A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES
Transcription
A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES
A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) _____________ A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy ____________ Copyright Thomas Martin Orrell 2000 APPROVAL SHEET This dissertation is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy ___________________________ Thomas M. Orrell Approved 9 November 2000 ___________________________ John A. Musick, Ph.D. Committee Co-Chairman/Advisor ___________________________ John E. Graves, Ph.D. Committee Co-Chairman/Advisor ___________________________ Kimberly S. Reece, Ph.D. ___________________________ Peter A. Van Veld, Ph.D. ___________________________ Kent E. Carpenter, Ph.D. Department of Biology Old Dominion University, Norfolk, VA ___________________________ G. David Johnson, Ph.D. Division of Fishes, National Museum of Natural History Smithsonian Institution, Washington, D.C. DEDICATION I am dedicating this dissertation to the memory of Emo. J. Benvenuti, my grandfather, who died on 13 March 1998. He was a quiet teacher who had all the patience in the world. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii GENERAL INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 CHAPTER ONE. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL CYTOCHROME B GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 CHAPTER TWO. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL 16S RIBOSOMAL RNA GENE . . . . . . . . . . . . . . . . . . . . . . . . . 126 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 CHAPTER THREE. COMBINED ANALYSIS OF CYTOCHROME B AND 16S MITOCHONDRIAL SEQUENCES . . . . . . . . . . . . . . 195 iii INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 CHAPTER FOUR. RECONSTRUCTING SPARID RELATIONSHIPS WITH A SINGLE-COPY NUCLEAR DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 LITERATURE CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 iv ACKNOWLEDGMENTS I would like to thank my dissertation committee for their constant support throughout the duration of this study. I am especially indebted to my co-major advisors Drs. Jack Musick and John Graves for giving me encouragement, advice, guidance and funding during my time at VIMS. Dr. Kimberly Reece provided invaluable advice in the laboratory and was an unending source of molecular knowledge. I am very grateful to my outside committee members. Dr. Kent Carpenter inspired this study by suggesting that we work together on a phylogeny of the Sparidae. He generously collected the majority of the samples used in this study and afforded me numerous opportunities to collect samples as well. He graciously provided hours of advice for the completion of this project and his critical review of this dissertation contributed countless suggestions for improvement Dr. G. David Johnson furnished the framework of many of the relationships surveyed in this study. His encouragement and critical eye kept me honest. Dr. Peter Van Veld critically reviewed this dissertation and gave me many helpful suggestions over the years. I would like to thank the following individuals and organizations for their assistance in collecting specimens, without whose help this work would not have been possible: S. Almatar, L. Beckley, B.B. Collette, F. Crock, N. DeAngelis, M. DeGravelle, D. Etnier, H. Ishihara, J. Gelsleichter, A. Graham, R. Grubbs, K. Harada, Y. Iwatsuki, J. Jenke, R. Kraus, E. Massuti, K. Matsuura, L. Ter Morshuizen, P. Oliver, A.W. Paterson, J. Paxton, J. Scialdone, D. Scherrer, G. Sedberry, M. Smale, W. F. Smith-Vaniz, K. Utsugi, G. Yearsley, T. Wasaff, J.T. Williams, and the VIMS Trawl Survey. I would like v to acknowledge the following people for laboratory assistance: J. McDowell, D. Carlini, V. Buonaccorsi, C. Morrison and K. Macdonald and all members of the VIMS fisheries genetics laboratory during my time at VIMS. I would also like to thank E.O. Wiley for numerous suggestions during this study. This research was supported by grants from: the Food and Agriculture Organization of the United Nations, Lerner Gray Fund for Marine Research from the American Museum of Natural History, an E.C. and Charlotte E. Raney Award of the American Society of Ichthyologists and Herpetologists, and by the VIMS Dean of Graduate Studies. vi LIST OF TABLES Table Page 1. Annotated list of the valid genera of the Sparidae . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. Subfamilies of the Sparidae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3. Collection data for specimens used in cytochrome b study . . . . . . . . . . . . . . . . . 46 4. Multiple alignment of nucleotide sequences of the cytochrome b gene . . . . . . . 48 5. Cytochrome b nucleotide sequence characteristics . . . . . . . . . . . . . . . . . . . . . . . 72 6. Pairwise values of mean % sequence divergence derived from uncorrected “p” genetic distance for all taxa, ingroup taxa and outgroup taxa . . . . . . . . . . . . . . . 73 7. Pairwise values of mean % sequence divergence derived from uncorrected “p” genetic distance within and between subfamilies . . . . . . . . . . . . . . . . . . . . . . . . 74 8. Base compositional bias calculated across all, ingroup, and outgroup taxa 9. Multiple alignment of amino acid residues translated from the nucleotide . . . 75 sequences of the cytochrome b gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 10. FAO area assignments for the Sparidae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 11. Matrix of FAO areas and characters used during analysis of vicariance biogeography - cytochrome b data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 12. Collection data for specimens used in 16S study . . . . . . . . . . . . . . . . . . . . . . . . 149 13. Multiple alignment of nucleotide sequences of the partial 16S gene from the Sparidae and outgroup species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 14. Constant, uninformative and informative characters for stems and loops . . . . . 167 15. Non-conserved areas in multiple alignment of 16S gene . . . . . . . . . . . . . . . . . 167 16. Mean pairwise values of percent sequence divergence based on uncorrected “p” vii genetic distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 17. Contribution of loops and stems to the overall sequence divergence . . . . . . . . 169 18. Matrix of FAO areas and characters used during analysis of vicariance biogeography - 16S data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 19. Incongruence Length Distance values between different data partitions . . . . . . 216 20. Matrix of FAO areas and characters from dependent cytochrome b (Top) and16s (bottom) trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 21. Collection data for specimens used in Tmo-4c4 study . . . . . . . . . . . . . . . . . . . 241 22. Primers and Sequences used to amplify the Tmo-4c4 locus. . . . . . . . . . . . . . . 242 23. Tmo-4c4 clone numbers sequenced for each taxon those samples direct sequenced are indicated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 24. Multiple alignments of nucleotide sequences of the nuclear Tmo-4c4 locus . . 244 viii LIST OF FIGURES Figure Page 1. Suggested phylogeny of spariform relationships redrawn from Akazaki (1962) . 10 2. Hypothesized relationships of the Sparoidea (Sparidae, Centracanthidae, Lethrinidae and Nemipteridae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. Polymerase chain reaction primers used in the cytochrome b study . . . . . . . . . . 88 4. Total substitutions at all codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only - cytochrome b gene . . . . . . . . . . . . 90 5. Total substitutions at the first codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . 92 6. Total substitutions at the second codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . 94 7. Total substitutions at the third codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . 96 8. Total substitutions at the third codon position and pooled first and second codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9. A ratio of transitions/total substitutions and transversions/total substitutions from third codon plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 10. Transitional substitutions, separated into nitrogenous base type, plotted as a functions of pairwise percent sequence divergence of ingroup taxa only . . . . . 102 11. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at all ix codon positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 12. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the first codon position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 13. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the second codon position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 14. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the third codon position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 15. Four equally parsimonious trees - unweighted data . . . . . . . . . . . . . . . . . . . . . . 112 16. Strict consensus of four equally parsimonious trees - unweighted data . . . . . . 114 17. Two equally parsimonious trees - weighted data . . . . . . . . . . . . . . . . . . . . . . . . 116 18. A strict consensus of two equally parsimonious trees from the - weighted data (transversions only third codon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 19. A strict consensus of 699 equally parsimonious trees from amino acid residue translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 20. Numbered ancestral nodes of the Sparidae clade from the weighted cytochrome b consensus tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 21. Clade of biogeographic relationships overlaid on map of the world . . . . . . . . . 124 22. Total number of substitutions plotted as a functions of uncorrected sequence divergence -16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 23. Total number of stem substitutions plotted as a functions of uncorrected sequence divergence - 16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 24. Total number of loop substitutions plotted as a functions of uncorrected sequence divergence - 16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 25. Loop transitions were separated into functional nucleic acid classes and plotted as a function of uncorrected sequence divergence - 16S gene . . . . . . . . . . . . . . . 177 26. Non conserved loop and conserved loop transitions plotted as a function of x uncorrected sequence divergence - 16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 27. Adjusted loop and stem distances plotted as a function of uncorrected sequence divergence -16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 28. Mean values and ranges of percent base composition for all, stem, loop, and nonconserved loop characters of the 16S mtDNA fragment . . . . . . . . . . . . . . . . . . 183 29. A strict consensus of 8 equally parsimonious trees from the analysis of all columns of data from t 16S sequence data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 30. A strict consensus of 3952 equally parsimonious trees from a weighted analysis of the 16S sequence data. All loop transitional substitutions were given a weight of 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 31. A strict consensus of 9828 equally parsimonious trees from a weighted analysis of the 16S sequence data. Non-conservative loop transitional substitutions were given a weight of 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 32. Numbered ancestral nodes of the Sparidae clade from the unweighted 16S consensus tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 33. Clade of 16S biogeographic relationships overlaid on map of the world . . . . . 193 34. Sequence divergence of each data partition plotted as a function of total sequence divergence for all pairwise comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 35. A strict consensus of three equally parsimonious trees from a heuristic search of all cytochrome b and 16S nucleotide characters . . . . . . . . . . . . . . . . . . . . . . . . 220 36. A single most parsimonious tree from a heuristic search of the weighted cytochrome b nucleotides (3rd codon transitions =0) and all 16S nucleotides . . 222 37. A strict consensus of 35 equally parsimonious trees from a heuristic search of all cytochrome b amino acid residue and 16S nucleotide sequences . . . . . . . . . . . 224 38. A strict consensus from a heuristic search of all unweighted sequences resulted in 11 equally parsimonious trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 xi 39. A single most parsimonious tree from vicariance biogeographic analysis of the combined cytochrome b and 16S dependent data matrices yielded . . . . . . . . . . 228 40. Total substitutions plotted as a function of sequence divergence for putative copy 1 (top) and copy 2 (bottom) of the Tmo-4c4 locus . . . . . . . . . . . . . . . . . . . . . . 251 41. A strict consensus of 81 equally parsimonious trees from parsimony analysis of all clone sequences and characters of the Tmo-4c4 locus . . . . . . . . . . . . . . . . . 253 42. Tree from neighbor-joining analysis of all clone sequences and characters of the Tmo-4c4 locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 xii ABSTRACT Sparids are a diverse group of over 110 marine species whose putative six subfamilies have been defined primarily on the basis of dentition and feeding type. Monophyly of the subfamilies has not been tested, nor have the phylogenetic relationships of all sparid genera been hypothesized. I used mitochondrial DNA sequences from the complete cytochrome b gene (1140bp) and the partial 16S gene (621bp) in independent and combined analyses to test the monophyly of the Sparidae, elucidate the inter-relationships of the 33 recognized genera of the Sparidae, test the validity of the six subfamilies of the Sparidae, and test the monophyly of the Sparoidea. The cytochrome b (cyt b) analyses included 40 sparid species, ten closely related species, ten basal percoids, and two non-perciform outgroup species. A subset of these taxa was used in the independent 16S mtDNA analyses and combined analyses. The Sparidae were monophyletic in all analyses from independent and combined data sets. The centracanthid Spicara was consistently found within the sparid clade and is considered a member of the Sparidae. The monophyly of the Centracanthidae is not supported because Spicara was polyphyletic within the sparids in all analyses. These data suggest that a revision of Pagrus, Pagellus, Dentex is in order because these genera were not monophyletic in any analysis. Two mitochondrial lineages were reconstructed in all analyses, but the previously proposed six sparid subfamilies (Boopsinae, Denticinae, Diplodinae, Pagellinae, Pagrinae, and Sparinae) were not monophyletic in any analysis. This suggests that the feeding types that these subfamilies are based were independently derived multiple times within sparid fishes. There was support from the weighted cyt b analysis for a monophyletic Sparoidea, and in all cyt b analyses the Lethrinidae were sister to the Sparidae. However, the Sparoidea were not monophyletic in the independent 16S or combined analyses. Evidence from the weighted cyt b, 16S and combined analyses suggests a sister relationship between Moronidae and Lateolabrax. Biogeographic analysis revealed that there were two areas of sparid evolution: the eastern Indian Ocean - western Pacific and the western Indian Ocean Mediterranean/Atlantic. Sparids in these two areas probably arose from a Tethyan ancestor. xiii A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) GENERAL INTRODUCTION The Sparidae are a diverse group of over 110 mostly neritic species whose putative six subfamilies have been defined primarily on the basis of dentition and feeding type (Smith, 1938; Akazaki, 1962). The monophyly of these subfamilies has not been tested, nor have the phylogenetic relationships of all sparid genera been hypothesized. Smith (1938) and Smith and Smith (1986) initially delineated the 33 sparid genera (Table 1) into four subfamilies based mostly on dentition (Table 2). The Boopsinae have compressed outer incisiform teeth and are typically herbivores or feed on small invertebrates. The Denticinae are typical piscivores with enlarged canines in front and smaller conical teeth behind. The Pagellinae lack canines, have small conical outer teeth, small inner molars and are usually carnivorous on small invertebrates. The Sparinae have jaws with bluntly rounded molars posteriorly, enlarged front teeth and are carnivorous, feeding on crustaceans, mollusks, and small fish. Akazaki (1962) erected two new subfamilies (Table 2), also largely defined by dentition. He moved the genera Diplodus, Archosargus, and Lagodon from the Sparinae into the Diplodinae and he moved Pagrus, Argyrops, and Evynnis from the Sparinae into the Pagrinae. Akazaki defined the Diplodinae as having six to eight anterior teeth in the jaws and obliquely projecting incisors, and the Pagrinae as those with four canines on the upper jaw, four to six canines on the lower jaw, scales on the head extending to the interorbital region, molar teeth in two series, and a reddish body. 2 3 The Sparidae have historically been a heterogenous group of fishes, often associated with the Lethrinidae, Nemipteridae, Lutjanidae, Caesionidae, and Haemulidae (Jordan and Fesler, 1893; Schultz 1953). Akazaki (1962) used osteology to define "spariform" fishes that included the Nemipteridae, Sparidae, and Lethrinidae (Figure 1). Akazaki suggested that the spariform fishes had three "stems": the primitive Nemipteridae-stem; the intermediate Sparidae-stem; and the highly specialized Lethrinidae-stem. Johnson (1980) proposed the superfamily Sparoidea to include Akazaki’s three spariform families and the Centracanthidae. He added the Centracanthidae based on maxillary-premaxillary distal articulation and other osteological characters. Johnson disagreed with Akazaki's placement of the Sparidae between the Nemipteridae and Lethrinidae and presented preliminary anatomical and osteological evidence that the Nemipteridae and Lethrinidae were more closely related to each other than they were to either the sparids or to the centracanthids (Figure 2). There has been only limited morphological analysis of the Sparidae since Regan (1913) gave the first practical definition of the family to include those species, “ in that the distal end of the praemaxillary ramus overlaps the maxillary externally”. The majority of morphological works have been regional in scope. Smith (1938) attempted to reinforce the taxonomy of South African sparids, but recognized that the: relationships between the species have never been properly investigated. Generic limits have been sadly lacking in uniformity; in some cases monotypic genera have been defined within the limits which are very narrow by contrast with others which have embraced forms so widely divergent and polymorphous as to be almost without parallel in any other families. Akazaki (1962) provided the most complete morphological analysis of sparid relationships to date, although his treatise did not include all genera. His results inferred phylogenetic relationships of the sparids based on traditional, non-quantitative, methods. 4 Johnson (1980) better defined the relationships of the families often associated with the Sparidae. However, he was unable to examine all of the genera of sparids and the generic relationships remain untested. Similarly, few molecular studies have examined the evolutionary relationships of the Sparidae and none has employed cladistic analysis to investigate the evolutionary history of all sparid genera. Taniguchi et al. (1986) investigated 18 isozyme loci from skeletal muscle, liver, and heart tissues to infer the genetic relationships of ten species from six genera of Japanese sparids. Their results established a close genetic relationship of Japanese sparids; a genetic distance (Nei, 1978) of less than 0.01 between Japanese members of the genera Pagrus, Evynnis, Argyrops, and Dentex. A greater genetic distance (>0.013) was found between these four genera and Sparus and Acanthopagrus. Basaglia (1991) analyzed six isozymes from seven different tissues of 15 sparid species to infer phylogenetic relationships based on an “index of divergence”. Basaglia and Marchetti (1991) examined white muscle proteins in the same 15 species analyzed by Basaglia (1991) and presented a more quantitative analysis based on pairwise similarity coefficients that clustered the sparids into respective subfamilies - Boopsinae, Diplodinae, and Pagellinae. The Pagellinae Lithognathus mormyrus, clustered with the Sparinae as did the Denticinae, Dentex dentex. Garrido-Ramos et al. (1994, 1995, and 1999) used centromeric satellite DNA to elucidate the relationships of Mediterranean sparids. The later study sampled 10 taxa from four genera to infer phylogenetic relationships based on neighbor-joining and distance (UPGMA) analyses. Jean et al. (1995) examined three mitochondrial regions, the displacement loop, tRNAPhe, and 12S rRNA gene, of five taxa from two genera of Taiwanese sparids. Their resulting phylogenetic tree was based on Tamura-Nei genetic distances. Hanel and Sturmbauer (2000) used 16S rDNA sequences to examine the evolution of trophic types in Northeastern Atlantic and Mediterranean sparids. Based on an analysis of 24 taxa from 10 sparid genera, they concluded that 5 trophic types evolved more than once in sparid fishes. In this dissertation I present a rigorous phylogenetic analysis of sparid relationships. I include representatives of all valid sparid genera and use parsimony analysis of mitochondrial molecular data to infer relationships. In the first chapter I present the results of phylogenetic analyses of the complete mitochondrial cytochrome b gene for 40 sparid species, ten closely related species, ten basal percoids, and two nonperciform outgroup species. In the second chapter I show results of phylogenetic analyses of the partial mitochondrial 16S rRNA gene for 40 sparid taxa and 16 closely related percoid taxa. The third chapter provides a phylogenetic analysis from combined mitochondrial data sets using character congruence. I also investigate the biogeographic relationships of the Sparidae using the method of vicariance biogoegraphy (Brooks 1985; Wiley 1988a, b; Wiley et al., 1991). In each chapter, I have used the resulting phylogenies as dependent data to estimate the biogeographic aspect of evolution of the sparids. I have chosen to use parsimony analysis as a method to reconstruct phylogeny because it minimizes ad hoc assumptions of evolution. Under parsimony, the tree with the shortest number of steps is chosen as an estimator of phylogeny. The shortest tree has the least number of evolutionary changes required by the data to produce that tree and has the least amount of homoplastic character changes. The minimal tree should have the greatest number of shared, derived homologous characters (synapomorphies) as evidence for relationships. Outgroup species are used to determine homology of characters. In this study I have used a wide range of outgroup species to infer phylogeny. Outgroup species include those that have been classically associated with the Sparidae (Lethrinidae, Nemipteridae, Haemulidae, Lutjanidae), basal percoids (Moronidae, Lateolabrax and Centropomus) and taxa outside of Perciformes (Cyprinidae). The wide range of outgroups allowed for the testing of multiple hypotheses from these data. 6 Two types of clade support were used throughout this dissertation; nonparametric bootstrap (Felsenstein 1985) as well as total value and partitioned Bremer values (Bremer 1988). Nonparametric bootsrap employs psuedoreplicate data matrices to provide an estimate of phylogenetic signal at each node. Decay indices are a measure of support for the nodes in a given tree. The shortest unconstrained tree (or strict consensus of equally parsimonious trees) is found. A constraint statement is assigned for each node in the shortest tree or strict consensus tree. All trees, inconsistent with each constraint statement, are found. The indices are calculated for each node by comparing the length of the original shortest tree (or strict consensus) to the length of the inconsistent tree/s length at each constrained node. The additional number of steps between the original tree and the constrained tree/s becomes the index number. Additionally decay indices can be calculated for partitioned data following the method of Baker and Desalle (1997) and Baker, et al. (1998). The partitioned indices examine how each part of a partitioned dataset contributes to the decay value at a particular node. The partition value can be either positive or negative (negative values conflicting support for a node) with the sum of each node’s partitions equaling the overall decay value for that node (Sorensen 1999). In this dissertation I infer phylogenies from mitochondrial DNA, including the complete cytochrome b gene, the partial 16S gene, and from both genes in combination to: 1) test the monophyly of the Sparidae; 2) elucidate the inter-relationships of the 33 recognized genera of the Sparidae; 3) test the validity of the six subfamilies of the Sparidae; and, 4) to test the monophyly of the Sparoidea. In addition, in a final chapter to this dissertation, I give results of an attempt to infer phylogeny based on a single copy nuclear locus TMO-4c4. 7 TABLE 1. ANNOTATED LIST OF THE VALID GENERA OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) Acanthopagrus Peters 1855:242 (as subgenus of Chrysophrys) Synonym: Mylio Commerson in Lacepede 1802 Archosargus Gill 1865:266 Argyrozona Smith 1938:300 (as subgenus of Polysteganus) Argyrops Swainson 1839:171 (as subgenus of Chrysophrys) Synonym: Parargyrops Tanaka 1916 Boops Cuvier 1814:91 Synonym: Box Valenciennes in Cuvier & Valenciennes 1830 Boopsoidea Castelnau 1861:25 Calamus Swainson 1839:171 (as subgenus of Chrysophrys) Synonym: Aurata Catesby 1771 Synonym: Grammateus Poey:1872 Cheimerius Smith 1938:292 (as subgenus of Dentex) Chrysoblephus Swainson 1839:171 (as subgenus of Chrysophrys) Crenidens Valenciennes in Cuvier & Valenciennes 1830:377 Cymatoceps Smith 1938:259 Dentex Cuvier 1814:92 Synonym: Synagris Klein in Walbum 1792 Synonym: Taius Jordan & Thompson 1912 Diplodus Rafinesque 1810:26 Synonym: Denius Gistel 1848 Synonym: Sargus Cuvier 1816 Synonym: Sargus Klein 1775 Evynnis Jordan & Thompson 1912:573 Gymnocrotaphus Gunther 1859:413 Lagodon Holbrook 1855:56 Synonym: Sphenosargus Fowler 1940 (as subgenus of Salema) Lithognathus Swainson 1839:172 (as subgenus of Pagellus) Oblada Cuvier 1829:185 Pachymetopon Gunther 1859:413 Synonym: Simocantharus Fowler 1933 (as subgenus of Spondyliosoma) Pagellus Valenciennes in Cuvier & Valenciennes 1830:169 Synonym: Nudipagellus Fowler 1925 (as subgenus of Pagellus) Pagrus Cuvier 1816:272 Synonym: Semapagrus Fowler 1925 (as subgenus of Pagrus) Synonym: Sparidentex Munro 1948 Petrus Smith 1938:302 Polyamblyodon Norman 1935:21 Polysteganus Klunzinger 1870:763 (as subgenus of Dentex) 8 TABLE 1 (Continued). ANNOTATED LIST OF THE VALID GENERA OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) Synonym: Axineceps Smith 1938 (as subgenus of Polysteganus) Porcostoma Smith 1938:270 Pterogymnus Smith 1938:257 Rhabdosargus Fowler 1933:175 (as subgenus of Diplodus) Synonym: Austrosparus Smith 1838 Synonym: Prionosparus Smith 1942 (as subgenus of Austrosparus) Sarpa Bonaparte 1831:171 (as subgenus of Box [Boops]) Objective Synonym: Eusalpa Fowler 1925 Sparodon Smith 1938:249 Sparidentex Munro 1948:276 Sparus Linnaeus 1758:277 Objective Synonym: Aurata Oken (ex Cuvier) 1817 Synonym: Caeso Gistel 1848 Objective Synonym: Chryseis Schinz 1822 Synonym: Chrysophris Cuvier 1829 Objective Synonym: Daurada Stark 1828 Objective Synonym: Dorada Jarocki 1822 Synonym: Dulosparus Fowler 1933 (as subgenus of Sparus) Synonym: Eudynama Gistel 1848 Synonym: Pagrichthys Gill 1893:97 Spondyliosoma Cantor 1848:1032 Objective Synonym: Cantharus Cuvier 1816 Objective Synonym: Cantharusa Strand 1928 Objective Synonym: Caranthus Barnard 1927 Stenotomus Gill 1865:266 Synonym: Mimocubiceps Fowler 1944 9 TABLE 2. SUBFAMILIES OF SPARIDAE FOLLOWING AKAZAKI (1962)* AND SMITH AND SMITH (1986) Boopsinae Boops Cuvier 1814:91 Crenidens Valenciennes in Cuvier & Valenciennes 1830:377 Gymnocrotaphus Gunther 1859:413 Oblada Cuvier 1829:1851933 (as subgenus of Spondyliosoma) Pachymetopon Gunther 1859:413 Polyamblyodon Norman 1935:21 Sarpa Bonaparte 1831:171 (as subgenus of Box [Boops]) Spondyliosoma Cantor 1848:1032 Denticinae Argyrozona Smith 1938:300 (as subgenus of Polysteganus) Cheimerius Smith 1938:292 (as subgenus of Dentex) Dentex Cuvier 1814:92 Petrus Smith 1938:302 Polysteganus Klunzinger 1870:763 (as subgenus of Dentex) Sparidentex Munro 1948:276 Diplodinae* Archosargus Gill 1865:266 Diplodus Rafinesque 1810:26 Lagodon Holbrook 1855:56 Pagellinae Boopsoidea Castelnau 1861:25 Pagellus Valenciennes in Cuvier & Valenciennes 1830:169 Lithognathus Swainson 1839:172 (as subgenus of Pagellus) Pagrinae* Argyrops Swainson 1839:171 (as subgenus of Chrysophrys) Evynnis Jordan & Thompson 1912:573 Pagrus Cuvier 1816:272 Sparinae Acanthopagrus Peters 1855:242 (as subgenus of Chrysophrys) Calamus Swainson 1839:171 (as subgenus of Chrysophrys) Chrysoblephus Swainson 1839:171 (as subgenus of Chrysophrys) Cymatoceps Smith 1938:259 Porcostoma Smith 1938:270 Pterogymnus Smith 1938:257 Rhabdosargus Fowler 1933:175 (as subgenus of Diplodus) Sparodon Smith 1938:249 Sparus Linnaeus 1758:277 Stenotomus Gill 1865:266 10 Figure 1. Suggested phylogeny of spariform relationships redrawn from Akazaki (1962). Akazaki’s phylogeny was based on non-empirical analysis and should not be considered quantitative. Branch lengths in this tree do not represent degree of relatedness between taxa. Petapodus Nemipteridae Scolopsis Nemipterus Denticiniae Sparidae Cheimerius Dentex Cantharus Sarpa Boops Boopsinae Pagrinae Pagellinae Sparinae Diplodinae Pagrus Argyrops Evynnis Pagellus Stenotomus Sparinae Acanthopagrus Calamus Archosargus Diplodus Lagodon Puntazzo Monotaxis Lethrinidae Gymnocranius Gnathodentex Lethrinus 12 Figure 2. Hypothesized relationships of the Sparidae, Centracanthidae, Lethrinidae and Nemipteridae of Akazaki (1962) top and Johnson (1980) bottom. Akazaki 1962 Nemipteridae Sparidae Lethrinidae Johnson 1980 Nemipteridae Lethrinidae Sparidae + Centracanthidae CHAPTER ONE. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL CYTOCHROME B GENE 15 INTRODUCTION Mitochondrial DNA (mtDNA) has proven to be useful in molecular phylogenetic studies because evolutionary relationships can be inferred among higher levels, between recently divergent groups, populations, species and even individuals (Avise, 1994). The mtDNA molecule is double stranded, circular, clonally (maternally) inherited. Most substitutions are point mutations although insertions/deletions are not rare (Avise, 1994). The mtDNA genome is relatively small (approximately 16,500 base pairs in fishes), has a high nucleotide substitution rate at synonymous sites and lacks recombination (Brown et al., 1979; Rand, 1994; Cantatore et al., 1994). The mitochondrial DNA of perciform fish is comprised of 13 protein-coding genes, two ribosomal RNA (rRNA) genes and 22 transfer RNA (tRNA) genes (Meyer, 1993). Within the mitochondrial genome, different regions evolve at different rates . Cummings et al. (1995) explored the ability of single mtDNA genes to recover the same tree/s found when using whole mtDNA genomes; assuming that whole genomic phylogenies are a better measure of the “true” phylogeny. Their findings indicated that no one gene represented all of the information expressed by the whole genome. In an ideal phylogenetic study, random or directed sampling of base pairs from across all mitochondrial genes would deduce the same tree as resulted in the analysis of the total genome; however, many constraints exclude wide-range gene sampling, and sequencing of the entire mtDNA genome from a wide-range of taxonomic representatives is even more daunting. Because each protein coding region, rRNA gene and tRNA has different functional and structural constraints, each mtDNA gene region is unique in its intrinsic 16 rate of substitution. Therefore, analysis of only single genes, partial gene regions, or both in combination has become a common approach in molecular phylogenetics. It is difficult to evaluate the usefulness of a particular gene a priori and often a pilot study must be conducted to realize a gene’s potential for inferring a phylogeny for a particular group. Examination of published sequences and phylogenies often reflect a gene’s strength and limitation, and can provide a basis for gene selection. Cytochrome c oxidase subunit I (COI) has been found to be one of the more highly conserved genes of the mitochondrial genome (Brown, 1985). For a comparison of taxonomic representatives of the order Perciformes or at the family level (less divergence time) this gene may be too conserved (not variable enough) and therefore, yield little phylogenetic information. To date COI has not been analyzed widely in fishes. The large (16S) and small (12S) subunits of mitochondrial ribosomal DNA are reasonably conserved within perciform fish and are typically used for higher level (subfamily, family, superfamily, suborder, order) analyses (Hillis and Dixon, 1991, Wiley et al., 1998). The control region or displacement loop (D-loop) of mtDNA has highly variable non-coding sites positioned between very conserved functional areas. Because reduced selection constraints in regions of D-loop, the control region is used for analysis of closely related taxa where increased variation may reflect recent evolutionary events (Lockhart et al., 1995). Other mtDNA genes such as ATPase6, ATPase8, cytochrome b or NADH(n) may be preferable for phylogenetic comparisons for taxa of intermediate divergence (generic and family level) because these gene regions are more variable than both rRNAs or COI, but are less variable than the D-loop. Of mtDNA protein-coding genes, cytochrome b (cyt b) has proven to be a robust evolutionary marker, revealing phylogenies at various taxonomic levels in fishes. Cytochrome b codes for a functionally conserved protein and can be phylogenetically informative on interspecific and intraspecific studies, but is probably best suited for 17 closely related taxa because nucleotide sequence variation is less saturated by multiple substitutions (Meyer 1993). Cytochrome b was informative in actinopterygian phylogenetic relationships (Lydeard et al., 1995; Lydeard and Roe, 1997; Schmidt et al., 1998). Cantatore et al. (1994) used cyt b sequence analysis to survey the phylogenetic relationships of five widely diverse families of perciform fishes and observed that the rate of divergence was similar to that of sharks (Martin et al., 1992; Martin and Palumbi 1993), yet slower than that of mammals and birds. Finnerty and Block (1995) demonstrated cyt b to be useful in resolving phylogenetic relationships of the perciform suborder Scombroidei and Song et al. (1998) used cyt b to assess the phylogenetic relationships among percid fishes. Zardoya and Meyer (1996) classified cyt b as a good “phylogenetic performer” among phylogenetically distant relatives. Much is known about the structure and function of cytochrome b (Esposti et al., 1993). The translated product is a transmembrane protein that forms the central catalytic subunit of ubiquinol:cytochrome c oxidase. This enzyme is a ligand that contains a heme prosthetic group. The central iron ion in the heme acts as the primary electron transport during mitochondrial respiration (Esposti et al., 1993). The cytochrome b molecule is bi-polar with five negatively charged proton input regions, four positively charged proton output regions and eight transmembrane regions (Esposti et al., 1993, Lydeard and Roe 1997). Previous studies including Irwin et al. (1991) and Lydeard and Roe (1997) have found the most variable amino acid residues in the negative side followed by the transmembrane region and the positive output region being least variable. The conservation of the positive side is likely due to a functional constraint as the positive terminus associates with an iron-sulfur subunit during ubiquinol oxidation (Esposti et al., 1993, Lydeard and Roe 1997). Cytochrome b was chosen as a molecular marker for this study because it is a coding gene likely to provide useful phylogenetic information at many taxonomic levels. 18 Functional constraints balance stochastic mutations at nucleotide positions across cyt b and variable rates of synonymous and nonsynonymous substitutions among codon positions contribute to the gene’s utility as an evolutionary marker. In this chapter, I present the results of phylogenetic analyses of the complete mitochondrial cytochrome b (cyt b) gene (1140 bp) for 40 sparid species, ten closely related species, ten basal percoids, and two non-perciform outgroup species. I used parsimony analyses from cyt b nucleotide and amino acid sequences to test the monophyly of the Sparidae, the validity of the six subfamilies of the Sparidae, the evolutionary relationships of the 33 genera of the Sparidae, and the monophyly of Sparoidea. A resulting phylogeny was used as the basis for analysis of the biogeographic aspects of sparid evolution. 19 . MATERIALS AND METHODS Sampling - Following the classification of Akazaki (1962) and Smith (1986), representatives of the six subfamilies (Boopsinae, Denticinae, Diplodinae, Pagellinae, Pagrinae and Sparinae) and 33 genera of the family Sparidae were collected. Taxonomic representatives were also collected for other members of the superfamily Sparoidea (Centracanthidae, Nemipteridae and Lethrinidae), and for possible close outgroups in the Percoidei ( Haemulidae, Lutjanidae, and Caesionidae). The basal percoids Moronidae + Lateolabrax were used to root the Sparidae and related families within the perciformes. Sequences of two ostariophysins, Luxilus and Cyprinus were used as distant outgroups in this study. Collection data for each sample are provided in Table 3. When possible, specimen identifications were validated through voucher specimens deposited at museums in country-of-origin, at the National Museum of Natural History in Washington, DC (USNM), Virginia Institute of Marine Science, Gloucester Point, VA (VIMS) or at Old Dominion University, Norfolk, VA. (ODU). Museum catalog numbers and GenBank accession numbers are provided in Table 3. Specimen Preservation - Gill tissue or white muscle tissue was collected from fresh samples or from frozen samples acquired at markets or in museum collections. Tissue was removed from frozen samples and not allowed to thaw before adding to buffer. Tissues were placed into a buffer solution of 0.25 M disodium ethylenediaminetetraacetate (EDTA), 20% dimethyl sulfoxide (DMSO), saturated sodium chloride (NaCl), pH 8.0 (Seutin et al., 1990) and stored at room temperature. 20 DNA Extraction - High molecular weight DNA was isolated from gill tissue or white muscle tissue. Approximately 0.05-0.1g of tissue was removed using sterile scalpel blades and forceps. Forceps were rinsed in 10% bleach and two changes of de-ionized water (diH20), dipped in 95% ethyl alcohol and flame sterilized between samples. Samples were placed in a 1.5ml microfuge tubes followed by protein digestion, phenol:chloroform extraction, and ethanol precipitation following Sambrook, et al. (1989) or using the tissue protocol of QIAamp® System DNA extraction kits (QIAGEN Inc, USA, Valencia CA). Primers - The following primer pairs were used for PCR amplification in this study and were mapped against the equivalent sequence positions on the mitochondrial genome of Cyprinus carpio (GenBank Accession X61010): CYTbUnvL - L15242 (Kocher et al., 1989)/CYTbUnvH - H16458 (Cantatore et al., 1994); CYTbGludgL L15249/CYTBThrdgH - H16465 (Palumbi et al., 1991); and CYTB4xdgL - L14249 (modified from Palumbi et al., 1991)/CYTb4xdgH - H16435 (derived from consensus sequences during this study). See Figure 3 for primer sequences, location illustration and map alignment. Primers were ordered from Genosys (Genosys Biotechnologies, Inc., The Woodlands, TX). Primers sites were located within the transfer ribonucleic acids (tRNA) genes that flank either end of the mtDNA cytochrome b gene (tRNAGlu and tRNAThr). Amplification - A 50 µl PCR amplification of cyt b was performed with 5-10 ng of each template DNA. The following reagents from the PCR Reagent System (GIBCO BRL Life Technologies, Gaithersburg, MD) were used in each reaction: 5 µl 10X PCR Buffer plus Mg [200mM Tris-HCL (pH8.4), 500 mM KCL, 15 mM MgCl2]; 1µl 10mM dNTP Mix [10mM each dATP, dCTP, dGTP, dTTP]; 50 pmols of each primer, 0.25 µl Taq DNA polymerase [5U/µl]. Either a Perkin Elmer Cetus (Norwalk, CT ) or an MJ 21 Research PTC-200 (Watertown. MA) thermocycler was used for PCR amplification with the following cycle parameters: initial denaturation [94EC for 4.0 min]; 35 cycles of [denaturation 94EC for 1.0 min, annealing 48EC-51EC (depending on sample) for 1.0 min; extension 72EC for 3.0 min]; final extension [70EC for 5 min]; icebox [4EC indefinitely]. Cloning and Sequencing - Once target sequences were selected and successfully amplified, sequence reactions were performed. The polymerase chain reaction products were cloned using the Invitrogen TA Cloning® Kit, (Invitrogen Corporation, San Diego, CA). Ligated PCR product was transformed and cloned into competent Escherichia coli. Transformed colonies were grown overnight on LB-agar plates in the presence of ampicillin and 5-bromo-4-chloro-3-indolyl-ß-D-galactoside (Xgal). Colonies with inserts were streaked on new LB-agar plates in the presence of ampicillin and Xgal. White colonies were screened for appropriate inserts using the quick screening methods from Sambrook et al. (1989). Colonies with target insert were grown in 3 mL preparations of terrific broth + ampicillin overnight (Tartof and Hobbs, 1987). Purified plasmid DNA was obtained by either standard plasmid preparation protocols (Seutin et al., 1990) or by using a PERFECTprep® kit (5Prime ÿ 3Prime, Inc. Boulder, CO) and suspended in 65Fl diH20. Sequencing was performed following the dideoxynucleotide chain termination method (Sanger et al., 1977), using manual and automated sequencing techniques. Initially, a 357 base pair fragment of the cyt b gene was amplified for 20 taxa using the primers UCYTB144F-tgggsncaratgtcntwytg and UCYTB272R-gcraanagraartaccaytc (J. Quattro - unpublished), cloned and manually sequenced. During manual reactions both strands of approximately 5Fg of plasmid DNA were sequenced using the Sequenase Version 2.0 Kit (United States Biochemical, Cleveland, OH). Primers that flank each end 22 of the plasmid insert, the M13 Reverse Primer (New England BioLabs, Beverly, MA) and the T7 Forward Promotor (GIBCO BRL Life Technologies) were used to sequence 357 base pairs of cytochrome b. Approximately 6.25 ci of the radiolabeled marker, 35S-(athio)-deoxynucleoside triphospate (New England Nuclear, Boston, MA.), was incorporated during reactions to visualize sequences on a resulting autoradiogram. Reactions were electrophoresed through a 6% polyacrylamide gel. The gel was transferred to 3 MM chromatography paper, vacuum-dried and exposed to Kodak BioMax autoradiograph film. The film was developed within 1 week following initial exposure and sequences were read directly from the autoradiogram and recorded by hand. Separate results are not included for the manual sequencing. The 357 base pair fragment explored by manual sequencing was internal to the entire gene and was re-sequenced during automated sequencing. This information was used to survey the utility of cytochrome b across selected members of the Sparidae and outgroups. Once the utility of cytochrome b was established for this group, the entire gene was sequenced for all samples using a LiCor automated sequencer. All complete sequences reported in this study were sequenced using automated techniques (no sequences reported are from manual techniques). Plasmid DNA was quantified using a DyNAQuant 200 flourometer (Amersham Pharmacia Biotech, Buckinghamshire, England) and approximately 300 fmol of plasmid DNA was used in each cycle sequencing reaction. Both forward and reverse IRD800 flourescently labeled M13 primers were used (Li-Cor, Inc. Lincoln, NE). A heat stable DNA polymerase, Thermo Sequenase TM (Amersham Pharmacia Biotech) was used to incorporate the IRD800 flourescently labeled primer during cycle sequencing. To relax structural stops during electrophoreses, 7-deaza-dGTP was used during chain building. The flourescently labeled termination reactions were then electrophoresed through a 66cm, 0.25mm thick, 4% LongRanger (FMC BioProducts, Rockland, Maine) acrylamide gel on a Li-Cor 4000L 23 automated sequencer. The resulting electronic gel image was analyzed using BaseImage V2.3 software (Li-Cor). Sequence Alignment - Both light and heavy strand sequences were obtained for all taxa. Light strand sequences were inverted (reversed and complimented) with the heavy strand sequence. A consensus sequence from combined light and heavy strands was made for all taxa. Cytochrome b nucleic acid sequences were aligned by eye and by the Clustal feature of Gene Jockey II (Biosoft, Cambridge UK). Two cytochrome b sequences from GenBank: accession numbers X81567 (Sparidae: Boops boops) and X8156 (Moronidae Dicentrarchus labrax) were used to aid alignment. The resulting alignment introduced no gaps due to deletions or insertions and there were no inconsistent alignments between taxa. Once sequences were aligned they were assigned codon positions and the reading frames were proofed for frame-shifts. Ambiguities were referenced against the sequencing gel image and corrected as necessary. Nucleotide sequences were translated into amino acid residues using the extended mitochondrial translation table in MacCLADE 3.07 (Madisson and Madisson, 1993). Sequence Divergence and Mutation Analysis - Mean uncorrected pairwise genetic distance (uncorrected “p” distance) was calculated using PAUP* ver 4.0b4a (Swofford, 1998) between all taxa, between ingroup taxa and between outgroup taxa. Because of the large difference in sequence divergence between ingroup and outgroup taxa, mutation analysis was restricted to ingroup taxa only. Scatter plots of transitions (Ts = AøG, CøT) and transversions (Tv = AøC, AøT, CøG, GøT) as a function of mean sequence divergence were calculated for combined codon positions and for individual codon position from ingroup taxa only. 24 Base Compositional Bias - Base compositional bias (Irwin et al., 1991) was calculated for all, ingroup and outgroup taxa, for combined codon positions, and for individual codon positions. Base compositional bias was calculated using the following formula: 4 C = (2 / 3) ∑ | ci − 0.25|, i =1 where C is the compositional bias and ci is the frequency of the ith base (Irwin et al., 1991). The bias measurements for each nucleotide base were then summed across taxa and divided by the total number of taxa for each group measured (all, ingroup, outgroup). Phylogenetic Analysis - Parsimony analysis was performed using PAUP4.0b2* (Swofford, 1998). The most parsimonious tree (MPT), or equally parsimonious trees (EPTs) and strict consensus were obtained for each analysis. The number of constant characters, parsimony-uninformative and parsimony informative characters, tree length, consistency index and the retention index were determined. Bootstrap replicate support was conducted using PAUP* and decay values (Bremer 1988) were calculated for clade support using the program TreeRot.v2 (Sorensen 1999). Biogeographic Analysis - A quantitative analysis of the biogeographic relationships of the Sparidae was conducted using analysis of vicariance biogeography (Brooks 1985; Wiley 1988a, b; Wiley et al., 1991). Parsimony analysis was used to reconstruct the biogeographic relationships inferred from the cytochrome b phylogeny. During biogeographic analysis, a matrix of independent data (areas of occurrence) and dependent data (phylogeny of the Sparidae) was constructed. All nodes on the original tree were labeled (terminal taxa, internal nodes=ancestral states). A list of areas of occurrence was then prepared for each taxon. To define distributional data as objectively as possible, 25 “FAO areas” were used for each taxon (FAO, 1995). The FAO areas were established by FAO (1995) as a means to provide defined distributional areas for fisheries statistical purposes. Each node was assessed for each of the areas. A binary data-matrix was developed based on the presence (1) or absence (0) of each dependent variable (node) for each independent variable (area). The data matrix was converted to a NEXUS file and analyzed with PAUP*. The resulting tree was then overlaid onto a map of the world. 26 RESULTS Sequence Characteristics - The full 1140 nucleotide basepairs of the cytochrome b gene was sequenced for 57 taxa. Nucleotide sequences for all taxa included in this study are given in Table 4. Of the 1140 characters sampled across all taxa, 483 (42%) were constant, 115 (10%) variable characters were parsimony uninformative and 542 (48%) variable characters were parsimony informative (Table 5). Of all informative characters, 69% came from the third codon position. Third codon position bases were more variable (2 constant, 2 uninformative, 376 informative) than first codon position bases (203 constant, 49 uninformative, 128 informative) and second codon position bases (276 constant, 66 uninformative, 38 informative). Informative characters were primarily transitions in the third codon position (Ts= 68% of all substitutions) and first codon position (Ts=66% of all substitutions). Less of the informative characters were transitions in the second codon position (Ts=59%, Tv=41%). Sequence Divergence - Mean uncorrected pairwise genetic distance (uncorrected “p” distance) is given in Table 6. between all, ingroup, and outgroup taxa. The mean uncorrected pairwise sequence divergence among all taxa was 20.22%. The mean pairwise sequence divergence between outgroup taxa was 22.73%, and the mean pairwise sequence divergence between ingroup taxa was 16.27%. Mean pairwise uncorrected sequence divergence was calculated among and between the six subfamilies of the Sparidae (Table 7). The smallest within group (subfamily) uncorrected sequence divergence was found within the subfamily Diplodinae (11.14%) and the greatest divergence was found within the subfamily Sparinae (16.58%). The smallest uncorrected 27 divergence was between the subfamilies Denticinae and Pagellinae (14.23%) and the greatest uncorrected sequence divergence was between Boopsinae and Denticinae (17.66%). Mutation Analysis - Scatter plots of transitions and transversions as a function of mean sequence divergence were calculated for combined codon positions and for individual codon position from ingroup taxa only (Figures 4-7). Combined codon positional transitions reached a maximum number of substitutions ( > 160) at approximately 20% sequence divergence (Figure 4; Ts-All - 2nd order polynomial y = -0.3212x2 + 12.339x + 13.82, R2 = 0.2725). Combined codon positional transversions continued to increase with sequence divergence in a linear relationship (Figure 4; Tv-All - 2nd order polynomial y = -0.0176x2 + 4.0373x - 3.6503, R2 = 0.2038 ) across the entire range of sequence divergence. In graphs from codon positions one and two (Figures 5 and 6) there appeared to be a linear increase in the total number of substitutions as a function of sequence divergence. However, second order polynomial trend lines fitted only a small percentage of the variance in the data (Figures 5 and 6; 2nd order polynomials). In the first codon position, there were 30 transitions at 20% sequence divergence, but only 15 transversions at 20% sequence divergence. In the second codon position, there were very few substitutions overall (<9), and there was nearly an equal number of transitions and transversions at the maximum sequence divergence of 20%. Third positional transitions appeared to asymptote as sequence divergence increased (Figure 7, Ts-3rd). A second order polynomial fitted to the data had the equation y= -0.2707x2 + 11.417x -4.4675, R2=0.4766. This relationship might signify transitional, third codon position site saturation, because the number of transitional substitutions leveled off after 15% sequence divergence. When the total number of substitutions from the third codon position and the total number of substitutions from pooled first and second codon 28 positions are plotted as a function of sequence divergence (Figure 8), it is apparent that the majority of all substitutions were found in the third codon position. Because third positional changes accounted for the majority of all substitutions, the contribution of transitions and transversions to the total number of third position substitutions was plotted as a function of sequence divergence (Figure 9). The contribution of transitions as a percentage of total substitutions decreased with increasing sequence divergence, and the converse relationship was true for transversions (although the relative number of total substitutions was contributed from transitions). As sequence divergence increased, the contribution of transversions to the total number of substitutions increased. Because, transitions are saturated, they are less informative than transversions at uncorrected sequence divergence greater than 15%. At greater than 15% uncorrected sequence divergence, transversions provided the majority of phylogenetic signal. Therefore, transversions should become increasingly more important in deriving phylogenetic relationships from third codon position characters as sequence divergence increases. Transitional substitutions were separated into nitrogenous base type, purines (AøG) and pyrimidines (CøT) and plotted against sequence divergence ( Figure 10). Purines reached saturation at a lower sequence divergence (just above 10% ) than did pyrimidines (>15%). Base Compositional Bias - The overall positional bias was 0.133 (13%). The highest bias was found in the third codon position that had a bias of 0.274 (27%) and there was a strong anti-guanine bias in the third codon position with a subsequent shift to procytosine (Table 8). Cumulative frequencies of each of the four base pairs was calculated for all 62 taxa and a chi-square test of base heterogeneity were calculated for all codon positions, and for codon positions one, two and three (Figures 11 to 14). The overall codon bias was not significant (X2=166.9, df=183 p=0.798), but had a lower p value than 29 chi-square test from individual codons, reflecting the anti-guanine bias. The first codon position (X2=34.22, df=183, p > 0.995) and second codon position (X2=9.68, df=183, p > 0.995) did not demonstrate significant heterogeneity among taxa in base composition. The frequencies of the four bases in the third codon position was strongly unequal (antiguanine, pro-cytosine) and the chi-square test demonstrated significant heterogeneity among taxa in third codon position base frequency (X2=477.6, df=183, P < 0.001). Amino Acid Translations - Nucleotide base pairs were translated into amino acid residues (Table 9) . Of 380 total residues, 190 (50%) were constant across all taxa and of the variable characters 93 (24.5%) were parsimony uninformative and 97 (25.5%) were parsimony informative across all taxa. Phylogenetic Relationships Unweighted Data - A heuristic search of 1000 random addition replicates of the cytochrome b nucleotide data set resulted in four equally parsimonious trees (Figure 15, tree length = 6416, CI = 0.1900; RI = 0.4258, starting seed 796159554; all characters unordered and equal weight of 1; outgroup taxa Cyprinus carpio and Luxilus zonatus; branch-swapping = stepwise addition; swapping algorithm = tree bisection-reconnection; no topological restraints; character-state optimization = accelerated transformations). Bootstrap support (1000 replicates) and partitioned Bremer decay values (20, unrestricted random addition sequences per node) were calculated and are shown on a strict consensus of four equally parsimonious trees (Figure 16). In all EPTs (Figure 15) the family Sparidae formed a fully resolved clade with strong bootstrap (99%) and decay support (22) for sparid monophyly. Based on the partitioned Bremer values, 75% of the support is based on third positional changes and 25% was based on first positional changes. Included in the monophyletic Sparidae clade are two species of the centracanthid genus 30 Spicara. Pending further evidence and for the purpose of this analysis, Spicara will be considered a member of the Sparidae (see discussion for more details). Within the monophyletic Sparidae + Spicara clade, two distinct clades are educed. A Bremer decay support of 3 separates the sparid taxa in “Group I” ((((Boops boops, Crenidens crenidens), (((Oblada melanura, ((Diplodus argenteus, (Diplodus bermudensis, Diplodus holbrooki)), Diplodus cervinus)), (Lithognathus mormyrus, Pagellus bogaraveo)), ((Acanthopagrus berda, Sparidentex hasta), ((Rhabdosargus thorpei, Sparodon durbanensis), Sparus auratus)))), (((Gymnocrotaphus curvidens, (Pachymetopon aeneum, Polyamblyodon germanum)), Boopsoidea inornata), (Sarpa salpa, (Spondyliosoma cantharus, Spicara maena)))), ((Archosargus probatocephalus, Lagodon rhomboides), (Calamus nodosus, Stenotomus chrysops))) from a second clade, “Group II”, with decay support (8) for the sparid taxa (((Argyrozona argyrozona, ((Petrus rupestris, Polysteganus praeorbitalis), ((Chrysoblephus cristiceps, Cymatoceps nasutus), Porcostoma dentata))), Pterogymnus laniarius), (((((Cheimerius nufar, Dentex dentex), Pagrus auriga), (Pagellus bellottii, Pagrus pagrus)), (Argyrops spinifer, (Evynnis japonica, Pagrus auratus))), (Dentex tumifrons, Spicara alta)))). The sister group to the Sparidae are the Lethrinidae (Lethrinus ornatus, Lethrinus rubrioperculatus). However, neither Bremer decay nor bootstrap values support the lethrinids as separate from other percoids. The Nemipteridae were included with the Moronidae + Lateolabrax in an unresolved clade described here from the strict consensus tree (((Dicentrarchus labrax, Dicentrarchus punctatus), ((Morone americanus, Morone mississippiensis), Morone chrysops, Morone saxatilis)), ((Lateolabrax japonicus, Lateolabrax japonicus2), Lateolabrax latus), (Scolopsis ciliatus, Nemipterus marginatus))). The haemulids and lutjanids + caesionids form an unresolved dichotomy with a weak support (decay value 3) separating them from other percoids ((Haemulon sciurus, Pomadasys maculatus), (Caesio cuning, Lutjanus decussatus)). Strong decay support (9) and bootstrap values 31 separate Centropomus undecimalis from other percoid groups. Cyprinus carpio and Luxilus zonatus were clearly outside of the Perciformes. Weighted Data: Transversions only Third - Saturation in the third codon position transitions occurred at the approximate mean pairwise sequence divergence within the Sparidae. Transitions at a saturated site may not reflect homologous changes between taxa and evolutionary relationships inferred from saturated sites are less likely to be reflective of phylogenetic history. Down-weighting or eliminating the contribution of saturated transitions within the analysis might decrease systematic error due to homoplasy (Swofford, Olsen, Waddell and Hillis in Hillis, et al., 1996). Although not all third codon position transitions were saturated, there is no means to separate those that are saturated from those that are unsaturated. For that reason, all third position transitions were eliminated in this analysis (even though some informative data were sacrificed). A step matrix was developed that weighted all third position transitions 0 and transversions 1 and was applied to third positions under the “Set Character Types” of the Data option of PAUP4.0b2* . A heuristic search of 1000 random addition replicates yielded two EPTs (Figures 17, tree length = 2536, CI = 0.2504, RI = 0.5816 starting seed 303516572, cytochrome b nucleotide data set using all changes at first and second position and only transversions in third position, all other parameters of this analysis as in the previous analysis). A strict consensus of both tree is shown in Figure 18 and revealed a monophyletic Sparidae and a monophyletic Sparoidea (Sparidae & Centracanthidae + Lethrinidae + Nemipteridae ) although no bootstrap support and minimal decay support (2) for the Sparoidea node was observed. The Sparoidea were sister to Lutjanidae & Caesionidae followed by Haemulidae and a clade containing Moronidae & Lateolabrax . The later clade established Lateolabrax sister to Moronidae. To date no cladistic study has established the Moronidae sister to Lateolabrax, although the relationship has been 32 hypothesized based on scale anatomy by McCully (1962) and based on morphology by Waldman (1986). Within the Sparidae, Calamus, Stenotomus and Archosargus & Lagodon were removed from their previous placement and are basal to all other Sparidae. The two distinct clades rendered in the previous analysis remained, but the relative location of certain taxa was not stable. Notably, Boops shifted in placement from Boops & Crenidens in the previous tree to (Boops & Sarpa) + (Spondyliosoma & Spicara) and Crenidens shifted to a clade with Lithognathus. Nucleotide Translations - A heuristic search of 100 random addition replicates of the cytochrome b amino acid residues translated from the nucleotide data set resulted in 699 equally parsimonious trees (tree length = 637, CI = 0.5620, RI = 0.7082, starting seed 785084916; all characters unordered and equal weight of 1; outgroup taxa Cyprinus carpio and Luxilus zonatus; branch-swapping = stepwise addition; swapping algorithm = tree bisection-reconnection; no topological restraints; character-state optimization = accelerated transformations). Bootstrap support (100 replicates, restricted to 5000 trees searched/replicate of length > 400) and Bremer decay values (20, restricted random addition sequences per node 1000 trees searched/replicate of length > 400 ) were calculated and are shown on a strict consensus of the 699 equally parsimonious trees (Figure 19). The Sparidae were monophyletic in the consensus of all EPTs and contained two distinct clades, similar to both the nucleotide analyses. As with the unweighted nucleotide tree, Calamus nodosus was basal to all other sparids. Notable in the consensus tree was the removal of Lagodon from other western Atlantic sparids and the subsequent inclusion of Lagodon to a Spondyliosoma-Spicara clade. As expressed from the nucleotide data, the amino acids support Lethrinidae as sister to the Sparidae. The placement of the Centropomus undecimalis translation within the Nemipteridae was curious. Lateolabrax placed basal to all other percoids and was not sister to the Morone- 33 Dicentrarchus clade as supported by the nucleotide data. Clade support for sparid monophyly was strong, but there was no bootstrap support for the two distinct clades found within the sparids. Three clades (Boops boops & Sarpa salpa), (Acanthopagrus berda & Sparidentex hasta) and (Rhabdosargus thorpei & Sparodon durbanensis) had minimal support within the Sparidae and the only other structuring was limited to the clade of (Pachymetopon aeneum & Polyamblyodon germanum). Biogeography - The monophyletic Sparidae clade within the unweighted cytochrome b phylogeny (Figure 18) was used as the source of dependent data for biogeographic analysis. The Sparidae clade was pruned from the original tree and all ancestral states were numbered (Figure 20). The geographic distribution was defined for terminal taxa using FAO areas (Table 10) and these areas were treated as independent data. Areas of occurrence were determined relative to each terminal taxa or ancestral node and coded into a binary matrix; presence=1, absence=0 (Table 11). Parsimony analysis of the data matrix resulted in a single most parsimonious tree and is overlaid on a world-wide map in Figure 21 (tree length = 102; CI =0.7549; RI = 0.8377; of 82 total characters; all characters unordered and equal weight, 5 characters were constant, 7 variable characters were parsimony uninformative, 70 variable characters were parsimony informative; 1000 replicates of random stepwise addition; 100 trees held at each step; starting seed = 1524546659; character-state optimization: Delayed transformation). All taxa were found in more than one FAO area, except the Bermuda endemic Diplodus bermudensis and the Japanese endemic Evynnis japonica. Many of the taxa were assigned to multiple areas (for example, Acanthopagrus berda). The tree was rooted to the node of southwestern Pacific Ocean and eastern Indian Ocean + western central Pacific Ocean + northwestern Pacific Ocean. The western Indian 34 Ocean/southeastern Atlantic clade was sister to eastern Atlantic/Mediterranean-Black Sea species. These were in turn sister to western Atlantic species. All Atlantic Sparidae + the western Indian Ocean/Atlantic species were sister to Pacific Ocean/eastern Indian Ocean clade. The eastern Indian Ocean - western central and northwestern Pacific taxa formed an unresolved polytomy. 35 DISCUSSION Sequence Divergence and Codon Base Composition Bias The majority of sequence divergence was due to third codon position substitutions as seen in the plot of total substitutions from the third position as a function of uncorrected sequence divergence (Figure 7). Third positional transitional substitutions accounted for the most of the homoplasy in the cytochrome b data set. These characters were not informative for resolving relationships of more distant species in the unweighted analysis. Third positional transitions appeared to reach saturation at <15% sequence divergence and provided the majority of homoplastic characters to the analysis. Site saturation occurs when the accumulation of multiple substitutions at a site confounds the estimation of the total number of substitutions. For example, a site that started with the nucleotide “A” mutated to “G” and then reverted to “A” would constitute two substitution events. During phylogenetic analysis, those taxa with the original “A” at that position would be paired with those taxa with the reverted “A” at that position because there is no way to separate when a base pair has reverted or changed multiple times. During analysis the multiple substitution event that occurred at this site would be masked. In fact those taxa with the reverted “A” are actually recent descendants of those taxa with the “G” substitution and not of those with the original “A”. This systematic error is intrinsic to all nucleotide analyses and there is no means by which to separate all multiple substitutions at saturated positions. Because of saturation, third positional transitions were weighted to a value of 0 in the weighted analysis in order to estimate phylogenetic relationships. The sequence divergence and third positional substitution saturation reported here were equivalent to other cytochrome b studies that include percoid fishes 36 (for example, Lydeard and Roe, 1997; Song et al., 1999 and others). Base compositional bias was comparable to other cytochrome b studies of fishes (Cantatore et al., 1994; Lydeard and Roe, 1997 and Song et al., 1998). The bias across all codons was 13% for all taxa compared. The smallest bias value was found in the first codon position, with a value of 4.2%, and the highest value was found in the third codon position, with a value of 27%. There was a strong anti-guanine bias in the third codon position with a shift to pro-cytosine. This has been reported in perciform fishes (Meyer, 1993; Cantatore, et al., 1994; Lydeard and Roe, 1997 and Song et al., 1999) and is not uncommon in other vertebrates. The taxa in this study had nearly equivalent variation in base compositional bias as reflected in the low standard deviation values (Table 8). The highest standard deviations were found in the third codon position. High levels of variation between taxa in base compositional bias can lead to potentially unreliable phylogenies (Lydeard and Roe, 1997). The variations in this data set were comparable to other cyt b studies and not considered high enough to mislead phylogenetic inference. (Lydeard and Roe, 1997). Phylogenetic Relationships The Sparidae were monophyletic with the inclusion of the Centracanthidae in all phylogenies derived from the cyt b sequence data or subsequent amino acid residue translations. Thus, the centracanthids are here considered members of the Sparidae. This study included members of Spicara but did not include Centracanthus. Therefore overall placement of the Centracanthidae could not be verified. For the sake of discussion brevity, the Sparidae + Spircra will be referred to as the “Sparidae”. The Centracanthidae were considered members of the Sparidae by Jordan and Fesler (1893) and very closely related to the Sparidae based on jaw morphology by Regan (1913) and Smith (1938). Johnson (1980) noted the close relationship of the Centracanthidae to the Sparidae, but he 37 retained the family status of the Centracanthidae “pending a more complete understanding of sparoid interrelationships”. The molecular evidence reported in this study support the provisional insertion of Spicara within the sparids, but these same data question the monophyly of the Centracanthidae because there was no support for a monophyletic Spicara; it was polyphyletic in the unweighted and weighted nucleotide analyses. The sister group to the Sparidae was the Lethrinidae in both nucleotide analyses and also in the amino acid translations. There was support for the superfamily Sparoidea (Sparidae, Centracanthidae, Lethrinidae and Nemipteridae) in both the weighted nucleotide and amino acid analyses but no support was found in the unweighted nucleotide analysis. Lack of support for the Sparoidea from the unweighted data-set may be a result of unresolvable third positional substitutions that render the third codon highly homoplastic. The Sparidae were derived within the Sparoidea. The Lethrinidae were sister to the Sparidae and the Nemipteridae were basal within the Sparoidea. In the amino acid residue phylogeny, Centropomus undecimalis was included with the Nemipteridae. This was probably due to an artifact of inadequate taxonomic sampling of the snooks. No other centropomid cyt b sequence was available during this study and although the amino acid translation of Centropomus undecimalis is similar to the nemipterids, it would likely fall out into a unique centropomid clade if another sequence were available. The Sparidae appear derived within the Sparoidea. The Lethrinidae were sister to the Sparidae and the Nemipteridae were basal to the Lethrinidae + Sparidae. The cyt b nucleotide data did not support a strong relationship between the nemipterids and the lethrinids as proposed by Johnson (1980). The sequence data did support an overall sister relationship between the Sparidae and Lethrinidae (unweighted, weighted, and amino acid), but there was little clade support for placement of the Nemipteridae sister to the 38 Lethrinidae in the weighted analysis and the nemipterids were sister to the Moronidae + Lateolabrax in the unweighted tree. A moderate decay value=3 supported the Sparoidea in the weighed analysis, but there is no support for the monophyly of the Sparoidea in the unweighted or amino acid residue trees. In the weighted analysis the relationship of the Sparoidea to other percoids was better defined than in the unweighted analysis. The lutjanoids (Lutjanus + Caesio) placed sister to Sparoidea, and the Haemulidae were sister to the lutjanoids + Sparoidea. The Moronidae + Lateolabrax were basal (decay=7) to the Haemulidae + lutjanoids + Sparoidea. Centropomus undecimalis was sister to all other percoids. Phylogenetic relationships of the sparid Subfamilies Of the four subfamilies of Sparidae (Boopsinae, Denticinae, Pagellinae, Sparinae) proposed by Smith (1938) and Smith and Smith (1986) and the two (Pagrinae and Diplodinae) proposed by of Akazaki (1962), none was found to be monophyletic based on cytochrome b nucleotide data or subsequent amino acid translations. Since these subfamilies are defined mostly by trophic type, these results suggests that different feeding modes have evolved multiple times within the Sparidae. This is similar to what was concluded by Hanel and Sturmbauer (2000) based on a phylogeny of sparid 16S sequences. It is also possible that the cytochrome b phylogenies reflect past introgression or hybridization events. Such events would confound phylogenies because they would no longer reflect true descendent relationships but instead would reflect recent (or past) hybridization events. Therefore, members of different genera (from the same area) might appear more closely related to each other than to other members of their own genus. There is no conclusive evidence for hybridization within natural populations of sparid fishes. However, Dentex dentex and Pagrus major are known to hybridize in captivity (Kraljevic, and Dulcic, 1999). 39 The Boopsinae, as defined by Smith (1986), comprise Boops, Crenidens, Gymnocrotaphus, Oblada, Pachymetopon, Polyamblyodon, Sarpa and Spondyliosoma. In both of the nucleotide trees, all members of the Boopsinae were contained within Group I of the family Sparidae (Figure 16, clade I and Figure 18, clade I) but are rendered paraphyletic within the group. The southeastern Atlantic/western Indian Ocean Sarpa salpa was sister to a clade containing the eastern Atlantic Spondyliosoma cantharus, and the eastern Atlantic/Mediterranean centracanthid Spicara maena. These were sister to a group of western Indian Ocean fishes - the boopsines Pachymetopon aeneum + Polyamblyodon germanum and Gymnocrotaphus curvidens and the pagelline, Boopsoidea inornata. Most of these species have trophic similarities that may explain their evolutionary relatedness, as well as shared geographic rage. Most genera of the Denticinae (Argyrozona, Cheimerius, Dentex, Petrus, Polysteganus and Sparidentex) were found within sparid Group II (Figure 16, clade II and Figure 18, clade II) except for Sparidentex hasta, which was found in Group I . Within the Denticinae, Dentex was not monophyletic. In the unweighted and weighted analysis, Dentex dentex was sister to Cheimerius nufar and Dentex tumifrons was sister to the centracanthid Spicara alta. The placement of Dentex tumifrons with Spicara alta is novel, but enigmatic without a more complete understanding of the placement of the other members of Centracanthidae. Petrus rupestris, a southeastern Atlantic/western Indian Ocean species and the western Indian Ocean Polysteganus praeorbitalis formed a robust clades in both nucleotide analyses. Furthermore, Argyrozona argyrozona, a western Indian Ocean denticine was basal to Petrus + Polysteganus. Yet these fish were sister to a clade containing three western Indian Ocean Sparinae (Chrysoblephus, Cymatoceps and Porcostoma) as opposed to other denticines. Pterogymnus laniarius, a southeastern Atlantic/western Indian Ocean sparine fell outside of this whole group. Sparidentex hasta is problematic within the denticines. Munro (1948:276) placed it 40 within the Denticinae based on dentition, although it belongs outside of the Denticinae based on jaw morphology (K. Carpenter, unpublished data). In both nucleotide clades Sparidentex hasta was sister to Acanthopagrus berda. This may appear as an unlikely relationship, but Sparus hasta (senior synonym of Sparidentex hasta) was synonymized with Acanthopagrus berda (Forsskål 1775) by Bauchot & Skelton 1986:331, although they clearly are not congeners (K. Carpenter, unpublished data). The Diplodinae (Archosargus, Diplodus and Lagodon) were restricted to sparid Group I in the unweighted nucleotide clade, but they were polyphyletic in the weighted nucleotide tree. Diplodus formed a well supported, monophyletic clade in the unweighted and weighted trees. Diplodus holbrooki was sister to the Bermuda endemic species, Diplodus bermudensis and both were sister to D. argenteus and the South African D. cervinus. Oblada melanura a Mediterranean/Eastern Atlantic monotypic sparid, clustered with Diplodus in the unweighted and weighted analyses. The placement of the genus outside of Boopsinae is novel. In the unweighted analysis, Archosargus probatocephalus formed a stable node with Lagodon rhomboides but had little affinity for other genera in the Diplodinae of Akazaki (1962). The mtDNA placed four genera of Western Atlantic Sparidae together; the diplodines, A. probatocephalus and L. rhomboides, were sister to the sparines Stenotomus chrysops and Calamus nodosus. The weighted analysis supported the Archosargus + Lagodon clade, but placed it outside Groups I + II and Stenotomus, and placed Calamus basal to all other Sparidae. The subfamily Pagellinae (Boopsoidea, Pagellus and Lithognathus) was polyphyletic within the Sparidae. The genus Pagellus were polyphyletic in the unweighted and weighted data analyses. Pagellus was the only sparid genus that was found in both Group I and Group II. The Mediterranean Pagellus bellottii was sister to the western Atlantic Pagrus pagrus in Group II, and Pagellus bogaraveo was sister to Lithognathus mormyrus in the unweighted analysis, but there was no support for this 41 relationship in the weighted clade. Pagellus appears to be a polyphyletic assemblage. As previously mentioned, Boopsoidea inornata fell within the boopsines and not with pagellines. The Pagrinae (Argyrops, Evynnis, Pagrus) were paraphyletic within sparid Group II. Within the Pagrinae the genus Pagrus was problematic. Pagrus was paraphyletic within Group II of the Sparidae. The Western Pacific genera of Pagrinae (Pagrus auratus, Evynnis japonica and Argyrops spinifer) formed a well supported clade in the unweighted analysis. The genetic relationship of Pagrus auratus to its geographic siblings rather than to other members of Pagrus is enigmatic and is supported by the close genetic distance found among Japanese sparids of Taniguchi et al. (1986). Either the taxonomic placement of Evynnis and Argyrops outside of Pagrus is in error, or Pagrus is not a monophyletic group. In the unweighted and weighted analyses, the subfamily Sparinae (Acanthopagrus, Calamus, Chrysoblephus, Chrysophrys, Porcostoma, Pterogymnus, Rhabdosargus, Sparodon, Sparus and Stenotomus) was distributed across both sparid Group I and II. As mentioned above, Calamus nodosus and Stenotomus chrysops formed a stable node that was sister to a clade containing other western Atlantic sparids in the unweighted tree. However, both Calamus and Stenotomus were basal to other Sparidae in the weighted analysis. Within Sparid Group II of both the unweighted and weighted analyses, there was a strong grouping of western Indian Ocean (WIO) and southeastern Atlantic-WIO sparids that included four members of the Sparinae (Cymatoceps nasutus, Chrysoblephus cristiceps, Porcostoma dentata and Pterogymnus laniarius) and three Denticinae (Argyrozona argyrozona, Petrus rupestris and Polysteganus praeorbitalis), suggesting an attraction of South African native (P. dentata and C. cristiceps) or South African distributed Sparidae. In Group I from the unweighted data, the sparines including Acanthopagrus berda + Sparidentex hasta , were sister to Rhabdosargus thorpei + 42 Sparodon durbanensis and Sparus auratus. These sparids had a broader distribution (WIO, Indo-Pacific and eastern Atlantic) and did not reflect the geographic similarity as found in the Sparinae from Group II. The placement of Sparidentex hasta with sparines primarily from the western Indian Ocean (except S. auratus from the eastern Atlantic) is possible evidence that Sparidentex hasta belongs outside of the Denticinae. Phylogenetic Relationships From the Amino acid residue data The Sparidae formed a well supported monophyletic group in the clade derived from the amino acid residue data, yet there was little support for phylogenetic structuring within the Sparidae; only three sister relationships were supported: Pachymetopon aeneum + Polyamblyodon germanum, Acanthopagrus berda + Sparidentex hasta, and Rhabdosargus thorpei + Sparodon durbanensis. Additionally, there was only weak support for independent groups in this data set. Notable within the Sparidae clade, Diplodus cervinus, the only non-Western Atlantic form, was removed from other Diplodus, and this may reflect an isolation event that allowed for the co-evolution of sister groups with no genetic mixing across the Atlantic. In agreement with the weighted analysis, Calamus nodosus was basal to all other Sparidae. Weak evidence (decay=2) supported the Lethrinidae sister to the Sparidae in the amino acid residues, but there is no support for Sparoidea. Biogeography - The results of biogeographic analysis suggested a strong vicariant explanation to the structuring of genera within the Sparidae. There were two areas of sparid evolution, eastern Indian Ocean - western Pacific and western Indian Ocean Mediterranean/Atlantic. These species probably had a Tethyan Sea common ancestor. However, little more can be drawn from this analysis, because the vicariance biogeography clade was based on a single tree example and this is considered equivocal 43 to a single transformation series explaining a clade (Wiley et al., 1991). It would be preferable to have multiple dependent data sets (phylogenies from other species) to test the biogeographic relationships of a group. Therefore, the power of this analysis is little more than can be derived from purely descriptive biogeography. Phylogenetic Conclusions The results of parsimony analyses based on the cytochrome b nucleotide data generated during this study: 1) established a close phylogenetic relationship of species, such as Polyamblyodon germanum and Polysteganus praeorbitalis; 2) established the monophyly of the family Sparidae; 3) estimated the validity of subfamilies within the Sparidae; and lastly 4) clarified the relationships of sparoid fishes within the percoids. There is a limit to the ability of these data to elucidate relationships without considering the subtle characteristics of nucleotide substitution within cyt b. The phylogenetic structuring, displayed in the consensus tree from the unweighted analysis, was dominated by changes in the third codon position (transitions > transversions). The partitioned Bremer values showed the majority of the support for a given clade came from the third codon position (Figure 16). In the weighted analysis, where all changes were considered from the first and second codon, and only transversions from the third position (transitions weight=0), there was an obvious reduction in the contribution of third positional support for clades and a subsequent increase in the proportion of support from first and second positions (Figure 18). The overall effect of down-weighting transitions during the weighted analysis was increased resolution for intermediate relationships. In the unweighted clade, the signal of intermediate percoid relationships was shaded by site saturation (accumulation of multiple substitutions at a site) in the third codon position. This resulted in unresolvable phylogenetic information for taxa that had divergences of the same magnitude as that of site saturation. By removing the saturated data, the 44 phylogenetic signal was derived from the more conserved codon positions, one and two, and from the less frequent transversional changes of codon position three. Conserved data possibly contained useful information of past evolutionary events that were invaluable in resolving intermediate perciform relationships. The most conserved data, derived from this study, was that of amino acid residue translations of the cytochrome b nucleotide data. The translations were informative in constructing a monophyletic Sparidae that was sister to the Lethrinidae, but were not informative in resolving percoid relationships. The two distinct groups deduced within the Sparidae revealed the inability of the current classification to define sub-structuring within the family. These groups are similar to the “Lineages 2 & 3" found in Hanel and Strumbauer’s (2000, Fig. 1.) 16S phylogeny of northeastern Atlantic and Mediterranean sparid. Clearly the subfamilies, as currently proposed, are not valid. Within each group, derived from cytochrome b, no distinct pattern could be visualized that reflects the current criteria for sub-structuring. For example, sparid Clade I contains all members of the current Boopsinae (herbivores with compressed outer incisiform teeth) and but also members of Sparinae, Pagellinae and Diplodinae. There is no external morphological character to unite members of this group, nor do they all belong to one feeding type (herbivore, carnivore and omnivore). There is no evidence overall for geographic similarity to unite all these fish, although there is some structuring within certain nodes based on geography. It is suggested from these data that feeding types evolved multiple times within the Sparidae. The phylogenetic relationships derived from the cytochrome b nucleotide data and the subsequent amino acid translations corroborate the Sparidae as monophyletic. However, none of the phylogenetic trees from these data support the division of the Sparidae into the previously defined subfamilies; the currently defined subfamilies are inadequate to explain the structuring produced from these data. Although, there were two 45 groups within the Sparidae, there is no unifying character/s within these groups to support defining them as subfamilies. Clearly a revision of the Sparidae is needed to redefine structuring between genera. The nucleotide data supported the Lethrinidae sister to the Sparidae and there was support, however minimal, for the Sparoidea.. 46 TABLE 3. COLLECTION DATA FOR SPECIMENS USED. GENBANK ACCESSION NUMBER, MUSEUM COLLECTION NUMBERS AND COLLECTION LOCALITY ARE GIVEN. MUSEUM ACRONYMS ARE FOLLOWING (LEVITON ET AL., 1985 AND 1988). All TAXA Outgroup Taxa Centropomidae Centropomus undecimalis Cyprinidae Cyprinus carpio Luxilus zonatus Haemulidae Haemulon sciurus Pomadasys maculatus Lethrinidae Lethrinus ornatus Lethrinus rubrioperculatus Lutjanidae Caesio cuning Lutjanus decussatus Moronidae + (Lateolabrax) Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Nemipteridae Nemipterus marginatus Scolopsis ciliatus Ingroup Taxa SPARIDAE Boopsinae Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Denticinae Argyrozona argyrozona Cheimerius nufar Dentex dentex GenBank Accession# Museum Catalog# AF240739 No Voucher X61010 U66600 Collection Locality Florida (Collected by J. Gelschlecter) Sequences From GenBank Sequences From GenBank AF240747 No Voucher AF240748 USNM uncat Florida, Big Pine Key, W. of Bridge Philippines, Manila Market AF240751 USNM 345259 Philippines, Bolinao, Luzon AF240752 USNM Uncat Australia, W. Australia CSIRO SS 8/95/45 AF240749 USNM 345193 Philippines, Iloilo Panay, Market AF240750 USNM 346695 Philippines., Northern Negros, Market X81566 AF240740 AF250741 AF240742 AF240743 AF240744 AF240745 AF045362 AF240746 Sequences From GenBank No Voucher fish market, Spain VIMS 10381 Picture Voucher, Japan Market Sample VIMS 10381 Picture Voucher, Japan Market Sample MTUF 27451 Sasebo, Nagasaki Prefecture, Japan No Voucher VIMS Trawl Survey Chesapeake Bay UT 85.91 Cherokee Reservoir, Grainger Co, TN Sequences From GenBank VIMS Uncat VIMS Trawl Survey Chesapeake Bay AF240754 USNM 345202 Philippines, Luzon, Manila, Market AF240753 USNM 346853 Philippines, Guimaras Island, JTW 95-1 X81567 AF240699 AF240700 AF240701 AF240702 AF240703 AF240704 AF240705 Sequences From GenBank No Voucher Qatif Market, eastern Saudi Arabia RUSI 49447 Kenton-on-Sea, South Africa No Voucher Spain, Azohia, Bay of Cartagena RUSI 49672 Kenton-on-Sea, South Africa RUSI 49690 Kenton-on-Sea, South Africa RUSI 49456 Kenton-on-Sea, South Africa ODU 2782 Fiumicino Fish Market, Italy AF240706 RUSI 58449 Durban Fish Market, South Africa AF240707 RUSI 49443 Kenton-on-Sea, South Africa AF143197 Sequences From GenBank 47 Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Sparidentex hasta Diplodinae Archosargus probatocephalus Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Lagodon rhomboides Pagellinae Boopsoidea inornata Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Pagrinae Argyrops spinifer Evynnis japonica Pagrus auratus Pagrus auriga Pagrus pagrus Sparinae Acanthopagrus berda Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sparodon durbanensis Sparus auratus Stenotomus chrysops Centracanthidae Spicara alta Spicara maena AF240708 AF240709 AF240710 AF240734 AMS I.36450-002 Nelson Bay, Australia AF240716 AF240721 AF240722 AF240723 AF240724 AF240726 VIMS 010192 NSMT-P 48013 No Voucher RUSI 49680 ODU 2789 VIMS Uncat Chesapeake Bay Sea Life Park Tokyo, Origin: Argentina. Bermuda Kenton-on-Sea, South Africa Atlantic, South Carolina Florida Keys, Bahia Honda Ocean Side AF240711 AF240712 AF240713 AF240714 ODU 2791 ODU 2784 ODU 2785 ODU 2792 St. Sebastian Bay, South Africa Fiumicino Market, Italy Fiumicino Market, Italy R/V African, Station 17491, South Africa AF240717 AF240725 AF240727 AF240728 AF240729 AMS I.36447-001 N. Territory, Australia NSMT-P 47497 No Voucher ODU 2786 ODU 2790 Miyazaki, Kyushu Prefecture, Japan New Zealand, Sydney Market V. Emmanul Market, Rome, Italy Atlantic, South Carolina AF240715 AF240718 AF240719 AF240720 AF240730 AF240731 AF240732 AF240733 AF240735 AF240736 USNM 345989 No Voucher RUSI 49441 RUSI 49445 RUSI 58450 KENT SAPL1 RUSI 49683 RUSI 49673 ODU 2787 VIMS Uncat Philippines, Manila, Market. Atlantic S.E. Charleston, SC Kenton-on-Sea, South Africa Kenton-on-Sea, South Africa Durban, South Africa Plettenberg Bay, South Africa Ponta do Ouro, Mozambique Kenton-on-Sea, South Africa Fiumicino Market, Italy Chesapeake Bay RUSI 49684 Kenton-on-Sea, South Africa RUSI 49686 Kenton-on-Sea, South Africa NSMT-P Uncat Shuwaik Market, Kuwait City, Kuwait AF240737 ODU 2793 AF240738 ODU 2788 Carpenter, K.E. Fiumicino Market, Italy MTUF-Museum of the Tokyo University of Fisheries, Tokyo, Japan; NSMT-P National Science Museum (Zoological Park) Tokyo, Japan; ODU- Old Dominion University, Norfolk, VA; RUSI- Rhodes University; J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa; UT University of Tennessee, Knoxville, TN; USNM- United States National Museum of Natural History, Washington, DC; VIMSVirginia Institute of Marine Science, Gloucester Point, VA 48 TABLE 4. MULTIPLE ALIGNMENT OF NUCLEOTIDE SEQUENCES OF THE CYTOCHROME B GENE FROM THE SPARIDAE AND OUTGROUP SPECIES. TAXONOMIC NAMES WITH A SUFFIX OF “GB” ARE FROM GENBANK AND ARE INCLUDED WITH ORIGINAL SEQUENCES FOR EASY COMPARISON. 49 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACTCACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCATGC ATGGCTAGCCTTCGAAAAACGCACCCCCTATTAAAAATTGCTAATCACGC ATGGCAAGCCTTCGAAAGACACACCCGCTATTAAAAATTGTTAATCATGC ATGACAAATCTTCGAAAGACTCACCCCCTCCTGAAAATTGCCAATCACGC ATGGCAAGCCTCCGAAAAACCCACCCACTATTAAAGATTGCTAATCACGC ATGGCTAGCCTTCGAAAGACTCACCCCCTATTAAAAATTGCTAATCACGC ATGGCAAGTCTCCGAAAAACGCACCCCCTATTAAAAATCGCTAACCACGC ATGACAAGCCTTCGAAAAACTCACCCCCTATTAAAAATTGCTAATCATGC ATGGCAAGCCTCCGGAAAACCCACCCACTACTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAAACCCAGCCCTTACTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATCGCCAACCACGC ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATCGCTAACCACGC ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTACGAAAAACACACCCCCTATTAAAAATCGCCAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCTTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACACACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAAACCCACCCCCTATTAAAAATCGCTAACCACGC ATGGCAAGCCTACGAAAAACACACCCCCTGCTAAAAATCGCTAACCACGC ATGGCAAGCCTTCGAAAAACACACCCCTTGTTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACGCACCCCCTACTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAAACGCACCCCCTATTAAAAATTGCTAATCACGC ATGGCAAGCCTCCGGAAGACTCACCCCTTATTAAAAATTGCTAATCATGC ATGGCAAGCCTTCGAAAGACCCACCCCTTATTAAAAATTGCTAACCACGC ATGGCAAGCCTCCGAAAAACCCATCCATTATTAAAAATTGCTAATCACGC ATGGCAAGCCTCCGAAAGACTCACCCCTTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAATCACGC ATGGCAAGCCTTCGAAAGACCCACCCCTTGTTAAAAATTGCTAATCACGC ATGGCAAGCCTTCGAAAGACGCACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC ATGGCTAGCCTCCGAAAAACTCACCCCCTCTTAAAAATCGCCAATCATGC ATGGCAAGCCTCCGAAAAACGCACCCCCTATTAAAAATTGCTAACCATGC ATGGCAAGCCTTCGAAAAACGCATCCTTTATTAAAAATTGCTAACCACGC ATGGCAAGTCTTCGAAAAACTCACCCCCTCTTAAAAATCGCCAATCACGC ATGGCAAGCCTTCGTAAGACACACCCCCTCTTAAAAATCGCTAATCACGC ATGGCAAGCCTTCGAAAGACACACCCCCTATTAAAAATTGCGAACCACGC ATGGCAAGCCTCCGAAAGACTCACCCCCTACTAAAAATTGCTAACCACGC ATGGCCAGCCTTCGAAAGACGCACCCCTTATTAAAAATTGCTAACCACGC ATGACAAGCCTTCGAAAGACACACCCTTTATTAAAAATTGCTAACCACGC ATGGCAAGCCTACGAAAAACACACCCTCTCATTAAAATCGCTAACGACGC ATGGCAAGCCTACGAAAAACCCACCCACTGATAAAAATCGCTAATGGCGC ATGGCAAGCCTACGAAARNNCCACCCCCTCCTAAAAATCGCAAACGACGC ATGGCCGCCCTCCGTAAAACACACCCCCTATTAAAAATCGCAAATCATGC ATGAGCGCCCTCCGTAAAACACACCCCCTACTAAAGATTGCAAATCACGC ATGGCAAGCCTTCGAAAAACCCACCCCCTACTAAAAATCGCAAACGACGC ATGGCAAGCCTTCGAAAAACCCACCCCCTGCTAAAAATCGCAAACGACGC ATGGCAAGCCTTCGAAAAACCCACCCCCTGCTAAAAATCGCAAACGACGC ATGGCCTCGCTTCGTAAATCGCACCCACTGCTTAAAATCGCAAACAACGC ATGGCCGCCCTTCGTAAAACACATCCCCTACTAAAAATCGCAAATGACGC ATGGCCTCGCTTCGTAAATCGCACCCACTACTTAAAATCGCAAACAACGC ATGGCCGCCCTTCGTAAAACGCACCCGCTACTAAAAATCGCAAACGACGC ATGGCCAACCCCCGAAAAACTCACCCCCTACTAAAGATTGCGAATGACGC ATGGCAAACCTTCGTAAAACCCATCCATTATTAAAGATCGCAAACGATGC ATGGCAAGCCTACGCAAAACCCACCCACTACTAAAAATTGCAAACGACGC ATGGCAAGCCTACGCAAAACCCACCCACTACTAAAAATTGCTAACGACGC ATGGCTTGCTTACGCAAAACGCACCCCCTCCTAAAAATTGCAAACGACGC ATGGCTAGCTTACGCAAGACCCATCCCCTCCTAAAAATTGCTAACGATGC ATGGCCAGCCTTCGCAAGACGCCCCCCCTCCTAATAATTGCTAACAACGC ATGGCCAGCCTTCGCAAAACTCATCCTCTCCTTAAAATCGCAAATGACGC [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] 50 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus AGTAGTTGACCTACCTGCACCCTCCAACATTTCCGTTTGATGAAATTTTG ACTAGTTGACCTGCCCGCACCCTCCAACATTTCCGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCATCAAATATTTCTGTCTGATGAAATTTCG AGTAGTTGACCTACCTGCGCCCTCCAANATTTCTGTTTGATGAAATTTTG ATTAGTTGATCTCCCTGCACCATCCAATATTTCCGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCCTCCAACATTTCCGTCTGATGAAATTTTG ACTAGTCGACCTACCCGCCCCTTCCAATATTTCTGTTTGATGAAATTTCG AGTAGTTGACCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG AGTAGTTGATCTACCTGCGCCTTCCAACATTTCCGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCCTCCAATATTTCAGTCTGATGAAACTTTG GGTAGTTGATCTACCGGCACCCTCCAACATTTCTGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG AGTAGTTGACTTACCTGCACCCTCCAATATCTCTGTTTGATGAAACTTCG AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCTTCCAATATTTCTGTTTGATGAAATTTTG AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG AGTAGTAGACCTACCTGCGCCATCGAATATTTCTGTCTGATGAAATTTTG AGTAGTCGACCTTCCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG ACTAGTCGACCTGCCCGCACCCTCCAATATTTCCGTTTGATGAAATTTTG AGTAGTTGACCTACCTGCACCATCCAATATTTCCGTTTGATGAAATTTTG AGTAGTCGATCTACCTGCACCTTCCAACATTTCCGTCTGATGAAACTTTG AGTAGTCGATCTACCTGCACCTTCTAACATTTCCGTCTGGTGGAACTTCG AGTAGTTGACCTACCTGCACCTTCCAATATTTCTGTCTGATGAAACTTTG AGTAGTTGACCTGCCTGCACCCTCTAATATTTCCGTTTGATGAAATTTTG ACTAGTTGACCTGCCTGCACCATCGAATATTTCTGTCTGATGAAATTTTG AGTAGTTGATCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG AGTAGTAGACCTACCTGCACCCTCCAATATTTCTGTTTGATGAAATTTTG ACTAGTTGACCTACCTGCGCCCTCAAACATTTCTGTATGATGAAATTTTG AGTAGTTGATCTACCTGCACCCTCCAACATTTCTGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCGCCTTCCAACATTTCAGTATGATGAAATTTTG AGTAGTTGACCTACCTGCACCTTCTAACATCTCTGTTTGATGGGACTTCG ACTAGTTGACCTACCTGCGCCCTCAAACATTTCTGTATGATGAAATTTTG GGTAGTGGACCTTCCTGCCCCCTCCAATATTTCAGTCTGATGAAATTTTG ACTAGTTGATCTCCCTGCGCCCTCTAATATTTCCGTCTGATGAAATTTTG AGTAGTCGACCTACCTGCGCCCTCCAATATTTCCGTCTGATGAAATTTTG AGTAGTAGACCTACCTGCCCCCTCCAACATTTCGGTCTGATGAAACTTTG AGTAATTGATCTACATGCACCCTCCAATATTTCCGTCTGATGAAATTTTG ACTAGTTGACCTCCCCGCACCCGCTAACATTTCTGTCTGATGAAATTTTG ACTCGTCGACCTACCTGCACCCTCCAACATTTCCGTCTGATGAAATTTTG CCTGGTGGATCTGCCTGCACCCTCCAATATTTCTGTTTGATGAAATTTTG ACTAGTTGACCTCCCCGCACCCTCTAACATCTCTGTCTGATGAAATTTTG ACTAGTTGACCTACCAACACCATCCAACATCTCAGCATGATGAAACTTTG ACTGGTTGACCTTCCAACACCATCAAACATCTCAGCGCTATGAAACTTCG ACTAATTGACCTCCCAGCCCCCTCCAACATCTCAGCATGATGGAACTTCG ACTTGTTGACCTGCCGGCCCCTTCAAATATTTCAGTTTGATGAAATTTCG ACTTGTTGATCTACCAGCCCCCTCCAACATTTCAGTTTGATGAAATTTCG ACTAGTCGACCTCCCTGCCCCCTCAAACATCTCAGTCTGATGAAATTTTG ACTGGTCGACCTCCCTGCTCCCTCAAACATCTCGGTCTGATGAAATTTTG ATTGGTAGACCTCCCTGCCCCCTCGAATATCTCAGTTTGATGAAACTTCG ACTCGTTGACTTACCTGCCCCCTCAAATATCTCTGTTTGATGAAACTTTG ACTTGTTGACCTGCCCGCCCCCTCAAACATCTCTGTTTGATGAAACTTTG ACTCATTGACTTACCTGCCCCCTCAAATATCTCTGTTTGATGAAACTTTG ACTTGTTGACTTACCTGCCCCTTCAAACATCTCTGTTTGATGAAATTTTG ACTAGTTGACCTCCCAGCCCCATCCAATATTTCTGTATGATGAAACTTTG ATTAATTGACCTCCCTGCCCCCTCCAACATCTCCGTATGATGAAATTTTG ACTAGTTGATCTCCCCGCACCCTCCAATATTTCAGTATGATGAAACTTTG ACTAGTTGACCTCCCCGCACCCTCTAATATTTCAGTATGATGAAACTTTG AGTCCTTGACCTTCCAGCCCCTTCAAACATCTCAGTTTGATGAAACTTCG AGTAGTCGACTTACCAGCCCCCTCTAACATTTCAGTATGATGAAACTTTG CCTCATTGATCTCCGCGCGCCCTCCAATATCTCAGCCTGATGAAACTTCG CCTAGTTGACCTACCCGCCCCCGCCAATATTTCTGCATGATGAAATTTTG [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] 51 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus GGTCTCTCCTCGGTCTCTGCTTAATCTCCCAACTTCTCACAGGACTATTT GATCCCTACTTGGCCTTTGTTTAATTTCTCAACTTCTCACGGGCCTATTC GCTCCCTCCTCGGCCTCTGCCTAATCTCTCAGCTCCTTACAGGACTCTTC GTTCCCTGCTCGGCCTTTGCCTAATCTCTCAACTTCTCACAGGCCTGTTC GTTCCCTGCTTGGCCTCTGTCTTATTTCCCAGCTCCTTACAGGGCTATTC GATCCCTACTTAGCCTCTGTTTAATTTCTCAACTCCTTACAGGACTATTC GATCTCTCCTTGGTCTCTGTTTAATTTCCCAGCTCCTTACAGGCCTTTTC GCTCCCTACTGGGTCTCTGCCTAATTTCTCAACTTCTCACAGGGCTGTTC GCTCCCTGCTCGGCCTCTGCCTAATCTCCCAACTCCTCACAGGATTATTC GATCCCTACTTGGCCTTTGTTTAGTCTCCCAACTACTTACAGGACTATTC GCTCTCTGCTCGGCCTCTGTCTAATCTCTCAACTCCTCACAGGGCTATTT GCTCCCTGCTCGGCCTCTGCTTAATTTCTCAAATCCTCACAGGACTGTTC GTTCCCTCCTCGGCCTCTGCCTGATTTCCCAACTCCTCACAGGCCTATTC GATCCTTACTTGGTCTCTGCTTAATTTCTCAACTCCTTACAGGACTTTTC GATCCTTACTTGGTCTCTGCTTAATTTCTCAACTTCTTACAGGACTTTTT GATCCTTACTCGGTCTCTGCTTAATTTCTCAACTCCTTACAGGACTATTT GATCCTTACTTGGTCTCCGCTTAATTTCCCAACTTCTTACAGGACTTTTT GCTCCCTACTTGGCCTCTGCCTAATTTCTCAGCTCCTCACAGGACTGTTC GATCCCTACTTGGTCTCTGTTGAATTTCCCAACTCCTCACAGGACTATTT GGTCCCTACTTGGCCTCTGCTTAATCTCCCAACTCCTTACAGGCCTATTC GATCCCTACTTGGTCTCTGCCTCATCTCTCAACTTCTTACAGGGTTATTC GATCTTTACTCGGTCTCTGCCTAATTTCTCAACTCCTTACAGGACTATTT GATCCCTCCTTGGCCTCTGCTTAATCTCCCAACTCCTCACAGGACTATTC GATCCCTTCTTGGTCTCTGCCTAATCTCTCAACTCCTTACAGGACTATTT GATCCCTGCTCGGCCTTTGTTTAATCTCCCAACTCCTAACAGGATTATTC GCTCTCTACTCGGCCTCTGCCTAATCTCTCAGATCCTCACAGGACTATTC GCTCCTTACTCGGTCTCTGCCTAATTTCTCAACTACTCACAGGTCTTTTT GTTCCCTACTTGGCCTTTGCCTGATCTCCCAACTCCTAACAGGACTATTC GCTCCCTGCTCGGTCTTTGCCTAATCTCTCAAATCCTCACGGGGCTATTC GTTCCCTGCTCGGCCTCTGCCTAATCTCCCAACTCCTTACAGGCTTATTC GCTCCCTGCTCGGCCTTTGCCTAATCTCCCAGCTCCTCACAGGATTGTTC GATCCCTCCTTGGCCTCTGCTTAATTTCCCAGCTCCTCACAGGACTATTC GCTCCCTGCTCGGTCTTTGCCTAATCTCTCAAATCCTCACGGGGCTATTC GGTCCTTGCTGGGTCTATGCCTAATCTCGCAACTCCTAACAGGCCTATTT GATCTTTACTTGGTCTTTGCCTGATCTCCCAGCTCCTCACAGGACTATTT GGTCCCTCCTCGGTCTCTGCTTAATCTCCCAACTTCTTACAGGACTATTT GGTCCTTGCTCGGTCTATGCTTAATCTCTCAGCTCCTAACAGGGCGGTTT GATCCCTCCTCGGTCTCTGTCTAATTTCTCAGCTTCTGACAGGGCTATTC GGTCCCTACTTGGTCTTTGCCTAATTTCTCAACTCCTCACAGGACTTTTC GATCCCTCCTCGGCCTTTGTTTAATTTCCCAACTTCTTACAGGCCTGTTC GCTCCCTGCTCGGCCTTTGCCTAATCTCCCAACTCCTTACAGGCCTATTC GGTCCCTACTTGGTCTCTGTTTAATTTCCCAACTCCTCACAGGACTCTTC GATCCCTCCTAGGACTATGCTTAATTACCCAAATTTTAACCGGCCTATTC GATCCCTTCTAGGGTTGTGCTTAATCACTCAAATCCTCACCGGATTATTC GCTCCCTCCTAGGCCTCTGCTTAATTGCCCAAATTCTTACAGGCCTATTT GTTCGCTCTTAGGCCTATGCTTGATTTCCCAAATTCTTACAGGTCTATTT GCTCGCTCTTAGGCCTATGTTTGATCTCCCAAATCCTTACAGGCCTGTTT GTTCCCTTCTTGGCCTTTGCTTGATTACTCAAATCCTCACAGGGCTATTC GCTCTCTTCTTGGCCTCTGCTTGATCACTCAGATCCTCACAGGATTATTC GCTCTCTTCTAGGCCTCTGCTTGTTCACACAGATCATTACTGGGCTATTC GCTCACTCCTGGGCCTCTGCTTAATTTCCCAAATTCTCACAGGCCTATTT GCTCACTCTTGGGCCTATGTTTAATTTCTCAGATCCTTACAGGGCTATTC GCTCACTCCTTGGCCTCTGTTTGATCTCCCAAATCCTCACAGGCCTATTT GCTCACTCTTGGGCCTATGTCTAATTTCCCAAATCCTTACAGGCCTATTC GCTCCCTCCTAGGCCTCTGCCTCATTTCACAGATCGTCACCGGCCTTTTC GCTCCCTACTAGGACTTTGTCTCATTTCCCAAATCGTTACGGGACTATTC GCTCTCTACTTGGCCTTTGCTTAATTGCCCAACTCCTAACAGGACTCTTC GCTCTCTACTTGGCCTTTGCTTAATTGCCCAAATCCTAACAGGACTATTC GCTCCCTCCTTGGTCTCTGCTTAATTGCCCAAATCTTAACCGGGCTTTTC GTTCTCTTCTGGGTCTTTGCTTAATCGCTCAAATCCTAACAGGCCTGTTC GGTCTCTACTAGGTCTTTGCTTAGCCGCCCAAATTTTAACAGGCCTGTTC GGTCTCTTCTAGGCCTTTGTCTGATTGCACAACTTCTAACAGGCCTATTT [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] 52 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CTTGCTATACATTATACTTCCGATATTGCCACAGCCTTCTCCTCCGTAGC CTCGCTATACACTACACCTCAGATATCGCCACAGCATTTTCTTCTGTTGC CTTGCTATACACTACACCTCCGATATTGCCACAGCCTTCTCCTCTGTTGC CTCGCCATACACTACACCTCAGACATCGCCACAGCCTTTTCTTCTGTCGC CTCGCCATGCACTATACCTCCGATATCGCCACAGCCTTCTCTTCCGTTGC CTTGCTATACACTATACTTCAGATATCGCCACGGCCTTTTCTTCTGTCGC CTTGCTATACATTATACCCCCGACATCGCTACAGCATTTTCTTCTGTTGC CTTGCCATACATTACACCTCAGACATCGCCACAGCTTTTTCTTCCGTTGC CTTGCCATACACTACACCTCAGATATTGCCACAGCTTTTTCTTCTGTCGC CTCGCCATACACTATACCTCCGACATCGCCACAGCCTTTTCTTCGGTTGC CTTGCCATACACTATACTTCAGATATTGCCACAGCCTTTTCTTCCGTCGC CTTGCTATGCATTACACCTCGGACATTGCTACAGCCTTTTCTTCTGTCGC CTCGCTATACACTACACCTCAGACATTAACACAGCCTTCTCTTCCGTTGC CTTGCTATACACTACACCTCTGATATCGCCACAGCCTTTTCTTCCGTAGC CTTGCTATGCACTACACCTCTGATATCGCCACAGCCTTTTCTCCTGTAGC CTTGCTATACACTACACCTCTGATATCGCCACAGCCTTTTCTTCCGTAGC CTTGCTATACACTACACCTCTGGTATCGCCACAGCCTTTTCTTCTGTAGC CTTGCCATACATTATACCTCGGACATTGCCACAGCCTTTTCTTCTGTTGC CTTGCTATACATTATACCTCAGATATTGCCACAGCCTTTTCTTCCGTTGC CTCGCTATACACTACACTTCAGATATCGCTACAGCATTCTCCTCTGTTGC CTTGCTATGCATTATACCTCCGACATCGCCATAGCTTTCTCCTCCGTAGC CTCGCTATACACTACACCTCTGACATCGCCACGGCCTTTTCTTCTGTAGC CTTGCTATGCACTATACTTCAGATATTGCCACAGCCTTTTCTTCCGTTGC CTTGCTATACATTACACCTCCGATATTGCCACAGCCTTTTCCTCTGTCGC CTTGCCATACACTACACCTCAGACATTGCCACAGCCTTTTCCTCCGTCGC CTTGCCATACACTATACCTCAGACATTGCTACAGCCTTTTCTTCCGTTGC CTTGCCATACATTATACCTCAGACATTGCTACAGCCTTTTCCTCTGTTGC CTTGCCATACACTATACTTCAGATATCGCCACGGCTTTTTCTTCTGTTGC CTTGCTATACACTACACCTCAGATATTGCCACTGCCTTTTCTTCCGTCGC CTTGCCATACACTATACCTCAGACATTGCCACAGCCTTTTCTTCTGTTGC CTTGCCATACATTATACCTCAGATATCGCTACAGCCTTTTCTTCTGTCGC CTTGCTATGCACTATACTTCAGATATCGCCACAGCCTTTTCTTCCGTTGC CTTGCTATACACTACACCTCAGATATTGCCACTGCCTTTTCTTCCGTCGC CTTGCTATACACTACACTTCCGACATCGCCACAGCCTTTTCTTCTGTTGC CTCGCCATGCATTACACCTCAGACATCGCCACAGCCTTTTCTTCTGTCGC CTTGCTATACATTACACTTCCGATATCGCCACAGCTTTTTCTTCCGTAGC CTTGCAATACACTACACCTCCGACATCGCCACAGCCTTTTCATCCGTTGC CTCGCTATGCACTACACTTCCGATATCGCCACAGCCTTCTCTTCCGTAGC CTTGCCATACATTATACTTCAGACATTGCCACAGCCTTTTCTTCTGTTGC CTCGCTATGCACTATACTTCAGATATCGCAACAGCATTCTCTTCTGTTGC CTCGCCATACATTACACCTCAGACATTGCCACAGCCTTCTCTTCCGTCGC CTTGCTATACACTACACTTCGGATATTGCCACAGCCTTTTCTTCTGTTGC CTAGCCATACACTACACCTCAGACATTTCAACCGCATTCTCATCTGTTAC CTAGCTATACATTACACCTCTGACATCTCAACCGCATTTTCATCCGTCAC CTAGCCATACACTATACATCCGACATCAACATAGCATTCACCTCTGTCGC TTAGCTATACATTATACTTCAGATATCGCAACAGCCTTCTCCTCCATCGC TTGGCAATACACTACACCTCAGATATCGCTACAGCCTTCTCTTCTATCGC CTTGCAATACACTACACCTCAGATGTTGCCACCGCCTTCTCGTCCGTAGC CTTGCAATACACTACACCTCAGATGTTGCCACCGCCTTCTCGTCCGTAGC CTTGCAATACACTACACCTCGGATGTGGCAACTGCCTTTTCATCCGTGGC CTGGCTATACACTATACCTCGGACATTGCCACAGCCTTCTCTTCTGTTGC CTAGCCATGCACTATACCTCTGATATTGCCACAGCCTTCTCCTCCGTTGC CTGGCCATACACTATACCTCGGACATTGCCACAGCCTTCTCTTCTGTTGC CTAGCTATACATTATACCTCAGATATCGCTACAGCCTTCTCCTCCGTCGC CTAGCCATGCACTATACCTCTGACATCGCCACAGCCTTCTCATCCGTTGC CTTGCTATACACTACACCTCCGACATCGCTACAGCTTTCTCATCTGTTGC CTCGCCATACACTACACCTCCGACATTAGCATGGCCTTCTCATCTGTCGC CTCGCCATACACTATACATCCGACATTACCATAGCCTTCTCATCCGTCGC CTCGCAATACATTACACTTCCGACATTGCCACCGCTTTCTCCTCCGTTGC CTTGCAATACATTACACTTCTGATATCGCCACAGCATTCTCCTCTGTCGC CTTGCAATACATTACACATCTGACATTGCAACAGCATTTTCTTCCGTCGC CTTGCCATACACTATACTTCCGATATTGCAACAGCTTTCTCTTCAGTCGC [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] 53 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CCATATTTGCCGAGATGTAAATTATGGGTGGCTAATCCGAAACCTTCACG TCACATCTGCCGGGACGTTAATTACGAATGACTTATCCGAAACCTCCACG CCACATCTGCCGAGACGTAAACTACGGCTGACTAATCCGTAATCTTCACG TCACATTTGTCGAGATGTAAACTACGGCTGACTTATCCGCAACCTTCATG CCACATCTGCCGAGATGTAAACTATGGCTGACTCATCCGAAACCTACATG CCACATTTGCCGAGATGTAAACTACGGGTGACTCATCCGAAATCTTCACG CCATATTTGCCGAGACGTAAACTATGGATGACTTATTCGCAATCTCCACG TCACATTTGTCGAGACGTAAACTACGGTTGACTTATCCGCAACCTCCATG CCACATCTGTCGAGACGTAAATGATGGCTGACTCATCCGCAACCTTCATG TCACATCTGCCGAGATGTTAACTATGGGTGACTAATCCGTAACCTCCACG CCACATCTGTCGAGACGTAAATTACGGCTGACTTATCCGAAACCTTCATG CCATATTTGTCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG ACACATCTGTCGAGACGTAAATTACGGATGACTTATCCGCAACCTCCATG CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG CCATATCTGCCGGGACGTAAACTACGGATGGCTTATCCGAAATCTCCATG CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG CCATATCTGTCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG CCACATCTGCCGAGATGTGAACTACGGGTGGCTCATCCGTAACCTTCATG CCACATCTGTCGTGACGTAAATTACGGATGACTAATCCGAAACCTCCACG CCACATCTGTCGGGACGTAAACTACGGCTGACTTATCCGTAACCTCCACG CCACATCTGCCGAGATGTAAACTACGGATGGCTGATCCGAAACCTCCACG CCACATCTGTCGAGACGTGAACTACGGGTGACTCATCCGAAACCTTCACG CCACATCTGTCGAGACGTAAACTACGGATGGCTAATCCGAAATCTCCACG ACATATCTGTCGAGACGTAAACTACGGCTGACTTATCCGTAACCTCCATG CCATATCTGCCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG TCACATTTGTCGAGACGTAAACTACGGCTGACTTATCCGCAACCTTCATG ACACATTTGTCGAGACGTAAACTACGGCTGACTTATCCGTAATCTTCATG CCACATCTGTCGAGACGTAAACTATGGATGACTTATCCGCAACCTCCATG TCACATCTGCCGAGACGTAAATTATGGATGACTAATCCGCAACCTTCATG CCACATCTGTCGAGACGTAAACTACGGCTGACTTATCCGCAACCTTCATG CCACATCTGCCGAGACGTAAACTACGGATGACTCATCCGAAACCTCCACG CCACATCTGTCGAGACGTAAACTATGGATGACTTATCCGCAACCTCCATG CCATATCTGCCGGGACGTCAACTACGGATGGCTCATCCGAAACCTCCATG ACACATTTGTCGAGACGTGAATTACGGCTGACTCATCCGGAATCTCCACG CCATATCTGCCGAGATGTTAACTACGGCTGACTAATCCGAAACCTTCACG CCACATCTGTCGAGACGTGAACTACGGATGGCTTATCCGAAACCTTCATG CCACATCTGCCGAGATGTAAATTACGGATGGCTCATCCGAAACCTTCACG ACACATTTGCCGAGATGTAAATTATGGCTGACTCATCCGAAATCTTCACG TCATATTTGCCGAGACGTAAATTATGGATGACTTATCCGTAATCTTCACG ACACATCTGCCGAGACGTAAATTACGGGTGGCTCATCCGAAATCTCCACG ACACATCTGTCGAGATGTAAATTACGGCTGACTCATCCGAAATCTTCACG CCACATCTGCCGAGACGTAAATTACGGCTGACTAATCCGTAATGTACACG GCACATTTGCCGGGACGTTAACTATGGCTGACTTATCCGGAACATGCACG TCACATCTGCCGAGATGTAAACTACGGATGGCTTATCCGAAACCTCCACG ACACATTTGTCGAGATGTTAACTATGGCTGACTTATTCGTAATCTTCACG ACACATTTGTCGAGATGTCAACTATGGTTGACTTATCCGCAATCTTCACG ACATATTTGCCGCGACGTAAACTACGGCTGACTAATTCGAAATGTTCACG ACACATTTGCCGCGACGTAAACTACGGTTGACTAATTCGTAATATTCACG ACACATCTGCCGTGACGTGAACTACGGCTGACTAATTCGAAATGTCCACG ACACATTTGCCGAGACGTAAACTACGGCTGGTTAATTCGTAACCTTCATT ACACATCTGCCGAGATGTAAATTACGGCTGACTTATTTGCAACCTCCACG ACACATTTGCCGAGATGTAAACTATGGTTGATTAATTCGTAATCTTCATT ACACATTTGCCGAGATGTAAATTATGGATGACTAATTCGTAACCTTCACG CCATATCTGCCGAGACGTGAACTATGGCTGACTCATCCGAAACCTCCACG CCATATTTGCCGAGATGTAAACTTCGGCTGACTTATTCGTAATCTACATG CCACATCTGCCGAGATGTAAACTACGGTTGACTAATCCGTAATCTCCACG ACACATCTGCCGAGACGTAAACTACGGATGGCTCATCCGTAACCTACATG CCACATTTGCCGAGACGTCAACTACGGCTGGCTCATCCGCAACCTTCATG ACACATTTGCCGAGACGTTAACTATGGTTGGCTCATCCGCAACCTCCACG CCACATCTGCCGAGACGTAAATTACGGCTGACTTATCCGAAATCTTCATG CCACATCTGCCGAGACGTAAACTATGGCTGACTGATCCGCAATCTGCACG [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] 54 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CCAACGGAGCATCTTTTTTCTTCATCTGTATTTATCTTCACATTGGGCGG CCAACGGAGCATCGTTCTTCTTTATTTGCATTTATTTTCACATTGGACGA CCAATGGAGCATCCTTCTTTTTTATCTGCATTTACCTTCACATCGGACGA CCAACGGAGCATCTTTCTTCTTCATCTGCATTTATCTCCACATCGGTCGA CCAACGGAGCATCTTTCTTCTTCATCTGCATTTACCTTCACATCGGCCGA CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTTCATATCGGGCGA CCAACGGGGCTTCCTTCTTTTTCATTTGTATTTATCTTCACATTGGACGA CCAACGGAGCATCCTTCTTTTTCATCTGCATTTACCTCCACATCGGTCGA CCAACGGAGCATCTTTCTTCTTCATTTGTATTTATCTGCACATTGGACGA CTAACGGAGCATCCTTCTTTTTTATCTGCATTTACCTCCACATCGGACGA CTAACGGAGCATCTTTCTTCTTCATTTGTATTTATCTTCACATCGGACGG CTAATGGAGCATCTTTTTTCTTCATCTGCATTTACCTTCACATCGGACGA CCAACGGAGCCTCTTTCTTCTTTATTTGTATTTACCTTCACATCGGGCGA CCAACGGAGCATCTTTCTTCTTTATTTGTATTTACCTTCACATCGGGCGA CCAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGGCGA CTAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTCCACATCGGACGA CCAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGGCGA CCAATGGAGCATCTTTCTTTTTCATCTGCATCTACCTTCACATCGGACGG CCAACGGAGCATCTTTCTTTTTTATTTGTATTTATCTTCATATCGGACGA CTAACGGAGCATCATTCTTCTTTATTTGTATCTACCTTCACATCGGACGA CAAACGGAGCATCCTTCTTTTTTATTTGTATTTACCTCCATATCGGTCGG CCAACGGAGCATCCTTCTTCTTCATCTGTATTTATCTCCACATCGGACGA CCAACGGAGCATCTTTCTTTTTTATTTGTATTTATGTTCATATCGGACGA CTAATGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGACGG CTAATGGAGCATCCTTCTTCTTTATTTGCATCTACCTCCATATCGGACGG CTAATGGAGCATCTTTCTTTTTCATCTGCATCTACCTTCACATCGGACGA CCAACGGAGCATCCTTCTTTTTCATCTGCATTTACCTCCACATCGGACGA CTAACGGAGCATCCTTCTTTTTCATCTGCATCTACCTCCACATTGGCCGA CCAACGGAGCATCCTTTTTCTTCATCTGCATCTATCTTCACATCGGAGGA CCAACGGAGCATCTTTCTTCTTCATTTGCATTTATCTTCACATCGGGCGA CCAACGGAGCCTCTTTCTTCTTCATTTGCATCTACCTTCACATTGGACGA CTAACGGAGCATCTTTCTTTTTTATTTGTATTTTCCTCCATATCGGACGA CCAACGGAGCATCCTTTTTCTTCATCTGCATCTATCTTCACATCGGACGA CCAACGGAGCATCTTTCTTTTTCATTTGCATTTATTTACACATTGGCCGA CCAACGGAGCATCGTTCTTTTTCATTTGCATTTATCTTCACATTGGACGA CTAACGGAGCTTCTTTTTTCTTCATCTGTATTTACCTCCACATCGGACGA CCAATGGAGCATCCTTCTTTTTTATCTGCATTTATCTGCACATCGGCCGA CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTCCATATCGGACGA CCAACGGGGCATCTTTCTTTTTTATTTGCATTTACCTTCACATCGGACGA CCAACGGAGCATCCTTCTTCTTCATCTGTATTTACCTTCACATTGGACGA CCAACGGTGCATCCTTCTTCTTTATTTGCATCTACCTTCACATTGGGCGG CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTTCATATTGGGCGA CCAACGGAGCATCATTCTTCTTCATTTGCATCTACATACACATCGCCCGA CCAACGGAGCATCATTTTTCTTCATCTGTATTTACATGCACATTGCTCGT CTAACGGCGCCTCTTTCTTCTTCATCTGCATGTACCTCCACATCGGCCGA CCAATGGTGCATCTTTCTTCTTTATTTGTATTTATCTTCACATTGGCCGA CCAATGGCGCATCTTTCTTCTTTATTTGTATCTATCTTCATATTGGCCGA CCAACGGCACATCCTTCTTCTTCATCTGCATTTACATACATATTGGGCGG CCAACGGCACATCCTTCTTCTTCATTTGCATCTACATACATATCGGACGA CCAACGGCGCATCCTTCTTCTTCATTTGCATCTACATGCATATCGGGCGA CTAATGGCGCATCTCTCTTCTTCATCTGTATTTACCTTCATATCGGCCGA CCAACGGCGCATCTCTCTTTTTTATCTGCATCTACCTCCACATTGGCCGA CTAATGGCGCATCTCTCTTCTTCATCTGCATTTATCTTCATATTGGTCGA CCAACGGTGCATCTTTCTTTTTCATCTGTATTTATCTTCACATTGGCCGA CTAACGGCGCATCCTTCTTTTTCATCTGCATCTACCTCCACATCGGACGA CTAATGGTGCATCCTTCTTCTTTATTTGTATCTACCTTCACATCGGACGA CCAACGGTGCCTCCTTCTTCTTCATCTGCATCTACCTCCACATCGGCCGA CCAACGGTGCCTCCTTCTTCTTTATTTGCATCTACCTCCACATCGGCCGA CAAACGGAGCCTCCTTCTTCTTCATCTGCATCTACCTTCACATCGGCCGA CAAATGGAGCCTCCTTCTTCTTCATCTGCATCTACCTCCATATTGGCCGC CTAATGGAGCATCTTTCTTCTTTATTTGCATCTACCTTCATATCGGCCGG CTAACGGAGCCTCCTTTTTCTTTATCTGCATCTACCTCCACATCGGCCGA [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] 55 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus GGACTCTACTACGGCTCCTACCTTTACAAAGAAACCTGAAATATTGGAGT GGGTTGTACTACGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT GGGCTCTATTACGGCTCCTATCTTTATAAAGAAACATGAAACATCGGTGT GGCTTATACTATGGTTCCTACCTCTACAAAGAGACATGAAACATTGGTGT GGACTTTACTACGGCTCGTACCTTTACAAAGAAACCTGAAATATTGGGGT GGGCTTTATTACGGCTCATACCTTTATAAAGAAACATGAAATATCGGAGT GGACTATACTACGGCTCCTATCTCTACAAAGAGACATGAAATATCGGAGT GGCCTTTACTATGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT GGTCTCTACTATGGCTCCTACCTCTACAAAGAAACATGAAATATCGGTGT GGCCTTTACTATGGGTCTTATCTTTACAAAGAAACATGAAACATTGGAGT GGCCTATACTACGGCTCCTATCTCTACAAATGGACATGAAACATTGGTGT GGCCTCTACTATGGCTCCTACCTCTACAAAGAAACATGAAACATTGGCGT GGACTCTACTACGGCTCCTACCTCTACAAAGAAACATGAAACATCGGCGT GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT GGACTTTATTATGGCTCATACCTCTACAAAGAGACATGAAACATCGGAGT GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT GGCCTTTACTATGGCTCTTATCTCTATAAAGAGACATGAAACATTGGTGT GGACTTTATTACGGCTCGTACCTCTACAAAGAAACATGAAATATTGGAGT GGACTTTACTATGGCTCCTACCTCTACAAAGAAACATGAAACATTGGAGT GGACTTTATTACGGCTCCTACCTCTACAAAGAAACATGAAATATTGGTGT GGACTTTATTACGGCTCTTATCTCTATAAAGAAACATGAAACATTGGAGT GGACTCTATTATGGCTCGTATCTTTACAAAGAAACATGAAACATTGGAGT GGACTCTATTACGGCTCCTATCTTTACAAAGAAACATGAAATATCGGAGT GGCCTTTATTACGGCTCTTACCTTTATAAAGAAACATGAAACATTGGTGT GGCCTCTACTACGGCTCTTATCTCTATAAAGATACATGAAATATTGGTGT GGTCTCTACTACGGCTCTTATCTCTATAAAGAGACATGAAACATTGGGGT GGCCTCTATTACGGGTCCTACCTCTATAAAGAAACGTGAAATATTGGTGT GGCCTCTACTATGGTTCCTACCTGTACAAGGAAACATGAAATATTGGTGT GGGCTCTACTATGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT GGCCTCTACTATGGTTCTTATCTCTACAAAGAAACGTGAAACATTGGCGT GGACTCTATTATGGCTCCTATCTTTACAAAGAGACATGAGACATCGGAGT GGCCTCTACTATGGTTCCTACCTGTACAAGGAAACATGAAATATTGGTGT GGACTTTACTACGGTTCTTACCTATATAAAGAGACATGAAACATCGGGGT GGACTTTATTACGGCTCCTATCTCTACAAAGAAACATGAAATATCGGAGT GGGCTTTATTACGGCTCCTACCTCTACAAAGAAACTTGAAACATCGGAGT GGACTTTACTACGGCTCATACCCTTATAAGGTAACATGAAACATTGGAGT GGGCTCTACTACGGCTCTTATCTCTATAAAGATACATGAAACATCGGAGT GGGCTTTACTATGGCTCATATCTCTATAAAGAAACATGAAACATCGGAGT GGACTGTACTATGGCTCCTACCTCTATAAAGAAACATGAAACATCGGTGT GGGCTCTATTACGGCTCTTACCTCTACAAAGAAACATGAAACATTGGTGT GGTCTCTACTATGGCTCTTATCTCTATAAAGAGACATGAAACATCGGAGT GGCCTATACTACGGATCATACCTTTACAAAGAAACCTGAAACATTGGTGT GGCCTTTACTACGGGTCCTACCTTTATAAAGAAACCTGAAACGTTGGAGT GGCCTTTATTACGGCTCCTACCTTTACAAAGAGACCTGAAATATCGGAGT GGCCTGTACTACGGCTCATACCTGTATAAAGAAACATGAAACATCGGGGT GGCCTATATTACGGGTCATACTTATATAAAGAAACATGAAATATTGGAGT GGTCTTTACTACGGCTCCTACCTTTACAAAGAGACCTGAAACATCGGAGT GGTCTTTACTACGGCTCTTACCTGTACAAAGAGACCTGAAACATCGGAGT GGCCTTTACTATGGTTCCTACCTCTACAAAGAAACATGAAACGTCGGGGT GGTCTCTATTATGGTTCCTACCTATATAAAGAGACATGAAACATTGGGGT GGCCTTTATTACGGCTCCTATTTATACAAAGAGACATGGAACATTGGGGT GGTCTCTACTATGGCTCCTACCTATATAAAGAGACGTGAAACATTGGGGT GGTCTCTACTATGGCTCCTACTTGTATAAAGAAACGTGAAACATTGGAGT GGTTTATACTACGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT GGACTCTATTACGGCTCATACCTATATAAAGAAACATGAAACATCGGAGT GGCCTTTACTACGGCTCGTACCTCTACAAAGAGACATGAAACATTGGAGT GGCCTCTACTACGGATCATACCTTTACAAAGAGACATGAAACATTGGAGT GGTCTGTACTATGGCTCCTACCTCTACAAAGAAACTTGAAACATCGGAGT GGCCTATACTATGGATCTTACCTTTACAAAGAAACTTGAAATATCGGGGT GGCCTATATTATGGATCCTATCTCTACATAGAGACATGAAACATCGGGGT GGACTATACTACGGCTCTTACCTTTATAAAGAGACATGAAATATCGGTGT [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] 56 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CGTTCTCCTTCTCCTAGTTATAGCAACAGCCTTCGTAGGGTATGTACTCC CGTTCTCCTTCTCCTAGTAATAGCAACCGCCTTCGTAGGCTACGTCCTTC CGTCCTTCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGCTATGTCCTTC CATTCTTCTTCTTCTCGTAATAGCAACAGCCTTTGTGGGCTACGTCCTCC CGTTCTCCTCCTCCTAGTTATAGGAACCGCCTTCGTAGGCTATGTTCTCC CATCCTCCTCCTCCTAGTTATAGGAACCGCCTTCGTAGGCTACGTTCTTC AATTCTCCTCCTCCTGGTAATAATAACTGCCTTCGTAGGCTACGTTCTCC TATCCTTCTCCTTCTTGTAATGGCAACAGCCTTTGTAGGCTACGTCCTCC TATTCTCCTCCTCCTCGTAATAGCAACAGCCTTCGTGGGCTATGTCCTCC CGTTCTTCTTCGCCTAGTTATAGGAACTGCCTTCGTAGGATACGTTCTTC CATTCTACTTCTTCTCGTGATAGCAACAGCCTTCGTAGGCTACGTCCTCC TATCCTTCTTCTTCTTGTAATAGCAACAGCCTTCGTAGGCTACGTTCTCC TGTCCTTCTCCTCCTTGTAATAGCGACAGCTTTCGTAGGCTACGTTCTCC CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC CGTCCTTCTCCTCCTGGTCATAGGAACTGCTTTCGTCGGCTACGTCCTTC CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC CGTCCTCCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGCTACGTCCTTC TATTCTTCTTCTCCTGGTTATAGGAACTGCCTTTGTAGGCTACGTCCTCC TGTCCTCCTCCTCTTAGTTATAGCAACCGCTTTTGTAGGCTACGTTCTCC TGTCCTCCTCCTTCTAGTTATAGGAACTGCCTTCGTAGGCTACGTCCTTC TGTCCTCCTGCTCCTAGTTATAGGAACTGCTTTCGTAGGTTACGTTCTTC TATTCTTCTTCTCCTAGTTATAGGAACTGCTTTCGTGGGCTACGTCCTTC TGTTCTCCTTCTTTTAGTTATAGGAACTGCCTTCGTGGGCTATGTACTCC TGTCCTCCTCCTCCTTGTAATAGCTACAGCCTTCGTAGGCTACGTTCTTC CGTCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTACGTTCTTC AATCCTTCTTCTTCTTGTAATAGCAACAGCCTTTGTAGGCTACGTTCTTC TGTCCTCCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGTTACGTCCTTC CATCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTATGTCCTCC TATTCTCCTCCTCCTCGTGATAGCCACAGCCTTCGTAGGGTACGTCCTCC CATTCTCCTTCTCCTCGTAATAGCCACAGCTTTCGTAGGCTATGTTCTCC CATTCTTCTTCTCCTAGTCATAGGAACTGCTTTCGTAGGCTACGTCCTTC CATCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTATGTCCTCC AGTTCTTTTACTCTTAGTAATAGGATCTGCCTTCGTTGGCTATGTCCTTC CGTTCTCCTCCTCCTAGTCATAGGAACTGCCTTCGTAGGCTATGTCCTCC TGTCCTCCTCCTCCTAGTTATAGCAACAGCCTTTGTAGGTTACGTTCTCC TGTTCTCCTTCTTTTAGTTATAGGAACTGCCTTCGTGGGCTACGTACTCC TGTCCTCCTCCTATTAGTTATAGGAACTGCTTTCGTAGGTTACGTACTCC CATTCTTCTCTTACTCGTTATAGGAACCGCCTTTGTGGGCTATGTCCTCC CGTTCTTCTTCTTCTGGTTATAGCAACTGCCTTCGTAGGCTACGTCCTCC CGTCCTTCTCCTCCTCGTAATAGCAACAGCCTTCGTAGGCTACGTCCTCC TGTACTTCTTCTCCTAGTTATAGCAACCGCCTTCGTAGGCTACGTCCTCC AGTCCTTCTACTACTAGTCATGATAACAGCCTTCGTTGGCTATGTTCTTC CGTACTACTCCTTCTAGTCATGATGACAGCCTTTGTGGGTTATGTACTCC AATCCTCCTACTACTAGTAATAATAACCGCATCCGTCGGCTATGTCCTCC AATCCTTCTCCTCTTAGTAATAATGACAGCCTTCGTAGGCTATGTGTTGC AGTGCTACTCCTCTTAGTAATAATAACAGCCTTTGTAGGTTACGTATTAC AGTCCTGCTCCTATTAGTTATAATGACTGCCTTCGTGGGCTACGTCCTCC AATTCTCCTCCTCCTAGTTATAATGACTGCCTTCGTGGGCTACGTCCTCC AGTCCTGCTCCTTTTAGTCATGATAACCGCCTTTGTAGGCTACGTCCTCC TGTTCTCCTCCTATTAGTAATAATGACAGCTTTCGTAGGCTACGTCCTAC GGTTCTTCTCCTTTTAGTAATAATAACAGCCTTCGTGGGCTACGTCCTAC CATTCTCCTTCTCCTAGTAATAATAACAGCTTTCGTAGGTTACGTCTTAC AGTTCTTCTCCTCTTAGTAATAATAACAGCTTTCGTAGGCTACGTCCTAC TGTACTCCTCCTCCTAGTTATGATAACCGCATTCGTAGGCTACGTCCTGC TATCCTCCTCCTTCTAGTAATAATAACCGCATTCGTAGGCTACGTCCTGC CGTCCTTCTTCTCCTAGTGATAGCAACTGCGTTCGTAGGCTACGTCCTAC CGTCCTGCTCCTCCTAGTAATAGCAACTGCCTTCGTAGGCTATGTACTCC CGTCCTACTCCTTCTAGTAATGATGACCGCCTTTGTAGGGGATGTCCTTC TGTCCTTCTTCTTTTAGTTATAATGACCGCCTTTGTAGGGTACGTCCTCC AATCCTGCTATTATTAGTGATAATAACAGCATTCGTCGGTTACGTCCTAC TATTCTTCTTCTTCTGGTGATAATAACAGCCTTTGTAGGTTACGTCCTCC [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] 57 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CTTGAGGTCAAATATCCTTTTGAGGAGCTACCGTAATTACCAACCTCCTA CATGAGGACAAATATCCTTCTGAGGGGCAACCGTCATTACTAACCTTCTA CATGAGGACAAATATCATTCTGAGGGGGTACTGTTATTACCAACCTTCTT CCTGAGGACAAATATCCTTCTGAGGGGCTACCGTCATTACTAACCTCCTT CATGAGGACAAATGTCCTTCTGAGGAGCGACTGTCATTACCAACCTCCTA CATGAGGACAAATATCTTTCTGAGGAGCAACCGTCATTACCAACCTCTTA CATGAGGACAGATATCCTTCTGAGGAGCAACTGTCATCACTAACCTCCTA CATGAGGACAAATATCATTCTGAGGGGCTACCGTCATCACGAATCTTCTT CCTGAGGACAAATATCCTTCTGAGGGGCCACTGTTATTACCAACCTCCTT CCTGAGGACAAATATCTTTTTGAGGGGCAACTGTAATCACTAACCTCCTC CCTGAGGGCAAATATCCTTCTGAGGGGCCACCGTCATTACTAACCTCCTC CATGAGGACAAATATCATTCTGAGGAGCTACCGTCATCACCAATCTTCTC CATGAGGACAAATGTCCTTCTGAGGGGCCACCGTCATTACCAACCTCCTC CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG CATGAGGACAAATATCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTA CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG CTTGAGGACAAATGTCATTCTGAGGGGCCACTGTCATTACCAACCTCCTT CATGAGGACAAATATCCTTCTGAGGAGCAACTGTCATCACTAATCTCTTA CATGAGGGCAGATATCCTTCTGAGGAGCGACCGTCATTACCAACCTCCTA CATGAGGACAAATGTTCTTCTGAGGGGCAACCGTCATCACCAACCTACTT CATGAGGACAAATATCCTTCTGAGGGGCAACCGTCATTACTAACCTCCTC CATGAGGACAAATATCCTTCTGAGGGGCAACTGTTATTACCAAACTCTTA CATGAGGACAAATGTCCTTCTGAGGGGCCACCGTCATTACTAACCTCCTG CATGAGGACAAATATCATTCTGAGGGGCTACTGTCATTACCAACCTTCTC CTTGAGGACAAATATCCTTCTGAGGAGCCACTGTCATCACTAACCTCCTT CATGAGGGCAAATATCGTTCTGAGGGGCCACCGTCATTACTAATCTCCTC CGTGAGGACAAATATCATTCTGAGGAGCCACCGTCATCACCAACCTCCTT CGTGAGGGCAAATATCCTTGTGAGGCGCGACTGTCATTACCAACCTCGTT CTTGAGGACAAATATCCTTCTGAGGAGCCACTGTTATTACCAACCTCCTT CCTGAGGACAAATATCCTTCTGAGGGGCCACCGTTATTACCAACCTACTC CATGAGGACAAATATCCTTCTGAGGGGCGACTGTTATTACCAGCCTTTTA CCTGAGGACAAATATCATTCTGAGGGGCCACTGTTATTACCAACCTCCTC CATGAGGACAGATATCTTTCTGAGGGGCAACCGTCATCACCAACCTTCTA CATGAGGGCAAATATCCTTCTGAGGGGCAACCGTCATCACCAACCTCTTA CTTGAGGGCAAATATCCTTTTGAGGGGCAACCGTTATTACTAACCTCTTG CATGAGGACAAATGTCTTTCTGAGGGGCTACCGTTATTACCAACCTTCTG CATGAGGACAAATATCTTTCTGAGGGGCAACTGTTATTACCAACCTTCTT CCTGAGGACAAATGTCATTTTGGGGAGCAACCGTCATTACTAACCTCCTC CATGAGGACAAATATCCTTTTGAGGAGCAACCGTCATTACTAACCTCCTA CATGGGGACAAATATCCTTCTGAGGCGCTACCGTCATTACCAACCTCCTT CCTGAGGACAAATGTCATTTTGAGGGGCAACCGTCATTACTAACCTCCTT CATGAGGACAAATATCCTTTTGAGGCGCCACAGTAATCACAAACCTCCTA CATGGGGCCAAATATCCTTCTGAGGTGCTACCGTTATTACAAATCTTCTA CCTGAGGACAAATATCATTCTGAGGTGCTACCGTTATCACCAACCTCCTC CCTGAGGACAAATATCTTTTTGAGGCGCTACAGTTATTACTAATCTATTA CCTGAGGACAAATATCCTTCTGAGGGGCTACAGTTATTACTAATTTATTA CATGAGGTCAAATATCCTTCTGAGGGGGCACCGTCATCACCAACCTCCTG CATGAGGGCAGATATCCTTCTGAGGGGGCACCGTCATCACTAACCTCCTG CGTGAGGCCAAATGTCTTTCTGGGGGGCCACCGTCATCACCAACCTTCTA CGTGAGGTCAAATGTCTTTCTGAGGAGCAACAGTCATCACCAATTTATTA CCTGAGGCCAAATATCTTTTTGAGGGGCAACAGTTATTACCAATTTATTA CATGAGGCCAAATGTCCTTCTGAGGGGCAACAGTCATCACCAATTTATTA CCTGAGGTCAGATATCTTTCTGAGGGGCAACAGTCATTACTAATTTATTA CGTGAGGACAAATGTCCTTCTGAGGTGCCACCGTCATCACAAACCTCCTC CATGAGGACAAATGTCCTTTTGAGGTGCTACCGTCATCACAAACCTACTC CATGAGGACAAATGTCCTTCTGAGGTGCTACCGTCATTACCAACCTCCTC CCTGAGGACAAATATCATTCTGAGGAGCCACCGTTATTACCAACCTGCTT CATGAGGACAAATGTCTTTCTGAGGGGCCACAGTCATTACAAATCTCCTA CATGAGGACAAATATCTTTCTGAGGGGCTACCGTAATTACAAACCTCCTC CATGAGGCCAAATGTCATTCTGAGGCGCCACCGTAATTACAAACCTTCTT CCTGAGGCCAAATGTCATTCTGAGGTGCAACCGTAATCACTAACCTTTTA [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] 58 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus TCCGCCGTCCCCTATATTCGCGGAACACTCGTCCAATGAATTTGAGGTGG TCCGCTGTCCCTTACGTTGGAGGCACCCTAGTCCAATGAATTTGAGGAGG TCCGCTGTCCCTTATGTAGGCGGTACCCTTGTTCAATGAATTTGAGGGGG TCTGCCGTCCCATATGTAGGCGGCACCCTTGTACAATGAATTTGAGGAGG TCCGCTGTCCCCTACGTCGGAGGGACCCTCGTTCAATGAATCTGGGGTGG TCCGCTGTCCCTTACATTGGCGGTACCCTCGTCCAATGAATCTGAGGGGG TCGGCTGTACCATATGTCGGGAGCACCCTAGTTCAATGAATCTGGGGAGG TCCGCCGTCCCATATGTAGGCGGCACCCTCGTTCAATGAATCTGAGGGGG TCCGCCGTTCCATATGTAGGCGGCACCCTTGTCCAATGAATCTGAGGAGG TCCGCTGTCCCCTACGTCGGCGGCACCTTCGTCCAATGAATTTGAGGCGG TCCGCCGTTCCATACGTAGGTGGCACCCTCGTCCAATGAATCTGAGGGGG TCCGCTGTCCCATATGTAGGTGGTACCCTAGTTCAATGAATTTGAGGGGG TCCGCTGTTCCCTACGTAGGCGGCACCCTTGTCCAATGAATTTGAGGGGG TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGGATCTGAGGCGG TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGAATCTGAGGCGG TCCGCCGTTCCCTACGTAGGGGGAACTCTAGTTCAATGAATCTGAGGGGG TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGGATCTGAGGCGG TCTGCCGTCCCCTATGTAGGTGGCACCCTTGTTCAATGGATCTGAGGAGG TCCGCTGTTCCCTACGTTGGTGGCACTCTCGTCCAATGAATCTGAGGAGG TCCGCTGTTCCCTACATTGGAGGCACCCTAGTCCAATGAATTTGAGGAGG TCCGCCGTCCCTTATGTTGGTGGCACCCTCGTACAATGGATCTGAGGTGG TCTGCCGTCCCCTACGTCGGAGGGACCCTCGTCCAATGGATCTGAGGGGG TCCGCTGTTCCCTACGTTGGCGGCACCCTCGTCCAATGGATCTGAGGAGG TCTGCTGTCCCCTACGTCGGTGGAACCCTCGTTCAATGAATCTGAGGCGG TCCGCCGTCCCATACGTGGGCGGCACTCTCGTTCAATGAATCTGGGGCGG TCTGCCGTTCCATATGTAGGTGGCACCCTTGTTCAATGGATTTGAGGAGG TCTGCTGTCCCATACGTGGGCGGCACCCTCGTCCAATGAATCTGAGGGGG TCCGCCGTTCCCTACGTAGGCGGTACTCTCGTTCAATGGATTTGAGGAGG TCCGCCGTCCCATATGTAGGCGGTACCCTCGTCCAATGAATTTGAGGGGG TCCGCCGTCCCATATGTGGGCGGCACCCTTGTCCAGTGAATTTGAGGTGG TCTGCCGTCCCATACGTCGGCGGCACCCTTGTCCAGTGAATTTGAGGGGG TCCGCTGTTCCCTACGTTGGCAGCACCCTCGTCCAATGAATCTGAGGAGG TCCGCCGTACCATACGTGGGTGGCACTCTCGTACAATGGATTTGAGGGGG TCCGCCGTACCCTACATCGGTGGTACTCTTGTCCAATGATTCTGAGGTGG ACCGCTGTCCCCTACGTTGGCGGCACCCTTGTCCAATGAATCTGGGGAGG TCCGCCGTCCCCTATGTTGGCGGAACACTTGTCCAATGAATTTGAGGGGG TCCGCCGTACCCTACGTCGGCGGCACTCTTGTCCAATGAATTTGGGGGGG TCCGCCGTCCCCTATGTTGGAGGCACTCTTGTCCAATGAATTTGAGGAGG TCCGCGGTTCCCTACGTCGGGGGCACTCTTGTGCAATGAATCTGAGGAGG TCAGCCGTTCCCTACGTTGGAGGCACCCTAGTTCAGTGGATCTGGGGAGG TCTGCCGTCCCATATGTAGGCGGCACCCTTGTACAATGAATCTGAGGGGG TCCGCTGTTCCTTACGTTGGAGGCACTCTTGTACAATGAATCTGAGGGGG TCTGCCGTACCATACATGGGAGACATGTTAGTCCAATGAATCTGAGGTGG TCAGCAGTGCCTTATATAGGGGACACCCTTGTACAGTGGATTTGAGGCGG TCCGCCGTACCCTACGTAGGAGACATCCTAGTCCAATGAATCTGAGGAGG TCCGCCGTACCTTATGTAGGTAATACACTAGTTCAGTGGATTTGAGGGGG TCCGCCGTACCTTATGTAGGCAACACACTAGTTCAGTGAATTTGAGGAGG TCCGCTGTACCCTACGTAGGAAACACTCTCGTCCAATGAATCTGAGGCGG TCCGCTGTTCCATATGTAGGCAACACCCTGGTCCAATGAATCTGAGGCGG TCCGCCGTCCCCTACATCGGTAACACCCTTGTCCAATGGATTTGGGGCGG TCTGCCGTCCCCTATGTAGGAAACACCCTGGTTCAATGAATCTGGGGCGG TCCGCTGTCCCCTATGTAGGGAACACCCTAGTTCAATGAATCTGAGGAGG TCCGCCGTCCCCTATGTAGGAAACACCCTAGTTCAATGGATCTGAGGTGG TCCGCTTTGCCCTATGTAGGAAACACCCTAGTTCAATGAATCTGGGGCGG TCTGCCGTTCCCTACGTCGGAAACACACTAGTCCAATGAATCTGAGGGGG TCAGCCGTCCCCTACGTTGGTAACACTCTCGTTCAATGAATCTGAGGGGG TGTGCGATCCCCTACGTGGGCAACACCCTAGTCCAATGAGTCTGAGGAGG TCTGCCATTCCATACGTCGGCAACACCCTTGTCCAATGAATCTGGGGCGG TCCGCCGTACCTTACGTTGGTAACACACTAGTTCAATGAATCTGAGGGGG TCCGCCGTCCCATACGTAGGCAACACCCTAGTTCAATGAATCTGAGGGGG TCTGCCGTCCCGTATGTCGGAAACACACTAGTTCAATGGATCTGAGGCGG TCCGCAGTCCCGTATGTCGGAAACATACTAGTCCAATGAATTTGAGGAGG [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] 59 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus ATTTTCAGTTGACAATGCAACCCTAACGCGCTTCTTCGCTTTCCACTTCC CTTCTCGGTAGACAACGCAACCTTAACCCGATTCTTCGCCTTCCACTTCC TTTCTCAGTAGACAATGCAACCCTAACCCGATTCTTTGCTTTCCATTTTC CTTTTCAGTAGACAACGCCACCCTCACTCGATTTTTTGCCTTCCACTTCC CTTCTCGGTAGACAATGCAACTCTAACCCGCTTCTTTGCCTTCCACTTCC ATTCTCAGTAGACAATGCAACCCTAACTCGCTTCTTTGCCTTCCATTTTC GTTTTCAGTAGACAATGCAACCTTAACCCGATTCTTTGCCTTCCACTTCC CTTTTCAGTAGACAACGCCACCCTAACCCGATTTTTTGCCTTCCATTTCC CTTCTCGGTCGATAACGCCACCCTCACACGATTCTTCGCCTTCCACTTTC GTTTTCAGTCGACAATGCAACTCTCACCCGTTTCTTTGCCTTCCACTTTC CTTTTCAGTAGATAACGCCACTCTCACACGATTCTTTACCTTCCACTTCC CTTCTCGGTAGATAATGCCACCTTAACCCGATTTTTTGCCTTCCACTTCC CTTCTCTGTAGACAACGCTACCTTAACCCGGTTCTTTGCCTTCCACTTCC ATTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC GTTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC GTTTTCAGTAGACAATGCGACCCTGACCCGCTTCTTTGCCTTCCACTTCC GTTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC CTTTTCAGTAGACAACGCCACCTTAACTCGGTTTTTTGCCTTCCACTTCC GTTTTCAGTAGATAATGCAACACTAACCCGCTTCTTTGCCTTCCATTTTC CTTTTCAGTAGACAACGCAACCCTAACCCGGTTCTTTGCCTTCCACTTCC ATTCTCAGTAGACAATGCAACTTTAACCCGCTTCTTTGCCTTCCACTTCC ATTTTCGGTAGATAACGCCACCCTAACCCGCTTCTTTGCCTTCCACTTTC ATTTTCAGTAGATAACGCCACCTTAACCCGCTTCTTTGCCTTCCACTTTC CTTCTCAGTTGACAATGCAACCCTAACTCGCTTCTTTGCTTTCCACTTCC CTTTTCAGTAGACAACGCTACCCTAACCCGATTCTTCGCCTTCCACTTCC CTTTTCAGTAGACAATGCCACCTTAACTCGGTTCTTTGCCTTCCACTTCC CTTCTCAGTAGATAACGCCACCCTAACCCGATTTTTTGCCTTCCACTTTC CTTCTCAGTAGATAACGCTACCCTAACCCGATTCTTTGCCTTCCACTTCC CTTTTCGGTAGATAACGCCACTCTCACACGATTCTTTGCCTTCCACTTCC CTTTTCAGTAGATAACGCCACTCTCACACGATTCTTTGCCTTCCACTTCC CTTTTCAGTAGACAACGCCACCCTAACCCGATTTTTTGCCTTCCACTTCC ATTTTCAGTTGATAACGCCACCTTAACCCGCTTCTTTGCCTTCCACTTTC GTTTTCAGTAGATAACGCCACCCTCACACGATTCTTCGCCTTCCACTTCC CTTTTCAGTTGACAACGCAACCCTTACCCGCTTCTTTGCCTTCCATTTCC GTTGTCAGTTGACAACGCAACACTAACCCGCTTCTTTGCCTTCCACTTTC GTTTTCAGTTGACAACGCAACCCTAACCCGCTTCTTCGCTTTCCACTTCC CTTTTCAGTCGACAACGCAACCCTAACCCGCTTCTTTGCCTTCCACTTCC GTTTTCAGTTGATAATGCAACCCTGACCCGCTTCTTTGCCTTCCATTTCC TTTTTCAGTAGACAATGCAACCCTAACCCGTTTCTTTGCCTTCCACTTCC TTTCTCAGTCGACAACGCAACCTTAACCCGATTCTTTGCCTTCCACTTCC CTTCTCAGTAGATAACGCCACCCTAACCCGATTCTTTGCCTTCCACTTCC GTTCTCAGTAGACAATGCAACCTTAACCCGCTTCTTCGCCTTCCACTTCC GTTCTCAGTAGACAATGCAACACTAACACGATTCTTCGCATTCCACTTCC CTTTTCAGTAGATAACGCCACGTTAACACGATTCTTCGCCTTCCACTTCC CTTCTCAGTTGACAACGCAACCCTCACCCGATTCTTTGCCTTCCACTTCC CTTTTCAGTAGATAACGCCACTCTTACACGGTTCTTCGCGTTCCACTTCC GTTTTCAGTAGATAACGCCACCCTCACACGGTTCTTCGCATTCCACTTCC CTTTTCAGTAGACAATGCCACCCTTACCCGCTTCTTCGCCTTCCACTTTT TTTTTCAGTAGATAACGCCACCCTTACCCGCTTTTTCGCTTTCCACTTTC GTTTTCAGTAGATAACGCCACCCTTACCCGTTTCTTCGCTTTCCACTTCC CTTTTCAGTCGATAACGCTACACTCACACGATTCTTTGCTTTCCACTTCC CTTCTCAGTTGATAATGCCACACTCACACGATTCTTCGCTTTCCACTTCC CTTTTCAGTTGATAACGCCACACTCACACGATTCTTTGCTTTCCACTTCC CTTCTCAGTTGATAACGCCACACTCACACGATTCTTCGCTTTCCACTTCC CTTCTCTGTAGACAATGCAACGCTAACTCGCTTCTTTGCCTTCCATTTCC TTTCTCCGTTGACAACGCCACCCTCACTCGATTCTTTGCCTTCCACTTCC CTTTTCGGTAGATAACGCCACCCTCACCCGATTCTTCGCATTCCACTTCC CTTCTCAGTAGACAACGCCACCCTAACCCGCTTCTTCGCATTCCACTTCC ATTCTCAGTAGACAACGCAACACTAACCCGCTTCTACGCCCTCCACTTCC CTTTTCGGTTGACCACGCAACCCTAACCCGATTCTTCGCCTTCCACTTCT ATTCTCAGTAGATAATGCCACCCTCACCCGATTCTTTGCATTCCACTTCC CTTCTCAGTTGACCACGCCACACTCACCCGTTTCCTTACCTTCCACTTCC [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] 60 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus TCCTCCCTTTTATTGTAGCCGCTATAACTATACTCCACCTCCTCTTCCTA TCCTTCCATTCATCGTAGCAGCAATAACTATGCTCCACCTCCTATTCCTG TCCTCCCCTTTATTGTTGCAGCCATAACTATACTTCACCTTCTCTTCTTA TTCTGCCCTTTATTGTTGCAGCCGTAACTATACTTCACCTTCTTTTCCTA TCCTCCCCTTCGTCGTTGCAGCCATGACCATGCTTCACCTCCTCTTCCTA TTCTTCCCTTTGTTGTCGCAGCCATAACCATGCTTCACCTCCTATTCCTG TTTTCCCCTTTGTTGTTGCAGCTATAACTATGCTGCACCTCCTTTTCCTA TCCTTCCCTTTATTGTCGCAGCCGTAACTATACTCCACCTTCTCTTCCTG TCCTGCCCTTTATTGTTGCAGCCATAACCATGCTTCATCTTCTTTTCTTA TCCTCCCCTTTATCGTTGCAGCTATAACTATACTCCACCTACTGTGCCTT TTCTACCCTTTATCGTTGCAGCTATAACTATACTTCACCTCCTTTTCTTA TCCTCCCCTTTATTGTTGCGGCCGTAACTATGCTCCACCTTCTTTTTCTG TTCTGCCCTTCATTGTAGCAGCCATAACCATACTTCATCTTCTTTTCTTA TTCTCCCCTTCATTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG TTCTCCCCCTCGTTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG TTCTTCCCTTCATTATTGCTGCCATGACCATGCTTCACCTCTTATTCCTG TTCTTCCCTTCGTTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG TCTTCCTCTTTATTGTTGCAGCCATAATCATACTTCATCTTCTTTTCTTA TTCTTCCCTTTGTTGTCGCAGCCATAACCTTACTTCACCTACTGTTCCTG TCCTTCCATTCATCGTAGCAGCAATAACAATACTTCACCTTCTATTCCTA TCCTTCCCTTCATTGTTGCCGCTATGACAATGCTCCATCTGCTATTTCTT TCCTTCCCTTTATTGTTGCCGCCATAACTATGCTCCACCTCCTATTTTTA TCCTTCCCTTTGTTGTCGCAGCCATAACCATACTTCACCTACTATTCTTA TCCTACCCTTCGTCGTAGCCGCTATAACCATACTGCACCTCTTATTCCTT TCCTGCCCTTCATTGTTGCAGCCATAACCATACTACATCTTCTCTTCTTA TTCTACCTTTTATTGTTGCAGCCATGACTATACTTCACCTTCTTTTCTTA TCCTGCCTTTCATTGTTGCAGCCGTAACCATACTCCATCTTCTTTTCTTA TCCTTCCCTTTATTGTTGCAGCCATAACTATGCTTCACCTTCTTTTCCTA TCCTGCCCTTTATTGTTGCAGCCATGACCATGCTTCACCTTCTTTTCTTA TCCTGCCCTTTATTGTTGCAGCCATAACCATGCTTCACCTTCTTTTCTTA TCCTGCCCTTTATCGTCGCAGCCATAACCATACTTCACCTTCTTTTCCTC TCCTCCCCTTTGTTGTCGCAGCCATAACCATACTTCACCTACTATTCCCG TCCTACCATTTATCGTCGCAGCTATAACCATACTCCACCTTCTTTTCTTA TCCTCCCCTTTATTGTTGCAGCCATAACTATGCTTCACCTCCTATTCCTT TCCTTCCCTTCGTCGTTGCGGCTATAACCATACTTCATCTCCTTTTCCTG TCCTCCCCTTTATTGTTGCCGCCATGACTATACTCCACCTCCTCTTCCTA TCCTCCCCTTTATTGTTGCAGCCATGACTATGCTACACCTTCTATTCCTT TTCTCCCCTTCGTCATTGCAGCCATAACCATACTGCATCTTCTGTTCCTC TTCTTCCCTTCATTGTTGCAGCTATGACCATACTTCACCTCTTATTCCTA TCCTCCCCTTTATTGTTGCAGCAATAACTATGCTCCACCTCCTATTCCTA TTCTGCCCTTTATTGTAGCAGCCATAACTATACTTCACCTTCTTTTCTTA TCCTTCCTTTCATTGTTGCAGCCATAACCATACTTCACCTCTTATTCCTG TACTACCATTTGTTATTGCCGCCGCAACCATCATCCACCTGCTGTTCCTC TGTTCCCATTCGTCATCGCCGGCGCAACTGTTCTCCACTTACTATTTTTA TACTTCCCTTTGTAGTCGCAGCCATAATAATCCTCCATCTCTTATTCCTA TATTCCCATTCGTAATCGCTGGTGCCACAATACTACACCTCCTTTTTCTT TCTTTCCATTCGTAATTGCAGGTGCCACCCTTCTGCACCTTCTTTTCCTC TATTCCCCTTCATTATTGCGGGGGCAACCGTCATCCATCTGCTTTTCCTC TGTTCCCCTTCGTTATTGCGGGAGCAACCCTCATCCATCTGATTTTCCTC TATTCCCCTTCGTCATTGCGGGTGCAACGTTTATTCACCTGCTTTTCCTT TTTTCCCATTCATCATTGCCGCCGCCACCCTCTTACACCTCCTCTTTCTC TCTTCCCATTTGTCATCGCTGCTGCCACCGTCTTACACCTTTTGTTCCTC TTTTCCCATTCATCATTGCCGCTGCCGCTATCTTACACCTCCTCTTCCTC TCTTCCCGTTCGTCATTGCTGCTGCCACCATTTTACACCTCCTTTTCCTT TTCTCCCCTTCATCATCGCCGCCGCAACGGTCATCCACCTTCTTTTCCTC TTCTTCCACTTATCGTTACAGCTGCAACCCTAATTCACCTCTTATTCCTC TTCTACCCTTTATCATCGCAGCAGTAACCATACTCCACCTCCTATTCCTG TCCTCCCGTTCATCATTGCAGCCGTTACAATACTACACCTGCTTTTCCTC TCTCTCCATTCGTAATTGCAGCAGCCACAACACCTCACCTCCGGTTCCTA TATTCCCCTTCGTCATTGCAGCAGCCACTATACTTCACCTTCTTTTCCTC TATTCCCATTTGTCATTGCCGCTATAACCCTCCTACATTTGCTTTTCCTA TCTTCCCGTTTGTAATTGCAGCTGCTACCCTCCTTCACCTTCTGTTCCTC [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] 61 Aanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CATGAAACAGGCTCAAACAATCCTCTAGGTTTAAACTCCGACACGGACAA CACGAAACAGGATCAAACAACCCCCTCGGCCTAAACTCCGACACAGACAA CACGAAACGGGCTCAAATAATCCTCTGGGCCTAAACTCAGACACAGATAA CATGAAACTGGCTCAAATAACCCCCTCGGGCTAAACTCAGACGCAGATAA CACGAAACAGGCTCAAACAACCCAATCGGCCTAAACTCTGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGTCTAAACTCTGACACAGACAA CACGAAACAGGCTCAAATAACCCCCTCGGCCTAAACTCCGACACAGATAA CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAACTCAGACACAGACAA CATGAGACAGGTTCAAATAACCCTCTCGGCCTAAACTCAGACACAGACAA CACGAAACAGGCTCAAACAACCCCCTCGGCCTGAACTCTGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGTTTAAACTCAGACACAGACAA CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAACTCCGACACGGACAA CACGAAACAGGCTCAAACAATCCCCTCGGCCTAAACTCAGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGATACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA CATGAAACAGGCTCATATAATCCCCTCGGGGTAAATTCAGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGTCTAAACTCTGATACAGACAA CACGAAACAGGATCAAACAATCCCCTCGGCCTAAACTCCGACACAGATAA CACGAAACAGGCTCAAACAACCCCCTCGGTCTCAACTCCGACACAGATAA CATGAAACAGGCTCAAATAACCCCCTTGGCCTAAACTCTGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGTCTTAACTCTGATACAGATAA CATGAAACAGGTTCAAACAATCCACTCGGCCTAAATTCTGATACAGACAA CATGAAACAGGATCAAACAACCCCTTAGGCCTAAACTCAGACACAGACAA CACGAAACAGGCTCAAATAACCCTCTCGGCTTGAACTCAGATACAGACAA CACGAGACAGGCTCAAACAATCCCCTAGGTTTAAACTCAGATACAGACAA CACGAAACAGGCTCAAACAACCCCCTCGGCTTAAACTCAGACACAGACAA CACGAAACAGGCTCAAACAACCCACTCGGCTTAAACTCAGACGCGGACAA CATGAAACAGGCTCAAACAATCCCCTCGGTCTAAACTCAGACACAGACAA CACGAGACAGGTTCAAACAACCCGCTCGGCTTAAACTCAGACACAGATAA CATGACACAGGCTCAAACAACCCCCTTGGCCTTAATTCTGACACAGATAA CATGAAACAGGCTCAAACAACCCCCTAGGACTGAACTCAGACGCAGACAA CATGAAACAGGCTCTAATAACCCCCTCGGACTAAATTCTGACACAGACAA CACGAAACTGGTTCAAATAACCCCCTCGGCCTAAACTCCGACACAGATAA CACGAAACAGGCTCCAACAACCCCCTCGGCCTGAACTCCGACACAGACAA CATGAAACAGGCTCTAACAACCCCCTTGGTCTAAACTCTGACACGGACAA CATGAAACAGGCTCTAACAACCCCCTCGGCCTAAATTCTGACACAGATAA CACGAAACTGGCTCAAACAACCCCCTTGGCCTAAACTCTAACACAGACAA CATGAAACAGGCTCAAACAATCCCCTCGGCCTAAATTCTGACACAGACAA CACGAAACAGGCTCAAACAACCCTCTCGGCCTAAATTCAGACACAGACAA CACGAAACCGGGTCTAACAACCCCCTCGGCCTAAACTCTGACACAGACAA CACGAAACAGGATCAAACAACCCGATCGGACTAAACTCAGACGCAGACAA CACGAAACAGGCTCGAACAACCCTGCCGGGTTAAACTCCGACGCCGATAA CACGAAACAGGCTCAAACAACCCAATAGGCCTAAACTCCAACGTAGACAA CATCAAACGGGCTCCAATAACCCCTTAGGCCTTAACTCAGATGTAGATAA CACCAGACCGGCTCCAACAACCCCCTGGGCCTGAACTCAGACGTGGACAA CACGAAACAGGATCCAACAACCCCCTTGGCCTTAACTCCGACGCGGACAA CACGAAACAGGATCCAACAACCCCCTTGGGCTTAACTCCGAAGCGGACAA CATGAAACAGGGTCCAACAACCCCCTTGGCCTCAACTCCGACGCAGATAA CATGAGACAGGCTCCAACAATCCTCTAGGCCTCAACTCCGATGTGGATAA CATGAAACAGGGTCCAACAACCCCTTAGGCCTTAACTCTGATGTAGACAA CACGAAACAGGGTCTAATAATCCCCTAGGCCTCAACTCTGATATAGATAA CATGAGACGGGGTCCAATAATCCCTTAGGCCTCAACTCTGATGTAGATAA CACCAAACAGGCTCGAACAATCCCCTCGGCCTAAACTCAGACGCAGACAA CACGAAACAGGATCAAACAATCCCCTTGGACTGAACTCAGACGCCGACAA CACGAAACTGGGTCAAACAACCCTCTCGGCCTAAACTCAGACGCGGACAA CACGAAACAGGGTCTAACAACCCTCTAGGCCTAAACTCAGACGTAGACAA CACGAAACCGGGTCAAACAACCCCCTGGGCCTAAACTCAGACTCAGATAA CATGAGACTGGCTCAAATAACCCTTTGGGACTAAACTCAGACTCGGACAA CACGAAACAGGCTCCAACAACCCCCTAGGCCTCTCATCAGACACAGATAA CACGAAACCGGCTCAAATAACCCCCTCGGACTTAATTCTGATACAGATAA [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] 62 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTTCTAGGTTTCGCTG AATTTCATTCCACCCTTACTTCTCATACAAAGACCTCCTGGGATTCGCAG AATTTCCTTCCACCCGTACTTCTCTTACAAAGACCTACTGGGATTTGCAG AATTTCCTTCCACCCATATTTCTCTTATAAAGACTTGCTCGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCTTACAAAGATTTGCTAGGATTTGCAG AATTTCTTTTCACCCATACTTCTCTTACAAAGACCTCTTAGGATTTGCAG AATCTCCTTCCATCCATACTTTTCTTACAAAGATCTCCTAGGATTTGCGG AATTGCTTTCCACCCCTACTTCTCTTACAAGGACCTACTTGGTTTCGCAG GATTTCCTTTCACCCTTACTTTTCTTACAAAGACTTACTTGGATTTGCAG AATTTCCTTCCACCCCTATTTCTCATACAAAGACCTTCTGGGCTTTGCAG AATTTCCTTCCACCCTTACTTTTCTTACAAAGACTTACTTGGATTTGCAG AATTTCTTTCCACCCTTACTTCTCTTACAAAGACCTCCTTGGATTTGCAG AATTTCTTTCCACCCATACTTTTCTTACAAAGACTTACTTGGGTTCGCAG AATTTCTTTCCACCCATACTTCTCCTACAAAGACCTTCTAGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCCTATAAAGACCTTCTAGGGTTTGCAG AATTTCTTTCCACCCATACTTTTCCTACAAAGACCTTCTAGGATTTGCAG AATTTCCTTCCACCCATACTTCTCCTATAAAGACCTTCTAGGCTTTGCAG AATCTCTTTCCACCCATACTTATCTTACAAAGACCTGCTTGGTTTTGCAG AATTTCTTTTCACCCATACTTTTCTTATAAAGACGTTTTAGGATTTGCAG AATTTCATTCCACCCATACTTCTCATACAAAGACCTCCTAGGATTCGCAG AATTTCATTCCACCCATACTTTTCTTACAAGGACCTTTTAGGCTTTGCGG AATTTCTTTCCACCCATATTTCTCCTACAAAGACCTTTTAGGATTCGCAG AATTTCTTTTCACCCATATTTTTCTTACAAAGACCTTTTAGGATTTGCAG AATTTCTTTTCACCCATACTTCTCTTACAAAGACCTACTAGGATTTGCAG AATTTCCTTCCACCCATACTTTTCTTACAAAGACCTACTCGGCTTCGCAG AATCTCTTTCCACCCATATTTTTCCTACAAAGACCTGCTCGGTTTCGCAG AATCTCCTTCCACCCTTATTTCTCTTATAAAGACCTACTTGGGTTTGCAG AATCTCCTTCCACCCATATTTCTCTTATAAAGACCTACTTGGATTCGCAG GATTTCTTTCCACCCATACTTTTCTTACAAAGACTTACTTGGATTTGCAG AATTTCTTTCCACCCTTACTTTTCTTACAAGGACTTACTTGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTGCTTGGATTTGCAG AATCTCTTTTCACCCATACTTTTCTTATAAAGACCTTTTAGGATTTGCAG AATCTCTTTTCATCCCTACTTTTCCTATAAAGACCTACTTGGGTTTGCAG AATTTCGTTCCACCCATACTTTTCTTATAAAGACCTCCTTGGATTTGCAG AATGTCATTCCATCCATACTTTTCTTACAAAGACCTGCTAGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCTTATAAAGACCTCCTAGGATTTGCAG AATCTCGTTCCACCCATACTTTTCTTACAAAGATCTTCTTGGATTTGCAG AATTTCTTTCCACCCATACTCCTCATATAAAGACCTTCTTGGATTCGCAG AATTTCCTTTCACCCATACTTCTCTTACAAAGATCTGCTAGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCTTACAAGGATTTATTAGGGTTCGCAG AATTTCTTTCCACCCATATTTTTCTTACAAAGACCTGCTTGGATTTGCAG AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTATTGGGATTTGCAG AGTCTCTTTCCACCCGTACTTCTCATACAAAGACCTCCTTGGGTTCGTAA AATCTCCTTCCACCCTTACTTCTCCTATAAAGACCTCCTTGGCTTCGTTC AATCCCATTTCACCCCTACTTCTCCTACAAAGACCTCCTCGGCTTCGTAG AATCTCATTCCACCCCTACTTCTCATACAAAGATCTCCTAGGGTTCGCAA AATTTCATTCCACCCTTACTTCTCATACAAAGACCTTCTCGGCTTCGCAA AATCCCCTTCCACCCGTACTTCTCCTATAAAGACCTGCTCGGCTTTGCGG AATCCCTTTCCACCCGTATTTCTCCTACAAAGACCTGCTAGGATTTGCAG AATCCCCTTCCACCCGTACTTTTCCTACAAAGACCTGCTAGGGTTCGCAG AATCCCATTCCACCCCTATTTTTCATACAAAGACCTCCTAGGAGCCACAG AATCCCATTTCACCCCTACTTTTCATACAAAGACATTTTAGGCTTCGCAG AATCCCATTCCACCCCTACTTTTCATACAAAGACCTCCTAGGGTTCACAG AATTCCATTCCACCCCTATTTCTCATACAAAGATCTTTTAGGGTTCGCAG AATCTGATTCCACCCATATTTCTCATATAAAGACCTCCTAGGCTTTGCAG AATCTCATTCCACCCCTATTTGTCCTACAAAGAGGTGTTAGGCTTTGTAG AATGTCTTTCCACCCCTACTTCTCATACAAAGACCTCCTAGGCTTCGTAG AATCTCCTTCCACCCTTACTTCTCCTATAAAGACCTACTAGGCTTCGTGG AATCTCCTTCCACCCCTACTTCTCCTACAAAGACCTCCTAGGATTTGCAG AATTTCTTTCCACCCTTACTTCTCCTATAAAGACCTGCTAGGATTTGCAG AATCTCTTTCCATCCATACTTCTCCTACAAGGACCTTCTGGGCTTTGCAG AATCTCTTTCCACCCATACTTCTCATACAAAGACCTTATCGGCTTCGCAG [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] 63 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus GTGTGATTATTCTACTAACTTGTCTTGCACTATTCGCCCCCAATCTTCTT GTGTAATTATTTTACTAACCTGCCTCGCATTATTCGCCCCCAGCCTCTTA GTGTGATTATCCTATTAACTTGCCTCGCATTATTTGCCCCTAACCTCCTA GGGTGCTCATCTTACTAACCTGCCTCGCACTATTTTCTCCTAACCTCTTA GCGTAATTATTCTACTCACTTGCCTTGCATTATTCGCCCCCAACCTTCTA CTGTAATCATTTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCCTG GGGTAATCATTTTACTAACCTGCCTCGCACTATTTTCCCCCAACCTCTTA GCGTAATTATCTTATTAACCTGCCTCGCACTATTTGCCCCCAACCTGCTA GAGTAATTATTTTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCTTA GAGTAATCATTTTACTAACCTGCCTCGCGCTATTCGCCCCCAACCTCTTA GAGTAATTATCTTATTAACCTGCCTCGCACTATTTGCTCCCAACCTCCTA GCGTCATTATCTTACTAACCTGTCTCGGACTATTTGCCCCTAACCTCTTA GCGTAATTATCTTGTTAACCTGCCTCGCACTATTTGCCCCCAATCTCCTA GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC GTGTAATTATTCTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTC GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC GCGTAATTATTTTATTAACCTGTCTAGCACTATTTGCTCCAAACCTCCTA GCGTGATCATTCTATTGACTTGCCTGGCATTATCTGCCCCCAACCTCCTA GCGTAATCATTCTACTAACCTGCCTCGCACTATTTGCCCCCAATCTCTTA GAGTAATTATTCTGTTAACCTGCCTGGCACTGTTTGCCCCCAACCTCCTT GCGTAATCATCTTACTGACCTGTCTTGCACTATTTGCCCCCAACCTTCTT GGGTAATCATTCTACTAACTTGCCTTGCATTATTTGCCCCCAACCTCCTA GCGTAATCATTCTATTAACCTGCCTTGCACTATTTGCCCCTAACCTTCTC GCGTAATTATTCTACTAACTTGTCTTGCACTATTTGCCCCTAACCTCTTG CCGTGATCATTTTATTAACTTGCCTTGCACTATTCACCCCGAACCTGCTA GCGTAGTCATTCTACTAACCTGCCTTGCATTATTTGCCCCTAACATCTTA GCGTAATTATTCTATTAACCTGTCTTGCACTATTCGCCCCCAACCTCCTG GAGTAATTATTTTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTA GGGTAATTATCTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCTTG GCGTAATCATCCTACTAACCTGCCTTGCACTATTTGCCCCCAACCTGTTA GGGTAATCATTCTACTGACTTGCCTTGCATTATTTGCTCCCAACCTCCTG GGGTAATCATCCTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTG GCGTAATTATGTTATTAACCTGCCTCGCTTTATTTGCCCCCAACCTACTT GCGTAATCATTTTATTAACCTGCCTTGCACTGTTTGCCCCCAACCTCCTA GCGTAATTATTCTATTAACTTGCTTAGCATTATTTGCCCCCAACCTGCTT GCGTAATTATCCTTCTCACTTGCCTTGCCTGATTTGCCCCAAACCTGCTC CTGTAATTATCTTATTAACTTGTCTTGCCCTATTCGCCCCTAATCTCCTA GCCTGCTTATTTTATTAACCTGCCTCGCATTATTCGCCCCCAACCTCCTG GCGTAAATATTTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCCTG GCGTGATTATACTACTAACCTGCCTCGCACTATTCGCCCCCAACCTCTTA CTGTAATTATCCTATTAACCTCCCTTGCTCTATTTGCCCCCAACCTTCTA TTATACTCCTAGCTCTTACACTACTAGCACTATTCTCCCCTAACTTACTA TGTTATTGCTGGCCCTCACCTCTCTAACGTTTTTCTCCCCCACCCTGCTC TTCTACTCTTCACCCTCACCTCCCTGGCCCTATTCCTGCCAAACCTCTTA TTGTTCTAATTGGATTAACTAGCCTCGCACTGTTTTCCCCTAACCTCCTA TCGTTTTAATTGGCCTAGCTAGCCTCGCACTGTTCTCCCCCAACCTGCTG TTCTTCTAACCGCACTCGCCTCGCTAGCACTATTCTCCCCCAACCTCCTG TTCTTCTAACCGCACTTGCCTCGCTAGCGCTATTCTCCCCTAACCTCCTC TCCTTTTAACCGCACTCGCCGCACTAGCGCTCTTTTCTCCGAACCTCTTA CCGTTCTAATTGGCCTCACCTCCCTCGCCTTATTCTCCCCCAACCTCCTA CCGTCCTAGTTGGCCTGACTTCTCTCGCCCTGTTCTCCCCAAACATCTTA CCGTCCTAATTAGCCTCACCTCCCTCGCCTTATTTTCTCCTAACCTCCTG CCGTCCTAATTGGTCTCACCTCTCTTGCCTTATTCTCCCCTAACCTCTTA TTCTACTTATTGCCCTCACATGCCTGGCCCTCTTCTCCCCCAACCTCCTC TACTCCTCATTGCACTCGCATGCCTAGCCCTCCTTTCCCTTAACCTGCTA TCGTACTGATCGCACTAGTCTGCCTGGCATTATTTGCCCCCAACCTTCTA TCGTTCTTATCGCACTAACCTCCCTAGCACTATTCTCACCCAACCTTCTT CAGTGTTAATTGCCCTGACCTCTCTTGCTCTCTTCTCACCCAATTTGCTA CAGTACTAATTGCTCTTACCTCCTTAGCCCTATTCTCTCCTAACCTCCTT CCGTCATCATCTTTCTTACATGCTTAGCACTATTTTCCCCCAACCTCTTA CCATTCTTATTACCCTTACTTGCCTTGCTCTCTTCTCCCCTAATCTCCTT [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] 64 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus GGAGACCCAGACAACTTCACCCCCGCAAACCCTCTAGTTACCCCACCCCA GGAGACCCAGACAACTTTACCCCTGCAAACCCACTAGTTACCCCACCCCA GGAGACCCAGATAACTTCACACCTGCAAATCCCCTCGTCACTCCCCCTCA GGAGATCCAGACAACTTTACCCCTGCAAATCCTCTAGTCACCCCTCCACA GGAGACCCAGACAACTTCACCCCCGCAAACCCGCTAGTCACACCACCCCA GGAGACCCCGACAACTTTACCCCAGCAAACCCACTGGTCACTCCACCCCA GGCGACCCAGATAACTTTACACCTGCAAATCCTCTAGTCACCCCTCCTCA GGAGATCCAGACAATTTCACGCCTGCAAACCCATTAGTCACTCCCCCCCA GGAGATCCAGACAATTTCACTCCTGCAAACCCACTAGTTACCCCTCCCCA GGAGACCCAGACAACTTCACCCCAGCGAATCCCCTAGTCACCCCTCCCCA GGAGACCCTGACAATTTTACCCCTGCAAACCCACTAGTTACCCCTCCCCA GGAGACCCAGACAATTTTACACCTGCAAACCCACTAGTCACACCCCCTCA GGCGACCCGGACAACTTCACCCCCGCAAACCCATTAGTTACTCCTCCCCA GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCACCACA GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCACCACA GGAGACCCAGACAACTTCACCCCAGCCAACCCTTTAGTCACACCACCACA GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCGCCACA GGAGACCCAGATAATTTCACCCCTGCAAACCCTCTAGTCACTCCCCCTCA GGAGACCCAGACAACTTCACCCCAGCAAACCCACTAGTTACACCACCCCA GGAGACCCGGACAACTTCACCCCTGCAAACCCCCTTGTCACCCCACCCCA GGCGACCCAGATAATTTTACCCCAGCAAACCCTCTAGTTACCCCACCCCA GGGGACCCGGATAACTTCACCCCAGCAAATCCTTTAGTCACTCCGCCCCA GGAGACCCAGACAACTTCACCCCTGCGAATCCATTAGTTACCCCTCCCCA GGAGACCCAGACAACTTCACCCCAGCAAACCCCCTAGTCACCCCTCCCCA GGAGACCCAGACAATTTTACACCAGCCAACCCACTAGTTACCCCTCCTCA GGAGACCCAGACAATTTCACCCCCGCGAACCCCCTAGTCACTCCCCCTCA GGAGACCCAGACAATTTTACGCCTGCAAACCCATTAGTTACCCCCCCCCA GGAGATCCGGACAATTTTACGCCTGCGAACCCACTGGTTACACCCCCTCA GGAGATCCAGACAACTTCACCCCTGCAAACCCCCTAGTCACCCCTCCCCA GGAGACCCAGACAATTTCACTCCTGCAAACCCGCTAGTTACCCCTCCCCA GGAGACCCAGACAATTTCACCCCTGCAAATCCATTAGTCACCCCTCCCCA GGAGACCCAGACAACTTCACCCCTGCAAATCCACTAGTTACCCCTCCCCA GGAGACCCAGACAATTTCACCCCTGCAAACCCCCTGGTCACCCCCCCCCA GGAGACCCAGATAACTTCACCCCTGCAAACCCCTTAGTTACCCCTCCCCA GGAGACCCCGACAACTTCACCCCAGCAAATCCTCTAGTTACCCCGCCCCA GGAGACCCAGATAACTTCACCCCCGCAAACCCATTAGTCACCCCTCCCCA GGGGACCCTGAGAATTTTACCCCGGCAAACCCCCTAGTCACCCCTCCCCA GGGGACCCAGACAATTTCACCCCGGCAAATCCTCTAGTTACCCCTCCTCA GGAGACCCTGACAACTTCACGCCTGCAAACCCCTTGGTCACCCCCCCCCA GGAGACCCCGATAATTTTACCCCTGCAAACCCACTAGTTACTCCACCCCA GGAGACCCGGACAACTTCACCCCCGCAAACCCCCTAGTTACCCCTCCCCA GGAGACCCCGACAATTTTACACCTGCAAATCCTTTAGTTACCCCCCCCCA GGAGACCCAGAAAACTTCACCCCCGCAAACCCTCTAGTTACACCACCCCA GGCGACCCAGAGAACTTCACCCCGGCGAACCCGCTAGTTACCCCACCGCA GGAGACCCCGACAACTTCACCCCCGCAAACCCACTAGTTACCCCACCCCA GGAGACCCAGACAATTTTACACCAGCCAATCCGCTGGTAACCCCTCCCCA GGGGACCCGGACAACTTTACACCCGCCAACCCACTCGTAACCCCGCCCCA GGTGATCCGGACAATTTCACCCCCGCAAACCCGCTAGTTACGCCCCCACA GGTGACCCGGACAATTTCACCCCTGCAAACCCATTAGTTACTCCCCCACA GGTGACCCGGATAATTTCACCCCAGCGAACCCGCTAGTCACTCCCCCACA GGGGACCCAGACAACTTCACGCCCGCCAACCCACTCGTGACGCCCCCTCA GAGCACCAAGATAACTTCACGCCAGCCAACCCCCTTGTGACTCCTCCTCA GGGGACCCAGACAACTTCACGCCTGCCAACCCACTCGTAACACCCCCTCA GGGGATCCAGATAACTTCACACCAGCCAACCCACTCGTAACGCCCCCGCA GGAGACCCAGACAATTTCACACCAGCCAACCCCTTAGTTACCCCACCTCA GGAGACCCAGACAACTTCACTCCCGCCAACCCCCTAGTGACACCACCTCA GGCGACCCAGACAACTTCACCCCAGCCAACCCCCTAGTGACTCCCCCTCA GGCGACCCAGACAACTTCACCCCCGCCAACCCCCTAGTGACACCCCCACA GGGGACCCAGACAATTTCACGCCCGCCAACCCACTAGTCACCCCTCCCCA GGTGACCCAGACAACTTCACCCCCGCCAACCCCCTGGTTACTCCGCCCCA GGAGACCCAGACAATTTCACCCCTGCAAACCCGCTAGTCACCCCACCCCA GGAGACCCCGACAATTTTACCCCAGCCAACCCGCTAGTTACCCCTCCACA [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] 65 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CATTAAACCCGAATGATATTTCCTATTTGCATACGCTATCCTACGCTCAA CATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTCCGTTCCA TATTAAACCCGAGTGATACTTCCTGTTTGCATATGCAATTCTGCGCTCAA TATTAAGCCCGAATGATACTTTTTATTTGCATACGCAATTCTCCGCTCTA CATTAAGCCTGAGTGATACTTCCTGTTTGCCTATGCCATTCTACGCTCAA CATTAAACCCGAGTGGTACTTCTTATTTGCATACGCAATTTTACGCTCAA CATCAAGCCTGAATGATATTTCCTGTTTGCATACGCAATTCTACGATCGA TATTAAACCTGAATGATACTTCCTGTTTGGTTACGCAATTCTCCGCTCAA TATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTCCGCTCTA CATTAAGCCTGAATGATACTTCTTATTCGCATACGCGATCCTACGCTCAA TATTAAACCCGAATGATATTTTCTATTTGCTTACGCAATTCTCCGCTCTA TATCAAGCCTGAATGATATTTCCTATTTGCATACGCAATTCTCCGGTCAA CATTAAGCCTGAGTGATATTTCCTATTTGCTTATGCAATCCTCCGCTCAA TATCAAGCCTGAATGAAACTCCCTATTTGCGTACGCGATTCTACGCTCAA TATCAAGCCTGAATGATACTTCCTATTTGCGTACGCGATTCTGCGCTCAA TATCAAGCCAGAATGATACTTCCTGTTTGCGTACGCAATTCTACGCTCGA TATCAAGCCTGAATGATACTTCCTATTTGCGTACGCGATTCTGCGCTCAA TATTAAGCCCGAATGGTATTTCCTATTTGCATACGCGATTCTACGCTCGA TATTAAGCCCGAATGATATTTCTTATTCGCGTACGCAATTCTGCGCTCAA CATTAAACCCGAATGGTACTTCCTATTCGCATACGCAATTCTCCGCTCAA TATCAAGCCTGAATGATACTTCCTGTTTGCCTACGCAATTCTACGCTCGA TATTAAGCCTGAATGATACTTCCTGTTTGCGTACGCAATTCTACGCTCAA CATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTACGCTCAA TATTAAACCTGAATGATATTTCTTATTTGCATACGCAATCCTCCGCTCAA TATTAAACCCGAATGATACTTCCTATTTGCATACGCCATCCTGCGCTCAA TATCAAGCCCGAATGATACTTCCTATTTGCGTACGCAATTCTACGCTCAA TATCAAGCCTGAATGATATTTCTTATTTGCGTACGCAATTCTACGCTCAA TATTAAACCCGAATGATACTTCCTATTTGCGTATGCAATTCTACGCTCAA TATTAAGCCCGAATGGTATTTTCTGTTTGCATACGCAATTCTCCGCTCTA TATTAAACCCGAATGGTACTTTCTGTTTGCATACGCAATTCTCCGCTCTA CATTAAGCCCGAATGATATTTCTTATTCGCATACGCCATCCTTCGCTCAA CATTAAACCCGAGTGATACTTTCTATTTGCATACGCAATTCTACGCTCAA TATTAAACCCGAATGATACTTCCTGTTTGCGTACGCAATTCTCCGCTCTA CATTAAACCCGAATGATACTTCCTATTTGCCTATGCAATCTTACGCTCAA CATTAAACCTGAATGATACTTCTTATTTGCGTATGCTATTCTACGCTCAA TATTAAACCCGAATGGTACTTCTTATTTGCGTATGCCATCTTACGTTCAA CATCAAGCCCGAGTGATATTTCCTGTTTGCCTACGCAATCTTGCGCTCAA CATTAAGCCCGAGTGATATTTCTTATTTGCCTACGCAATTTTACGCTCAA TATTAAGCCCGAGTGATATTTTTTGTTTGCGTACGCTATTCTTCGCTCAA TATCAAGCCCGAATGATACTTCCTGTTTGCATACGCAATTCTACGCTCAA CATTAAGCCCGAATGATACTTCTTATTTGCCTATGCAATTCTCCGTTCAA TATTAAACCCGAATGATATTTCCTGTTTGCATACGCCATTCTTCGATCAA CATCAAACCAGAATGATACTTCCTATTTGCCTACGCCATCCTACGATCAA CATTCAACCCGAGTGGTACTTCTTGTTCGCCTACGCTATTATCCGGTCTA CATCAAGCCCGAATGATACTTCCTATTTGCCTACGCCATTCTCCGCTCCA TATTAAGCCCGAGTGATACTTTTTATTTGCCTACGCTATTCTTCGCTCAA TATTAAACCCGAATGATACTTTTTATTTGCTTACGCTATTCTTCGCTCCA TATTAAACCAGAGTGATATTTCCTATTTGCTTACGCCATTCTCCGATCAA TATCAAGCCAGAGTGATATTTCCTGTTTGCTTACGCCATTCTCCGATCAA CATCAAGCCAGAGTGATACTTTTTATTTGCTTACGCCATCCTACGATCAA CATTAAACCAGAATGATATTTCCTATTTGCCTACGCCAATCTTCGGTCAA CATCAAGCCAGAATGATACTTCCTGTTTGCCTATGCCATCCTTCGATCAA CATCAAGCCAGAATGATACTTCCTATTTGCCTACGCTATCCTTCGGTCAA CATTAAACCAGAATGATATTTCCTATTTGCCTACGCCATTCTTCGATCAA CATTAAGCCCGAATGATATTTCCTGTTCGCATACGCCATTCTCCGCTCAA CATTAAGCCAGAATGATATGTCCTATTCGCATACGCCATTCTCCGTTCAA TGTCAAGCCTGAATGATACTTCCTGTTTGCTTACGCCACCCTCCGGTCAA CATCAAGCCCGAATGATACTTCCTATTCGCATACGCCATTCTACGTTCGA CATTAAGCCTGAGTGATATTTCCTCTTTGCCTACGCCATTCTACGTTCAA TATTAAACCTGAATGATACTTCCTCTTTGCATACGCTATCCTTCGATCAA TATTAAGCCGGAGTGATATTTCCTATTTGCATATGCCATTCTACGGTCAA TATTAAGCCAGAGTGATACTTCCTCTTTGCGTACGCAATCCTACGATCGA [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] 66 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus TTCCTAATAAACTAGGAGGAGTCCTTGCCCTCTTGGCATCTATCTTAGTT TCCCTAATAAACTAGGAGGTGTCCTAGCCCTCCTAGCCTCCATTCTAGTC TTCCAAACAAACTAGGAGGTGTCCTTGCCCTCCTAGCTTCCATCCTTGTG TTCCCAACAAACTAGGGGGAGTCCTGGCCCTTCTAGCCTCCATCCTAGTC TTCCCAACAAACTAGGAGGCGTCCTAGCCCTTTTAGCTTCTATTTTAGTC TTCCCAACAAACTAGGAGGAGTCCTCGCCGTTTTAGCCTCAATTCTAGTT TTCCTAATAAACTAGGGGGCGTACTAGCACTTCTAGCCTCAATCCTTGTT TTCCAAATAAACTAGGAGGAGTCCTTGCCCTCCTAGCTTCTATTCTAGTA TCCCTAACAAATTAGGGGGAGTCCTGGCCCTCCTTGCCTCTATTCTAGTC TTCCTAACAAGCTCGGAGGAGTCCTTGCCCTCTTAGCCTCCATTCTTGTC TTCCAAATAAGCTGGGAGGAGTCCTCGCTCTCCTCGCCTCTATTCTAATC TTCCAAATAAACTAGGCGGAGTCCTGGCCCTCCTAGCTTCTATTCTGGTC TTCCGAATAAATTAGGCGGTGTCCTCGCCCTCCTCGCCTCTATTCTAGTA TCCCCAACAAACTAGGGGGAGTCCTTGCCCTCCTTGCCTCCATGCTAGTC TCCCCAACAAACTGGGGGGAGTTCTTGCCCTCCTTGCCTCCATTCTAGTC TCCCTAATAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCTATCCTAGTC TCCCCAACAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCCATTCTAGTC TTCCAAACAAACTAGGGGGAGTCCTAGCCCTTCTAGCCTCTATCCTTGTA TTCCTGACAAACTAGGGGGAGTCCTCGCTCTCCTGGCCTCCATTCTAGTT TTCCTAATAAACTAGGGGGCGTTTTAGCCCTCCTAGCCTCTATCCTAGTC TTCCTAACAAACTGGGAGGGGTCCTTGCCCTTCTGGCCTCTATCCTGGTC TTCCGAATAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCCATCCTAGTT TTCCCAACAAATTAGGAGGGGTCCTTGCCCTCCTTGCCTCCATCCTAGTC TTCCCAATAAACTCGGAGGGGTCCTTGCCCTCTTAGCCTCCATCCTAGTT TCCCAAACAAACTAGGCGGAGTCCTCGCCCTCCTAGCCTCTATTCTAGTA TTCCAAACAAACTAGGAGGAGTCCTGGCTCTTCTAGCCTCTATCCTCGTA TTCCAAATAAACTAGGTGGAGTCTTAGCCCTCCTAGCCTCCATCCTAGTA TTCCAAATAAACTGGGCGGAGTCCTAGCCCTCCTAGCCTCTATTCTAGTA TTCCAAACAAGCTGGGAGGAGTCCTGGCCCTCTTAGCCTCTATTCTAGTC TTCCAAACAAACTAGGAGGGGTCCTGGCCCTCCTTGCCTCCATCCTAGTC TCCCCAATAAACTAGGAGGAGTCCTAGCCCTCCTGGCCTCTATCTTAGTC TTCCTAACAAATTAGGAGGAGTCCTTGCCCTCCTTGCCTCCATCCTAGTC TCCCAAACAAACTAGGGGGAGTCCTAGCCCTCCTCGCATCTATTCTGGTC TTCCTAACAAGCTAGGTGGGGTACTTGCCCTATTGGCCTCCATTCTAGTC TTCCTAATAAACTAGGGGGCGTACTAGCCCTCCTAGCCTCCATTCTAGTC TTCCTAACAAGCTAGGAGGAGTTCTTGCCCTCCTGGCCTCCATCCTAGTC TCCCTAACAAACTAGGAGGAGTTCTTGCCCTACTGGCCTCAATTTTAGTC TCCCTAACAAGCTAGGAGGGGTCCTTGCCCTCTTGGCCTCTATTCTAGTC TTCCTAACAAACTAGGAGGCGTCCTAGCCCTCCTAGCTTCAATCCTAGTC TTCCAAACAAACTAGGAGGTGTCCTGGCCCTTCTGGCTTCTATCCTAGTC TTCCAAACAAACTGGGGGGAGTCCTAGCCCTTCTAGCCTCCATCCTAGTC TCCCGAATAAACTAGGAGGTGTTCTGGCCCTGCTAGCTTCAATCCTGGTC TTCCAAACAAACTCGGAGGTGTCCTTGCACTCCTATTCTCCATTCTGGTA TTCCAAACAAGCTAGGGGGAGTCCTAGCGCTATTATTCAGTATTCTAGTA TCCCAAACAAACTAGGAGGAGTACTCGCACTCCTGTCCTCGATCCTAGTC TCCCAAACAAACTAGGCGGGGTGTTGGCATTACTAGCATCTATTCTAGTA TTCCGAACAAGCTAGGCGGAGTATTGGCACTACTAGCATCTATTTTAGTA TTCCGAACAAGCTAGGTGGTGTACTAGCCCTTCTATTCTCCATCTTAGTA TTCCTAACAAACTAGGTGGTGTTTTAGCCCTCCTATTCTCCATTTTAGTG TTCCTAACAAACTAGGCGGCGTTTTAGCCCTGCTGTTTTCCATCTTAGTA TCCCTAATAAACTGGGAGGAGTTCTAGCACTACTGGCATCTATCTTAGTG TCCCCAATAAATTAGGAGGAGTGCTAGCATTACTAGCATCCATTTTAGTA TCCCTAATAAACTGGGAGGGGTTCTAGACTTACTGGCATCTATCTTAGTG TTCCTAACAAATTAGGGGGAGTGTTAGCATTACTAGCATCTATTTTAGTA TTCCGAATAAACTAGGAGGAGTTCTTGCCCTCCTGGCCTCCATCCTAGTT TGCCAAACAAACTCGGAGGAGTTTTAGCCCTACTCGCCTCAAGTCTTGTC TTCCCAACAAACTCGGAGGCGTCCTAGCCCTGCTCGCCTCAATCCTCGTG TTCCCAACAAACTAGGAGGCGTCCTAGCCCTCCTCGCCTCAATCCTAGTA TTCCCAACAAACTAGGGGGTGTCCTAGCTCTACTTGCCTCTATCCTAGTT TCCCCAATAAACTAGGGGGTGTCCTGGCCCTACTTGCTTCCATCTTAGTC TTCCAAATAAGCTGGGCGGGGTGCTCGCTTTATTAGCCTCAATCCTCGTC TTCCAAATAAACTTGGAGGTGTCTTAGCCCTTCTAGCCTCTATCCTAGTA [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] 67 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CTTATGGTTGTTCCCATACTCCACACTTCCAAACAACGAAGCCTAACCTT CTCATAGTTGTCCCCATCCTTCACACCTCTAAACAACGAAGCCTAACTTT CTTATAGTCGTCCCGATCCTCCACACATCCAAACAACGAAGTCTCACATT CTAATACTCGTCCCCTTCCTTCACACATCCAAACAACGAAGTCTCACATT CTTATAGTAGTCCCACTCCTCCACACTTCTAAACAACGAAGCCTAACCTT CTTATAGTTGTCCCTATTCTTCACACCTCTAAACAACGAAGCCTAACCTT CTCATGATTGTACCAATTCTCCACACCTCTAAGCAACGAAGCCTAACCTT CTTATGGTTGTCCCCATCCTCCACACATCTAAACAACGAAGCCTTACATT CTAATAGTTGTTCCCATCCTCCACACATCTAAACAACGAAGCCTCACATT CTTATGGTTGTCCCAATCCTGCACACCTCTAAACAACGAAGCCTGACCTT CTAATACTTGTCCCCCTCCTTCACACATCTAAACAACGAAGCCTCACATT CTAATAGTTGTTCCCATCCTCCACACATCTAAACAACGAAGCCTTACATT TTGATGGTAGTTCCTATCCTTCACACCTCTAAGCAACGAAGCCTTACATT CTCATAGTGGTCCCCAGCCCCCATACCCCTAAACAACGAAGCCTTACCAG CTCATAGTTGTCCCCATCCTCCATACCTCTAAACAACGAAGCCTTACCTT CTTATAGTCGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTAACCTT CTCATAGTTGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTTACCTT CTAATGGTTGTTCCTATTCTCCACACATCTAAACAACGAAGCCTCACATT CTAATGGTTGTCCCCATTCTTCACACCTCTAAACAACGAAGCCTAACCTT CTTATGATTGTGCCCATTCTTCATACCTCTAAACAACGAAGTCTGACCTT CTTATAGTTGTACCAATCCTTCACACCTCTAAACAACGGAGCCTCACCTT CTTATGGTCGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTAACTTT CTGATAGTTGTTCCTATCCTACATACTTCTAAGCAACGCAGCCTAACCTT CTCATGGTTGTACCCATCCTTCACACCTCCAAACAACGGAGCTTAACCTT CTCATAGTTGTACCTATTCTTCATACATCCAAACAACGAAGTCTGACCTT CTAATGGTCGTCCCCATCCTCCACACATCTAAACAGCGAAGCCTCACATT TTAATAGTTGTTCCCATTCTTCACACATCTAAGCAACGAAGCCTTACATT CTCATGGTCGTTCCCATTCTTCATACATCCAAACAACGAAGTCTAACATT CTAATAGCCGTCCCCATCCTTCACATATCTAAGCAACGAAGCCTTACATT CTGATAGTTGTCCCCATCCTCCACACATCTAAACAACGAAGCCTCACATT CTGATAGTTGTCCCCATCCTCCACACATCTAAGCAACGAAGCCTTACGTT CTGATAGTTGTTCCTACCCTACACACTTCTAAACAACGCAGCCTAACCTT CTAATAGTTGTCCCCATCCTACACACATCCAAACAGCGAAGCCTCACATT CTCATAATTGTCCCCATCCTTCACACCTCTAAACAACGAAGCCTCACTTT CTAATAGTTGTTCCCCTCCTCCACACCTCTAAACAACGAAGCCTAACCTT CTCATGGTTGTTCCCATACTCCACACTTCCAAACAACGAAGTCTAACCTT CTCGTAGTTGTCCCTGTCCTCCACACCTCCAAGCAGCGGAGCCTGACCTT CTAATGGTTGTCCCCATTCTCCACACCTCTAAACAACGAAGCCTCACCTT TTTTTGGTCGTACCTATTTTTCACACCTCTAAACAACGAAGCTTAACTTT CTTATGGTCGTCCCAATCCTGCACACCTCCAAACAACGAAGCTTAACTTT TTAATGGTTGTCCCTATTCTCCACACATCTAAACAACGAAGCCTAACATT CTCATGGTTGTGCCCATTCTTCACACCTCTAAACAACGGAGCCTAACCTT TTAATAGTAGTACCACTACTACACACCTCAAAACAACGAGGACTAACATT CTATTGGTGGTCCCCATTTTACATACCTCAAAGCAACGAGGACTAACCTT CTCATACTAGTACCCCTTCTCCACACCTCAAAACAACGAGGCCTAATATT CTTATAGTAGTACCCTATTTACATACATCAAAACAACGAAGTATAACATT CTTATAGTAGTACCCTTTTTACATACATCCAAACAACGAAGTATAACATT CTTATACTGGTCCCAATCCTCCACACATCAAAACAACGAGCCCTAACCTT CTTATACTAGTCCCCATCCTCCACACGTCAAAACAACGAGCTTTGACCTT CTTATACTAGTCCCGATCCTTCACACATCGAAACAACGAGCCCTAACTTT CTCATAACAGTACCTTTTCTCCACACATCTAAACAACGAAGCTTAACATT CTCATAGCAGTGCCTTTCCTACACACATCGAAACAACGAAGTTTAACATT CTCTTAACAGTACCTTTTCTGCATACATCCAAACAACGAAGCTTAACATT CTCATAGTAGTACCCTTTCTACATACATCAAAACAACGAAGTCTAACATT CTGATGGTAGTCCCCATCCTTCACACATCTAAACAACGAAGCCTCACCTT CTCATAGTCGTCCCCTTCCGTCATACATCTAAACAACGAAGCCTTACCTT CTCATAGTCGTACCAATCCTCCACACCTCCAAACAACGAGGACTAACGTT CTTATGGTCGTTCCCATCCTCCACACCTCTAAACAACGAGGCCTAACATT CTTATAGTGGTGCCAATTCTACACACCTCAAAACAACGAAGCCTCACATT CTTATAGTAGTTCCGATCCTCCACACCTCCAAACAACGAAGCCTTACATT CTCATGCTGGTCCCACTTCTCCACACATCCAAACAACGAAGCCTCACCTT CTTATACTAGTTCCTATCCTCCACACTTCTAAGCAACGAAGTCTAACATT [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] 68 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus CCGACCATTTACTCAATTCCTATTCTGAGCACTCATTGCAAATGTGGTAA CCGACCCCTTACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCCA TCGTCCCATCACTCAGTTCCTATTCTGAGCACTCATTGCAAACGTAGCCA CCGGCCAATTTCTCAATTTCTATTCTGAATACTTATTGCTAATGTGGCCA CCGACCCGTGACCCAATTCCTATTTTGAGCACTTATTGCAAACGTAGCAA CCGACCTGCCACTCAATTCCTATTCTGAACACTCATTGCAAACGTAGCAA CCGACCTCTGACTCAGTTCTTATTCTGAGCACTTATCGCAAACGTGGTAG CCGGCCTGTCACTCAATTCCTGTTCTGAGCACTCATTGCAAATGTAGCTA CCGACCAGTAACCCAATTCCTATTTTGAGCGCTCATCGCAAATGTAGCGA CCGACCAGTTACCCAGTTCCTATTCTGAGCACTAATTGCAAACGTAGCAA CCGACCAGTGACCCAATTCCTATTCTGAACGCTCACTGCGAATGTAGCAG CCGACCTATAACTCAATTCCTGTTTTGAGCACTCATTGCAAACGTAGCAA CCGGCCATTAACCCAATTCCTGTTCTGACTGCTCATTGCAAACGTAGCAA CCGACCAGTAACCCAGATCCTATTCTGAGCACTTATTGCAAACGTAGCTA CCGACCAGTAACCCAGTTCCTATTCTGAGCACTTATTGCAAACGTAGCTA CCGACCAGTGACCCAATTCCTATTCTGAACACTTATTGCAAACGTGGCTA CCGGCCAGTAACCCAGTTCCTATTCTGAGCACTTATTGCAAACGTAGCTA TCGACCTATAACTCAATTCCTATTTTGAGCACTCATCGCAAACGTAGCAA CCGACCTGTCACCCAATTCCTGTTCTGAGCACTCATTGCAAACGTGGCAA CCGACCCCTCACCCAATTCTTATTCTGAACACTCATTGCAAATGTAGCCA CCGACCAGTGACCCAATTCTTGTTCTGAGCTCTCATTGCAAACGTAGCCA CCGACCAGTTACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCCA CCGACCTATCACCCAGTTCCTATTCTGGGCACTCACTGCAAACGTAGCAA CCGGCCAGTTACTCAATTCTTGTTCTGAGCACTTATTGCAAACGTTGCAA CCGGCCCATAACCCAATTCCTGTTCTGAGCACTTATTGCAAACGTAGCTA TCGACCTGTCACCCAGTTCCTGTTTTGAGCACTCATTGCAAATGTAGCAA TCGACCCATAACTCAATTCCTGTTCTGAGCGCTCATTGCAAACGTAGCAA CCGACCCATAACTCAGTTCCTGTTTTGAGCGCTCATTGCAAATGTAGCAA CCGGCCAATCACCCAATTCCTTTTCTGAACGCTCATTGCAAATGTAGCAA CCGACCAATGACCCAATTCCTGTTCTGAGCACTCATGGCAAATGTAGCAA CCGGCCCGTAACCCAATTCCTATTTTGAGCACTAATTGCAAACGTAGCAA CCGGCCTATCACCCAGTTCCTATTCTGGGCACTCATCGCAAACGTAGCAA CCGACCAATAACTCAATTCCTATTCTGAGCACTAATTGCAAATGTAGCAA CCGACCAGCCACTCAATTCCTATTCTGGACGCTCATCGCCAACGTAGCAA CCGACCCATAACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCAA CCGACCCGTTACTCAATTCCTATTCTGAGCACTTATTGCAAACGTGGCAA CCGGCCAGTTACCCAATTCCTGTTTTGAACACTCATCGCCAACGTAGCTA CCGACCAGTCACCCAATTCCTATTCTGAGCACTCGTTGCAAACGTAGCAA CCGGCCCCTAACCCAATTCTTATTCTGAACACTAATTGCAAATGTTGCAA CCGACCTATAACCCAATTCTTATTCTGAGCACTTATTGCAAACGTAGCCA TCGACCCGTGACTCAATTCCTCTTCTGAGCACTCATTGCAAACGTAGCAA CCGACCCGTGACCCAATTCTTATTCTGAACACTAGTCGCGAACGTAGCAA CCGCCCCATCACCCAATTCCTATTCTGAACCCTAGTAGCGGACATAATTA CCGGCCAATCACTCAGTTTTTATTCTGAACCTTAGTGGCAGATATAGTTA CCGACCCGCCTCACAACTCCTATTCTGAGTTCTCGTSGCAGACGTAGCCA CCGACCCGTAACACAGTTTTTATTCTGGGCTCTCGTCGCTGATGTTATAA TCGCCCCCTGACACAATTTCTATTTTGAACCCTTGTTGCGGATGTTATGG CCGACCTATTACCCAATTCCTTTTCTGAACACTCATTGCGGACGTTGCCA CCGACCAATCACGCAATTCCTCTTCTGAACACTCATCGCAGATGTCGCCA CCGGCCTATCACTCAGTTCCTCTTCTGGACGCTAATCGCAGATGTTGCCA CCGTCCATTAACCCAGCTTCTATTTTGAACCCTTATTGCAGATGTAGTAA CCGCCCGTTAACCCAGCTTCTATTTTGGGCCCTAATTGCAGACGTAGCAA CCGTCCATTAACCCAATTTCTGTTTTGAACCCTTATTGCAGATGTAATAA CCGCCCGTTAACCCAGCTTCTATTCTGAACCCTCATTGCAGATGTAGCAA CCGCCCGGTCACACAGTTCCTCTTCTGAACACTCATTGCAGACGTTGCAA CCGACCACTATCCCAACTCCTATTCTGAACACTCGTTGCCGATGTTGCCA CCGACCTGTAACTCAGTTCCTATTCTGGACCCTAATTGCAAACGTCGCCA CCGGCCCGTCACTCAATTCTTATTCTGAACCTTAATCGCAAACGTTGCCA CCGACCCTTAACCCAGTTCCTATTCTGAACACTAATTGCTAACGTCGCAA CCGGCCTTTGACCCAATTCCTGTTTTGGACCTTAATCGCCAACGTTGCCA CCGACCAATCTCCCAGTTCTTGTTTTGAGTGCTGATTGCGGACGTCGCCA CCGGCCAATTTCTCAATTCCTATTCTGAACGCTAATCGCAGACGTTGCCA [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] 69 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus TTCTCACATGAATTGGAGGTATGCCAGTTGAAGAACCTTACATTATTATT TCCTAACATGAATCGGAGGAATGCCAGTTGAAGAACCATACATTATCATC TCCTCACATGAATTGGCTTTTTGCTCGTTGAAGACCCATATATTATTATT TTCTCACATGAATTGGTGGTATGCCCGTCGAAGATCCGTATATCATTATT TCCTAACCTGAATTGGAGGAATGCCAGTCGAAGAACCTTATATTATTATT TCCTGACATGAATTGGAGGAATACCAGTTGAAGAGCCCTATATCATCATT TTTTAACATGAATTGGGGGCATGCCGGTCGAAGACCCATATATTATTATT TCCTTACATGAATTGGCGGAATGCCCGTTGAAGACCCATACATTATTATT TTCTTACATGAATTGGCGGAATACCCGTCGAAGACCCATACATCATTATT TTCTTACATGAATCGGCGGGATACCAGTTGAAGAACCATACATCATCATC TTCTTACATGAATTGGCGGCATACCCGTCGAAGACCCCTATATTATCATT TCCTTACTTGAATTGGCGGAATGCCCGTTGAAGACCCATACATCATTATC TCCTTACATGAATTGGTGGAATGCCCGTTGAAGATCCATATATTATTATT TCCTCACATGAATCGGAGGAATGCCAGCCGAAGAACCTTACAAAATTATT TCCTCACATGAATCGGAGGAATACCAGTTGAAGAACCTTACATTATTATT TCCTCACATGAATCGGAGGGATACCAGTTGAAGACCCTTACATTATTATT TCCTCACATGAATCGGAGGAATACCAGTTGAAGAACCTTATATTATTATT TCCTCACATGAATCGGCGGAATGCCCGTTGAGGACCCATACATCGTTATT TCCTGACATGAATCGGAGGGATACCAGTCGAAGGGCCCTATATTATTATC TCCTAACATGAATTGGAGGGATACCAGTTGAAGACCCTTATATTATCATC TCCTCACATGAATTGGCGGAATACCTGTTGAAGAGCCTTATATCATTATT TCCTCACATGAATCGGAGGAATACCAGTCGAAGAACCTTACATTATTATC TTTTAACATGAATTGGGGGAATGCCAGTTGAAGAACCTTATATCATTATC TCCTCACATGAATTGGAGGAATACCCGTTGAAGAGCCTTACATTATTATT TCCTTACGTGAATTGGAGGAATACCAGTCGAAGATCCGTACATCGTCATT TCCTCACATGAATCGGCGGAATGCCCGTTGAAGACCCGTACATCATTATT TCCTCACATGAATTGGTGGAATACCAGTTGAAGACCCGTACATCATTATC TTCTTACATGAATTGGTGGAATGCCCGTTGAAGACCCATACATCATTATT TCCTTACATGAATTGGTGGAATGCCCGTCGAAGACCCATACATTGTCATT TCCTCACATGAATTGGCGGAATGCCTGTCGAAGACCCTTATATTGTTATT TTCTCACATGAATCGGCGGAATACCCGTTGAAGACCCTTACATTGTTATT TTTTAACATGAATTGGTGGAATGCCAGTTGAGGAACCTTATATCATTATC TTCTTACATGAATCGGAGGCATACCAGTTGAAGACCCATACATTATCATT TCCTTACATGAATTGGAGGAATGCCCGTCGAAGAACCTTACATCATTATT TTTTAACTTGAATTGGAGGAATACCAGTTGAAGAACCCTACATCATCATT TTCTCACATGAATTGGAGGCATACCAGTTGAAGAGCCTTACATTATCATT TTCTCACATGAATTGGGGGAATACCAGTCGAAGAGCCCTATATTATTATT TTCTCACATGAATCGGAGGAATGCCAGTCGAAGAGCCTTACATCATTATT TCCTGACCTGAATCGGAGGAATACCAGTTGAAGACCCCTACATTATGATT TCCTAACATGAATTGGAGGGATGCCAGTTGAAGAACCATACATTATTATC TCCTCACATGAATTGGGGGCATACCCGTCGAAGACCCATATATTGTCATC TTCTCACCTGAATCGGAGGCATACCAGTTGAAGACCCCTACATTATGATT TCCTAACATGAATTGGAGGCATACCAGTAGAGCATCCCTTCATCATTATT TTCTGACATGAATTGGGGGTATACCTGTAGAACACCCATACATTATTATT TCCTAACCTGAATCGGCGGAATACCGGTTGAACACCCCTATATCATTGTT TTCTAACTTGAATTGGAGGCATGCCCGTTGAGCACCCTTTTATTATTATC TTCTCACTTGAATTGGGGGTATGCCAGTTGAACACCCCTTTATTATTATT TTCTCACTTGAATCGGAGGCATGCCTGTTGAACACCCATTCATTATTATT TTCTCACGTGAATCGGGGGCATACCAGTTGAGCACCCATTCATTATTATT TTCTCACCTGGATCGGAGGTATGCCAGTCGAACACCCATTTATTATCATC TTCTCACTTGAATTGGAGGAATGCCTGTTGAACACCCATTTATTATTATT TCCTCACTTGAATTGGAGGAATGCCTGTCGAACATCCTTTCATTATTATT TTCTTACTTGGATTGGCGGAATGCCTGTCGAACACCCCTTCATTATTATT TTCTCACTTGAATCGGAGGAATGCCTGTTGAACACCCCTTTATTATCATC TCCTCACATGAATTGGAGGCATGCCTGTCGAACACCCCTTCATTATTATT GTCTTACATGAATCGGTGGCATGCCTGTAGAACACCCCTACATCATCATC TCCTCACTTGAATTGGCGGAATACCCGTCGAGCATCCATTCATCATCATC TCCTTACCTGAATCGGCGGAATACCCGTCGAACATCCATTCATCATCATC TTCTCACGTGAATCGGGGGAATACCCGTCGAGCACCCCTTTATCATTATC TCCTTACATGGATTGGAGGAATGCCTGTTGAGCATCCATTCATTATTATC TTCTTACATGAATTGGAGGAATGCCAGTAGAAGACCCCTACATTATCATT TTCTTACATGGATCGGGGGAATGCCCGTAGAACATCCATACATTATTATT [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] 70 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus GGTCAAATCGCCTCTCTCACCTACTTCTCCCTCTTCCTAGTTATTATCCC GGCCAAGTTGCCTCCCTAACCTACTTCTCCCTCTTCCTAATTATTATTCC GGTCAAATTGCATCCCTAACCTACTTCGCCCTCTTCTTACTTATCATACC GGCCAAATTGCATCTCTCACCTACTTCGCACTCTTCCTGTTTATCATTCC GGCCAAATTGCATCCCTAACCTACTTCTCGCTCTTCTTACTTATTATTCC GGCCAAATTGCATCCCTAACCTATTTTTCCATCTTCCTAATTATTATCCC GGTCAAATCGCATCACTAACCTATTTCTCCCTCTTCTTAATTATTATTCC GGCCAAATTGCTTCCCTCACCTATTTTGCTCTCTTCCTGCTAATTATACC GGTCAAATTGCATCCCTCACCTACTTTGCTCTCTTCCTATTTATCATCCC GGTCAAGTTGCATCCCTAACTTACTTCTCCCTCTTCCTAATTATTATCCC GGGCAAATTGCATCCCTCACCTACTTCGCTCTTTTCCTATTTATTAATAC GGCCAGATCGCTTCCCTCACTTACTTTGCGCTTTTCCTGTTTATCTTCCC GGCCAGATCGCATCCCTTACGTACTTCGCCCTTTTCCTAATTATTATTCC GGCCAAATCGCATCCCTCACCAACATCTCCCTCTTCCTAGTTGTTAACCC GGCCAAATCGCATCCCTCACCTACTTCTCCCTCTTCCTAGTTGTTATCCC GGCCAAATTGCATCCCTCACCTACTTCTCCCTTTTCCTAGTCATTATCCC GGCCAAATCGCATCCCTCACCTACTTCTCCCTCTTCCTAGTTGTTATCCC GGTCAAATTGCATCCCTTACTTACTTTGCTCTTTTCTTGCTTATCATCCC GGCCAAATTGCATCCCTAACCTACTTTTCCCTCTTCCTAGTCATTATCCC GGCCAGATTGCTTCCCTGACCTACTTCTCCCTCTTCCTAATTATTATCCC GGTCAAATTGCATCCCTAACCTATTTCTCCCTCTTCCTTGTAGTCATACC GGCCAAATCGCATCCCTCACCTATTTCTCCCTCTTCCTAGTAATCATCCC GGCCAAATTGCGTCTTTAACCTACTTTTCCCTCTTTCTAATCATTATCCC GGCCAAGTCGCATCCCTAACCTACTTTTCCCTCTTTTTAGTTATTATCCC GGTCAAATCGCATCCCTTACATACTTTGCTCTCTTCCTGCTTATTATCCC GGTCAAATTGCATCCCTGACTTATTTTGCCCTTTTCCTACTTATCATACC GGCCAGATTGCCTCCCTTACCTACTTTGCTCTCTTTCTGTTCATCATCCC GGCCAAATCGCATCCCTTACCTACTTCGCCCTTTTCCTGCTTATTATTCC GGCCAAATTGCATCCCTCACCTACTTCGCCCTTTTCCTCTTTATTATTCC GGTCAAGTTGCATCCCTCACCTACTTCGCTCTTTTCCTGTTTATTATTCC GGCCAAATTGCATCTCTTACCTACTTCGCCCTATTCCTATTCATTATCCC GGTCAAATTGCGTCCTTAACTTACTTCTCCCTCTTTCTAATCATTATCCC GGACAAATTGCATCTCTTACCTACTTCGCTCTTTTCCTATTTATTATACC GGCCAAGTGGCATCCCTATCTTACTTCTCCCTCTTCCTAATTATCATGCC GGCCAAGTCGCATCCCTAACCTACTTTTCACTATTCCTAGTTATTATTCC GGCCAAATCGCATCTCTTACCTATTTCTCCCTCTTCCTAGTTATCATCCC GGCCAGGTTGCATCTCTAACGTACTTCTCCCTCTTCCTCATTATCATACC GGCCAAGTTGCATCACTAACCTACTTCTCTCTTTTCCTAGTCATTATTCC GGCCAAATTGCATCCGTGACGTACTTATCCCTCTTCCTAATTATTATCCC GGCCAAATCGCATCCTTAACCTACTTCGCCCTCTTCCTAATTATTATCCC GGACAAGTCGCATCCCTAACTTATTTCGCTCTCTTCTTACTCATTATCCC GGTCAAGTCGCATCCCTAACCTACTTCTCCTTATTTCTCATTATCATCCC GGACAAATTGCATCCGTCCTATACTTCGCACTATTCCTCATTTTTATGCC GGCCAAGTCGCCTCAGTTCTGTACTTTGCATTATTCCTCCTCCTTGCCCC GGACAAATCGCATCCCTCCTCTACTTCCTACTATTCTTAGTGCTCATACC GGCCAAGTTGCTTCCTTACTGTATTTCCTCTTGTTCCTTGTCTTCATCCC GGCCAAGTTGCCTCCTTATTGTATTTCCTCTTATTCCTGGTCCTCATCCC GGACAAATCGCTTCTCTACTCTACTTCCTTATTTTTTTAGTACTATTCCC GGACAAATCGCTTCTCTACTCTACTTCCTTATTTTTCTAGTCCTCTTTCC GGACAATTAGCTTTTTTGTTTTATTTCTTTATCTTCTTAGTGTTATTCCC GGCCAAATCGCCTCGCTCTTATATTTTCTTCTTTTCCTCGTGCTCATACC GGCCAAATCGCCTCTCTCCTGTACTTTCTTCTCTTTCTTGTTTTTATACC GGCCAAATCGCCTCCCTCTTATATTTTCTTCTTTTTCTTGTATTTATACC GGCCAAGTCGCCTCACTCTTATACTTCCTTCTCTTCCTTGTTTTCATACC GGACAAGTCGCCTCCTTCCTGTACTTCTTCCTATTCCTAGTCTTCACGCC GGCCAAATTGCCTCTTTTCTGTACTTCTCCCTATTTTTAGTCCTGTTCCC GGACAAATCGCCTCCGTCCTGTACTTCTTGTTATTCCTAGTCCTCACCCC GGACAAATCGCCTCCGTTCTATACTTCCTACTATTCCTAGTGTTCGCCCC GGCCAAATCGCCTCCCTGCTCTACTTCTCCCTCTTCCTAATCATCACCCC GGCCAGATTGCCTCACTGCTTTACTTTTCACTCTTCCTAATCATCACACC GGCCAAGTCGCATCTGTCCTCTATTTCTCCATTTTCTTGGTCTTCATGCC GGCCAAATCGCATCAGTACTTTATTTCTCTATCTTCCTCCTCCTAATACC [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] 71 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus TGCAGCGGCAACAGTGGAAAACAAGGTACTAGGCTGACAA TACAGTAGCCATAGTAGAAAACAAAGTATTAGGTTGACAA TGCGACAGCATTAGTAGAAAATAAAGTCTTAGGCTGACAA TGTAGCAGCACTCGTAGAAAACAAAGTGCTGGGCTGTAAC TATAGCAGCAACTTTAGAAAACAAAGTACTAGGCTGACAA CGCAACAGCAATTTTAGAGAACAAAGTACTAAACTGGTAA TGTAACAGCCACAGTGGAAAATAAGGTGCTAGGCTGACAA TGTTGCCGCATTAGCAGAAAACAAGGTATTAGGCTGACAA TGCAGCAGCATTAGCAGAGAACAAAGTACTAGGCTGACAA TACAGCAGCAGCTGTAGAGAACAAAGTCCTAGGCTGACAA TGCAGCAGCACTAGTAGAAAACAAAATGCTAGGCTGACAA TGTCACAGCATTAGTAGAAAACAAAGTATTAGGCTGACAA CACAACAGCGTTAGCAGAAAATAAAATATTAAGTTTACAA AGCCGCAGCAGTTTTAGAAAACAAGGTGTTAGGCTGACAA TGCCGCAGCAGTTTTAGAAAACAAAGTGTTAGGCTGACAA TGCTGCAGCAACTATAGAAAACAAGGTATTAGGCTGACAG TGCCGCAGCAGTTTTAGAAAACAAAGTGTTAGGCTGACAA CGCAACAGCATTAGTAGAGAACAAAGTACTTGGCTGACAA CGCAGCAGCAACTATGGAAAACAAAGTGCTAGGCTGGCAA CATAGCAGCCACGGTGGAAAATAAAATACTAAGCTGACAA CGCGGCTGCAGCCATTGAAAACAAAGTACTAGGCTGACAG TGCCGCAGCAGTGATAGAAAACAAAGTATTAGGCTGACAA CGCAACAGCGACCATTGAAAATAAAATGCTAGGCTGACAG CGCAGCAGCAACGATGGAAAATAAAGTGTTAGGCTGACAG CGCCACAGCACTAGCAGAAAACAAAGTGTTAGGCTGACAA CACAGCAGCATTAGTAGAAAACAAAGTGCTAGGTTGACAA TGTCACAGCAATAGCAGAGAACAAAGTACTAGGCTGACGA TGCCACAGCATTAGTAGAAAATAAAGTGTTAGGCTGACAA TACAGCAGCACTGGCAGAAAACAAAATGCTAGGCTTACAA TGCAGCAGCACTAGCAGAAAATAAAGTGCTAGGCTGACAA CGCAGCAGCACTAGCAGAAAACAAAGTGCTAGGCTGACAA TGCAACAGCAACCATTGAAAATAAAATGCTAGGCTGACAA TGCAGCAGCACTAGTAGAAAACAAAGTCCTAGGCTGACAA AGCCGCAGCAACTTTAGAAAATAAAGTCCTAGGCTGACGG TGCAGCAGCAACTTTAGAAAATAAAGTATTAGGCTGACAA TACAGCAGCAACTATAGAGAACAAAGTGTTAGGCTGACAA AGCTGCAGCAACCCTGGAAAATAAGGCCCTAGGCTGGCAG CGCCGCAGCCACTATGGAAAACAAAGTCTTAGGCTGACAA CACAGCAGCAACCTTAGAAAATAAAGTTTTAGGCTGGCAA CGCGACAGCCACAGTAGAAAACAAAGTGTTAGGCTGATAA CACAGCAGCGTTAGCAGAAAACAAAGTTTTAGGCTGGAAA TACAGCAGCAACTTTAGAAAATAAAGTCTTAGGCTGACGA ACTAGCAGGATGGTTAGAAAATAAAGCACTAAAATGAGCT ACTTGCAGGATGAGCAGAGAACAAGGCATTGAAATGAGCT ACTGGCAGGCTGATGGGAAAATAAACTCTTAAACTGGCAA CGTTGTTGGAGAATTAGAGAACAAAGCTTTAGAGTGGCTT TGTTGTCGGGGAGCTAGAAAACAAAGCTTTAGAGTGACTT GCTAGCGGGCTGACTAGAAAATAAAGCTCTCGGATGAACT CGTGGCGGGCTGATTAGAAAATAAGGCTCTCGGATGAACT TCTAGCAGGCTGATTAGAAAATAAAGCTCTTGGATGAACT CATGGCCGGCGAATTAGAAAACAAAGCTCTAGGGTGACTT CATTGCAGGGGAACTAGAGAATAAAGCCCTAGAATGACTT TATTGCCGGCGAATTAGAAAACAAGGCCCTAGGATGATCC CATTGTAGGCGAACTAGAAAATAAGGCTCTAGAATGACTT ACTAGCAAGCTGGCTTGAGAACAAAGCACTCGGATGAGCC GCTAGCAGGCTGACTCGAGAACAAAGTAATAGGCTGGTCC CTTAGCAGGATGACTAGAAAACAAAGCCCTCGGATGAGTC ACTAGCAGGATGACTAGAAAACAAAGCCCTTGGATGGCTT GGCTGCAGGCTGATTCGAAAACAAGTCACTAGGATGACGA CGCCGCAGGCTGATTTGAAAACAAGTCACTAGGATGGCGA TCTCGTAGGAGCAGTAGAAAATAAAGTTATAGGCTGAACA CTTGCAGGATGAGCAGGGAATAAAATCCTTCGCTGAGCAT [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] 72 TABLE 5. CYTOCHROME B NUCLEOTIDE SEQUENCE CHARACTERISTICS Total Characters=1140 1st Codon 2nd Codon 3rd Codon Totals Characters 380 380 380 1140 Constant Characters 203 276 2 483 (42%) Uninformative Characters 49 66 2 115 (10%) Informative Characters 128 38 376 542 (48%) % of Informative - Ts 66% 59% 68% % of Informative - Tv 34% 41% 32% 73 TABLE 6. PAIRWISE VALUES OF MEAN % SEQUENCE DIVERGENCE DERIVED FROM UNCORRECTED “P” GENETIC DISTANCE FOR ALL TAXA, INGROUP TAXA AND OUTGROUP TAXA Groups All Ingroup Taxa Outgroup Taxa Sparidae -vs- All Lutjanidae -vs- All Haemulidae -vs- All Nemipteridae -vs- All Lethrinidae -vs- All Centracanthidae -vs- Lutjanidae Centracanthidae -vs- Haemulidae Centracanthidae -vs- Nemipteridae Centracanthidae -vs- Lethrinidae Haemulidae -vs- Lutjanidae Haemulidae -vs- Nemipteridae Haemulidae -vs- Lethrinidae Lethrinidae -vs- Lutjanidae Lethrinidae -vs- Nemipteridae Lutjanidae -vs- Nemipteridae Sparidae -vs- Centracanthidae Sparidae -vs- Haemulidae Sparidae -vs- Lethrinidae Sparidae -vs- Lutjanidae Sparidae -vs- Nemipteridae Lutjanidae Haemulidae Lethrinidae Nemipteridae Sparidae Uncorrected %Divergence Number of Standard Distance Comparisons Deviation 0.2022 20.22 N=1891 0.1627 16.27 N=861 0.2273 22.73 N=190 0.2306 23.06 N=880 0.2120 21.20 N=121 0.2249 22.49 N=121 0.2366 23.66 N=121 0.2252 22.52 N=121 0.1993 19.93 N=4 0.2213 22.13 N=4 0.2287 22.87 N=4 0.2239 22.39 N=4 0.2002 20.02 N=4 0.2377 23.77 N=4 0.2248 22.48 N=4 0.1982 19.82 N=4 0.2327 23.27 N=4 0.2296 22.96 N=4 0.1646 16.46 N=84 0.2238 22.38 N=84 0.2244 22.44 N=84 0.2098 20.98 N=84 0.2338 23.38 N=84 0.1228 12.28 N=1 0.1833 18.33 N=1 0.1702 17.02 N=1 0.2281 22.81 N=1 0.1627 16.27 N=861 0.0419 0.0209 0.0187 0.0274 0.0169 0.0153 0.0117 0.0118 0.0120 0.0099 0.0144 0.0072 0.0141 0.0082 0.0161 0.0063 0.0113 0.0061 0.0158 0.0122 0.0076 0.0111 0.0097 N/A N/A N/A N/A 0.0209 74 TABLE 7. PAIRWISE VALUES OF MEAN % SEQUENCE DIVERGENCE DERIVED FROM UNCORRECTED “P” GENETIC DISTANCE WITHIN AND BETWEEN SUBFAMILIES Boopsinae Denticinae Diplodinae Pagellinae Pagrinae Sparinae Boopsinae Mean % Divergence 14.95 Standard Deviation 2.194 Pairwise 28 Denticinae Mean % Divergence 17.66 14.22 Standard Deviation 2.187 2.115 Pairwise 48 15 Diplodinae Mean % Divergence 14.83 16.94 11.14 Standard Deviation 2.987 3.653 2.588 Pairwise 48 36 15 Mean % Divergence 14.83 14.23 15.14 16.02 Standard Deviation 1.920 2.099 3.764 0.387 Pairwise 32 24 24 6 Mean % Divergence 17.32 14.65 17.31 16.62 13.61 Standard Deviation 2.110 1.647 3.972 2.045 1.280 Pairwise 40 30 30 20 10 Mean % Divergence 16.62 16.49 16.28 16.77 16.96 16.58 Standard Deviation 1.951 2.612 3.026 2.0216 2.397 2.353 Pairwise 88 66 66 44 55 55 Pagellinae Pagrinae Sparinae 75 TABLE 8. FOLLOWING (IRWIN ET AL., 1991) BASE COMPOSITIONAL BIAS, THE UNEQUAL PROPORTIONS OF THE FOUR BASES (A, C, G, AND T), WAS CALCULATED ACROSS ALL, INGROUP, AND OUTGROUP TAXA ALL Codons First Codon Second Codon Third Codon Taxon A C G T A1 C1 G1 T1 A2 C2 G2 T2 A3 C3 G3 T3 Acantho berd 25.0 29.5 14.9 30.6 23.9 27.4 26.3 22.4 20.0 25.5 13.9 40.5 31.1 35.5 4.5 28.9 Archosarg pro 25.9 31.4 14.7 28.0 23.9 26.3 26.3 23.4 20.0 25.3 13.9 40.8 33.7 42.6 3.9 19.7 Argyrops spin 24.5 30.0 15.1 30.4 23.7 27.1 26.3 22.9 20.0 25.0 13.9 41.1 29.7 37.9 5.0 27.4 Argyroz argy 23.4 30.3 15.5 30.8 23.2 27.4 26.3 23.2 20.0 25.0 13.9 41.1 26.9 38.5 6.3 28.2 Boops boops 24.5 31.4 15.5 28.6 23.7 27.1 26.3 22.9 20.0 25.3 14.2 40.5 29.7 41.8 6.1 22.4 Boopsoid ino 26.1 29.2 14.6 30.0 25.5 25.5 25.5 23.4 20.3 25.5 13.7 40.5 32.6 36.6 4.7 26.1 Calamus nod 25.1 28.6 15.6 30.7 25.0 26.8 25.0 23.2 20.3 25.0 13.7 41.1 30.0 33.9 8.2 27.9 Cheimer nuf 24.1 30.4 15.7 29.7 23.4 27.4 27.4 21.8 20.0 25.3 14.2 40.5 28.9 38.7 5.5 26.8 Chrysobl cris 24.5 30.5 15.2 29.8 23.7 26.3 27.1 22.9 20.0 25.8 13.9 40.3 29.7 39.5 4.5 26.3 Crenid crenid 24.6 31.4 15.9 28.2 23.4 26.6 27.4 22.6 20.0 25.5 14.7 39.7 30.3 42.1 5.5 22.1 Cymatoc nas 24.9 30.3 14.7 30.1 24.7 27.4 25.3 22.6 20.0 25.8 14.2 40.0 30.0 37.6 4.7 27.6 Dentex dent 24.4 29.9 15.4 30.3 23.9 26.8 26.6 22.6 20.0 25.0 14.2 40.8 29.2 37.9 5.5 27.4 Dentex tumif 24.3 31.1 15.3 29.3 25.0 25.8 25.3 23.9 20.3 25.3 13.7 40.8 27.6 42.4 6.8 23.2 Diplodus arg 25.5 31.7 15.9 26.9 24.5 27.1 27.4 21.1 20.5 26.1 14.7 38.7 31.6 41.8 5.5 21.1 Diplodus berm 24.6 31.0 15.6 28.8 22.9 27.4 27.6 22.1 20.0 25.3 14.2 40.5 31.1 40.3 5.0 23.7 Diplodus cerv 25.0 30.3 15.5 29.2 24.5 26.6 26.3 22.6 20.0 25.5 14.2 40.3 30.5 38.7 6.1 24.7 Diplodus holb 24.6 31.1 15.7 28.6 22.9 27.1 27.6 22.4 19.7 25.3 14.5 40.5 31.1 41.1 5.0 22.9 Evynnis japo 24.3 28.9 15.9 30.9 23.4 26.3 27.1 23.2 20.0 25.0 13.9 41.1 29.5 35.5 6.6 28.4 Gymno curvid 24.6 28.7 16.4 30.3 23.4 26.1 27.4 23.2 19.7 25.8 14.7 39.7 30.8 34.2 7.1 27.9 Lagod rhomb 26.1 31.8 14.5 27.6 25.5 27.1 24.7 22.6 20.0 25.5 13.9 40.5 32.9 42.6 4.7 19.7 Lithogna mor 23.4 30.5 16.5 29.6 23.4 27.1 27.4 22.1 20.0 25.0 14.2 40.8 26.8 39.5 7.9 25.8 Oblada melan 24.7 30.8 15.7 28.8 23.7 26.3 27.1 22.9 20.0 25.3 14.2 40.5 30.5 40.8 5.8 22.9 Pachy aenum 24.9 29.0 15.6 30.4 25.0 25.5 26.1 23.4 20.0 25.8 14.2 40.0 29.7 35.8 6.6 27.9 Pagellus acar 24.6 29.7 15.5 30.1 23.4 25.8 27.4 23.4 20.0 25.5 14.2 40.3 30.5 37.9 5.0 26.6 Pagellus bell 25.1 30.6 15.3 29.0 23.7 26.8 26.8 22.6 20.0 25.8 13.9 40.3 31.6 39.2 5.0 24.2 Pagrus aurat 24.4 30.3 15.6 29.7 24.2 26.8 26.3 22.6 20.0 25.8 13.7 40.5 28.9 38.2 6.8 26.1 Pagrus auriga 24.9 28.9 15.5 30.7 24.2 25.3 26.8 23.7 19.7 25.5 14.2 40.5 30.8 35.8 5.5 27.9 Pagrus pagru 24.7 29.7 15.5 30.0 23.9 27.4 26.6 22.1 20.0 25.5 13.9 40.5 30.3 36.3 6.1 27.4 Petrus rupest 23.9 31.0 16.2 28.9 24.5 26.3 26.6 22.6 20.0 25.8 13.7 40.5 27.4 40.8 8.4 23.4 Polyam germ 24.5 30.0 15.4 30.1 24.7 26.1 26.1 23.2 19.5 26.1 14.5 40.0 29.2 37.9 5.8 27.1 Polysteg pra 25.3 31.2 15.6 27.9 23.7 27.9 26.6 21.8 20.0 25.5 13.9 40.5 32.1 40.3 6.3 21.3 Porcost denta 23.7 30.6 16.1 29.6 23.4 27.1 27.1 22.4 20.0 25.8 13.9 40.3 27.6 38.9 7.4 26.1 Pterogy laniri 24.1 31.9 15.7 28.2 23.4 26.6 27.1 22.9 20.0 25.8 13.9 40.3 28.9 43.4 6.1 21.6 Rhabdo thorp 23.9 30.4 15.7 30.0 23.7 25.5 26.1 24.7 19.7 25.8 14.5 40.0 28.2 40.0 6.6 25.3 Sarpa salpa 25.0 30.4 15.7 28.9 23.4 26.8 26.8 22.9 20.0 25.5 14.2 40.3 31.6 38.9 6.1 23.4 Spariden hast 24.2 30.5 15.4 29.8 24.2 25.5 26.6 23.7 20.0 25.8 13.9 40.3 28.4 40.3 5.8 25.5 Sparod durb 22.5 31.1 17.8 28.6 23.4 26.8 27.1 22.6 19.7 26.1 14.7 39.5 24.2 40.5 11.6 23.7 Sparus auratus 24.0 30.0 15.8 30.2 23.7 26.3 27.1 22.9 20.3 25.8 13.9 40.0 28.2 37.9 6.3 27.6 76 Spondyl can 24.4 29.4 15.8 30.4 24.5 25.8 25.3 24.5 20.0 25.5 14.2 40.3 28.7 36.8 7.9 26.6 Stenotom chr 25.4 30.3 15.4 28.9 24.5 26.1 26.3 23.2 20.3 25.8 13.9 40.0 31.6 38.9 6.1 23.4 Spicara alta 24.2 32.0 16.0 27.8 23.4 26.6 27.1 22.9 20.0 25.8 13.9 40.3 29.2 43.7 6.8 20.3 Spicara smar 24.5 29.7 15.4 30.4 24.2 25.8 26.1 23.9 19.7 26.3 13.7 40.3 29.5 37.1 6.3 27.1 Cyprinus carp 29.7 30.0 14.1 26.1 25.3 26.6 25.3 22.9 20.0 25.0 13.2 41.8 43.9 38.4 3.9 13.7 Luxilus zonat 24.1 29.0 18.0 28.9 23.7 24.2 26.3 25.8 19.7 26.1 13.7 40.5 28.9 36.8 13.9 20.3 Centropo und 25.8 34.9 14.2 24.7 22.6 29.7 25.3 22.1 21.1 22.9 13.4 42.4 33.7 52.1 3.9 9.7 Dicentra labr 24.8 26.0 16.4 32.8 23.2 24.5 26.3 26.1 20.5 23.9 13.7 41.8 30.8 29.5 9.2 30.5 Dicentra pun 24.3 27.8 16.6 31.3 22.6 25.5 26.3 25.5 20.3 23.7 13.9 42.1 30.0 34.2 9.5 26.3 Lateolab jap1 23.5 32.3 16.1 28.1 23.7 27.6 26.1 22.6 19.7 25.3 13.9 41.1 27.1 43.9 8.4 20.5 Lateolab jap2 23.0 31.7 16.7 28.7 24.2 26.8 25.8 23.2 19.7 25.3 13.9 41.1 25.0 42.9 10.3 21.8 Lateolab latus 22.3 31.0 17.7 29.0 22.9 25.0 26.6 25.5 19.7 25.3 13.7 41.3 24.2 42.6 12.9 20.3 Morone ameri 24.0 30.2 15.6 30.2 23.2 27.1 25.3 24.5 20.3 25.5 13.4 40.8 28.7 37.9 8.2 25.3 Morone chrys 24.1 29.6 16.1 30.2 22.4 25.3 27.1 25.3 20.8 25.3 12.9 41.1 29.2 38.2 8.4 24.2 Morone missi 24.2 29.6 14.9 31.3 24.2 25.8 23.9 26.1 20.3 25.3 13.4 41.1 28.2 37.6 7.4 26.8 Morone saxa 24.9 28.3 15.4 31.4 22.4 25.3 26.6 25.8 20.3 25.0 13.2 41.6 32.1 34.7 6.3 26.8 Haemul sciur 23.3 34.5 16.0 26.2 23.2 28.2 26.3 22.4 20.0 25.5 13.9 40.5 26.8 49.7 7.6 15.8 Pomad macu 24.5 31.3 15.4 28.9 22.6 27.6 26.3 23.4 20.0 24.7 14.5 40.8 30.8 41.6 5.3 22.4 Caesio cunin 23.8 34.4 16.5 25.4 22.4 28.2 27.6 21.8 19.7 24.2 14.5 41.6 29.2 50.8 7.4 12.6 Lutjanus decu 25.1 34.2 14.9 25.8 23.2 28.4 26.6 21.8 19.7 24.7 13.7 41.8 32.4 49.5 4.5 13.7 Lethrinus orna 23.9 33.6 16.1 26.4 23.4 27.4 25.8 23.4 20.0 27.1 14.2 38.7 28.4 46.3 8.2 17.1 Lethrinus rubr 23.2 31.1 16.0 29.8 23.4 26.1 25.8 24.7 19.7 26.3 13.9 40.0 26.3 40.8 8.2 24.7 Scolops ciliat 24.0 30.6 15.1 30.3 24.2 29.2 24.7 21.8 21.1 25.5 13.2 40.3 26.8 37.1 7.4 28.7 Nemipt margi 24.1 30.2 16.6 29.1 23.7 25.0 26.3 25.0 18.9 25.5 13.9 41.6 29.7 40.0 9.5 20.8 MEAN 24.5 30.6 15.7 29.2 23.8 26.6 26.4 23.3 20.0 25.4 14.0 40.6 29.7 39.7 6.7 23.8 SD 1.02 1.56 0.74 1.56 0.75 1.05 0.80 1.17 0.32 0.62 0.39 0.69 2.75 4.07 2.03 4.32 ALL BIAS 0.133 0.042 0.215 0.274 IN BIAS 0.132 0.042 0.212 0.267 OUT BIAS 0.134 0.041 0.220 0.288 All Codons First Codon Second Codon Third Codon 77 TABLE 9. MULTIPLE ALIGNMENT OF AMINO ACID RESIDUES TRANSLATED FROM THE NUCLEOTIDE SEQUENCES OF THE CYTOCHROME B GENE FROM THE SPARIDAE AND OUTGROUP SPECIES. TAXONOMIC NAMES WITH A SUFFIX OF “GB” ARE FROM GENBANK AND ARE INCLUDED WITH ORIGINAL SEQUENCES FOR EASY COMPARISON. 78 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIVNHAVVDLPAP1NI1VWWNFG1LL2LCLI1QLLTGLF MTNLRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLV1QLLTGLF MT2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTQPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLRLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCWI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWDFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGRF MA2LRKTHPLLKIANHAVIDLHAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAPANI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MT2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLIKIANDALVDLPTP1NI1AWWNFG1LLGLCLITQILTGLF MA2LRKTHPLMKIANGALVDLPTP1NI1ALWNFG1LLGLCLITQILTGLF MA2LRKTHPLLKIANDALIDLPAP1NI1AWWNFG1LLGLCLIAQILTGLF MAALRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF M2ALRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLITQILTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLITQILTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLFTQIITGLF MA1LRK1HPLLKIANNALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MAALRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA1LRK1HPLLKIANNALIDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MAALRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MANPRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QIVTGLF MANLRKTHPLLKIANDALIDLPAP1NI1VWWNFG1LLGLCLI1QIVTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLIAQLLTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF MACLRKTHPLLKIANDAVLDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF MA2LRKTHPLLKIANDAVVDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF MA2LRKTPPLLMIANNALIDLRAP1NI1AWWNFG1LLGLCLAAQILTGLF MA2LRKTHPLLKIANDALVDLPAPANI1AWWNFG1LLGLCLIAQLLTGLF [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] 79 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYEWLIRNLHANGA1FFFICIYFHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYTPDIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNDGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DINTAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF1PVAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1GIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIAMAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYVHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGG LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIFLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DI1TAF11VTHICRDVNYGWLIRNVHANGA1FFFICIYMHIAR LAMHYT1DI1TAF11VTHICRDVNYGWLIRNMHANGA1FFFICIYMHIAR LAMHYT1DINMAFT1VAHICRDVNYGWLIRNLHANGA1FFFICMYLHIGR LAMHYT1DIATAF11IAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11IAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DVATAF11VAHICRDVNYGWLIRNVHANGT1FFFICIYMHIGR LAMHYT1DVATAF11VAHICRDVNYGWLIRNIHANGT1FFFICIYMHIGR LAMHYT1DVATAF11VAHICRDVNYGWLIRNVHANGA1FFFICIYMHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLH1NGA1LFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLICNLHANGA1LFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLH1NGA1LFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNFGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DI2MAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DITMAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] 80 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGGTVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLRLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKWTWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQMFFWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITKLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKDTWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1LWGATVITNLV GLYYG1YLYKETWDIGVILLLLVMGTAFVGYVLPWGQM1FWGATVIT2LL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMG1AFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YPYKVTWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKDTWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNVGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTA1VGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGGTVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGGTVITNLL GLYYG1YLYKETWNVGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGDVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYMETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] 81 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 1AVPYIRGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYIGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVG2TLVQWIWGGF1VDNATLTRFFAFHFLFPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTFVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLCL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFTFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPLVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLFLFIVAAMIMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTLLHLLFL 1AVPYIGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVG2TLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFP 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYIGGTLVQWFWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL TAVPYVGGTLVQWIWGGL1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVIAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYMGDMLVQWIWGGF1VDNATLTRFFAFHFLLPFVIAAATIIHLLFL 1AVPYMGDTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATVLHLLFL 1AVPYVGDILVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMMILHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATMLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATLLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAGATVIHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATLIHLIFL 1AVPYIGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATFIHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAAATLLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAATVLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAAAAILHLLFL 1ALPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAATILHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAATVIHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPLIVTAATLIHLLFL CAIPYVGNTLVQWVWGGF1VDNATLTRFFAFHFLLPFIIAAVTMLHLLFL 1AIPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAVTMLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFYALHFL1PFVIAAATTPHLRFL 1AVPYVGNTLVQWIWGGF1VDHATLTRFFAFHFLFPFVIAAATMLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAMTLLHLLFL 1AVPYVGNMLVQWIWGGF1VDHATLTRFLTFHFLFPFVIAAATLLHLLFL [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] 82 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAP2LL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVLILLTCLALF1PNLL HETG1NNPIGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALF1PNLL HETG1NNPLGLN1DTDKIAFHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLGLFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1YNPLGVN1DTDKI1FHPYL1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDVLGFAGVIILLTCLAL1APNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLTCLALFTPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVVILLTCLALFAPNIL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HDTG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIMLLTCLALFAPNLL HETG1NNPLGLN1DTDKM1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLAWFAPNLL HETG1NNPLGLN1DTDKI1FHPY11YKDLLGFAAVIILLTCLALFAPNLL HETG1NNPLGLN1NTDKI1FHPYF1YKDLLGFAGLLILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVNILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIMLLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLT1LALFAPNLL HETG1NNPIGLN1DADKV1FHPYF1YKDLLGFVIMLLALTLLALF1PNLL HETG1NNPAGLN1DADKI1FHPYF1YKDLLGFVLLLLALT1LTFF1PTLL HETG1NNPMGLN1NVDKIPFHPYF1YKDLLGFVVLLFTLT1LALFLPNLL HQTG1NNPLGLN1DVDKI1FHPYF1YKDLLGFAIVLIGLT2LALF1PNLL HQTG1NNPLGLN1DVDKI1FHPYF1YKDLLGFAIVLIGLA2LALF1PNLL HETG1NNPLGLN1DADKIPFHPYF1YKDLLGFAVLLTALA1LALF1PNLL HETG1NNPLGLN1EADKIPFHPYF1YKDLLGFAVLLTALA1LALF1PNLL HETG1NNPLGLN1DADKIPFHPYF1YKDLLGFAVLLTALAALALF1PNLL HETG1NNPLGLN1DVDKIPFHPYF1YKDLLGATAVLIGLT1LALF1PNLL HETG1NNPLGLN1DVDKIPFHPYF1YKDILGFAAVLVGLT1LALF1PNIL HETG1NNPLGLN1DMDKIPFHPYF1YKDLLGFTAVLI2LT1LALF1PNLL HETG1NNPLGLN1DVDKIPFHPYF1YKDLLGFAAVLIGLT1LALF1PNLL HQTG1NNPLGLN1DADKIWFHPYF1YKDLLGFAVLLIALTCLALF1PNLL HETG1NNPLGLN1DADKI1FHPYL1YKEVLGFVVLLIALACLALL1LNLL HETG1NNPLGLN1DADKM1FHPYF1YKDLLGFVVVLIALVCLALFAPNLL HETG1NNPLGLN1DVDKI1FHPYF1YKDLLGFVVVLIALT1LALF1PNLL HETG1NNPLGLN1D1DKI1FHPYF1YKDLLGFAAVLIALT1LALF1PNLL HETG1NNPLGLN1D1DKI1FHPYF1YKDLLGFAAVLIALT1LALF1PNLL HETG1NNPLGL11DTDKI1FHPYF1YKDLLGFAAVIIFLTCLALF1PNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLIGFAAILITLTCLALF1PNLL [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] 83 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLAVLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFGYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILI GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWN1LFAYAILR1IPNKLGGVLALLA1MLV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPDKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPENFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPENFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV GDPENFTPANPLVTPPHIQPEWYFLFAYAIIR1IPNKLGGVLALLF2ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALL11ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYANLR1IPNKLGGVLALLA1ILV EHQDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLDLLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYVLFAYAILR1MPNKLGGVLALLA12LV GDPDNFTPANPLVTPPHVKPEWYFLFAYATLR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] 84 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus LMVVPMLHT1KQR2LTFRPFTQFLFWALIANVVILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPLTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPITQFLFWALIANVAILTWIGFLLVEDPYIII LMLVPFLHT1KQR2LTFRPI1QFLFWMLIANVAILTWIGGMPVEDPYIII LMVVPLLHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPATQFLFWTLIANVAILTWIGGMPVEEPYIII LMIVPILHT1KQR2LTFRPLTQFLFWALIANVVVLTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMLVPLLHT1KQR2LTFRPVTQFLFWTLTANVAVLTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPLTQFLFWLLIANVAILTWIGGMPVEDPYIII LMVVP2PHTPKQR2LT2RPVTQILFWALIANVAILTWIGGMPAEEPYKII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWTLIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIVI LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEGPYIII LMIVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPITQFLFWALTANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIVI LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII LMAVPILHM1KQR2LTFRPITQFLFWTLIANVAILTWIGGMPVEDPYIVI LMVVPTLHT1KQR2LTFRPITQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALMANVAILTWIGGMPVEDPYIVI LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIVI LMIVPILHT1KQR2LTFRPATQFLFWTLIANVAILTWIGGMPVEEPYIII LMVVPLLHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPMLHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LVVVPVLHT1KQR2LTFRPVTQFLFWTLIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALVANVAILTWIGGMPVEEPYIII FLVVPIFHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEDPYIMI LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIVI LMVVPILHT1KQR2LTFRPVTQFLFWTLVANVAILTWIGGMPVEDPYIMI LMVVPLLHT1KQRGLTFRPITQFLFWTLVADMIILTWIGGMPVEHPFIII LLVVPILHT1KQRGLTFRPITQFLFWTLVADMVILTWIGGMPVEHPYIII LMLVPLLHT1KQRGLMFRPA1QLLFWVLVADVAILTWIGGMPVEHPYIIV LMVVPYLHT1KQR2MTFRPVTQFLFWALVADVMILTWIGGMPVEHPFIII LMVVPFLHT1KQR2MTFRPLTQFLFWTLVADVMVLTWIGGMPVEHPFIII LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII LMTVPFLHT1KQR2LTFRPLTQLLFWTLIADVVILTWIGGMPVEHPFIII LMAVPFLHT1KQR2LTFRPLTQLLFWALIADVAILTWIGGMPVEHPFIII LLTVPFLHT1KQR2LTFRPLTQFLFWTLIADVMILTWIGGMPVEHPFIII LMVVPFLHT1KQR2LTFRPLTQLLFWTLIADVAILTWIGGMPVEHPFIII LMVVPILHT1KQR2LTFRPVTQFLFWTLIADVAILTWIGGMPVEHPFIII LMVVPFRHT1KQR2LTFRPL1QLLFWTLVADVA2LTWIGGMPVEHPYIII LMVVPILHT1KQRGLTFRPVTQFLFWTLIANVAILTWIGGMPVEHPFIII LMVVPILHT1KQRGLTFRPVTQFLFWTLIANVAILTWIGGMPVEHPFIII LMVVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEHPFIII LMVVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEHPFIII LMLVPLLHT1KQR2LTFRPI1QFLFWVLIADVAILTWIGGMPVEDPYIII LMLVPILHT1KQR2LTFRPI1QFLFWTLIADVAILTWIGGMPVEHPYIII [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] 85 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus GQIA1LTYF1LFLVIIPAAATVENKVLGWQ GQVA1LTYF1LFLIIIPTVAMVENKVLGW3 GQIA1LTYFALFLLIMPATALVENKVLGWQ GQIA1LTYFALFLFIIPVAALVENKVLGCN GQIA1LTYF1LFLLIIPMAATLENKVLGWQ GQIA1LTYF1IFLIIIPATAILENKVLNWQ GQIA1LTYF1LFLIIIPVTATVENKVLGWQ GQIA1LTYFALFLLIMPVAALAENKVLGWQ GQIA1LTYFALFLFIIPAAALAENKVLGWQ GQVA1LTYF1LFLIIIPTAAAVENKVLGWQ GQIA1LTYFALFLFINTAAALVENKMLGWQ GQIA1LTYFALFLFIFPVTALVENKVLGWQ GQIA1LTYFALFLIIIPTTALAENKML2LQ GQIA1LTNI1LFLVVNPAAAVLENKVLGWQ GQIA1LTYF1LFLVVIPAAAVLENKVLGWQ GQIA1LTYF1LFLVIIPAAATMENKVLGWQ GQIA1LTYF1LFLVVIPAAAVLENKVLGWQ GQIA1LTYFALFLLIIPATALVENKVLGWQ GQIA1LTYF1LFLVIIPAAATMENKVLGWQ GQIA1LTYF1LFLIIIPMAATVENKML2WQ GQIA1LTYF1LFLVVMPAAAAIENKVLGWQ GQIA1LTYF1LFLVIIPAAAVMENKVLGWQ GQIA1LTYF1LFLIIIPATATIENKMLGWQ GQVA1LTYF1LFLVIIPAAATMENKVLGWQ GQIA1LTYFALFLLIIPATALAENKVLGWQ GQIA1LTYFALFLLIMPTAALVENKVLGWQ GQIA1LTYFALFLFIIPVTAMAENKVLGWR GQIA1LTYFALFLLIIPATALVENKVLGWQ GQIA1LTYFALFLFIIPTAALAENKMLGLQ GQIA1LTYF1LFLIIIPATATIENKMLGWQ GQIA1LTYFALFLFIMPAAALVENKVLGWQ GQVA1LTYFALFLFIIPAAALAENKVLGWQ GQIA1LTYFALFLFIIPAAALAENKVLGWQ GQVA1L1YF1LFLIIMPAAATLENKVLGWR GQVA1LTYF1LFLVIIPAAATLENKVLGWQ GQIA1LTYF1LFLVIIPTAATMENKVLGWQ GQVA1LTYF1LFLIIMPAAATLENKALGWQ GQVA1LTYF1LFLVIIPAAATMENKVLGWQ GQIA1VTYL1LFLIIIPTAATLENKVLGWQ GQIA1LTYFALFLIIIPATATVENKVLGWQ GQVA1LTYFALFLLIIPTAALAENKVLGWK GQVA1LTYF1LFLIIIPTAATLENKVLGWR GQIA1VLYFALFLIFMPLAGWLENKALKWA GQVA1VLYFALFLLLAPLAGWAENKALKWA GQIA1LLYFLLFLVLMPLAGWWENKLLNWQ GQVA1LLYFLLFLVFIPVVGELENKALEWL GQVA1LLYFLLFLVLIPVVGELENKALEWL GQIA1LLYFLIFLVLFPLAGWLENKALGWT GQIA1LLYFLIFLVLFPVAGWLENKALGWT GQLAFLFYFFIFLVLFPLAGWLENKALGWT GQIA1LLYFLLFLVLMPMAGELENKALGWL GQIA1LLYFLLFLVFMPIAGELENKALEWL GQIA1LLYFLLFLVFMPIAGELENKALGW1 GQVA1LLYFLLFLVFMPIVGELENKALEWL GQVA1FLYFFLFLVFTPLA2WLENKALGWA GQIA1FLYF1LFLVLFPLAGWLENKVMGW1 GQIA1VLYFLLFLVLTPLAGWLENKALGWV GQIA1VLYFLLFLVFAPLAGWLENKALGWL GQIA1LLYF1LFLIITPAAGWFENK1LGWR GQIA1LLYF1LFLIITPAAGWFENK1LGWR GQVA1VLYF1IFLVFMPLVGAVENKVMGWT GQIA1VLYF1IFLLLMPLQDEQGMK1FAEH [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] 86 TABLE 10. FAO AREA ASSIGNMENTS FOR THE SPARIDAE USED IN THIS STUDY. FAO AREAS WERE ESTABLISHED BY FAO (1995) TAXON FAO Area Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteum Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparodon durbanensis Sparidentex hasta Sparus auratus Spicara maena Spicara alta Spondyliosoma cantharus Stenotomus chrysops 8, 7, 10, 12 3, 6, 5 4, 8, 7, 10, 12 4, 8 2, 1, 9, 4 4, 8 3, 6 4, 8 4, 8 4, 8 4, 8 2, 1, 9 7, 10, 12 6, 5 6 2, 1, 9, 4 3, 6 10 4, 8 3, 6 2, 1, 9, 4, 8 2, 1, 9, 4 4, 8 2, 1, 9 1, 9, 4 7, 10, 12, 11 2, 1, 9, 4 3, 2, 6, 1, 9, 5 4,8 4,8 4, 8 4, 8 4, 8 4, 8 2, 1, 9, 4, 8 4, 8 8, 7 2, 1, 9 2, 1, 9 1, 4 2, 1, 9, 4 3, 6 1-Atlantic, Eastern Central; 2-Atlantic, Northeast; 3-Atlantic, Northwest; 4-Atlantic, Southeast; 5-Atlantic, Southwest; 6-Atlantic, Western Central; 7-Indian Ocean, Eastern; 8-Indian Ocean, Western; 9-Mediterranean and Black Sea; 10-Pacific, Northwest; 11-Pacific, Southwest; 12-Pacific, Western Central 87 TABLE 11. MATRIX OF FAO AREAS AND CHARACTERS. FAO AREAS WERE TREATED AS INDEPENDENT DATA AND TAXA PLUS ANCESTRAL NODES WERE TREATED AS DEPENDENT DATA DURING PARSIMONY ANALYSIS. CHARACTERS ARE DEFINED BELOW (AN=ANCESTRAL NODE). AREAS .........1.........2.........3.........4.........5.........6.........7.........8.. 1234567890123456789012345678901234567890123456789012345678901234567890123456789012 Atlantic, Eastern Central 0000100000010001000011011011000000100111101011100110110001000000111111101101111111 Atlantic, Northeast 0000100000010001000011010011000000100110101011100110110001000000001111101101111111 Atlantic, Northwest 0100001000000000100100000001000000000000010000011110110001000000000011101111111000 Atlantic, Southeast 0011110111100001001011101010111111110001101111100110111111111111111111101101111111 Atlantic, Southwest 0100000000000100000000000001000000000000000000001110110001000000000011101111111000 Atlantic, Western Central 0100001000000110100100000001000000000000010000011110110001000000000011101111111000 Indian, Ocean Eastern 1010000000001000000000000100000000001000000000000001110001000000110000111101111011 Indian, Ocean Western 1011010111100000001010100000111111111000001111100001111111111111011101101101111011 Mediterranean/Black Sea 0000100000010001000011011011000000100110101011100110110001000000001111101101111100 Pacific, Northwest 1010000000001000010000000100000000000000000000000001110001000000110000111101111000 Pacific, Southwest 0000000000000000000000000100000000000000000000000000000000000000000000011101110000 Pacific, Western Central 1010000000001000000000000100000000000000000000000001110001000000110000111101111000 CHARACTERS 1 Acanthopagrus berda; 2 Archosargus probatocephalus; 3 Argyrops spinifer; 4 Argyrozona argyrozona; 5 Boops boops; 6 Boopsoidea inornata; 7 Calamus nodosus; 8 Cheimerius nufar; 9 Chrysoblephus cristiceps; 10 Crenidens crenidens; 11 Cymatoceps nasutus; 12 Dentex dentex; 13 Dentex tumifrons; 14 Diplodus argenteus; 15 Diplodus bermudensis; 16 Diplodus cervinus; 17 Diplodus holbrooki; 18 Evynnis japonica; 19 Gymnocrotaphus curvidens; 20 Lagodon rhomboides; 21 Lithognathus mormyrus; 22 Oblada melanura; 23 Pachymetopon aeneum; 24 Pagellus bogaraveo; 25 Pagellus bellottii; 26 Pagrus auratus; 27 Pagrus auriga; 28 Pagrus pagrus; 29 Petrus rupestris; 30 Polyamblyodon germanum; 31 Polysteganus praeorbitalis; 32 Porcostoma dentata; 33 Pterogymnus laniarius; 34 Rhabdosargus thorpei; 35 Sarpa salpa; 36 Sparodon durbanensis; 37 Sparidentex hasta; 38 Sparus auratus; 39 Spicara maena; 40 Spicara alta; 41 Spondyliosoma cantharus; 42 Stenotomus chrysops; 43 AN1; 44 AN2; 45 AN3; 46 AN4; 47 AN5; 48 AN6; 49 AN7; 50 AN8; 51 AN9; 52 AN10; 53 AN11; 54 AN12; 55 AN13; 56 AN14; 57 AN15; 58 AN16; 59 AN17; 60 AN18; 61 AN19; 62 AN20; 63 AN21; 64 AN22; 65 AN23; 66 AN24; 67 AN25; 68 AN26; 69 AN27; 70 AN28; 71 AN29; 72 AN30; 73 AN31; 74 AN32; 75 AN33; 76 AN34; 77 AN35; 78 AN36; 79 AN37; 80 AN38; 81 AN39; 82 AN40 88 FIGURE 3. PCR primers and their relative sequence map alignment relative to the mitochondrial genome of Cyprinus carpio (GenBank Accession X61010) are given. The graphic represents the location of these primers on the heavy and light strand of tRNA Glu and tRNA Thr that flank Cytochrome b gene in perciform fishes. The following primer pairs were used for PCR: CYTbUnvL (L15242)/CYTbUnvH (H16458); CYTbGludgL (L15249)/CYTBThrdgH (H16465); and CYTB4xdgL (L14249)/CYTb4xdgH (H16435). CYTbGludgL-TGACTTGAARAACCAYCGTTG-L15249 CYTb4XdgL-TGAYWTGAARAACCAYCGTTG-L15249 CYTbUnvL-CGAACGTTGATATGAAAAACCATCGTTG-L15242 5'AATTCTTGCTCAGACTTTAACCGAGACCAATGACTTGAAGAACCACCGTTGTTATTCAACTACAAGAACCAC3' | L15219 (TRNA -GLU Cyprinuis carpio 15219-15287) CYTbGludgL CYTb4xdgL CYTbUnvL tRNA-Glu Cytochrome b tRNA-Thr CYTB4XdgR CYTbUnvH CYTbThrdg-H H16434(TRNA-THR Cyprinus carpio 16434-16505) | 3'GCGCTAGGGAGGAATTTAACCTCCGATCTTCGGATTACAAGACCGATGCTTTTAGGCTAAGCTACTAGGGCA5' CYTB4xdgH-TGRVNCTGAGCTACTASTGC-H1643 5 CYTBUnvH-ATCTTCGGTTTACAAGACCGGTG-H16458 CYTBThrdgH-CTCCAGTCTTCGRCTTACAAG-H16565 90 FIGURE 4. Total substitutions at all codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = -0.3212x2 + 12.339x + 13.82, R2 = 0.2725 and Tv: y = -0.0176x2 + 4.0373x - 3.6503, R2 = 0.2038). Key: Ts-All =Transitions all codon positions Tv-All =Transversions all codon positions Poly. (Ts-All) = polynomial line fitted to transitions from all codon positions Poly. (Tv-All) = polynomial line fitted to transversions from all codon positions 180 160 Total Substitutions 140 120 100 80 60 40 20 0 0 5 10 15 20 %Sequence Divergence (Uncorrected) Ts-All Tv-All Poly. (Ts-All) Poly. (Tv-All) 25 92 FIGURE 5. Total substitutions at the first codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = -0.0082x2 + 1.0262x + 3.3566, R2 = 0.1291 and Tv: y = 0.0203x2 - 0.2574x + 3.6401, R2 = 0.0678). Key: Ts-1st = Transitions 1st codon position Tv-1st = Transversions 1st codon position Poly. (Ts-1st) = polynomial line fitted to transitions from 1st codon position Poly. (Tv-1st) = polynomial line fitted to transversions from 1st codon position 35 30 Total Substitutions 25 20 15 10 5 0 0 5 10 15 20 % Sequence Divergence (Uncorrected) Ts-1st Tv-1st Poly. (Ts-1st) Poly. (Tv-1st) 25 94 FIGURE 6. Total substitutions at the second codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = 0.0121x2 - 0.2146x + 3.1507, R2 = 0.0396 and Tv: y = 0.0764x + 0.478, R2 = 0.0127). Key: Ts-2nd = Transitions 2nd codon position Tv-2nd = Transversions 2nd codon position Poly. (Ts-2nd) = polynomial line fitted to transitions from 2nd codon position Poly. (Tv-2nd) = polynomial line fitted to transversions from 2nd codon position 9 8 Total Susbtitutions 7 6 5 4 3 2 1 0 0 5 10 15 20 % Sequence Divergence (Uncorrected) Ts-2nd Tv-2nd Poly. (Ts-2nd) Linear (Tv-2nd) 25 96 FIGURE 7. Total substitutions at the third codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = -0.2707x2 + 11.417x - 4.4675, R2 = 0.4766 and Tv: y = 0.1607x2 + 1.0435x 9.5465, R2 = 0.7008). Key: Ts-3rd = Transitions 3rd codon position Tv-3rd = Transversions 3rd codon position Poly. (Ts-3rd) = polynomial line fitted to transitions from 3rd codon position Poly. (Tv-3rd) = polynomial line fitted to transversions from 3rd codon position 160 140 Total Substitutions 120 100 80 60 40 20 0 0 5 10 15 20 % Sequence Divegence (Uncorrected) Ts-3rd Tv-3rd Poly. (Ts-3rd) Poly. (Tv-3rd) 25 98 FIGURE 8. Total substitutions at the third codon position and pooled first and second codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts-Tv3rd: y = -0.11x2 + 12.46x - 14.014, R2 = 0.9402 and Ts-Tv1st+2nd: y = 0.0261x2 + 0.5738x + 11.025, R2 = 0.1537). Key: Ts-Tv1st+2nd = All substitutions 1st and 2nd codon positions Ts-Tv3rd = All substitutions 3rd codon position, Poly. (Ts-Tv1st+2nd) = polynomial line fitted to all substitutions from the 1st and 2nd codon positions Poly. (Ts-Tv3rd) = polynomial line fitted to all substitutions from the 3rd codon position 250 Substitutions 200 150 100 50 0 0 5 10 15 20 % Sequence Divergence (Uncorrected) Ts+Tv 1st+2nd Ts+Tv3rd Poly. (Ts+Tv3rd) Poly. (Ts+Tv 1st+2nd) 25 100 FIGURE 9. A ratio of transitions/total substitutions and transversions/total substitutions from third codon plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Key: Ts/Ts+Tv = Ratio of transitions to total substitutions from the 3rd codon position Tv/Ts+Tv = Ratio of transversions to total substitutions from the 3rd codon position Poly. (Ts/Ts+Tv) =Polynomial line fitted to the ratio of transitions to total substitutions from the 3rd codon position Poly. (Tv/Ts+Tv) =Polynomial line fitted to the ratio of transitions to total substitutions from the 3rd codon position 1 0.9 % of Total Substitutions 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 % Sequence Divergence (Uncorrected) Ts/Ts+Tv Tv/Ts+Tv Poly. (Ts/Ts+Tv) Poly. (Tv/Ts+Tv) 25 102 FIGURE 10. Transitional substitutions, separated into nitrogenous base type, purines (AøG) and pyrimidines (CøT) plotted as a functions of pairwise percent sequence divergence of ingroup taxa only. All data derived from cytochrome b nucleotide sequences. 120 100 Transitions 80 60 40 20 0 0 5 10 15 % Sequence Divergence (Uncorrected) AG CT 20 25 104 FIGURE 11. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at all codon positions. The relative frequency of each base was not equal and a chi-squared test of heterogeneity among taxa from all codon positions was slightly significant (X2 = 166.9 df==183 P=0.798). Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga A Pagrus pagrus Taxon Petrus rupestris C Polyamblyodon germanum Polysteganus praeorbitalis G Porcostoma dentata T Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN 0% 20% 40% 60% Cumulative Frequency 80% 100% 106 FIGURE 12. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the first codon position. The relative frequency of each base was not equal, but a chisquared test did not demonstrate heterogeneity among taxa in the first codon position base frequencies X2 =34.22, df=183, P > 0.995). Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus A1 Taxon Petrus rupestris Polyamblyodon germanum C1 Polysteganus praeorbitalis G1 Porcostoma dentata Pterogymnus laniarius T1 Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN 0% 20% 40% 60% Cumulative Frequency 80% 100% 108 Figure 13. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the second codon position. The relative frequency of each base was not equal (anti-guanine, pro-thymine), but a chi-squared test did not demonstrate heterogeneity among taxa in the second codon position base frequencies X2=9.68, df=183, P >0.995). Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus Taxon Petrus rupestris A2 Polyamblyodon germanum Polysteganus praeorbitalis C2 Porcostoma dentata G2 Pterogymnus laniarius T2 Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN 0% 10% 20% 30% 40% 50% 60% Cumulative Frequency 70% 80% 90% 100% 110 FIGURE 14. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the third codon position. The relative frequency of each base was not equal (anti-guanine, pro-cytosine) and a chi-squared test demonstrated significant heterogeneity among taxa in the third codon position base frequencies (X2=477.59, df=183, P< 0.001 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus Taxon Petrus rupestris A3 Polyamblyodon germanum Polysteganus praeorbitalis C3 Porcostoma dentata G3 Pterogymnus laniarius Rhabdosargus thorpei T3 Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN 0% 20% 40% 60% Cumulative Frequency 80% 100% 112 FIGURE 15. Four equally parsimonious trees, unweighted data Tree One Tree Three Cyprinus carpio Luxilus zonatus Centropomus undecimalis Caesio cuning Lutjanus decussatus Haemulon sciurus Pomadasys maculatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki Tree Two Tree Four Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone americanus Morone mississippiensis Morone chrysops Morone saxatilis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki 114 FIGURE 16. Strict consensus of four equally parsimonious trees from the unweighted data. A heuristic search of 1000 random addition replicates on the cytochrome b nucleotide data set resulted in four equally parsimonious trees. (tree length=6416, CI=0.1900, RI=0.4258). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae,PA=Pagrinae,PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” 1st = Partitioned Decay at 1st Codon at “N” 2nd = Partitioned Decay at 2nd Codon at “N” 3rd = Partitioned Decay at 3rd Codon at “N” B = Bootstrap Support Value at “N” 17( 98 3.0 3.9 10.1 ) 2.5 4.0 ) 5( -1.5 100 8.2 9( 1.0 1.5 6.5 4.5 ) 23(10.2 14( 74 ) 23( 0.9 2.4 19.8 ) 1.3 0.4 12.3 ) 9.5 3.0 13.5 ) 26( 100 98 100 68 1.5 3 (-2.0) 3.5 73 3.5 0.0 ) 21(17.5 6.5 17( 4.0 ) 100 95 6.5 0.0 0.0 ) 5( 5.0 70 0.0 0.0 ) 3( 3.0 88 -0.1 98 55 1.0 ) 3(-1.0 3.0 8( 0.5 ) 7.6 -0.5 2.0 ) < 12( 10.5 < 1.0 3(-1.0 ) 3.0 54 -4.2 ) 4(-1.0 9.2 9( 6( 6.0 22( -0.4 ) -1.0 1.0 7.0 99 ) -3.0 0.0 12.0 ) < 69 2.0 0.0 ) 11( 9.0 -1.0 5( -0.7 0.0 5.7 ) 16.4 7( 0.0 ) < 85 1.0 7( 1.0 ) 5.0 2( -2.0 0.0 4.0 ) ) 11.5 0.0 ) 4( 2.2 65 69 < 1.8 ) < 53 -3.2 1.2 6.0 0.0 ) 9( -2.5 -0.5 1.7 1.8 87 8.0 4( 3( 98 3.0 0.0 ) 16( 13.0 99 81 -2.5 0.0 ) 59 8( 10.5 -0.5 ) 9.0 100 2( 2.0 0.5 0.0 ) 28( 19.0 -0.4 2( 4( -1.2 0.0 2.8 ) -1.2 0.0 3.2 < 9.4 < 10( 1.0 ) 4.8 95 83 0.0 ) 9( 4.2 12( 99 2.0 0.0 10.0 ) -1.5 ) 3( 0.0 4.5 0.3 ) 63 < ) 0.0 98 5(-0.8 5.4 100 10( -1.0 ) 11.0 1.6 20( 0.0 ) 0.4 70 18.4 2 ( 0.0 ) 1.6 Group II 8.5 3.7 ) 17(4.8 100 Group I 88 4.5 9( 0.5 ) 4.0 Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus SP Pterogymnus laniarius DE Argyrozona argyrozona DE Petrus rupestris DE Polysteganus praeorbitalis SP Porcostoma dentata SP Chrysoblephus cristiceps SP Cymatoceps nasutus DE Dentex tumifrons Spicara alta PA Argyrops spinifer PA Evynnis japonica PA Pagrus auratus PE Pagellus bellottii PA Pagrus pagrus PA Pagrus auriga DE Cheimerius nufar DE Dentex dentex DI Archosargus probatocephalus DI Lagodon rhomboides SP Calamus nodosus SP Stenotomus chrysops BO Sarpa salpa BO Spondyliosoma cantharus Spicara maena PE Boopsoidea inornata BO Gymnocrotaphus curvidens BO Pachymetopon aeneum BO Polyamblyodon germanum BO Boops boops BO Crenidens crenidens SP Acanthopagrus berda DE Sparidentex hasta SP Sparus auratus SP Rhabdosargus thorpei SP Sparodon durbanensis PE Lithognathus mormyrus PE Pagellus bogaraveo BO Oblada melanura DI Diplodus cervinus DI Diplodus argenteus DI Diplodus bermudensis DI Diplodus holbrooki 116 FIGURE 17. Two equally parsimonious trees - weighted data Tree One Cyprinus carpio Luxilus zonatus Centropomus undecimalis Lateolabrax japonicus2 Lateolabrax japonicus Lateolabrax latus Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus Calamus nodosus Stenotomus chrysops Archosargus probatocephalus Lagodon rhomboides Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Dentex tumifrons Spicara alta Pterogymnus laniarius Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Boops boops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Crenidens crenidens Lithognathus mormyrus Pagellus bogaraveo Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Acanthopagrus berda Sparidentex hasta Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki Tree Two Cyprinus carpio Luxilus zonatus Centropomus undecimalis Lateolabrax japonicus2 Lateolabrax japonicus Lateolabrax latus Dicentrarchus labrax icentrarchus punctatus Morone americanus Morone mississippiensis Morone chrysops Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus Calamus nodosus Stenotomus chrysops Archosargus probatocephalus Lagodon rhomboides Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Dentex tumifrons Spicara alta Pterogymnus laniarius Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Boops boops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Crenidens crenidens Lithognathus mormyrus Pagellus bogaraveo Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Acanthopagrus berda Sparidentex hasta Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki 118 FIGURE 18. A strict consensus of two equally parsimonious trees from the weighted data (transversions only third codon). A heuristic search of 1000 random addition replicates resulted in two equally parsimonious trees. (Tree length = 2536, CI = 0.2504, RI = 0.5816). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” 1st = Partitioned Decay at 1st Codon at “N” 2nd = Partitioned Decay at 2nd Codon at “N” 3rd = Partitioned Decay at 3rd Codon at “N” B = Bootstrap Support Value at “N” 27 ( 100 ) 2.3 5.0 14.7 22 ( 0.2 ) 24 ( 100 7 (-3.0 9.8 ) 12.9 3.5 7.6 ) 4.5 ) 10 (0.0 5.5 8.1 1.6 -0.7 9( ) 2(-2.5 3.4 1.1 3 (-1.0 4.0 0.0 ) 2.0 ) 3.0 ) 4(0.0 1.0 ) < 3.0 11.4 100 7.2 1.0 ) 2(-6.2 6( -5.3 0.0 11.3 < 0.2 ) 6.3 0.8) 3(-4.2 90 9(-0.1) 89 56 16(-1.0 ) 14.0 ) 14 ( 2.6 0.0 100 100 11 (0.0 9.0 < 100 91 1.5 ) 8 (-0.3 6.8 69 76 0.5 ) 2 (0.0 1.5 100 89 70 8.9 -3.0 ) 2 (-0.1 5.1 < < -2.5 4 ( 1.0 ) 0.4 5.5 2 (1.0 0.6 ) -3.3 ) 2 ( 0.0 5.3 0.5 2( 3.8 0.4 -2.2 ) 3(0.0 < 2.5 0.5 4 (0.5 3.0 ) 68 4(0.0 2.0 2.0 ) 5.2 ) 8.8 0.0 51 54 ) 14(0.0 ) 3( 0.7 2.3 < 55 7.8 1.0 ) 4(-4.8 77 100 53 4.5 100 0.2 ) 15 (10.2 2( -1.0 0.0 3.0 ) 53 4( -0.3 0.7 3.5 ) 73 56 -1.0 89 ) 4.0 100 6( 0.0 7.0 0.0 ) 17(13.0 < -3.0 2 ( 0.0 ) 5.0 56 -0.1 1.1) 9( 8.0 90 81 -1.5 4 ( 0.0 ) 97 5.5 0.0 6 (-1.0 ) 2.0 100 7.0 6 (0.0 ) 60 4.0 Group II 6.5 1.0 19.5 ) Group I 100 8.1 2.8 16.1 27( Cyprinus carpio Luxilus zonatus Centropomus undecimalis Lateolabrax japonicus2 Lateolabrax japonicus Lateolabrax latus Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus SP Calamus nodosus SP Stenotomus chrysops DI Archosargus probatocephalus DI Lagodon rhomboides PA Argyrops spinifer PA Evynnis japonica PA Pagrus auratus PE Pagellus bellottii PA Pagrus pagrus PA Pagrus auriga DE Cheimerius nufar DE Dentex dentex DE Dentex tumifrons Spicara alta SP Pterogymnus laniarius SP Porcostoma dentata SP Chrysoblephus cristiceps SP Cymatoceps nasutus DE Argyrozona argyrozona DE Petrus rupestris DE Polysteganus praeorbitalis BO Boops boops BO Sarpa salpa BO Spondyliosoma cantharus Spicara maena PE Boopsoidea inornata BO Gymnocrotaphus curvidens BO Pachymetopon aeneum BO Polyamblyodon germanum BO Crenidens crenidens PE Lithognathus mormyrus PE Pagellus bogaraveo SP Sparus auratus SP Rhabdosargus thorpei SP Sparodon durbanensis SP Acanthopagrus berda DE Sparidentex hasta BO Oblada melanura DI Diplodus cervinus DI Diplodus argenteus DI Diplodus bermudensis DI Diplodus holbrooki 120 FIGURE 19. A strict consensus of 699 equally parsimonious trees from the amino acid translations. A heuristic search of 100 random addition replicates on the cytochrome b amino acid residue translated from the nucleotide data set resulted 699 equally parsimonious trees (tree length = 637, CI = 0.5620; RI = 0.7082). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” “N” = Node D = Total Decay Value at “N” B = Bootstrap Support Value at “N” D B 6 99 2 100 4 97 100 61 6 4 89 53 5 98 99 2 98 Group II 8 2 53 2 59 2 55 85 Group I 8 87 Cyprinus carpio Luxilus zonatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Dicentrarchus labrax Dicentrarchus punctatus Morone saxatilis Morone chrysops Morone americanus Morone mississippiensis Scolopsis ciliatus Centropomus undecimalis Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus SP Calamus nodosus SP Stenotomus chrysops PE Pagellus bellottii PA Argyrops spinifer PA Evynnis japonica PA Pagrus pagrus Spicara alta DE Polysteganus praeorbitalis PA Pagrus auratus SP Porcostoma dentata SP Pterogymnus laniarius SP Chrysoblephus cristiceps SP Cymatoceps nasutus DE Dentex tumifrons DE Petrus rupestris DE Argyrozona argyrozona DE Cheimerius nufar DE Dentex dentex PA Pagrus auriga DI Lagodon rhomboides BO Spondyliosoma cantharus Spicara smaris DI Archosargus probatocephalus BO Crenidens crenidens SP Rhabdosargus thorpei SP Sparodon durbanensis BO Gymnocrotaphus curvidens BO Oblada melanura PE Pagellus acarne DI Diplodus cervinus SP Sparus auratus BO Boops boops BO Sarpa salpa SP Acanthopagrus berda DE Sparidentex hasta PE Boopsoidea inornata BO Pachymetopon aeneum BO Polyamblyodon germanum PE Lithognathus mormyrus DI Diplodus argenteus DI Diplodus bermudensis DI Diplodus holbrooki 122 FIGURE 20. The clade containing Sparidae was copied from the weighted cytochrome b tree (Figure 18.) and ancestral nodes were numbered so that they could be assigned FAO areas during analysis of vicariance biogeography. 33 34 30 32 27 31 28 35 26 25 29 23 24 22 21 36 20 19 18 17 39 40 38 15 37 14 13 1 16 5 4 3 2 11 10 10 9 8 7 6 SP Calamus nodosus SP Stenotomus chrysops DI Archosargus probatocephalus DI Lagodon rhomboides PA Argyrops spinifer PA Pagrus auratus PA Evynnis japonica PE Pagellus bellottii PA Pagrus auriga PA Pagrus pagrus DE Dentex dentex DE Cheimerius nufar DE Dentex tumifrons SP Pterogymnus laniarius Spicara alta SP Porcostoma dentata SP Chrysoblephus cristiceps SP Cymatoceps nasutus DE Argyrozona argyrozona DE Petrus rupestris DE Polysteganus praeorbitalis BO Boops boops BO Sarpa salpa BO Spondyliosoma cantharus Spicara maena PE Boopsoidea inornata BO Gymnocrotaphus curvidens BO Pachymetopon aeneum BO Polyamblyodon germanum BO Crenidens crenidens PE Lithognathus mormyrus PE Pagellus bogaraveo SP Sparus auratus SP Rhabdosargus thorpei SP Sparodon durbanensis SP Acanthopagrus berda DE Sparidentex hasta BO Oblada melanura DI Diplodus cervinus DI Diplodus argenteus DI Diplodus bermudensis DI Diplodus holbrooki 124 FIGURE 21. Clade of biogeographic relationships overlaid on map of the world. A consensus of two MPTs overlaid on a map of the world. No distances are implied by branch lengths or by inter-nodal spaces. Atlantic Northeast Mediterranean Black Sea Pacific Southwest Pacific Northwest Pacific Western Central Indian Ocean Eastern Indian Ocean Western Atlantic Southeast Atlantic Eastern Central Atlantic Southwest Atlantic Western Central Atlantic Northwest CHAPTER TWO. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL 16S RIBOSOMAL RNA GENE 127 INTRODUCTION The vertebrate mitochondrial genome has two genes that code for the ribosomal RNA, the small subunit (12S) and the large subunit (16S). The small subunit is about 819-975 bp and the large subunit is about 1571-1640 in vertebrates (Meyer, 1993). Based on the complete mtDNA genomic sequence of Cyprinus carpio Chang et al. (1994), the12S molecule is coded from approximately 950 base pairs and the 16S molecule is coded from approximately1680 base pairs. Secondary structure models exist for the encoded functional RNAs of both genes (Gutell et al, 1985; Gutell and Fox, 1988; Vawter and Brown, 1993) and these models have been used to infer homology between taxa (for example, Vawter and Brown, 1993; Horovitz and Meyer, 1995; Ortí et al., 1996; Wiley et al., 1998). Secondary structure comprises loop structures (loops and bulges), stem structures and strings of unpaired regions (often forming incomplete internal loops). These structures have been found to have different rates of mutation based on physical, functional or compensatory restraints (for example, Vawter and Brown, 1993; Meyer 1993). Substitutions in mitochondrial rRNA genes are dominated by transitions (between closely related taxa) and transversions that become increasingly more prevalent with increased sequence divergence (Meyer, 1993). The mtDNA ribosomal genes evolve at a faster rate than do nuclear ribosomal genes (Hillis and Dixon, 1991, Meyer 1993). Both the large and small subunits have been hypothesized to be potentially informative in phylogenetic relationships among vertebrate ingroup taxa that diverged since the Mesozoic period - within the last 150 million years (Mindell and Honeycutt, 1990). Based on comparisons of relatively few 128 vertebrate organisms, Hillis and Dixon (1991) found that 12S/16S could be used for most Cenozoic comparisons and they hypothesized that mitochondrial rDNA may be useful in comparisons of vertebrate taxa that have diverged as recently as 20 million years. Ribosomal DNA has been used to infer phylogenies from a number of vertebrate species, most recently, but not limited to, primates (Horovitz and Meyer), lizards (Fu 1999) and warblers (Cibios et al. 1999). Numerous studies have used 12S/16SmtDNA sequences to resolve evolutionary relationships in fishes. Ortí et al. (1996) used fragments of both 12S and 16S genes to examine evolution in serrasalmin piranhas and ribosomal DNA was found to give a, “robust estimate of serrasalmin relationships”. Additionally and notably, Ortí et al. (1996) presented useful teleost structure models for the12S and 16S RNA fragments that were based on the models derived for vertebrates by Gutell and Fox (1988) and Gutell et al. (1993). The phylogenetic relationships of lampridiform fishes were investigated using 12S/16S mtDNA and morphological characters (Wiley et al., 1998). The combined ribosomal data corroborated previously published morphological lampridiform relationships and the 16S mtDNA data set proved to resolve relationships in a manner “logically consistent” with those obtained when ribosomal mtDNA and morphological data were combined. Many studies have examined the evolutionary histories and relationships of Perciform fishes using mitochondrial ribosomal DNA. Ritchie, et al. (1996) used 12S/16S fragments to examine the phylogeny of the trematomid fishes (Nototheniidae. Perciformes); Tang et al. (1999) used 12S/16S to infer a phylogeny of the Acanthuroidei; Bernardi and Bucciarelli (1999) used cytochrome b and 16S sequences in a phylogeny of the Embiotocidae; Tringali et al. (1999) analyzed allozymes and 16S in the phylogenetics of the Centropomidae; and Farias et al. (1999) used a fragment of 16S to infer a phylogeny of neotropical cichlids. Hanel and Sturmbauer (2000) used 16S sequences to estimate a phylogeny of trophic types in Northeastern Atlantic and Mediterranean 129 sparids. They examined a 486 bp fragment for 24 sparid fishes and used the centracanthid Spicara as outgroup. Their findings showed that there was no support for the current subfamilies associated with the taxon they sampled. In this chapter the results of phylogenetic analyses of the partial mitochondrial 16S rRNA gene are reported for 40 sparid taxa and 16 closely related percoid taxa. Parsimony analysis of the nucleotide sequences was used to test 1) the monophyly of the Sparidae; 2) the validity of the six subfamilies of the Sparidae; 3) the evolutionary relationships of the 33 genera of the Sparidae; 4) the monophyly of Sparoidea; and, 5) the relationship of Sparoid fishes to other classically related percoids. Replicate bootstrap support and Bremer decay indices were used as indicators of clade support. Additionally, the resulting 16S phylogeny was used as a basis to estimate the biogeographic aspects of sparid evolution. 130 MATERIAL AND METHODS Collection Data - Collection data are as in Chapter One, although a reduced number of taxa was used in this chapter. Sequences from GenBank were used for two outgroups species, Cyprinus carpio and Morone chrysops. A complete taxa list is shown in Table 12 and is organized to reflect taxon sets (All, Ingroup and Outgroup) discussed throughout this chapter. Catalog numbers of vouchers are given in Table 12. Primers - The primer sequences used for PCR amplification in this study were the 16Sar5' (Palumbi in Hillis et al., 1996) and 16Sbr-3' (Kocher and White, 1989). Primers were ordered from Genosys (Genosys Biotechnologies, Inc. The Woodlands, TX). Amplification - A 50 µl PCR amplification of the partial 16S mtDNA consisted of 5-10 ng of each template DNA, 5 µl 10X PCR Buffer (Invitrogen Corporation) [100mM TrisHCL (pH8.3), 500 mM KCL, 25 mM MgCl2, 0.01% gelatin]; 1µl 10mM dNTP Mix from the PCR Reagent System (GIBCO BRL) [10mM each dATP, dCTP, dGTP, dTTP]; 50 pmols each of primers, 0.50 µl Platinum Taq DNA polymerase (GIBCO BRL Life) [5U/µl] and 42.00µl diH2O. All amplifications were performed on a MJ Research PTC200 thermocycler (Watertown. MA) with the following cycle parameters: initial denaturation [95EC for 4.0 min]; 35 cycles of [denaturation 94EC for 1.0 min, annealing 45EC-47EC (depending on sample) for 1.0 min; extension 65EC for 3.0 min]; final extension [65EC for 10 min]; icebox [4EC indefinitely]. Cloning and Sequencing - All samples were cloned and sequenced on a Li-Cor L4000 automated sequencer as outlined in the Materials and Methods section of Chapter One. 131 Sequence Alignment - Both light and heavy strand sequences were sequenced for all individuals. Light strand sequences were inverted (reversed and complimented) with the heavy strand sequence. A consensus of both strands was used for this study. The 16S nucleic acid sequences were aligned by the Clustal feature of Gene Jockey II (Biosoft, Cambridge UK) and by CLUSTAL W (Thompson et al., 1994). Sequences were further aligned based on putative stem and loop structure following Wiley, et al. (1998). Putative stem structures were those where base pairing might be expected. All other areas (loops, bulges and non-paired regions) were classified as putative loops. Gaps were minimized by aligning sequences in relation to secondary structure and each stem or loop area was organized into a column of data within a PAUP* NEXUS file. A teleost model of the 16S fragment (Ortí. et al.,1996) and a primate structural model (Horovitz and Meyer 1995) were used to locate conserved loops and stems and then secondary-structure was folded by eye. Stem and loop regions were examined for base-pair complementarity and gaps were added to the alignment between distantly related taxa. Character Sets - Within the NEXUS file, each column of data was designated either stem or loop , and loops were further divided into conserved and non-conserved positions. Gaps greater than two nucleotides were designated as “highly variable” and assigned nonconserved. Step-matrices were developed to separate substitutions into transitions (Ts = AøG, CøT) and transversions (Tv = AøC, AøT, CøG, GøT). Step-matrices were used in conjunction with character sets to correct for site saturation during parsimony analysis. Sequence Characteristics and Mutation Analysis - Uncorrected sequence divergence was determined for pairwise comparisons of all taxa, ingroup taxa and outgroup taxa. Gaps were treated as missing data during calculations of sequence divergence, because distance 132 calculations can not treat gaps as a fifth character. The average contribution of loop (CL) and stem (CS) characters to the overall sequence divergence from pairwise comparisons was calculated using the following formulas where, ( LDi × TL) Tc CL = ∑ i =1 ( ) n ( LDi × TL) ( SDi × TS ) + Tc Tc n / ( SDi × TS ) Tc CS = ∑ i =1 ( ) n ( LDi × TL) ( SDi × TS ) + Tc Tc n / n=Total number of pairwise comparisons; L Di = Distance Loops (sans gaps) at each comparison; SDi =Distance Stems (sans gaps) at each comparison; TL= Total Number of Loop Characters (sans gaps); TS = Total Number of Stem Characters (sans gaps); Tc = Total Number of Characters (sans gaps). Stem and loop structures were examined for site saturation by plotting: 1) the total number of mutations as a function sequence divergence; 2) stem and loop transitions as a function of sequence divergence, and; 3) stem and loop transversions as a function sequence divergence. Transitions were further separated into nitrogenous base type, purines and pyrimidines, and plotted as a function of uncorrected sequence divergence. Loop structures were divided between conserved loop characters and non-conserved loop characters. Non-conserved loop characters were those where a multiple number of gaps (>2) were needed to align sequences between taxa. Phylogenetic Analysis - Parsimony analysis was performed using PAUP4.0b4a* (Swofford, 1998). The most parsimonious tree (MPT), or equally parsimonious trees (EPT) and strict consensus were obtained for each analysis. The number of constant characters, parsimony-uninformative and parsimony informative characters, tree length, consistency index (CI) and the retention index (RI) were recorded for each analysis. 133 Bootstrap replicate support was conducted using PAUP* and decay (Bremer 1988) and partitioned decay values (Baker and Desalle, 1997 and Baker, et al., 1998) were calculated for clade support using the program TreeRot.v2 (Sorensen 1999). Gaps were treated as a 5th character state in the data block. Biogeographic Analysis - A quantitative analysis of the biogeographic relationships of the Sparidae was conducted using the method of vicariance biogeography (Brooks 1985; Wiley 1988a, b; Wiley et al., 1991). Parsimony analysis was used to reconstruct the biogeographic relationships inferred from the 16S unweighted phylogeny. See material s and methods in Chapter One for more detail on vicariance biogeography. 134 RESULTS Sequence Characteristics - Sequencing of the 16S mtDNA gene produced an average of 574 nucleotide base pairs per taxon (Table 13). Multiple alignments resulted in a consensus with 621 positions (base pairs and gaps). Loop and stem structures were identified, and all characters were assigned as either loops or stems (S or L above alignments in Table 13). On average more columns of data were designated to the loop category (381 columns) than to the stem category (240 columns) . Most of all characters (columns of data) were highly conserved in the16S data set (Table 14). Of the 621 positions, 40% were constant and 22% were parsimony uninformative (autapomorphic changes - not shared by more than one taxon). The number of constant characters/uninformative characters was split nearly equally across stems and loops (Table14). The majority (80%) of all parsimony informative variable characters were from loops regions (Table 14). Six areas contained multiple gaps after all taxa were aligned (Table 15), five of which were located within loop structures. All five of these highly variable loops were designated “non-conserved”. Sequence Divergence - The largest sequence divergence was 26% between Centropomus undecimalis and Scolopsis ciliatus and the smallest sequence divergence was 1.2% between Pachymetopon aeneum and Polyamblyodon germanum. Mean pairwise sequence divergence between all pairwise comparisons of taxa was 9.70% (Table 16). Average divergence between comparisons of outgroup taxa was 14.49% and between pairwise comparisons of ingroup taxa was 6.21%. On average, and between each taxa set (All, Ingroup and Outgroup), loop characters contributed 4 times as much as stem 135 characters to overall sequence divergence (Table 17). Across each taxon set the total contribution of loops to overall sequence divergence was nearly constant at >80%. There was a slight increase to 83% in loop contribution in outgroup species (Outgroup; Table 17). Mutation Analysis - A plot of all substitutions as a function of uncorrected sequence divergence showed that a maximum of approximately 70 substitutions was reached at greater than 25% sequence divergence (Figure 22). Transversional substitutions were not saturated and a second order polynomial fitted to transversional data had the following characteristics: y = 638.15x2 + 138x - 1.8914, R2 = 0.9372. Transitional substitutions were found to be saturated at nearly 15% sequence divergence. A second order polynomial was fitted to transitional data ( y = -631.81x2 + 374.19x + 1.9608, R2 = 0.899). The total number of stem substitutions was plotted as a functions of uncorrected sequence divergence (Figure 23). Neither transversions nor transitions were saturated as sequence divergence increased and all stem substitutions reached a maximum of approximately 20 at greater than 25% sequence divergence. Second order polynomials were fitted to the data and had the following properties: transitions (y = 68.676x2 + 53.276x + 0.9629; R2 = 0.7379) and transversions (y = 464.67x2 - 59.195x + 2.9619, R2 = 0.6269). Loop substitutions plotted as a functions of uncorrected sequence divergence revealed that transitions saturated at nearly 15% sequence divergence (Figure 24). A second order polynomial strongly fitted the data: y = -700.48x2 + 320.91x + 0.9979, R2 = 0.8066. Transversions in loop regions were nearly twice as frequent as those in stems, peaking at nearly 50 substitutions at 25% sequence divergence. Because loop transitions were saturated, they were examined more closely. Loop pyrimidine substitutions (CøT) and purine substitutions (AøG) were plotted as a function of uncorrected sequence divergence (Figure 25). Both types of nucleic acid substitutions were equally saturated. 136 Loop pyrimidine transitions were slightly more frequent than purine substitutions and second order polynomials fitted to the data had nearly equal values; CT ( y = -375x2 + 177.44x + 0.016, R2 = 0.6942) and AG (y = -325.48x2 + 143.47x + 0.9819, R2 = 0.673). Non-conserved and conserved loop transitions were plotted as a function of uncorrected sequence divergence (Figure 26). Non-conserved loop transitions were saturated, and represented the full signal of all transitional saturated characters (2nd order polynomial y = -610.06x2 + 220.37x + 2.1544 R2 = 0.5817). However, conserved loop transitions were not saturated and proved to be much less frequent than non-conserved loop transitions. Because conserved loop transitions were not saturated, they were phylogenetically informative across the full range of pairwise sequence divergence. Loop and stem distances were converted to a fraction of total sequence divergence and plotted as a function of uncorrected sequence divergence.(Figure 27). Loop or stem distances were converted by multiplying each respective pairwse distance by the total number of loop or stem characters (sans gaps) and then dividing by the total number of characters (sans gaps). In the resulting plot, distances between loop characters accounted for the majority of the total sequence divergence from each pairwise comparison. Base Composition - Mean values and ranges (one standard deviation) of percent base composition for all, stem, loop, and non-conserved loop characters of the 16S mtDNA fragment are presented in Figure 28. Over all structures and taxa, there was bias towards the use of adenine and a slight bias for the use of cytosine. There were no significant differences in base composition values between or within ingroup and outgroup taxa. There was a significant difference in the base usage of putative loop and stem structures. Loop characters were heavily pro-adenine and anti-guanine. Stem characters were heavily pro-guanine, slightly pro-cystine and anti-guanine. 137 Phylogenetic Relationships Unweighted Data - Of the 621 columns of data (base pairs and gaps), 251 were constant, 137 variable characters were parsimony uninformative and 233 variable characters were parsimony informative. A simple heuristic search resulted in eight equally parsimonious trees (tree length=1527, CI=0.4224, RI=0.5444; 10,000 trees held at each stepwise addition, branch swapping = tree bisection-reconnection; outgroup taxa Cyprinus carpio; no topological restraints). Bootstrap support (bs) of 1000 replicates and partitioned Bremer decay values (20, unrestricted random addition sequences per node) were calculated and are shown on a strict consensus of eight equally parsimonious trees (Figure 29). The Sparidae + Spicara formed a well resolved, monophyletic clade. Bootstrap and decay support for the sparid node was strong (bs= 81, decay=5); nearly all of the decay value for this node (4.2) came from stem characters. Within the Sparidae, a clade comprised of Boops boops + Sarpa salpa (decay=12) fell basal to all other sparids. The support for B. boops and S. salpa basal to other Sparidae was weak (decay=2). All other Sparidae+Spicara were in one of two groups: Sparidae Group I (Figure 29) - and Sparidae Group II (Figure 29). Support for the node defining Group I was weak (decay=2). Within Group I four terminal nodes had strong support: Spondyliosoma cantharus + Spicara smaris (decay=9, bs=99); Acanthopagrus berda + Sparidentex hasta (decay=11, bs=98); and Pachymetopon aeneum + Polyamblyodon germanum (decay=14, bs=100). A weak decay value of 2 separated the western Atlantic Stenotomus, Calamus and Lagodon species from other Group I taxa. There was no support from this analysis for the Sparoidea; neither the lethrinids nor nemipterids were sister to the sparids. Rather, a clade of “other” percoids, comprising the moronids + Lateolabrax, haemulids, and lutjanids was sister to the Sparidae. The lethrinids and nemipterids formed an unsupported clade that was basal to the “other” percoids and the Sparidae. Neither decay values nor bootstrap values were 138 robust for percoid inter-relationships; less than 2 steps were needed to find a tree inconsistent with any given constrained node and bootstrap analysis collapsed internal percoid nodes into an unresolved polytomy. However, Centropomus undecimalis consistently fell basal to all other percoids. No Transitional Substitutions All Loops - Of 621 total columns of data, 240 columns were treated as stem characters and defined as unordered. The remaining 381 characters were designated as loops. A step matrix was developed that weighted all loop transitions 0 and transversions 1 and was applied to loop positions under the “Set Character Types” of the Data option of PAUP*. Of the 621 characters, 251 were constant, 165 variables sites parsimony-uninformative and 205 were parsimony-informative. A heuristic search, of 1000 random addition replicates, resulted in 3952 equally parsimonious trees (tree length=755, CI=0.5325, RI=0.6491, 100 trees held at each step, branch swapping=tree bisection-reconnection; starting seed = 1815351626; outgroup taxa Cyprinus carpio). The consensus tree (Figure 30) contained a monophyletic Sparidae + Spicara (decay=9, bs=81). Within the Sparidae, generic relationships were less clearly defined than when all characters were included. The taxa that comprised “Group I” were unresolved within the Sparidae forming a polytomy. Oblada remained allied to Diplodus, but Diplodus cervinus fell basal to all other Diplodus + Oblada. Group II taxa were distinct from other Sparidae, but there was little resolution for relationships within the group. Calamus nodosus was distinct from other Group II species. No Transitional Substitutions Non Conserved Loops - The same step matrix, described above, was used to weight “non- conserved” loops regions as designated in Table 15. Of the 621 columns of data, 429 were of type unordered and 192 were user defined with the step matrix. After applying this weighting, of the 621 total characters, 251 were constant, 139 159 were parsimony-uninformative and 211 were parsimony informative. A 1000 random addition replicates resulted in 9826 equally parsimonious trees (tree length=Tree length = 951, CI=0.5047, RI = 0.6032, 100 trees held at each step, branch swapping=tree bisection-reconnection; starting seed=462434539; outgroup taxa Cyprinus carpio). A strict consensus of all trees is shown in Figure 31. The Sparidae + Spicara were monophyletic in the resulting tree, but within the Sparidae there was very little generic resolution. Group II taxa, as defined in the two previous analyses, remained distinct from other Sparidae, and within Group II (Cheimerius nufar, (Pagellus bellottii + Pagrus pagrus), Argyrops spinifer, (Evynnis japonica + Pagrus auratus), Pagrus auriga) were distinct from other taxa. However, there was no support for this node. Relationships for the majority of other sparid species were not clearly defined, resulting in a polytomy. Species that had been robustly supported in other trees remained strong in this analysis, including: Acanthopagrus berda + Sparidentex hasta, Pachymetopon aeneum + Polyamblyodon germanum and Rhabdosargus thorpei, Sparodon durbanensis, Sparus auratus. Diplodus cervinus did not clade with other Diplodus & Oblada, but was part of the unresolved polytomy in Group I species. Archosargus probatocephalus fell basal to a clade containing the boopsines Boops boops + Sarpa salpa and Spondyliosoma cantharus + Spicara maena. Biogeographic Analysis - The monophyletic Sparidae clade within the unweighted 16S phylogeny (Figure 29) was used as the source of dependent data for biogeographic analysis because it had the best resolution of generic relationships. The Sparidae clade was pruned from the original tree and all ancestral states were numbered (Figure 32). The geographic distribution was defined for terminal taxa using FAO areas (Table 18) and these areas were treated as independent data. Areas of occurrence were determined relative to each terminal taxa or ancestral node and coded into a binary matrix; 140 presence=1, absence=0 (Table 18). Parsimony analysis of the data matrix resulted a single most parsimonious tree and is overlaid on a world-wide map in Figure 33 (tree length = 83; CI =0.7470; RI = 0.8333; of 75 total characters; all characters unordered and equal weight, 13 characters were constant, 3 variable characters were parsimony uninformative, 59 variable characters were parsimony informative; 1000 replicates of random stepwise addition; 100 trees held at each step; starting seed = 1996341824; character-state optimization: delayed transformation) As shown in Chapter One, all taxa were found in more than one FAO area, except the Bermuda endemic Diplodus bermudensis and the Japanese endemic Evynnis japonica. The tree was rooted to the southwestern Pacific Ocean clade. The western Indian Ocean/southeastern Atlantic clade was sister to eastern Atlantic/Mediterranean-Black Sea species. However, the southwestern Atlantic terminal node was sister to the Pacific Southwestern node instead of with other Atlantic areas. In the16S tree, used as dependant data, Pagrus pagrus clustered with P. auratus, Evynnis japonicus and Argyrops argyrops and this, in part, contributed to the placement of southwestern Atlantic node. With the exception of the southwestern Atlantic the Atlantic Sparidae + the western Indian Ocean/Atlantic species were sister to Pacific Ocean/eastern Indian Ocean clade. The eastern Indian Ocean - western central and northwestern Pacific taxa formed an unresolved polytomy that were sister to the southwestern Pacific Ocean and southwestern Atlantic species. 141 DISCUSSION Sequence Characteristics, Sequence Divergence and Mutation Analysis - The majority (81%) of parsimony informative characters was found within putative loop structures; only 19% putative stem characters were informative. Of the small number of informative stem characters, some were possibly parsimony-misleading due to compensatory mutational dependence. Ribosomal RNA contains know secondary structure that is dependent on Watson-Crick and wobble base-paring between noncontinuous rRNA bases (Dixon and Hillis, 1993). Bases that comprise structural elements of stems and occasionally loops are often mutation-constrained. A mutation at one site may or may not have an effect on base-pairing up or down stream from that mutation. In fact, it is possible that stem regions evolve as a paired region. Dixon and Hillis (1993) addressed this problem by weighting of “compensatory” mutations and concluded that stem characters are phylogenetically informative, but at the expense of reduced character independence. In fact, they found that all complementary bases are not ”inextricably linked”. A phylogenetic study based on rDNA might contend with compensatory mutations by weighting all characters equally (assign a weight of 1.0 - at the expense of reduced character independence), down-weighting characters that violate character independence (some weight less than 1.0), or ignoring all non-independent data (weighting 0 - at the expense of removing phylogenetically informative data). There was no empirical way to determine an exact value for down-weighting stem bases to compensate for compensatory mutations. Dixon and Hillis (1993) suggest using a value between a weight of 0.5 and 1.0. A value of 0.5 would be used if all stem 142 characters “evolve as pairs” with each base representing half of a character. Because not all stem mutations are linked, a value of 0.5 might overcompensate for interdependence and Dixon and Hillis (1993) suggested a “compromise” of 0.8. I made no attempt to correct for compensatory mutations in the analyses presented in results. (Although no results were given, I weighted stem characters by both 0.5 and 0.8 and there was little or no topological difference, respectfully, between these trees and those generated with all stem characters weighted 1.0). Rather, all stem substitutions were given equal weight at the possible expense of reduced character independence. Only a small number of putative stem characters were parsimony informative, so they contributed little to the overall phylogenetic signal. Therefore, a weight less than of 1.0 (0.8 or 0.5) did not drastically effect the overall phylogenetic relationships. Additionally, secondary structure models were folded by eye, and due to gaps between distantly related taxa, it was very difficult to accurately identify compensatory stem structure mutations for all taxa. Similarly, Dixon and Hillis (1993) found, “no obvious difference between results of the analysis with all characters equally weighted and the results of the analysis with stem characters weighted 0.8.” Pairwise sequence divergences were similar to those reported for other teleosts. Farias et al. (1999) found a maximum uncorrected pairwise divergence of 20% (average ~ 17%) in cichlids; Wiley et al. (1998) found a maximum 0f >25% Tamura-Nei distance in acanthomorph relationships and Tang et al. (1999) found < 20% Tamura-Nei distance in the Acanthuroidei. On average, mean sequence divergence for all pairwise comparisons of taxa in this study (9.7%) were well below the level at which loop substitutions appeared to reach saturation. Putative loop mutations deviated from a linear relationship when genetic distance approached approximately 15% sequence divergence. The average pairwise divergence for ingroup species (6.21%) was well below the apparent level of loop saturation. Because neither stems nor loops were saturated for ingroup species, all 143 characters were potentially informative and all characters were treated with equal weight. Loop transitions appeared to reach saturation between outgroup taxa in this study, but transversions were not saturated for either loops or stems. In previous phylogenetic studies using 16S (Mindell and Honeycutt, 1990; Ortí et al., 1996; Wiley et al., 1998; Tang et al., 1999), plots of loop substitutions as a function of sequence divergence revealed that loop transitions were saturated for some taxa. In some cases, loop transversions were also saturated between some more distantly related taxa. Average mean pairwise divergence for outgroup species was 14.49%, nearly at the same level at which apparent saturation occurred in loops. Because, on average, sequence divergence of ingroup species was far below the level at which loops appeared to reach saturation, loop substitutions were not uninformative for ingroup comparisons. However, the same was not true for pairwise comparisons between ingroup taxa and outgroup taxa and between pairwise comparisons of outgroup taxa. The difference between ingroup loop transitions (not saturated) and outgroup loop transitions (saturated) complicated the determination of character weights. With these data, all substitutions were potentially informative for ingroup species. Therefore, no weighting of any character was necessary to infer a phylogeny of the Sparidae from the 16S data. An equal weight of all characters was consistent with sparid relationships but potentially inconsistent with outgroup relationships. Clearly, the outgroup taxa were saturated for loop transitions, and the relationships inferred from these characters could be potentially misinformative. I tried to account for this inconsistency in two ways. I inferred a phylogeny of these taxa with all loop substitutions weighted 0. This removed any potentially misinformative data and I believed that this would help define outgroup relationships. However, in weighting all loops 0, I removed some potentially informative conserved loop areas. Therefore, I inferred a phylogeny of these taxa weighting only 144 highly variable loop transitions 0, so that I would not lose conserved information. It was not possible to assign different character weight to individual taxon groups. For any given character, the same weight must be applied to each taxa during parsimony analysis (the same being true for neighbor joining, maximum likelihood or distance methods). Although multiple variable values can be assigned to characters when these values vary with characters, each taxa must be assigned the same value for each respective character. If there are different substitution between groups of taxa, as was seen with the ingroup and outgroup in this study, only a single rate can be compensated during any given analysis. A single rate compensation limits any analysis where more than one potential substitution rate is present and, therefore, forces a compromise in results. One either accepts possible inconsistent results (lack of support for Sparoidea in the unweighted analysis) or accepts possible lack of resolution (loss of node definition when loop transitions were weighted 0 for the weighted analyses). Base Composition - Base compositional bias was similar to that found in teleosts (Ortí et al., 1996) and a cytosine and adenine bias has been reported in other fishes (Otrí et al., 1996 and Farias et al., 1999). A guanine/cytosine bias in stems has been observed in fishes and other vertebrates (Vawter and Brown 1993; Ortí et al., 1996; Farias et al., 1999; Cibois et al., 1999). Vawter and Brown (1993) reported that “structural regions requiring base pairings” (i.e. stems) might be biased towards guanine/cytosine (G/C) because G/C interactions are a more stable conformation for paired regions. The bias towards adenine in unpaired regions has been attributed to possible hydrophobic interaction of adenine with proteins (Gutell et al., 1985) . Adenine was the least polar of the four bases and, therefore, adenine-rich areas might act as preferred protein binding sites. 145 Phylogenetic Analysis and Phylogenetic Relationships - The 16S gene resulted in intermediate resolution for the sparid genera but there was little resolution between the Sparidae and other percoid families. The Sparidae + Spicara formed a monophyletic group in all 16S analyses (see Chapter One for details on the placement of Centracanthidae relative to Sparidae). Results from the16S mtDNA did not support the current subfamily designations for genera of the Sparidae (Boopsinae, Denticinae, Diplodinae, Pagellinae, Pagrinae and Sparinae). Based on all 16S sequence analyses, the sparid genus Pagrus was paraphyletic. The sparid genus Pagellus and the centracanthid genus Spicara were polyphyletic. None of these analyses supported the Lethrinidae as sister to the Sparidae and there was no support, based on the 16S mtDNA, for a monophyletic Sparoidea (Sparidae + Spicara, Lethrinidae and Nemipteridae). Relationships of Genera of the Sparidae Within the monophyletic Sparidae + Spicara the inter-generic relationships were not robust. There was very little overall support for the relationships of Group I and Group II genera as described in Chapter One. Decay and bootstrap values were robust for sister group relationships (for example Pachymetopon aeneum and Polyamblyodon germanum or Diplodus holbrooki and Diplodus bermudensis), but nearly absent for other relationships. The Diplodus + Oblada clade was well supported in the unweighted tree, however, the Indian Ocean D. cervinus was removed from other members of the group as loop substitutions were down-weighted. Many of the genera that placed in Group I and Group II of the unweighted tree (Figure 29) are in agreement with the placement of genera in “Lineage 3" and “Lineage 2" of Hanel and Sturmbauer (2000, Fig.1.). Relationships of the subfamilies of the Sparidae There was no support from the16S sequence data for any of the subfamilies 146 proposed by Smith (1938), Akazaki (1962) and Smith and Smith (1986). The boopsines were polyphyletic within the Sparidae and B. boops and S. salpa fell basal to all other sparids in the unweighted analysis. The pagellines and sparines were also polyphyletic within the Sparidae. The diplodines were paraphyletic but restricted to Group I and the denticines and pargrines were paraphyletic but restricted to Group II. Clearly, based on 16S sequence data, the subfamilies as currently defined are artificial, and in agreement with the findings of Hanel and Sturmbauer 2000. Despite the regional nature of their study, the authors had a broad enough sampling of sparid species to conclude that trophic types evolved more than once in sparid fishes. However, Hanel and Sturmbauer used differential weighting based on a “sliding window analysis” of their data set to infer a phylogeny. The authors did not use known secondary structure models to aid in the alignment of their sequences or for the identification of potential areas of saturation. Since the rates of substitution for 16S have been shown to be directly related to secondary structure, it is not clear from their analysis how their differential weighting was related to actual areas of rapid substitution or saturation. It is important to understand where increased substitutions occur. Secondary structure models of 16S mtDNA often predict that very saturated nucleotides neighbor very conserved nucleotides. The method of Hanel and Strumbauer may not have been sensitive to this fact and saturated characters might have been incorrectly weighted. This may have lead to artificially strong node support for relationships in their tree. Relationships of the Sparoidea These data did not support Akazaki’s Spariform fishes or Johnson’s Sparoidea. However, Johnson’s (1980) hypothesis that the Lethrinidae and Nemipteridae are closely related is supported in all 16S analyses; these families form an independent clade that is basal to other percoids and the Sparidae + Spicara. The 16S sequence analyses were 147 unable to recover the Sparoidea and there was little support outgroup relationships, do in part, to the unreliable transitional saturation of loop characters. Biogeography - The biogeographic analysis suggested a considerable structuring for neighboring area relationships based on the dependent 16S phylogeny. Within the unweighted 16S phylogeny, many taxa clustered together that had shared, overlapping distributions. The hypothesized biogeographic clade should reflect these relationships. If taxa in the dependent tree formed a clade due to common ancestral history (as opposed to shared geographic range) then the biogeographic tree would likely not reflect strong area relationships; terminal nodes corresponding to neighboring geographic areas might be less likely to be sister. Such is the case in the 16S data with Pagrus pagrus. P. pagrus from the western Atlantic claded with Pagrus, Evynnis and Argyrops from the southwestern Pacific. This relationship is contrary to that found during biogeographic analysis using the cytochrome b phylogeny as dependant data. The affinity of P. pagrus to other pagrine members was based on shared evolutionary history and not geographic relatedness. The resulting biogeographic tree had southwestern Atlantic and southwestern Pacific areas sister, reflecting the signal of P. pagrus from the dependent data. If, however, taxa were clustered together in the dependent tree based on shared geographic areas, the corresponding biogeographic clade might strongly support geographic neighbors as sister. This is not to say that shared evolutionary histories should not reflect shared geographic histories. In fact, they should. This analysis possibly shows that due to the plasticity of classification, or the multiple evolution of trophic types, there was a strong relationship for taxa from the same area to form clades in all analysis. Either the current classification has failed to unite species that are similar based on shared evolution, or the genetic phylogeny here reflects a history not completely based on shared evolution (hybridization or homoplastic characters due to saturation). 148 From these data it appears that there were two areas of sparid evolution, eastern Indian Ocean - western Pacific and western Indian Ocean - Mediterranean/Atlantic. These species probably had a Tethyan Sea common ancestor. As with the cytochrome b analysis in the previous chapter, little more can be drawn from this analysis, because the vicariance biogeography clade was based on a single tree example and this is considered equivocal to a single transformation series explaining a clade (Wiley et al., 1991). Phylogenetic Conclusions The 16S sequence data was of minimal use in resolving phylogenetic relationships of the Sparidae and related taxa. The partial gene had many variable positions associated with loops, yet the rate of substitution was not fast enough for significant, well supported resolution of most generic relationships. For more distantly related taxa, such as between outgroups, 16S was not particularly informative. The saturation of loop characters beyond 15% and the very conservative stem characters left few informative characters for resolution of distantly related taxa. Analyses of the partial 16S gene showed that there was no support for the currently defined sparid subfamilies and that two major evolutionary groups of sparids exist. These data are supported by Hanel and Strumbauer (2000) and by analysis of the cyt b gene in the previous chapter. Additionally, biogeographic analysis using 16S dependent data show significant evolutionary structuring based on area relationships within the Sparidae. 149 TABLE 12. COLLECTION DATA FOR SPECIMENS USED. GENBANK ACCESSION NUMBER, MUSEUM COLLECTION NUMBERS AND COLLECTION LOCALITY ARE GIVEN. MUSEUM ACRONYMS ARE FOLLOWING (LEVITON ET AL., 1985 AND 1988). All GenBank Museum Collection TAXA Outgroup Taxa Centropomidae Centropomus undecimalis Cyprinidae Cyprinus carpio Haemulidae Haemulon sciurus Pomadasys maculatus Lethrinidae Lethrinus ornatus Lethrinus rubrioperculatus Lutjanidae Caesio cuning Lutjanus decussatus Moronidae + (Lateolabrax) Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysops Morone saxatilis Nemipteridae Nemipterus marginatus Scolopsis ciliatus Ingroup Taxa SPARIDAE Boopsinae Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Denticinae Argyrozona argyrozona Cheimerius nufar Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Sparidentex hasta Diplodinae Archosargus probatocephalus Diplodus bermudensis Accession# Catalog# AF247437 No Voucher X61010 Locality Florida (Collected by J. Gelschlecter) Sequences From GenBank AF247442 No Voucher AF247443 USNM Uncat Florida, Big Pine Key, W. of Bridge, Philippines, Manila Fish Market AF247446 USNM 345259 Philippines, Bolinao, Luzon AF247447 USNM Uncat Australia, W. Australia CSIRO SS 8/95/45 AF247444 USNM 345193 Philippines, Iloilo Panay, Fish Market AF247445 USNM 346695 Philippines., Northern Negros, Fish Market AF247437 AF247438 AF247439 AF247440 AF055610 AF247441 No Voucher fish market, Spain VIMS 10381 Picture Voucher, Japan Market Sample MTUF 27451 Sasebo, Nagasaki Prefecture, Japan No Voucher VIMS Trawl Survey Chesapeake Bay Sequences From GenBank VIMS Uncat VIMS Trawl Survey Chesapeake Bay AF247448 USNM 345202 Philippines, Luzon, Manila, Fish Market AF247449 USNM 346853 Philippines, Guimaras Island, JTW 95-1 AF247396 AF247397 AF247398 AF247399 AF247400 AF247401 AF247402 AF247403 MED180 No Voucher RUSI 49447 OM1 RUSI 49672 RUSI 49690 RUSI 49456 ODU 2782 AF247404 AF247405 AF247406 AF247407 AF247408 AF247431 RUSI 58449 RUSI 49443 Fiumicino Market, Italy Qatif Market, eastern Saudi Arabia Kenton-on-Sea, South Africa Spain, Azohia, Bay of Cartagena Kenton-on-Sea, South Africa Kenton-on-Sea, South Africa Kenton-on-Sea, South Africa Fiumicino Fish Market, Italy Durban Fish Market, South Africa (KSA1) Kenton-on-Sea, South Africa AMS I.36450-002 Nelson Bay, Australia RUSI 49684 Kenton-on-Sea, South Africa RUSI 49686 Kenton-on-Sea, South Africa NSMT-P Uncat Shuwaik Market, Kuwait City, Kuwait AF247414 VIMS 010192 AF247419 No Voucher Chesapeake Bay Bermuda 150 Diplodus cervinus AF247420 RUSI 49680 Kenton-on-Sea, South Africa Diplodus holbrooki AF247421 ODU 2789 Atlantic, South Carolina Lagodon rhomboides AF247423 VIMS Uncat Florida Keys, Bahia Honda Ocean Side Pagellinae Boopsoidea inornata AF247409 ODU 2791 St. Sebastian Bay, South Africa Lithognathus mormyrus AF247410 ODU 2784 Fiumicino Fish Market, Italy Pagellus bogaraveo AF247411 ODU 2785 Fiumicino Fish Market, Italy Pagellus bellottii AF247412 ODU 2792 R/V African , Station 17491, South Africa Pagrinae Argyrops spinifer AF247415 AMS I.36447-001 N. Territory, Australia Evynnis japonica AF247422 NSMT-P 47497 Miyazaki, Kyushu Prefecture, Japan Pagrus auratus AF247424 No Voucher New Zealand, Sydney Fish Market, Pagrus auriga AF247425 ODU 2786 V. Emmanul Fish Market, Rome, Italy Pagrus pagrus AF247426 ODU 2790 Atlantic, South Carolina Sparinae Acanthopagrus berda AF247413 USNM 345989 Philippines, Manila, Market. Calamus nodosus AF247416 No Voucher Atlantic S.E. Charleston, SC Chrysoblephus cristiceps AF247417 RUSI 49441 Kenton-on-Sea, South Africa Cymatoceps nasutus AF247418 RUSI 49445 Kenton-on-Sea, South Africa Porcostoma dentata AF247427 RUSI 58450 Durban, South Africa Pterogymnus laniarius AF247428 KENT SAPL1 Plettenberg Bay, South Africa Rhabdosargus thorpei AF247429 RUSI 49683 Ponta do Ouro, Mozambique Sparodon durbanensis AF247430 RUSI 49673 Kenton-on-Sea, South Africa Sparus auratus AF247432 KENT 21 Fiumicino Fish Market, Italy Stenotomus chrysops AF247433 VIMS Uncat Chesapeake Bay Centracanthidae Spicara alta AF247434 ODU 2793 Carpenter, K.E. Spicara maena AF247435 ODU 2788 Fiumicino Fish Market, Italy MTUF-Museum of the Tokyo University of Fisheries, Tokyo, Japan; NSMT-P National Science Museum (Zoological Park) Tokyo, Japan; ODU- Old Dominion University, Norfolk, VA; RUSI- Rhodes University; J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa; UT University of Tennessee, Knoxville, TN; USNM- United States National Museum of Natural History, Washington, DC; VIMSVirginia Institute of Marine Science, Gloucester Point, VA 151 TABLE 13. MULTIPLE ALIGNMENT OF NUCLEOTIDE SEQUENCES OF THE PARTIAL 16S GENE FROM THE SPARIDAE AND OUTGROUP SPECIES. TAXONOMIC NAMES WITH A SUFFIX OF “GB” ARE FROM GENBANK AND ARE INCLUDED WITH ORIGINAL SEQUENCES FOR EASY COMPARISON. 152 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 123456 S..... CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCCT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT ---CTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT CCTCTT 10 20 | | 789012345678901 L.............. GCAA-AATCAACGAA GCAA-GACCAATGAA GCAA-GACCAATGAA GCAA-AATCAACGAA GCAAGACTTAATGAA GCAA-AACTAATGAA GCAA-GACCAATGAA GCAA-AACCAATGAA GCAA-GACCAATGAA GCAA-GACCAATGAA GCAA-AAACAATGGA GCAA-GACCAATGAA GCAA-A-TCAATGAA GCAA-AATCAACGAA GCAA-A-TTAACGAA GCAA-AGTTAACGAA GCAA-AATCAATGAA GCAA-GACCAATGAA GCAA-A-TTAACGAA GCAA-A--TAATGAA GCAA-AACCAATGAA GCAA-AATCAATGTA GCAA-AATTAATGAA GCAA-AATTAACGAA GCAA-GACCAATGAA GCAA-GACCAATGAA GCAA-GACCAATGAA GCAA-AATCAACGAA GCAA-TACTAAAGAA GCAATAATCGATGAA GCAA-AATTAACGAA GCAA-AATTAACGAA GCAA-AATCAACGAA GCAA-AATCAACGAA GCAA-AATTCACGAA GCAA-A--TAATGAA GCAA-GACCAATGAA GCAA-AATCAATGTA GCAA-AATCAATGAA GCAA-GACCAATGAA GCAA-CGAACCAAGT GTAA-AGCAAAA--GCAA-ACTTA-TGTA GCAA-AACTA-TGAA GCAA-AACTA-CGAA GCAA-ACTTA-TGAA GCAA-ACTTA-TGAA GCAA-ACTTA-TGAA GCAA-AATCAATGAA GCAATAATTGCTGTA GCAA-AATCAACGAA GCAA-AATCAATAAA GCAA-AATCAATGAA GCAA-AACCAACGAA GCAA-CTAT-AAGAA GCAA-AAC--ACACA 2345678 S...... TAAGAGG TAAGAGG TAAGAGG TAATAAG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAATAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAATATG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG ATAGGAG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAAG TAAGAGG TAAGAGG TAAGAGG TAAGAGG TAAGAGG 30 | 90123 L.... TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-TC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CG TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-TC TC-CC TC-CC GT-CC TC-CT TC-CA TC-CC TC-CC TC-TT TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC TC-CC 4567 S... GCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCTCCGCCGCCGCCGCCGCCGCCGCCGCCGCCCGCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCAGCC GCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCC- 8 L T T T T T T T T T T T T T T T T T T T T T T T T T T T T T C T T T T T T T T T T T T T T T T T T T T T T T T T T 40 | 9012 3 S....L GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCT- C CCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C TGCC C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- T GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C GCC- C 153 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 4 . T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T A A T G T T T T T T T T T T G A 56789 S.... GTGAC GTGAC GTGAC GTAAC GTGAC GTGAC GTGTC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTTAC GTCAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGCG GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC GTGAC 50 | 012345 L..... TATATTATATTATACTATATTATATTATATTATATTATATTATACTGTACTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTACATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTATATTACAAAAACCTATATTATAATATAATATATTATATTATATTATATTGTATTGTATTATAATATATTATATTATATTGTTT- 678 S.. GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT CTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT CCT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT GTT 60 | 90 12345 L. S.... TA ACGGC TA ACGGC TA ACGGC TA ACAGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC CA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGAC TA ACGGC TA ACGGC C- AACGG CT CAACG TA ACGGC CA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC TA ACGGC AA ACGGC AA GCGGC 70 | 6789012345 S......... CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGACGGT--CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CCCGGCGGTT GCCGCGGT-CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---CGCGGT---- 80 | 678901 L..... ATTTTG ATTTTG ATTTTG ATTTTG ATTTTA ATTTTG ATTTTG ATTTTG ATTCTG ATTCTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTT ATTTTG ATTTTG ATTCTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATCTTA ATTTTG ATTTTG ATCTTA ATCTTA ATCTTA ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATTTTG ATACTG ATCCTG 2345 S... ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG ACCG 154 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 67 .. TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG TG 89 L. CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CA CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CA CG CG CA CT CG CG CG CG CG CG CG CG CG CG CG CG CC CC 90 100 | | 012 345678901234 S... L.......... AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGTAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGTAATCA AAG GTAGCGCAATCA AAG GTAGCGTAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA AAG GTAGCGTAATCA AAG GTAGCGTAATCA AAG GTAGCGCAATCA AAG GTAGCGCAATCA 567 S.. CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT TTT CTT CCT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT 110 | 89012 S.... GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTTTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTTTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCTT GTCCT GTCTT GTCTT GTCTC GTCTC GCCCT GCCCT 3456789 L...... TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATA TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATA TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATA TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG TTAAATG 120 | 01234 S.... GAGAC GAGAC AAGAC GAGAC GAGAC AGGAC GAGAC AAGAC GAGAC GAGAC AAGAC GAGAC GAGAC AGGAC GAGAC GAGAC GAGAC AAGAC GAGAC AAGAC GAGAC GAGAC GAGAC GAGAC AAGAC GAGAC AAGAC GAGAC GAGAC GAGAC GAGAC GAGAC GAGAC GAGAC AAGAC GAGAC AAGAC GAGAC GAGAC GAGAC GAGAC AAGAC AAGAC GAGAC GAGAC GGGAC GAGAC GAGAC GGGAC AGGAC GAGAC GAGAC GGGAC GGGAC GGGGC GGGGC 567 L.. CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CCG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CTG CCG CTG CTG CTG CTG CTG CTG CTG CTG CTG CCG CTG CTG CTG CTG CCG CCG 155 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 130 | 8901234 ....... TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAC TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAC TATGAAT TATGAAT TATGAAT TATGAAC TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT TATGAAT 567 S.. GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC 140 150 | | 8901 234567890 1234 L... S........ L... ATCA CGAGGGCTT AACACCA CGAGGGCTT AACATCA CGAGGGCTT AGCATCA CGAGGGCTT AACATCA CGAGGACTT AGCACCA CGAGGGCTT AGCACCA CGAGGGCTT AGCACCA CGAGGGCTT AACACCA CGAGGGCTT AGCATCA CGAGGGCTT AGCATCA CGAGGGCTT AGCACCA CGAGGGCTT AACATCA CGAGGGCTT AACATCA CGAGGGCTT AGCATCA CGAGGGCTT AACATCA CGAGGGCTT AACATCA CGAGGGCTT AACACCA CGAGGGCTT AACATCA CGAGGGCTT AGCACCA CGAGGGCTT AACACCA CGAGGGCTT AGCATCA CGAGGGCTT AACATCA CGAGGGCTT AACATCA CGAGGGCTT AACACCA CGAGGGCTT AACACCA CGAGGGCTT AACACCA CGAGGGCTT AACATCA CGAGGGCTT AACACCA CGAGGGCTT AACATCA CGAGGGCTT AACATCA CGAGGGCTT AACATCA CGAGGGCTT AACATCA CGAGGGCTT AGCATCA CGAGGGCTT AACATCA CGAGGGCTT AACACCA CGAGGGCTT AGCATCA CGAGGGCTT AGCACCA CGAGGGCTT GGCATCA CGAGGGCTT AGCTCCA CGAGGGCTT AGCTAAA CGAGGGCTT AACTCCA CGAAGGCTT AACATCA CGAGGGCTT GACACGA CGAGGGCTT GACACGA CGAGGGCTT GACATAA CGAGGGCTT GACATAA CGAGGGCTT AACATAA CGAGGGCTT GACATAA CGAGGGCTT AGCATAA CGAGGGCTT ATCATAA CGAGGGCTT AACATAA CGAGGGCTT AGCATAA CGAGGG-TT CAAC ATAA CGAGGG-TT CAAC ATTA CGAGGGCTA ATCACCA CGAGGGCTA AGC- 56789 S.... TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT TGTCT 160 | 0 12345678 9 L S........L C CCCTCCCC A C CCCCTCCC A C CCCCTCCC A C CTCTCCCC A C CCCCTTCC A C CCTCTCCC A C CCTCTCCC A C CCTCTCCC A C CCTTTCCC A C CCTTTCCC A C TCCCTTCC A C CCCCTCCC A C CCCCTCCC A C CCCTCCCC A C CCCTCCCC A C CCCCCCCC G C CCTCTCCC A C CCTCTCCC A C CTTTCCCC A C CCTCTCCC A C CCCCTCCC A C CCCTCCCC A C CCCTCCCC A C CCCTCCCC A C CCTCTCCC A C CCTCTCCC A C CCTCTCCC A C CCCTCCCC A C CCTCCCCC A C CCCTCCCC A C CTCTCCCC A C CCCTCCCC A C CTCTCCCC A C CCCTCCCC A C CCTCTCCC A C CCTCTCCC A C CCTCTCCC A C CCCCTCCC A C CCCTCCCC A C CCCCTCCC A C CCCTTTCA A C CTTTTTCA A C CTTCCCCT A C CTTTTTCC A C CTTTTTCA G C CTCTCTCA A C CTTTCTCA A C CTTTCTCA A C CTTTTTCA A C CTTTTTCC A C CTCTTTCA A C CTCTTTCC A C CTCTCTCA A C CTCTCTCG A C CTTTTTCC A C CTTTTTCA G 156 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 170 | 012 S.. GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC 180 | 3456789012345 L............ AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATT AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATT AATGAAATTGATT AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATCAAATTGATT AATGAAATTGATC AATGAAATTGATC AGTGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAGTTGATT AATGAAATTGATC AATGAAATTGATC AATGAAATTGATT AATGAAATTGATT AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATT AATGAAATTGATC AATGAAATTGATC AGTGAAATTGATC AATGAAATTGATC AATGAAATTGATC GATGAAATTGATC AATGAAGTTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AATGAAATTGATC AGTTAAATTGATC AGTTAAATTGATC AATGAAATTGATC AATGAAATTGATC 190 | 678901 23456789 S..... L....... TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG CCCCCG TGCCGAAG TCTCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCTCCG TGCAGAAG CCCCCG TGCAGAAG TCTCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG CCCCCG TGCAGAAA TCTCCG TGCAGAAG TTCCCG TGCAGAAG TCTCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCTCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCTCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCTCCG TGCAGAAG TCCCCG TGCAGAAG TACCCG TGCAGAAG TCCCCG TGCAAAAG TCCCCG TGCAGAAG TCTCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG CCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG TCCCCG TGCAGAAG 200 | 012345 S..... CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGAGGA CGGGGA CGGGGA CGGGGA CGGAGA CGGGGA CGGGGA CGGGGA CGGGGA CCGGGA CGGGGA CGGGAA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGAGA CGGGGA CGGGGA CGGGGA CGGG-A CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGTA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA CGGGGA 210 | 6789012 L....... TTATTAC TAAATAC TAAAGAC TACTAAC TAAGCAC TAAAAAC TAAAAAC TAAAAAC TAAGAAC TAAGAAC TAAATAC TAAAAAC TAAAAAC TAAAAAC TAAAAAC TGAGAAC TAACAAC TAAAAAC TAATAAC TAAAAAC TAAAAAC TAAAAAC TAAAAAC TAAAAAC TAAAAAC TAAAAAC TAAAAAC TAATAAC TAAAAAC TAGTACC TAAAAAC TAAAAAC TAGCAAC TGAAAAC TAAAAAC TAAAAAC TAAAGAC TAAAAAC TAACAAC TAATAAC TAATACT TACACTC TACACAC TACCAAC TACTTAC TTAATAC TTAACAC TTAACAC TAAGACC TAACCAC TGCACAC TACGTAC TAGCACC TGACCCC TAGACCC TATAATC 157 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 34567 S.... ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG TTAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAC ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ACAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG ATAAG 220 | 890123456 L........ ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGGGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA ACGAGAAGA 230 | 7890 12 S... L. CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT TT CCCT AT CCCT GT CCCT AT CCCT AT CCCT AT CCCT AT CCCT AT CCCT GT CCCT GT CCCT AT CCCT AT CCCT AT CCCT AT CCCT GT CCCT GT 3456789 S...... GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGTTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT GGAGCTT 240 250 | | 012345678901234567 L................. TAGACGTCAAGGCAGCTC AAGACGTCAAGACAGCTC AAGACGCCAGGCCTGCTC TAGACGTCAGAGCAGCCC AAGACGCCAGGGCAGCTC AAAACGCCAGGACAGCTC AAGACGCCAGGACAGCTC TAGACGCCAGGACAGCCT AAGACGCCAGAACAGCCC AAGACGCCAGAACAGCCC AAGACGCCAGGGCAGCTC TAGGCGCCAGGGCAGCTC TAGACGTCAGAGCAGCCC TAGGCGTTAGAGCAGCTC TAGACGTCAGAGCAGCTC TAGACGTCGGAGCAGCTC AAGGCGCCAGGACAGCTC AAGACGCCAAGGCAGCTC AAGACGTAAGAGCAGCTC AAGGCGCCAGGACAGCTC AAGACGCCAGAACAGCTC AAGATACCAAGACAGCTC TAGACGTCAGAGCAGCTC TAGACGTCAGAGCAGCTC AAGACGCCAGAACAGCCC AAGACGCCAGAGCAGCCC AAAACGCCAGAACAGCCC TAGACGTCAGAGCAGCTC AAGACACCAGAGTAGCCC TAGACGTCAGAGCAGCCC TAGACGTCAGAGCAGCTC TAGACGTCAAAGCAGCTC TAGACGTAAGAGCAGCTC TAGACGTCAGAGCAGCCC AAGGCGCCAGAGCAGCTC AAGACGCCAGGACAGCTC AAGGCGCCAGAACAGCTC AAGACGCCAGAGCAGCTC TAGACGTCAGAGTAGCTC AAGGCGCCAGGGCAGCCC AAGGTACAAAACTCAACC TAGATGTTACAACAAGCA TAGACA-CAAGAGAGACT TAGACGCCAGGACAGACC TAGACACCAGGACAGACC TAGACA-CAAGACAGATT TAGACAT-AAGATAGATT TAGACA-CAAGACAGATT TAGACACCAAGGTAGATC TAGACGCCAGGGCAGACC TAGACACCAAAGCAGACC TAGACACCAAAGCAGACC TAGACACCAAGGTAGATT TAGACACCAAGGCAGACT TAGATATTAAGATTGCCC TAGACTTTAAGACTGACC 158 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 260 270 280 290 300 | | | | | 89012345678901234567890123456789012345678901234567 .................................................. ATGTAAA-GCACCCC-TAAAC--AAAGGAA---GAAACCAAATGAA-ACC ACGTTAA-ACACCCC--AAAC--AAAGGGA---AAAACCAAGTGAA-TCC ACGTTAA-ACACCCT-CTCAC--AAGAGAG--ATAAACCGAGTGAA-CCC ATGTAAA-GCACCCC-TAAAC--AAAGGGA--TAAAACCAAATGAA-ATC ACGTTAA-ACGCCCC-TAATA--AAGGAAT---AAAACCTAGTGAA-TCC ATGTTAA-GCACCCC-TAAAT--AAAGGAG---TAAACCAAGCGAA-ACC ACGTTAA-ACACCTC-CAAAT--AAAGGAA--ATAAACCAAGTGAA-TCC ACGTTAA-ACACCCC-AAAAT--AAAGGAA--AAAA-CCAAGTAAA-TCC ACGTCAA-GTACCTC-CTAAT--AAAGAAA--ATAAACCAAGTGGA-TCC ACGTCAA-GTACCTC-TTAAT--AAAGAAA--ATAAACCAAGTGGA-TCC ACGTTAA-ACACCCC-TAATA--AAGGAAT---TCAACCAAGCGAA-TCC ACGTTAA-ACATCCT-GAATA--AAGGGAA----GAACCAAGTGAA-CCC ATGTTAA-ACACCCC-CAAAC--AAGGGGA---AAAACCAAATGAA-GCC ATGTTAA-ACACCCC-CAAAC--AAAGGGA---TAAACCAAATGAA-CCC ATGTTAA-ACACCCCCTAAAC--AAAGGAA---ATAACCAAGTGAA-ACC ATGTTAA-ACACCCC-TAAAC--AAAGGAA---AAAACCAAATGAA-CCC ACGTTAA-ACACCCC-TTCAT--AAAGGAA---AAAACCAAGTGAA-TCC ACGTTAA-ACACTCC-CAAAT--AAGGGGA---CAAACCAAGTGAACCTC ATGTAAA-GCACCCC-TAAAC--AAAGGAA---AAAACCAAATGAAGTCC ATGTTAA-ACACTCC-AAAAT--AAAGGAA--ATAAACTGATTGAAGCCC ATGTTAA-ACACCCC-TAAAT--AAAGGAA---AAAACCAAATGAA-CCC ATGTTAA-GCACCCC-AAAAT--AAAAGAA--TAAAACCAAATGAA-CTC ATGTTAA-ACACCCC-TAGAC--AAAGGAA---AAAACCAAATGAA-GCC ATGTTAA-GCACCCCCTGAAC--AAAGGAA---AAAACAAAATGGA-TCC ACGTTAA-ACACCCC-GAAAT--AAAGGAA--AAAA-CCAAATGGA-CCC ACGTTAA-ACACCCT-AAAAC--AAAAG-C--TAAAACAAAGTGGA-CCC ACGTTAA-ACACCCC-AAAAT--AAAGGAA--AAAA-CCAAGTGGA-CCC ATGTAAA-GCACCCC-TTAAC--AAAGGAA---AAAACCAAATGAA-ACC ATGTTAA-ACACCCC-TAAAT--AAAGGGA--AAAAACCAAATGGA-CCC ATGTAAA-GCACCCC-TTAAC--AAAGGAA---AAAACCAAATGAA-GCC ATGTAAA-GCACCCC-TAAAC--AAAGGGA---AAAACCAAATGTA-ACC ATGTTAA-ACACCCC-TAAAC--AAAGGAA---AAAACCAAATGAA-ATC ATGTAAA-GCACCCC-TGAAC--AAAGGAA---AAAACCAAATGAA-ACC ATGTTAA-ACATCCC-TAAACTTAAAGGAA---AAAACCAAATGAA-GCC ACGTTAA-ACACCCT-CATAC--AAGAAGA--ATAAACTTAGTGAA-CCC ACGTTAA-ACACTCC-TGGAC--AAAGGAA--ATAAACTGAGTGAAACCC ACGTCAA-ACACCCC-CGCAT--AAAGGGA--ATAAACCAAGTGGA-CCC ATGTTAA-ACACCCC-CAGAT--AAAGGGA--AAAAACCAAATGAA-CCC ATGTAAA-GCACCCC-TAAAC--AAAGGGA---TAAACCAAATGAA-CCC ACGTTAA-ACACCCC-TAGTT--AAAGGAA---TGAACCAAGTGAA-CCC ACGTTAA-GCAACTC---AATAAAAAGCAA----AAACCTTGTGGA-TCA TTATGTG-CTATTCC-CAAAC--AAAGGGG---ATAACCACTAGC--CCC GCCTTCA-TTAACCC-AAAAT--AAAGGGC--CAAAGCTAAAGGTA-GCC ATGTCAA-GCAACCC-CTGAC--AA-GGGT---CAAACCAAATGCA-CCC ATGTCAA-ACAACCC-CGGAC--AACGGGC---TAAACCAAATGCA-CCC ACCTCTT-CTAACCC-AATAC--AGAAGAC--GAAA-TTAGAGGTA-GAC ACCTTAA-TCAACCC-AGAAC--AAAGGGC--GGAA-CCAGAGGTA-AAC ATCTTAA-TCAACCC-AAAAT--AAAGGGC--GGAA-CTAGAGATA-AAC ATGTTAA-GCACCCC-GAAAC--AAAGGGT---CAAACTAGATGAG-CCC ACGTTAA-GCACCCC-TAAAT--ACAGGGC---TAAACCACATGAC-CCC ATGTTAA-AAACCCT-TAAAC--AAAAGGC---CAAACCAAATGAA-CCC ATGTTAA-ACACCCC-AAAAC--AAAGGAC---CAAACCAAATGAT-CCC TATGTTTAACCTTCT-TCGAC--AAGAGAAG-AAAAACTAAATAAACCCC TATGTTTAACCTTCT-CCAAT--ACGAGAAG-AAAAACTAAATAAGCTCC CTCTT--AACATGCTCAAGAT--AAAGACAT-CT-AAATAAGGGA--CAC CATTC----CCCAC-CTTGAT--AACCCCTGGCTGAAACATGGGA--TAC 159 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 310 | 8901234567 .......... TGCCCCAATG TGCCCTAATG TGCTCTAGTG TGTCCTAATG TGCTCTAATG TGCCCTAGTG TGCCCTAGTG TGTTCTAGTG TGCCCTAATG TGCCCTAATG TGCTCTAATG TGCCCCAGTG TGCCCTAATG TGCTTTCATG TGTCCTAATG CGCCCTAATG TGCCCTAGTG TGCCCTAATG TGCCCTAATG TGTCCTAGTG TGCTCTAATG TGTCTTAATG TGCCCTAATG TGCCCTAGTG TGTTTTAGTG CGCTCTAGTG TGCTCTAGTG TGCCCTAATG TGCCCTAATG TGCCCTAATG TGCCCTAATG TGCCCTAATG TGCCCTAATG TGCCCTAATG TGCTCCAGTG TGCCCTAATG TGCTCTAGTG TGTCCTAATG TGCCCTAATG TGCCCCAGTG TGAGATTTTA TGCCCAAACA CTCTCCAGCG TGTCCCAATG TGCCCTAATG CTTTCCAGCG CTTTCCAACG CTTTCCAGCG TGCCCTCATG TGCCCCTATG TGCCCTAATG TGCCCTAATG TGCCCTAATG TGCCCTAATG AATCCGACTA CGTCTGACTA 320 | 89012 S.... TCTTT TCTTT TCTTT TCTTT TCTTT TTTTT TCTTT TCTTT TCTTT TTTTT TCTTT TTTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TTTTT TCTTT TTTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TTTTT CCTTC TCTTC TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT TCTTC TCTTC TCTTT TCTTT TCTTT TCTTT TCTTT TCTTT 34567 S.... GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG GGTTG 330 | 890 12345 L.. S.... GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGGCC GGG CGACC GGG CGACGGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG TGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC GGG CGACC 67 L. GC GC GC GC AC GC GC GC GC GC AC GC GT GC GC GC GC GC GC AC GC GC GC GC GC GC GC GC GC GC GC GC GC GC AC AC GC GA GC GC AC AT GT AC GC GT GT GT AT AT GC GC GT GT GC GT 340 | 89012 S.... GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGGGA GGAGG GGGAA GGGGT GGGGA GGGGA GGGGT GGGGT GGGGT GGGGT GGGGT GGGGA GGGGA GGGGC GGGGC GGGGA GGGGA 350 I 34567890 L....... AATACAAA AAAATAAA AAAATTTA AATACAAA ATCATAAA AAAATAAA AAAATAAA AAAACTTA AAAATGAA AAAATGAA AGCATAAA AATACAAA AATACAAA AATACAAA AATACAAA AATACAAA AAAACAAA AAAATTAA AATACAAA AAAATTTA AATACAAA AATACAAA AATACAAA AATACAAA AAAACTTA AAAACTTA AAAACTTA AATACAAA AATACAAA AATACAAA AATACAAA AATACAAA AATACAAA AATACAAA AGAATTCA AAAACTTA AAAATTAA AATACAAA AATACAAA AATACAAA AAAGAAAA ACAAGAAA AAAACAAA ACTACAAA AATACGAA AAGACAAA AAAACAAA AAAACAAA AAAAT-AA AAAACAAA AACACAAA AACACAAA A-TACAAA A-CACAAA TTAAAAGA TTAACAGA 160 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 1 . A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A G C G A A A A A A C A A A A A A 23456 S.... CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCTCC TCCCA CTCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC CCCCC 360 | 78901 23 L.... S. -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ACGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ACGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ACGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GA -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ACGT GG -ATGA GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ATGT GG -ACGT GG -ATGT GG -AGGT GG -CGTC TC -ACGT GG -ACGT GG -ACGT GG -ATGA GG -ATGT GG -ATGA GG CACGC GG -ACGT GG -ACGT GG -ACGT GG -ACGT GG -ATGT GG -ACGT GG -ATGT GG 370 380 390 | | | 456789012345678901234567890123456 L................................ ATTGGGAACA----CAC--------------AT AGCAGGAACA----CTA-------------TGT AACGGGAACA----CTA-------------TGT AGTAGGAACA----CAT--------------GT AATGGGAGCA----CCA-------------CAC AATAAGAATA----CCA-------------TAT AATAGAAATA----CTA-------------TAT AGTAAGAGTA----CTA-------------TAC AATGGGAGTA----CTA-------------TGC AATGGGAGTA----CTA-------------TGC AATAGGAACA---CTTC--------------AC AACAGGAACA----CTA-------------AGT AGTAGGAACA----CGT--------------TT AATGGGCGCG----CAC--------------AC AGCAGGAATA----CGT--------------AT AGTAGGAACA----CAT--------------AT AGTAGGAACA----CTA-------------TGT AATAGGAGTA----CTA-------------CGC ACTAGGAATA----CAC--------------AT AATAGGAATA----CTA-------------TTT AATAGGAATA----CTA-------------TGT AGTAGGAGTA----CAA-------------TAT AGTAGGAATA----CGT--------------AT AGTGGGAATA----CAC--------------AT AATAGGAGTA----CTA-------------TAT AATAGGAGTA----CTA-------------TAC AATAGGAGTA----CTA-------------TAC AGTAGGAATA----CAC--------------AT AAAAGGAATA----CTA-------------TGT AGTAGGAATA----CAT--------------AT AGTAAGAACA----CAG--------------AT AGTAGGAATA----CAT--------------AT AGTAGGAACA----CAT--------------AT AATAGGAACA----CAT--------------GT AACAGGGACA----CTA-------------TGT AATAGGAATA----CTA-------------TTT AACAGGAACA----CTA-------------TAT AATAGGAACA----CTA-------------TGT AATAGGAGCA----CAA--------------GC ACCAGGAACA----CTA-----------CATGT ACTGGGAAAA---------------------CC TGTATTGGAATCCTTATTTAAACCCAAACAAAC AATAGGAGCA----TCC--------------TC AATGGGAACA----CCC---------------AATGGGGACA----CCC---------------C AAAAGGAGCA----CCC---------------C AATAGGAGCA----CC---------------TC AATAGGAGCA----CCC---------------C AAAGGGAGAA----CCT-------------TCC AACGGGAGTA----CTT-------------TCC AACGAGGA-A---CACC-------------TCC AATGAG-A-A---CACC-------------TCC AGCAGGAGCA---CATC-------------TAC AGCAGGAGCA---CAAT-------------TAC ACCGGGGATA-AAAGCTTACCCC-------TAT ACCGAG-TG----CCTA-------------CGC 161 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 400 410 420 430 | | | | 7890123456789012345678901234567890123456 ........................................ TCCCAGACCCAAGAGCTCCCGCTCTAATGAA-CAGAAATT TCCTAAATCCAAGAGCTCCCGCTCTAATAAG-CAGAACTT TCCTTAATCCGAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTAAACCCAAGAGCTCCCGCTCTAATACA-CAGAAATT TCCTAAACCCAAGAGCTTCCGCTCTAATGAA-CAGAACTT TCTTAGATCCAAGAGCTCCCGCTCTAATAAA-CAGAACTT TTCTAAATCCAAGAGCTCCCGCTCTAATAAA-CAGAACTT TCTTAGATCCGAGAGCTCCCGCTCTAATAAA-CAGAATTT TCCTAGTTCCAAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTAACTCCAAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTAAACCCAAGAGCCTCCGCTCTAACAAA-CAGAACTT TCCCAAACTCAAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTAAACTCAAGAGCTCCCGCTCTAACGAA-CAGAAATT TCCTAAACCCAAGAGCTCCCGCTCTAATAAA-CAGAAATT TCCTAGATCCAAGAGCTCCCGCTCTAATAAA-CAGAAATT TCCTAAACCCAAGAGCTCCCGCTCTAATGAA-CAGAAATT TCCTAGATCTAAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTACATCCAAGAGCTCCCGCTCTAATAAA-CAGAATTT TCCTAAACCCAAGAGCTCCCGCTCTAATAAA-CAGAAATT TCCCATACCCAAGAGTTCCCGCTCTAATAAA-CAGAGCTT TCCTAAATCCAAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCCAAATTCAAGAGTTCCCACTCTAATAAA-CAGAATTT TCCTAAACCCAAGAGCTACCGCTCTAATGAA-CAGAAATT TCCTAAACCCAAGAGCTCCCGCTCTAATGAA-CAGAAATT TCTTAAATCCAAGAGCTCCCGCTCTAATAAA-CAGAATTT TCTCAAATCCAAGAGCTCCCGCTCTAATAAA-CAGAATTT TCTTAAATCCAAGAGCTCCCGCTCTAATAAA-CAGAATTT TCCTAGACCCAAGAGCTCCCGCTCTAATAAA-CAGAAATT TCCCAAATCCAAGAGCTCCCGCTCTAGCAAA-CAGAACTT TCCTAAACCCAAGAGCTCCCGCTCTAATGAA-CAGAAATT TCTTAAACCCAAGAGCTCCCGCTCTAATGAA-CAGAAATT TCCTAAACTCAAGAGCTCCCGCTCTAATGAA-CAGAAATT TCCTAAATCCAAGAGCTCCCGCTCTAATGAA-CAGAAATT TCCTAAACCCAAGAGCTCCCGCTCTAATGAA-CAGAAATT TCCTCAATTCCAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTAGACCTAAGAGCTCCCGCTCTAATGAA-CAGAACTT TCCTTAATCCAAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTACATCCAAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTAAACCCAAGAGCTCCCGCTCTAATAAA-CAGAAATT TCCCAAACCCGAGAGCTACCGCTCTAATAAA-CAGAACTT TCCTAAAACCAAGAGAGACATCTCTAAGCAC--AGAACAT TTCTTCAAACGAGAGCCACCACTCTAATTCAACAGAATTT CTTCA--ACCAAGAGCTCCCGCTCTAAGGAA-CAGAACTT TCCTACAACTGAGAGCTTCCGCTCTAGTGAA-CAGAAATT CTCTACAACCAAGAGCTTCCGCTCTAATTAA-CAGAAATT TCCTTCAACCCAGAGTTCCCACTCTAAGGAA-CAGAATTT TCCTTCAACCTAGAGCTCCCGCTCTAAGGAA-CAGAATTT TCCTTCAACCTAGAGCTCCCGCTCTAAGGAA-CAGAAATT TCCTACAACCCAGAGCTCCCGCTCTAATAAA-CAGAACTT TCCTCAAACCCAGAGCCTCCGCTCTAATTAG-CAGAACCT TCTCACAGCCAAGAGCTCCCGCTCTAGTAAA-CAGAAATT TCTCACAACCAAGAGCTCCCGCTCTACTGAA-CAGAAATT TCCTACAGCTAAGAGCTACCGCTCTAATAAG-CAGAATTT TCCCACAGCTAAGAGCTACCGCTCTAATAAG-CAGAATTT CCCTACAATCAAGAGTTACCACTCTAAATAA-CAGAATTT ACTCAAAACCAAGAGTTACCACTCTAGTTAA-CAGAACTT 78 S. CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CC CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT TT CT CT CT CT CT CT CT CT CT CT 440 | 901234 L..... GACCAA GACCAA GACCAA GACCAA GGCCAT GACCAA GACCAA GACCAA GACCAA GACCAA GACCAT GACCAA GACCAA GACCAA GACCAG GACCAA GACTAA GACCAA GACCAA GACCAA GACCAA GACCTA GACCAA GACCAA GACCAA GACCAA GACCAG GACCAA GACCAA GACGAA GACCAA GACCAA GACCAA GACCAA GACCAA GACCTA GACCAA GACCAA GACCAA GACCAG GACCAA GGCCAC GACCAA GACCAA GACCAA GACCAA GACCAA GACCAA GACCTA GACCTA GACCAA GACCAA GACCAA GACCAA GACCAA GACTTA 162 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 450 | 567890123 ......... CAA--GATC CAA--GATC CAA--GATC TAA--GATC ATTA-GATC CAA--GATC CAA--GATC CAA--GATC CAA--GATC CAA--GATC TTTA-GATC CTTA-GATC TAA--GATC CAA--GATC CAA--GATC TAA--GATC CAA--GATC CAA--GATC CAA--GATC AATG-GATC CTA--GATC TAA--GATC CAA--GATC CAA--GATC CAA--GATC CAA--GATC CAA--GATC CAA--GATC TTG--GATC TAA--GATC TAA--GATC CAA--GATC CAA--GATC CAA--GATC CGA--GATC ATT--GGAT CAA--GATC CTA--GATC CAA--GATC CTAA-GATC ATAT-GATC CGAT-GCAA TCAGTGATC CAA--GATC TAA--GATC TTAATGATC TTAATGATC TTAATGATC AA---GATC TA---GACC CTA--GACC TCA--GATC CAAT-GATC TAAT-GATC -AAATGATC CAAATGATC 4567 S... CGGC CGGC CGCA CGGC CGGT CGGC CGGC CGGC CGGC CGCA CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGCA CGGC CGGC CGGC CGGC CGGC CGGC CGGC CGGC CCGG CGGC CGCA CGGC GGCA CGGC AGCC CGGC CGGC CGCG CGGC CGGC CG-G --GC CGGT CGGC CGGC CGAC CGAC CGAC CGAC 460 | 890123456 L........ -ACAT----AAT------AC-----ACAT----AAA-----AAA-----AAT-----AGT-----AAT-----ATG-----TAC-----TAT-----ACAT----ACAT----ACAT----ATAT----AAT-----AAT-----ACAT----AAT-----AAT-----AAT-----ACAT----ATAT----AAT-----AAT------AT-----ATAT----AAT-----ACAC----ATAT----ACAT----ACAC----ACAT----AAA-----CAAT----AAC------AT-----ACCT----GTG----TAACACATA -GAT-----ATC-----AAC------AT-----ACC-----AAT-----CATT----AAA-----AAA-----AAG-----ATA-----AAC-----AAC-----AAA-----AAA----- 470 480 | | 7890 123456789012 S... L........... GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC ACCG ATC-AACGAACC GCCG ATC-AACGGACC GCG- ATCCAACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC CCG- ATC-AACGGACC ACCG ATC-AACGGACC GCGA ATC-AACGGAAC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGAACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGAACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC GCGA ATC-AACGGACC GCCG ATC-AACGGACC GCGA ATCCAACGGACC GCCG ATC-AACGGACC GCCG ATC-AACGGACC CCG- ATC-AACGGAAC GCCG ATC-AACGAACC ---- -T--AACGAACC GCCG ATC-AACGAACC GCGA ATT-AACGGACC GCCG ATC-AACGGACC GCCG ATT-AACGAACT GCCG ATC-AACGGACC GCCG ATC-AACGAACC GCCG ATC-AACGGACC ACCG ATC-AACGAACC ACCG ATC-AACGGACC AGCG ATC-AACGGACC GTCG ATC-AACGAACC GTCG ATC-AACGAACC GTCG ATC-AACGGACC GTCG ATC-AACGAACC 34567 8 S.....L GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A AAGTT A AAGTT A GAGTT A GAGTT A GAGTT A AAGTT A GAGTT A GAGTT A AAGTT A AAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A GAGTT A 163 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 490 | 90 12 S. L. CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CT CC CC CC CT CC CT CC CT CC CT CC CT CC CC CC CC CC CT CC CT CC CT CC CT CC CC CC CC 3456 S... AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG AGGG 500 | 7890123 L...... ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG ATAACAG 45 S. CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG 6 L C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 510 | 78901234 S....... AATCCCCT AATCCCCT AATCCTCT AATCCCCT AATCCTCT AATCCTCT AATCCCCT AATCCTCT AATCCCCT AATCCCCT AATCCCCT AATCCTCT AATCCCCT AATCCCCT AATCCCCT AATCCCCT AATCCTCT AATCCTCT AATCCCCT AATCCTCT AATCCTCT AATCCCCT AATCCCCT AATCCCCT AATCCTCT AATCCTCT AATCCTCT AATCCCCT AATCCCCT AATCCCCT AATCCCCT AATCCCCT AATCCCCT AATCCCCT AATCCTCT AATCCTCT AATCCCCT AATCCCCT AATCCCCT AATCCTCT AATCCTCT AATCCCCT AATCTCCT AATTCCCT AATCCCCT AATCCCCT AATCCCCT AGTCCCCT AATCCTCT AATCCTCT AATCCCCT AATCCCCT AATCTCCT AATCTCCT AATCTCCT AATCCTCT 5678 L... TAAA TAAA TAAA TAAA TAAA TAGA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA TAAA CCCA TTCA TCTA TTTA TTTA TTAA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TCTA TCAA TTGA 520 | 90 1234567 S. L....... GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GTTCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCTCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GTCCCTA GA GCCCTTA GA GCCCTTA GA GCCCCTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GTCCCTA GA GCCCTTA GA GCCCTTA GA GCCCTTA GA GTCCTTA GA GTCCATA GA GCCCATA GA GCCCTTA GA GCCCATA GA GCCCATA GA GCCCATA GA GCCCATA GA GCCCATA GA GCCCATA GA GCCCATA GA GGCCATA GA GGCCATA GA GTCCATA GA GTCCCTA GA GTTCTTA GA GTTCATA 164 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 89 S. TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC 530 | 0123 L... GACA GACA GACA GACA GACA GACA GACA GACA AACA AACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACG GATA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA GACA 540 | 45678901 23 S....... L. AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGAGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGAGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGCT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGGGGTT TA AGAGGGTT TA AGAGGGTT TA AGGGGGTT TA AGGGGGTT TA AGGAGGTT TA AGGAGGTT TA AGGGGGTT TA AGGGGGTT TA 45 S. CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG 550 | 678901234 L........ ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACTTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG ACCTCGATG 560 | 567890123456 S........... TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TCGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGG?TCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC TTGGATCAGGAC 7 L A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 89 S. TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TT TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC TC 165 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 570 | 01 2345678 L. S...... CT AGTGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AAAGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CC AATGGTG CT AATGGTG -T AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT AATGGTG CT ATTGGCG CC AATGGCG 580 | 9012 L... CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAAC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC CAGC TAGA CAGC 3456789 S...... CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT -GCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT AGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT CGCTATT AGCTATT AACTATT 590 | 012 L.. AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG 34 S. GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GGG GG GG GG GG 600 | 567890 12345 S..... L.... TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC GTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGA- -GTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTTC TTCGTT TGTGC TTCGTT TGTTC TTCGTT TGTTC GTCGTT TGTTC TTCGTT TGTTC 610 I 67890 S.... AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA AACGA 166 Argyrops spinifer Boopsoidea inornata Sparadon durbanensis Cheimerius nufar Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Argyrozona argyrozona Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Acanthopagrus berda Archosargus probatocephalus Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Lagodon rhomboides Pagrus auratus Pagrus auriga Porcostoma dentata Pagrus pagrus Pterogymnus laniarius Rhabdosargus thorpei Sparidentex hasta Sparus auratus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpioGB Centropomus undecimalis Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax latus Morone americanus Morone chrysopsGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus 123456 L..... TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TGAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTGA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTA??? TTAA-A TTAA-A TTAATA TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A TTAA-A 620 | 78901 S.... ATCGT GACCT GTCAT GTCCC GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT ????? GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT GTCCT 167 TABLE 14. CONSTANT, UNINFORMATIVE AND INFORMATIVE CHARACTERS - STEMS AND LOOPS Constant Uninformative Informative Total no.(% of row total) no.(% of row total) no.(% of row total) Characters All 251(40%) 137(22%) 233(38%) 621 Stems 125(52%) 70(29%) 45(19%) 240 Loops 126(33%) 67(18%) 188(49%) 381 TABLE 15. NON-CONSERVED AREAS IN MULTIPLE ALIGNMENT Base Positions Number Bases Longest Run of Gaps Structural Element 07-21 15 3 Loop 66-75 10 4 Stem 240-317 78 4 Loop 364-430 67 21 Loop 439-453 15 3 Loop 458-466 9 5 Loop 168 TABLE 16. MEAN PAIRWISE VALUES OF PERCENT SEQUENCE DIVERGENCE BASED ON UNCORRECTED “P” GENETIC DISTANCE All Taxa Mean % sequence divergence 9.70 Standard Deviation 0.048 Number of Pairwise Comparisons 1540 Ingroup taxa (including Centracanthidae) Mean % sequence divergence 6.21 Standard Deviation 0.019 Number of Pairwise Comparisons 780 Outgroup taxa Mean % sequence divergence 14.49 Standard Deviation 0.052 Number of Pairwise Comparisons 120 169 TABLE 17. CONTRIBUTION VALUES FOR LOOPS AND STEMS CL AND CS GIVEN AS A PERCENTAGE. AVERAGE CONTRIBUTION OF LOOPS AND STEMS TO THE OVERALL SEQUENCE DIVERGENCE BASED ON PAIRWISE COMPARISONS FOR ALL, INGROUP AND OUTGROUP TAXA. Loops All Taxa Ingroup Taxa Outgroup Taxa 81.2% 80.6% 82.6% All Taxa Ingroup Taxa Outgroup Taxa 18.8% 19.4% 17.4% Stems 170 TABLE 18. MATRIX OF FAO AREAS AND CHARACTERS. FAO AREAS WERE TREATED AS INDEPENDENT DATA AND TAXA PLUS ANCESTRAL NODES WERE TREATED AS DEPENDENT DATA DURING PARSIMONY ANALYSIS. CHARACTERS ARE DEFINED BELOW (AN=ANCESTRAL NODE). CHARACTERS AREAS .........1.........2.........3.........4.........5.........6.........7...... 1234567890123456789012345678901234567890123456789012345678901234567890123456 Atlantic, Eastern Central 0000100000000100001101101100000010011110000001111111111100111111111111111111 Atlantic, Northeast 0000100000000100001101001100000010011010000001111111111100111111111111111111 Atlantic, Northwest 0100001000000010010000000100000000000001000011110010101111100111111111111110 Atlantic, Southeast 0011110111100100101110101011111111000110011101111111111100111011111111111111 Atlantic, Southwest 0100000000000000000000000100000000000000000000000000000100100111111111111110 Atlantic, Western Central 0100001000001010010000000100000000000001000011110010101111100111111111111110 Indian Ocean, Eastern 1010000000010000000000010000000000100000110000000010101100100111111111111110 Indian Ocean, Western 1011010111100000101010000011111111100000111100001111101100011011111111111111 Mediterranean/Black Sea 0000100000000100001101101100000010011010000001111111111100111111111111111111 Pacific, Northwest 1010000000010001000000010000000000000000110000000010101100100111111111111110 Pacific, Southwest 0000000000000000000000010000000000000000000000000000000000000111111111111110 Pacific, Western Central 1010000000010000000000010000000000000000110000000010101100100111111111111110 1 Acanthopagrus berda; 2 Archosargus probatocephalus; 3 Argyrops spinifer; 4 Argyrozona argyrozona; 5 Boops boops; 6 Boopsoidea inornata; 7 Calamus nodosus; 8 Cheimerius nufar; 9 Chrysoblephus cristiceps; 10 Crenidens crenidens; 11 Cymatoceps nasutus; 12 Dentex tumifrons; 13 Diplodus bermudensis; 14 Diplodus cervinus; 15 Diplodus holbrooki; 16 Evynnis japonica; 17 Gymnocrotaphus curvidens; 18 Lagodon rhomboides; 19 Lithognathus mormyrus; 20 Oblada melanura; 21 Pachymetopon aeneum; 22 Pagellus bogaraveo; 23 Pagellus bellottii; 24 Pagrus auratus; 25 Pagrus auriga; 26 Pagrus pagrus; 27 Petrus rupestris; 28 Polyamblyodon germanum; 29 Polysteganus praeorbitalis; 30 Porcostoma dentata; 31 Pterogymnus laniarius; 32 Rhabdosargus thorpei; 33 Sarpa salpa; 34 Sparodon durbanensis; 35 Sparidentex hasta; 36 Sparus auratus; 37 Spicara maena; 38 Spicara alta; 39 Spondyliosoma cantharus; 40 Stenotomus chrysops; 41 AN 57; 42 AN 58; 43 AN 59; 44 AN 60; 45 AN 61; 46 AN 62; 47 AN 63; 48 AN 64; 49 AN 65; 50 AN 66; 51 AN 67; 52 AN 68; 53 AN 69; 54 AN 70; 55 AN 71; 56 AN 72; 57 AN 73; 58 AN 74; 59 AN 75; 60 AN 76; 61 AN 77; 62 AN 78; 63 AN 79; 64 AN 80; 65 AN 81; 66 AN 82; 67 AN 83; 68 AN 84; 69 AN 85; 70 AN 86; 71 AN 87; 72 AN 88; 73 AN 89; 74 AN 90; 75 AN 106; 76 AN 107 171 Figure 22- Total number of substitutions plotted as a functions of uncorrected sequence divergence. Transitions - 2nd Order Polynomial y = -631.81x2 + 374.19x + 1.9608, R2 = 0.899 and Transversions - 2nd Order Polynomial y = 638.15x2 + 138x - 1.8914, R2 = 0.9372. Key: Ts = Transitions all characters Tv = Transversions all characters Poly. (Ts) = polynomial line fitted to transitions from all characters Poly. (Tv) = polynomial line fitted to transversions from all characters 90 80 70 Substitutions 60 50 40 30 20 10 0 0 5 10 15 20 % Sequence Divergence (Uncorrected) Ts Tv Poly. (Ts) Poly. (Tv) 25 30 173 Figure 23- Total number of stem substitutions plotted as a functions of uncorrected sequence divergence. Transitions - 2nd Order Polynomial y = 68.676x2 + 53.276x + 0.9629; R2 = 0.7379 and Transversions - 2nd Order Polynomial y = 464.67x2 - 59.195x + 2.9619 R2 = 0.6269. Key: Ts Stems = Transitions stem characters Tv Stems = Transversions stem characters Poly. (Ts Stems) = polynomial line fitted to transitions from stem characters Poly. (Tv Stems) = polynomial line fitted to transversions from stem characters 25 Substitutions 20 15 10 5 0 0 5 10 15 20 % Sequence Divergence (Uncorrected) Ts Stems Tv Stems Poly. (Ts Stems) Poly. (Tv Stems) 25 30 175 Figure 24- Total number of loop substitutions plotted as a functions of uncorrected sequence divergence. Transitions - 2nd Order Polynomial y = -700.48x2 + 320.91x + 0.9979 R2 = 0.8066 and Transversions - 2nd Order Polynomial y = 173.48x2 + 197.2x 4.8533 R2 = 0.9235. Key: Ts Loops = Transitions loop characters Tv Loops = Transversions loop characters Poly. (Ts Loops) = polynomial line fitted to transitions from loop characters Poly. (Tv Loops) = polynomial line fitted to transversions from loop characters 70 60 Substitutions 50 40 30 20 10 0 0 5 10 15 20 25 % Sequence Divergence (Uncorrected) Ts Loops Tv Loops Poly. (Ts Loops) Poly. (Tv Loops) 30 177 Figure 25- Loop transitions were separated into functional nucleic acid classes as either pyrimidine substitutions (CøT) or purine substitutions (AøG) and plotted as a function of uncorrected sequence divergence. CT- 2nd Order Polynomial y = -375x2 + 177.44x + 0.016 R2 = 0.6942 and AG y = -325.48x2 + 143.47x + 0.9819 R2 = 0.673. Key: AG = Purine transitions loop characters CT = Pyrimidine transitions loop characters Poly. (AG) = polynomial line fitted to purine transitions from loop characters Poly. (CT) = polynomial line fitted to pyrimidine transitions from loop characters 40 35 30 Substitutions 25 20 15 10 5 0 0 5 10 15 20 % Sequence Divergence (Uncorrected) AG CT Poly. (AG) Poly. (CT) 25 30 179 Figure 26- Non conserved loop and conserved loop transitions plotted as a function of uncorrected sequence divergence. Conserved loop 2nd Order Polynomial y = -21.75x2 + 153.82x - 0.1936 R2 = 0.855 and Non-Conserved loop 2nd Order Polynomial y =-610.06x2 + 220.37x + 2.1544 R2 = 0.5817. Key: Ts Conserved Loops = Transitions conserved loop characters Ts Non-Conserved Loops = Transitions non-conserved loop characters Poly. (Ts Loops) = polynomial line fitted to transitions from conserved loop characters Poly. (Tv Loops) = polynomial line fitted to transitions from non-conserved loop characters 50 45 40 Transitions 35 30 25 20 15 10 5 0 0 5 10 15 20 25 %Sequence Divergence (Uncorrected) Ts Conserved Loops Ts Non-conserved Loops Poly. (Ts Con Loops) Poly. (Ts Non-con Loops) 30 181 Figure 27. Adjusted loop and stem distances plotted as a function of uncorrected sequence divergence. Loop or stem distances were adjusted by multiplying each respective pairwse distance by the total number of loop or stem characters and then dividing by the total number of characters. Sequence Divergence of Loops and Stems 0.25 0.2 0.15 0.1 0.05 0 0 5 10 15 20 % Sequence Divergence (Uncorrected) Loop Divergence Stem Divergence 25 30 183 Figure 28. Mean values and ranges (one standard deviation) of percent base composition for all, stem, loop, and non-conserved loop characters of the 16S mtDNA fragment. 0.5 16S all 16S loops 16S stems 16S non-conserved loops 0.45 0.4 0.35 Percentage 0.3 0.25 0.2 0.15 0.1 0.05 0 A G C T 185 Figure 29. A strict consensus of 8 equally parsimonious trees from the analysis of all columns of data from the 16S sequence data. Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” Stems= Partitioned Decay from Stems at “N” Loops= Partitioned Decay from Loops at “N” B = Bootstrap Support Value at “N” 5.1 22(16.9 ) 5.3 27(21.7 ) 78 ( 3.0 ) 100 88 5 2.0 6( 0.1 5.9 ) 5(-0.5 5.5 ) -2.5 16(18.5 ) ( 0.0 ) < 91 ( ) 2 0.0 2.0 0.2 12(11.8 ) ( ) 92 100 5 5.0 2(-1.0 3.0 ) 94 2(-0.7 2.7 ) 78 63 99 62 2-0.5 2.5 81 2(1.0 1.0 ) Group II 5( 4.2 0.8 ) < 2(0.0 2.0 ) < 9( 2.5 6.5 ) 2(0.9 1.1 ) 99 < 3.7 ) 11(7.3 0.1 14(13.9 ) 5( 2.7 2.3 ) 98 100 66 < 2( 1.7 0.3 ) 89 0.9 5(4.1 ) < 56 Group I 5( 2.5 2.5 ) 100 Cyprinus carpio Centropomus undecimalis Lethrinus ornatus Lethrinus rubrioperculatus Scolopsis ciliatus Nemipterus marginatus Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lateolabrax japonicus Lateolabrax latus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis BO Boops boops BO Sarpa salpa DE Dentex tumifrons Spicara alta SP Pterogymnus laniarius DE Argyrozona argyrozona SP Chrysoblephus cristiceps DE Petrus rupestris SP Porcostoma dentata DE Polysteganus praeorbitalis DE Cheimerius nufar PA Pagrus auriga SP Cymatoceps nasutus PE Pagellus bellottii PA Argyrops spinifer PA Evynnis japonica PA Pagrus auratus PA Pagrus pagrus SP Stenotomus chrysops SP Calamus nodosus DI Lagodon rhomboides DI Archosargus probatocephalus BO Spondyliosoma cantharus Spicara maena PE Boopsoidea inornata PE Lithognathus mormyrus BO Crenidens crenidens SP Acanthopagrus berda DE Sparidentex hasta BO Gymnocrotaphus curvidens BO Pachymetopon aeneum BO Polyamblyodon germanum SP Sparadon durbanensis SP Rhabdosargus thorpei SP Sparus auratus PE Pagellus bogaraveo BO Oblada melanura DI Diplodus cervinus DI Diplodus bermudensis DI Diplodus holbrooki 187 Figure 30. A strict consensus of 3952 equally parsimonious trees from a weighted analysis of the 16S sequence data. All loop transitional substitutions were given a weight of 0. Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” Stems= Partitioned Decay from Stems at “N” Loops= Partitioned Decay from Loops at “N” B = Bootstrap Support Value at “N” ) 8.2) 21(12.8 13( 5.4 7.6 ) 6 ( 0.3 5.7 ) 5 ( 2.0 3.0 ) 3 ( 0.1 2.9 ) 58 10( 1.3 8.7 ) 82 96 82 98 0.4) 4 (- 4.4 88 2 ( 0.1 1.9 ) 0.5 3( 2.5 ) 9 ( 2.0 7.0 ) 100 75 85 81 6 ( 1.1 4.9 ) 90 57 52 4( 0.3 3.7 ) Group II 5 ( 4.4 0.6 ) 100 Group I 3( 3.1 -0.1 Cyprinus carpio Centropomus undecimalis Lethrinus ornatus Lethrinus rubrioperculatus Scolopsis ciliatus Nemipterus marginatus Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lateolabrax japonicus Lateolabrax latus Dicentrarchus punctatus Morone chrysops Morone americanus Morone saxatilis BO Gymnocrotaphus curvidens BO Pachymetopon aeneum BO Polyamblyodon germanum BO Spondyliosoma cantharus PE Boopsoidea inornata PE Lithognathus mormyrus DI Archosargus probatocephalus DI Lagodon rhomboides SP Stenotomus chrysops Spicara maena BO Boops boops BO Sarpa salpa BO Crenidens crenidens PE Pagellus bogaraveo SP Acanthopagrus berda DE Sparidentex hasta SP Sparadon durbanensis SP Rhabdosargus thorpei SP Sparus auratus DI Diplodus cervinus BO Oblada melanura DI Diplodus bermudensis DI Diplodus holbrooki SP Calamus nodosus Spicara alta DE Cheimerius nufar DE Dentex tumifrons DE Polysteganus praeorbitalis PE Pagellus bellottii PA Argyrops spinifer SP Cymatoceps nasutus PA Pagrus auriga PA Pagrus pagrus SP Pterogymnus laniarius PA Evynnis japonica PA Pagrus auratus SP Chrysoblephus cristiceps SP Porcostoma dentata DE Argyrozona argyrozona DE Petrus rupestris 79 62 189 Figure 31. A strict consensus of 9828 equally parsimonious trees from a weighted analysis of the 16S sequence data. Non-conservative loop transitional substitutions were given a weight of 0. All other characters were assigned a weight of 1. Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” Stems= Partitioned Decay from Stems at “N” Loops= Partitioned Decay from Loops at “N” B = Bootstrap Support Value at “N” 3 23 6 100 100 87 93 5 5 11 99 5 83 2 6 8 3 7 71 75 82 93 63 3 54 2 6 2 95 65 Group II 5 92 80 Group I 13 Cyprinus carpio Centropomus undecimalis Lethrinus ornatus Lethrinus rubrioperculatus Scolopsis ciliatus Nemipterus marginatus Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lateolabrax japonicus Lateolabrax latus Dicentrarchus punctatus Morone chrysops Morone americanus Morone saxatilis BO Crenidens crenidens BO Gymnocrotaphus curvidens PE Boopsoidea inornata PE Lithognathus mormyrus PE Pagellus bogaraveo SP Calamus nodosus DI Diplodus cervinus DI Lagodon rhomboides SP Stenotomus chrysops BO Pachymetopon aeneum BO Polyamblyodon germanum SP Acanthopagrus berda DE Sparidentex hasta BO Oblada melanura DI Diplodus bermudensis DI Diplodus holbrooki SP Rhabdosargus thorpei SP Sparadon durbanensis SP Sparus auratus DI Archosargus probatocephalus BO Boops boops BO Sarpa salpa BO Spondyliosoma cantharus Spicara maena DE Argyrozona argyrozona DE Dentex tumifrons DE Petrus rupestris DE Polysteganus praeorbitalis SP Chrysoblephus cristiceps SP Cymatoceps nasutus SP Porcostoma dentata SP Pterogymnus laniarius Spicara alta DE Cheimerius nufar PA Argyrops spinifer PA Pagrus auriga PE Pagellus bellottii PA Pagrus pagrus PA Evynnis japonica PA Pagrus auratus 77 4 2 < 191 FIGURE 32. The clade containing Sparidae was copied from the unweighted 16S tree (Figure 29.) and ancestral nodes were numbered so that they could be assigned FAO areas during analysis of vicariance biogeography. 36 33 34 32 31 37 30 29 28 22 21 27 35 26 25 24 23 19 18 20 14 17 12 16 2 1 13 4 3 11 10 9 8 7 6 5 BO Boops boops BO Sarpa salpa DE Dentex tumifrons Spicara alta SP Pterogymnus laniarius DE Argyrozona argyrozona SP Chrysoblephus cristiceps DE Petrus rupestris SP Porcostoma dentata DE Polysteganus praeorbitalis DE Cheimerius nufar PA Pagrus auriga SP Cymatoceps nasutus PE Pagellus bellottii PA Argyrops spinifer PA Evynnis japonica PA Pagrus auratus PA Pagrus pagrus SP Stenotomus chrysops SP Calamus nodosus DI Lagodon rhomboides DI Archosargus probatocephalus BO Spondyliosoma cantharus Spicara maena PE Boopsoidea inornata PE Lithognathus mormyrus BO Crenidens crenidens SP Acanthopagrus berda DE Sparidentex hasta BO Gymnocrotaphus curvidens BO Pachymetopon aeneum BO Polyamblyodon germanum SP Sparadon durbanensis SP Rhabdosargus thorpei SP Sparus auratus PE Pagellus bogaraveo BO Oblada melanura DI Diplodus cervinus DI Diplodus bermudensis DI Diplodus holbrooki 193 FIGURE 33. Clade of 16S biogeographic relationships overlaid on map of the world. A single most parsimonious tree is overlaid on a map of the world. No distances are implied by branch lengths or by inter-nodal spaces. Mediterranean and Black Sea Atlantic Southwest Pacific Southwest Pacific Western Central Pacific Northwest Indian Ocean Eastern Indian Ocean Western Atlantic Southeast Atlantic Eastern Central Atlantic Northeast Atlantic Northwest Atlantic Western Central CHAPTER THREE. COMBINED ANALYSIS OF CYTOCHROME B AND 16S MITOCHONDRIAL SEQUENCES 196 INTRODUCTION This study produced two molecular data sets that were used for phylogenetic analysis of the Sparidae. Each data set was independently analyzed in the previous two chapters. In this chapter, cytochrome b and 16S sequences were combined for an unpartitioned analyses of sparid evolution. Two competing methods of phylogenetic inference, taxonomic congruence and character congruence, have been a recent area of controversy to systematists (Mickevich and Farris, 1981; Miyamoto, 1985; Kluge, 1989; Barrett et al., 1991; Chippindale and Wiens, 1994; Bull et al., 1993; Eernisse and Kluge, 1993; de Queiroz,1993; Kluge and Wolf, 1993; Farris et al., 1994; Miyamoto and Fitch, 1995; Wheeler, 1995; Cunningham, 1997). Taxonomic congruence derives a consensus phylogeny from data sets that are analyzed separately. Character congruence (also know as “total evidence”) uses all available data, unpartitioned, to produce a phylogenetic hypothesis. Intermediate to both methods is that of prior agreement. Prior agreement involves making a priori determination of the appropriateness of combining data in an analysis. (Bull et al., 1993; Huelsenbeck et al., 1994; Huelsenbeck, et al., 1996; Siddall, 1997). If data are found to be significantly incongruent, then they may not be combined. However, if deemed congruent, the data can be combined without further evidence. Under taxonomic congruence, each individual dat set is assumed to have information that might otherwise be lost if data were combined prior to analysis. Each data partition is presumed to be an independent test of the phylogenetic hypothesis, and the congruence of trees from these independent data is thought to provide a better 197 estimate of the “true phylogeny”(Miyamoto and Fitch, 1995). The underlying assumption of taxonomic congruence is that data have independent partitions that are related to differences in evolutionary processes. Bull et al. (1993) called these “process partitions” and defined them as sets of data that evolve under different sets of rules. Miyamoto and Fitch (1995) proposed that characters sets may be considered independent process partitions when, “...genes are not genetically linked, ...the products of their genes do not interact with each other, ...the genes do not specify the same function, ...the gene products are not components of a common pathway (e.g., electron transport system), ...or the gene products do not regulate the expression of loci in other partitions.” Under taxonomic congruence, independent process partitions would be analyzed separately, and would not be combined because their independence improves the relevance of consensus of phylogenies. Opponents of taxonomic congruence suggest that phylogenies derived from partitioned data are more susceptible to sampling error, because characters are drawn from original trees which represents a smaller sample than if all characters were combined (Huelsenbeck et al., 1996). Additionally, taxonomic congruence ignores the possibility that combined data might reveal relationships not resolved by individual analysis (Kluge, 1989, Eernisse and Kluge, 1993, Kluge and Wolf, 1993, Huelsenbeck et al., 1996). Kluge and Wolf (1993) criticized taxonomic congruence, because the congruence tree is considered to be “sub-optimal” to a tree based on all the data, and Barrett et al., (1991) found that taxonomic congruence can “positively contradict” the most parsimonious tree found from the pooled data-set. Proponents of character congruence believe there to be no natural partitions to data. Partitions are thought to be artifacts of scientific discovery and that all data should be considered when estimating a phylogeny (Kluge, 1989). However, character congruence shares a common tenet with taxonomic congruence - the independence of 198 characters. Under character congruence, each synapomorphy, within a data set, is considered a separate, independent, confirmation or rejection of taxonomic relationships (Kluge, 1989). Therefore, character congruence maximizes the “informativeness” and “explanatory power” of the data used in the analysis (Kluge, 1989). Systematists opposed to character congruence believe that when different data partitions are combined, a partition with more characters will “swamp” a partition with fewer characters, resulting in a loss of information from the smaller data partition. Additionally, character congruence is believed to give erroneous phylogenies when there is significant heterogeneity between data partitions. Bull et al., (1993) showed that in extreme cases, where there was at least 80% incongruent characters in a combined data set, the chances of finding a “true phylogeny” were near zero - even if more characters were added to the matrix. Prior agreement uses statistical analysis of the data partitions to select whether or not they should be combined. If statistically significant heterogeneity is present between data sets, then prior agreement would not combine these data without an attempt to homogenize the incongruence (weighting or removal of data). If there is no significant heterogeneity between data sets, then they can be combined for analysis without further justification. Prior agreement would appear to be a simple concept, however the statistical methods for testing for heterogeneity are not capable of determining which characters in a data set are incongruent. Siddall (1997) discovered that a significant measure of incongruence between data sets might be misleading. If data are incongruent, those characters in conflict may be from a very small percentage of the data, and, in fact, the majority of all characters may be in agreement. Rejecting to combine data, based on a significant heterogeneity, might be at the expense of losing valuable information for estimating a phylogeny. Therefore, significant heterogeneity may have little to do with the overall combinability of characters. Prior agreement as a test of data combinability 199 may be arbitrary in execution because it is based on a priori definitions of data partitions that are themselves arbitrary (Siddall, 1997). Examining all the data available for a combined analysis sometimes involves novel techniques. Agosti, Jacobs and DeSalle (1996) proposed including amino acid residue sequences and nucleic acid sequences in the same analysis. They concluded that amino acid and nucleic acid sequences are, “simply two different ways of character coding the same information”. Their approach was to include both sequences, for the same gene, in one analysis. Agosti et al. (1996) and Birstein and DeSalle (1998) showed that both types of sequences were not completely dependent on each other and that in combination, the amino acid sequences gave weight to some of the nucleic acid characters that were important to building phylogenetic hypothesis. Functionally, adding the amino acids to the analysis was considered a priori weighting of the data set (Agosti et al., 1996 and Birstein and DeSalle 1998). I have used this method when combing all data sets. Silent third and first position changes are invaluable to the substitutions that help define the phylogenies for the more closely related data. However, many relationships of the taxa in this study are intermediate in resolution. It is believed that the inclusion of both the nucleic acid sequences and the amino acid residue translations in combination with the 16S data, will help resolve the intermediate relationships. All methods of data analysis are subject to criticism and one need not be paralyzed by conjecture in deciding what method to use to estimate phylogenetic relationships from data. I have chosen an approach that makes no judgement on whether congruence or incongruence should be assumed of my data a priori. Instead, I have simply elected to report known congruence or incongruence between data-sets based on statistical analysis (incongruence length difference tests/partition homogeneity test). I have chosen to combine the cytochrome b and 16S data so the maxima of available characters can be used to estimate phylogenetic relationships. I will show conflict between data sets by 200 giving partitioned Bremer support values for each node in resulting cladograms (Baker and DeSalle, 1997 and Baker, et al., 1998). I will present data based on; 1) unweighted data from the cytochrome b and 16S nucleotide sequences - all positions have equal weight (assumed weighting based on the number of characters from each data set); 2) weighted parsimony, where the cytochrome b third codon transitions are weighted 0 and all characters are included from the 16S data set; 3) cytochrome b amino acid residues and 16S nucleotides; 4) appended amino acid weighting - the amino acid residue sequences and the nucleotide sequences from cytochrome b and all nucleotide characters from the 16S data are added together. 201 MATERIAL AND METHODS Collection and data matrix - Collection data are as in Chapters One and Two. The total taxa used here are as in Chapter Two; Chapter One taxa were reduced to the same taxa Chapter Two. A data matrix was developed that included three partitions. The first partition was the cyt b nucleotide data, the second partition was the cyt b amino acid residue translations and the third partition was 16S nucleic acid data. The total matrix was 56 taxa by 2141 characters. Sequences from GenBank were used for two outgroups species for the16S data matrix (Cyprinus carpio and Morone chrysops) and for two species for the cytochrome b data (Cyprinus carpio and Boops boops). Data Analysis Sequence Characteristics - Pairwise sequence divergences were calculated for all 56 taxa for the combined data and for each data partition (cyt b nucleotides, cyt b amino acids, and 16S). The pairwise sequence divergences for each data partitions were plotted as a function of total sequence divergence to compare the evolutionary rates of each partition. Incongruence Length Test - Incongruence length difference (ILD) tests (Mickevich and Farris 1981; Farris et al., 1994) were conducted on all partitioned data using the partition homogeneity function in PAUP. Farris et al. (1994) developed the IDL statistic to test the null hypothesis of congruence (that two populations [partitions] do not give significantly different phylogenies). Incongruence length difference is the deviation between the numbers of steps from individual analysis and the number of steps from combined analysis. The test is conducted by measuring the distance of the observed data partitions, 202 and the distances for a number of randomized partitions, drawn from the original data partitions. If some number (W) of the randomly selected distances (S) are smaller than the observed distance (D), then a statistic (Type I error rate) can be estimated for rejecting the null hypothesis:1- S/(W+1) (Farris et al., 1994). The null hypothesis is rejected when the Type I error rate value falls below a pre-set threshold (at 5% significance level). Ideally, 1000 randomly selected replicates are generated during the ILD test. Because of significant computing power needed to complete ILD tests between some partitions, not all test could be conducted for 1000 replicates. These are noted in the results. Phylogenetic Analysis - Parsimony analysis was performed using PAUP4.0b4a* (Swofford, 1998). The most parsimonious tree (MPT), or equally parsimonious trees (EPTs), and strict consensus were obtained for each analysis. The number of constant characters, parsimony-uninformative and parsimony informative characters, tree length, consistency index and the retention index were determined. Bootstrap replicate support was conducted using PAUP* and decay values (Bremer 1988) were calculated for clade support using the program TreeRot.v2 (Sorensen 1999). Four analyses were conducted. In the first analysis “CytbNuc16S”, the cyt b nucleotide characters and 16S nucleotide partitions were used (the cyt b amino acid translations were excluded). All positions from both partitions were included and of equal weight. In the second analysis “CytbNuc3ds16S”, the cyt b nucleotide and 16S partition were included, but third codon transitions from the cyt b data were weighted 0 (the cyt b amino acid translations were excluded). All other characters were included and of equal weight. The third analysis “CytbProt16S” used the cyt b amino acid translations in combination with the 16S nucleotide partition (the cyt b nucleotides were excluded). All character were included and of equal weight. In last analysis, the “Total” all data partitions were used and all characters were included and of equal weight (“weighting” 203 was based on the method of appended amino acids of Agosti et al., (1996)). Except where noted in results a heuristic search of 1000 random addition sequences were conducted. In some analyses, 100 random addition sequences were used due to computing restraints. Biogeographic Analysis - Parsimony analysis was used to reconstruct the biogeographic relationships inferred from the cytochrome b and 16S sequence data simultaneously (Brooks 1985; Wiley 1988a, b; Wiley et al., 1991). Data from Chapters One and Two were used to analyze the biogeographic aspect of sparid evolution. The matrices from Chapter One, Table 11 and Chapter Two, Table 18 were combined into one matrix and then used as the basis for vicariance biogeography analysis. 204 RESULTS Sequence Divergence - The mean sequence divergence between all pairwise comparisons of the combined data partitions of 2141 characters was 16.6 ± 3.9%. Mean sequence divergence for pairwise comparisons from the cyt b nucleotide partition was 19.7 ± 3.9%, from the cyt b amino acid partition was 8.0 ± 4.1% and from the 16S data partition was 9.7 ± 4.8%. The sequence divergence of each data partition was plotted as a function of total sequence divergence for all pairwise comparisons (Figure 34). The cyt b nucleotide partition exhibited the greatest sequence divergence, followed by the 16S partition and then by the cyt b amino acid residue partition. The cytochrome b partition accounted for the majority of sequence divergence at low total sequence divergence and increased linearly until approximately 20%. The 16S and cyt b amino acid residue partitions had very similar plots until approximately 20% sequence divergence. After 20% the 16S gene had a sharp increase in divergence. Incongruence Length Difference - Results of ILD test are given in Table 19. No incongruence was found between any of the data partitions tested. For each test, most of the randomly selected distances were smaller than or equal to the length of the observed combined partitions. The null hypothesis was not rejected for any of the test performed, signifying that the data partitions were not significantly incongruent. Therefore, the data partitions could be combined, in any permutation, without further tests of incongruence or justification. The most conflict between partitions (p = 0.51) was found between cyt b nucleotides (third codon transitions=0) and 16S nucleotides. The least amount of conflict 205 was between cyt b nucleotides and cyt b amino acid residues (p = 0.94) and between all partitions (p = 093). Phylogenetic Analyses Combined Data: CytbNuc16S - A heuristic search of 1000 random addition replicates yielded three equally parsimonious trees (strict consensus, Figure 35, tree length = 7451, CI = 0.2439, RI = 0.4225; 100 trees held at each stepwise addition; starting seed = 949570787; all characters unordered and equal weight of 1; outgroup taxa Cyprinus carpio; branch-swapping = stepwise addition; swapping algorithm = tree bisectionreconnection no topological constraints; character state optimization = accelerated transformations). Of 1761 total characters, 753 (43%) characters were constant, 251 (14%) variable characters were parsimony uninformative and 757 (43%) variable characters were parsimony informative characters. The Sparidae + Spicara were monophyletic in all trees found, and two distinct groups (Group I and Group II , Figure 35) were found within the sparids. Most nodes were fully resolved, with the exception of the clade containing primarily South African native sparids. There was an unresolved tricotomy between Argyrozona argyrozona, Pterogymnus laniarius and a clade containing Petrus rupetris + Polysteganus praeorbitalis and a tricotomy formed by Chrysoblephus cristiceps, Cymatoceps nasutus and Porcostoma dentata. As was found in all independent analysis of each data partition (Chapters One and Two), Pagellus and Spicara were polyphyletic within the sparids and Pagrus was paraphyletic within Group I taxa. Most of the node support was contributed from the cyt b partition. Of the 37 nodes within the sparid clade, 20 had negative decay values from the 16S partition, one had negative support from the cyt b partition and 16 had positive support from both partitions. Of those positive nodes, the 16S partition was the major contributor to only four. There was no support in this analysis for any of the six sparid subfamilies. 206 Likewise, there was no support for the Sparoidea; the placement of the Lethrinidae and Nemipteridae was different in this analysis than in independent analyses of the cyt b or 16S data partitions. A clade containing the haemulids and the lutjanids/caesionids fell sister to the Sparidae. This relationship was not seen during independent analysis of data partitions. Nodes corresponding to outgroup species were constrained and analyzed with each data partition, independently. There was no support (decay=0) from independent analysis of either partition for a sister relationship between the Sparidae and the haemulids + lutjanids/caesionids. Similarly, in this analysis, the lethrinids were sister to sparids + haemulids + lutjanid/caesionid clade. There was no support (decay=0) from the constrained analysis of independent partitions for this relationship. The nemipterids fell basal to all other percoids, except Centropomus undecimalis, which has fallen basal to all Perciformes in all molecular analyses. There was support (decay=5 16S and decay=10 cyt b) from constrained analysis of independent partitions for this node. Overall, most of the decay support for outgroup nodes came from the cyt b data (9 of 14 nodes) and there was positive contribution from the 16S partition to most nodes (11 of 14 nodes). Combined Data: CytbNuc3ds16S - A heuristic search of 1000 random addition replicates yielded a single most parsimonious tree (Figure 36, tree length = 3900 , CI = 0.3197, RI = 0.5406;100 trees held at each stepwise addition; starting seed = 600819088; cytochrome b nucleotide data set using all changes at first and second position and transversions in third position weighted 1, transitions third codon weighted 0; all characters from the16S data weighted 1; outgroup taxa Cyprinus carpio; all other parameters as in previous analysis). Of 1761 total characters, 753 (43%) were constant, 268 (15%) variable were parsimony uninformative and 740 (42%) were parsimony informative. The Sparidae + Spicara were monophyletic in this analysis. There was full resolution to all terminal nodes within the Sparidae and all taxa placed in Group I and II as in the previous analysis. 207 However, the relative placement of many genera was different than in the previous analysis. Within Group I taxa (Group I, Figure 36) the cyt b partition supported the western Atlantic clade (A. probatocephalus + L. rhomboides and C. nodosus and S. chrysops) basal to all other Group I species, but there was strong negative support from the 16S partition for this arrangement (-5.7 from 16S, 6.7 from cyt b). The boopsines, Boops boops and Sarpa salpa were basal to other Group I sparids in the previous analysis, but grouped with Spondyliosoma cantharus and Spicara maena. The cyt b partition supported this relationship, but there was no overall decay support for this relationship. Crenidens crenidens and Lithognathus mormyrus formed a weakly supported clade (-2.0 from 16S, 4.0 from cyt b). Boopsoidea inornata, Gymnocrotaphus curvidens and Pachymetopon aeneum + Polyamblyodon germanum were supported intermediate within Group I species by a moderate decay value (-2.0 from 16S, 5.0 from cyt b). In the previous analysis, Dentex tumifrons and Spicara alta were basal to other Group II species, but in this analysis, they placed mostly with pagrine species. A clade containing South African sparines and denticines was well resolved within Group II species, with the almost all decay support coming from the cyt b partition. There was no support in this analysis for the six sparid subfamilies. Outgroup species were similar to the previous analysis and there was no support for the Sparoidea in this tree. The lethrinids moved intermediate to the Sparidae + other percoids and the nemipterids. Combined Data: CytbProt16S - A heuristic search of 1000 random addition replicates resulted in 35 equally parsimonious trees (strict consensus Figure 37, tree length = 2142, CI = 0.4542, RI = 0.5683; 100 trees held at each stepwise addition; starting seed = 1264550021; all characters were unordered and of equal weight, gaps were treated as 208 additional state; outgroup taxa Cyprinus carpio; all other parameters as in the first analysis). Of 1001 total characters, 452 (45%) characters were constant, 230 (23%) characters were parsimony uninformative, 319 (32%) characters were parsimony-informative. The sparids were monophyletic in all 35 equally parsimonious trees and both Group I and Group II species were supported (strict consensus, Figure 37). However, Calamus nodosus was basal to all sparids and formed an unresolved tricotomy with the Group I and Group II clades. Calamus nodosus fell basal to all other sparids in the consensus tree derived from cyt b amino acid residue translations in Chapter One (Figure 19). Generic relationships of the sparids were not clearly resolved as in the previous two analyses, possibly due to the introduction of the conserved amino acid residue translations into this analysis. Most of the decay support for nodes within the sparid clade came from the 16S partition. There was no support in this analysis for any of the six sparid subfamilies. The outgroup species in this analysis were unresolved; a polytomy was formed of all percoid species (with the exception of C. undecimalis which placed outside of other percoids). Based on the lack of resolution, any of the percoid groups sampled were equally likely to be sister to the sparids. The node support for external outgroup relationships was dominated by the 16S partition. There was no support from these data for a monophyletic Moronidae + Lateolabrax. Combined Data: Total - A heuristic search of 100 random addition sequences resulted in 11 equally parsimonious trees (strict consensus Figure 38; tree length = 8066; CI = 0.2659; RI = 0.4375; all characters unordered and of equal weight; starting seed = 550461514; number of trees held at each step during stepwise addition = 100, outgroup taxa = Cyprinus carpio; all other parameters as in the first analysis). Of 2141 total characters 954 (45%) were constant; 344 (16%), were parsimony-uninformative; 843 (39%) were parsimony-informative. In this analysis, the Sparidae + Spicara were 209 monophyletic. By including cyt b nucleotide and amino acid residue sequences with the 16S nucleotide sequences, less supported nodes (seen in previous analyses) collapsed, leaving mainly external nodes that were well supported. A number of unresolved internal nodes were found in the sparid clade. For example, the internal nodes of Group I species collapsed to a polytomy, with no support for the basal placement of Boops boops and Sarpa salpa to other Group I species. Most decay support for external nodes came from the cyt b nucleotides. In Group II species a polytomy containing South African native sparids was well supported distinct from other Group II taxa. The decay value for this node (8) came entirely from the cytochrome b gene. Only the cyt b nucleotide partition supported the clade of western Pacific, Argyrops sister to Evynnis and Pagrus auratus, but both the 16S and cyt b nucleotide partitions supported the relationship between Evynnis and Pagrus auratus. In addition, both the 16S and cyt b nucleotide partitions contributed to the decay value (7) for the clade of Cheimerius nufar + Pagrus auriga and Pagellus bellottii + Pagrus pagrus. There was no support for subfamilies in this analysis and the Sparoidea were not monophyletic. The outgroup relationships in this analysis were identical to those found in the cytochrome b nucleotide/16S (CytbNuc16S) analysis and node support was dominated by the cyt b nucleotide partition. Biogeographic Analysis - The matrix used for this analysis is presented in Table 20. The topology of the combined vicariance biogeography tree was the same as the cyt b biogeographic tree in Chapter One (Figure 21). Of 158 total characters, 18 were constant, 10 were parsimony-uninformative and 130 were parsimony-informative. A single most parsimonious tree was found. (Figure 39, tree length = 189, CI = 0.7407, RI = 0.8275. 1000 replicates of random stepwise addition; 100 trees held at each step; starting seed = 394372018; character-state optimization: Delayed transformation, tree rooted to the Indian Ocean, Pacific northwest, Pacific west central + Pacific southwest node). Both 210 data partitions contributed nearly equally to decay values, except for the Atlantic southwest and Atlantic northwest + Atlantic western central clade. Here, the 16S dependent data and cytochrome b dependent data were in conflict (partitioned decay = -2 from 16S and 3 from cyt b). In the 16S independent tree the Atlantic southwest terminal node was sister to the Pacific southwest area (Figure 33), but the placement of Atlantic southwest area in the independent cytochrome b tree is identical to this tree (Figure 21). This conflict is further reflected in the node uniting all Atlantic, Mediterranean, and Indian Ocean western areas, where all node support came from the cyt b dependent data. 211 DISCUSSION The use of character congruence resulted in increased support for many sparid relationships. However, combined analysis was not very informative in resolving outgroup relationships. Although there was no significant heterogeneity between any of the data partitions tested, there was still conflict between data partitions at many of the nodes. It was clear from the plot of sequence divergence for each data partition as a function of total sequence divergence that cytochrome b nucleotides sequences were most divergent of the three data partitions. Based on the plot, cyt b nucleotide sequences might, therefore, contain more substitutions useful for resolving relationships. This could explain why the cytochrome b nucleotide data dominated decay support for most nodes in the three analysis where it was used (CytbNuc16S, CytbNuc3ds16S , and Total). Yet, that is not to say that each data partition is not capable of contributing to the overall phylogeny or for resolution of specific nodes. Each partition’s intrinsic rate of substitution was valuable in contributing to the overall phylogeny. Although support for a particular node might be dominated by one partition, other partitions typically contributed to the total nodal support. The incongruence length test is an indicator of overall homogeneity (or heterogeneity) of the data partitions; a statistical measure of data conflict. However, regardless of the overall homogeneity, there maybe considerable resolving power of combined partitions for nodes of a given tree. The method of reporting partitioned decay values (Baker and DeSalle, 1997 and Baker, et al., 1998) serves as an objective method for understanding how conflict between partitions is resolved throughout a tree. Conflict is shown, but no action is taken as a result of conflict, a posteriori. For example, if one were to accept only those clades that were supported by multiple partitions (as might be 212 done in a censuses method), then data would be lost. Multiple partitions will often agree or disagree at a particular node, correctly or incorrectly supporting the “true phylogeny”. By rejecting those nodes that are in conflict, then one is left with a phylogeny with reduced explanatory power. To reject a node that is conflict is equivalent to knowing the true phylogeny. A method should be questioned if it selects one partition over another partition as a better estimator of the “true phylogeny”, because the true phylogeny can never be known. (Of course there is reason to reject data if there is a prior knowledge of character mis-information, i.e. saturation, non-homologous alignments or comparing nonorthologous or paralogous sequences.) Hypotheses of evolutionary history are equally valid when they are based on data partitions that contain synapomorphies. Under parsimony, each synapomorphy, within a data set is considered a separate, independent confirmation or rejection of taxonomic relationships; the shortest tree obtained should have the best explanatory power of all the data (available). Therefore, the shortest tree (or strict consensus) will have the minimum amount of conflict between data partitions. Unless there is complete agreement between data partitions (in which case there is no need for data combination) there will be some conflict for relationships between partitions. I’ve chosen to report conflict and not reject hypotheses because of conflict, leaving the explanation of relationships to parsimony. Phylogenetic relationships Combined analysis of cyt b and 16S nucleotide sequences - The best resolution of sparid relationships was in the unweighted (CytbNuc16S) and weighted ( CytbNuc3rds16S) analyses, based on the combined analyses of the data partitions, the Sparidae + Spicara were a monophyletic group. These results are not surprising, since all independent estimates of phylogeny in Chapters One and Two found this group to be monophyletic. 213 The stability of these trees was verified by the large number of nodes that had decay values > 1. Another measure of stability in these trees was in the consistency and retention indices. The unweighted tree had a CI=0.2439 and RI=0.4225 and these numbers increased to a CI=0.3197 and RI=0.5406 in the weighted tree. However, the ILD test between the cyt b (third codon transitions weighted 0) and 16S partitions showed the most conflict (p = 0.51) between all partitions tested. Because the CI and RI are actual measures of synapomorphies and homoplasy that occur in a tree and the ILD test is a measure of net character conflict between data partitions, they may not be agreement between the measures. Although CI and RI index numbers might seem low, relative to the large size of the data matrix, they indicate a stable tree. The increase in the weighted tree values justified the removal of the saturated third codon transitions because it increased the stability of the tree. Here the cyt b and 16S partitions were in better agreement in estimating sparid evolution than in the unweighted tree, despite having the lowest ILD value. The relationship between the Sparidae and outgroup species was different in the combined analysis than in independent estimates of phylogeny. Although there was strong agreement between the data partitions for most external nodes, there was conflict between the data partitions in support for internal nodes that defined relationships between outgroups and the Sparidae. Most nodes were dominated by the cyt b partition, yet the outgroup relationships are different than when the cyt b partition was analyzed independently. The relationship of the Lethrinidae and Nemipteridae in the weighted analysis was similar to the placement in the independent analysis of the 16S partition. As mentioned in Chapter Two, the 16S loop characters are transitionally saturated in outgroups species and are potentially misleading because they represent homoplasy. These characters could not be removed without removing informative characters from ingroup species (not saturated for loop transitions). The conflict between saturated 16S 214 characters and the cyt b sequences has possibly resulted in reduced resolution for outgroup relationships. Combined analysis of cyt b amino acid residues and 16S nucleotide sequences - It was hoped that there would be increased resolution for outgroup nodes by including the conserved cyt b amino acid residue translations with the 16S nucleotide sequences. Because the 16S loop transitions are potentially saturated for more distantly related species, the inclusion of conserved data might have bolstered support for relationships masked by the noise of saturation. However, this was not the case. There was no resolution at all for outgroup species. I think that given the mis-informative substitutions in loop characters, a polytomy based on these data is acceptable. I would rather loose resolution than to accept possibly misleading phylogenetic relationships. Combined analysis of all data: Total - All forms of weighting are based on the assumption that an applied weight will result in a better supported tree than if no weight were applied. Amino acid weighting attempts to give more support to nucleic acid characters that, “impart structure to a phylogenetic hypothesis” (Agosti, et al., 1996). This method is valuable for closely related taxa that have variable amino acid sequences. Because the amino acid translations are probably not entirely independent of the nucleic acid sequences, then equal weight should be given to nucleotides and amino acids as not to amplify character-independence problems. (Agosti, et al., 1996). Although previous analyses showed an increase in tree support by removing 3rd codon transitions, I decided to only use a single weighting scheme in this analysis (amino acids) and not to down weight third codon transitions. The overall effect of including the amino acids and all other characters in one analysis was that some less supported internal nodes collapsed while the majority of 215 nodes were well supported. The Sparidae + Spicara were monophyletic, but were no longer fully resolved. However, the majority of relationships that remain were well supported, including both sparid lineages. Group I sparids, overall, had better support for nodes from all data partitions, but Group II sparids were structured primarily from the cyt b nucleotides. The outgroup relationships were identical to that of the unweighted analysis of cyt b and 16S nucleotides. This is not surprising, since all nucleotide characters were included, and there was no resolution in outgroup species when the amino acid residues were combine with the 16S sequences. The amino acids imparted negative support for the three nodes defining outgroup relationships. Biogeographic Analysis - The combined analysis of sparid biogeography resulted in tree topology identical to that of the independent cyt b analysis. Conflict in the tree was evident where the 16S independent tree and the cyt b independent tree disagreed. The placement of Atlantic southwest node in this tree was only supported by the cyt b data, but the evidence from that partition strongly supports it sister to other Atlantic areas. The alternative hypothesis, of from the 16S data is not strongly supported. 216 Table 19. ILD values between different data partitions Partitions D S W+1 p value cyt b nucleotides and 16S 7416 39 1000 0.61 cyt b nucleotides (3rds=0) and 16S 3872 487 1000 0.51 cyt b amino acids and 16S 2111 6 126 0.64 cyt b nucleotides and cyt b amino acids 6472 6 100 0.94 All partitions 8000 7 100 0.93 If a number (W) of the randomly selected distances (S) is smaller than the observed distance (D), then a statistic (Type I error rate) can be estimated for rejecting the null hypothesis:1- S/(W+1) (Farris et al., 1994). 217 TABLE 20. MATRIX OF FAO AREAS AND CHARACTERS FROM CYT B (TOP) AND 16S (BOTTOM) Characters Areas .........1.........2.........3.........4.........5.........6.........7.........8.. 1234567890123456789012345678901234567890123456789012345678901234567890123456789012 Atlantic, Eastern Central 0000100000010001000011011011000000100111101011100110110001000000111111101101111111 Atlantic, Northeast 0000100000010001000011010011000000100110101011100110110001000000001111101101111111 Atlantic, Northwest 0100001000000000100100000001000000000000010000011110110001000000000011101111111000 Atlantic, Southeast 0011110111100001001011101010111111110001101111100110111111111111111111101101111111 Atlantic, Southwest 0100000000000100000000000001000000000000000000001110110001000000000011101111111000 Atlantic, Western Central 0100001000000110100100000001000000000000010000011110110001000000000011101111111000 Indian Ocean, Eastern 1010000000001000000000000100000000001000000000000001110001000000110000111101111011 Indian Ocean, Western 1011010111100000001010100000111111111000001111100001111111111111011101101101111011 Mediterranean and Black 0000100000010001000011011011000000100110101011100110110001000000001111101101111100 Pacific, Southwest 1010000000001000010000000100000000000000000000000001110001000000110000111101111000 Pacific, Northwest 0000000000000000000000000100000000000000000000000000000000000000000000011101110000 Pacific, Western Central 1010000000001000000000000100000000000000000000000001110001000000110000111101111000 Atlantic, Eastern Central 0000100000000100001101101100000010011110000001111111111100111111111111111111 Atlantic, Northeast 0000100000000100001101001100000010011010000001111111111100111111111111111111 Atlantic, Northwest 0100001000000010010000000100000000000001000011110010101111100111111111111110 Atlantic, Southeast 0011110111100100101110101011111111000110011101111111111100111011111111111111 Atlantic, Southwest 0100000000000000000000000100000000000000000000000000000100100111111111111110 Atlantic, Western Central 0100001000001010010000000100000000000001000011110010101111100111111111111110 Indian Ocean, Eastern 1010000000010000000000010000000000100000110000000010101100100111111111111110 Indian Ocean, Western 1011010111100000101010000011111111100000111100001111101100011011111111111111 Mediterranean Black Sea 0000100000000100001101101100000010011010000001111111111100111111111111111111 Pacific, Southwest 1010000000010001000000010000000000000000110000000010101100100111111111111110 Pacific, Northwest 0000000000000000000000010000000000000000000000000000000000000111111111111110 Pacific, Western Central 1010000000010000000000010000000000000000110000000010101100100111111111111110 218 Figure 34. The sequence divergence of each data partition was plotted as a function of total sequence divergence for all pairwise comparisons. The cytochrome b partition had the greatest mean pairwise sequence divergence (19.7 ± 3.9%). The cyt b amino acid partition and 16S data partition had similar mean pairwise sequence divergences of was 8.0 ± 4.1% and 9.7 ± 4.8%, respectively. 30 % Sequence Divergence Per Partition 25 20 15 10 5 0 0 5 10 15 20 25 Total % Uncorrected Sequnce Divergence Cytochrome b Nucleotides Cytochrome b amino acids 16S 30 220 Figure 35. Combined analysis: CytbNuc16S - A heuristic search of all cyt b and 16S nucleotide characters yielded 3 equally parsimonious trees. A strict consensus is shown (tree length = 7451, CI = 0.2439, RI = 0.4225). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” A = Decay Value From 16S Partition B = Decay Value From Cyt b Nucleotide Partition Group II Group I Cyprinus carpio Centropomus undecimalis Scolopsis ciliatus (22.8, 21.2) 44 Nemipterus marginatus Lateolabrax japonicus 30 (11.0, 19.0) Lateolabrax latus (3.0, 2.0) 5 Dicentrarchus punctatus (11.2, 6.8) 18 Morone americanus (17.0, 21.0) 38 Morone chrysops (4.1, 9.9) 14 4 (-1.0, 5.0) Morone saxatilis Lethrinus ornatus 43 (29.5, 13.5) Lethrinus rubrioperculatus (5.0, -4.0) 1 Haemulon sciurus 21 (2.0, 19.0) Pomadasys maculatus (5.6, -0.6) 5 Caesio cuning (3.1, 24.9) 28 Lutjanus decussatus DE Dentex tumifrons (-1.8, 4.8) 3 (-0.5, 4.5) 4 Spicara alta DE Argyrozona argyrozona SP Pterogymnus laniarius (-1.1, 6.1) 5 DE Petrus rupestris (-1.5, 11.5) 10 (-1.5, 8.5) 7 DE Polysteganus praeorbitalis (-0.2, 4.2) 4 SP Chrysoblephus cristiceps (2.4, 0.6) 3 SP Cymatoceps nasutus (-1.5, 2.5) 1 SP Porcostoma dentata (2.5, -0.5) 2 PA Argyrops spinifer PA Evynnis japonica (-2.0, 12.0) 10 PA Pagrus auratus (3.0, 9.0) 12 DE Cheimerius nufar (1.5, 7.5) 9 PA Pagrus auriga (3.5, 4.5) 8 (11.0, 24.0) 35 PE Pagellus bellottii (-1.2, 5.8) 7 (2.0. 9.0) 11 PA Pagrus pagrus BO Boops boops 13 (10.0. 3.0) BO Sarpa salpa PE Boopsoidea inornata BO Gymnocrotaphus curvidens (-4.3, 11.1) 7 BO Pachymetopon aeneum (1.5, 0.5) 2 (18.8, 25.2) 44 BO Polyamblyodon germanum (-1.5, 2.5) 1 BO Spondyliosoma cantharus (-2.6, 12.6) 10 (9.3, 21.7) 31 Spicara maena DI Archosargus probatocephalus (-1.2, 2.2) 1 (-1.5, 4.5) 3 DI Lagodon rhomboides (-2.2, 5.2) 3 SP Calamus nodosus (1.0, 11.0) 12 SP Stenotomus chrysops (-1.2, 2.2) 1 SP Acanthopagrus berda (13.3, 10.7) 24 DE Sparidentex hasta (-1.9, 2.9) 1 BO Crenidens crenidens SP Sparus auratus (-1.6, 2.6) 1 SP Rhabdosargus thorpei (7.5, 3.5) 11 13 (-1.1, 14.1) SP Sparadon durbanensis (0.7, 1.3) 2 PE Lithognathus mormyrus (-3.0, 4.0) 1 PE Pagellus bogaraveo BO Oblada melanura (-2.2, 3.2) 1 DI Diplodus cervinus (0.8, 8.2) 9 DI Diplodus bermudensis (3.0, 9.0) 12 (-1.0, 24.0) 23 DI Diplodus holbrooki 222 Figure 36. Combined analysis: CytbNuc3rds16S - A heuristic search of the weighted cyt b nucleotides (3rd codon transitions =0) and all 16S nucleotides yielded a single most parsimonious tree (tree length = 3900 , CI = 0.3197, RI = 0.5406). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” A = Decay Value From 16S Partition B = Decay Value From Cyt b Nucleotide Partition 41 (18.8, 22.2) 16 24 (5.0, 19.0) 2 (-2.6, 3.6) (-2.0, 3.0) 1 38 (18.0, 20.0) 12 (7.0, 5.0) (2.0, 1.0) (-0.8, 1.8) 3 1 11 (8.0, 3.0) 18 (2.8, 15.2) (-1.0, 2.0) 1 (-0.5, 3.5) 3 (-1.0, 4.0) 3 2 (-1.7, 3.7) (0.0, 1.0) (1.0, 1.0) 1 (2.3, 0.7) 3 (-1.4, 12.4) 11 2 (-3.4, 8.4) 1 (-3.7, 4.7) (-1.6, 2.6) 1 2 (0.0, 2.0) 2 (-3.5, 5.5) (2.3, 0.7) (2.3, 21.7) 3 4 (2.3, 1.7) 24 (1.0, 1.0) 2 2 (1.0, 1.0) 5 (-4.7, 9.7) (1.5, 1.5) 3 3 (2.3, 0.7) 4 (12.5, -0.6) (-1.2, 5.2) (-5.7, 6.7) 1 (-1.7, 5.7) 23 4 3 (-0.1, 3.1) (15.0, 16.0) 31 3 (-2.0, 5.0) 2 (-2.0, 4.0) (-2.2, 3.2) 1 (-4.0, 8.0) (-1.3, 2.3) 12 1 (6.8, 16.2) (-5.7, 6.7) 5 4 12 (5.0, 7.0) (-0.7, 16.7) 1 (9.0, 10.0) (1.0, 0.0) 16 19 1 (3.0, 5.0) 8 8 (2.0, 6.0) (1.0, 7.0) 8 Group II (7.0, 9.0) Group I 28 (30.8, -2.8) Cyprinus carpio Centropomus undecimalis Scolopsis ciliatus Nemipterus marginatus Lethrinus ornatus Lethrinus rubrioperculatus Lateolabrax japonicus Lateolabrax latus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus SP Pterogymnus laniarius DE Argyrozona argyrozona SP Chrysoblephus cristiceps SP Cymatoceps nasutus SP Porcostoma dentata DE Petrus rupestris DE Polysteganus praeorbitalis DE Dentex tumifrons Spicara alta PA Argyrops spinifer PA Evynnis japonica PA Pagrus auratus DE Cheimerius nufar PA Pagrus auriga PE Pagellus bellottii PA Pagrus pagrus DI Archosargus probatocephalus DI Lagodon rhomboides SP Calamus nodosus SP Stenotomus chrysops BO Boops boops BO Sarpa salpa BO Spondyliosoma cantharus Spicara maena PE Boopsoidea inornata BO Gymnocrotaphus curvidens BO Pachymetopon aeneum BO Polyamblyodon germanum BO Crenidens crenidens PE Lithognathus mormyrus PE Pagellus bogaraveo SP Sparus auratus SP Rhabdosargus thorpei SP Sparadon durbanensis SP Acanthopagrus berda DE Sparidentex hasta BO Oblada melanura DI Diplodus cervinus DI Diplodus bermudensis DI Diplodus holbrooki 224 Figure 37. Combined analysis: CytbProt16S - A heuristic search of all cyt b amino acid residue and 16S nucleotide sequences resulted in 35 equally parsimonious trees. A strict consensus is shown (tree length = 2142, CI = 0.4542, RI = 0.5683). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” A = Decay Value From 16S Partition B = Decay Value From Cyt b Amino Acid Partition (6.1, 0.9) 7 (9.2, 2.8) (23.7, 1.3) (29.9, 2.1) 12 25 32 15 (7.4, -1.4) (17.5, -2.5) (7.0, -1.0) 6 6 (1.5, 0.5) (4.1, -3.1) (3.8, 0.2) 1 14 (4.5, -2.5) 1 2 1 (0.1, 0.9) 1 (-0.7, 1.7) (-0.7, 1.7) (2.0, -1.0) (-1.0, 2.0) 1 (1.4, -0.4) (3.3, -2.3) 1 4 (-0.5, 1.5) (-0.8, 2.8) (12.7, 1.3) 2 1 1 1 1 1 (1.8, -0.8) (14.3, -1.3) (2.5, -1.5) (5.3, -4.3) 1 (5.3, -4.3) 1 13 (6.9, 3.1) 10 (7.5, 2.5) 10 1 4 (5.3, -1.3) (-1.3, 4.3) (0.2, 1.8) 3 2 (-1.8,2.8) 1 (15.8, 1.2) (4.3, -0.3) 4 (0.3, 1.7) 17 2 Group II 10 Group I (9.2, 0.8) Cyprinus carpio Centropomis undecimalis Lateolabrax japonicus Lateolabrax latus Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Scolopsis ciliatus Nemipterus marginatus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis SP Calamus nodosus DE Dentex tumifrons Spicara alta SP Cymatoceps nasutus PA Pagrus auratus SP Pterogymnus laniarius DE Argyrozona argyrozona DE Cheimerius nufar PA Pagrus auriga SP Chrysoblephus cristiceps SP Porcostoma dentata DE Petrus rupestris DE Polysteganus praeorbitalis PE Pagellus bellottii PA Pagrus pagrus PA Argyrops spinifer PA Evynnis japonica DI Lagodon rhomboides SP Stenotomus chrysops DI Archosargus probatocephalus BO Boops boops BO Sarpa salpa BO Spondyliosoma cantharus Spicara maena BO Crenidens crenidens PE Lithognathus mormyrus PE Pagellus bogaraveo SP Acanthopagrus berda DE Sparidentex hasta SP Sparus auratus SP Rhabdosargus thorpei SP Sparadon durbanensis BO Gymnocrotaphus curvidens PE Boopsoidea inornata BO Pachymetopon aeneum BO Polyamblyodon germanum BO Oblada melanura DI Diplodus cervinus DI Diplodus bermudensis DI Diplodus holbrooki 226 Figure 38. Combined analysis: Total - A heuristic search of all unweighted sequences resulted in 11 equally parsimonious trees. A strict consensus is shown (tree length = 8066; CI = 0.2659; RI = 0.4375). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae, PA=Pagrinae, PE=Pagellinae, and SP=Sparinae). Figure key is as follows: “N” = Node D = Total Decay Value at “N” A = Decay Value From 16S Partition B = Decay Value From Cyt b Amino Acid Partition C = Decay Value From Cyt b Nucleotide Partition Group II Group I Cyprinus carpio Centropomis undecimalis Scolopsis ciliatus (35.7, 0.1, 13.2) 49 Nemipterus marginatus Lateolabrax japonicus (6.7, 3.9, 24.4) 35 Lateolabrax latus 2 Dicentrarchus punctatus (2.5, -1.9, 1.4) 17 36 (6.7, 0.9, 9.4) Morone americanus (16.7, -2.1, 21.4) 14 Morone chrysops (7.3, -0.4, 7.1) 3 Morone saxatilis (0.0, -3.9, 6.9) Lethrinus ornatus 45 1 (20.7, 1.4, 22.9) Lethrinus rubrioperculatus (5.7, -0.6, -4.1) Haemulon sciurus 22 (3.7, 0.4, 17.8) Pomadasys maculatus 3 (-0.0, -2.6, 5.6) Caesio cuning 30 Lutjanus decussatus (6.7, -0.6, 23.9) DE Dentex tumifrons (0.7, -3.2, 5.5) 3 3 (2.7, -1.1, 1.4) Spicara alta DE Argyrozona argyrozona SP Chrysoblephus cristiceps SP Cymatoceps nasutus 11 8 (0.1, 1.3, 9.6) 3 SP Porcostoma dentata (-3.3, 2.4, 5.9) (0,0, -3.9, 6.9) SP Pterogymnus laniarius Petrus rupestris 10 DE (-4.3, 5.4, 8.9) DE Polysteganus praeorbitalis 1 (2.3, -0.6, -0.7) PA Argyrops spinifer (-3.3, -0.6, 13.9) 10 PA Evynnis japonica 10 PA Pagrus auratus (3.9, -1.0, 7.1) (-1.3, -0.6, 8.9) 7 DE Cheimerius nufar 39 (-0.9, 4.0, 8.0) 11 (10.7, 4.4, 23.9) PA Pagrus auriga (3.2, -0.7, 4.5) 7 PE Pagellus bellottii 11 PA Pagrus pagrus (2.4, 0.4, 8.2) BO Boops boops 14 (8.9, 2.4, 2.6) BO Sarpa salpa BO Spondyliosoma cantharus 33 (8.7, 1.9, 22.5) Spicara maena BO Gymnocrotaphus curvidens 9 PE Boopsoidea inornata (-2.3, -1.1, 12.4) (-4.4, 1.3, 10.1) 7 Pachymetopon aeneum 46 BO (17.1, 2.7, 26.2) BO Polyamblyodon germanum DI Archosargus probatocephalus (-2.2, 0.5, 4.7) 3 DI Lagodon rhomboides 1 (0.7, -0.5, 0.7) (-0.8, -3.1, 8.9) 5 SP Calamus nodosus 11 (1.2, -0.7, 10.4) SP Stenotomus chrysops Acanthopagrus berda 26 SP (12.0, 2.8, 11.2) DE Sparidentex hasta BO Crenidens crenidens 1 SP Sparus auratus (-1.1, 0.2, 1.9) 10 SP Rhabdosargus thorpei (4.2, 1.4, 4.4) 16 (0.7, -0.3, 0.6) 1 (-1.3, 2.9, 14.4) SP Sparadon durbanensis PE Lithognathus mormyrus 1 (-1.1, -0.1, 2.2) PE Pagellus bogaraveo 1 (-1.2, 0.2, 2.0) BO Oblada melanura 9 DI Diplodus cervinus (1.1, 0.6, 7.2) 11 (3.0, -1.0, 9.0) bermudensis 26 DI Diplodus (0.5, 2.9, 22.6) DI Diplodus holbrooki 228 Figure 39. Vicariance biogeographic analysis of the combined cyt b and 16S dependent data matrices yielded a single most parsimonious tree (tree length = 189, CI = 0.7407, RI = 0.8275). (7,4) (-2, 3) (1,1) (3.5, 2.5) (0,7) (10.6, 20.4) (5,6) (7.1, 8.9) root Mediterranean and Black Sea Pacific Southwest Pacific Northwest Pacific Western Central Indian Ocean Eastern Indian Ocean Western Atlantic Southeast Atlantic Eastern Central Atlantic Northeast Atlantic Southwest Atlantic Western Central Atlantic Northwest CHAPTER FOUR. RECONSTRUCTING SPARID RELATIONSHIPS WITH A SINGLE-COPY NUCLEAR DNA 231 INTRODUCTION In this chapter I present results from an attempt to estimate sparid evolution based on a single-copy nuclear locus. The gene selected was problematic and the results were inadequate to resolve sparid relationships. Possible reasons for the inability of this locus to estimate sparid evolution are given in the discussion Nuclear DNA provides an alternative to mitochondrial DNA as source for genes from which to infer independent phylogenies. Although there are many nuclear genes available for phylogenetic analyses, their use can be challenging. Nuclear genes often exist as multiple copies and distinguishing between orthologous genes (homologous gene sequences from a speciation event ) from paralogous genes (homologous gene sequences from a duplication event) can be difficult. Additionally, concerted evolution of gene copies increases the complexity of identifying orthologous genes. Furthermore, many nuclear genes have been affected by recombination and insertion/deletion events (indels) and introns. Inserted DNA often complicates the recovery of the entire gene during PCR amplification. Inserted DNA and introns can interrupt the coding region of the gene and often inserted DNA or introns can greatly increase the size of the amplified product. Indels can also inhibit the amplification of gene if they interrupt primer binding sites. Low copy number of nuclear coding genes (compared to the high copy number of genes in mitochondrial DNA or chloroplast DNA) also contributes to reduced PCR product (Hillis, Moritz and Mable, 1996). There are nuclear genes available for DNA phylogenetic analyses, but few have been found to be informative for teleost relationships. Many coding genes are strongly conserved and are only appropriate for distantly related teleost taxa (growth hormone, 232 actin, 5S, 18S, 28S, creatine kinase) and of these genes several have multiple gene copies. Few nuclear genes have been found to evolve very quickly in fishes. The recombination activating genes (RAG1, RAG2) have been found potentially useful for relationships in mormyrid fishes (John Sullivan, pers. com.) and in beloniforms (Nathan Lovejoy, unpublished dissertation 1999). Ideally, a coding gene is preferred over a rRNA for molecular phylogenies because the translated reading frame facilitates determination of gene orthology. Also, a single copy of a gene would simplify amplification and analysis because no determination of paralogy is necessary. Therefore, of all nuclear genes, a single-copy, coding gene with sufficient variation between taxa would be ideal for estimating phylogenetic relationships. Streelman and Karl (1997) successfully amplified a locus-specific primer pair (Tmo-4C4) in 17 labroid fishes. This locus is an open-reading frame and extended to 511 nucleotides in all fishes sampled. Only a single copy of the locus was amplified in the study. A BLAST ( Altschul et al. 1990) search of GenBank databases determined that no sequence matched the locus. Although, low probability matches were made to muscle specific proteins titin and connectin (Streelman and Karl, 1997). In this chapter I present the results from an analysis of the Tmo-4c4 single copy nuclear locus to infer relationships of the Sparidae. This locus was problematic for these fishes, and the phylogenetic relationships presented are valid only for determining the usefulness of the gene. For this reason the results and discussion are brief. 233 MATERIAL AND METHODS Collection Data - Collection data and voucher catalog numbers are shown in Table 21. Representatives of all six sparid subfamilies but only 15 members of the 33 sparid genera were sequenced Primers - The primer sequences used for PCR amplification in this study were the Tmo4c4 locus specific primers of Streelman and Karl (1997). To direct sequence the Tmo4c4 locus, an additional primer set was developed that added a M13 primer site to the 5' end of the Streelman and Karl primers. Primer sequences are listed in Table 22 and were ordered from Genosys (Genosys Biotechnologies, Inc. The Woodlands, TX). Amplification - A 50 µl PCR amplification of the Tmo-4c4 locus was prepared with 5-10 ng of each template DNA. The following reagents were used in each reaction: 5 µl 10X PCR Buffer (Invitrogen Corporation) [100mM Tris-HCL (pH8.3), 500 mM KCL, 25 mM MgCl2, 0.01% gelatin]; 1µl 10mM dNTP Mix from the PCR Reagent System (GIBCO BRL) [10mM each dATP, dCTP, dGTP, dTTP]; 50 pmols each of primers, 0.50 µl Platinum Taq DNA polymerase (GIBCO BRL Life) [5U/µl] and 42.00µl diH2O. All amplifications were performed on a MJ Research PTC-200 thermocycler (Watertown. MA) with the following cycle parameters: initial denaturation [97EC for 3.0 min]; 34 cycles of [denaturation 95EC for 1.0 min, annealing 54-55.5EC (depending on sample) for 1.0 min; extension 72EC for 30 seconds]; final extension [72EC for 7 min]; icebox [4EC indefinitely]. 234 Cloning and Sequencing - Most samples were cloned and sequenced on a Li-Cor L4000 automated sequencer as outlined in the Materials and Methods section of Chapter One. Two samples (indicated in Table 23) were direct sequenced using M13-Tmo-4c4 primers with “tails” that corresponded to the M13 universal priming sites attached to the 5' end of the primer sequence. Once PCR reactions were run, inserts had both forward and reverse IRD800 flourescently labeled M13 primers sites and could be used directly in sequencing reactions. The PCR products were purified prior to sequencing by adding 4 ul 3M NaOaAC and precipitated with 2 volumes ethanol. Sequencing proceeded as in Chapter One. Sequence Alignment - Both light and heavy strand sequences were obtained for all taxa. Light strand sequences were inverted (reversed and complimented) with the heavy strand sequence. A consensus of both strands was used for this study. The resulting alignment introduced no gaps due to deletions or insertions and there were no inconsistent alignments between taxa. Sequence Divergence and Mutation Analysis - Mean uncorrected pairwise genetic distance (uncorrected “p” distance) was calculated using PAUP* between all taxa, between ingroup taxa and between outgroup taxa. Scatter plots of transitions and transversions as a function of mean sequence divergence were calculated for combined codon positions and between putative gene copies (paralogous genes). Phylogenetic Analysis - Parsimony analysis was performed using PAUP4.0b4a* (Swofford, 1998). The most parsimonious tree (MPT), or equally parsimonious trees (EPT) and strict consensus were obtained for each analysis. The number of constant characters, parsimony-uninformative and parsimony informative characters, tree length, 235 consistency index (CI) and the retention index (RI) were recorded for each analysis. A neighbor-joining tree was generated in PAUP to examine the genetic distance between putative gene copies. 236 RESULTS Sequencing resulted in 511 base pairs per sample. There were no indel events between taxa and no gaps were necessary to align sequences. In total, 42 clones were sequenced for 26 taxa. Blast searches of all 26 sequences against published GenBank sequences confirmed a highly probable match to only the Tmo-4c4 locus submissions of Streelman and Karl (1997). Sequencing resulted in two distinct groups of sequences, that represent putative copies of the gene. These two copies were identifiable by eye and verified during phylogenetic analysis (see Phylogenetic Analysis below for more detail). Table 24 presents the multiple alignments of all clones sequenced. Sample names prefixed by “2" were visually different from other clone sequences and are hereby considered putative copy 2 (copy 2). All other sequences are considered putative copy 1 (copy 1). Mean pairwise genetic distance for copy 1 sequences was 5.5 ± 3.3 % (range 0.2% to 12.5%) and for copy 2 sequences was 2.3 ± 1.5% (range 0.2 % to 6.2%). Problematic with copy 1 sequences were pairwise genetic distances of 0 between two different sets of clones. The sequence of clone Spondyliosoma cantharus C17-30-IV was identical to the sequence of clone Morone saxatilis C6-22-III and the sequence of clone Polysteganus praeorbitalis C10-22-IV was identical to the sequence of clone Lateolabrax japonicus C1-6-III. Plots of substitutions as a function of sequence divergence (Figure 40) revealed that transitions were more common than transversions for both putative gene copies, and that neither transitions or transversions were saturated in either putative gene copy. Phylogenetic Analyses 237 Parsimony analysis of all clone sequences and characters was conducted. All of the 511 total characters were unordered and of equal weight; 352 (69%) were constant, 62 (12%) were variable and parsimony uninformative and 97 (19%) were variable and parsimony informative. A heuristic search of 1000 random addition sequences resulted in 81 equally parsimonious trees (strict consensus Figure 41, tree length = 270, CI = 0.7185, RI = 0.9110). In the resulting tree, a node containing all copy 2 sequences was separate from all other sparid copy one sequences (Figure 2, heavy stroke-weight clade). Clones of three taxa were found in both copy 1 and copy 2 clades: Porcostoma dentata, Calamus nodosus, and Polysteganus praeorbitalis. The nemipterid sequences were basal to copy 2 sequences. There were only sparid sequences within the copy 2 node (including Spicara) and no outgroup species were found to have copy 2, although the nemipterids were sister to this group. The node containing all copy 1 sequences was split into two clades. One clade represented all Atlantic fishes, with the exception of the clone Spondyliosoma cantharus C17-30-IV, but this clone was problematic in that it was identical in sequence to the clone of Morone saxatilis C6-22-III. The other major clade within copy 1 taxa represented all other sequences. These taxa correspond to non-Atlantic species, with the exception of Diplodus bermudensis that was sister to the clone of Sarpa salpa. In both major clades of copy 1 species outgroup species were mixed with ingroup species. The sparids based on these sequences are not monophyletic. Problematic in the both copy 1 and copy 2 clades are that separate clones of the same taxa do not group together (for example, Oblada melanura C1-22-IV and C2-22-IV in copy 1 clade and Polysteganus praeorbitalis SA34-C9-22-III and SA34-C8-22-III in copy 2 clade). A distance based tree was produced to examine branch lengths between taxa. Neighborjoining analysis of these data produced a tree based on genetic distance (Figure 41). For copy 1 sequences, many of the terminal branches showed very little genetic distance 238 between species (for example Morone chrysops, Lagodon rhomboides and Calamus nodosus). The same trend was found in terminal nodes of copy 2 sequences, but a long internal branch separated copy 2 sequences from the nemipterids. Overall, most taxa were separated by short terminal nodes. 239 DISCUSSION It would appear that there are more than one copy of the Tmo-4c4 locus in sparids based on the analyses of sequences generated in this study. The sequences of the two putative copies could be distinguished by eye. For example, in the clone Calamus nodosus-C130-III the first three base pairs were ATT, but in the clone 2Calamus nodosus-C2-30-III the first three base pairs were ATA. These sequences are the same for all putative copy 1 and copy 2 genes, respectively. Similarly, copy 2 sequences share a string of five thymines from base 34 through 39. Blast analysis confirmed that copy 1 clones were extremely similar to GenBank sequences of the Tmo-4c4 locus (Streelman and Karl, 1997) and the copy 2 sequences were novel, but still very similar to GenBank Tmo-4c4 locus sequences (Steelman and Karl, 1998). Both parsimony analysis and neighborjoining analysis indicated that putative copy 1 and copy 2 sequences were different from each other. The unexpected result of two different sequence types might be the result of contamination. The Tmo-4c4 locus might have been sequenced from a containment rather than from the intended sample. Contamination of the original DNA or DNA preparations might cause an unwanted product (such as a fungus or bacteria) to be amplified during PCR. If this product were then cloned and sequenced, two different “copies” of DNA might appear, one copy representing sequences from fish, and the other from the contaminant. However, if this were the case, one would expect the contaminant sequences to be nearly identical. This was not the case. Divergences between copy 2 species ranged from range 0.2 % to 6.2%. No contaminant was amplified in negative PCR controls, and a numerous tests of PCR chemicals revealed no containment. 240 This is not to say that a contaminant was not present in all (or some) DNA tubes or subsequent isolations. Re-isolations of fresh DNA using different isolation chemicals from those samples where two copies existed still produced two putative copies. Plasmid contamination was also considered. If a plasmid of a particular sequence contaminates PCR or other steps, the contaminant plasmid is often preferentially amplified or cloned over the target of interest. However, I don’t think this was the case for two reasons. First, a plasmid contaminant would have very nearly identical sequences, so there would be very little genetic distance between taxa. This is clearly not the case for most clones in this study. (It might explain the similarity of Clone Spondyliosoma cantharus C17-30IV with Morone saxatilis C6- 22-III and clone Polysteganus praeorbitalis C10-22-IV with clone Lateolabrax japonicus C1-6-III). Second, I direct sequenced two samples (Pterogymnus laniarius and Cymatoceps nasutus) of the copy 2 sequence before the Tmo-4c4 locus was cloned. Therefore, it would be unlikely for Tmo-4c4 plasmid contamination to effect direct sequencing, because no plasmid in the lab corresponded to that locus. I think that it is likely that there are multiple copies of the Tmo-4c4 locus in the sparids. No second copy was found in any of the outgroup species. Because the sparids are very closely related, it is possible that the second copy represents a recent duplication event and there has been little time for mutation to effect the gene. The Tmo-4c4 locus did not have a useful substitution rate in the sparids to resolve relationships. There was very low sequence divergence between copy 1 gene sequences and even less between copy 2 gene sequences. The low sequence divergence in this gene might partially explain why outgroup species were included with ingroup species in the parsimony tree. Neither putative copy of the Tmo-4c4 gene was useful for resolving phylogenetic relationships due to low sequence divergence. In all trees the branch lengths of most 241 terminal nodes were very short. This was an indication that there was not enough genetic difference between taxa to construct an informative phylogenetic tree. If there are few substitutions between taxa, then not enough synapomorphies exist for phylogenetic resolution. This could cause closely related taxa to be split apart based on only a few substitutions. Consequently, only a couple of nucleotide substitutions might have been enough divergence to prevent different clones from the same sample from grouping together. In an uninformative tree, small differences due to sequencing error or to parental copy can cause tree structuring, but are phylogenetically misinformative because they do not reflect synapomorphies. Due to these problems, no further analyses of these data was warranted. 242 TABLE 21. COLLECTION DATA FOR SPECIMENS USED. MUSEUM COLLECTION NUMBERS, COLLECTION LOCALITY ARE GIVEN. MUSEUM ACRONYMS ARE FOLLOWING (LEVITON ET AL., 1985 AND 1988). All Museum Collection TAXA Outgroup Taxa Centropomidae Centropomus undecimalis Lutjanidae Lutjanus decussatus Moronidae + (Lateolabrax) Dicentrarchus punctatus Lateolabrax japonicus Morone americanus Morone chrysops Morone saxatilis Nemipteridae Nemipterus marginatus Scolopsis ciliatus Ingroup Taxa SPARIDAE Boopsinae Oblada melanura Pachymetopon aeneum Sarpa salpa Spondyliosoma cantharus Denticinae Cheimerius nufar Polysteganus praeorbitalis Polysteganus praeorbitalis Diplodinae Archosargus probatocephalus Diplodus bermudensis Lagodon rhomboides Pagellinae Pagellus bogaraveo Pagrinae Pagrus auratus Sparinae Calamus nodosus Cymatoceps nasutus Porcostoma dentata Pterogymnus laniarius Centracanthidae Spicara alta Catalog# Locality No Voucher Florida (Collected by J. Gelschlecter) USNM 346695 Philippines., Northern Negros, Fish Market No Voucher VIMS 10193 VIMS Uncat UT 85.91 VIMS Uncat fish market, Spain Picture Voucher, Japan Market Sample VIMS Trawl Survey Chesapeake Bay Cherokee Reservoir, Grainger Co. TN VIMS Trawl Survey Chesapeake Bay USNM 345202 USNM 346853 Philippines, Luzon, Manila, Fish Market Philippines, Guimaras Island, JTW 95-1 OM1 RUSI 49672 RUSI 49457 KENT 22 Spain, Azohia, Bay of Cartagena Kenton-on-Sea, South Africa Kenton-on-Sea, South Africa Fiumicino Fish Market, Italy RUSI 49443 RUSI 49686 RUSI 49688 Kenton-on-Sea, South Africa Kenton-on-Sea, South Africa Kenton-on-Sea, South Africa VIMS 010192 No Voucher VIMS Uncat Chesapeake Bay Bermuda (BBC) Florida Keys, Bahia Honda Ocean Side KENT 176 Fiumicino Fish Market, Italy KENT 46 New Zealand, Sydney Fish Market 05960006 RUSI 49445 KENT SA8 KENT SAPL1 Atlantic S.E. Charleston, SC Kenton-on-Sea, South Africa Durban, South Africa Plettenberg Bay, South Africa KENT 24BSA Carpenter, K.E. 243 Table 22. PRIMERS AND SEQUENCES USED FOR THE TMO-4C4 LOCUS. Tmo-4c4F CCTCCGGCCTTCCTAAAACCTCTC Tmo-4c4R CATCGTGCTCCTGGGTGACAAAGT M13+Tmo4c4F cacgacgttgtaaaacgacCCTCCGGCCTTCCTAAAACCTCTC M13+Tmo4c4R ggataacaatttcacacaggCATCGTGCTCCTGGGTGACAAAGT 244 TABLE 23. CLONE NUMBERS SEQUENCED FOR EACH TAXON ARE GIVEN. TWO SAMPLES INDICATED WERE DIRECT SEQUENCED. All TAXA Outgroup Taxa Centropomidae Centropomus undecimalis Lutjanidae Lutjanus decussatus Moronidae + (Lateolabrax) Dicentrarchus punctatus Lateolabrax japonicus Morone americanus Morone chrysops Morone saxatilis Nemipteridae Nemipterus marginatus Scolopsis ciliatus Ingroup Taxa SPARIDAE Boopsinae Oblada melanura Pachymetopon aeneum Sarpa salpa Spondyliosoma cantharus Denticinae Cheimerius nufar Polysteganus praeorbitalis Polysteganus praeorbitalis Diplodinae Archosargus probatocephalus Diplodus bermudensis Lagodon rhomboides Pagellinae Pagellus bogaraveo Pagrinae Pagrus auratus Sparinae Calamus nodosus Cymatoceps nasutus Porcostoma dentata Pterogymnus laniarius Centracanthidae Spicara alta Clone Numbers Direct Sequence Clone:C10A 29 IV No Clone: C15 22 III No Clone: C14 15 III Clone: C1 6 III Clone: C7 6 III Clone: C6 15 III Clone: C6 22 III No No No No No Clone C23 15 III Clone: C11 6 III No No Clones: C1 22 IV, C2 22 IV Clones: C15 30 IV, C13 30 IV Clones: C12 05 VI, C14 05 V Clones: C18 30 IV, C17 30 IV No No No No Clone: C8 5 VI Clones: C9 22 III, C8 22 III Clone: C10 22 IV No No No Clones: C2 05 VI, C1 05 VI Clones: C9 30 III, C10 30 III Clones: C8 30 III , C7 30 III No No No Clones: C22 30 IV, C21 30 IV No Clones: C19 30 III, C20 30 III No Clones: C1 30 III, C2 30 III, C3 30 III Clones: C10 15 III, C9 15 III Clones: C12 30 III, C11 30 III Clone: C2 15 III No Yes No Yes Clone: C13 29 IV No 245 Table 24. MULTIPLE ALIGNMENTS OF NUCLEOTIDE SEQUENCES OF THE NUCLEAR LOCUS Tmo-4c4. THOSE TAXA WITH A PREFIX OF “2" ARE CONSIDERED PUTATIVE COPY 2 246 Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus lanarius-direct 2Pterogymnus lanarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV ATTAAGAAAAGGGTGTTTGAAAATGACTCGCTGACATTTTGCGCCGAAGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCCTAACATTTTATGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCTCTAACATTTTACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAWAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGAGGT ATTAAGATAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGAGGT ATTAAGAAAAGAGTGTTTGARAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAATGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGTGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGTGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCTTTATCATTTTATGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGAGGT ATTAAGAAAAGAGTGTTTGATAATGACTCCTTATCATTTTATGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAAGATGTTTGAAAATGACTTGCTAATGTTTAACGCTGAGGT ATTAAGAAAAGAGTGTTTGAAAATGACTCCTTATCATTTTATGCTGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTCACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTCACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGGGAAGAGTGTTCGAAGATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT ATAAAGAAAAGAGTGTTCGAAAATGACTCTCTAACATTTTTTGCCGAGGT [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] 50] Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus lanarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV GTTTGGCCTACCTTCACCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCCTCCCCTGAAGTAAAGTGGTTCTGCAACAAATCCCAAC GTTTGGCCTGCCTTCCCCCGAAGTAAAGTGGTTCTGCAACAAATCCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCTACATAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCGAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCGAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCGAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGACGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCGAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCGAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGACGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCGAC GTTTGGCCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCGAC GTTTGGCCTACCGTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC ATTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC ATTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGGCTGCCTTCACCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCARC GTTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGGCTACCTTCCCCTGCGGTGAAGTGGTTCTGCGACAAATCCCAAC GTTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGGCTACCTTCTCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC GTTTGGGCTACCTTCCCCTGAGGTGAAGTGGTTCTGCAACAAAACCCAAC [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 100] 247 Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV TGGTGGCAGACAACAGAGTTAAAATGGGGAGAGATGGTGATACTATCTCA TGGAAGAGGATGACAGAATTAAAATGGAAAGAGATGGTGATAGCATCTCA TGGAAGCAGACGACAGAATTAAAATGGAGAGAGACGGTGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATA?CATCTCA TGGTTGCAGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATTTCG TGGTGGCAGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCAGATGACAGATTTATTATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCAGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCCCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGACGACAGACTTAAAATGGAGAGAGATGGCGATAGCATCCCA TGGTGGCAGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGACGACAGACTTAAAATGGAGASACATCGCGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCGGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCGGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCAGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCAGATGATAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TGGTGGCAGACGACAGAGTTAAAATGGAGAGACATGGCGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGACGACAGAGTTAAAATGGAGAGAGATGGCGATAGCATCTCA TGGTGGCAGATGACAGAATTAAAATGGAGAGAGATGGGGATAGCATCTCG TAGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTGATAGCATTTCA TAGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTGATAGCATTTCA TAGTGGCAGATGACAGAGTGAGAATGGAGAGAGATGGTGATAGCATCTCA TCGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTGATAGCATCTCA TCGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTGATAGCATCTCA TCGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTGATAGCATCTCA TAGTGGCAGATGACAGAGTTAAAATGGAAAGAGATGGTGATAGCATCTCA TCGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTGATAGCCTCTCA TAGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTRATAGCATCTCA TAGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTGATAGCATCTCA TAGTGGCAGATGACAGAGTTAAAATGGAGAGAGATGGTGATAGCATCTCA TAGTGGCAGATGACAGAGTTAAAATGGAGAGAGACGGTGATAGCATCTCA [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] 150] Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV CTAACAGTTCACAATGTCACTAAAGCAGATCAGGGAGAGTATATCTGCGA CTGACAATTCACAATGTTACTAAAGCCGATCAGGGAGAATATATCTGCGA CTGACAATTCACAACGTCACTAAAGCCGACCAGGGAGAGTATATCTGCGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCCGACCAAGGCGAGTATATCTGTGA CTAACAATTCACAATGTCACTAAAGCCGACCAGGGCGAGTATATCTGTGA CTAACMATTCACAATGTCACTAAAGCCGACCAGGGCGAGTATATCTGTGA CTAACAATTCACAATGTCACTAAAGCCGACCAGGGCGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTCACTAAAGCCGACCAGGGCGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTCACTAAAGCCGACCAGGGCGAGTATATCTGTGA CTAACAATTCACAATGTCACTAAAGCCGACCAGGGCGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTCACTAAAGCCGGCCAGGGCGAGTATATCTGTGA CTAACAATTCACAATGTCACTAAAGCCGACCAGGGCGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCSGACCAGGGCGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTTACTAAAGCTGACCAGGGAGAGTATATCTGTGA CTAACAATTCACAATGTCACTAAAGCCGACCAGGGCGAGTATATCTGTGA CTGACAATTCACAATGTCACTAAAGCTGATCAGGGAGAATATATCTGCGA CTGACAATTCACAATGTCACTAAAGCTGATCAGGGAGAATATATCTGCGA CTAACAATTCACAATGTCACTAAAGCCGATCAGGGAGAGTATATCTGCGA CTAACAATTCACAATGTCACTAAAGCTGATCAGGGAGAGTATATCTGCGA CTAACAATTCACAATGTCACTAAAGCTGATCAGGGAGAGTATATCTGCGA CTAACAATTCACAATGTCACTAAAGCTGATCAGGGAGAGTATATCTGCGA CTAACAATTCACAATATCACTAAAGCCGATCAGGGAGAGTATATCTGCGA CTAACAATTCACAATGTCACTAAAGCTGATCCGGGAGAGTCTATCTGCGA CTAACAATTCACAATGTCACTAAAGCCGATCAGGGAGAGTATATCTGCGA CTAACAATTCACAATGTCACTAAAGCCGATCAGGGAGAGTATATCTGCGA CTAACAATTCACAATGTCACTAAAGCCGATCAGGGAGAGTATATCTGCGA CTAACAATTCACAATGTCACTAAAGCCGATCAGGGAGAGTATATCTGTGA [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 200] 248 Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV GGCTGTGAACTATGTCGGGGAAGCCAGAAGTGTTGCTCTGGTGGTAGTTG GGCTATGAATTATGTCGGGGAAGCCAGAAGTGTTGCTTCAGTGGTAGTTG GGCTATGAATTATGTTGGGGAAGCAAGGAGTGTTGCTTTAGTGGTTGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGCTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGATGTGTTGCTTTAGCGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTCG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTAAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTGAACTATGTTGGGGAAGCCAGAAGTGTTGCTTTAGTGGTAGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG AGCTGTCAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGCGTTGCTTTAGTTGTTGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG GGCTGTCAATTATGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGCGTTGCTTTAGTTGTTGTTG GGCTGTMAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG GGCTGTCAATTACGTCGGGGAAGCCAGAAGTGTTGCTTTAGTTGTTGTTG [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] 250] Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV TATCACAGGAAGTAAGGTTCATGCCTGCCCCACCTGCTGTCACTCATCAA TATCACAGGAAGTGAGGTTCTTGCCTGCTCCACCTGCTGTCACCCATCAG TGTCACAGGAAGTGAGGTTCTTGCCTGCCCCGCCTGCTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAGGAAGTGAGGTTCATGCCTGCCCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCACCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAAGATGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCTCCGG TATCGCAGGAAGTGAGGTTCATGCCTGCACCACCTACTGTCACCCATCAG TATCGCAAGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAGGAAGTGAGGTTCATGCCTGCACCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAAGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAAGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCACCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTCACCCACCAC TATC?CAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TATCGCAAGAAGTGAGGTTCATGCCTGCTCCACCTGCTGTAACCCACCAA TATCGCAGGAAGTGAGGTTCATGCCTGCTCCACCTACTGTCACCCATCAG TGTCACAGGAAGTTAGGTTCTTGCCTGCCCCACCTGCTGTCACCTGTCAG TGTCACAGGAAGTTAGGTTCTTGCCTGCCCCACCTGCTGTCACCTGTCAG TGTCACAAGAAGTGAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTGAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTGAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTGAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTAAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTGAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTGAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTGAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTGAGGTTCATGCCTGCCCCACCTGCTGTCACCCATCAG TGTCACAAGAAGTGAGGTTCCTGCCTGCCCCACCTGCTGTCACCCATCAG [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 300] 249 Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV CATGTGATGGAGTTTGATGTGGAGGAAGACGACTCCTCTCGTTCTCCATC CATGTCATGGAGTTTGATGTTGAGGAGGATGACTCGTCTCGCTCTCCTTC CATGTCATGGAGTTTGATGTTGAGGAGGACGACTCATCACGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCCTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCTTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCCTC CATGTGATGGAGTTTGGTGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CACGTGATGGAGTTTGATGTGGAGGAAGATGACTCCCCTCGTTCTCCATC CTTGTGATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCCTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCCTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CACGTGATGGAGTTTGATGTGGAGGAAGATGACTCCCCTCGTTCTCCATC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCCTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCCTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCCTCTCGTTCTCCATC CATGTAATGGAGTTTGATGTGGAGGAAGATGACTCATCTCGTTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAGGATGATTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGATTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGATTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGATTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGATTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGATTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATRACTCKTCTCGMTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGATGACTCGTCTCGCTCTCCTTC CATGTGATGGAGTTTGATGTGGAGGAAGACGACTCGTCTCGCTCTCCTTC [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] 350] Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV CCCTCAGGAGATTCTGCTTGAAGTAGAGTTGGATGAAAATGAGGTGAAAG TCCTCAGGAGATTCTGCTTGAAGTCGAACTGGATGAAAACGAAGAGAAAG CCCTCAGGAGATCCTGCTTGAAGTAGAACTAGATGAAAACGAGGTGAAAG CCCTCTAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAATG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAACGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAATG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAATG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAATG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAAAG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG CCCTCAAGAGATTCTGCTCGAAGTTGAATTAGATGAAAACGAGGTGAATG CCCTCAGGAGATTCTGCTTGAAGTAGAATTGGATGAAAATGAGGTGAAAG ACCTCAGGAGATTCTGCTCGAAGTCGAATTGGATGAAAATGAGGTGAAAG ACCTCAGGAGATTCTGCTCGAAGTCGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG CCCTCAGGAGATTCTGCTCGAAGTGGAATTGGATGAAAATGAGGTGAAAG [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 400] 250 Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV AATTTGAGAAACAGGTTAAGATCATCACCATTCCCGAGTACACGGCTGAC AATTTGAGAAACAGGTTAAGATTATCACCATCCCTGAGTACACTGCTGAC AATTTGAGAAACAGGTTAAGATTATCACCATTCCCGAGTACACTGCTGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAAGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCT-AGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTAMCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACTATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATTACCATTCCTGAGTACACAGCCGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCAGAGTACACAGCAGAC AGTTTGAGAAACAGGTTAAGATCATCACGATTCCAGAGTACACAGCAGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCCGAGTACACAGCGGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCCGAGTACACAGCAGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCCGAGTACACAGCAGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCCGAGTACACAGCAGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCCGAGTACACAGCGGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCCGAGTACACAGCAGAC AATTTGAGAAACAGGTTAAGATCATCACAATTCCCGAGTACACAGCGGAC AATTTGAGAAACAGGTTAAGATCATCACAATTCCCGAGTACACAGCGGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCCGAGTACACAGCGGAC AATTTGAGAAACAGGTTAAGATCATCACGATTCCCGAGTACACAGCAGAC [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 450] 450] 450] 450] 450] 450] 450] 449] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] 450] Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV AACAAGAGCATGATCATATCTTTGGATGTGTTACCAAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTGCCAAGTATCTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTGCCAAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATTTCTTTGGATGTGTTACCAAGTATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTATTACCGAGTATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTGCCAAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATGTTTGGATGTGTTACCGAGTATTTATGAGGA AACAACAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGTGGA AACAAGAGCATGATCATATCTTTGGATGTGTTGCCAAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTGCCAAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTGCCAAGTATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTGTTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATATGTTACCGAG?ATTTATGAGGA AACAAGAGCATGATAATTTCTTTGGATGTGTTACCGAGTATTTATGAGGG AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTGTTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTGTTTATGAGGT AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTATTACCAAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTATTTATGAGGA AACAAGA?CATGATCATATCTTTGGATGTATTACCGA?TATTTATGA?GA AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTATTTATGAGGA AACAAGAGCATGATCATATCTTTGGATGTATTACCGAGTATTTATGAGGA [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 500] 500] 500] 500] 500] 500] 500] 499] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 500] 251 Centropomus undecimalis-C10A-29-IV Nemipterus marginatus Scolopsis ciliatus Lutjanus decussatus Lateolabrax japonicus Dicentrarchus punctatus Morone americanus Morone chrysops Morone saxatilis Oblada melanura-C1-22-IV Oblada melanura-C2-22-IV Pachymetopon aeneum-C13-30-IV Pachymetopon aeneum-C15-30-IV Sarpa salpa-C14-05-VI Sarpa salpa-C12-05-VI Spondyliosoma cantharus-C18-30-IV Spondyliosoma cantharus-C17-30-IV Polysteganus praeorbitalis-SA36-C10-22-IV Pagellus bogaraveo-C21-30-IV Pagellus bogaraveo-C22-30-IV Archosargus probatocephalus-C1-05-VI Archosargus probatocephalus-C2-05-VI Diplodus bermudensis-C9-30-III Diplodus bermudensis-C10-30-III Lagodon rhomboides-C8-30-III Lagodon rhomboides-C7-30-III Pagrus auratus-C19-30-III Pagrus auratus-C20-30-III Porcostoma dentata-C11-30-III Calamus nodosus-C1-30-III 2Calamus nodosus-C2-30-III 2Calamus nodosus-C3-30-III 2Porcostoma dentata-C12-30-III 2Cymatoceps nasutus-C9-15-III 2Cymatoceps nasutus-C10-15-III 2Cymatoceps nasutus-direct 2Polysteganus praeorbitalis-SA34-C8-22-III 2Polysteganus praeorbitalis-SA34-C9-22-III 2Pterogymnus laniarius-direct 2Pterogymnus laniarius-C2-15-III 2Cheimerius nufar-C8-5-VI 2Spicara alta-C13-29-IV GGGTGCTGTGG GGGAACTGTGG GGGCACTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGCACTGTGG GGGCACTGTGG GGGCACTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCAGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG GGGTGCTGTGG AGGCACTGTGG AGGCACTCTGG AGGCACTGTGG AGGCACTGTGG AGGCACTGTGG AGGCACTGTGG AGGCACTGTGG GGGTGCTGTGG A?GCACTGTGG AGGCACTGTGG AGGCACTGTGG AGGCACTGTGG [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 511] 511] 511] 511] 511] 511] 511] 510] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 511] 252 Figure 40. Total substitutions plotted as a function of sequence divergence for putative copy 1 (top) and copy 2 (bottom) of the Tmo-4c4 locus. C1=copy 1, C2=copy 2, Ts=Transition, Tv=Transversion. 60 50 Total Substitutions 40 30 20 10 0 0 0.05 0.1 0.15 0.2 Uncorrected Sequence Divergence C1 Ts C2 Tv 20 Total Substitutions 15 10 5 0 0 0.01 0.02 0.03 0.04 Uncorrected Sequence Divergence C2 Ts C2 Tv 0.05 0.06 0.07 254 Figure 41. Parsimony analysis of all clone sequences and characters resulted in 81 equally parsimonious trees (strict consensus, tree length = 270, CI = 0.7185, RI = 0.9110). Clone number follows taxon name. Putative copy 2 sequence clade has heavystroke weight lines. Centropomus undecimalis (C10A 29 IV) Nemipterus marginatus Scolopsis ciliatus Polysteganus praeorbitalis (SA34 C8 22 III) Porcostoma dentata (C12 30 III) Cheimerius nufar (C8 5 VI) Pterogymnus laniarius direct Pterogymnus laniarius (C2 15 III) Spicara alta (C13 29 IV) Calamus nodosus (C2 30 III) Calamus nodosus (C3 30 III) Cymatoceps nasutus (C9 15 III) Cymatoceps nasutus (direct) Cymatoceps nasutus (C10 15 III) Polysteganus praeorbitalis (SA34 C9 22 III) Archosargus probatocephalus (C1 05 VI) Archosargus probatocephalus (C2 05 VI) Dicentrarchus punctatus Morone americanus Calamus nodosus (C1 30 III) Lagodon rhomboides (C7 30 III) Lagodon rhomboides (C8 30 III) Morone chrysops Morone saxatilis Diplodus bermudensis (C10 30 III) Spondyliosoma cantharus (C17 30 IV) Sarpa salpa (C12 05 VI) Diplodus bermudensis (C9 30 III) Pagrus auratus (C20 30 III) Pachymetopon aeneum (C15 30 IV) Pachymetopon aeneum (C13 30 IV) Pagellus bogaraveo (C21 30 IV) Sarpa salpa (C14 05 VI) Pagellus bogaraveo (C22 30 IV) Porcostoma dentata (C11 30 III) Lutjanus decussatus Pagrus auratus (C19 30 III) Polysteganus praeorbitalis (SA36 C10 22 IV) Oblada melanura (C1 22 IV) Lateolabrax japonicus Oblada melanura (C2 22 IV) Spondyliosoma cantharus (C18 30 IV) 256 Figure 42. Neighbor-joining tree of all clone sequences and characters. Clone number follows taxon name. Putative copy 2 sequence clade has heavy-stroke weight lines. Lutjanus decussatus Oblada melanura (C1 22 IV) Lateolabrax japonicus Polysteganus praeorbitalis (SA36 C10 22 IV) Pagrus auratus (C19 30 III) Oblada melanura (C2 22 IV) Spondyliosoma cantharus (C18 30 IV) Pagellus bogaraveo (C21 30 IV) Pachymetopon aeneum (C13 30 IV) Sarpa salpa (C14 05 VI) Pagellus bogaraveo (C22 30 IV) Porcostoma dentata (C11 30 III) Pachymetopon aeneum (C15 30 IV) Pagrus auratus (C20 30 III) Sarpa salpa (C12 05 VI) Diplodus bermudensis (C9 30 III) Archosargus probatocephalus (C1 05 VI) Archosargus probatocephalus (C2 05 VI) Dicentrarchus punctatus Lagodon rhomboides (C7 30 III) Morone saxatilis Spondyliosoma cantharus (C17 30 IV) Diplodus bermudensis (C10 30 III) Morone chrysops Morone americanus Lagodon rhomboides (C8 30 III) Calamus nodosus (C1 30 III) Nemipterus marginatus Scolopsis ciliatus Cymatoceps nasutus (C10 15 III) Cymatoceps nasutus (direct) Cymatoceps nasutus (C9 15 III) Polysteganus praeorbitalis (SA34 C9 22 III) Calamus nodosus (C2 30 III) Calamus nodosus (C3 30 III) Spicara alta (C13 29 IV) Polysteganus praeorbitalis (SA34 C8 22 III) Porcostoma dentata (C12 30 III) Cheimerius nufar (C8 5 VI) Pterogymnus laniarius direct Pterogymnus laniarius (C2 15 III) Centropomus undecimalis (C10A 29 IV) 0.01 258 CONCLUSIONS To summarize the results of phylogenetic hypotheses tested in this dissertation: 1. The Sparidae were monophyletic in all analyses, and were inclusive of the centracanthid Spicara. 2. There were two distinct groups of sparids in all analyses. 3. There was no support from any of these analyses for the monophyly of any of the six recognized subfamilies of sparids (Boopsinae, Dentecinae, Diplodinae, Pagellinae, Pagrinae or Sparinae). 4. The Sparoidea were monophyletic in the weighted cytochrome b nucleotide analysis, but there was no support for a monophyletic Sparoidea from the 16S or combined data. The Lethrinidae were sister to the Sparidae in all cytochrome b analyses. Monophyly of the Sparidae The monophyly of the Sparidae was well supported in all analyses from all datasets. The centracanthid Spicara was found within the sparid clade in all phylogenies derived and the centracanthids were considered members of the Sparidae. The overall placement of the centracanthids could not be verified, because this study included members of Spicara but did not include Centracanthus. The molecular evidence support the provisional insertion of Spicara within the sparids, but these same data question the monophyly of the Centracanthidae because 259 there was no support for a monophyletic Spicara; it was polyphyletic in the unweighted and weighted nucleotide analyses. Generic Relationships within the Sparidae In all phylogenies, there was strong support for Acanthopagrus berda sister to Sparidentex hast and there was robust support in all analyses for a sister relationship between Pachymetopon aeneum and Polyamblyodon germanum. There was strong support from the 16S data to unite Boops boops and Sarpa salpa, but less support from the cyt b data as only the weighted and amino acid trees support the clade. In all analyses, the western Atlantic Diplodus holbrooki was sister to the Bermuda endemic Diplodus bermudensis and there was support from cyt b for Diplodus argenteus sister to D. holbrooki and D. bermudensis (D. argenteus was not sequenced for the 16S gene). Based on all analyses, Pagrus, Pagellus, Dentex, and the centracanthid Spicara are not monophyletic and that a revision of these genera is in order. Subfamilies of the Sparidae There was no support in any of the analyses from independent or combined datasets for the monophyly of any of the subfamilies attributed to the Sparidae. Two mitochondrial lineages were consistently reconstructed in all analyses. These lineages were not structured on trophic type, as each lineage has multiple trophic types and neither of the lineages was structured solely on geographic range as similar geographic range was repeated within both lineages. It is evident from these data that the current subfamilies are artificial and are not valid. Different trophic types have evolved more than once in the Sparidae and a classification based on dentition and feeding types does not reflect the evolutionary relationships of these species. Subfamily designations might be reconsidered to reflect the two lineages found in this study. The Sparoidea 260 The superfamily Sparoidea was supported from the weighted cyt b data, but not from the unweighted analyses. The Sparoidea were not monophyletic in the cyt b amino acid residue analysis because Centropomus undecimalis grouped with the Nemipteridae, although the Lethrinidae fell intermediate to the Sparidae and Nemipteridae as in the weighted cytochrome b analysis. There was no support from 16S nucleotides or from combined analyses for a monophyletic Sparoidea. The evidence for Sparoidea from the cytochrome b unweighted analysis supports an hypothesis alternative to those of Akazaki (1962) and Johnson (1980). The molecular data support the Lethrinidae intermediate to a basal Nemipteridae and a derived Sparidae + Spicara. Biogeographic Relationships Biogeographic analysis of sparid evolution revealed that there were two areas of sparid evolution: the eastern Indian Ocean - western Pacific and the western Indian Ocean Mediterranean/Atlantic. These two areas probably derived from a common Tethyan Sea ancestor. Little more can be drawn from this analysis, because all vicariance biogeography clades were based on a single tree example and this is considered equivocal to a single transformation series explaining a clade (Wiley et al., 1991). Other Relationships The Moronidae were sister to Lateolabrax in the weighted cyt b analysis, all16S analyses and all combined analyses with the exception of the analysis of cyt b amino acids combined with16S nucleotides. The sister relationship between the moronids and Lateolabrax was hypothesized by McCully (1962) and Waldman (1986). The overall support for the nodes was not strong in individual analyses, but there was robust support in the combined analyses. The Sparidae have been classically associated with the haemulids and lutjanids/caesionids, although there is no evidence that unite them. These groups were sister to the Sparidae in the combined 261 analyses although the relationships are not robust. In all analyses, except from the cyt b amino acid residues, Centropomus undecimalis was basal to other percoids. Future Research The phylogenetic hypotheses presented in this dissertation are based on mitochondrial DNA only. Although a nuclear locus was sequenced to reconstruct sparid relationships, no useable phylogenetic conclusions could be drawn from the data. The relationships presented in this dissertation should be tested by an independent nuclear locus or multiple nuclear loci. To date there are few nuclear loci available that are phylogenetically informative for generic level relationships of perciform fishes. Future research should involve surveying as many loci as possible to test these relationships and to include as much data as possible in an character congruence analysis. These data support a monophyletic Sparidae, but there are questions as to the monophyly of Pagrus, Pagellus, Dentex and the centracanthid Spicara. Complete revision of these genera are needed as well as an in depth analyses of the interrelationships of sparid genera based on morphological analysis. The current subfamilies, as defined, are inadequate to explain the phylogenetic relationships of the genera and should not be considered valid. A total evidence approach to sparid relationships that includes as many independent data sources as possible is needed to help define relationships. 262 LITERATURE CITED Akazaki, M. 1962. Studies on the perciform fishes - anatomy, phylogeny, ecology, and taxonomy. Osaka Japan, 8 Kosugi Co. Ltd., 368 pp. Agosti, D., D. Jacobs, and R. DeSalle. 1996. On combining protein sequences and nucleic acid sequences in phylogenetic analysis: the homeobox protein case. Cladistics. 12:65-82. Altschul, S.F., W, Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology. 215:403-410. Avise, J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall, Inc. New York, New York. 511 pp. Baker, R.H., and R. DeSalle. 1997. Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology. 46:654-673. Baker, R. H., X.B. Yu, and R. DeSalle. 1998. Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees. Molecular Phylogenetics and Evolution. 9:427-436. Barret, M., M.J. Donoghue, and E. Sober. 1991. Against consensus. Systematic Zoology. 40(40):486-493. Basaglia, F. 1991. Interspecific gene differences and phylogeny of the Sparidae family (Perciformes, Teleostei), estimated from electrophoretic data on enzymatic tissue. Comparative Biochemistry and Physiology. 99B(3):495-508. 263 Basaglia, F. and M.G. Marchetti. 1991. Study of the soluble white muscle tissue proteins from fifteen Sparidae species. Journal of Fish Biology. 38:763-772. Bauchot, M.L. and P.H. Skelton. 1986. Sparidae. pp. 331-332. In: J. Daget, J.-P. Gosse and D.F.E. Thys van den Audenaerde (eds.) Check-list of the freshwater fishes of Africa (CLOFFA). ORSTOM, Paris. Vol. 2. Bernardi,G. and G. Bucciarelli. 1999. Molecular phylogeny and speciation of the surfperches (Embiotocidae, Perciformes). Molecular Phylogenetics Evolution.13(1):77-81. Birstein, V., R. DeSalle. 1998. Molecular phylogeny of Acipenserinae. Molecular Phylogenetics and Evolution. 9(1):141-155. Bleeker, P. 1876. Systema Percarum revisum. Pars Ia. Percae. Archives Neerlandaises des Sciences Naturelles, Haarlem. 11: 247-288. Bonaparte, C.L. 1831. Saggio di una distribuzione metodica degli animali vertebrati, (1831) 78 pp. Saggio d'una distribuzione.. vertebrati a sangue freddo, (1832) 86 pp. Giornale Arcadico di Scienze Lettere ed Arti. 52 (1831):155-189. Also 1832 edition; fishes on pp. 89-123. Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution. 42:795-803. Brooks, D.R. 1985. Historical ecology: a new approach to studying the evolution of ecological associations. Annals of the Missouri Botanical Garden. 72:660-680. Brown, W.M., M..George, Jr., and A.C. Wilson. 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Science. 76(4):1967-1971. Bull, J.J, J.P. Huelsenbeck, C.W. Cunningham, D.L. Swofford, and P.J. Waddell. 1993. 264 Partitioning and combining data in phylogenetic analysis. Systematic Biology. 42(3):384-397. Cantarore, P., M. Robertim G. Pesole, A. Ludovico, F. Milella, M.N. Gadaleta and C. Saccone. 1994. Evolutionary analysis of cytochrome b sequences in some Perciformes: evidence for a slower rate of evolution than in mammals. Journal of Molecular Evolution. 1994(39):589-597. Cantor, T.E. 1849. Catalogue of Malayan fishes. Journal of the Asiatic Society of. Bengal. 18 (pt 2): i-xii + 981-1443, Pls. 1-14. Castelnau, F.L. 1861. Memoire sur les poissons de l'Afrique australe. Paris. i-vii + 1-78. Chang, Y.S., F.L Huang and T.B. Lo. 1994. The Complete Nucleotide Sequence and Gene Organization of Carp (Cyprinus carpio) Mitochondrial Genome. Journal of Molecular Evolution. 38(2):138-155. Chippindale, P.T. and J.J. Wiens. 1994. Weighting, partitioning, and combining characters in phylogenetic analysis. Systematic Biology. 43(2):278-287. Cibois, A., E. Pasquet and T. S. Schulenberg. 1999. Molecular systematics of the Malagasy Babblers (Passeriformes: Timaliidae) and Warblers (Passeriformes: Sylviidae), based on cytochrome b and 16S rRNA Sequences. Molecular Phylogenetics and Evolution. 13(3):581-595. Cummings, M.P., S.P. Otto and J. Wakeley. 1995. Sampling properties of DNA Sequence data in phylogenetic analysis. Molecular Biological Evolution.12(5):814-822. Cunningham, C.W. 1997. Can three incongruence tests predict when data should be combined. Molecular Biology and Evolution. 14(7):733-740. Cuvier, G. 1814. Observations et recherches critiques sur differentes poissons de la 265 Mediterranee et, a leur occasion, sur des Poissons des autres mers plus ou moins lies avec eux; par M. G. Cuvier. Bullin de la Société. Philomathique de Paris 1814: 80-92. Cuvier, G. 1816. Le Regne Animal distribue d'apres son organisation pour servir de base a l'histoire naturelle des animaux et d'introduction a l'anatomie comparee. Les reptiles, les poissons, les mollusques et les annelides. Edition 1. v. 2: i-xviii + 1-532, [Pls. 9-10, in v. 4]. Cuvier, G. 1829. Le Regne Animal, distribue d'apres son organisation, pour servir de base a l'histoire naturelle des animaux et d'introduction a l'anatomie comparee. Edition 2. v. 2: i-xviii + 1-532. Cuvier, G., and A. Valenciennes. 1830. Historie naturelle des poissons. Tome Sixieme. Livre sixieme. Partie I. Des Sparoides; Partie II. Des Menides. v. 6: i-xxiv + 6 pp. + 1-559, Pls. 141-169. De Queiroz, A. 1993. For consensus (sometimes). Systematic Biology. 42(3):368-372. Eernisse, D.J., and A.G. Kluge. 1993. Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molecular Biology and Evolution. 10(6):1170-1195. Dixon, M.T., D.M. Hillis. 1993. Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Molecular Biology and Evolution. 10(1):256-267. Esposti, M.D., S. De Vries, M. Crimi, A. Ghelli, T. Patarnello, amd A. Meyer. 1993. Mitochodrial cytochrome b: evolution and structure of the protein. Biochimica et Biophysica Acta. 1143(1993):242-271. Farias, I.P. , G. Orti , I. Sampaio , H. Schneider and A. Meyer. 1996. Mitochondrial 266 DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the neotropical assemblage. Journal of Molecular Evolution. 48(6):703-711. FAO. 1995. FAO yearbook: Fishery statistics – Catches and landings 1993. Vol. 76. Food and Agriculture Organization of the United Nations, Rome, Italy. 687 p. Farris, J.S., M. Källersjö, A.G. Kluge, C. Bult. 1994. Testing Significance of Incongruence. Cladistics. 10(3):315-319. Felsenstein. 1985. Confidence limits on phylogenies: an approach using the bootstrap. S Evolution 39:783-791. Finnerty, JR., Block, BA. 1995. Evolution of cytochrome b in the Scombroidei (Teleostei): molecular insights into billfish (Istiophoridae and Xiphiidae) relationships. Fisheries Bulletin. 93(1):78-96. Forsskål, P. 1775. Descriptiones animalium avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observavit.. Post mortem auctoris edidit Carsten Niebuhr. Hauniae. Descr. Animalium 1-20 + i-xxxiv + 1-164. Fowler, H.W. 1933. Contributions to the biology of the Philippine Archipelago and adjacent regions. The fishes of the families Banjosidae..Enoplosidae collected by the United States Bureau of Fisheries steamer "Albatross," chiefly in Philippine seas and adjacent waters. Bulletin of the United States National Museum. 100(12): i-vi + 1-465. Fu, J. 1998. Toward the phylogeny of the family Lacertidae: implications from Mitochondrial DNA 12S and 16S gene sequences (Reptilia: Squamata). Molecular Phylogenetics and Evolution. 9(1):118-130. Garrido-Ramos, M.A., M. Jamilena, R. Lozano, C. Ruiz Rejon, M. Ruiz Rejon. 1994. Cloning and characterization of a fish centromeric satellite DNA. Cytogenetics 267 and Cell Genetics. 65(4):233-237. Garrido-Ramos, M.A., M. Jamilena, R. Lozano, S. Cárdenas, C. Ruiz Rejón and M. Ruiz Rejón. 1995. Phylogenetic relationships of the Sparidae family (Pisces, Perciformes) inferred from satellite-DNA. Heraditas. 122:1-6. Garrido-Ramos, M.A., R. de la Herrán, M. Jamilena, R. Lozano, C. Ruiz Rejón, M. Ruiz Rejón. 1999. Evolution of centromeric satellite dna and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes). Molecular Phylogenetics and Evolution. 12(2):200-204. Gill, T.N. 1865. Synopsis of the fishes of the Gulf of St. Lawrence and Bay of Fundy. Canadian Nature. 2 (Aug. 1865): 244-266. Gunther, A. 1859. Catalogue of the fishes in the British Museum. Catalogue of the Acanthopterygian fishes in the collection of the British Museum. Gasterosteidae, Berycidae, Percidae, Aphredoderidae, Pristipomatidae, Mullidae, Sparidae. v. 1: i-xxxi + 1-524. Gutell, R.R., B. Weiser, C.R. Woese, and H.F. Noller. 1985. Comparative anatomy of 16S-like ribosomal RNA. Progress In Nucleic Acid Research and Molecular Biology. 32:155-216. Gutell, R.R and G.E. Fox. 1988. A compilation of large subunit rRNA sequences presented in a structural format. Nucleic Acid Research. 16S:r175-r269. Hanel, R. and C. Sturmbauer. 2000. Multiple recurrent evolution of trophic types in northeastern Atlantic and Mediterranean seabreams (Sparidae, Percoidei). Journal of Molecular Evolution. 50:276-283. Hillis, D.M. and M.T. Dixon. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology. 66(4):411-453. 268 Hillis, D.M., C. Moritz, and B.K. Mable. 1996. Molecular Systematics. Sinauer Associates, Inc. Sunderland, MA. 655 pp. Holbrook, J.E. 1855. Ichthyology of South Carolina. Charleston. 1-182, 27 pls Horovitz, I. and A. Meyer. 1995. Systematics of New World monkeys (Platyrrhini, Primates) based on 16S mitochondrial DNA sequences: a comparative analysis of different weighting methods in cladistic analysis. Molecular Phylogenetics Evolution. 4(4):448-456. Huelsenbeck, J.P., D. L. Swofford, C. W. Cunningham, J. J. Bull, and P. J. Waddell. 1994. Is character weighting a panacea for the problem of data heterogeneity in phylogenetic analysis? Systematic Biology. 43(2):288-291. Huelsenbeck, J.P., J. J. Bull, and C. W. Cunningham. 1996. Combining data in phylogenetic analysis. Trends in Ecology and Evolution. 11(4):152-158. Irwin, D.M., T.D. Kocher, A.C. Wilson 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution. (32)2:128-144. Jean, C.T., C.F. Hui, S.C. Lee, and C.T. Chen. 1995. Variation in mitochondrial DNA and phylogenetic relationships of fishes of the subfamily Sparinae (Perciformes: Sparidae) in the coastal waters of Taiwan. Zoological Studies. 34(4):270-280. Johnson, G. David. 1980 [1981]. The limits and relationships of the Lutjanidae and associated families. Bulletin of the Scripps Institution of Oceanography of the University of California. 24 (for 1980):1-114. Jordan, D.S. and B. Fesler. 1893. A review of the sparoid fishes of America and Europe. U.S. Fish Commission of Fishes Fisheries Report to the Commissioner 1889-1891. 27:421-544, plates 28-62. Jordan, D.S., and W. F. Thompson 1912. A review of the Sparidae and related families 269 of perch-like fishes found in the waters of Japan. Proceeding of the United States National Museum. 41(1875): 521-601. Kluge, A.G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology. 38(1):7-25. Kluge, A.G. and A.J. Wolf. 1993. Cladistics: What’s in a word. Cladistics. 9:183-199. Klunzinger, C.B. 1870. Synopsis der Fische des Rothen Meeres. I. Theil. Percoiden-Mugiloiden. Verhandlungen der K.K. Zoologisch-botanischen Gesellschaft in Wien. 20: 669-834. Kocher, T.D., W.K Thomas, A Meyer, S.V. Edward, S. Pääbo, F.X. Villablanca and A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceeding of the National Academy of Science, USA. 88:6196-6200. Kocher, T.D. and T,J, White. 1989. Evolutionary analysis via PCR. In: H.A. Erlich (ed.) PCR Technology: Principles and Application for DNA Amplification. Stockton Press, NY. Kraljevic, M., J. Dulcic. 1999. Intergeneric hybridization in Sparidae (Pisces: Teleostei): Dentex (Dentex) dentex female x Pagrus major male and P. major female x D. dentex male. Journal of Applied Ichthyology. 15(6):171-175. Leviton, A.E., R.H. Gibbs Jr., E. Heal, and C. E. Dawson. 1985. Standards in ichthyology and herpetology: Part 1. Standard symbolic codes for institutional resource collections in herpetology and ichthyology. Copeia. 1985:802-832. Leviton, A.E. and R.H. Gibbs, Jr. 1988. Standards in herpetology and ichthyology standard symbolic codes for institution resource collections in hereptology and ichthyology. Supplement no. 1: additions and corrections. Copeia. 1988:280-282. 270 Linnaeus, C. 1758. Systema Naturae, Ed. X. (Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata.) Holmiae. v. 1: i-ii + 1-824. Lockhart, P.J., D. Penny, and A. Meyer. 1995 Testing the phylogeny of swordtail fishes using split decomposition and spectral analysis. Journal of Molecular Evolution. 41( 5):666-674. Lovejoy, N. 1999. Systematics, biogeography, and evolution of needlefishes, Dissertation Cornell University, Ithaca, NY. Lydeard, C, M.C. Wooten, and A. Meyer 1995. Cytochrome b sequence variation and a molecular phylogeny of the live-bearing fish genus Gambusia (Cyprinodontiformes: Poeciliidae) Canadian Journal of Zoology./Journal of. Canadian Zoology. 73(2): 213-227. Lydeard,C. and Roe,K.J. 1997. The phylogenetic utility of the mitochondrial cytochrome b gene for inferring relationships among actinopterygian fishes. In: Kocher, T. and Stepian, C. (Eds.); Molecular Systematics of Fishes; Academic Press, Burlington, MA Maddison, W.P. and D.R. Maddison. 1992. MacClade: Analysis of Phylogenetic and Character Evolution. Ver. 3.0 Sinaeur Associates Inc., Sunderland. MA. Martin, A.P., G.J.P. Naylor, and S.R. Palumbi 1992. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature. 357(6374):153-155. Martin, A.P., S.R. Palumbi. 1993. Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Molecular Biology and. Evolution. 10(4):873-891. 271 McCully, H.R. 1962. The relationship of the Perciae and Centrarchidae to the Serranidae as shown by the anatomy of their scales. American Zoologist. 2(3):247. Meyer, A. 1993. Evolution of mitochondrial DNA in fishes. In: Biochemistry and Molecular Biology of Fishes vol 2., Elsevier, Amsterdamn. Pp 1-38. Mickevich, M.F., and J.S. Farris. 1981. The implications of congruence in Menidia. Systematic Zoology. 30:351-369. Mindell D.P., R.L. Honeycutt. 1990. Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annual Review of Ecology and Systematics. 21:541-56. Miyamoto, M.M. 1985. Consensus cladograms and general classifications. Cladistics. 1(2):186-189. Miyamoto, M.M. and Fitch, W.M. 1995. Testing species phylogenies and phylogenetic methods with congruence. Systematic Biology. 44(1)64-76. Munro, I. S.R. 1948. Sparidentex hasta (Valenciennes), a new name for Chrysophrys cuvieri Day. Copeia. 1948(4):275-280. Nei, M. 1978. Estimation of a average heterozygosity and genetic distance from a small number of individuals. Genetics. 89:583-590. Norman, J.R., 1935. The European and South African sea breams of the genus Spondyliosoma and related genera; with notes on Dichistius and Tripterodon. Annals of the South African Museum. 32 (pt 1, no. 2): 5-22, Pl. 2. Ortí, G., P. Petry, J.I.R. Porto, M. Jegu, and A. Meyer. 1996. Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas. Journal of Molecular Evolution. 42(2):169-182. Palumbi, S., A. Martin, S. Romano, W.O. McMillan, L. Stice, and G. Grabowski. 1991. The Simple Fools Guide to PCR. Department of Zoology and Kewalo Marine 272 Laboratory, University of Hawaii, Honolulu, HI. Peters, W. (C. H.). 1855. Uebersicht der in Mossambique beobachteten Fische. Archiv für. Naturgeschichte v. 21 (pts 2-3): 234-282. Poll, M. 1971. Revision systematique des daurades du genre Dentex de la cote africaine tropicale occidentale et de la Mediterranee. Mémories de µAcadémie R. de Belgique. Classes des Sciences. (Ser. 2) v. 40 (no. 1): 1-51. Quoy, J.R.C., and J.P. Gaimard. 1824. Description des Poissons. Chapter IX. In: Freycinet, L. de, Voyage autour du Monde..execute sur les corvettes de L. M. "L'Uranie" et "La Physicienne," pendant les annees 1817, 1818, 1819 et 1820. Paris. 192-401, Atlas pls. 43-65. Rafinesque, C.S. 1810. Indice d'ittiologia siciliana; ossia, catalogo metodico dei nomi latini, italiani, e siciliani dei pesci, che si rinvengono in Sicilia disposti secondo un metodo naturale e seguito da un appendice che contiene la descrizione de alcuni nuovi pesci sicilian. Messina. 1-70, Pls. 1-2. Regan, C.T. 1913. On the classification of the percoid fishes. Annals and Magazine of Natural History. 8(12):111-145. Ritchie,P.A., L. Bargelloni, A. Meyer, J.A. Taylor, J.A. Macdonald, and D.M. Lambert. 1996. Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Molecular Phylogenetics Evolution. 5(2): 383-390. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning a Laboratory Manual, 2nd. ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Sanderson, M.J. 1995. Objections to bootstrapping in phylogenies: a critique. Systematic Biology. 44(3):299-320. 273 Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences. 74:5463-5467. Schmidt, T.R., J.P. Bielawski, and J.R. Gold. 1998. Molecular phylogenetics and evolution of the cytochrome b gene in the cyprinid genus Lythrurus (Actinopterygii: Cypriniformes). Copiea. 1998(1):14-22. Schultz, L.P. 1953. Family Lutjanidae: snappers. In: Fishes of the Marshall and Marianas Islands, Vol. I Families from Asymmetrontidae through Siganidae. Bulletin of the U.S. National Museum. 202:685 p. Siddall, M.E. 1997. Prior agreement, arbitration or arbitrary? Systematic Biology. 46(4):765-769. Siebert, D.J. Chapter 5; Tree Statistics; Trees and ‘Confidence'; Consensus Trees; Alternatives to Parsimony; Character Weighting; Character Conflict and its Resolution. In: Forey, P.L., C.J. Humpries, I.L Kitching, R.W. Scotland, D.J.Siebert and D.M.Williams. 1992. Cladistics A Practical Course in Systematics. The Systematics Association Publication No.10, Oxford University Press, NY. 191 pp. Smith, J.L.B. 1938. The South African fishes of the families Sparidae and Denticidae. Transactions of the Royal Society of South Africa. Voulume XXVI.-Part 3: 225-305. Smith, J.L.B., and M. M. Smith. 1986. Family No. 183: Sparidae. In: Smith, M.M and P.C. Heemstra (eds) Smith's Sea Fishes. Macmillian, Johannesburg: South Africa. 1050 pp. Song, C.B., T.J. Near, and L.M. Page. 1998. Phylogenetic Relations among percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Molecular 274 Phylogenetics and Evolution. 10(3):343-353. Sorensen, M.D. 1999. TreeRot, version 2. Boston University, Boston, MA. Streelman, J.T. and S. Karl. 1997. Reconstructing labroid evolution with single-copy nuclear DNA. Proceedings of the Royal Society of London, B. 1997(264):10111020. Suetin, G., B.N. White and P.T. Boag. 1990. Preservation of avian blood and tissue samples for DNA analysis. Canadian Journal of Zoology. 69:82-90. Swainson, W. 1839. The natural history and classification of fishes, amphibians, & reptiles, or monocardian animals. London. v. 2: i-vi + 1-448. Swofford, D.L. 1998. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA. Swofford, D.L., G.J. Olsen, P.J. Waddell, D. M. Hillis. 1996. Phylogenetic Inference. In: Hillis, D.M. C. Moritz and B.K. Marble. Molecular Systematics, Second Edition, Sinauer Associates, Inc. Sunderland, MA. Tang, K.L., P.B. Berendzen, E.O. Wiley, J.F. Morrissey, R. Winterbottom and G.D. Johnson. 1999. The phylogenetic relationships of the suborder Acanthuroidei (Teleostei: Perciformes) based on molecular and morphological Evidence. Molecular Phylogenetics Evolution. 11(3): 415-425. Taniguchi, N., M. Fujita, and M. Akazaki. 1986. Genetic divergence and systematics in sparid fish from Japan. Indo-pacific fish biology. Proceedings of the second international conference. On indo-pacific fishes, conducted at the tokyo national museum, ueno park, Tokyo, July 29-August 3, 1985., 849-858. Tartof, K.D. and C.A. Hobbs. 1987. Improved media for growing plasmid and cosmid clones. Bethesda Research Laboratory Focus. 9(12). 275 Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research. 22:4673-80. Tringali, M.D., T.M. Bert, S. Seyoum, E. Bermingham, and D. Bartolacci. 1999 Molecular phylogenetic and ecological diversification of the transisthmian fish genus Centropomus (Perciformes: Centropomidae). Molecular Phylogenetics and Evolution. 13(1):193-207. Vater, L. and W.M Brown. 1993. Rates and patterns of base change in the small subunit ribosomal RNA gene. Genetics. 134:597-608. Waldman, J.R. 1986. Systematics of Morone (Pisces: Moronidae), with notes on the lower percoids, Dissertation, New York University, NY, Oct 1986 47(4):162 pp. Wheeler, W. 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology. 44(3):321-331. Whitley, G.P. 1937. Further ichthyological miscellanea. Memoirs of the Queensland Museum.11(pt 2): 113-148, Pls. 11-13. Wiley, E.O. 1988a. Vicariance biogeography. Annual Review of Ecology and Systematics. 19:513-542. Wiley, E.O. 1988b. Parsimony Analysis and vicariance biogeography. Systematic Zoology. 37:271-290. Wiley, E.O., G. D. Johnson and W.W. Dimmick 1998. The phylogenetic relationships of Lampridiform fishes (Teleosteoi: Acanthomorpha), based on a total-evidence analysis of morphological and molecular data. Molecular Phylogenetics and Evolution. 10(3):417-425. 276 Wiley, E.O., D. Siegel-Causey, D.R. Brooks and V.A. Funk. 1991. The Complete Cladist; A Primer of Phylogenetic Procedures Special Publication No. 19, Museum of Natural History, The University of Kansas, Lawrence, Kansas. Zardoya, R. and A. Meyer. 1996. Phylogenetic performace of mitochondrial proteincoding genes in resolving relationships among vertebrates. Molecular Biology and Evolution. 13(7):933-942. 277 VITA THOMAS MARTIN ORRELL Born in Sharon, Connecticut, 6 May 1965. Graduated from Salisbury School, Salisbury Connecticut in 1983. Earned B.A. in Biology, University of Richmond, Richmond, Virginia in 1987. Worked as a museum specialist for the Division of Fishes, National Museum of Natural History, Smithsonian Institution, Washington, D.C. from 1987-1993. Entered the Master of Arts Program, College of William and Mary, School of Marine Science in 1993. Bypassed Master of Arts Degree and entered the doctoral program College of William and Mary, School of Marine Science in1996. .