Solving Mathematical Problems, Game Theory, and Recreational

Transcription

Solving Mathematical Problems, Game Theory, and Recreational
Solving Mathematical Problems
Here all links to books and articles in proprietary digital
libraries are “local” – each link will work on any campus
with legitimate (level of) access to those libraries.
The links to open-access items will work everywhere.
For a more comfortable library visit, use Google Chrome
and, while you are scrolling through the titles, always
right-click on the selected item’s link to “Open link in
new tab” – after you close the new tab, your cursor will
be where you right-clicked.
This section of the library was updated on 03 June 2015.
For more information, right-click on:
http://competitive-learning.org/Notes.pdf
This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License
(available at:
http://creativecommons.org/licenses/by-nc-nd/3.0/).
This work is free for personal and classroom use as is;
you may not use this work for commercial purposes.
Professor Joseph Vaisman
Department of Computer Science and Engineering, NYU-Poly
jv@competitive-learning.org
Table of Contents
Problems, Solutions, and Techniques
Game Theory
Towers of Hanoi
Magic Squares
Fifteen-Puzzle
Fibonacci Numbers
Pascal’s Triangle
The Quest for PI
The Science of Sticky Spheres
Problems, Solutions, and Techniques ======
Chapter 5 How to solve problems
http://dx.doi.org/10.1017/CBO9780511808258.006
How to Think Like a Mathematician:
A Companion to Undergraduate Mathematics
Kevin Houston
Cambridge University Press, 2009, ISBN 9780511808258
http://dx.doi.org/10.1017/CBO9780511808258
How to Solve It: Modern Heuristics;
Second, Revised and Extended Edition
Zbigniew Michalewicz and David B. Fogel
Springer, 2004, ISBN 978-3-662-07807-5
**** book on AI – relevant chapters ********
http://dx.doi.org/10.1007/978-3-662-07807-5
Mathematics as Problem Solving, Second Edition
Alexander Soifer
Springer, 2009, ISBN 978-0-387-74647-0
http://dx.doi.org/10.1007/978-0-387-74647-0
Problem-Solving Strategies
Arthur Engel
Springer, 1998, ISBN 978-0-387-22641-5
http://dx.doi.org/10.1007/b97682
Problem-Solving Through Problems
Loren C. Larson
Springer, 1983, ISBN 978-1-4612-5498-0
http://dx.doi.org/10.1007/978-1-4612-5498-0
The Beauty of Everyday Mathematics
Norbert Hermann
Springer, 2012, ISBN 978-3-642-22104-0
http://dx.doi.org/10.1007/978-3-642-22104-0
Problems and Proofs in Numbers and Algebra
Richard S. Millman, Peter J. Shiue, and Eric Brendan Kahn
Springer, 2015, ISBN 978-3-319-14427-6
http://dx.doi.org/10.1007/978-3-319-14427-6
Complex Numbers From A to … Z, Second Edition
Titu Andreescu and Dorin Andrica
Springer, 2014, ISBN 978-0-8176-8415-0
http://dx.doi.org/10.1007/978-0-8176-8415-0
Mathematical Problems and Proofs:
Combinatorics, Number Theory, and Geometry
Branislav Kisacanin
Springer, 2002, ISBN 978-0-306-46963-3
http://dx.doi.org/10.1007/b115295
Inequalities: A Mathematical Olympiad Approach
Radmila Bulajich Manfrino, Jose Antonio Gomez Ortega,
and Rogelio Valdez Delgado
Springer, 2009, ISBN 978-3-0346-0050-7
http://dx.doi.org/10.1007/978-3-0346-0050-7
Equations and Inequalities: Elementary Problems and
Theorems in Algebra and Number Theory
Jiri Herman, Radan Kucera, and Jaromir Simsa
Springer, 2000, ISBN 978-1-4612-1270-6
http://dx.doi.org/10.1007/978-1-4612-1270-6
Topics in Algebra and Analysis:
Preparing for the Mathematical Olympiad
Radmila Bulajich Manfrino, Jose Antonio Gomez Ortega,
and Rogelio Valdez Delgado
Springer, 2015, ISBN 978-3-319-11946-5
http://dx.doi.org/10.1007/978-3-319-11946-5
Problem-Solving Methods in Combinatorics:
An Approach to Olympiad Problems
Pablo Soberon
Springer, 2013, ISBN 978-3-0348-0597-1
http://dx.doi.org/10.1007/978-3-0348-0597-1
Problem-Solving and Selected Topics in Number Theory:
In the Spirit of Mathematical Olympiads
Michael Th. Rassias
Springer, 2011, ISBN 978-1-4419-0495-9
http://dx.doi.org/10.1007/978-1-4419-0495-9
104 Number Theory Problems:
From the Training of the USA IMO Team
Titu Andreescu, Dorin Andrica, and Zuming Feng
Springer, 2007, ISBN 978-0-8176-4561-8
http://dx.doi.org/10.1007/978-0-8176-4561-8
Mathematical Olympiad Treasures, Second Edition
Titu Andreescu and Bogdan Enescu
Springer, 2011, ISBN 978-0-8176-8253-8
http://dx.doi.org/10.1007/978-0-8176-8253-8
Mathematical Olympiad Challenges, Second Edition
Titu Andreescu and Razvan Gelca
Springer, 2009, ISBN 978-0-8176-4611-0
http://dx.doi.org.databases/10.1007/978-0-8176-4611-0
The IMO Compendium - A Collection of Problems Suggested
for
The International Mathematical Olympiads: 1959-2009,
Second Edition
Dusan Djukic, Vladimir Jankovic, Ivan Matic,
and Nikola Petrovic
Springer, 2011, ISBN 978-1-4419-9854-5
http://dx.doi.org/10.1007/978-1-4419-9854-5
Geometric Problems on Maxima and Minima
Titu Andreescu, Oleg Mushkarov, and Luchezar Stayanov
Springer, 2006, ISBN 978-0-8176-4473-3
http://dx.doi.org/10.1007/0-8176-4473-3
103 Trigonometry Problems:
From the Training of the USA IMO Team
Titu Andreescu and Zuming Feng
Springer, 2005, ISBN 978-0-8176-4432-1
http://dx.doi.org/10.1007/b139082
An Introduction to Diophantine Equations:
A Problem-Based Approach
Titu Andreescu, Dorin Andrica, and Ion Cucurezeanu
Springer, 2010, ISBN 978-0-8176-4549-6
http://dx.doi.org/10.1007/978-0-8176-4549-6
Putnam and Beyond
Razvan Gelca and Titu Andreescu
Springer, 2007, ISBN 978-0-387-68445-1
http://dx.doi.org/10.1007/978-0-387-68445-1
An Invitation to Mathematics: From Competition to Research
Dierk Schleicher and Malte Lackmann (Editors)
Springer, 2011, ISBN 978-3-642-19533-4
http://dx.doi.org/10.1007/978-3-642-19533-4
The Art of Mathematics – Coffee Time in Memphis
Bela Bollobas
Cambridge University Press, 2006, ISBN 9780511816574
http://dx.doi.org/10.1017/CBO9780511816574
Thinking in Problems: How Mathematicians Find Creative
Solutions
Alexander A. Roytvarf
Springer, 2013, ISBN 978-0-8176-8406-8
http://dx.doi.org/10.1007/978-0-8176-8406-8
Problem Solving for Engineers and Scientists:
A Creative Approach
Raymond Friedman
Springer, 1991, ISBN 978-1-4615-3906-3
http://dx.doi.org/10.1007/978-1-4615-3906-3
Arnold’s Problems
Vladimir I. Arnold
Springer, 2005, ISBN 978-3-540-28666-6
http://dx.doi.org/10.1007/b138219
Exercises in Analysis, Part I
Leszek Gazinski and Nikolaos S. Papageorgiou
Springer, 2014, ISBN 978-3-319-06176-4
http://dx.doi.org/10.1007/978-3-319-06176-4
People, Problems, and Proofs –
Essays from Godel’s Lost Letter: 2010
Richard J. Lipton and Kenneth W. Regan
Springer, 2013, ISBN 978-3-642-41422-0
http://dx.doi.org/10.1007/978-3-642-41422-0
Inside Interesting Integrals
Paul J. Nahin
Springer, 2015, ISBN 978-1-4939-1277-3
http://dx.doi.org/10.1007/978-1-4939-1277-3
Problems from the Discrete to the Continuous:
Probability, Number Theory, Graph Theory,
and Combinatorics
Ross G. Pinsky
Springer, 2014, ISBN 978-3-319-07965-3
http://dx.doi.org/10.1007/978-3-319-07965-3
Back to the Table of Contents
=======================================
Game Theory ==========================
Also see:
Game Theory shelf in the
Economics and Finance section.
New Dilemmas for the Prisoner
Brian Hayes
American Scientist,
Volume 101, Number 6 (November-December 2013)
http://dx.doi.org/10.1511/2013.105.422
Insights into Game Theory:
An Alternative Mathematical Experience
Ein-Ya Gura and Michael B. Maschler
Cambridge University Press, 2008, ISBN 9780511754326
http://dx.doi.org/10.1017/CBO9780511754326
Game Theory: An Introduction, Second Edition
E.N. Barron
Wiley, 2013, ISBN 9781118547168
http://dx.doi.org/10.1002/9781118547168
Back to the Table of Contents
=======================================
Towers of Hanoi ========================
The Tower of Hanoi – Myths and Maths
Andreas M. Hinz, Sandy Klavzar, Uros Milutinovic, and Ciril Petr
Springer, 2013, ISBN 978-3-0348-0237-6
http://dx.doi.org/10.1007/978-3-0348-0237-6
About the remarkable similarity between the Icosian
Game and the Tower of Hanoi
Martin Gardner
Scientific American, Volume 196, Number 5 (May 1957) Pages 150-157
http://www.nature.com/scientificamerican/journal/v196/n5/pdf/scien
tificamerican0557-150.pdf
The curious properties of Gray code and how it can be
used to solve puzzles
Martin Gardner
Scientific American, Volume 227, Number 2 (September 1972)
http://www.nature.com/scientificamerican/journal/v227/n2/pdf/scien
tificamerican0872-106.pdf
Yin and yang: recursion and iteration, the Tower of Hanoi and the
Chinese rings
A. K. Dewdney
Scientific American, Volume 251, Number 5 (November 1984)
http://www.nature.com/scientificamerican/journal/v251/n5/pdf/scien
tificamerican1184-19.pdf
Sierpinski’s Ubiquitous Gasket
Ian Stewart
Scientific American, Volume 281, Number 2 (August 1999)
http://www.nature.com/scientificamerican/journal/v281/n2/pdf/scien
tificamerican0899-90.pdf
Chapter 1 “The Lion, the Llama, and the Lettuce”
Another Fine Math You’ve Got Me Into…
Ian Stewart
http://books.google.com/books?id=u5GPE97ZhsC&printsec=frontcover&dq=intitle:another+intitle:fine+intitle:math
&hl=en&ei=PJygTr2GLKna0QGKx7T6BA&sa=X&oi=book_result&ct=resu
lt&resnum=1&ved=0CD0Q6AEwAA#v=onepage&q&f=false
The Generalized Towers of Hanoi for Space-Deficient Computers and
Forgetful Humans
Timothy R. Walsh
The Mathematical Intelligencer, Volume 20, Number 1 (March 1998)
http://dx.doi.org/10.1007/BF03024398
Back to the Table of Contents
=======================================
Magic Squares =========================
In general, a magic square is an arrangement of the integers from 1 to
n*n, in cells of an n-by-n square, such that the numbers in each row,
column, and diagonal give the same sum, the magic sum.
You have access to a thorough explanation at the link below –
disregard that it is intended for a very young audience.
http://www.dr-mikes-math-games-for-kids.com/3x3-magicsquare.html
Anything but square: from magic squares to Sudoku
Hardeep Aiden
http://plus.maths.org/content/anything-square-magic-squares-sudoku
Magic Squares
Pages 16-24
http://dx.doi.org/10.1007/978-1-4612-1088-7_2
Ramanujan’s Notebooks, Part I
Bruce C. Berndt
Springer, 1985, ISBN 978-1-4612-1088-7
http://dx.doi.org/10.1007/978-1-4612-1088-7
Magic Squares of Order Three
T. S. K. V. Iyer
Pages 76-78
http://dx.doi.org/10.1007/BF02834335
Basis Properties of Third Order Magic Squares
Shailesh A Shirali
Pages 79-89
http://dx.doi.org/10.1007/BF02834336
Resonance, Volume 11, Number 9 (September 2006)
Magic “Squares” Indeed!
Arthur T. Benjamin and Kan Yasuda
American Mathematical Monthly,
Volume 106, Number 2 (February 1999) Pages 152-156
http://dx.doi.org/10.2307/2589051
Constructing All Magic Squares of Order Three
Guoce Xin
http://arxiv.org/abs/math/0409468
Quadramagicology
Dana Mackenzie
Pages 50-53
New Scientist, Volume 180, Issue 2426-2428 (December 20, 2003)
http://search.ebscohost.com/login.aspx?direct=true&db=n2h&AN=257
15053&site=ehost-live
Magic Square Patterns
D. B. Eperson
The Mathematical Gazette,
Volume 43, Number 346 (December 1959) Pages 273-275
http://www.jstor.org/stable/3610655
Magic Squares of Order 4
Dame Kathleen Ollerenshaw and Herman Bondi
Philosophical Transactions of the Royal Society of London, Series A,
Mathematical and Physical Sciences,
Volume 306, Number 1495 (October 15, 1982) Pages 443-532
http://www.jstor.org/stable/37143
On ‘Most Perfect’ or ‘Complete’ 8 X 8 Pandiagonal Magic Squares
Dame Kathleen Ollerenshaw
Proceedings of the Royal Society of London, Series A,
Mathematical and Physical Sciences,
Volume 407, Number 1833 (October 8, 1986) Pages 259-281
http://www.jstor.org/stable/2397989
On Karnaugh maps and magic squares
Dieter Schuett and Sebastian Meine
Pages 120-123
Informatik-Spektrum, Volume 28, Number 2 (April 2005)
http://dx.doi.org/10.1007/s00287-005-0468-3
Latin Squares
Bhaskar Bagchi
Pages 895-902
Resonance, Volume 17, Number 9 (September 2012)
http://dx.doi.org/10.1007/s12045-012-0098-4
Magic Graphs, Second Edition
Alison M. Marr and W.D. Wallis
Springer, 2013, ISBN 978-0-8176-8391-7
http://dx.doi.org/10.1007/978-0-8176-8391-7
Back to the Table of Contents
=======================================
Fifteen-Puzzle ==========================
How Safe Is Sam Lloyd’s Bet? The 15-Puzzle and Beyond
Jyoti Ramakrishnan
Pages 80-89
Resonance, Volume 5, Number 11 (November 2000)
http://dx.doi.org/10.1007/BF02868496
Back to the Table of Contents
=======================================
Fibonacci Numbers =====================
Fibonacci Numbers
Ron Knott
http://www.maths.surrey.ac.uk/hostedsites/R.Knott/Fibonacci/
Ron Knott’s web pages on Mathematics
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/
FIBONACCI – HIS RABBITS AND HIS NUMBERS and KEPLER
Keith Tognetti
http://www.austms.org.au/Modules/Fib/
Fibonacci Numbers
Nicolai N. Vorobiev
Springer, 2002, ISBN 978-3-0348-8107-4
http://dx.doi.org/10.1007/978-3-0348-8107-4
Fibonacci and Catalan Numbers: An Introduction
Ralph P. Grimaldi
Wiley, 2012, ISBN 9781118159743
http://dx.doi.org/10.1002/9781118159743
Catalan Numbers: with Applications
Thomas Koshy
Oxford University Press, 2009, ISBN 9780195334548
http://dx.doi.org/10.1093/acprof:oso/9780195334548.001.000
1
Fibonacci and Lucas Numbers with Applications
Thomas Koshy
Wiley, 2001, ISBN 9781118033067
http://dx.doi.org/10.1002/9781118033067
Pell and Pell-Lucas Numbers with Applications
Thomas Koshy
Springer, 2014, ISBN 978-1-4614-8489-9
http://dx.doi.org/10.1007/978-1-4614-8489-9
Applications of Fibonacci Numbers, Volume 9:
Proceedings of the Tenth International Research Conference
on Fibonacci Numbers and Their Applications
Frederic T. Howard (Editor)
Springer, 2004, ISBN 978-0-306-48517-6
http://dx.doi.org/10.1007/978-0-306-48517-6
Applications of Fibonacci Numbers, Volume 8:
Proceedings of ‘The Eighth International Research Conference
on Fibonacci Numbers and Their Applications’
Fredric T. Howard (Editor)
Springer, 1999, ISBN 978-94-011-4271-7
http://dx.doi.org/10.1007/978-94-011-4271-7
Applications of Fibonacci Numbers, Volume 7:
Proceedings of ‘The Seventh International Research
Conference on Fibonacci Numbers and Their Applications’
G. E. Bergum, A. N. Philippou, and A. F. Horadam (Editors)
Springer, 1998, ISBN 978-94-011-5020-0
http://dx.doi.org/10.1007/978-94-011-5020-0
Back to the Table of Contents
=======================================
Pascal’s Triangle ========================
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pascal’s Triangle
Nathan Hoffman
The Arithmetic Teacher, Volume 21, Number 3 (March 1974)
http://www.jstor.org/stable/41188488
Pascal’s Triangle
Karl J. Smith
The Two-Year College Mathematics Journal,
Volume 4, Number 1 (Winter 1973)
http://www.jstor.org/stable/2698949
Differences and Pascal’s triangle
Chris Houghton
Mathematics in School,
Volume 20, Number 4 (September 1991)
http://www.jstor.org/stable/30214830
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Extended Pascal Triangles
Richard C. Bollinger
Mathematics Magazine, Volume 66, Number 2 (April 1993)
http://www.jstor.org/stable/2691114
Pascal + Fermat -> Gauss
Per Haggmark
The Mathematical Gazette
Volume 61, Number 418 (December 1977)
http://www.jstor.org/stable/3617404
Pascal’s Triangle and the Tower of Hanoi
Andreas M. Hinz
The American Mathematical Monthly,
Volume 99, Number 6 (June-July 1992)
http://www.jstor.org/stable/2324061
Pascal’s Triangle, Difference Tables and Arithmetic Sequences
of Order N
Calvin Long
The College Mathematics Journal,
Volume 15, Number 4 (September 1984)
http://www.jstor.org/stable/2686393
Pascal Triangles and Combinations Where Repetitions Are
Allowed
Kendell Hyde
The College Mathematics Journal,
Volume 19, Number 1 (January 1988)
http://www.jstor.org/stable/2686707
Paths and Pascal Numbers
John F. Lucas
The Two-Year College Mathematics Journal,
Volume 4, Number 1 (Winter 1973)
http://www.jstor.org/stable/3027286
Recurrent Sequences and Pascal’s Triangle
Thomas M. Green
Mathematics Magazine, Volume 41, Number 1 (January 1968)
http://www.jstor.org/stable/2687953
Relating Geometry and Algebra in the Pascal Triangle,
Hexagon, Tetrahedron, and Cuboctahedron
Part I: Binomial Coefficients, Extended Binomial Coefficients
and Preparation for Further Work
Peter Hilton and Jean Pedersen
The College Mathematics Journal,
Volume 30, Number 3 (May 1999)
http://www.jstor.org/stable/2687595
Relating Geometry and Algebra in the Pascal Triangle,
Hexagon, Tetrahedron, and Cuboctahedron
Part II: Geometry and Algebra in Higher Dimensions:
Identifying the Pascal Cuboctahedron
Peter Hilton and Jean Pedersen
The College Mathematics Journal,
Volume 30, Number 4 (September 1999)
http://www.jstor.org/stable/2687666
Restricted Occupancy Theory – A Generalization of Pascal’s
Triangle
J. E. Freund
The American Mathematical Monthly,
Volume 63, Number 1 (January 1956)
http://www.jstor.org/stable/2308048
The Towers and Triangles of Professor Claus
(or, Pascal Knows Hanoi)
David G. Poole
Mathematics Magazine,
Volume 67, Number 5 (December 1994)
http://www.jstor.org/stable/2690991
Zaphod Beeblebrox’s Brain and the Fifty-ninth Row of Pascal’s
Triangle
Andrew Granville
The American Mathematical Monthly,
Volume 99, Number 4 (April 1992)
http://www.jstor.org/stable/2324898
Correction to: Zaphod Beeblebrox’s Brain and the Fifty-ninth
Row of Pascal’s Triangle
Andrew Granville
The American Mathematical Monthly,
Volume 104, Number 9 (November 1997)
http://www.jstor.org/stable/2975291
Back to the Table of Contents
=======================================
The Quest for Pi ========================
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Quest for Pi
D.H. Bailey, J.M. Borwein, P.B. Borwein, and S. Plouffe
Mathematical Intelligencer,
Volume 19, Number 1 (Winter 1997)
*** Item # 47 ****************************************
http://www.davidhbailey.com/dhbpapers/index.html#Technica
l-papers
http://dx.doi.org/10.1007/BF03024340
Home Page of David H. Bailey
http://www.davidhbailey.com/
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pi: A Source Book, Third Edition
Lennart Berggren, Jonathan Borwein, and Peter Borwein
Springer, 2004, ISBN 978-1-4757-4217-6
http://dx.doi.org/10.1007/978-1-4757-4217-6
Pi – Unleashed
Jorg Arndt and Christoph Haenel
Springer, 2001, ISBN 978-3-642-56735-3
http://dx.doi.org/10.1007/978-3-642-56735-3
Back to the Table of Contents
=======================================
The Science of Sticky Spheres =============
This shelf contains the original article, and will contain inks to
the article’s bibliography, and links to additional items I
consider relevant and useful.
The Science of Sticky Spheres
Brian Hayes
American Scientist,
Volume 100, Number 6 (November-December 2012)
http://dx.doi.org/10.1511/2012.99.442
Computing Science column and book reviews
http://www.americanscientist.org/issues/issue_byAuthor_list.a
spx?authorID=6660&pageID=1
Website
http://bit-player.org/
Back to the Table of Contents
=======================================