2 S 0 9 0 0 CMV class Attribute Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute measured values instCVal Vector MX O N cVal Vector MX dchg M Y range ENUMERATED MX dchg normal | high | low | high-high | O N low-low |… q Quality MX qchg M Y t TimeStamp MX M Y substitution subEna BOOLEAN SV PICS_SUBST N subVal Vector SV PICS_SUBST N subQ Quality SV PICS_SUBST N subID VISIBLE STRING64 SV PICS_SUBST N configuration, description and extension units Unit CF see Annex A O Y db INT32U CF 0 … 100 000 O N zeroDb INT32U CF 0 … 100 000 O N rangeC RangeConfig CF GC_CON N magSVC ScaledValueConfig CF AC_SCAV N angSVC ScaledValueConfig CF AC_SCAV N angRef ENUMERATED CF V | A | other … O N smpRate INT32U CF O N d VISIBLE STRING255 DC Text O N dU UNICODE STRING255 DC O N cdcNs VISIBLE STRING255 EX AC_DLNDA_M N cdcName VISIBLE STRING255 EX AC_DLNDA_M N dataNs VISIBLE STRING255 EX AC_DLN_M N Services As defined in Table 21 ⎯ 223 ⎯ 6 F 2 S 0 9 0 0 WYE class Attribute Name DataName Data phsA phsB phsC neut net res DataAttribute angRef Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 GC_1 GC_1 GC_1 GC_1 GC_1 GC_1 Y Y Y N N N Inherited from Data Class (see IEC 61850-7-2) CMV CMV CMV CMV CMV CMV configuration, description and extension CF Va | Vb | Vc | Aa | Ab | Ac | Vab | O Vbc | Vca | Vother | Aother VISIBLE STRING255 DC Text O UNICODE STRING255 DC O VISIBLE STRING255 EX AC_DLNDA_M VISIBLE STRING255 EX AC_DLNDA_M VISIBLE STRING255 EX AC_DLN_M ENUMERATED d dU cdcNs cdcName dataNs Services As defined in Table 21 N N N N N N WYE_ABCN class Attribute Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 Name DataName Inherited from Data Class (see IEC 61850-7-2) Data phsA CMV GC_1 Y phsB CMV GC_1 Y phsC CMV GC_1 Y neut CMV GC_1 Y net CMV GC_1 N res CMV GC_1 N DataAttribute configuration, description and extension angRef ENUMERATED CF Va | Vb | Vc | Aa | Ab | Ac | Vab | O N Vbc | Vca | Vother | Aother d VISIBLE STRING255 DC Text O N dU UNICODE STRING255 DC O N cdcNs VISIBLE STRING255 EX AC_DLNDA_M N cdcName VISIBLE STRING255 EX AC_DLNDA_M N dataNs VISIBLE STRING255 EX AC_DLN_M N Services As defined in Table 21 ⎯ 224 ⎯ 6 F 2 S 0 9 0 0 DEL class Attribute Name DataName Data phsAB phsBC phsCA DataAttribute angRef Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 GC_1 GC_1 GC_1 Y Y Y Inherited from Data Class (see IEC 61850-7-2) CMV CMV CMV configuration, description and extension CF Va | Vb | Vc | Aa | Ab | Ac | Vab | O Vbc | Vca | Vother | Aother VISIBLE STRING255 DC Text O UNICODE STRING255 DC O VISIBLE STRING255 EX AC_DLNDA_M VISIBLE STRING255 EX AC_DLNDA_M VISIBLE STRING255 EX AC_DLN_M ENUMERATED d dU cdcNs cdcName dataNs Services As defined in Table 21 SEQ class Attribute Name DataName Data c1 c2 c3 DataAttribute seqT Attribute Type FC TrgOp Value/Value Range N N N N N N M/O/C GRB150 M M M Y Y Y M Y O O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M N N N N N N Inherited from Data Class (see IEC 61850-7-2) CMV CMV CMV measured attributes MX pos-neg-zero | dir-quad-zero configuration, description and extension ENUMERATED CF A|B|C|… VISIBLE STRING255 DC Text UNICODE STRING255 DC VISIBLE STRING255 EX VISIBLE STRING255 EX VISIBLE STRING255 EX ENUMERATED phsRef d dU cdcNs cdcName dataNs Services As defined in Table 21 ⎯ 225 ⎯ 6 F 2 S 0 9 0 0 SPC class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute control and status ctlVal BOOLEAN CO off (FALSE) | on (TRUE) operTm TimeStamp CO origin Originator_RO CO, ST ctlNum INT8U_RO CO, ST 0..255 SBO VISIBLE STRING65 CO SBOw SBOW CO Oper Cancel Oper Cancel CO CO stVal q t stSeld BOOLEAN Quality TimeStamp BOOLEAN ST ST ST ST subEna subVal subQ subID dchg qchg FALSE | TRUE dchg substitution SV SV FALSE | TRUE SV SV configuration, description and extension PulseConfig CF CtlModels CF INT32U CF SboClasses CF VISIBLE STRING255 DC Text UNICODE STRING255 DC VISIBLE STRING255 EX VISIBLE STRING255 EX VISIBLE STRING255 EX BOOLEAN BOOLEAN Quality VISIBLE STRING64 pulseConfig CtlModel sboTimeout sboClass d dU cdcNs cdcName dataNs Services As defined in Table 31 ⎯ 226 ⎯ M/O/C GRB150 AC_CO_M AC_CO_O AC_CO_O AC_CO_O AC_CO_SBO_N_ M AC_CO_SBOW_ E_M AC_CO _M AC_CO_SBO_N_ M and AC_CO_SBOW_ E_M and AC_CO_TA_E_ M AC_ST AC_ST AC_ST AC_CO_O N N Y N N PICS_SUBST PICS_SUBST PICS_SUBST PICS_SUBST N N N N AC_CO_O M AC_CO_O AC_CO_O O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M N Y N N N N N N N N Y N Y Y Y N 6 F 2 S 0 9 0 0 DPC class Attribute Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute control and status ctlVal BOOLEAN CO off (FALSE) | on (TRUE) AC_CO_M N operTm TimeStamp CO AC_CO_O N origin Originator CO, ST AC_CO_O N ctlNum INT8U CO, ST 0..255 AC_CO_O N stVal CODED ENUM ST dchg intermediate-state | off | on | M Y bad-state q Quality ST qchg M Y t TimeStamp ST M Y stSeld BOOLEAN ST dchg AC_CO_O N substitution subEna BOOLEAN SV PICS_SUBST N subVal CODED ENUM SV intermediate-state | off | on | PICS_SUBST N bad-state subQ Quality SV PICS_SUBST N subID VISIBLE STRING64 SV PICS_SUBST N configuration, description and extension pulseConfig PulseConfig CF AC_CO_O N ctlModel CtlModels CF M Y sboTimeout INT32U CF AC_CO_O N sboClass SboClasses CF AC_CO_O N d VISIBLE STRING255 DC Text O N dU UNICODE STRING255 DC O N cdcNs VISIBLE STRING255 EX AC_DLNDA_M N cdcName VISIBLE STRING255 EX AC_DLNDA_M N dataNs VISIBLE STRING255 EX AC_DLN_M N Services As defined in Table 31 ⎯ 227 ⎯ 6 F 2 S 0 9 0 0 INC class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute control and status ctlVal INT32 CO operTm TimeStamp CO origin Originator CO, ST ctlNum INT8U CO, ST 0..255 SBO VISIBLE STRING65 CO SBOw SBOW CO Oper Cancel Oper Cancel CO CO stVal Q T stSeld INT32 Quality TimeStamp BOOLEAN ST ST ST ST subEna subVal subQ subID dchg qchg dchg substitution SV SV FALSE | TRUE SV SV configuration, description and extension CtlModels CF INT32U CF SboClasses CF INT32 CF INT32 CF INT32U CF 1 … (maxVal – minVal) VISIBLE STRING255 DC Text UNICODE STRING255 DC VISIBLE STRING255 EX VISIBLE STRING255 EX VISIBLE STRING255 EX BOOLEAN INT32 Quality VISIBLE STRING64 CtlModel sboTimeout sboClass minVal maxVal stepSize D dU cdcNs cdcName dataNs Services As defined in Table 31 ⎯ 228 ⎯ M/O/C GRB150 AC_CO_M AC_CO_O AC_CO_O AC_CO_O AC_CO_SBO_N_ M AC_CO_SBOW_ E_M AC_CO _M AC_CO_SBO_N_ M and AC_CO_SBOW_ E_M and AC_CO_TA_E_ M M M M AC_CO_O N N N N N PICS_SUBST PICS_SUBST PICS_SUBST PICS_SUBST N N N N M AC_CO_O AC_CO_O O O O O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M Y N N N N N N N N N N N N N Y Y Y N 6 F 2 S 0 9 0 0 ING class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute setting setVal INT32 SP setVal INT32 SG, SE configuration, description and extension minVal INT32 CF maxVal INT32 CF stepSize INT32U CF 1 … (maxVal – minVal) d VISIBLE STRING255 DC Text dU UNICODE STRING255 DC cdcNs VISIBLE STRING255 EX cdcName VISIBLE STRING255 EX dataNs VISIBLE STRING255 EX Services As defined in Table 39 (*3): “ENUM” type is also used. ASG class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute setting setMag AnalogueValue SP setMag AnalogueValue SG, SE configuration, description and extension units Unit CF see Annex A sVC ScaledValueConfig CF minVal AnalogueValue CF maxVal AnalogueValue CF stepSize AnalogueValue CF 1 … (maxVal – minVal) d VISIBLE STRING255 DC Text dU UNICODE STRING255 DC cdcNs VISIBLE STRING255 EX cdcName VISIBLE STRING255 EX dataNs VISIBLE STRING255 EX Services As defined in Table 42 ⎯ 229 ⎯ M/O/C GRB150 AC_NSG_M AC_SG_M Y(*3) N O O O O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M N N N N N N N N M/O/C GRB150 AC_NSG_M AC_SG_M Y N O AC_SCAV O O O O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M Y Y N N N N N N N N 6 F 2 S 0 9 0 0 DPL class Attribute Attribute Type FC TrgOp Value/Value Range Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute configuration, description and extension vendor VISIBLE STRING255 DC hwRev VISIBLE STRING255 DC swRev VISIBLE STRING255 DC serNum VISIBLE STRING255 DC model VISIBLE STRING255 DC location VISIBLE STRING255 DC cdcNs VISIBLE STRING255 EX cdcName VISIBLE STRING255 EX dataNs VISIBLE STRING255 EX Services As defined in Table 45 M/O/C GRB150 M O O O O O AC_DLNDA_M AC_DLNDA_M AC_DLN_M Y N Y N Y N N N N LPL class Attribute Attribute Type FC TrgOp Value/Value Range M/O/C GRB150 Name DataName Inherited from Data Class (see IEC 61850-7-2) DataAttribute configuration, description and extension vendor VISIBLE STRING255 DC M Y swRev VISIBLE STRING255 DC M Y d VISIBLE STRING255 DC M Y dU UNICODE STRING255 DC O N configRev VISIBLE STRING255 DC AC_LN0_M Y ldNs VISIBLE STRING255 EX shall be included in LLN0 AC_LN0_EX N only; for example "IEC 61850-7-4:2003" lnNs VISIBLE STRING255 EX AC_DLD_M N cdcNs VISIBLE STRING255 EX AC_DLNDA_M N cdcName VISIBLE STRING255 EX AC_DLNDA_M N dataNs VISIBLE STRING255 EX AC_DLN_M N Services As defined in Table 45 ⎯ 230 ⎯ 6 F 2 S 0 9 0 0 PICS: IEC61850 ASCI Conformance Statement Client-server roles B11 Server side (of TWO-PARTYAPPLICATION-ASSOCIATION) B12 Client side of (TWO-PARTYAPPLICATION-ASSOCIATION) SCSMs supported B21 SCSM: IEC61850-8-1 used B22 SCSM: IEC61850-9-1 used B23 SCSM: IEC61850-9-2 used B24 SCSM: other Generic substation event model (GSE) B31 Publisher side B32 Subscriber side Transmission of sampled value model (SVC) B41 Publisher side B42 Subscriber side If Server side (B11) supported M1 Logical device M2 Logical node M3 Data M4 Data set M5 Substitution M6 Setting group control Reporting M7 Buffered report control M7-1 sequence-number M7-2 report-time-stamp M7-3 reason-for-inclusion M7-4 data-set-name M7-5 data-reference M7-6 buffer-overflow M7-7 entryID M7-8 BufTm M7-9 IntgPd M7-10 GI Unbuffered report control M8-1 sequence-number M8-2 report-time-stamp M8-3 reason-for-inclusion M8-4 data-set-name M8-5 data-reference M8-6 BufTm M8-7 IntgPd M8-8 GI Logging M9 Log control M9-1 IntgPd M10 Log M11 Control Client/ subscriber Server/ publisher GRB150 Remarks - c1 Y c1 - - Y N N O O - Y Y O O - N N c2 c3 c4 c5 O O c2 c3 c4 c5 O O Y Y Y Y N Y O O O O O O O O O M O M Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N N Y ⎯ 231 ⎯ 6 F 2 S 0 9 0 0 If GSE (B31/B32) is supported GOOSE M12-1 entryID M12-2 DataRefInc M13 GSSE If SVC (B41/B42) is supported M14 Multicast SVC M15 Unicast SVC M16 Time M17 File Transfer Server S1 ServerDirectory Application association S2 Associate S3 Abort S4 Release Logical device S5 LogicalDeviceDirectory Logical node S6 LogicalNodeDirectory S7 GetAllDataValues Data S8 GetDataValues S9 SetDataValues S10 GetDataDirectory S11 GetDataDefinition Data set S12 GetDataSetValues S13 SetDataSetValues S14 CreateDataSet S15 DeleteDataSet S16 GetDataSetDirectory Substitution S17 SetDataValues Setting group control S18 SelectActiveSG S19 SelectEditSG S20 SetSGValues S21 ConfirmEditSGValues S22 GetSGValues S23 GetSGCBValues Reporting Buffered report control block (BRCB) S24 Report S24-1 data-change (dchg) S24-2 quality-change (qchg) S24-3 data-update (dupd) S25 GetBRCBValues S26 SetBRCBValues Unbuffered report control block (BRCB) S27 Report S27-1 data-change (dchg) S27-2 quality-change (qchg) O O Y O O N O O M O O O M O N N Y Y M Y M M M M M M Y Y Y M M Y M O M M Y Y M O O O M O M M Y N Y Y O O O O O M O O O O Y N N N Y M M N O O O O O O O O O O O O Y N N N N Y c6 c6 c6 c6 c6 c6 Y Y Y N Y Y c6 c6 ⎯ 232 ⎯ Y Y Y 6 F 2 S 0 9 0 0 S27-3 data-update (dupd) S28 GetURCBValues c6 c6 S29 SetURCBValues c6 c6 Logging Log control block S30 GetLCBValues M M S31 SetLCBValues O M Log S32 QueryLogByTime c7 M S33 QueryLogAfter c7 M S34 GetLogStatusValues M M Generic substation event model (GSE) GOOSE-CONTROL-BLOCK S35 SendGOOSEMessage c8 c8 S36 GetGoReference O c9 S37 GetGOOSEElementNumber O c9 S38 GetGoCBValues O O S39 SetGoCBValues O O GSSE-CONTROL-BLOCK S40 SendGSSEMessage c8 c8 S41 GetGsReference O c9 S42 GetGSSEElementNumber O c9 S43 GetGsCBValues O O S44 SetGsCBValues O O Transmission of sampled value model (SVC) Multicast SVC S45 SendMSVMessage c10 c10 S46 GetMSVCBValues O O S47 SetMSVCBValues O O Unicast SVC S48 SendUSVMessage c10 c10 S49 GetUSVCBValues O O S50 SetUSVCBValues O O Control S51 Select M O S52 SelectWithValue M O S53 Cancel O O S54 Operate M M S55 CommandTermination M O S56 TimeActivatedOperate O O File Transfer S57 GetFile O M S58 SetFile O O S59 DeleteFile O O S60 GetFileAttributeValues O O Time T1 Time resolution of internal clock T2 Time accuracy of internal clock T3 Supported TimeStamp resolution M – Mandatory O – Optional c1 – shall be ‘M’ if support for LOGICAL-DEVICE model has been declared. c2 – shall be ‘M’ if support for LOGICAL-NODE model has been declared. ⎯ 233 ⎯ N Y Y N N N N N Y N N Y Y N N N N N N N N N N N N Y Y Y Y N Y N N Y 1ms 1ms 1ms T1 6 F 2 S 0 9 0 0 c3 – shall be ‘M’ if support for DATA model has been declared. c4 – shall be ‘M’ if support for DATA-SET, Substitution, Report, Log Control, or Time model has been declared. c5 – shall be ‘M’ if support for Report, GSE, or SV models has been declared. c6 – shall declare support for at least one (BRCB or URCB) c7 – shall declare support for at least one (QueryLogByTime or QueryLogAfter). c8 – shall declare support for at least one (SendGOOSEMessage or SendGSSEMessage) c9 – shall declare support if TWO-PARTY association is available. c10 – shall declare support for at least one (SendMSVMessage or SendUSVMessage). A-Profile Profile Description shortcut A1 A2 A3 A4 c1 c2 c3 c4 Client/server A-Profile GOOSE/GSE management A-Profile GSSE A-Profile TimeSync A-Profile c1 c2 c3 c4 c3 c4 c3 c4 N Y Shall be ‘m’ if support for any service specified in Table 2 are declared within the ACSI basic conformance statement. Shall be ‘m’ if support for any service specified in Table 6 are declared within the ACSI basic conformance statement. Shall be ‘m’ if support for any service specified in Table 9 are declared within the ACSI basic conformance statement. Support for at least one other A-Profile shall be declared (e.g. in A1-A3) in order to claim conformance to IEC 61850-8-1. A-Profile Profile Description shortcut T1 T2 T3 T4 T5 PICS for A-Profile support Client Server エラー! Remarks F/S F/S リンク が正し くあり ません。 c1 c1 Y c2 c2 Y TCP/IP T-Profile OSI T-Profile GOOSE/GSE T-Profile GSSE T-Profile TimeSync T-Profile PICS for T-Profile support Client Server エラー! Remarks F/S F/S リンク が正し くあり ません。 c1 c1 Y c2 c2 N c3 c3 Y c4 c4 N o o Y Shall be ‘m’ if support for A1 is declared. Otherwise, shall be 'i'. Shall be ‘o’ if support for A1 is declared. Otherwise, shall be 'i'. Shall be ‘m’ if support for A2 is declared. Otherwise, shall be 'i'. Shall be ‘m’ if support for A3 is declared. Otherwise, shall be 'i'. ⎯ 234 ⎯ 6 F 2 S 0 9 0 0 MMS InitiateRequest general parameters Client-CR InitiateRequest Base F/S m m m m m m m m InitiateRequestDetail proposedVersionNumber m proposedParameterCBB m servicesSupportedCalling m additionalSupportedCalling c1 additionalCbbSupportedCalling c1 privilegeClassIdentityCalling c1 c1 Conditional upon Parameter CBB CSPI m m m x x x InitiateRequest localDetailCalling proposedMaxServOutstandingCalling proposedMaxServOustandingCalled initRequestDetail Server-CR Value/range Base F/S 1 or greater 1 or greater m m m m m m m m m m m c1 c1 c1 m m m x x x shall be 2.1 Value/range 1 or greater 1 or greater shall be 2.1 MMS InitiateResponse general parameters Client-CR Server-CR InitiateRequest Base F/S Value/range Base F/S Value/range m m m m m m m m 1 or greater 1 or greater m m m m m m m m 1 or greater 1 or greater InitiateResponseDetail negotiatedVersionNumber m negotiatedParameterCBB m servicesSupportedCalled m additionalSupportedCalled c1 additionalCbbSupportedCalled c1 privilegeClassIdentityCalled c1 c1 Conditional upon Parameter CBB CSPI m m m x x x m m m c1 c1 c1 m m m x x x InitiateResponse localDetailCalled negotiatedMaxServOutstandingCalling negotiatedMaxServOustandingCalled initResponseDetail shall be 2.1 ⎯ 235 ⎯ shall be 2.1 エラー! リンク が正し くあり ません。 Y Y Y Y Y Y Y N N N エラー! リンク が正し くあり ません。 Y Y Y Y Y Y Y N N N 6 F 2 S 0 9 0 0 MMS service supported conformance table Client-CR Server-CR MMS service supported CBB status getNameList identify rename read write getVariableAccessAttributes defineNamedVariable defineScatteredAccess getScatteredAccessAttributes deleteVariableAccess defineNamedVariableList getNamedVariableListAttributes deleteNamedVariableList defineNamedType getNamedTypeAttributes deleteNamedType input output takeControl relinquishControl defineSemaphore deleteSemaphore reportPoolSemaphoreStatus reportSemaphoreStatus initiateDownloadSequence downloadSegment terminateDownloadSequence initiateUploadSequence uploadSegment terminateUploadSequence requestDomainDownload requestDomainUpload loadDomainContent storeDomainContent deleteDomain getDomainAttributes createProgramInvocation Base F/S o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o i i o o o o i i i i i i i i i i i i i i i i i i i i i i o i Value/range ⎯ 236 ⎯ Base F/S o o m o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o m c1 m o c2 c3 c4 o i i o o c5 c6 i i i i i i i i i i i i i i i i i i i i i i c14 i Value/range エラー! リンク が正し くあり ません。 Y Y Y N Y Y Y N N N N N Y N N N N N N N N N N N N N N N N N N N N N N N Y N 6 F 2 S 0 9 0 0 Client-CR MMS service supported CBB deleteProgramInvocation start stop resume reset kill getProgramInvocationAttributes obtainFile defineEventCondition deleteEventCondition getEventConditionAttributes reportEventConditionStatus alterEventConditionMonitoring triggerEvent defineEventAction deleteEventAction alterEventEnrollment reportEventEnrollmentStatus getEventEnrollmentAttributes acknowledgeEventNotification getAlarmSummary getAlarmEnrollmentSummary readJournal writeJournal initializeJournal reportJournalStatus createJournal deleteJournal fileOpen fileRead fileClose fileRename fileDelete fileDirectory unsolicitedStatus informationReport eventNotification attachToEventCondition attachToSemaphore conclude cancel getDataExchangeAttributes exchangeData Base F/S o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o m o o o i i i i i i i c9 i i i i i i i i i i i i i i c13 o o i i i c8 c8 c8 i c9 c11 i c7 i i i m o c10 c10 Value/range ⎯ 237 ⎯ Server-CR Base F/S o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o m o o o i i i i i i i c9 i i i i i i i i i i i i i i c13 o c12 i i i c8 c8 c8 i c9 c11 i c7 i i i m m c10 c10 Value/range エラー! リンク が正し くあり ません。 N N N N N N N N N N N N N N N N N N N N N N N N N N N N Y Y Y N N Y N Y N N N N N N N 6 F 2 S 0 9 0 0 Client-CR MMS service supported CBB defineAccessControlList getAccessControlListAttributes reportAccessControlledObjects deleteAccessControlList alterAccessControl reconfigureProgramInvocation Base F/S o o o o o o c10 c10 c10 c10 c10 c10 Value/range Server-CR Base F/S o o o o o o c10 c10 c10 c10 c10 c10 Value/range エラー! リンク が正し くあり ません。 N N N N N N c1 Shall be ‘m’ if logical device or logical node model support is declared in ACSI basic conformance statement. c2 Shall be ‘m’ if logical node model support is declared in ACSI basic conformance statement or if support for the MMS write service is declared. c3 Shall be ‘m’ if ACSI support for SetDataValues service is declared or implied. c4 Shall be ‘m’ if logical node model support is declared in ACSI basic conformance statement. c5 Shall be ‘m’ if data set support is declared in the ACSI basic conformance statement. c6 Shall be ‘m’ if support for defineNamedVariableList is declared. c7 Shall be 'm' if support for ACSI Report or ACSI command termination is declared. c8 Shall be 'm' if support for ACSI GetFile is declared. c9 Shall be 'm' if support for ACSI SetFile is declared. c10 Shall not be present since MMS minor version is declared to be 1. c11 Shall be 'm' if support for ACSI GetFileAttributeValues is declared. c12 Shall be 'm' if support for the ACSI log model is declared. c13 Shall be 'm' if support for the ACSI QueryLogByTime or QueryLogAfter is declared. c14 Shall be 'm' if support for the ACSI logical device model is declared. MMS Parameter CBB Client-CR MMS parameter CBB STR1 STR2 NEST VNAM VADR VALT bit TPY VLIS bit bit CEI ACO SEM CSR CSNC CSPLC CSPI Base F/S o o 1 o o 1 or greater o o o x o c1 x x i c4 c4 c4 c4 c4 c4 o o o x o o x x o o o o o o o Value/range ⎯ 238 ⎯ Base F/S o o 1 c1 o c2 エラー! リ ンクが正 しくあり ません。 Y N Y(10) o o o x o o x x o o o o o o o c1 o c1 x o c3 x x i c4 c4 c4 c4 c4 c4 Y N Y N N Y N N N N N N N N N Server-CR Value/range 6 F 2 S 0 9 0 0 c1 c2 c3 c4 Shall be ‘m’ if ACSI logical node model support declared. Shall be five(5) or greater if ACSI logical node model support is declared. Shall be ‘m’ if ACSI data set, reporting, GOOSE, or logging model support is declared. Shall not be present. Receiving implementations shall assume not supported. GetNameList conformance statement Client-CR Server-CR GetNameList Request ObjectClass ObjectScope DomainName ContinueAfter Response+ List Of Identifier MoreFollows ResponseError Type Base F/S m m o o Value/range Value/range エラー! リンク が正し くあり ません。 Base F/S m m o m m m m m m m m m Y Y Y Y m m m m m m m m Y Y m m m m Y NOTE Object class ‘vmd' (formerly VMDSpecific in MMS V1.0) shall not appear. If a request contains this ObjectClass, an MMS Reject shall be issued. AlternateAccessSelection conformance statement Not applicable. VariableAccessSpecification conformance statement Client-CR Server-CR VariableAccessSpecification listOfVariable variableSpecification alternateAccess variableListName Base F/S o o o o o o o o Value/range Base F/S o o o o c1 c1 c1 c2 Value/range エラー! リンク が正し くあり ません。 Y Y Y Y c1 Shall be ‘m’ if ACSI support for Logical Node Model is declared. c2 Shall be ‘m’ if ACSI support for ACSI DataSets, reporting, or logging is declared. VariableSpecification conformance statement Client-CR Server-CR VariableSpecification Base F/S Value/range ⎯ 239 ⎯ Base F/S Value/range エラー! リンク が正し くあり ません。 6 F 2 S 0 9 0 0 name address variableDescription scatteredAccessDescription invalidated o o o o o o o o x x ⎯ 240 ⎯ o o o o o m i i x x Y N N N N 6 F 2 S 0 9 0 0 Read conformance statement Client-CR Server-CR Read Request specificationWithResult variableAccessSpecification Response variableAccessSpecification listOfAccessResult Base F/S o m o m Value/range Value/range Base F/S o m o m m m Y Y o m o m m m Y Y Write conformance statement Client-CR Server-CR Write Request variableAccessSpecification listOfData Response failure success Base F/S m m m m Value/range Value/range Request variableAccessSpecification listOfAccessResult F/S m m m m m m Y Y m m m m m m Y Y Base F/S m m m m Value/range Base F/S m m m m Value/range Request name address Base F/S o o o o Value/range ⎯ 241 ⎯ Base F/S m m m x エラー! リンク が正し くあり ません。 Y Y GetVariableAccessAttributes conformance statement Client-CR Server-CR GetVariableAccessAttributes エラー! リンク が正し くあり ません。 Base InformationReport conformance statement Client-CR Server-CR InformationReport エラー! リンク が正し くあり ません。 Value/range エラー! リンク が正し くあり ません。 Y N 6 F 2 S 0 9 0 0 Response mmsDeletable address typeSpecification m o m m x m m o m m x m DefineNamedVariableList conformance statement Not applicable. ⎯ 242 ⎯ Y N Y 6 F 2 S 0 9 0 0 GetNamedVariableListAttributes conformance statement Client-CR Server-CR GetNamedVariableListAttributes Request ObjectName Response mmsDeletable listOfVariable variableSpecification alternateAccess Base F/S m m m m o Value/range Value/range エラー! リンク が正し くあり ません。 Base F/S m m m Y m m m m m m m o m m m i Y Y Y N DeleteNamedVariableList conformance statement Not applicable. ReadJournal conformance statement Not applicable. JournalEntry conformance statement Not applicable. InitializeJournal conformance statement Not applicable. FileDirectory conformance statement Client-CR Server-CR FileDirectory Request filespecification continueAfter Response+ listOfDirectoryEntry MoreFollows Base F/S o o m m Value/range Base F/S o o m m m m Y Y m m m m m m Y Y ⎯ 243 ⎯ Value/range エラー! リンク が正し くあり ません。 6 F 2 S 0 9 0 0 FileOpen conformance statement Client-CR Server-CR FileOpen Request filename initialPosition Response+ frsmID fileAttributes Base F/S m o m m Value/range Value/range Base F/S m o m m m m Y Y m m m m m m Y Y FileRead conformance statement Client-CR Server-CR FileRead Request frsmID Response+ fileData MoreFollows Base F/S m m m Value/range Value/range Request frsmID Response+ F/S m m m Y m m m m m m Y Y Base F/S m m m m Value/range Base F/S m m m m Value/range GOOSE conformance statement Subscriber Publisher Value/comment GOOSE Services SendGOOSEMessage GetGoReference GetGOOSEElementNumber GetGoCBValues SetGoCBValues GSENotSupported GOOSE Control Block (GoCB) エラー! リンク が正し くあり ません。 Base FileClose conformance statement Client-CR Server-CR FileClose エラー! リンク が正し くあり ません。 c1 m o o o o c2 o ⎯ 244 ⎯ c1 m c3 c4 o o c5 o エラー! リンク が正し くあり ません。 Y Y エラー! リン クが正しくあ りません。 Y Y N N Y Y N Y 6 F 2 S 0 9 0 0 c1 c2 c3 c4 c5 Shall be ‘m’ if support is declared within ACSI basic conformance statement. Shall be ‘m’ if ACSI basic conformance support for either GetGoReference or GetGOOSEElementNumber is declared. Shall be ‘m’ if support for ACSI basic conformance of GetGoReference is declared. Shall be ‘m’ if support for ACSI basic conformance of GetGOOSEElementNumber. Shall be ‘m’ if no support for ACSI basic conformance of GetGOOSEElementNumber is declared. GSSE conformance statement Not applicable. ⎯ 245 ⎯ 6 F 2 S 0 9 0 0 Appendix P Ordering ⎯ 246 ⎯ 6 F 2 S 0 9 0 0 Ordering GRB150 Type: High-impedance Differential Relay GRB150 Model: - Single-phase protection (with EB-101) 8 BIs, 6 BO (*), 4 HSBO 101 - Three-phase protection (with EB-102) 8 BIs, 6 BO (*), 4 HSBO 201 Ratings: 50Hz, 110V/125Vdc 60Hz, 110V/125Vdc 50Hz, 220V/250Vdc 60Hz, 220V/250Vdc 50Hz, 48/54/60Vdc 60Hz, 48/54/60Vdc Communications: For IEC60870-5-103 RS485 RS485 Fibre optic Fibre optic 1 2 5 6 A B For IEC61850 / RSM100 100BASE-TX 100BASE-FX 100BASE-TX 100BASE-FX A B D E Miscellaneous: None 0 Note EB-101: Varistor unit for single phase EB-102: Varistor unit for three phase (*) BO for FAIL is excluded. ⎯ 247 ⎯ D 0 0 6 F 2 S 0 9 0 0 Version-up Records Version No. 0.0 1.0 Date Revised Section Feb. 3, 2010 Feb. 22, 2010 -3.1, 3.2.3, 4.2.4.2, 4.2.6.9, 4.2.7.2, 6.4.3 4.1.2 Appendices 2.2.2.1 2.4 3.1.2 6.5.2, 6.6.2 6.7.2 Appendices Precaution 4.1.2 Appendices 2.0 Apr. 7, 2010 3.0 Aug. 25,2010 Contents First issue Modified the description (BO11-BO14 → HBO1-HBO4). Modified Figure 4.1.1. Modified Appendix C, D, F, G and J. Modified Figure 2.2.2. Modified the description. Modified Figure 3.1.2. Modified the description. Modified Table 6.7.2. Modified Appendix E, J and M. Modified the description. Modified the description and Figure 4.1.1. Added Appendix O and modified Appendix J and N. ⎯ 248 ⎯