visioner for korn visions for cereals program & abstracts 26.
Transcription
visioner for korn visions for cereals program & abstracts 26.
CEREALIENETVÆRKETS ÅRSMØDE VISIONER FOR KORN VISIONS FOR CEREALS PROGRAM & ABSTRACTS 26.-27. OKTOBER 2010 VISIONER FOR KORN VISIONS FOR CEREALS 1 INDHOLD CONTENTS Forord / Preface 3 Program / Programme 4 Abstracts 7 Bestemmelse af kornkvalitet nu og i fremtiden 7 Se indersiden af kornkerne med hyperspektral billedanalyse 8 Billedanalyse af korn i bevægelse i en rensemaskine 9 Tidlig måling af agrospire / spiring i maltbyg 10 Tørt brød er snart en saga blot 11 Midtvejsevaluering af 7. rammeprogram / forventninger til det 8. rammeprogram 12 Reviderede regler for dyrkning af GMO-afgrøder i Danmark og EU 13 Korn til energi eller fødevarer 14 GMO eller ej – kornforædlernes udfordringer 15 Breeding for adaptation to Mediterranean conditions 16 iKORN: Improved Quality and Disease Resistance in Cereals 17 Nitrogen input in wheat production 18 Barley genes needed for powdery mildew infection 19 Fusarium susceptibility and its toxins in wheat cultivars 20 The FHB complex in Danish small grain cereals 21 2 VISIONER FOR KORN VISIONS FOR CEREALS Phytases in cereals 22 TILLING for low phytic acid (lpa) in wheat 23 Shade avoidance and social plants 24 LemnaTec image based plant phenotyping 25 Health promoting compounds in amaranth – a pseudocereal crop for a future warmer climate 26 AROMAWHEAT: Aroma traits in modern wheat and landraces 27 AROMAWHEAT: Formation of bread flavor 28 Deltagerliste / List of Participants 29 VISIONER FOR KORN VISIONS FOR CEREALS 3 FORORD / PREFACE Forum for Cerealier er glade for at kunne byde alle deltagere velkommen til Cerealienetværkets årsmøde 2010, ”Visioner for korn”, Vi er glade for at kunne præsentere et spændende program indeholdende en lang perlerække af foredrag om emner af høj aktualitet. Foredragene og rammerne for årsmøde håber vi kan bidrage til at stimulere netværksrelation blandt alle med interesser i cerealier og på den måde bidrage til at forskning og innovation i cerealier holdes i fokus. Programmet for årsmødet 2010 giver et godt overblik over • • • nye landvindinger inden for anvendelsen af billedbehandling af korn og kornprodukter relevante lovgivnings- og finansieringsmæssige udfordringer og muligheder nye væsentlige forskningsresultater Dansk Cerealforening, der er medarrangør af Cerealienetværkets årsmøde 2010, afholder i forbindelse med årsmødet et møde om årets aktiviteter og status for foreningens økonomi. Program og præsentationer fra tidligere årsmøder kan findes på www.cernet.dk. It is a great honour for the organizing committee to welcome all speakers and participants in "The Danish Cereal Network Annual Meeting 2010 - Visions for cereals”. We are pleased to present an exciting program including a chain of presentations of subjects of high relevance. We hope that the presentations and the scene of the meeting can stimulate networking among all with interest in cereals and in this way contribute to research and innovation within cereals. • • Thursday, November 26 is dedicated to issues with a local Danish perspective. Wednesday 27 October is dedicated to cereal research and breeding in an international perspective. På vegne af Forum for Cerealier / On behalf of the organizing committee Johannes Ravn Jørgensen 4 VISIONER FOR KORN VISIONS FOR CEREALS PROGRAM / PROGRAMME Tirsdag den 26. oktober 2010 09.00-09.55 09.55-10.00 Registrering 13.50-14.10 Grøn Vækst 2.0 / GUDP – Hvordan indgår forskning Anders M. Klöcker, FødevareErhverv Velkomst Johannes Ravn Jørgensen, AU-DJF 14.10-14.30 Lisbeth Munksgaard, AAU Session 1: Billedanalyse anvendt på korn I Chair: Johannes Ravn Jørgensen, AU-DJF 10.00-10.20 10.20-10.40 Billedanalyse af korn i bevægelse i en rensemaskine Ole Thomsen Buus, AU-DJF Reviderede regler for dyrkning af GMOafgrøder i Danmark og EU Svend Pedersen, Plantedirektoratet 14.50-15.10 Korn til energi eller fødevarer Morten Gylling, Fødevareøkonomisk Institut Se indersiden af kornkerne med hyperspektral billedanalyse Morten Arngren, DTU Informatics 10.40-11.00 14.30-14.50 Bestemmelse af kornkvalitet nu og i fremtiden Poul Møller Hansen, Foss Analytical Midtvejsevaluering af 7. rammeprogram/ forventninger til det 8. rammeprogram 15.10-15.45 Pause – kaffe Session 4: Udfordringer Chair: Søren K. Rasmussen, KU-LIFE 11.00-11.30 Pause – kaffe 15.45-16.05 Preben Bach Holm, AU-DJF Session 2: Billedanalyse anvendt på korn II Chair: Johannes Ravn Jørgensen, AU-DJF 11.30-11.50 11.50-12.10 16.25-16.40 16.40-16.55 16.55-17.10 13.30-13.50 Det Strategiske Forskningsråds rolle i finansiering af forskning relevant for cerealieområdet Peter Olesen, Det Strategiske Forskningsråd Årets høst af brødkorn, forsyning, kvalitet og prisudvikling Ole Kirk Østergaard, Lantmännen Cerealia A/S Session 3: Skal der dyrkes korn i Danmark? Chair: Preben Bach Holm, AU-DJF Ny bioteknologistrategi Bruno Sander Nielsen, Landbrug & Fødevarer BoMill single kernel sorting system Frokost Sortsafprøvning Morten Haastrup, Videncentret for Landbrug Henrik Andrén, BoMill AB 12.30-13.30 GMO eller ej – kornforædlernes udfordringer Kurt Hjortsholm, Sejet Planteforædling Tørt brød er snart en saga blot Flemming Møller, Danisco A/S 12.10-12.30 16.05-16.25 Tidlig måling af agrospire / spiring i maltbyg Jens Michael Carstensen, DTU Informatics Hvordan har/kan forskningen i plantebioteknologi bidrage til bedre kornsorter 17.10-17.25 Årets høst af maltbyg og foderkorn, forsyning, kvalitet og prisudvikling Henrik Stilund, Danish Agro 17.25 Dansk Cerealforening: Årets aktiviteter og DCF's økonomi Søren K. Rasmussen, KU-LIFE 18.30 Middag / Dinner VISIONER FOR KORN VISIONS FOR CEREALS 5 Wednesday, 27 October 2010 Session 5: Improved Quality and Disease Resistance in Cereal Crops I Chair: Preben Bach Holm, AU-DJF 08.30-09.10 09.10-09.35 Breeding Cereals for adaptation to Mediterranean environments Chair: Søren K. Rasmussen, KU-LIFE 13.00-13.30 13.30-13.50 iKORN: Improved Quality and Disease Resistance in Cereals. Introduction 13.50-14.10 Session 6: Improved Quality and Disease Resistance in Cereal Crops II Chair: David Collinge, KU-LIFE 10.30-10.50 14.10-14.30 14.30-14.50 Chair: Søren K. Rasmussen, KU-LIFE 14.50-15.10 Fusarium and its toxins in wheat varieties Lise N. Jørgensen, AU-DJF 11.30-11.50 The FHB complex in Danish small grain cereals Linda Kærgaard Nielsen, AU-DJF 12.00-13.00 Lunch Health promoting compounds in amaranth – a pseudocereal crop for a future warmer climate Inge Fomsgaard, AU-DJF 15.10-15.30 Sara M. Mørch, KU-LIFE 11.10-11.30 Coffee Session 8: New aspects of cereals Nitrogen input in wheat production Barley genes needed for powdery mildew infection LemnaTec image based plant phenotyping Matthias Eberius, LemnaTec GmbH, Germany Jan Schjørring, KU-LIFE 10.50-11.10 Shade avoidance and social plants Sven Bode Andersen, KU-LIFE Markers and association genetic mapping in wheat Coffee TILLING for low-phytic acid in wheat Anna Maria Torp, KU-LIFE Gunter Backes, KU-LIFE 10.00-10.30 Phytases in cereals Henrik Brinch-Pedersen, AU-DJF Keynote: Dr. Luigi Cattivelli, Genomics Research Centre, Italy Søren K. Rasmussen, KU-LIFE 09.35-10.00 Session 7: Cereals for the future AROMAWHEAT: Aroma Traits in modern wheat and land-races Gerrard Starr, KU-LIFE 15.30-15.50 AROMAWHEAT: Formation of bread flavor Anja Niehues Birch, KU-LIFE 15.50-16.00 Closing the meeting Johannes Ravn Jørgensen, AU-DJF 6 VISIONER FOR KORN VISIONS FOR CEREALS VISIONER FOR KORN VISIONS FOR CEREALS 7 SESSION 1: BILLEDANALYSE ANVENDT PÅ KORN I Bestemmelse af kornkvalitet nu og i fremtiden Poul Møller Hansen Foss Analytical A/S FOSS udvikler og fremstiller hurtige, pålidelige og dedikerede analyseløsninger til rutinekontrol af kvalitet og forarbejdningsprocesser i landbrugsprodukter og fødevarer, samt farmaceutiske og kemiske produkter. Inden for kornområdet analyserer instrumenter fra FOSS på et eller andet tidspunkt i værdikæden fra jord til bord ca. 85% af alt verdens korn. Det er vigtigt for FOSS at bibeholde og styrke den position ved at satse på nye innovative produkter, der kan dække fremtidens behov. Traditionelt bliver korn, der handles, vurderet ud fra primært tre forskellige sæt af parametre: 1. 2. 3. ”Fysiske” parametre som vægt og massefylde. ”Interne” parametre som vand, protein og faldtal ”Eksterne” parametre som belægninger på kernerne, iblanding af fremmede arter og beskadigede kerner Til bestemmelse af de ”fysiske” og ”interne” parametre findes der allerede i dag hurtige og pålidelige analyseløsninger. Derimod er analysen af de ”eksterne” parametre som oftest udført ved manuel/visuel inspektion. Inspektørernes erfaring og udannelse varierer meget og belastningen på den enkelte inspektør varierer. Det er forhold der gør, at bedømmelserne af de enkelte kornprøver bliver subjektive og af varierende kvalitet, hvilket i den sidste ende kan give en misvisende afregning til sælgeren eller utilstrækkelig segregering mellem de enkelte kornkvaliteter under håndteringen. Det er dyrt at have inspektører ansat og det er tilsvarende svært at finde egnede personer i de tyndt befolkede landbrugsområder. I de lande hvor kornet evalueres direkte ved modtagelse fra landmand vil man kunne opnå et hurtigere gennemløb, da en manuel inspektion normalt tager mellem 5-15 minutter. Visionen for FOSS har derfor været at kunne tilbyde kunderne et objektivt og hurtigere alternativ til den manuelle inspektion, med andre ord ville FOSS gerne ”take hands and eyes out of grain inspection”. Virkeliggørelsen af denne vision er kommet nærmere med lanceringen i Australien af et vision baseret instrument kaldet ”EyeFoss”. EyeFoss kan analysere byg- og hvedeprøver op til 0,7 L. En hvedeprøve på 0,5 L indeholder ca. 10.000 kerner. EyeFoss kan på under 3 minutter tage individuelle billeder i 2D (6 kanaler) og 3D, samt lave den nødvendige klassifikation, der som resultat giver en summering (antal el. %) af indholdet af de klasser der er målet for analysen. I Australien er fokus primært bestemmelse af dækninggrad for specifikke svampe (f.eks. Black point, field fungi, germ end stain), skader på kernen (frost distorded, sprouted wheat and skinned barley), samt iblanding af fremmede kerner (flyvehavre, rajgræs, lupiner m.m.). Resultaterne fra forsøg hos en kunde i Australien sidste høst har været så positive, at de har valgt at implementere 5 instrumenter til den kommende høst. Erfaringerne fra denne høst skal danne baggrund for hvordan lanceringsplanerne bliver på andre markeder. 8 VISIONER FOR KORN VISIONS FOR CEREALS Se indersiden af kornkerne med hyperspektral billedanalyse Morten Arngren DTU Informatics Pre-germination of barley is one of many serious degradations of the barley quality in terms of malting. A pre-germinated barley kernel can under certain conditions not re-germinate and is typically reduced to animal feed of lower quality. Identifying pre-germination at an early stage is therefore essential in order to segregate the barley kernels into low or high quality. Current standard methods to quantify pre-germinated barley include visual approaches, e.g. to identify the root sprout, or conducting a falling number test requiring time consuming procedures. We present an approach using a NIR imaging system to identify pre-germinated barley at an early stage of appr. 12 hours after germination has commenced. We can however only assign pre-germination as the cause for single kernels lack of germination and is hence unable to detect dormancy, kernel damage etc. Our approach is based on almost 9000 Rosalina barley kernels being pre-germinated at different durations and afterwards dried. Re-germinating the kernels reveal a grouping of the pre-germinated kernels into 3 categories: normal, delayed and limited germination. Our method extracts a set of features as shown below, where the germination progression over time is clearly captured. Illustration 1: Image features barley kernels having 0, 12, 24, 36, 48 and 60 hours of pre-germination. The model includes a supervised classification framework based on a set of extracted features using two separate processing pipelines to employ a consensus classifier on a single kernel level. The first uses a sparse logistic regression model to classify the individual kernels. The second predicts the germination durations by a neural network model and classifies the kernels based on these predictions. The predicted durations for each kernel can further assists in achieving homogeneous germination profiles. This approach leads to a method insensitive to the kernel shell or kernel orientation. The modeling framework achieves a classification performance error between 0.14% - 10% and 2.7 hours prediction error. VISIONER FOR KORN VISIONS FOR CEREALS 9 Billedanalyse af korn i bevægelse i en rensemaskine Ole Thomsen Buus Aarhus Universitet, Det Jordbrugsvidenskabelige Fakultet, Institut for Genetik og Bioteknologi Billedanalyse kan også benyttes til at analysere objekter i bevægelse. I dette her tilfælde snakker vi om byg-kerner som bevæger sig i en rensemaskine (triøre). Et højhastighedskamera blev installeret foran en laboratorie-triøre med det formål at optage kernerne i bevægelse inden i selve cylinderen under forskellige konfigurationer af triøren (udstyr inde i cylinderen blev fjernet under disse optagelser). Målet med disse optagelser var at udtrække information fra billedsekvenserne vha. billedanalyse. Specielt havde vi fokus på udtræk af matematiske beskrivelser af de kurver som kernerne dannede i billed-planen. En korn-masse på i alt 2 kg (bestående af 50% hele og 50% halve byg-kerner) blev sendt igennem triøren og flere testkørsler blev udført. Der blev benyttet 3 forskellige celle-størrelser (5.5 mm, 6.0 mm og 7.0 mm), som hver blev kørt i 10 forskellige cylinder-hastigheder (ca. 25-50 rpm med et gennemsnitlig interval på ca. 2.5 rpm). Dette resulterede i 30 testkørsler hver af 5 sekunders varighed - alle optaget med en tids-opløsning på 260 billeder per sekund (ca. 3.8 ms per billede). Der vil blive vist noget video-materiale. Her vil det være muligt at observere forskellen på de kurver, som kernerne vil have tendens til at bevæge sig i, når de manipuleres i triøren med forskellige cylinder-hastigheder og celle-størrelser. Udover dette vises de tidlige resultater af analyser udført med ”parabel Hough transform” med det formål at detektere parabelparametre for de kurver, som kernerne danner over tid, når de forlader cylinder-overfladen (hypotesen var, at disse kurver kan tilnærmes som parabler). Det ultimative mål med disse analyser er at opbygge en brugbar matematisk model af en triøre, som vil gøre det muligt at lave visse forudsigelser om renseprocessens resultat. 10 VISIONER FOR KORN VISIONS FOR CEREALS SESSION 2: BILLEDANALYSE ANVENDT PÅ KORN II Tidlig måling af agrospire / spiring i maltbyg Jens Michael Carstensen Videometer A/S / DTU Informatik / KU Life jmc@videometer.com Spektral visionteknologi tegner til at blive et fast og vigtigt redskab for korn- og frøbranchen i de kommende år. Der er lovende anvendelser inden for præcis karakterisering af frø og kerner til f.eks. renhedsanalyse og frøbårne sygdomme, såvel som til karakterisering af spiring og forædlede produkter som f.eks. hydration, chitting, rodspirer, acrospirer, maltfarve og coatede frø. I denne præsentation fokuseres på spiringsanvendelser inden for maltproduktion. Det vises, hvordan spektral visionteknologi kan give en yderst hurtig og fleksibel måling af mange relevante karakteristika. En måling tager typisk op til 10 sekunder, og der anvendes samme måleinstrument, VideometerLab, som er kalibreret til hver af de mange anvendelser. En del af arbejdet er lavet i samarbejde med Danish Malting Group A/S VISIONER FOR KORN VISIONS FOR CEREALS 11 Tørt brød er snart en saga blot Flemming Møller Danisco A/S, Edwin Rahrs Vej 38, 8220 Brabrand, Denmark, E-mail: flemming.moller@danisco.com Vandindhold og dets fordeling i brød er en vigtig parameter for hvor friskt et brød opleves. Traditionel vandbestemmelse er en langsom og destruktiv metode med en lav rumlig opløsning. Det præsenterede arbejde beskriver udviklingen af en metode til at afbillede vandfordeling i brød. Metoden vil i fremtiden blive brugt til at vurdere, hvordan forskellige fødevareingredienser og fremstillingsprocessen påvirker vandforsyningen i brød. Fremgangsmåden ved metodeudviklingen kan bruges til at udvikle tilsvarende metoder for andre ingredienser og fødevarer. Et bush-broom NIR kamera, sisuCHEMA, som optager billeder imellem 970 og 2500 nm blev brugt til at optage billeder af brød. Al dataanalyse og modeludvikling blev udført ved hjælp Evince (Umbio AB, Umeå, Sverige). Nær-skorpe og centerstykker for tre typer brød blev indsamlet over 11 dage, se figur 1. For hvert brødstykke blev der målt vandindhold og taget NIR billeder. Til modellering og forudsigelse af vandfordelingen blev en Partial Least Square regression brugt. Modellen havde en gennemsnitlig fejl (RMSEP) på 0,65% vand, se figur 2. Den udviklede model er brugt til at visualisere fugtdistribution i en hel skive brød, som ses i figur 3. Figur 1. Billede som viser, hvor Nær-skorpe og centerstykker blev indsamlet til modeludvikling. Figur 2. Observerede vandkoncentrationer afbilledet imod beregnede vandkoncentrationer. Røde cirkler er prøver fra modeludviklingen og blå cirkler er test-set prøver. Figur 3. Et billede som forudsiger vandfordelingen i en skive toast brød. 12 VISIONER FOR KORN VISIONS FOR CEREALS SESSION 3: SKAL DER DYRKES KORN I DANMARK? Midtvejsevaluering af 7. rammeprogram / forventninger til det 8. rammeprogram Lisbeth Munksgaard Aalborg Universitet Midtvejsevalueringen af 7. rammeprogram ventes at blive offentliggjort sidst i oktober 2010. Den er altså i skrivende stund ikke tilgængelig. Der kommer dog løbende signaler fra EU’s forskningskommisariat og EU’s medlemslande, som peger på en række trends. Blandt disse hovedtrends er følgende: ‐ ‐ ‐ ‐ ‐ Der vil blive iværksat forskning, som kan imødegå de såkaldte Grand Challenges Programmerne forventes at komme til i højere grad at rumme brede, mere strategisk rettede overskrifter end det har været tilfældet i FP7 Der vil være fortsat fokus på at få Medlemslandene til at samfinansiere programmerne i form af ERA-nets, Joint Programing initiativer og lignende fælles instrumenter Der vil blive endnu større fokus på public private partnerships og især på at få vækstlaget af små virksomheder med i programmerne Der vil fortsat blive stærkt fokus på samarbejde med 3.-lande Ud fra de trends, der er tilgængelige inden den 26. oktober, vil der blive lagt op til diskussion af perspektiverne for dansk cerealieproduktion og cerealieforskning. VISIONER FOR KORN VISIONS FOR CEREALS 13 Reviderede regler for dyrkning af GMO-afgrøder i Danmark og EU Svend Pedersen Plantedirektoratet EU-Kommissionen udsendte den 13. juli 2010 to nye udspil på GMO-området: 1) En ny henstilling til medlemsstaterne om retningslinjer for udvikling af foranstaltninger til sikring af sameksistens mellem genmodificerede (GM) og konventionelle og økologiske afgrøder og 2) et forslag om tilføjelse af en ny regel i udsætningsdirektivet1 om nationale forbud mod dyrkning af GM-afgrøder. Den nye regel gør det muligt at indføre nationale dyrkningsforbud med henvisning til andre årsager end risici for miljøet eller menneskers og dyrs sundhed. Den nye henstilling om sameksistens gælder umiddelbart. Derimod skal forslaget til ændring af udsætningsdirektivet gennem den vanlige politiske proces i EU for vedtagelse af regelændringer. Parallelt med processen frem mod færdiggørelsen af Kommissionens nye udspil har Folketinget i løbet af foråret 2010 behandlet et beslutningsforslag om indførelse af GMO-fri zoner i Danmark (B158) og en forespørgsel om regeringens initiativer for at træffe beslutninger om dyrkning af GM-afgrøder i Danmark på et kvalificeret grundlag (F50). Behandlingen af F50 førte den 27. maj 2010 frem til Folketingets vedtagelse V83 om genetisk modificerede afgrøder: ”Idet Folketinget vil sikre en styrbar udvikling på GMO-området, vedtages det, at regeringen pålægges, - at Danmark i EU-regi arbejder for nationale afgørelser vedrørende dyrkning af genetisk modificerede afgrøder, at der tages initiativ til en eksperthøring, som skal bidrage til at afklare spørgsmål omkring dyrkning af GMO-afgrøder i Danmark, at sameksistensloven fra 2004 genforhandles, således at ny international viden om GMO tages med i en ny lovgivning. Forhandlingerne herom skal være afsluttet inden udgangen af 1. kvartal 2011, samt at den frie og uafhængige forskning i de sundhedsmæssige og naturmæssige konsekvenser af genmodificerede fødevarer sikres, herunder at adgangen til GMO-frømateriale til forskning sikres.” I overensstemmelse med Folketingets vedtagelse arrangerer Fødevareministeriet den 29. oktober 2010 en eksperthøring på KU-Life om dyrkning af GM-afgrøder i Danmark. Eksperthøringen vil blive fulgt op af et arbejde med at revidere relevante dele af den nuværende danske sameksistenslovgivning. 1 Direktiv 2001/18/EF om udsætning i miljøet af genetisk modificerede organismer. 14 VISIONER FOR KORN VISIONS FOR CEREALS Korn til energi eller fødevarer Morten Gylling Fødevareøkonomisk Institut Den globale kornproduktion for ventes i perioden 2009 til 2019 at stige med lidt under 40% fra 1.460 mio. tons til 2.020 mio. tons. I EU(27) forventes kornproduktionen i samme periode at stige med omkring 6 % fra 293 mio. tons til 310 mio. tons. Stigningen i produktionen forventes stort set at svare til den forventede stigning i forbruget til såvel fødevarer (inkl. foder) som energi. Majs og sukkerrør vil i perioden stadig være de vigtigste råvarer til bioethanol produktion med omkring 40% hver af det samlede råvareforbrug. Lignocellulose baseret bioethanol produktion (2. generation) forventes først sidst i perioden at få en væsentlig og stigende andel af den samlede produktion. Den danske kornproduktion på godt 9 mio. tons anvendes i dag stort set til fødevarer, hvor godt 80% går til foder. Det forventes ikke ,at en dansk kornbaseret bioethanol produktion vil være konkurrencedygtig, nu eller på sigt. Samtidig må det også forventes, at lignocellulose teknologien under danske forhold vil være mere konkurrencedygtig på sigt. Der bør derfor fokuseres på udvikling af kornsorter med forbedrede anvendelsesegenskaber inden for områder som forbedret foderudnyttelse og miljømæssige egenskaber. VISIONER FOR KORN VISIONS FOR CEREALS 15 SESSION 4: UDFORDRINGER GMO eller ej – kornforædlernes udfordringer Kurt Hjortsholm Sejet Planteforædling khj@sejet.dk Perspektiverne for genetisk forandrede kornsorter. Genetisk forbedrede kornsorter er en nødvendighed for at følge med verdens behov for øget mad, bedre mad, mere foder, mere energi, forbedret vand- og kulstofbalance samt bedre miljø i en bredere forstand. Det er nødvendigt at overveje alle tilgængelige forædlingsmetoder, men de forskellige metoder har hver deres fordele og ulemper. Alting har en pris. I vurderingen af, hvilke metoder og kombinationer af metoder, der med fordel kan tages i brug for en given art, på en given tid og i et givet område kræves naturligvis en helhedsvurdering, hvor forædlerens, producentens, handelens, forbrugerens og samfundets fordele og ulemper nøje må forsøges afvejet mod hinanden. Der angives eksempler på fordele og ulemper ved dels traditionel kornforædling dels avanceret bioteknologisk kornforædling og dels ved GMO-kornforædling. Udover fordele og ulemper knyttet til selve den biologiske forædlingsproces, må også overvejes de mulige konsekvenser for og ved registrering, beskyttelse, dyrkning, stewardship, regulering, monitorering, afsætning, forsikring, monopolisering, fri konkurrence, tredje lande m.m.m. Det var ikke tanken med dette indlæg at forsøge at give en færdig samlet og udtømmende afvejning af alle de forskellige forhold, men kun ridse problematikken op. Interessenterne i værdikæden må således selv foretage de nødvendige afvejninger og prioriteringer, og eventuelle nødvendige politiske beslutninger må foretages, hvis de eksisterende rammebetingelser ønskes ændret. Enkelte konklusioner kan dog fremdrages. Jo mere avanceret forædling og jo mere avancerede forædlingsmetoder der benyttes, jo dyrere bliver forædlingsprocessen naturligvis. Der kan nås ganske langt i løsningen af dyrkningsproblemerne med avancerede bioteknologiske forædlingsmetoder - molekylær forædling og lignende, men den helt traditionelle forædling er formentlig blevet for langsom til at kunne klare sig konkurrencemæssigt mod mere moderne metoder. Den rene GMO-forædling er teknologisk mest velegnet til enkeltegenskaber og mindre velegnet til den samlede genomiske forbedring. GMO vil derfor blive implementeret der, hvor behovet for enkeltforbedringer er størst eksempelvis herbicid- og insektresistens, men kan også være velegnet ved eksempelvis store nødvendige kvalitetsændringer eksempelvis ændret aminosyresammensætning. Den rene GMO-forædling har meget store reguleringsmæssige omkostninger i forhold til andre metoder. Hvis ikke problemet med manglende fastsættelse af GMO-grænseværdier i konventionelt udsæd løses juridisk, så vil den økonomiske risiko ved markedsføring vedblivende være ekstremt stor og uoverskuelig, og afholde de fleste kornforædlere fra at initiere GMO-forædling. 16 VISIONER FOR KORN VISIONS FOR CEREALS SESSION 5: IMPROVED QUALITY AND DISEASE RESISTANCE IN CEREAL CROPS I Breeding for adaptation to Mediterranean conditions Luigi Cattivelli CRA-Genomic Research Centre, Fiorenzuola d’Arda (Italy) The Mediterranean region of Europe is particularly sensitive to drought and potentially very vulnerable to future climate changes. Even if rainfall does not change, increased risks for drought will result from an increased atmospheric evaporative demand in a warmer future climate. Breeding for drought resistance is therefore required for both mild and severe stress conditions. This implies a need for a better characterization of the biodiversity available for drought and a deeper comprehension of the physiological mechanisms which are crucial to assure yield when drought occurs. Physiological traits relevant for the responses to water deficit and/or modified by water deficit span a wide range of vital processes. As a consequence, it can be expected that there is no single response pattern that is highly correlated with yield under all drought environments. The various strategies adopted by different genotypes to face water limited environments depict different “physiotypes”, i.e. genotypes with different physiological strategies in response to water availability and other drought-associated stress factors, is required to drive a knowledge based breeding. A better understanding of physiological mechanisms underlying yield under stress conditions is a starting point to identify physiological traits useful for a more effective breeding approach. The presentation will discuss the diversity for adaptation to Mediterranean conditions found in barley and durum wheat germplasm collections and its impact on yield and yield stability. Modern breeding strategies have contributed to reduce the interaction of genotypes with environments selecting genotypes with better stability across a wide range of locations and years and modern genotypes outperformed the old ones in both favourable and drought prone environments. Key references 1. Rizza F, Badeck F W, Cattivelli L, Lidestri O, Di Fonzo N, Stanca A M, 2004. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science, 44: 2127-2137. 2. De Vita P, Li Destri Nicosia O, Nigro F, Platani C, Riefolo C, Di Fonzo N, Cattivelli L, 2007. Breeding progress in morphophysiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy, 26: 39-53. 3. Cattivelli L, Rizza F, Badeck F, Mazzucotelli E, Mastrangelo A M, Francia E, Marè C, Tondelli A, Stanca A M, 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Research, 105: 1-14. 4. De Vita P, Mastrangelo A M, Matteu L, Mazzucotelli E, Virzì N, Palumbo M, Lo Storto M, Rizza F, Cattivelli L, 2010. Effect of genetic improvement on yield stability in selected durum wheat genotypes. Field Crop Research, 119: 68-77. VISIONER FOR KORN VISIONS FOR CEREALS 17 iKORN: Improved Quality and Disease Resistance in Cereals Søren K. Rasmussen Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark Danish agriculture faces the challenge of delivering safe, high-quality, and health-promoting food as well as bioproducts in an economically viable and environmentally sustainable manner. Existing plant genetic resources and current breeding methods alone are insufficient for significant improvement of important quality traits of food plants. Advances in crop quality will require a broad suite of direct genomics approaches, which are usually too complex to be handled in small enterprises. The strategic research initiative iKORN (2008-2012) aims at creating a knowledge pipeline for rapid transfer of advanced marker technologies to breeding programs of high quality cereal crops. The main crop plants for industrial production of food and bioproducts in Denmark are wheat and barley, however in this initiative focus will be on wheat. iKORN is operated through interlinked thematic work packages addressing crop quality, disease resistance, and reduced fertilizer-input production systems. The crop quality part of the project modifies cereal grain phosphate and protein storage for improved food and feed value. Disease resistance studies will introduce new disease resistance genes from adapted and unadapted material to enable breeding of highly disease resistant cereal cultivars. Reduced fertilizer-input research clarifies the genetic basis for breeding of plants which will produce well even under reduced nitrogen supply. iKORN thus provides the necessary scientific tools and framework to cope with crop production challenges of the future in an environment with changing climate and crop production technology and an increased need and consumer-driven demand for producing healthy and high-quality cereal crops based on ecologically sound technology. At the end of the project a genomic toolbox will be available that includes a set of integrated approaches for recombinational and physical mapping as well as sequenceready map assembly; map-based cloning; parallel analysis of transcript, protein and metabolite pools, reverse genetics like TILLING, efficient haplotype analysis and markers for breeding by genotype-based selection and association mapping. The research conducted within the thematic areas will establish the necessary technologies and provide the plant lines with the desired useful properties for breeding and end-user applications. The themes are: • • • Improved Quality Reduced Fertilizer Input Genetic Resources for Diseases http://www.ikorn.life.ku.dk/ Partners from: Dept. of Genetics and Biotechnology & Dept. of Integrated Pest Management, Faculty of Agricultural Sciences, Aarhus, Denmark Sejet Plant Breeding A/S, Horsens, Denmark Nordic Seed, Fredericia, Denmark E-mail address of coordinator: skr@life.ku.dk 18 VISIONER FOR KORN VISIONS FOR CEREALS SESSION 6: IMPROVED QUALITY AND DISEASE RESISTANCE IN CEREAL CROPS II Nitrogen input in wheat production Jan K. Schjørring1, Thomas Kichey1, Inge Skrumsager Møller1 and Lars B. Eriksen2 1 Plant and Soil Science Section, Department of Agriculture and Ecology, Faculty of Life Sciences (LIFE), University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C 2 Sejet Plant Breeding, Nørremarksvej 67, DK-8700 Horsens E-mail: jks@life.ku.dk Wheat covers about 25% of the agricultural area in the EU and is the dominating cereal crop. In total, about 2900 million kg mineral fertilizer N is annually applied to wheat crops, corresponding to about 30% of fertilizer N use in EU. The rate of mineral N application to wheat spans 25-200 kg N/ha in Europe, thus showing a large variation. On average, about 30–50% of the applied mineral N is recovered in the harvested grain. Higher values, exceeding 60%, have been reported for winter wheat in Denmark and in the UK. Based on total above-ground N uptake in grain and straw, the recovery may increase to 60-70%. It must be noted that these values are recoveries for the first season after the application. Fertilizer N recoveries obtained over several seasons may be considerably higher than 60-70%, and the total quantity of N taken up by a highyielding wheat crop often exceeds the N input from mineral N fertilizer, with the extra N originating from mineralization of soil organic matter. Improvement of the efficiency of mineral N fertilisers is a major goal with respect to sustainable intensification of wheat production. In order to achieve this goal, the focus should be on (i) improved synchrony between fertiliser N and crop demand, i.e. the timing, (ii) site-specific fertilization to take into account spatial inhomogeneity on field-level, i.e. the rate and place, and (iii) possibilities for taking into account year-to-year weather variations affecting wheat growth and soil N mineralization, and (iv) breeding of genotypes with better N uptake and higher dry matter production per unit absorbed N. A key target in attempts to produce genotypes with improved N use efficiency is the enzyme glutamine synthetase (GS), which constitutes a bottleneck for assimilation of mineral N into organic compounds. Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences in wheat can be classified into four subfamilies: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2). Together with the GS genes from other cereal species, the wheat GS sub-families form four distinct clades (Bernard et al. 2008 Plant Molecular Biology 67, 89-105). The different GS isoforms seem to have non-overlapping roles in controlling grain size and grain numbers (Martin et al. 2006 Plant Cell 18, 3252-3274). In the iKORN project we are screening a panel of wheat genotypes for differences in N uptake, N remobilization from vegetative plant parts to the spike, and N harvest index (ratio between grain and straw N yield). In parallel, the expression and activity of different GS isoforms are analysed in various plant parts. The N treatments include different levels and combinations of N fertilizer applied to the soil or sprayed on the leaves. Foliar application constitutes a strategy to improve the synchrony with wheat crop N demand by splitting the total N application into several dressings. The first results from this work will be included in the presentation. VISIONER FOR KORN VISIONS FOR CEREALS 19 Barley genes needed for powdery mildew infection Sara M. Mørch1, Dale Godfrey2, Patrick Schweizer3, Hans Thordal-Christensen1 1 Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark Present address: School of Agriculture, Food & Wine, The University of Adelaide, Australia 3 IPK-Gatersleben, Germany 2 Plant pathogens are of great importance in crop production, since they are causing significant yield losses as well as compromising the quality of harvested products. Among the more damaging pathogens are the biotrophic pathogens, which depend and thrive of a living host. In my work, I study the interaction between the biotrophic powdery mildew fungal pathogen, Blumeria graminis f.sp. hordei, and its host barley. The key to the successful interaction with the living plant cell is the establishment of specialised organs called haustoria. These are formed inside the living host cells and are used to retrieve nutrients to support fungal growth and propagation. The aim of my PhD project is to identify barley genes which are needed for the establishment and growth of the fungus. Such knowledge will help us in understanding more about this intimate relationship and can be of value further down the road in future efforts of creating resistant plants. An expressed sequence tag (EST) library, which was based on barley leaves infected with the powdery mildew fungus, had previously been created. When studying the expressed sequences of this library, 178 previously unknown barley genes were identified. Some of these genes are expected to have importance for the establishment and growth of the fungus. In order for me to identify which of these genes that is important, I have made single cell gene-silencing by RNA interference (RNAi). This is a technique whereby you can target and shut down genes of interest in order to analyse their importance in a certain situation. RNAi was conducted by shooting gold particles coated with RNAi constructs into epidermal cells of barley leaves, subsequently inoculated with fungal spores. Hereafter the susceptibility of the cells, with the silenced gene of interest, was assessed. Roughly ninety of the novel genes were tested by RNAi and after several re-tests, I was able to confirm that silencing of five of the 90 genes caused significant resistance to the powdery mildew fungus. I am now in the process of analysing these five promising candidates further, which includes investigating their molecular functions. 20 VISIONER FOR KORN VISIONS FOR CEREALS Fusarium susceptibility and its toxins in wheat cultivars Lise Nistrup Jørgensen & Linda Kærgaard Nielsen Aarhus University, Faculty of Agricultural Sciences, Department of Integrated Pest Management Resistance of wheat to Fusarium head blight is a complex trait. Five resistance components have been characterized. Type I and Type II are the most common ways of measuring Fusarium resistance. Type I: Resistance to initial infection. Assessed using spray inoculation of heads with Fusarium spores or spreading Fusariuminfected debris (or grain) on the soil and evaluating the number of infected spikes. Type II: Resistance to spread of Fusarium fungus within the spike. Assessed by point inoculation of a middle spikelet in the head and evaluation of the extent of symptoms spread from the inoculation point. Inoculation methods for type I are also widely applied. Type III: Resistance to mycotoxins (deoxynivalenol, nivalenol), i.e. non-accumulation or ability to degrade (or inactivate) mycotoxins. Evaluated by analysis of the mycotoxin amount in grain using ELISA tests or chromatographic techniques. Type IV: Resistance to kernel infection. Assessed by counting the proportion of kernels visibly damaged by Fusarium or by analysis of the ergosterol amount in grain or the Fusarium DNA quantity in grain. Type V: Tolerance to Fusarium, i.e. tolerant cultivars have lower yield loss than intolerant cultivars at the same FHB severity level. In the project IKORN a substantial number of wheat cultivars have been screened for susceptibility to Fusarium head blight using both traditional inoculation and point inoculation. The aim has been to screen for resistant cultivars, which could potentially be included by Danish breeders in the Danish germ plasm. Particularly material originating back to Sumai3 have shown promising levels of resistance. Results from IKORN as well as results from screening of Danish cultivars grown today will be shown. References: Buerstmayr H., Ban T., Anderson JA. 2009. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant breeding; 128 1-26. Mesterhazy A. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breeding 114: 377-386. Mesterhazy A., Bartok T., Mirocha C.G., Komoroczy R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding 118: 97-110. Miedaner T. 1997. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breeding 116: 201-220. VISIONER FOR KORN VISIONS FOR CEREALS 21 The FHB complex in Danish small grain cereals L. K. Nielsen1, J. D. Jensen2, A. F. Justesen1 & L. N. Jørgensen1 1 Aarhus University, Faculty of Agricultural Sciences, Department of Integrated Pest Management, Research Centre Flakkebjerg, Denmark. 2 University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology and Biotechnology, Frederiksberg, Denmark. Lindakaergaard.nielsen@agrsci.dk Field grain samples of wheat, barley, triticale, oat and rye were collected across Denmark by Knowledge Centre for Agriculture, Crop Production, in the period 2003 to 2007 were analysed to study the species causing Fusarium head blight (FHB). Twelve different species specific quantitative real-time PCR (QPCR) assays: F. graminearum, F. culmorum, F. avenaceum, F. tricinctum, F. poae, F. langsethiae, F. sporotrichioides, F. equiseti, F. proliferatum, F. verticilloides and Microdochium nivale and M. majus, were used to identify and quantify these species. The assays were designed to target the same gene in each species and the DNA quantity was used as a measure for the fungal biomass revealing the true prevalence of the individual species. Ten of the twelve species was found in Danish cereals, only F. verticilloides and F. proliferatum did not occur at all. Great annual variations were observed, but clear indications of host preferences of the different Fusarium species were found. In wheat F. graminearum was found to be the predominant species followed by F. avenaceum and F. culmorum which were also found in relatively high amounts. In barley and oats F. langsethiae, F. avenaceum, and F. poae were the dominating species in incidence as well as biomass. In triticale F. poae occurred with the highest incidence but F. culmorum was the dominant species when looking at the biomass. In rye F. avenaceum and F. culmorum were the most frequent occurring species but according to biomass F. avenaceum was the dominating species. M. nivale and M. majus were found at high incidence and in significant amounts across all years and cereal species. M. majus showed clear preferences for wheat while M. nivale were the dominant species in barley, triticale, oat and rye. PCA analysis of the data further revealed that several species frequently occur together in the FHB complex one group contain F. graminearum, F. culmorum, F. avenaceum and M. nivale/majus and another group contain F. langsethiae and F. tricinctum. To get an idea of the development of the FHB complex over time 8 samples of each wheat and barley collected from 1957 to 2000 were obtained from the ASKOV long-term studies of animal manure and mineral fertilizers situated in Mid-Jutland. F. culmorum, F. avenaceum and F. poae were prevalent in all samples. F. graminearum was first found in significant amounts in wheat samples from 19972000. The findings of F. graminearum can be correlated to increased growth of maize and winter crops along with increased use of reduced tilling and climate changes in Denmark. 22 VISIONER FOR KORN VISIONS FOR CEREALS SESSION 7: CEREALS FOR THE FUTURE Phytases in cereals H. Brinch-Pedersen1, G. Dionisio1, C.K. Madsen1, K. Welinder2, M. Jørgensen2, V. Glitsø3, P.B. Holm1 1 Aarhus University, Faculty of Agricultural Sciences, Dept. of Genetics and Biotechnology, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark 2 Aalborg University, Department of Biotechnology, DK-9000 Aalborg, Denmark 3 Novozymes A/S, Kroghhøjvej 36, 2880 Bagsværd, Denmark Barley (Hordeum vulgare L.), wheat (Triticum aestivum L.) and rye (Secale cereale L.) possess a significant phytase activity in the mature seeds. Cereals like maize (Zea mays L.) or rice (Oryza sativa L.) possess little or virtually no pre-formed phytase activity in the mature seed and depend fully on de novo synthesis during germination. Wheat, barley, rye, maize and rice all possess purple acid phosphatase genes that expressed in Pichia pastoris gives fully functional phytases (PAPhys) with very similar enzyme kinetics. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley, wheat and rye, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (i.e. barley: HvPAPhy_a and HvPAPhy_b1, HvPAPhy_b2; wheat: TaPAPhy_a1, TaPAPhy_a2 and TaPAPhy_b1, TaPAPhy_b2). In rice and maize only the “b” type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 shared 86.0 and 85.7% identical amino acid sequence, respectively and TaPAPhya1/a2 and TaPAPhyb1/b2 shared up to 90.1% (TaPAPhy_a2 and TaPAPhy_b2) amino acid sequence. In spite of these similarities, the PAPhy_a/b isoforms were differentially expressed with the PAPhy_a isogenes being expressed mainly during grain development and the PAPhy_b isogenes being expressed mainly during germination. Wheat TaPAPhy was localized to the vacuoles of the aleurone layer. Peptide mapping of TaPAPhy purified from wheat bran and from germinating seeds confirmed that pre-formed phytase in mature seeds and phytase de novo formed during germination is constituted mainly by the TaPAPhy_ a isoforms and the TaPAPhy_b isoforms, respectively. VISIONER FOR KORN VISIONS FOR CEREALS 23 TILLING for low phytic acid (lpa) in wheat Anna Maria Torp, Sven Bode Andersen, Søren K. Rasmussen Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark Phytic acid (PA, InsP6) is the main storage form of phosphorus in cereal seeds. PA causes a number of problems in both husbandry and in human nutrition. In husbandry the main problem is that monogastric animals cannot digest and utilize PA, which might result in environmental phosphate pollution due to excretion of PA. Stored PA reduces the bioavailability of iron and other minerals, which may contribute to “hidden hunger” in human populations where cereals are the primary source of nutrition. One way to deal with some of the problems outlined above would be to identify low phytic acid (lpa) mutants impaired in PA biosynthesis or transport. In recent years, a number of genes affecting these processes have been identified in cereals, particularly in rice, barley and maize. Thus one strategy to identify a large number of such lpa mutants would be to use TILLING (Targeting Induced Local Lessions IN Genomes), a method that combines chemical or physical mutagenesis with PCR based screening to identify allelic mutations in one or more target gene. The first committed step in the biosynthesis of phytic acid is catalysed by myo-inositol 3-phosphate synthase (MIPS). We have cloned the three wheat homologues encoding this enzyme and have developed gene specific primers for each of them. These primer pairs have been used to screen a TILLING population of hexaploid spring wheat ‘Amaretto’ for mutations in each of the three MIPS homologues. In this population an average of 4-8 mutations are detected for each plate run (2x96=192 plants) corresponding to a mutation frequency of 2-4% per gene fragment. Thus it has been possible to identify a large range of mutations causing truncated proteins (premature stop codon, and splice mutations) or single amino acid changes for each of the three wheat MIPS homologues. Some of these mutants are currently undergoing tests for phytic acid content in the laboratory. 24 VISIONER FOR KORN VISIONS FOR CEREALS Shade avoidance and social plants Sven Bode Andersen, Wibke Wille, Lars Pødenphant Kiær, Hans Werner Griepentrog, Jannie Maj Olsen, Jacob Weiner University of Copenhagen, Faculty of Life Sciences, Department of Agriculture and Ecology The project Evolutionary Agroecology is a program of excellence from Copenhagen University aiming at alternative solutions to weed control in agricultural production. We are pursuing an approach towards reduced herbicide use based on the basic hypothesis that high density high spatial uniformity in cultivation will improve crop competition against weeds. While the potential of this approach has been demonstrated, development of varieties optimized for high density weed suppression behaviour will be necessary to fully exploit this potential. We hypothesize that reduced "shade avoidance" behaviour will increase the efficacy of weed suppression, by promoting offensive "weed suppression" (rather than shade avoidance) behaviour and social collaboration among the crop plants, which will not "waste" resources competing with each other but cooperate to produce high yield and quality. In the field, wheat lines showing variation in shade avoidance and yield under high density high uniformity are identified by field evaluation of large gene bank collections of cultivated wheat. We have shown huge difference in weed suppression among 140 varieties of wheat, which were not due to general vigour, germination or height. Almost one million chemically mutagenized wheat plants have been screened to isolate stable mutants with modified shade avoidance reactions. Combined the two approaches pave the way for both basic and applied studies on weed control through high density agriculture. VISIONER FOR KORN VISIONS FOR CEREALS 25 LemnaTec image based plant phenotyping Ralph Schunk, Dirk Vandenhirtz, Uwe Lippert, Matthias Eberius LemnaTec GmbH, Schumanstraße 18, 52146 Würselen, Germany matthias.eberius@lemnatec.com www.lemnatec.de Due to the development of highly automated genetic analysis, plant genomics has immensely enlarged our understanding of the genetic structure of plants over the last two decades. The fast evolving need to identify interactions between genes and environmental factors (biotic and abiotic) that brings about a certain plant phenome made it necessary to develop quantitative, reproducible and highly automated plant phenotyping systems for large plant numbers. Phenotyping systems such as these have to integrate reproducible plant management (randomisation, watering, stress induction) and comprehensive imaging of root and shoot far beyond human vision (visible light, fluorescence, near infrared, infrared, THz) as well additional chemical analysis methods. Immediate and automated image analysis of the stored images and further data transformation using plant shape and plant growth models are the important intermediate steps before undertaking statistical data analysis of the phenotyping results to characterise plant phenotypes quantitatively. Such quantitative data contributes in a decisive way to the further analysis of gene functions (tilling, QTL etc.), especially under fluctuating or stress-induced environmental conditions with a special focus on complex traits like yield or drought tolerance. This presentation will provide a survey on phenotyping technology and the close interaction between phenotyping technologies, modelling approaches and the new opportunities of fast and automated high-throughput genomics. 26 VISIONER FOR KORN VISIONS FOR CEREALS SESSION 8: NEW ASPECTS OF CEREALS Health promoting compounds in amaranth – a pseudocereal crop for a future warmer climate Inge Fomsgaard Aarhus University, Faculty of Agricultural Sciences, Department of Integrated Pest Management Amaranth is a subtropical crop with remarkable properties and a special history. The native population in South America and Mexico domesticated amaranth more than 6000 years ago. It was a hardy crop that predated maize. It is also the oldest grain to be grown in the U.S. When the Spanish conquerors came to America they did not like to see natives mixing animal blood into the popped grains and turning it into religious-like figurines. It looked almost like the Christian sacrament. Therefore the cultivation of amaranth was prohibited in Latin America in the 15-16th century. Four years ago the European Commission financed the AMARANTH:FUTURE-FOOD project – a collaborative project between Latin American and European scientists. Amaranth belongs to the genera Amaranthus in the family Amaranthaceae. It is thus closely related to quinoa, another subtropical plant, and to spinach and red beet. The seeds of amaranth were – and are – used as flour for bread and other staples. Amaranth leaves are consumed as fresh baby leaves in salad or boiled when harvested at a more mature stage. When we compare the nutritious value of amaranth with other cereals, we find that amaranth is higher in proteins, fibres, vitamins and minerals, folate, lysine, tryptophan, phytosterols and squalen. Amaranth is gluten-free. The AMARANTH:FUTURE-FOOD project showed that the health promoting flavonoid rutin was present in high concentrations in seeds and even higher in leaves. In seeds, the content of rutin exhibited large variations in crops grown in different location/environmental conditions. Hydrolysed proteins are very often used as emulgators and stabilisers. Our collaborators from Argentina showed that amaranth protein hydrolysates have very good emulsifying and foaming properties and might be the future of emulsifying agents. They also showed that hydrolysed amaranth proteins have antihypertensive and antitumour effects. Recent cultivation trials in Denmark with three amaranth varieties showed that they could reach maturity in 3 months. Amaranth needs low amounts of nitrogen, can grow in very different climates and can resist drought and flooding. If focus were put on the development of varieties, amaranth could probably be an interesting future crop in Denmark. This work was part of the European Commission’s Sixth Framework Programme, contract number 032263 AMARANTH: FUTURE-FOOD. VISIONER FOR KORN VISIONS FOR CEREALS 27 AROMAWHEAT: Aroma traits in modern wheat and landraces Gerrard Starr University of Copenhagen, Faculty of Life Sciences, Department of Food Science Wheat is an important daily staple cereal which is cultivated for human and animal consumption. Consumers mostly consume wheat as bread and the aroma of bread is an important quality for consumer acceptance, yet little interest has been paid to the aroma of wheat as a quality parameter. The emphasis of breeding programs has hitherto been on producing new varieties with increased yield and bread volumes. In 2002 Michael Czerny and Peter Schieberle determined that odorants which were present in wheat flour were also present in bread crumb and they concluded that the choice of wheat flour was an important influence on bread aroma quality. Finding out how much differentiation there is between wheat varieties and how much these differences might influence bread flavour would be of interest to producers, plant breeders and consumers alike. In the PhD Project: “Aroma traits in modern wheat and landraces” the aroma composition of 200 different wheat varieties and landraces are being analysed using Dynamic Headspace Extraction and Gas Chromatography- Mass Spectrometry. 24 selected varieties have been further evaluated by a trained sensory panel for their qualities as cooked grains and as flour porridge. The PhD Project “Aroma traits in modern wheat and landraces” is funded by the Danish Ministry for Food Agriculture and Fisheries. Reference: Czerny, M.; Schieberle, P. Important Aroma Compounds in Freshly Ground Wholemeal and White Wheat Flour- Identification and Quantative Canges during Sourdough Fermentation. J.Agric.Food Chem. 2002, Vol 50, No 23, pp 6835-6840. Project manager: Gerrard Starr, Stud. PhD. Supervisors: Associate professor Åse Solvej Hansen, Associate professor Mikael Agerlin Petersen. Project co-ordinator Birthe Møller Jespersen Department of Food Science Rolighedsvej 30, 1958 Frederiksberg C 28 VISIONER FOR KORN VISIONS FOR CEREALS AROMAWHEAT: Formation of bread flavor Anja Niehues Birch Quality and Technology, Department of Food Science, Faculty of Life Sciences, University of Copenhagen annb@life.ku.dk Bread quality is a very important consideration as bread is a staple food eaten daily. Bread quality criteria have mainly focussed on bread volume with very little attention being paid to how the flavour of bread is influenced by fermentation conditions. Today industrially produced wheat bread is often made from doughs with a high concentration of yeast and with a high fermentation temperature in order to decrease the time of fermentation. A short fermentation time results in an economical benefit and a continuous flow on the production line. However, it is widely held that a longer fermentation time results in bread with a more pleasant flavour, although few studies have been done in this area. Knowledge of the different fermentation conditions is of interest for the bread industry in order to improve and control the flavour in bread crumb. In the ongoing PhD project “Formation of Bread Flavour” the effects of the fermentation conditions such as temperature and yeast concentration on bread crumb flavour have been investigated by dynamic headspace extraction and Gas Chromatography Mass Spectrometry analysis. The effects of fermentation conditions on flavour formation are explained from two important mechanisms producing aroma compounds in bread crumb; the yeast metabolism during fermentation and lipid oxidation. The PhD project “Formation of Bread Flavour” is funded by KU LIFE, Lantmännen Unibake and FOOD Research School. VISIONER FOR KORN VISIONS FOR CEREALS 29 DELTAGERLISTE / LIST OF PARTICIPANTS Per Aaslo Gunter Backes Finn Borum Aarhus Universitet Københavns Universitet Sejet Planteforædling Det Jordbrugsvidenskabelige Fakultet Det Biovidenskabelige Fakultet fbp@sejet.com Institut for Genetik og Bioteknologi Institut for Jordbrug og Økologi per.aaslo@agrsci.dk guba@life.ku.dk Henrik Brinch-Pedersen Aarhus Universitet Reino Aikasalo Merethe Bagge Det Jordbrugsvidenskabelige Fakultet Boreal Plant Breeding Ltd. Sejet Planteforædling Institut for Genetik og Bioteknologi reino.aikasalo@boreal.fi henrik.brinchpedersen@agrsci.dk Andrea Bellucci Sven Bode Andersen Københavns Universitet Torben Brøchner Københavns Universitet Det Biovidenskabelige Fakultet Aarhus Universitet Det Biovidenskabelige Fakultet Institut for Jordbrug og Økologi Det Jordbrugsvidenskabelige Fakultet Institut for Jordbrug og Økologi andreabellucci@life.ku.dk Institut for Biosystemteknologi sba@life.ku.dk tobr@agrsci.dk Anja Niehues Birch Ole Andersen Københavns Universitet Ole Thomsen Buus Sejet Planteforædling Det Biovidenskabelige Fakultet Aarhus Universitet oan@sejet.com Institut for Fødevarevidenskab Det Jordbrugsvidenskabelige Fakultet annb@life.ku.dk Institut for Genetik og Bioteknologi ole.buus@agrsci.dk Lars Andersen DLF-TRIFOLIUM A/S Birte Boelt LHA@DLF.DK Aarhus Universitet Jens Michael Carstensen Det Jordbrugsvidenskabelige Fakultet DTU Informatics Institut for Genetik og Bioteknologi jmc@videometer.com Henrik Andrén birte.boelt@agrsci.dk BoMill AB henrik.andren@bomill.com Morten Arngren Sergio Casado Jørgen Bonde Aarhus Universitet Skærtoft Mølle dashone02@hotmail.com jb@skaertoft.dk DTU Informatics info@arngren.com Luigi Cattivelli Søren Borg Genomics Research Centre Aarhus Universitet luigi.cattivelli@entecra.it Bende Astrup Det Jordbrugsvidenskabelige Fakultet Aarhus Universitet Institut for Genetik og Bioteknologi Det Jordbrugsvidenskabelige Fakultet soren.borg@agrsci.dk Michael Christiansen Institut for Genetik og Bioteknologi Aarhus Universitet bende.astrup@agrsci.dk Det Jordbrugsvidenskabelige Fakultet Institut for Genetik og Bioteknologi michael.wagner@agrsci.dk 30 VISIONER FOR KORN VISIONS FOR CEREALS David B. Collinge Morten Haastrup Lars Ipsen Københavns Universitet Videncentret for Landbrug Monsanto Crop Sciences Det Biovidenskabelige Fakultet mhs@vfl.dk lars.ipsen@monsanto.com Åse Hansen Susanne Jacobsen Københavns Universitet Danmarks Tekniske Universitet Behrooz Darbani Det Biovidenskabelige Fakultet Institut for Systembiologi Aarhus Universitet Institut for Fødevarevidenskab sja@bio.dtu.dk Det Jordbrugsvidenskabelige Fakultet aah@life.ku.dk Institut for Plantebiologi og Bioteknologi dbc@life.ku.dk Institut for Genetik og Bioteknologi darbani.behrooz@agrsci.dk Jon Arne Dieseth Ahmed Jahoor Poul Møller Hansen Nordic Seed FOSS Analytical A/S jah@nordicseed.com pmh@foss.dk Graminor AS jon.arne.dieseth@graminor.no Matthias Eberius Esben K. Jensen Preben Klarskov Hansen Agrolab GmbH AgroTech A/S esben.jensen@agrolab.eu pkh@agrotech.dk LemnaTec GmbH matthias.eberius@lemnatec.com Lars Eriksen Anni Jensen Jacob Hansen Nordic Seed Nordic Seed anj@nordicseed.com JPH@nordicseed.com Valsemøllen A/S ler@valsemollen.dk Lars Eriksen Kurt Hjortsholm Martin Jensen Aarhus Universitet Sejet Planteforædling Det Jordbrugsvidenskabelige Fakultet khj@sejet.com Institut for Havebrugsproduktion Sejet Planteforædling martin.jensen@agrsci.dk lbe@sejet.com Preben Bach Holm Aarhus Universitet Jens Due Jensen Inge Fomsgaard Det Jordbrugsvidenskabelige Fakultet Nordic Seed Aarhus Universitet Institut for Genetik og Bioteknologi jdj@nordicseed.com Det Jordbrugsvidenskabelige Fakultet prebenb.holm@agrsci.dk Inst. for Plantebeskyttelse og Skadedyr inge.fomsgaard@agrsci.dk Birthe Jespersen Inger Bæksted Holme Københavns Universitet Aarhus Universitet Det Biovidenskabelige Fakultet Per Gregersen Det Jordbrugsvidenskabelige Fakultet Institut for Fødevarevidenskab Aarhus Universitet Institut for Genetik og Bioteknologi bm@life.ku.dk Det Jordbrugsvidenskabelige Fakultet inger.holme@agrsci.dk Institut for Genetik og Bioteknologi per.gregersen@agrsci.dk Lise Nistrup Jørgensen Christina Ingvardsen Aarhus Universitet Københavns Universitet Det Jordbrugsvidenskabelige Fakultet Morten Gylling Det Biovidenskabelige Fakultet Inst. for Plantebeskyttelse og Skadedyr Fødevareøkonomisk Institut Institut for Jordbrug og Økologi lisen.jorgensen@agrsci.dk gylling@foi.dk cri@life.ku.dk VISIONER FOR KORN VISIONS FOR CEREALS Johannes Ravn Jørgensen Merete Møller Engelsen Lotte Olesen Aarhus Universitet Novozymes A/S Aarhus Universitet Det Jordbrugsvidenskabelige Fakultet mmqn@novozymes.com 20072858@post.au.dk Sara M. Mørch Jihad Orabi Københavns Universitet Københavns Universitet Morten Jørgensen Det Biovidenskabelige Fakultet Det Biovidenskabelige Fakultet KWS Scandinavia A/S Institut for Jordbrug og Økologi Institut for Jordbrug og Økologi m.jorgensen@kws.com saram@life.ku.dk jio@life.ku.dk Anders M. Klöcker Linda Kærgaard Nielsen Brian B. Pedersen FødevareErhverv Aarhus Universitet Nordic Seed ankl@ferv.dk Det Jordbrugsvidenskabelige Fakultet bbp@nordicseed.com Institut for Genetik og Bioteknologi johannes.jorgensen@agrsci.dk Inst. for Plantebeskyttelse og Skadedyr lindakaergaard.nielsen@agrsci.dk Søren Knudsen Svend Pedersen Carlsberg A/S skn@crc.dk Plantedirektoratet Bruno Sander Nielsen svp@pdir.dk Landbrug og Fødevarer bsn@lf.dk Sergio Lopez Jens Lund Pedersen Aarhus Universitet sergiotiri@hotmail.com DLA Agro Nanna Hellum Nielsen jlp@dlaagro.com Nordic Seed nhn@nordicseed.com Stefan Lundgren Kim Bonde Petersen Perten Instruments AB slundgren@perten.com Nordic Seed Else Bøje Nielsen kbp@nordicseed.com RAGT Nordics Enielsen@ragt.fr Preben Mikkelsen Bhaniswor Pokhrel AT Electronic pm@atelectronic.dk Aarhus Universitet Claus Nymand bhanu816@gmail.com KWS Scandinavia A/S c.nymand@kws.com Tine Bloch Mortensen Morten Poulsen Aarhus Universitet 20071169@post.au.dk Abed Fonden Erling Olesen breedex@poulsen.mail.dk Sejet Planteforædling eol@sejet.dk Lisbeth Munksgaard Søren K. Rasmussen Aalborg Universitet lmu@adm.aau.dk Københavns Universitet Annette Olesen Det Biovidenskabelige Fakultet Lantmännen SW Seed Institut for Jordbrug og Økologi aol@swseed.com skr@life.ku.dk Peter Olesen Morten Rasmussen Det Strategiske Forskningsråd NordGen po@actifoods.com morten.rasmussen@nordgen.org Flemming Møller Danisco A/S flemming.moller@danisco.com 31 32 VISIONER FOR KORN VISIONS FOR CEREALS Tina Salomonsen Hongyan Sun Conny Wang Hansen Novozymes A/S Aarhus Universitet Fødevareministeriet tsom@novozymes.com Det Jordbrugsvidenskabelige Fakultet FødevareErhverv, GUDP-kontoret Institut for Genetik og Bioteknologi cowh@ferv.dk sun.hongyan@agrsci.dk Johan Sander Syngenta johan.sander@syngenta.com Wibke Wille Abida Sultan Københavns Universitet Danmarks Tekniske Universitet Det Biovidenskabelige Fakultet Institut for Systembiologi Institut for Jordbrug og Økologi asu@bio.dtu.dk wiwi@life.ku.dk Eivor Svensson Flemming Yndgaard Lantmännen SW Seed Nordisk Statistik & Data Konsult eivor.svensson@swseed.com flemming.yndgaard@syngenta.com Institut for Jordbrug og Økologi Mike Taylor Inger Åhman jks@life.ku.dk Limagrain GmbH Sveriges lantbruksuniversitet mike.taylor@limagrain.de inger.ahman@ltj.slu.se Aarhus Universitet Hanne Cecilie Thomsen Ole Kirk Østergaard Det Jordbrugsvidenskabelige Fakultet Københavns Universitet Lantmännen Cerealia A/S Institut for Fødevarekvalitet Det Biovidenskabelige Fakultet ole.kirk.ostergaard@lantmannen.com helenef.seefeldt@agrsci.dk Institut for Jordbrug og Økologi Jan Schade BoMill AB schade@post5.tele.dk Jan Schjørring Københavns Universitet Det Biovidenskabelige Fakultet Helene Fast Seefeldt hct@life.ku.dk Md. Shafiqul Islam Sikdar Aarhus Universitet Hans Thordal-Christensen Det Jordbrugsvidenskabelige Fakultet Københavns Universitet Institut for Genetik og Bioteknologi Det Biovidenskabelige Fakultet shafiqulislam.sikdar@agrsci.dk Institut for Jordbrug og Økologi htc@life.ku.dk Gerrard Starr Københavns Universitet Anna Maria Torp Det Biovidenskabelige Fakultet Københavns Universitet Institut for Fødevarevidenskab Det Biovidenskabelige Fakultet starr@life.ku.dk Institut for Jordbrug og Økologi amt@life.ku.dk Henrik Stilund Danish Agro Mohammad Nasir Uddin hes@danishagro.dk Aarhus Universitet Det Jordbrugsvidenskabelige Fakultet Institut for Genetik og Bioteknologi Einar Strand Bioforsk / Norsk Landbruksrådgiving einar.strand@bioforsk.no mohammadnasir.uddin@agrsci.dk VISIONER FOR KORN VISIONS FOR CEREALS 33 CEREALIENETVÆRKETS ÅRSMØDE 2010 Arrangør Forum for Cerealier i samarbejde med Dansk Cerealforening. David B. Collinge, KU-LIFE Morten Haastrup, Videncentret for Landbrug Kurt Hjortsholm, Sammenslutningen af Danske Sortsejere Preben Bach Holm, AU-DJF Johannes Ravn Jørgensen, AU-DJF (formand) Søren K. Rasmussen, KU-LIFE Birte Svensson, DTU Ole Kirk Østergaard, Lantmännen Cerealia A/S Sekretariat: Eventuelle spørgsmål om årsmødet kan rettes til sekretariatet: INSTITUT FOR GENETIK OG BIOTEKNOLOGI Det Jordbrugsvidenskabelige Fakultet Aarhus Universitet Forsøgsvej 1 4200 Slagelse Att.: Bende Astrup Tlf.: 8999 3646 / Fax: 8999 3501 E-mail: Bende.Astrup@agrsci.dk www.cernet.dk Sted Cerealienetværkets årsmøde 2010 afholdes den 26. og 27. oktober på Hotel Frederik d. II Idagaardsvej 3 4200 Slagelse Tlf.: +45 58 53 03 22 www.fr2.dk