AC Network Analysis
Transcription
AC Network Analysis
Learning objectives AC Network Analysis 1. 2. 3. 4. 5. 6. 1 Compute current, voltage and energy stored in capasitors and inductors Calculate the average and rms value of periodic signals Write the differential equation for circuits containing inductors and capasitors Convert time domain sinusoidal voltages and currents to phasors and vice versa Represent circuits using impedances Apply known circuit analysis methods to AC circuit in phasor form 2 Ideell Kondensator (Capasitor) Structure of parallel-plate capacitor Kretsparameter: Capasitans C Kan både ta opp og avgi elektrisk energi. Lagrer energi i form av elektrisk felt 3 4 Serie og Parallel kobling av Kapasitanser Viktig observasjon for Ideell Kondensator (Capacitor) i + v C • Tillater ikke sprang (diskontinuitet) i spenningen • Tillater imidlertid sprang i strømmen gjennom kapasitansen • Representeres som en åpen krets ved konstant spenning 5 6 1 Calculation of energy stored in a capasitor Iron-core inductor Magnetic flux lines Iron core inductor i ( t) L + di v L (t ) = L dt _ Circuit symbol 7 8 Inductanse and practical inductor Ideell Spole (Inductor) Kretsparameter: Induktans L Kan både ta opp og avgi elektrisk energi. Lagrer energi i form av magnetisk felt 9 10 Serie og Parallel kobling av Induktorer Viktig observasjon for Ideell Spole (Inductor) 1 + v + C L _ 2 • Tillater ikke sprang (diskontinuitet) i strømmen • Tillater imidlertid sprang i spenningen over induktansen • Representeres som en kortsluttning ved konstant strøm 11 12 2 Energy stored in an Inductor 13 14 Analogy between electrical and fluid resistance v1 R Analogy between fluid capacitance and electrical capacitance v1 v2 i p2 qf p2 p1 Rf + v p Cf _ qf p2 qf qf P1 _ 15 v2 p1 16 Analogy between fluid inertance and electrical inertance v1 i L + qf 17 gas + C p1 p2 i p2 Analogy between electrical and fluid circuits v2 v – If p1 18 3 Time-dependent signal sources v (t) +_ i (t) Sinusoidal waveform __ v (t), i(t) + Generalized time-dependent sources Sinusoidal source 19 20 Phase angle / phase shift Periodic signal waveforms The sine wave Vmsin(ωt + θ) leads Vmsinωt by θ rad. 21 22 RMS Value of Sinusoidal Waveform Average and RMS values The rms, or effective , value of a current (or voltage) is the DC (or DC voltage) that causes the same average power to be dissipated by the resistor. 23 24 4 Analysis of circuits containing dynamic elements Exercise Given the sinusoidal voltage: v(t ) = 325cos(100π t + 30o ) V 1. What is the period of the voltage? 2. Calculate the frequency? 3. What is the value of the voltage at t=3.333ms? 4. Calculate the rms value of the voltage? 25 26 The steady-state response of circuits excited by sinusoidal sources 27 The steady-state response of circuits excited by sinusoidal sources cont. 28 The steady-state sinusoidal response Relationship between polar and rectangular coordinates of a complex number In a sinusoidally excited linear circuit, all branch voltages and currents are sinusoids at the same frequency as the excitation signal. The amplitudes of these voltages and currents are a scaled version of the excitation amplitude, and the voltages and currents may be shifted in phase with respect to the excitation signal. ρ e jθ = ρ cosθ + j ρ sin θ ρ e jθ = a + jb θ = tg 29 b , ρ = a 2 + b2 a 30 5 The steady state response The steady state response Complex Forcing Function From Eulers identity and and the superposition theorem we find: •A complex forcing function may be considered as the sum of a real and an imaginary forcing function •The real part of the complex response is produced by the real part of the forcing function. The imaginary part of the response is produced by the imaginary part of the complex forcing function The sinusoidal forcing function Vm cos (ωt + θ) produces the steady-state response Imcos (ωt + θ). The complex forcing function Vme j(ωt + θ) produces the complex response Ime j(ωt + θ). The imaginary sinusoidal forcing function j Vmsin (ωt + θ) produces the imaginary sinusoidal response j Imsin (ωt + θ). 31 32 Phasor Transformation Definition of a Phasor En prosess hvor en sinusformet strøm eller spenninger blir konvertert fra en størrelser i tidsplanet til en kompleks størrelse i frekvensplanet Vi merker oss at frekvensplan representasjonen ikke eksplisitt inneholder informasjon om den aktuelle frekvensen til sinussignalet. Frekvensen er kjent på forhånd og er derfor unødvendig i representasjonen 33 v (t ) = Vm cos(ω t + φ ) v ( t ) = R e {V m e j ( ω t + φ ) } V = Vm e jφ V = Vm ∠ φ Frequency domain 34 Complex eksponetial function Vejωt Phasor diagram 35 Time domain 36 6 A graphical representation of two sinusoids v1 and v2 Summasjon av visere The magnitude of each sine function is represented by the length of the corresponding arrow, and the phase angle by the orientation with respect to the positive x axis. In this diagram, v1 leads v2 by 100o + 30o = 130o, although it could also be argued that v2 leads v1 by 230o. It is customary, however, to express the phase difference by an angle less than or equal to 180o in magnitude. 37 38 Spole representasjon i frekvensplanet Motstand representasjon i frekvensplanet i(t) Diagrammet viser at summasjon av sinus størrelser kan illustreres geometrisk ved hjelp av visere. + v(t) R Spenningen over resistansen blir i frekvensplanet : V = RI 39 40 Definisjon Kondensator representasjon i frekvensplanet 41 Impedans Resistans og Reaktans 42 7 Definisjon Resistor , Capasitor, and inductor in time and in the phasor domain Admittans Konduktans og Suseptans Enkelte ganger (f.eks i forbindelse med paralellkobling av impedanser) kan det være hensiktsmessig å innføre størrelsen admittans (a) (b) Admittansen til et element defineres som den inverse av impedansen: (c) Måleenheten for admittans (konduktans og suseptans) er Siemens (S) 43 44 In the phasor domain, (a) a resistor R is represented by an impedance of the same value; (b) a capacitor C is represented by an impedance 1/jωC; (c) an inductor L is represented by an impedance jωL. Bestemmelse av impedansen Impedances R, L and C in the complex plain For å bestemme impedansen til et ukjent kretselement eller en toport må vi først transformere støm og spenning til frekvensplanet. Dvs.utrykke støm og spenning som komplekse visere Impedansen beregnes som forholdet mellom spenningsviseren og strømviseren. Impedansen blir generelt en kompleks størrelse. Måleenheten er ohm 45 46 Numerical example Den imaginære delen til impedansen kalles reaktansen Merk: Impedansen er ikke en viser Kirchhoffs laws in the frequency domain Calculation of impedans This circuit is operating in the sinusoidal steady state with v(t) = 50 cos(500t) V and i(t) = 4 cos(500t < 60°) A. Find the impedance of the elements in the box. 47 48 8 Kirchhoffs laws in the frequency domain Example 49 Flow diagram for Phasor circuit Analysis. 50 Numerical example Series connection of impedances 51 52 Numerical example 53 Series connection of impedances Series connection of impedances 54 Design the voltage divider so that an input vS=15cos2000t V produces a steady-state output v0(t) = 2sin2000t V. 9 Parallel connection of impedances Figure 15-15 (p. 682) 55 56 Parallell connection of two impedances Numerical Example Steady-state currents Find the steady-state currents i(t), iC(t), and iR(t) for vS = 100 cos 2000t V, L = 250 mH, C = 0.5 µF, and R = 3 kΩ. 57 58 Numerical Example steady-state currents Find the i(t), iC(t), and iR(t) for vS = 100 cos2000t V, L = 250 mH, C = 0.5 µF, and R = 3 kΩ . 59 Figure 4.37 60 10 Phasor diagram (a) A phasor diagram showing the sum of V1 = 6 + j8 V and V2 = 3 – j4 V, V1 + V2 = 9 + j4 V = 9.85∠24.0o V. (b) The phasor diagram shows V1 and I1, where I1 = YV1 and Y = 1 + j S = 1.4∠45o S. The current and voltage amplitude scales are different. 61 62 An AC circuit Figure 4.41 63 11