Lecture 9 Cofactor (I)
Transcription
Lecture 9 Cofactor (I)
Lecture 9 - Co-factors Part II PLP - Alanine Racemase H Me OH H 2N Designing a mechanism based PLP inhibitor? PLP.E OH H 2N OH H 2N Cl H O Cl O BH + O -How to inhibit the conversion of L-Ala to D-Ala? O O R H R O O NH NH N H H O O D-Ala O L-Ala Cl Use: H Me NH -Product -Reactant State O NH N H E N H E NH O O NH 2 OH O BH + NH NH N H N H N H Another covalent inhibitor: E NH 2 O O O O NH NH N H N H or alternatively: O O H E NH 2 NH inactive covalent adduct N H O O 2C NH O 2C O inactive covalent adduct kinact ~ Partitioning ~ k cat N H Thiamine pyrophosphate (Vitamin B1 ) Like PLP, the electron-deficient heterocyclic ring of thiamine Reactions involving thiamine pyrophosphate: 1. Decarboxylation of alpha-ketoacids: pyruvate decarboxylase pyrophosphate (TPP) stabilizes the formation of carbanionic species. O O H 2N S N O O O P O P O O O O N N D 2O H N S + CO 2 O HB + O N O N S HO O HO O Breslow (1961) was the first to propose and provide evidence for the C-2 carbanion, showing that this proton exhanges readily in D 2O B H O N S D N pH 5 S CO 2 t1/2 ~ 2 min N S ylide stabilized C OH O HS N R SH + S S S N OH S OH S O O N S + S N S N S Acetyl CoA Source of CH3CO 2H for fatty acid biosynthesis S O HO Lipoic acid - source of 2e-, 2H+ 2e-, 2H+ Elimination -could also intercept with more pyruvate O O Acyloin type condensation: O Acetolactate synthetase OH SCoA R R S S S O 2. Oxidative decarboxylations: exemplified by pyruvate dehydrogenase BH + N S BH + HO H N HO OH HS HS OH O N S O O N S + O O OH H Redox Enzymes: -NADPH/NADH nicotinamide dependent (2e -, H +) -FAD/FADPH flavin dependent 1e 1e - (2e - ,2 H +) Note compounds with lower redox potential thoroughly reduce those with higher redox potentials # electrons G=-nF E 0 Nicotinamide adenine dinucleotide (phosphate) ~23 kcal/mol O NH 2 O N O P O O HO O O P O 2H + 2e- + 1/2O 2 Cu 2+ + 1e Cu+ + riboflavin + 2H + 2eNAD + + 2H+ + 2e- A O O OH HO OH O HO H O O O NH 2 N O O H H O O NH 2 NH 2 Reactions of NAD + /NADPH+ Enzymes ( 2e- /H+) O H OH H NH 2 O NH 2 O O H Overall Reaction: O reduce N N NAD + + 2H+ +2e - riboflavinH 2 NADH + H + +0.81eV +0.15eV -0.22eV -0.32eV -use nicotinamide to reduce riboflavin -molecular oxygen is reduced by riboflavin, not nicotinamide (1e - process) BH + H H 2O NADH + H + E' 0= -0.32V O OH O H OH O + 2H+ +2e - O O E' 0= -0.19V O OH O O O O + NADH + H + H Note that these are all sterospecific Pro R HR O E' 0=E'0(red) - E' 0(oxid) = -0.19V - (-0.32V) = 0.13V N To deduce whether it is pro R or pro S replace that H by D and deterine R or S configuration Si Trasfers one prochirial H HS O Me H Pro S NH 2 Zn2+ O N Re O NH 2 Me O HR H S Flavin OH Reactions of Flavin Enzymes ( 2e- /2H+) OH O 10 N 10a OH N1 O O P O O 4a 5 N 4 O NH OH Handle N H OH H NH NH 2 N O N 1e - NH N O NH N H N O H+ N NH O O O NADH NAD + O 1e - reduced O N H S SH SH 1e - N O A O O H O N oxidized P HO 2 N O S OH N O NH OH R OH R O O O 2e- reduced O O X X H OH OH R R O O R H R OH Reaction of glutathione (glutathione reductase) NADH + Enz.Fl + GS-SG 2GSH + Molecular oxygen Enz.Fl + FAD FADH 2 FAD FAD S S SH SH S S S S G S G S G S NAD + N FAD B + GSH S + 2GSH N H S H N O H+ N N NH N H O O NH O O O BH + O OH BH + "peracid" Source of +OH N N N H N O NH O S S N N O N H N S O S O O SH BH + OH O NH N H NH N BH + BH + N NH N O O OH B S O N B N N O O OH O NH N N H HO N O + NH OH HO