G.SRT.4 Wkst 1B
Transcription
G.SRT.4 Wkst 1B
proving the Angte Bisector Theorem and the Pythagorcan Theorem G.SRI.4 Worksheet t Guide 2 prove the Angte Bisector Theorem - An angle bisector of an artgleof a trlangledivides the opposite'side in,tow segments that are proportional to the other two sides of the triangle. \ :'\_s t'xGiven: MBC where BD ii Prove: +, an angle bisector of : AB ' lB' \ o* t [,w- tt fa-rdvl 8-Y1'u^L nwJ Lrv'r- €b un$'t i+ a;Le 6 a-{- Po'rvt € L ,t 16'ro'1h ft '''1t'xz*s " tNL' lam's'rl !l*wzw-' -ta"l;,Lspli++^Ut by 6c o f\ lt enL t0"- '.-B ,'\ AD BC= DC iry ' t1^q+ pa-' e*A; lftb? t{ / ftey:/o6c Levk'te l+ Ats * 5o &vv-' p'-"n<lu[ f ,>{-s 1 f l 'nc-5 ..-,.L' Pt,-'.,tb'(t +**4u e"akr a-"'[z,..-'g"- bate- a-h' \>ose&lLs -is lsoszbr T'','L tB=AB ftf3 ---be' &DC- ln'H' beza''asc- *l+' , 2's btca-st'o Cnv' bJ trbs$"*u*o^ .-> : a Proving the A:ngIe'$isedofTheorefiand tfwBythagorean Thoorerh GSRf,:4 l/utrlrksheet'l Guido 3 Prove166:py1h*6rcafi:Bborem'usingtrlerglesimihtjty. :' ., ,: i Given: A right triangle with an altitude (height) drawn from the right angle to the hypotenuse. Prove: Lz{y , .7 a'+b'=c' 1 I Q. r --i riXh* C- A lel+ *. ,Ae^ a *A bg AA bu --: (r d ^ uLrln'- A rg [v G- + 6- d,'.1rj lnol.t, 15 AA +:ft -7 J*= .o- AtL .nz w a-r 'csJ cte-:, l by add-'{' "'^- &?+b- eA +c a-+b- "Cr*qZ FaA6.,YJ$.lli+, r 1u-5 o b,t"l; G.SRT.4 WORKSHEET #1B NAME: _______________________________ 1 2. Prove the Angle Bisector Theorem. The Angle Bisector Theorem states that an angle bisector of an angle of a triangle divides the opposite side in two segments that are proportional to the other two sides of the triangle. Given: ∆ABC where BD is an angle bisector. Prove: B AB AD = BC DC o C To get this proof moving I’m going to give you a little help – Create the D A auxiliary line AE parallel to BD while also extending side CB until they meet at point E. o E B o o C D A HINT: Have you seen this relationship before? E B C A D G.SRT.4 WORKSHEET #1B 2 3. After figuring out the proof for the Angle Bisector Theorem a Kylie asks; “Could we have done the auxiliary line parallel line to AB through D instead?” The teacher responds with “Great question Kylie, I’m not sure but it looks like it should work because we make a ‘similar’ looking diagram”. See if Kylie is correct. Given: ∆ABC where BD is an angle bisector. Prove: B AB AD = BC DC o o C D A B o E o C D A HINT: Have you seen this relationship before? B E C A D