Single Molecule Magnets on Surfaces: achievements and challenges
Transcription
Single Molecule Magnets on Surfaces: achievements and challenges
06/11/2012 Single Molecule Magnets on Surfaces: achievements and challenges Roberta Sessoli Department of Cheistry & INSTM, University of Florence, Italy FUNMOL - October 2012 - Bonn Single Molecule Magnets MnIV S=3/2 MnIII(S=2) ∆E= DS2 τ=τ0exp(∆E/kBT) Stot=10 D≈-0.7 K τ0≈10-7s ∆E/kB≈65 K Sessoli et al. Nature 1993 Christou et al. MRS Bull. 2000 1 06/11/2012 Why magnetic molecule @ surfaces ? STM Electric field can be much more “local” SMM Address individual molecules Scanning Probe Microscopies Molecules in nano-junctions Source Drain Gate e- Vb Vg Spacer Spacer Linker Beyond SMMs Switchable SMM STM Spin cross-over UV Cornia, Sessoli Dalton 2012 Miyamachi et al. Nat. Commun. 2012 Valence Tautomerism hν, T, P, E hν, T, P A.Dei, G. Poneti E SQ rad - CoII Cathecol - CoIII Sanvito PRL,2011 2 06/11/2012 SP-STM Detection of Magnetic Bistability Science, 2012 STM SMM Fen @ Cu2N @ Cu(100) The sunset of Mn12 for Spintronics Challenges Chemical stability on surfaces 3 06/11/2012 The sunset of Mn12 for Spintronics TbPc 2: a robust single ion SMM Tb3+ L=3 S=3 J=6 Thermally Evaporable Flat Large magnetic moment Large anisotropy High TB 1.4 K 3.0 K 5.0 K 10.0 K 15.0 K 27.0 K 4 M (µB) 2 0 -2 -4 -30 et al.Lett. 2009 KernKomeda et al., Nano 2008 Hietschol et al. JACS 2011 -20 -10 0 10 20 30 H (kOe) The sunset of Mn single for Spintronics TbPc ion SMM 2: a robust 12 Tb3+ L=3 S=3 Ishikawa et al., J. Am. Chem. Soc., 2003, 125, 8694-8695. J=6 Thermally Evaporable Flat Large magnetic moment Large anisotropy High TB ∆E ∼ 700 K 4 06/11/2012 The sunset of Mn12 for Spintronics Spintronics architectures based on TbPc2 a) Komeda et al. Nature Commun. 2011/ Vincent et al. Nature 2012 b) Candini et al. Nanoletters 2011 c) Urdampilleta et al. Nature Materials 2011 The sunset of Mn12 for Spintronics Challenges Chemical stability on surfaces Robustness of SMM behavior 5 06/11/2012 The sunset Mn12 for Spintronics SMM behavior is of sensitive to nanostructure TbPc2 Terbium bisphthalocyaninato Monolayer @ Au(111) thick film ID8@ TheImplanted sunset of Mn 12 for Spintronics probes (8Li+, µ+) Muon: S=1/2 Muon decay (life time 2.2 µs) µ+ Low energy muons e+ + νµ + νe Positrons are preferentially emitted along muon spin In collaboration with Zaher Salman @ PSI 6 06/11/2012 sunset of Mn 12 for Spintronics TbPc2 The SMM films: implanted muons studies Gradual increase of the relaxation time on increasing the distance from the Au substrate Molecular packing is more important than electronic interaction with the substrate Hofmann & al ACS Nano in press: doi:10.1021/nn3031673 L. Malavolti The sunset of Mn& Spintronics hysteresis 12 for TbPc2 : disappearing reappearing Microcrystals TbPc2 Powder in the crucible before T (K) 1.4 3 5 10 15 27 39 K 0.04 v=0.6T/m Magnetization Evaporated Thick Film TbPc2 deposition of the film 0.00 2K -0.04 -3 -2 -1 0 B (T) 1 2 3 -3 -2 -1 0 B (T) 1 2 3 -3 -2 -1 0 1 2 3 B (T) 7 06/11/2012 The sunsetTbPc of Mn12 & forYPc Spintronics v = 0 .6 T /m Magnetization 2 T (K ) 1 .4 3 5 10 15 27 39 K 0 .0 4 2 0 .0 0 Pristine TbPc2 -0 .0 4 -3 -2 -1 0 1 2 3 B (T ) Heated TbPc2 2 K -3 -2 -1 0 1 2 3 B (T ) Evaporated Thick Film TbPc2 -3 -2 -1 0 1 2 No correlation with Intermolecular exchange interactions 3 B (T ) The sunset of Mn12 for TbPc & Spintronics Hysteresis 2: Tunneling 0.04 v=0.6T/m 60 50 40 30 20 1000 100 0.00 10 -0.04 -3 -2 -1 0 1 2 3 B (T) τ (ms) Magnetization T (K) T (K) 1.4 3 5 10 15 27 39 K Pristine 1 0.1 Heated 0.01 0.02 0.03 heated, Hdc=5kOe heated, Hdc=0 Oe pristine, Hdc=5kOe pristine, Hdc=0 Oe 0.04 0.05 0.06 1/T (K-1) τ0 (s) 2K -3 -2 -1 0 1 2 3 TbPc2⋅CH2Cl2 pristine TbPc2⋅CH2Cl2 heated ∆ (K) Γqt (s-1) 1.85(5)× ×10-6 965(20) 42 1.5(1)× ×10-6 856(20) 3660 B (T) 8 06/11/2012 Lanthanides: a source of magnetic anisotropy Record Blocking Temperature in a RE SMM [{[(Me3Si)2N]2Dy(THF)}2(µ µ-N2)]Tb N23- S=1/2 J(R-Gd) = 27 cm-1 Anti-Ferromagnetic Stot=13/2 9 06/11/2012 RE in high symmetry environment Ishikawa et al. Gao et al. Coronado et al. DyDOTA: a quasi-tetragonal SMM ♦Quasi tetragonal coordination sphere in Na[Dy(DOTA)(H2O)]⋅⋅4H2O (≈ ≈ DOTAREM MRI contrast agent) Two processes of relaxation ∼ C4 symmetry τ (ms) 10 4 10 2 10 0 10 H4DOTA Car et al. Chem. Commun. 2011 100% 50% 20% -2 0.0 0.02 0.1 0.4 1.0 4.0 H (kOe) 10 06/11/2012 χT / emu K mol -1 Single Crystal Investigations of DyDOTA calc. rot X rot Y rot Z 20 EXP z y y z -z -x -y 10 0 -90 x x 0 90 Seff = ½ g1 g2 θ/° 180 270 Giuseppe Cucinotta Na+ Dy3+ g3 17.0(1) 4.8(1) 3.4(1) Easy axis anisotropy but not along the pseudo-tetragonal axis Ab-initio calculations of magnetic anisotropy ♦ Post Hartree-Fock Calculations using CASSCF methods as implemented in the code MOLCAS Javier Luzon THEOR EXP Na+ Dy3+ 11 06/11/2012 Beyond simple Magneto-Structural correlations Th. Eeasy Axis Rotation of g1 g2 g3 ∆1/cm-1 exp 17.0(1) 4.8(1) 3.4(1) 53(8) [a] Mod. A 18.6 0.9 0.2 64 Mod. A’ 18.3 1.5 0.44 13 H2O ♦ Ab initio calculations show that the easy axis of magnetization is not related to the first coordinations sphere but to the position of the hydrogen atoms of the apical water molecule Na+ Dy3+ G. Cucinotta et al. Magnetic Anisotropy of the LnDOTA series Tb Dy Ho Er 58° 6° 48° Tm Yb THEOR EXP 85° 86° 84° 78° 12° 7° 12 06/11/2012 Magnetic Anisotropy of Lanthanide ions |mJ|=J states are stabilized (easy axis anisotropy) by a axial ligand equatorial ligand oblate ion prolate ion Tb Dy Ho Er Tm Yb Rinehart & Long, Chemical Science 2011 Magnetic Anisotropy of LnDOTA series Tb 85°86° THEOR EXP Dy Ho Er Yb 84°78° 58° 6°48° 12° 7° DOTA4- ligand is of equatorial type but four-fold symmetry is broken at a larger scale and all lanthanides have an easy axis of magnetization Boulon et al. submitted 13 06/11/2012 Spin parity effect in LnDOTA series Tb Yb Dy Ho Er Tm 18.06 0.9 0.2 6.17 3.29 1.28 10.9 2.8 1.8 ? ? ? 6.83 1.04 0.09 f8 f9 f10 f11 f12 f13 NO SMM ∆E = 61 K NO SMM NO SMM ∆E = 29 K g1= 12.69 g2= 2.1 g3= 0.5 ∆E = 39 K Fe4: a high symmetry and robust SMM ST=3x5/2-5/2=5 Lower TB than Mn12 Fe(III) hs S=5/2 O C 14 06/11/2012 Functionalization of Fe4 clusters O O O S O Fe4 O O O S O Fe4C9SAc By Andrea Cornia, University of Modena , Italy X-ray Magnetic Circular Dichroism at low temperature French End-Station (TBT) setup by J.-P. Kappler (IPCMS, Strasbourg) & Ph. Sainctavit (IMPMC. Paris) •UHV, bakeable •3He-4He dilution refrigerator: T ≈ 500 mK •Superconducting coil : -7 T < B < +7 T 15 06/11/2012 Magnetic hysteresis of Fe4 wired to a gold surface 0.01 0.00 -0.01 -0.02 b T = 0.70 K 0.01 0.00 -0.01 -0.02 -1.5 -1.0 -0.5 0.0 µ0H (T) 0.5 1.0 1.5 c T = 0.50 0.02K 0.02 XMCD (a.u) 0.02 XMCD (a.u) a T = 1.0 K XMCD (a.u) XMCD (a.u) 0.02 -1.5 -1.0 -0.5 0.01 0.00 c T = 0.50 K 0.01 0.00 -0.01 -0.02 -0.01 0.0 0.5 1.0 1.5 -1.5 µ0H (T) -0.02 -1.0 -0.5 0.0 0.5 1.0 1.5 µ0H (T) Monolayer -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 µ0H (T) Bulk Mannini et al. Nature Mat 2009: doi:10.1038/NMAT2374 Engineering the orientation of Fe4 SMMs DFT calculations by Federico Totti 16 06/11/2012 Angular Dependence of the Magnetic Hysteresis θH 30 20 % XMCD 10 θH=0° θH=45° T=650 mK θH=60° 0 -10 -20 -30 -10 0 Mannini et al. Nature 2010, 468, 417 10 H (kOe) Simulation of the Magnetic Hysteresis T=650 mK 30 % XMCD 10 0 θH=0° θH=45° Energy (K) 20 θH=60° 0 -10 -8 -16 -20 Exp. 0 -30 0 Calc. θD=35° -10 0 Magnetic Field (kOe) 10 -5 -10 10 Magnetization (µB) 5 5 Magnetic Field (kOe) 10 -12.36 -12.38 -12.40 -12.42 6.05 6.10 6.15 ∆EQT ∼ 10 mK 17 06/11/2012 UHV-Preparation & characterization facilities XPS,UPS,LEIS Surface treatment (sputterng, annealing) Evaporation of metal & molecules Variable temperature (20 K) STM & AFM STM image of Fe4Ph evaporated on Au(111) Au(111) Fe4Ph is weakly bound to Au but does not form multilayer aggregates 10 nm Malavolti et al.in preparation 18 06/11/2012 XMCD of Fe4Ph evaporated on Au(111) Fe4@Au; Fe L2edge θ θ -40 = 0° =45° XMCD (%) -20 0 θ 20 T=650 mK 40 -2 -1 0 1 2 B (T) angular dependent hysteresis preferential orientation on the surface Integrating SMMs in Spintronic Devices Lanthanium-Strontium-Manganite LSMO= Conducting & Ferromagnetic An evaporable Fe4 derivative La3+, Sr2+ Mn3+, Mn4+ O2- La1-xSrxMnO3 V. A. Dediu @ ISMN-CNR Bologna 19 06/11/2012 Parallel evaporation of Fe4Ph on Au & LSMO Au/mica LSMO 40 nm @NGO Fe@Fe4/LSMO Mn@Fe4/LSMO XAS (a.u.) Fe@Fe4/Au % XMCD Deposition of intact Fe4 SMMs 0 10 -20 -10 0 -20 -30 -40 700 710 720 730 700 710 720 Energy (eV) 730 630 640 650 660 670 Monolayer of Fe4 on a magnetic substrate Hysteresis Mn Edge 0.4 XMCD 0.2 T=650 mK θ = 45° θ = 0° Hysteresis Fe Edge 0.0 0.4 -0.2 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 B (T) 0.6 0.4 Hysteresis Fe Edge XMCD 0.2 LSMO -0.4 θ=0° 0.0 Fe4@LSMO -0.2 θ=0° θ=45° -0.4 XMCD 0.2 -2.0 -1.5 -1.0 -0.5 0.0 0.0 0.5 1.0 1.5 2.0 Field (T) -0.2 Fe4@Au -0.4 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 B (T) 20 06/11/2012 Monolayer of Fe4 on a magnetic substrate Hysteresis Mn Edge 0.4 0.2 XMCD T=650 mK θ = 45° θ = 0° Hysteresis Fe L-Edge 0.0 0.4 -0.2 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 B (T) Hysteresis Fe Edge 0.6 0.0 -0.2 θ=0° θ=45° 0.4 XMCD 0.2 LSMO -0.4 Fe4 @ LSMO Fe4 @ Au -0.4 -1.5 -1.0 -0.5 0.0 0.0 0.5 1.0 1.5 B (T) -0.2 Fe4@Au -0.4 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 B (T) Temperature dependence of hysteresis Fe4@Au Fe4@LSMO -60 -40 -40 640mK 750mK 840mK -30 -20 -10 0 T=840 mK 20 % XMCD % XMCD -20 640mK 750 mK 840 mK 0 10 20 40 30 -60 60 40 -40 -30 -40 -20 -10 T=750 mK 0 20 % XMCD % XMCD -20 0 10 20 40 30 -60 60 40 -40 -30 -40 -20 -20 -10 0 T=640 mK 20 % XMCD % XMCD XMCD 0.2 0 10 20 30 40 40 60 -2 -1 0 1 Magneti Field (T) 2 -2 -1 0 1 2 Magnetic Field (T) No increase of TB due to the magnetic substrate 21 06/11/2012 Through-space or through-bond interactions? Hypotheses: Distribution of dipolar fields at Fe4 sites spreads H=0 quantum resonance ☺ Exchange interactions quench the tunneling Termination layer of LSMO XPS Few Å hν ν He+ LEIS First layer e- He+ Lorenzo Poggini 22 06/11/2012 Termination layer of LSMO XPS Few Å hν ν He+ LEIS First layer e- He+ 1400 10 nm 40 nm O 1200 2500 A.U. A.U. 1000 2000 800 1500 600 1000 400 Sr Mn Sr O La 500 200 0 0 200 200 400 400 600 600 K.E. (eV) K.E. (eV) 800 800 1000 1000 Fe4 on LSMO: A new proximity effect ? Hysteresis Fe L-Edge 0.4 Fe4 @ LSMO Fe4 @ Au XMCD 0.2 0.0 -0.2 -0.4 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Energy Field (T) Further experimental work (XMCD @ mK ) is needed to confirm this hypotesis ! Resonant QTM is suppressed 23 06/11/2012 What to take home? • SMMs continue to represent a school of physics, now for investigation of magnetism and transport at the single molecule scale • Identification of robust candidates by theoretical screening would help to identify promising candidate ( structural, electronic and magnetic robustness) • Lanthanides (Actinides) are promising but control of their anisotropy is very demanding Contributions • Hybrid nanostructures based on molecular & more traditional magnetic materials deserve to be further explored University of Florence (Italy) •Surface Science Dr. Matteo Mannini, Ludovica Margheriti, Francesco Pineider, Luigi Malavolti, Lorenzo Poggini, Brunetto Cortigiani •Lanthanide based SMM Marie-Emmanuelle Boulon,Giuseppe Cucinotta, Mauro Perfetti •Theory Dr. Federico Totti, S. Ninova, Dr. Javier Luzon (now in Zaragoza) •Synthesis Pasquale Totaro University of Modena (Italy) Prof. Andrea Cornia & coworkers University of Parana (Brazil) Prof. Jaisa F. Soares & coworkers •LSMO CNR-Bologna (Italy) Dr. V. a. Dediu & coworkers •XAS/XMCD University Pierre et Marie Curie, Paris (France) Prof. Philippe Sainctavit 24 Acknowledgements 06/11/2012 (SIM- X11MA) Beamline @ SLS-PSI, Villigen (Switzerland) Frithjof Nolting, Loïc Joly, Arantxa Fraile-Rodríguez & SLS staff ID8 Beamline @ ESRF, Grenoble (France) Julio C. Cezar & ESRF staff Deimos Beamline @ Soleil, Paris (France) Edwige Otero & Philippe Ohresser …and for grants MAGMANet (NMP3-CT-2005-515767); EC - Integrating Activity on Synchrotron and Free Electron Laser Science; Italian MIUR (FIRB, FISR); Italian CNR European Research Council Programme IDEAS - AdGrant 25