Ch.9 worksheet #1: Integral test and p
Transcription
Ch.9 worksheet #1: Integral test and p
Ch.9 worksheet #1: Integral test and p-series test Use the Integral Test to determine the convergence or divergence of the series. 1. Diverges 2. Diverges 3. Converges 4. Converges 5. Converges 6. Diverges 7. Diverges 8. Diverge 9. Diverges 10. Diverges 11. Diverges 12. Converges 13. Diverges 14. Converges Explain why the Integral Test does not apply to the series. 16. an is not positive for all n 17. an is not positive for all n 18. an is not decreasing for all n 19. an is not decreasing for all n Use the p-test to determine the convergence or divergence of the series. 20. Diverges 21. Converges 22. Converges 23. Diverges 24. Converges 25. Converges Ch.9 worksheet #2: Direct and Limit Comparison Tests Use the Direct Comparison Test to determine the convergence or divergence of the series. 1. Converges 3. Diverges 5. Converges 7. Converges 9. Diverges 2. Diverges 4. Converges 6. Converges 8. Diverges 10. Diverges Use the Limit Comparison Test to determine the convergence or divergence of the series. 11. Diverges 13. Diverges 15.Converges 17. Converges 12. Converges 14. Diverges 16. Diverges 18. Converges In exercise 22-28, test for convergence or divergence using each test at least once. Identify which test you used. (a) Nth term Test for Divergence (d) Integral Test (b) P-series Test (e) Direct Comparison Test (c) Geometric Series Test (f) Limit Comparison Test 19. Diverges 21. Converges 23. Diverges 20. Converges 22. Converges 24. Converges Ch.9 worksheet #3: Alternating Series Test Determine the convergence or divergence of the series. 1. Converges 4. Diverges 7. Converges 10. Converges 13. Converges 2. Diverges 5. Converges 8. Diverges 11. Diverges 14. Converges 3. Converges 6. Converges 9. Diverges 12. Diverges 15. Converges Approximate the sum of the series by using the first 6 terms. Determine the accuracy of the approximation. 16. 2.4325, .0612 17. 2.7067, 1.0236 18. .07333, .002778 19. .1875, .05469 How many terms are needed to approximate the sum of the convergent series with an error less than .0001. 20. 7 terms, n = 6 21. 3 terms, n = 2 22. 1000 terms, n = 1000 23. 5 terms, n = 4 Determine whether the series converges conditionally, converges absolutely, or diverges. 24. Converges Absolutely 25. Converges Conditionally 26. 27. Converges Absolutely 28. Diverges 29. 30. Converges Conditionally 31. Converges Absolutely 32. 33. Converges Conditionally 34. Converges Conditionally 35. Converges Conditionally Diverges Converges Absolutely Converges Absolutely Ch.9 worksheet #4: Ratio and Root Tests Use the Ratio Test to determine the convergence or divergence of the series. 1. Diverges 2. Converges 4. Diverges 5. Converges 7. Converges (R Test Inconclusive) 8. Converges 10. Diverges 11. Converges 13. Converges 14. Converges 3. Converges 6. Diverges 9. Diverges 12. Diverges 15. Converges Verify that the Ratio Test is inconclusive for the p-series. 16. 17. 18. Use the Root Test to determine the convergence or divergence of the series. 19. Converges 20. Diverges 21. Diverges 22. Diverges 23. Converges 24. Diverges 25. Diverges 26. Converges 27. Converges 28. Converges 29. Converges 30. Diverges Ch.9 worksheet #5: Convergence Tests For 1 – 12, determine whether or not the series converge and state the test used. 1. Converges 4. Converges 7. Converges 10. Diverges 13. Converges conditionally 2. Converges 5. Diverges 8. Diverges 11. Diverges 3. Converges 6. Diverges 9. Converges 12. Converges Ch.9 worksheet #6: Power Series #1-4: Find a power series to represent the given function and identify the interval of convergence. 1. ∑ ( 2. ∑ ( ) ( ) 3. ∑ ( ) 4. ∑ ) ( ( ) ) 5. ∑ a) ( ) b) ∑ ( c) ∑ ( ) 6. ∑ ( ) ) ( ) a) ( ) b) ∑ c) ∑ ( ( ) ( ) ) 7. Make up a geometric series ∑ a. ∑ 8. False 11. A that converges to 5. b. ∑ ( ) 9. True 12. E ( ) 10. C 13. D