The Standard Model Effective Field Theory and
Transcription
The Standard Model Effective Field Theory and
The Standard Model Effective Field Theory and Dimension 6 Operators Aneesh Manohar University of California, San Diego 17 Mar 2015 / Vienna A Manohar (UCSD) 17 Mar 2015 / Vienna 1 / 46 Outline The SMEFT Equations of Motion Operators Naive Dimensional Analysis µ → eγ and MFV Holomorphy A Manohar (UCSD) 17 Mar 2015 / Vienna 2 / 46 Talk based on: Rodrigo Alonso, Elizabeth Jenkins, Michael Trott, AM C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and h → γγ Decay, JHEP 1304:016 (2013). E.E. Jenkins, A.V. Manohar and M. Trott, On Gauge Invariance and Minimal Coupling, JHEP 1309:063 (2013). E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and λ Dependence, JHEP 1310:087 (2013). E.E. Jenkins, A.V. Manohar and M. Trott, Naive Dimensional Analysis Counting of Gauge Theory Amplitudes and Anomalous Dimensions, Phys. Lett. B726 (2013) 697-702. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 1401:035 (2014). R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 1404:159 (2014). R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without Supersymmetry in the Standard Model Effective Field Theory, arXiV:1409.0868 [hep-ph]. SMEFT A model independent way to include the effects of new physics. The assumption is that there are no new particles at the electroweak scale. This is what the data indicates. Fields are the SM fields. hHi breaks SU(2) × U(1). L = LSM + L5 L6 + 2 + ... Λ Λ Need to include the + . . .. Cannot just stop at a given dimension. A Manohar (UCSD) 17 Mar 2015 / Vienna 4 / 46 H= √1 2 ϕ+ v + h + iϕ0 ! ϕ+ , ϕ0 give mass to W , Z , and h is the Higgs scalar. † 2 H HW → 1 2 1 2 v + hv + h W 2 2 2 Couplings of h fixed because it is part of H. An alternate approach is to assume SU(2) × U(1) → U(1) broken symmetry, i.e. a chiral field U, and a scalar field h, with arbitrary couplings. A Manohar (UCSD) 17 Mar 2015 / Vienna 5 / 46 Notation Fields are three generations of fermions L : qr , lr , R : ur , dr , er r = 1, . . . , ng = 3 the scalar doublet H, and SU(3) × SU(2) × U(1) gauge fields. L = LSM + 1 1 (5) L + 2 L(6) + . . . note the dots Λ Λ Λ is the scale of new physics, and assume Λ > v Power Counting L(6) ∼ 2 mH Λ2 L(8) ∼ 4 mH Λ4 L(6) × L(6) ∼ 4 mH Λ4 mH a typical electroweak scale (v , mt , mZ ) A Manohar (UCSD) 17 Mar 2015 / Vienna 6 / 46 SMEFT: dim 5 L5 = crs H †i †j liαr H ljβs αβ i : SU(2) index α : Lorentz index r : flavor index Violates lepton number ∆L = 2. This is the operator that gives Majorana mass to the neutrino. The scale is the seesaw scale and is high. Not relevant for physics at LHC. A Manohar (UCSD) 17 Mar 2015 / Vienna 7 / 46 SMEFT: dim 6 Lots of operators at dimension six. 59 operators that preserve baryon number, and 4/5 that violate baryon number. Buchmuller and Wyler, Nucl.Phys. B268 (1986) 621 Grzadkowski et al. JHEP 1010 (2010) 085 Flavor indices run over ng = 3 values. 2499 baryon number conserving operators, including flavor indices. 1350 CP-even and 1149 CP-odd operators. Alonso, Jenkins, AM, and Trott, JHEP 1404 (2014) 159. Notation: L : qr , lr , R : ur , dr , er r = 1, . . . , ng = 3 e j = ij H † j Hj , H A I Xµν : Gµν , Wµν , Bµν A Manohar (UCSD) 17 Mar 2015 / Vienna 8 / 46 Fierz Identities Write down all possible gauge invariant operators of dimension 6. Use Fierz identities: ψ 1 γ µ PL ψ2 ψ 3 γ µ PL ψ4 = ψ 3 γ µ PL ψ2 ψ 1 γ µ PL ψ4 So in the four-quark operators: λk λk µ αi µ q αi p γ qr βj q s γµ qtσl → q s γ qr βj q p γµ qtσl q γ µ Γ q q γµ Γ q, Γ ⊗ Γ ∝ 1 ⊗ 1, T A ⊗ T A , τ I ⊗ τ I , T A τ I ⊗ T A τ I Two independent contractions: (1) 1⊗1 (3) τI ⊗ τI Qqq = q p γ µ qr q s γµ qt Qqq = q p γ µ τ I qr q s γµ τ I qt A Manohar (UCSD) 17 Mar 2015 / Vienna 9 / 46 not needed: (8) Qqq = q p γ µ T A qr q s γµ T A qt (3,8) Qqq = q p γ µ τ I T A qr q s γµ τ I T A qt h iα h iλ 1 1 α λ TA TA = δσα δβλ − δ δ 2 2Nc β σ β σ h ii h ik τI = 2δli δjk − δji δlk τI j l 1 ↔ swap both A Manohar (UCSD) TA ⊗ TA τIT A ⊗ τIT A ∝ 1 + swap color ∝ 1 + swap weak swap weak ↔ swap color 17 Mar 2015 / Vienna 10 / 46 SM Equations of Motion D 2 Hk − λv 2 Hk + 2λ(H † H)Hk + q j Yu† u jk + d Yd qk + e Ye lk = 0 , for the Higgs field (mix H and fermion operators) e j + Y † d Hj , / qj = Yu† u H iD d / lj = Ye† eHj , iD / d = Yd qj H † j , iD e†j , / u = Yu qj H iD / e = Ye lj H † j , iD for the fermion fields, and [D α , Gαβ ]A = g3 jβA , [D α , Wαβ ]I = g2 jβI , D α Bαβ = g1 jβ , for the gauge fields, where [D α , Fαβ ] is the covariant derivative in the adjoint representation. A Manohar (UCSD) 17 Mar 2015 / Vienna 11 / 46 Equations of Motion Can use classical equations of motion in a quantum field theory. No quantum corrections needed. Green’s functions can change, but the S-matrix does not. The two versions of the operator do not agree diagram by diagram. Only the total contribution to the S-matrix is unchanged. A Manohar (UCSD) 17 Mar 2015 / Vienna 12 / 46 SMEFT Operators Leading higher dimension operators are d = 6. Assuming B and L conservation, there are 59 independent dimension-six operators which form complete basis of d = 6 operators. 59 operators divided into eight operator classes. 1 : X3 2 : H6 3 : H 4D2 4 : X 2H 2 5 : ψ2H 3 6 : ψ 2 XH 7 : ψ2H 2D 8 : ψ4 A I X = Gµν , Wµν , Bµν ψ = q, l, u, d, e Buchmuller & Wyler 1986 Grzadkowski, Iskrzynski, Misiak and Rosiek 2010 A Manohar (UCSD) 17 Mar 2015 / Vienna 13 / 46 Dimension Six Operators 1 : X3 QG QGe f ABC GµAν GνBρ GρCµ f ABC e Aν GBρ GCµ G ρ ν µ IJK 2 : H6 QH † 3 : H 4D2 3 (H H) QH QHD † 5 : ψ 2 H 3 + h.c. † (H H)(H H) ∗ † H † Dµ H H Dµ H WµIν WνJρ WρK µ QW QW e f Iν W Jρ W K µ IJK W µ ν ρ QeH (H † H)(¯lp er H) QuH e ¯p ur H) (H † H)(q QdH ¯p dr H) (H † H)(q QeB (¯lp σ µν er )HBµν QHW H H I Wµν W Iµν QuG e GA ¯p σ µν T A ur )H (q µν QHe QH W e f I W Iµν H †H W µν QuW e WI ¯p σ µν ur )τ I H (q µν QHq QHB H † H Bµν B µν QuB e Bµν ¯p σ µν ur )H (q QHq QH Be e µν B µν H †H B QdG A ¯p σ µν T A dr )H Gµν (q QHu QHWB I H † τ I H Wµν B µν QdW I ¯p σ µν dr )τ I H Wµν (q QHd 7 : ψ2 H 2 D ← → (H † i D µ H)(¯lp γ µ lr ) →I † ← (H i D µ H)(¯lp τ I γ µ lr ) ← → ¯p γ µ er ) (H † i D µ H)(e ← → ¯ p γ µ qr ) (H † i D µ H)(q ← → ¯p τ I γ µ qr ) (H † i D Iµ H)(q ← → ¯ p γ µ ur ) (H † i D µ H)(u ← → (H † i D µ H)(d¯p γ µ dr ) QH W eB f I B µν H †τ I H W µν QdB ¯p σ µν dr )H Bµν (q QHud + h.c. e † Dµ H)(u ¯p γ µ dr ) i(H 4 : X 2H 2 † 6 : ψ 2 XH + h.c. QHG H H A Gµν GAµν QeW QH Ge e A GAµν H †H G µν † A Manohar (UCSD) I (¯lp σ µν er )τ I HWµν (1) QHl (3) QHl (1) (3) 17 Mar 2015 / Vienna 14 / 46 Dimension Six Operators ¯ LL) ¯ 8 : (LL)( Qll (¯lp γµ lr )(¯ls γ µ lt ) (1) Qqq ¯p γµ qr )(q ¯s γ µ qt ) (q (3) Qqq ¯p γµ τ I qr )(q ¯s γ µ τ I qt ) (q ¯ s γ µ qt ) (¯lp γµ lr )(q (1) Qlq (3) Qlq ¯ RR) ¯ 8 : (LL)( ¯ ¯ 8 : (RR)( RR) Qee ¯p γµ er )(e ¯ s γ µ et ) (e Qle ¯ s γ µ et ) (¯lp γµ lr )(e Quu ¯p γµ ur )(u ¯ s γ µ ut ) (u Qlu ¯ s γ µ ut ) (¯lp γµ lr )(u Qdd (d¯p γµ dr )(d¯s γ µ dt ) Qld (¯lp γµ lr )(d¯s γ µ dt ) Qeu ¯p γµ er )(u ¯ s γ µ ut ) (e Qqe ¯p γµ qr )(e ¯s γ µ et ) (q ¯s γ µ τ I qt ) Qed (¯lp γµ τ I lr )(q ¯p γµ er )(d¯s γ µ dt ) (e (1) Qqu ¯p γµ qr )(u ¯s γ µ ut ) (q (1) Qud (8) Qud ¯p γµ ur )(d¯s γ µ dt ) (u (8) Qqu ¯p γµ T A qr )(u ¯s γ µ T A ut ) (q (1) Qqd (8) Qqd ¯p γµ qr )(d¯s γ µ dt ) (q ¯ p γµ (u T Au ¯ ¯ + h.c. 8 : (LR)( RL) Qledq (¯lpj er )(d¯s qtj ) ¯ r )(ds γµT Ad t) ¯p γµ T A qr )(d¯s γ µ T A dt ) (q ¯ ¯ + h.c. 8 : (LR)( LR) Qquqd (1) ¯pj ur )jk (q ¯sk dt ) (q (8) Qquqd (1) Qlequ (3) Qlequ ¯pj T A ur )jk (q ¯sk T A dt ) (q ¯sk ut ) (¯lpj er )jk (q ¯sk σ µν ut ) (¯lpj σµν er )jk (q Buchmuller & Wyler 1986 Grzadkowski, Iskrzynski, Misiak and Rosiek 2010 ψ 4 → JJ, (LR)(LR), (LR)(RL) In the broken phase: " H= √1 2 X 2H 2 : ψ 2 XH : # h → γγ, h → gg l r σµν es F µν ψ2H 3 : A Manohar (UCSD) ϕ+ v + h + ϕ0 µ → eγ higgs coupling 3 = mass 1 17 Mar 2015 / Vienna 16 / 46 Power Counting for the RGE Amplitudes and anomalous dimensions obey power counting: d (6) C ∝ C (6) dµ h i2 ∝ C (8) + C (6) µ µ d (8) C dµ In the SM, because of the dimension two operator H † H, have µ d (4) 2 (6) C + ... C ∝ C (4) + mH dµ 2 → v2 equivalently mH ? SM parameter RG evolution affected. A Manohar (UCSD) 17 Mar 2015 / Vienna 17 / 46 Anomalous Dimension Matrix g3X 3 g3X 3 H6 H 4D2 g2X 2H 2 y ψ2H 3 gy ψ 2 XH ψ2H 2D ψ4 1 2 3 4 5 6 7 8 1 g2 0 0 1 0 0 0 0 H6 2 g6λ λ, g 2 , y 2 g 4 , g 2 λ, λ2 g6, g4λ λy 2 , y 4 0 λy 2 , y 4 0 H 4D2 3 g6 0 g 2 , λ, y 2 g4 y2 g2y 2 g2, y 2 0 g2X 2H 2 4 g4 0 1 g 2 , λ, y 2 0 y2 1 0 y ψ2H 3 5 g6 0 g 2 , λ, y 2 g4 g 2 , λ, y 2 g 2 λ, g 4 , g 2 y 2 g 2 , λ, y 2 λ, y 2 gy ψ 2 XH 6 g4 0 0 g2 1 g2, y 2 1 1 0 g2, y 2 g4 y2 g2y 2 g 2 , λ, y 2 y2 0 0 0 0 g2y 2 g2, y 2 g2, y 2 ψ2H 2D 7 g6 ψ4 8 g6 Structure of anomalous dimension matrix. Jenkins, Trott, AM: 1309.0819 Many entries exist because of EOM A Manohar (UCSD) 17 Mar 2015 / Vienna 18 / 46 Naive Dimensional Analysis Georgi, AM: NPB234 (1984) 189 Jenkins, Trott, AM: 1309.0819 Related recent work by Buchalla et al. arXiv:1312.5624 2 2 L=f Λ ψ √ a f Λ H f b yH Λ c d D gX e , Λ Λ2 NDA weight w ≡ powers of f 2 in denominator. 6 (H † H)3 2 2 H L=f Λ = Λ2 , f f4 γij ∝ λ 16π 2 nλ y2 16π 2 ny g2 16π 2 Λ = 4πf w =2 ng , N = nλ + ny + ng N = 1 + wi − wj A Manohar (UCSD) 17 Mar 2015 / Vienna 19 / 46 Familiar Example: b → sγ Use Oq = bγ µ PL u uγµ PL s g Og = mb b σ µν Gµν PL s 16π 2 w =1 w =0 Then d µ dµ Cq Cg = L L+1 L−1 L Cq Cg where L is the number of loops of the diagram. A Manohar (UCSD) 17 Mar 2015 / Vienna 20 / 46 Tree-Loop Mixing (incorrect) Claim Operators can be classified into “tree” and “loop” Based on some notion of “minimal coupling” The mixing of “tree” and “loop” operators vanishes at one loop Bauer et al. for HQET provides a counterexample A Manohar (UCSD) 17 Mar 2015 / Vienna 21 / 46 γ68 as a counterexample " # d 1 (3) CeB = 4g N (y + y )C [Y ] u q u ts + . . . 1 c lequ dµ pr 16π 2 prst " # 1 d (3) µ CeW = −2g N C [Y ] u ts + . . . 2 c lequ dµ pr 16π 2 prst " # 1 d (3) 4g1 (ye + yl ) Clequ [Ye ]ts + . . . µ CuB = dµ pr 16π 2 stpr " # 1 d (3) −2g2 Clequ [Ye ]ts + . . . , µ CuW = dµ pr 16π 2 stpr µ Class 6 are the magnetic dipole operators: QeB = (¯lp,a σ µν er )H a Bµν pr Class 8 are four-fermion operators (3) ¯sk α uαt ) − 8(¯lpj uαt )jk (q ¯sk α er ) ¯sk σ µν ut ) = −4(¯lpj er )jk (q Qlequ = (¯lpj σµν er )jk (q (1) ¯sk α er ) = −4Qlequ − 8(¯lpj uαt )jk (q A Manohar (UCSD) 17 Mar 2015 / Vienna 22 / 46 Full 2499 × 2499 anomalous dimension matrix computed, including all Yukawa couplings, not just yt . Alonso, Jenkins, Trott, AM: JHEP 1310 (2013) 087, JHEP 1401 (2014) 035, arXiv:1312.2014 Group theory can be quite complicated — the penguin graph gives an anomalous dimension 7 pages long. Concentrate on a small part of the result. A Manohar (UCSD) 17 Mar 2015 / Vienna 23 / 46 There are some big numbers: The evolution of the H 6 coefficient is i d 1 h 2 2 µ CH = 108 λ C − 160 λ C + 48 λ C H H HD + . . . dµ 16π 2 Independent of normalization of CH . For mH ∼ 126 GeV, 108 λ/(16π 2 ) ≈ 0.1. A Manohar (UCSD) 17 Mar 2015 / Vienna 24 / 46 X 2 H 2 (Gauge-Higgs) Operators Grojean, Jenkins, Trott, AM: JHEP 1304 (2013) 016 Look at only 4 operators (since there are 59 operators) CHW → cW , etc. rescaled by gi gj /(2Λ2 ) g32 † H H GµA ν GA µ ν , 2 Λ2 g2 = 22 H † H Wµa ν W a µ ν , 2Λ OG = OW g12 † H H Bµ ν B µ ν , 2 Λ2 g1 g2 † a = H τ H Wµa ν B µ ν , 2 Λ2 OB = OWB Also CP-odd versions, which do not interfere with the SM amplitude. When you expand them out in the broken phase, H → h + v , get h → γγ, h → γZ and gg → h. A Manohar (UCSD) 17 Mar 2015 / Vienna 25 / 46 Considered these operators in an earlier work, and an explicit model that produced these operators. AM, M.B. Wise, PLB636 (206) 107, PRD74 (2006) 035009 An exactly solvable model that produces only the OW , OWB and OB operators and the W 3 operator: AM: PLB 726 (2013) 347 L = LSM + Dµ S †α D µ Sα − V , the usual Standard Model Lagrangian LSM , the Sα , α = 1, . . . , N kinetic energy term, and the potential λ1 † λ2 H H S †α Sα + H † τ a H S †α τ a Sα N N λ3 †α λ 4 + S Sα S †β Sβ + S †α τ a Sα S †β τ a Sβ N N V = mS2 S †α Sα + A Manohar (UCSD) 17 Mar 2015 / Vienna 26 / 46 cW = (λ1 /λ3 ) 48 log Λ23 hΦi , cB = (λ1 /λ3 )YS2 12 log cW 3 = Λ23 hΦi , cWB = (λ2 /λ4 )YS Λ2 4 24 log hΦi N g23 . 2880π 2 hΦi disproves claims that these are “loop-supressed” operators, and smaller than other contributions such as four-fermion operators. All terms depend on RG invariant quantities. A Manohar (UCSD) 17 Mar 2015 / Vienna 27 / 46 Constraint on cWB from the S parameter. cWB = − 1 Λ2 S. 8π v 2 The gg → h amplitude gets contribution from cG For h → γγ, cγγ = cW + cB − cWB For h → γZ , cγZ = cW cot θW − cB tan θW − cWB cot 2θW , A Manohar (UCSD) 17 Mar 2015 / Vienna 28 / 46 Contribution to the Higgs Decay Rate 2 4π 2 v 2 cγγ Γ(h → γγ) ' 1− Λ2 I γ ΓSM (h → γγ) and I γ ≈ −1.64. Note the 4π 2 . Similar expressions for gg → h and h → γZ . A Manohar (UCSD) 17 Mar 2015 / Vienna 29 / 46 Brief Experimental Summary ATLAS: µγγ = 1.17 ± 0.27 CMS: µγγ = 1.14 ± 0.25 Naive combination of these results (not recommended) gives µγγ ' 1.155 ± 0.18 If due to cγγ : v2 cγγ (Mh ) ' −0.086, 0.003 ± 0.003 Λ2 The second solution is preferred. The first solution is when cγγ switches the sign of the standard model h → γγ amplitude. The experiments are sensitive to these effects if the new physics scale Λ is near a few TeV. (4.5 TeV) A Manohar (UCSD) 17 Mar 2015 / Vienna 30 / 46 Magnetic Dipole Operator Ceγ = rs 1 1 CeB − CeW g1 rs g2 rs ev L = √ Ceγ er σ µν PR es Fµν + h.c. 2 rs where r and s are flavor indices ({ee , eµ , eτ } ≡ {e , µ , τ }) and 9 1 Y (s) + e2 12 − csc2 θW + sec2 θW Ceγ rs rs 4 4 1 + 2Ceγ [Ye Ye† ]vs + +2 cos2 θW [Ye† Ye ]rw Ceγ + e2 (12 cot 2θW ) CeZ rv ws 2 rs † † − (2 sin θW cos θW ) [Ye Ye ]rw CeZ − cot θW [Ye ]rs CHWB + iCH W fB ws 8 5 + e2 [Ye† ]rs Cγγ + i Ceγγ + e2 cot θW − tan θW [Ye† ]rs CγZ + i CeγZ 3 3 C˙eγ = (3) + 16[Yu ]wv C lequ rsvw as corrected by Signer and Pruna, arXiv:1408:3565 A Manohar (UCSD) 17 Mar 2015 / Vienna 31 / 46 The current experimental limit BR(µ → eγ) < 5.7 × 10−13 from the MEG experiment implies √ v 2 me Ceγ . 2.7 × 10−4 TeV−2 µe at the low energy scale µ ∼ mµ . This bound implies mt (3) C . 1.4 × 10−3 TeV−2 me lequ µett using the estimate ln(Λ/mH )/(16π 2 ) ∼ 0.01 for the renormalization group evolution, and assuming that this term is the only contribution to Ceγ at low energies. µe A Manohar (UCSD) 17 Mar 2015 / Vienna 32 / 46 The anomalous magnetic moment of the muon is 4mµ v δaµ = − √ Re C eγ µµ 2 which yields the limits −2 |CHWB | . 0.6 TeV , −2 |Cγγ | . 4 TeV , m t (3) Re Clequ . 7 TeV−2 , mµ µµtt assuming that each of these is the only contribution to C eγ . µµ The bound on the electric dipole moment of the electron translates to the limits C f . 2 × 10−4 TeV−2 , Ceγγ . 1 × 10−3 TeV−2 , mt Im Clequ . 2 × 10−5 TeV−2 me HW B eett using the recently measured upper bound de < 8.7 × 10−29 e cm from the ACME collaboration, again assuming each of these terms is the only contribution. A Manohar (UCSD) 17 Mar 2015 / Vienna 33 / 46 Minimal Flavor Violation MFV based on the structure of flavor violation in the SM. ⊗i SU(3)i i = Q, U, D, L, E YD → UQ YD UD† The RGE preserves MFV, since it is a symmetry But if MFV is violated by dimension-six operators, then MFV feeds into all the sectors via the RGE Allows one to test MFV in a model-independent way MFV not compatible with GUTS. Accidental symmetry of the SM. Recent polarization B modes indicate a GUT scale. A Manohar (UCSD) 17 Mar 2015 / Vienna 34 / 46 Empirical Observation C˙eγ ∝ Cγγ + i Ceγγ , Ceγ no ∗ Cγγ − i Ceγγ , Ceγ f (z) depends only on z but not z ∗ Find this after adding all graphs and using the EOM. Individual contributions are not holomorphic, and only the total respects holomorphy. Observation: 1-loop anomalous dimension matrix respects holomorphy to a large extent. Using EOM, so equivalent to computing (on-shell) S-matrix elements. A Manohar (UCSD) 17 Mar 2015 / Vienna 35 / 46 Holomorphy Recall d = 6 operator classes 1 : X3 2 : H6 3 : H 4D2 4 : X 2H 2 5 : ψ2H 3 6 : ψ 2 XH 7 : ψ2H 2D 8 : ψ4 Divide d = 6 Operators into Holomorphic, Antiholomorphic and Non-Holomorphic Operators ± Xµν = 1 eµν , Xµν ∓ i X 2 eµν ≡ µναβ X αβ /2 X e ± = ±iX ± , X µν µν e e µν = −Xµν X X → X± ψ → L, R Complex self-duality condition in Minkowski space. A Manohar (UCSD) 17 Mar 2015 / Vienna 36 / 46 Holomorphy Definition The holomorphic part of the Lagrangian, Lh , is the Lagrangian constructed from the fields X + , R, L, but none of their hermitian conjugates. These transform as (0, 21 ) or (0, 1) under the Lorentz group, i.e. only under the SU(2)R part of SU(2)L × SU(2)R . Holomorphy Ld=6 = Lh + Lh + Ln = Ch Qh + Ch Qh + Cn Qn o n 3 2 Qh ⊂ X + , X + H 2 , Lσ µν R X + H, (LR)(LR) n o 3 2 Qh ⊂ X − , X − H 2 , Rσ µν L X − H, (RL)(RL) n o Qn ⊂ H 6 , H 4 D 2 , ψ 2 H 3 , ψ 2 H 2 D, (LR)(RL), JJ Some of the n operators are complex. A Manohar (UCSD) 17 Mar 2015 / Vienna 38 / 46 Holomorphy X d C˙ i ≡ 16π 2 µ Ci = γij Cj , dµ i = h, h, n j=h,h,n γhh γhh γhn γhh γhh γhn γnh γnh γnn γhh = γhh ∗ γhh = γhh ∗ γhn = γhn only need to look at: γhh γhh γhn γnh γnh γnn ! 0: Vanishes by NDA, i.e. NDA gives a negative loop order @: There is no one-loop diagram (including from EOM) hF : Holomorphic. Nonholomorphic terms forbidden by NDA and flavor symmetry → 0: Vanishes by explicit computation, after adding all contributions. Individual graphs need not vanish. h: Holomorphic, by explicit computation ∗: Non-zero I QeW = (¯lp σ µν er )τ I HWµν (1) ¯sk ut ) Qlequ = (¯lpj er )jk (q (1)∗ C˙ eW ∝ Ye Ye Yu† Clequ but NDA says only order y 2 . A Manohar (UCSD) 17 Mar 2015 / Vienna 40 / 46 Holomorphy (X + )3 (X + )2 H 2 ψ 2 X + H (LR)(LR) (LR)(RL) JJ ψ2H 3 H 6 H 4D2 ψ2H 2D (X + )3 h →0 0 0 0 0 0 0 0 0 (X + )2 H 2 h h h 0 0 @ 0 0 →0 →0 ψ2X +H h h h hF →0 →0 →0 0 @ →0 (LR)(LR) →0 @ hF hF † Yu† Ye,d † Yu† Ye,d @ @ @ →0 (LR)(RL) →0 @ →0 Yu Yd , Yu† Ye† hF ∗ @ @ @ →0 JJ →0 @ →0 Yu Ye,d ∗ ∗ @ @ @ ∗ ψ2H 3 →0 † Yu,d,e h h ∗ ∗ ∗ @ ∗ ∗ H6 →0 ∗ @ @ @ @ ∗ ∗ ∗ ∗ H 4D2 →0 →0 →0 @ @ @ →0 @ ∗ ∗ ψ2H 2D →0 →0 →0 →0 →0 ∗ →0 @ ∗ ∗ The 1 1 block is holomorphic γhh = 0 The 1 2 block vanishes except for the red terms proportional to Yu Ye or Yu Yd . e j − l j Ye† e Hj + h.c. LY = −q j Yd† d Hj − q j Yu† u H e j = ij H †j H ψ 2 H 3 behaves to some extent like a holomorphic operator. one entry ∗ present even if Yukawa couplings set to zero. A Manohar (UCSD) 17 Mar 2015 / Vienna 42 / 46 RGE of SM parameters Recall that µ d (4) 2 (6) C ∝ mH C dµ d d µ τ =µ dµ dµ θX 4π −i 2 2π gX ! = 2 2mH CHX ,+ πgX2 e and where θ-terms are normalized as L ⊃ (θX gX2 /32π 2 )X X X ∈ {SU(3), SU(2), U(1)}. τ is the SUSY holmorphic gauge coupling A Manohar (UCSD) 17 Mar 2015 / Vienna 43 / 46 ∗ Entry: Some Numerology C˙ H = −3g22 g12 + 3g22 − 12λ Re(CHW ,+ ) − 3g12 g12 + g22 − 4λ Re(CHB,+ ) − 3g1 g2 g12 + g22 − 4λ Re(CHWB,+ ) + . . . The CHB,+ and CHWB,+ terms vanish if g12 + g22 = 4λ: 2 mH = 2mZ2 = (129 GeV)2 , and the CHW ,+ term vanishes if g12 + 3g22 = 12λ: 2 mH = 2 2 4 2 m + m = (119 GeV)2 , 3 Z 3 W If g12 + g22 = 4λ: C˙ H = 6g12 g22 Re(CHW ,+ ) + . . . A Manohar (UCSD) 17 Mar 2015 / Vienna 44 / 46 No explanation for this at present. A Manohar (UCSD) 17 Mar 2015 / Vienna 45 / 46 Summary Complete RGE of dimension-six operators of SM EFT computed for first time. Contribution of dimension-six operators to running of SM parameters calculated for first time. RG evolution of dimension-six operators important for Higgs boson production gg → h and decay h → γγ and h → Z γ, which occur at one loop in SM. Significant constraints on flavor structure of SM EFT. Test of MFV hypothesis. Approximate holomorphy of 1-loop anomalous dimension matrix of dimension-six operators. I I Does it hold in a more general gauge theory? Does any of it extend beyond one loop? A Manohar (UCSD) 17 Mar 2015 / Vienna 46 / 46