Numerical solution for bungee jump
Transcription
Numerical solution for bungee jump
2009020076 박문규 2011018753 박준연 2011020404 박현수 CONTENTS - Bungee Jump Equation - Matlab Code - Improved Euler’s methods - Runge-Kutta methods - Numerical Result - Improved Euler’s methods - Runge-Kutta method MATHEMATICAL MODELING - More... MATHEMATICAL MODELING BUNGEE JUMP EQUATION ● dx =v dt ● dv cd 2 =g− v dt m MATHEMATICAL MODELING ● v 0 = 0 ,x 0 = 0 where g = 9.81 , cd = 0.25 , m = 68.1 MATHEMATICAL MODELING ANALYTICAL APPROACH Set 𝑘 = 𝑑𝑣 𝑔 − 𝑘𝑣 2 −1 𝑔𝑘 𝑐𝑑 𝑚 . Then = 𝑑𝑡 𝑘 + 𝐶)] = (− 𝑔𝑘)𝑡 + 𝐶 𝑔 [ tanh−1 ( 1 𝑣 𝑘 = tanh{(− 𝑔𝑘)𝑡 + 𝐶} 𝑔 v(t) = − 𝑘 ln | cosh{(− 𝑔𝑘)𝑡}| 1 x(t) = 𝑘 ln | cosh{(− 𝑔𝑘)𝑡}| MATHEMATICAL 𝑣= 𝑔 tanh{(− 𝑘 𝑥= 𝑣 𝑑𝑡 = MODELING 𝑔𝑘)𝑡 + 𝐶} 𝑔 𝑘 sinh{(− 𝑔𝑘)𝑡} cosh{(− 𝑔𝑘)𝑡} dt = 𝑔 𝑘 1 𝑑𝑡 𝑢 = 1 𝑘 ln | cosh{(− 𝑔𝑘)𝑡}| + 𝐶 MATHEMATICAL MODELING NUMERICAL APPROACH 𝒉 𝟐 𝒙 𝟐 = 𝒙 𝟎 + [𝒇𝟏 𝒕𝟎 , 𝒙𝟎 + 𝒇𝟏 (𝒕𝟎 + 𝒉, 𝒙𝟎 + 𝒉𝒇𝟏 (𝒙𝟎 , 𝒕𝟎 ))] =0+ 𝒉 𝟐 𝒗 𝟎 +𝒗 𝟎+𝒉 𝒉 𝟐 = 𝒗 𝟎 + 𝒉 =v(2) 𝒙 𝟒 =𝒙 𝟐 + 𝒉 𝒗 𝟐 +𝒗 𝟐+𝒉 𝟐 = 𝟐𝒗 𝟐 + 𝒗 𝟒 ≈ 𝟔𝟖. 𝟒𝟐𝟓𝟎 𝒉 𝒗 𝟐 = 𝒗 𝟎 + 𝒇𝟐 𝒕𝟎 , 𝒗𝟎 + 𝒇𝟐 𝒕𝟎 + 𝒉, 𝒗𝟎 + 𝒉𝒇𝟐 𝒕𝟎 , 𝒗𝟎 𝟐 = 𝟎+ = 𝒉 𝟐 𝒉 𝟐 𝒈+𝒈− 𝟐𝒈 − 𝒄𝒅 𝒎 𝒄𝒅 𝟐 𝟐 𝒉 𝒈 𝒎 𝒗 𝟎 + 𝒉𝒈 ≈ 𝟏𝟖. 𝟐𝟎𝟔𝟖 𝟐 MATHEMATICAL MODELING NUMERICAL APPROACH 𝒉 𝒉 𝒌𝟏 𝒙 𝟐 = 𝒙 𝟎 + [𝒇𝟏 𝒕𝟎 , 𝒙𝟎 + 𝟐𝒇𝟏 𝒕𝟎 + 𝒉, 𝒙𝟎 + + ⋯] 𝟔 𝟐 𝟐 𝟏 𝟑 = 𝟎 + [𝒗 𝟎 + 𝟐𝒗 𝟏 + 𝟐𝒗 𝟏 + 𝒗 𝟐 ] = 𝟏 𝟑 𝟒𝒗 𝟏 + 𝒗 𝟐 ≈ 𝟏𝟗. 𝟏𝟔𝟓𝟔 𝒉 𝒄𝒅 𝒈 𝟐 𝒄𝒅 𝒄𝒅 𝒈 𝟐 𝟐 𝒗 𝟐 = 𝒗 𝟎 + 𝒈 + 𝟐(𝒈 − ( ) + 𝟐 𝒈 − (𝒈 − ( ) ) 𝟔 𝒎 𝟒 𝒎 𝒎 𝟒M A T H E M A T I C A L +(𝒈 − 𝒈 − 𝒄𝒅 𝒄𝒅 𝒈 𝟐 𝟐 𝟐 (𝒈 − ( ) ) )] 𝒎 𝒎 𝟒 ≈ 𝟏𝟖. 𝟕𝟐𝟓𝟔 MODELING MATLAB CODE Improved Euler’s methods MATHEMATICAL MODELING MATHEMATICAL MODELING MATLAB CODE Runge - Kutta methods MATHEMATICAL MODELING MATHEMATICAL MODELING RESULT Time(s) 2 4 6 8 10 IE 18.2068 32.0113 40.7275 45.7404 48.5024 RK 18.7256 33.0995 42.0547 46.9345 49.4027 ODE45 18.7292 33.1118 42.0763 46.9575 49.4214 MATHEMATICAL MODELING MATHEMATICAL MODELING RESULT Time(s) 2 4 6 8 10 IE 18.2068 68.4250 141.1637 227.6316 321.8744 RK 19.1669 71.9277 147.9317 237.4792 334.1312 ODE45 19.1663 71.9303 147.9461 237.5104 334.1782 MATHEMATICAL MODELING MATHEMATICAL MODELING MORE.. • • We want to model the vertical dynamics of a jumper connected to a stationary platform with a bungee cord. F=ma Forces: – mg (gravity, g = acceleration due to gravity) – cd v2 (drag force, cd = drag coefficient, v = velocity) (need to always retard v, so if falling (v>0) need force neg, if rising (v<0) need force pos to reduce dv/dt) (use sign(v) for drag force) – k (x-L) (spring force, x = distance measured down from platform, L = rest length of cord) MATHEMATICAL MODELING – γv (damping force, γ is damping coefficient of cord) MATHEMATICAL MODELING MORE... k = = 0 if xL If weight rises, then the force which defy free fall will decrease. MATHEMATICAL MODELING Thus, both x(t) and v(t) increase faster. MATHEMATICAL MODELING THANK YOU MATHEMATICAL MODELING *MATLAB CODE MATHEMATICAL MODELING MATHEMATICAL MODELING