visioner for korn visions for cereals program & abstracts 26.

Transcription

visioner for korn visions for cereals program & abstracts 26.
CEREALIENETVÆRKETS
ÅRSMØDE
VISIONER FOR KORN
VISIONS FOR CEREALS
PROGRAM & ABSTRACTS
26.-27. OKTOBER 2010
VISIONER FOR KORN
VISIONS FOR CEREALS
1
INDHOLD
CONTENTS
Forord / Preface
3
Program / Programme
4
Abstracts
7
Bestemmelse af kornkvalitet nu og i fremtiden
7
Se indersiden af kornkerne med hyperspektral billedanalyse
8
Billedanalyse af korn i bevægelse i en rensemaskine
9
Tidlig måling af agrospire / spiring i maltbyg
10
Tørt brød er snart en saga blot
11
Midtvejsevaluering af 7. rammeprogram / forventninger til det 8. rammeprogram
12
Reviderede regler for dyrkning af GMO-afgrøder i Danmark og EU
13
Korn til energi eller fødevarer
14
GMO eller ej – kornforædlernes udfordringer
15
Breeding for adaptation to Mediterranean conditions
16
iKORN: Improved Quality and Disease Resistance in Cereals
17
Nitrogen input in wheat production
18
Barley genes needed for powdery mildew infection
19
Fusarium susceptibility and its toxins in wheat cultivars
20
The FHB complex in Danish small grain cereals
21
2
VISIONER FOR KORN
VISIONS FOR CEREALS
Phytases in cereals
22
TILLING for low phytic acid (lpa) in wheat
23
Shade avoidance and social plants
24
LemnaTec image based plant phenotyping
25
Health promoting compounds in amaranth – a pseudocereal crop for a future
warmer climate
26
AROMAWHEAT: Aroma traits in modern wheat and landraces
27
AROMAWHEAT: Formation of bread flavor
28
Deltagerliste / List of Participants
29
VISIONER FOR KORN
VISIONS FOR CEREALS
3
FORORD / PREFACE
Forum for Cerealier er glade for at kunne byde alle deltagere velkommen til Cerealienetværkets årsmøde 2010, ”Visioner
for korn”, Vi er glade for at kunne præsentere et spændende program indeholdende en lang perlerække af foredrag om
emner af høj aktualitet. Foredragene og rammerne for årsmøde håber vi kan bidrage til at stimulere netværksrelation
blandt alle med interesser i cerealier og på den måde bidrage til at forskning og innovation i cerealier holdes i fokus.
Programmet for årsmødet 2010 giver et godt overblik over
•
•
•
nye landvindinger inden for anvendelsen af billedbehandling af korn og kornprodukter
relevante lovgivnings- og finansieringsmæssige udfordringer og muligheder
nye væsentlige forskningsresultater
Dansk Cerealforening, der er medarrangør af Cerealienetværkets årsmøde 2010, afholder i forbindelse med årsmødet et
møde om årets aktiviteter og status for foreningens økonomi.
Program og præsentationer fra tidligere årsmøder kan findes på www.cernet.dk.
It is a great honour for the organizing committee to welcome all speakers and participants in "The Danish Cereal Network
Annual Meeting 2010 - Visions for cereals”. We are pleased to present an exciting program including a chain of presentations of subjects of high relevance. We hope that the presentations and the scene of the meeting can stimulate networking
among all with interest in cereals and in this way contribute to research and innovation within cereals.
•
•
Thursday, November 26 is dedicated to issues with a local Danish perspective.
Wednesday 27 October is dedicated to cereal research and breeding in an international perspective.
På vegne af Forum for Cerealier / On behalf of the organizing committee
Johannes Ravn Jørgensen
4
VISIONER FOR KORN
VISIONS FOR CEREALS
PROGRAM / PROGRAMME
Tirsdag den 26. oktober 2010
09.00-09.55
09.55-10.00
Registrering
13.50-14.10
Grøn Vækst 2.0 / GUDP – Hvordan indgår
forskning
Anders M. Klöcker, FødevareErhverv
Velkomst
Johannes Ravn Jørgensen, AU-DJF
14.10-14.30
Lisbeth Munksgaard, AAU
Session 1: Billedanalyse anvendt på korn I
Chair: Johannes Ravn Jørgensen, AU-DJF
10.00-10.20
10.20-10.40
Billedanalyse af korn i bevægelse i en
rensemaskine
Ole Thomsen Buus, AU-DJF
Reviderede regler for dyrkning af GMOafgrøder i Danmark og EU
Svend Pedersen, Plantedirektoratet
14.50-15.10
Korn til energi eller fødevarer
Morten Gylling, Fødevareøkonomisk
Institut
Se indersiden af kornkerne med
hyperspektral billedanalyse
Morten Arngren, DTU Informatics
10.40-11.00
14.30-14.50
Bestemmelse af kornkvalitet nu og i
fremtiden
Poul Møller Hansen, Foss Analytical
Midtvejsevaluering af 7. rammeprogram/
forventninger til det 8. rammeprogram
15.10-15.45
Pause – kaffe
Session 4: Udfordringer
Chair: Søren K. Rasmussen, KU-LIFE
11.00-11.30
Pause – kaffe
15.45-16.05
Preben Bach Holm, AU-DJF
Session 2: Billedanalyse anvendt på korn II
Chair: Johannes Ravn Jørgensen, AU-DJF
11.30-11.50
11.50-12.10
16.25-16.40
16.40-16.55
16.55-17.10
13.30-13.50
Det Strategiske Forskningsråds rolle i
finansiering af forskning relevant for
cerealieområdet
Peter Olesen, Det Strategiske
Forskningsråd
Årets høst af brødkorn, forsyning, kvalitet
og prisudvikling
Ole Kirk Østergaard, Lantmännen
Cerealia A/S
Session 3: Skal der dyrkes korn i Danmark?
Chair: Preben Bach Holm, AU-DJF
Ny bioteknologistrategi
Bruno Sander Nielsen, Landbrug &
Fødevarer
BoMill single kernel sorting system
Frokost
Sortsafprøvning
Morten Haastrup, Videncentret for
Landbrug
Henrik Andrén, BoMill AB
12.30-13.30
GMO eller ej – kornforædlernes
udfordringer
Kurt Hjortsholm, Sejet Planteforædling
Tørt brød er snart en saga blot
Flemming Møller, Danisco A/S
12.10-12.30
16.05-16.25
Tidlig måling af agrospire / spiring i
maltbyg
Jens Michael Carstensen, DTU
Informatics
Hvordan har/kan forskningen i plantebioteknologi bidrage til bedre kornsorter
17.10-17.25
Årets høst af maltbyg og foderkorn,
forsyning, kvalitet og prisudvikling
Henrik Stilund, Danish Agro
17.25
Dansk Cerealforening: Årets aktiviteter
og DCF's økonomi
Søren K. Rasmussen, KU-LIFE
18.30
Middag / Dinner
VISIONER FOR KORN
VISIONS FOR CEREALS
5
Wednesday, 27 October 2010
Session 5: Improved Quality and Disease
Resistance in Cereal Crops I
Chair: Preben Bach Holm, AU-DJF
08.30-09.10
09.10-09.35
Breeding Cereals for adaptation to
Mediterranean environments
Chair: Søren K. Rasmussen, KU-LIFE
13.00-13.30
13.30-13.50
iKORN: Improved Quality and Disease
Resistance in Cereals. Introduction
13.50-14.10
Session 6: Improved Quality and Disease
Resistance in Cereal Crops II
Chair: David Collinge, KU-LIFE
10.30-10.50
14.10-14.30
14.30-14.50
Chair: Søren K. Rasmussen, KU-LIFE
14.50-15.10
Fusarium and its toxins in wheat varieties
Lise N. Jørgensen, AU-DJF
11.30-11.50
The FHB complex in Danish small grain
cereals
Linda Kærgaard Nielsen, AU-DJF
12.00-13.00
Lunch
Health promoting compounds in
amaranth – a pseudocereal crop for a
future warmer climate
Inge Fomsgaard, AU-DJF
15.10-15.30
Sara M. Mørch, KU-LIFE
11.10-11.30
Coffee
Session 8: New aspects of cereals
Nitrogen input in wheat production
Barley genes needed for powdery
mildew infection
LemnaTec image based plant
phenotyping
Matthias Eberius, LemnaTec GmbH,
Germany
Jan Schjørring, KU-LIFE
10.50-11.10
Shade avoidance and social plants
Sven Bode Andersen, KU-LIFE
Markers and association genetic
mapping in wheat
Coffee
TILLING for low-phytic acid in wheat
Anna Maria Torp, KU-LIFE
Gunter Backes, KU-LIFE
10.00-10.30
Phytases in cereals
Henrik Brinch-Pedersen, AU-DJF
Keynote: Dr. Luigi Cattivelli, Genomics
Research Centre, Italy
Søren K. Rasmussen, KU-LIFE
09.35-10.00
Session 7: Cereals for the future
AROMAWHEAT: Aroma Traits in modern
wheat and land-races
Gerrard Starr, KU-LIFE
15.30-15.50
AROMAWHEAT: Formation of bread
flavor
Anja Niehues Birch, KU-LIFE
15.50-16.00
Closing the meeting
Johannes Ravn Jørgensen, AU-DJF
6
VISIONER FOR KORN
VISIONS FOR CEREALS
VISIONER FOR KORN
VISIONS FOR CEREALS
7
SESSION 1: BILLEDANALYSE ANVENDT
PÅ KORN I
Bestemmelse af kornkvalitet nu og i fremtiden
Poul Møller Hansen
Foss Analytical A/S
FOSS udvikler og fremstiller hurtige, pålidelige og dedikerede analyseløsninger til rutinekontrol af kvalitet og forarbejdningsprocesser i landbrugsprodukter og fødevarer, samt farmaceutiske og kemiske produkter. Inden for kornområdet analyserer
instrumenter fra FOSS på et eller andet tidspunkt i værdikæden fra jord til bord ca. 85% af alt verdens korn. Det er vigtigt for
FOSS at bibeholde og styrke den position ved at satse på nye innovative produkter, der kan dække fremtidens behov.
Traditionelt bliver korn, der handles, vurderet ud fra primært tre forskellige sæt af parametre:
1.
2.
3.
”Fysiske” parametre som vægt og massefylde.
”Interne” parametre som vand, protein og faldtal
”Eksterne” parametre som belægninger på kernerne, iblanding af fremmede arter og beskadigede kerner
Til bestemmelse af de ”fysiske” og ”interne” parametre findes der allerede i dag hurtige og pålidelige analyseløsninger. Derimod er analysen af de ”eksterne” parametre som oftest udført ved manuel/visuel inspektion. Inspektørernes erfaring og
udannelse varierer meget og belastningen på den enkelte inspektør varierer. Det er forhold der gør, at bedømmelserne af
de enkelte kornprøver bliver subjektive og af varierende kvalitet, hvilket i den sidste ende kan give en misvisende afregning
til sælgeren eller utilstrækkelig segregering mellem de enkelte kornkvaliteter under håndteringen.
Det er dyrt at have inspektører ansat og det er tilsvarende svært at finde egnede personer i de tyndt befolkede landbrugsområder. I de lande hvor kornet evalueres direkte ved modtagelse fra landmand vil man kunne opnå et hurtigere gennemløb, da en manuel inspektion normalt tager mellem 5-15 minutter.
Visionen for FOSS har derfor været at kunne tilbyde kunderne et objektivt og hurtigere alternativ til den manuelle inspektion,
med andre ord ville FOSS gerne ”take hands and eyes out of grain inspection”. Virkeliggørelsen af denne vision er kommet
nærmere med lanceringen i Australien af et vision baseret instrument kaldet ”EyeFoss”.
EyeFoss kan analysere byg- og hvedeprøver op til 0,7 L. En hvedeprøve på 0,5 L indeholder ca. 10.000 kerner. EyeFoss kan
på under 3 minutter tage individuelle billeder i 2D (6 kanaler) og 3D, samt lave den nødvendige klassifikation, der som resultat giver en summering (antal el. %) af indholdet af de klasser der er målet for analysen. I Australien er fokus primært bestemmelse af dækninggrad for specifikke svampe (f.eks. Black point, field fungi, germ end stain), skader på kernen (frost
distorded, sprouted wheat and skinned barley), samt iblanding af fremmede kerner (flyvehavre, rajgræs, lupiner m.m.).
Resultaterne fra forsøg hos en kunde i Australien sidste høst har været så positive, at de har valgt at implementere 5 instrumenter til den kommende høst. Erfaringerne fra denne høst skal danne baggrund for hvordan lanceringsplanerne bliver på
andre markeder.
8
VISIONER FOR KORN
VISIONS FOR CEREALS
Se indersiden af kornkerne med hyperspektral billedanalyse
Morten Arngren
DTU Informatics
Pre-germination of barley is one of many serious degradations of the barley quality in terms of malting. A pre-germinated
barley kernel can under certain conditions not re-germinate and is typically reduced to animal feed of lower quality. Identifying pre-germination at an early stage is therefore essential in order to segregate the barley kernels into low or high quality.
Current standard methods to quantify pre-germinated barley include visual approaches, e.g. to identify the root sprout, or
conducting a falling number test requiring time consuming procedures. We present an approach using a NIR imaging system to identify pre-germinated barley at an early stage of appr. 12 hours after germination has commenced. We can however only assign pre-germination as the cause for single kernels lack of germination and is hence unable to detect dormancy, kernel damage etc.
Our approach is based on almost 9000 Rosalina barley kernels being pre-germinated at different durations and afterwards
dried. Re-germinating the kernels reveal a grouping of the pre-germinated kernels into 3 categories: normal, delayed and
limited germination.
Our method extracts a set of features as shown below, where the germination progression over time is clearly captured.
Illustration 1: Image features barley kernels having 0, 12, 24, 36, 48 and 60 hours of pre-germination.
The model includes a supervised classification framework based on a set of extracted features using two separate processing pipelines to employ a consensus classifier on a single kernel level. The first uses a sparse logistic regression model to
classify the individual kernels. The second predicts the germination durations by a neural network model and classifies the
kernels based on these predictions. The predicted durations for each kernel can further assists in achieving homogeneous
germination profiles. This approach leads to a method insensitive to the kernel shell or kernel orientation.
The modeling framework achieves a classification performance error between 0.14% - 10% and 2.7 hours prediction error.
VISIONER FOR KORN
VISIONS FOR CEREALS
9
Billedanalyse af korn i bevægelse i en rensemaskine
Ole Thomsen Buus
Aarhus Universitet, Det Jordbrugsvidenskabelige Fakultet, Institut for Genetik og Bioteknologi
Billedanalyse kan også benyttes til at analysere objekter i bevægelse. I dette her tilfælde snakker vi om byg-kerner som bevæger sig i en rensemaskine (triøre). Et højhastighedskamera blev installeret foran en laboratorie-triøre med det formål at
optage kernerne i bevægelse inden i selve cylinderen under forskellige konfigurationer af triøren (udstyr inde i cylinderen
blev fjernet under disse optagelser).
Målet med disse optagelser var at udtrække information fra billedsekvenserne vha. billedanalyse. Specielt havde vi fokus
på udtræk af matematiske beskrivelser af de kurver som kernerne dannede i billed-planen.
En korn-masse på i alt 2 kg (bestående af 50% hele og 50% halve byg-kerner) blev sendt igennem triøren og flere testkørsler blev udført. Der blev benyttet 3 forskellige celle-størrelser (5.5 mm, 6.0 mm og 7.0 mm), som hver blev kørt i 10 forskellige cylinder-hastigheder (ca. 25-50 rpm med et gennemsnitlig interval på ca. 2.5 rpm). Dette resulterede i 30 testkørsler hver af 5 sekunders varighed - alle optaget med en tids-opløsning på 260 billeder per sekund (ca. 3.8 ms per billede).
Der vil blive vist noget video-materiale. Her vil det være muligt at observere forskellen på de kurver, som kernerne vil have
tendens til at bevæge sig i, når de manipuleres i triøren med forskellige cylinder-hastigheder og celle-størrelser. Udover dette vises de tidlige resultater af analyser udført med ”parabel Hough transform” med det formål at detektere parabelparametre for de kurver, som kernerne danner over tid, når de forlader cylinder-overfladen (hypotesen var, at disse kurver
kan tilnærmes som parabler).
Det ultimative mål med disse analyser er at opbygge en brugbar matematisk model af en triøre, som vil gøre det muligt at
lave visse forudsigelser om renseprocessens resultat.
10
VISIONER FOR KORN
VISIONS FOR CEREALS
SESSION 2: BILLEDANALYSE ANVENDT
PÅ KORN II
Tidlig måling af agrospire / spiring i maltbyg
Jens Michael Carstensen
Videometer A/S / DTU Informatik / KU Life
jmc@videometer.com
Spektral visionteknologi tegner til at blive et fast og vigtigt redskab for korn- og frøbranchen i de kommende år. Der er lovende anvendelser inden for præcis karakterisering af frø og kerner til f.eks. renhedsanalyse og frøbårne sygdomme, såvel
som til karakterisering af spiring og forædlede produkter som f.eks. hydration, chitting, rodspirer, acrospirer, maltfarve og
coatede frø.
I denne præsentation fokuseres på spiringsanvendelser inden for maltproduktion. Det vises, hvordan spektral visionteknologi
kan give en yderst hurtig og fleksibel måling af mange relevante karakteristika. En måling tager typisk op til 10 sekunder, og
der anvendes samme måleinstrument, VideometerLab, som er kalibreret til hver af de mange anvendelser.
En del af arbejdet er lavet i samarbejde med Danish Malting Group A/S
VISIONER FOR KORN
VISIONS FOR CEREALS
11
Tørt brød er snart en saga blot
Flemming Møller
Danisco A/S, Edwin Rahrs Vej 38, 8220 Brabrand, Denmark,
E-mail: flemming.moller@danisco.com
Vandindhold og dets fordeling i brød er en vigtig parameter for hvor friskt et brød opleves. Traditionel vandbestemmelse er
en langsom og destruktiv metode med en lav rumlig opløsning. Det præsenterede arbejde beskriver udviklingen af en metode til at afbillede vandfordeling i brød. Metoden vil i fremtiden blive brugt til at vurdere, hvordan forskellige fødevareingredienser og fremstillingsprocessen påvirker vandforsyningen i brød. Fremgangsmåden ved metodeudviklingen kan bruges til at udvikle tilsvarende metoder for andre ingredienser og fødevarer.
Et bush-broom NIR kamera, sisuCHEMA, som optager billeder imellem 970 og 2500 nm blev brugt til at optage billeder af
brød. Al dataanalyse og modeludvikling blev udført ved hjælp Evince (Umbio AB, Umeå, Sverige). Nær-skorpe og centerstykker for tre typer brød blev indsamlet over 11 dage, se figur 1. For hvert brødstykke blev der målt vandindhold og taget
NIR billeder.
Til modellering og forudsigelse af vandfordelingen blev en Partial Least Square regression brugt. Modellen havde en gennemsnitlig fejl (RMSEP) på 0,65% vand, se figur 2. Den udviklede model er brugt til at visualisere fugtdistribution i en hel skive
brød, som ses i figur 3.
Figur 1. Billede som viser, hvor
Nær-skorpe og centerstykker blev
indsamlet til modeludvikling.
Figur 2. Observerede vandkoncentrationer afbilledet imod beregnede vandkoncentrationer. Røde cirkler er prøver
fra modeludviklingen og blå cirkler er
test-set prøver.
Figur 3. Et billede som forudsiger vandfordelingen i en skive toast brød.
12
VISIONER FOR KORN
VISIONS FOR CEREALS
SESSION 3: SKAL DER DYRKES KORN
I DANMARK?
Midtvejsevaluering af 7. rammeprogram / forventninger til det
8. rammeprogram
Lisbeth Munksgaard
Aalborg Universitet
Midtvejsevalueringen af 7. rammeprogram ventes at blive offentliggjort sidst i oktober 2010. Den er altså i skrivende stund
ikke tilgængelig. Der kommer dog løbende signaler fra EU’s forskningskommisariat og EU’s medlemslande, som peger på en
række trends. Blandt disse hovedtrends er følgende:
‐
‐
‐
‐
‐
Der vil blive iværksat forskning, som kan imødegå de såkaldte Grand Challenges
Programmerne forventes at komme til i højere grad at rumme brede, mere strategisk rettede overskrifter end det
har været tilfældet i FP7
Der vil være fortsat fokus på at få Medlemslandene til at samfinansiere programmerne i form af ERA-nets, Joint
Programing initiativer og lignende fælles instrumenter
Der vil blive endnu større fokus på public private partnerships og især på at få vækstlaget af små virksomheder
med i programmerne
Der vil fortsat blive stærkt fokus på samarbejde med 3.-lande
Ud fra de trends, der er tilgængelige inden den 26. oktober, vil der blive lagt op til diskussion af perspektiverne for dansk cerealieproduktion og cerealieforskning.
VISIONER FOR KORN
VISIONS FOR CEREALS
13
Reviderede regler for dyrkning af GMO-afgrøder i Danmark
og EU
Svend Pedersen
Plantedirektoratet
EU-Kommissionen udsendte den 13. juli 2010 to nye udspil på GMO-området: 1) En ny henstilling til medlemsstaterne om
retningslinjer for udvikling af foranstaltninger til sikring af sameksistens mellem genmodificerede (GM) og konventionelle og
økologiske afgrøder og 2) et forslag om tilføjelse af en ny regel i udsætningsdirektivet1 om nationale forbud mod dyrkning af
GM-afgrøder.
Den nye regel gør det muligt at indføre nationale dyrkningsforbud med henvisning til andre årsager end risici for miljøet eller
menneskers og dyrs sundhed.
Den nye henstilling om sameksistens gælder umiddelbart. Derimod skal forslaget til ændring af udsætningsdirektivet gennem den vanlige politiske proces i EU for vedtagelse af regelændringer.
Parallelt med processen frem mod færdiggørelsen af Kommissionens nye udspil har Folketinget i løbet af foråret 2010 behandlet et beslutningsforslag om indførelse af GMO-fri zoner i Danmark (B158) og en forespørgsel om regeringens initiativer
for at træffe beslutninger om dyrkning af GM-afgrøder i Danmark på et kvalificeret grundlag (F50).
Behandlingen af F50 førte den 27. maj 2010 frem til Folketingets vedtagelse V83 om genetisk modificerede afgrøder:
”Idet Folketinget vil sikre en styrbar udvikling på GMO-området, vedtages det, at regeringen pålægges,
-
at Danmark i EU-regi arbejder for nationale afgørelser vedrørende dyrkning af genetisk modificerede afgrøder,
at der tages initiativ til en eksperthøring, som skal bidrage til at afklare spørgsmål omkring dyrkning af GMO-afgrøder i
Danmark,
at sameksistensloven fra 2004 genforhandles, således at ny international viden om GMO tages med i en ny lovgivning.
Forhandlingerne herom skal være afsluttet inden udgangen af 1. kvartal 2011, samt
at den frie og uafhængige forskning i de sundhedsmæssige og naturmæssige konsekvenser af genmodificerede fødevarer sikres, herunder at adgangen til GMO-frømateriale til forskning sikres.”
I overensstemmelse med Folketingets vedtagelse arrangerer Fødevareministeriet den 29. oktober 2010 en eksperthøring på
KU-Life om dyrkning af GM-afgrøder i Danmark.
Eksperthøringen vil blive fulgt op af et arbejde med at revidere relevante dele af den nuværende danske sameksistenslovgivning.
1
Direktiv 2001/18/EF om udsætning i miljøet af genetisk modificerede organismer.
14
VISIONER FOR KORN
VISIONS FOR CEREALS
Korn til energi eller fødevarer
Morten Gylling
Fødevareøkonomisk Institut
Den globale kornproduktion for ventes i perioden 2009 til 2019 at stige med lidt under 40% fra 1.460 mio. tons til 2.020 mio.
tons. I EU(27) forventes kornproduktionen i samme periode at stige med omkring 6 % fra 293 mio. tons til 310 mio. tons.
Stigningen i produktionen forventes stort set at svare til den forventede stigning i forbruget til såvel fødevarer (inkl. foder)
som energi.
Majs og sukkerrør vil i perioden stadig være de vigtigste råvarer til bioethanol produktion med omkring 40% hver af det samlede råvareforbrug. Lignocellulose baseret bioethanol produktion (2. generation) forventes først sidst i perioden at få en væsentlig og stigende andel af den samlede produktion.
Den danske kornproduktion på godt 9 mio. tons anvendes i dag stort set til fødevarer, hvor godt 80% går til foder.
Det forventes ikke ,at en dansk kornbaseret bioethanol produktion vil være konkurrencedygtig, nu eller på sigt. Samtidig må
det også forventes, at lignocellulose teknologien under danske forhold vil være mere konkurrencedygtig på sigt.
Der bør derfor fokuseres på udvikling af kornsorter med forbedrede anvendelsesegenskaber inden for områder som forbedret foderudnyttelse og miljømæssige egenskaber.
VISIONER FOR KORN
VISIONS FOR CEREALS
15
SESSION 4: UDFORDRINGER
GMO eller ej – kornforædlernes udfordringer
Kurt Hjortsholm
Sejet Planteforædling
khj@sejet.dk
Perspektiverne for genetisk forandrede kornsorter.
Genetisk forbedrede kornsorter er en nødvendighed for at følge med verdens behov for øget mad, bedre mad, mere foder,
mere energi, forbedret vand- og kulstofbalance samt bedre miljø i en bredere forstand.
Det er nødvendigt at overveje alle tilgængelige forædlingsmetoder, men de forskellige metoder har hver deres fordele og
ulemper. Alting har en pris. I vurderingen af, hvilke metoder og kombinationer af metoder, der med fordel kan tages i brug
for en given art, på en given tid og i et givet område kræves naturligvis en helhedsvurdering, hvor forædlerens, producentens, handelens, forbrugerens og samfundets fordele og ulemper nøje må forsøges afvejet mod hinanden. Der angives eksempler på fordele og ulemper ved dels traditionel kornforædling dels avanceret bioteknologisk kornforædling og dels ved
GMO-kornforædling.
Udover fordele og ulemper knyttet til selve den biologiske forædlingsproces, må også overvejes de mulige konsekvenser for
og ved registrering, beskyttelse, dyrkning, stewardship, regulering, monitorering, afsætning, forsikring, monopolisering, fri
konkurrence, tredje lande m.m.m.
Det var ikke tanken med dette indlæg at forsøge at give en færdig samlet og udtømmende afvejning af alle de forskellige
forhold, men kun ridse problematikken op. Interessenterne i værdikæden må således selv foretage de nødvendige afvejninger og prioriteringer, og eventuelle nødvendige politiske beslutninger må foretages, hvis de eksisterende rammebetingelser ønskes ændret. Enkelte konklusioner kan dog fremdrages. Jo mere avanceret forædling og jo mere avancerede forædlingsmetoder der benyttes, jo dyrere bliver forædlingsprocessen naturligvis. Der kan nås ganske langt i løsningen af
dyrkningsproblemerne med avancerede bioteknologiske forædlingsmetoder - molekylær forædling og lignende, men den
helt traditionelle forædling er formentlig blevet for langsom til at kunne klare sig konkurrencemæssigt mod mere moderne
metoder. Den rene GMO-forædling er teknologisk mest velegnet til enkeltegenskaber og mindre velegnet til den samlede
genomiske forbedring. GMO vil derfor blive implementeret der, hvor behovet for enkeltforbedringer er størst eksempelvis
herbicid- og insektresistens, men kan også være velegnet ved eksempelvis store nødvendige kvalitetsændringer eksempelvis ændret aminosyresammensætning. Den rene GMO-forædling har meget store reguleringsmæssige omkostninger i forhold til andre metoder. Hvis ikke problemet med manglende fastsættelse af GMO-grænseværdier i konventionelt udsæd
løses juridisk, så vil den økonomiske risiko ved markedsføring vedblivende være ekstremt stor og uoverskuelig, og afholde
de fleste kornforædlere fra at initiere GMO-forædling.
16
VISIONER FOR KORN
VISIONS FOR CEREALS
SESSION 5: IMPROVED QUALITY
AND DISEASE RESISTANCE IN
CEREAL CROPS I
Breeding for adaptation to Mediterranean conditions
Luigi Cattivelli
CRA-Genomic Research Centre, Fiorenzuola d’Arda (Italy)
The Mediterranean region of Europe is particularly sensitive to drought and potentially very vulnerable to future climate
changes. Even if rainfall does not change, increased risks for drought will result from an increased atmospheric evaporative
demand in a warmer future climate. Breeding for drought resistance is therefore required for both mild and severe stress
conditions. This implies a need for a better characterization of the biodiversity available for drought and a deeper
comprehension of the physiological mechanisms which are crucial to assure yield when drought occurs. Physiological traits
relevant for the responses to water deficit and/or modified by water deficit span a wide range of vital processes. As a
consequence, it can be expected that there is no single response pattern that is highly correlated with yield under all
drought environments. The various strategies adopted by different genotypes to face water limited environments depict
different “physiotypes”, i.e. genotypes with different physiological strategies in response to water availability and other
drought-associated stress factors, is required to drive a knowledge based breeding. A better understanding of physiological
mechanisms underlying yield under stress conditions is a starting point to identify physiological traits useful for a more
effective breeding approach. The presentation will discuss the diversity for adaptation to Mediterranean conditions found in
barley and durum wheat germplasm collections and its impact on yield and yield stability. Modern breeding strategies have
contributed to reduce the interaction of genotypes with environments selecting genotypes with better stability across a wide
range of locations and years and modern genotypes outperformed the old ones in both favourable and drought prone
environments.
Key references
1. Rizza F, Badeck F W, Cattivelli L, Lidestri O, Di Fonzo N, Stanca A M, 2004. Use of a water stress index to identify barley
genotypes adapted to rainfed and irrigated conditions. Crop Science, 44: 2127-2137.
2. De Vita P, Li Destri Nicosia O, Nigro F, Platani C, Riefolo C, Di Fonzo N, Cattivelli L, 2007. Breeding progress in morphophysiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century.
European Journal of Agronomy, 26: 39-53.
3. Cattivelli L, Rizza F, Badeck F, Mazzucotelli E, Mastrangelo A M, Francia E, Marè C, Tondelli A, Stanca A M, 2008. Drought
tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Research, 105: 1-14.
4. De Vita P, Mastrangelo A M, Matteu L, Mazzucotelli E, Virzì N, Palumbo M, Lo Storto M, Rizza F, Cattivelli L, 2010. Effect of
genetic improvement on yield stability in selected durum wheat genotypes. Field Crop Research, 119: 68-77.
VISIONER FOR KORN
VISIONS FOR CEREALS
17
iKORN: Improved Quality and Disease Resistance in Cereals
Søren K. Rasmussen
Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark
Danish agriculture faces the challenge of delivering safe, high-quality, and health-promoting food as well as bioproducts in
an economically viable and environmentally sustainable manner. Existing plant genetic resources and current breeding
methods alone are insufficient for significant improvement of important quality traits of food plants. Advances in crop quality
will require a broad suite of direct genomics approaches, which are usually too complex to be handled in small enterprises.
The strategic research initiative iKORN (2008-2012) aims at creating a knowledge pipeline for rapid transfer of advanced
marker technologies to breeding programs of high quality cereal crops. The main crop plants for industrial production of
food and bioproducts in Denmark are wheat and barley, however in this initiative focus will be on wheat. iKORN is operated
through interlinked thematic work packages addressing crop quality, disease resistance, and reduced fertilizer-input production systems. The crop quality part of the project modifies cereal grain phosphate and protein storage for improved food
and feed value. Disease resistance studies will introduce new disease resistance genes from adapted and unadapted material to enable breeding of highly disease resistant cereal cultivars. Reduced fertilizer-input research clarifies the genetic
basis for breeding of plants which will produce well even under reduced nitrogen supply. iKORN thus provides the necessary
scientific tools and framework to cope with crop production challenges of the future in an environment with changing climate and crop production technology and an increased need and consumer-driven demand for producing healthy and
high-quality cereal crops based on ecologically sound technology. At the end of the project a genomic toolbox will be
available that includes a set of integrated approaches for recombinational and physical mapping as well as sequenceready map assembly; map-based cloning; parallel analysis of transcript, protein and metabolite pools, reverse genetics like
TILLING, efficient haplotype analysis and markers for breeding by genotype-based selection and association mapping. The
research conducted within the thematic areas will establish the necessary technologies and provide the plant lines with the
desired useful properties for breeding and end-user applications. The themes are:
•
•
•
Improved Quality
Reduced Fertilizer Input
Genetic Resources for Diseases
http://www.ikorn.life.ku.dk/
Partners from:
Dept. of Genetics and Biotechnology & Dept. of Integrated Pest Management, Faculty of Agricultural Sciences, Aarhus,
Denmark
Sejet Plant Breeding A/S, Horsens, Denmark
Nordic Seed, Fredericia, Denmark
E-mail address of coordinator: skr@life.ku.dk
18
VISIONER FOR KORN
VISIONS FOR CEREALS
SESSION 6: IMPROVED QUALITY
AND DISEASE RESISTANCE IN
CEREAL CROPS II
Nitrogen input in wheat production
Jan K. Schjørring1, Thomas Kichey1, Inge Skrumsager Møller1 and Lars B. Eriksen2
1
Plant and Soil Science Section, Department of Agriculture and Ecology, Faculty of Life Sciences (LIFE),
University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C
2
Sejet Plant Breeding, Nørremarksvej 67, DK-8700 Horsens
E-mail: jks@life.ku.dk
Wheat covers about 25% of the agricultural area in the EU and is the dominating cereal crop. In total, about 2900 million kg
mineral fertilizer N is annually applied to wheat crops, corresponding to about 30% of fertilizer N use in EU. The rate of mineral N application to wheat spans 25-200 kg N/ha in Europe, thus showing a large variation. On average, about 30–50% of
the applied mineral N is recovered in the harvested grain. Higher values, exceeding 60%, have been reported for winter
wheat in Denmark and in the UK. Based on total above-ground N uptake in grain and straw, the recovery may increase to
60-70%. It must be noted that these values are recoveries for the first season after the application. Fertilizer N recoveries obtained over several seasons may be considerably higher than 60-70%, and the total quantity of N taken up by a highyielding wheat crop often exceeds the N input from mineral N fertilizer, with the extra N originating from mineralization of
soil organic matter.
Improvement of the efficiency of mineral N fertilisers is a major goal with respect to sustainable intensification of wheat production. In order to achieve this goal, the focus should be on (i) improved synchrony between fertiliser N and crop demand,
i.e. the timing, (ii) site-specific fertilization to take into account spatial inhomogeneity on field-level, i.e. the rate and place,
and (iii) possibilities for taking into account year-to-year weather variations affecting wheat growth and soil N mineralization, and (iv) breeding of genotypes with better N uptake and higher dry matter production per unit absorbed N.
A key target in attempts to produce genotypes with improved N use efficiency is the enzyme glutamine synthetase (GS),
which constitutes a bottleneck for assimilation of mineral N into organic compounds. Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences in wheat can be classified into four subfamilies: GS2 (a, b and c), GS1 (a,
b and c), GSr (1 and 2) and GSe (1 and 2). Together with the GS genes from other cereal species, the wheat GS sub-families
form four distinct clades (Bernard et al. 2008 Plant Molecular Biology 67, 89-105). The different GS isoforms seem to have
non-overlapping roles in controlling grain size and grain numbers (Martin et al. 2006 Plant Cell 18, 3252-3274).
In the iKORN project we are screening a panel of wheat genotypes for differences in N uptake, N remobilization from vegetative plant parts to the spike, and N harvest index (ratio between grain and straw N yield). In parallel, the expression and
activity of different GS isoforms are analysed in various plant parts. The N treatments include different levels and combinations of N fertilizer applied to the soil or sprayed on the leaves. Foliar application constitutes a strategy to improve the synchrony with wheat crop N demand by splitting the total N application into several dressings. The first results from this work
will be included in the presentation.
VISIONER FOR KORN
VISIONS FOR CEREALS
19
Barley genes needed for powdery mildew infection
Sara M. Mørch1, Dale Godfrey2, Patrick Schweizer3, Hans Thordal-Christensen1
1
Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Denmark
Present address: School of Agriculture, Food & Wine, The University of Adelaide, Australia
3
IPK-Gatersleben, Germany
2
Plant pathogens are of great importance in crop production, since they are causing significant yield losses as well as compromising the quality of harvested products. Among the more damaging pathogens are the biotrophic pathogens, which
depend and thrive of a living host.
In my work, I study the interaction between the biotrophic powdery mildew fungal pathogen, Blumeria graminis f.sp. hordei,
and its host barley. The key to the successful interaction with the living plant cell is the establishment of specialised organs
called haustoria. These are formed inside the living host cells and are used to retrieve nutrients to support fungal growth and
propagation.
The aim of my PhD project is to identify barley genes which are needed for the establishment and growth of the fungus.
Such knowledge will help us in understanding more about this intimate relationship and can be of value further down the
road in future efforts of creating resistant plants.
An expressed sequence tag (EST) library, which was based on barley leaves infected with the powdery mildew fungus, had
previously been created. When studying the expressed sequences of this library, 178 previously unknown barley genes
were identified. Some of these genes are expected to have importance for the establishment and growth of the fungus. In
order for me to identify which of these genes that is important, I have made single cell gene-silencing by RNA interference
(RNAi). This is a technique whereby you can target and shut down genes of interest in order to analyse their importance in a
certain situation. RNAi was conducted by shooting gold particles coated with RNAi constructs into epidermal cells of barley
leaves, subsequently inoculated with fungal spores. Hereafter the susceptibility of the cells, with the silenced gene of interest, was assessed.
Roughly ninety of the novel genes were tested by RNAi and after several re-tests, I was able to confirm that silencing of five
of the 90 genes caused significant resistance to the powdery mildew fungus. I am now in the process of analysing these five
promising candidates further, which includes investigating their molecular functions.
20
VISIONER FOR KORN
VISIONS FOR CEREALS
Fusarium susceptibility and its toxins in wheat cultivars
Lise Nistrup Jørgensen & Linda Kærgaard Nielsen
Aarhus University, Faculty of Agricultural Sciences, Department of Integrated Pest Management
Resistance of wheat to Fusarium head blight is a complex trait. Five resistance components have been characterized. Type I
and Type II are the most common ways of measuring Fusarium resistance.
Type I: Resistance to initial infection. Assessed using spray inoculation of heads with Fusarium spores or spreading Fusariuminfected debris (or grain) on the soil and evaluating the number of infected spikes.
Type II: Resistance to spread of Fusarium fungus within the spike. Assessed by point inoculation of a middle spikelet in the
head and evaluation of the extent of symptoms spread from the inoculation point. Inoculation methods for type I are also
widely applied.
Type III: Resistance to mycotoxins (deoxynivalenol, nivalenol), i.e. non-accumulation or ability to degrade (or inactivate) mycotoxins. Evaluated by analysis of the mycotoxin amount in grain using ELISA tests or chromatographic techniques.
Type IV: Resistance to kernel infection. Assessed by counting the proportion of kernels visibly damaged by Fusarium or by
analysis of the ergosterol amount in grain or the Fusarium DNA quantity in grain.
Type V: Tolerance to Fusarium, i.e. tolerant cultivars have lower yield loss than intolerant cultivars at the same FHB severity
level.
In the project IKORN a substantial number of wheat cultivars have been screened for susceptibility to Fusarium head blight
using both traditional inoculation and point inoculation.
The aim has been to screen for resistant cultivars, which could potentially be included by Danish breeders in the Danish
germ plasm. Particularly material originating back to Sumai3 have shown promising levels of resistance. Results from IKORN
as well as results from screening of Danish cultivars grown today will be shown.
References:
Buerstmayr H., Ban T., Anderson JA. 2009. QTL mapping and marker-assisted selection for Fusarium head blight resistance in
wheat: a review. Plant breeding; 128 1-26.
Mesterhazy A. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breeding 114: 377-386.
Mesterhazy A., Bartok T., Mirocha C.G., Komoroczy R. 1999. Nature of wheat resistance to Fusarium head blight and the role
of deoxynivalenol for breeding. Plant Breeding 118: 97-110.
Miedaner T. 1997. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breeding 116: 201-220.
VISIONER FOR KORN
VISIONS FOR CEREALS
21
The FHB complex in Danish small grain cereals
L. K. Nielsen1, J. D. Jensen2, A. F. Justesen1 & L. N. Jørgensen1
1
Aarhus University, Faculty of Agricultural Sciences, Department of Integrated Pest Management, Research
Centre Flakkebjerg, Denmark.
2
University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology and Biotechnology,
Frederiksberg, Denmark.
Lindakaergaard.nielsen@agrsci.dk
Field grain samples of wheat, barley, triticale, oat and rye were collected across Denmark by Knowledge Centre for Agriculture, Crop Production, in the period 2003 to 2007 were analysed to study the species causing Fusarium head blight (FHB).
Twelve different species specific quantitative real-time PCR (QPCR) assays: F. graminearum, F. culmorum, F. avenaceum, F.
tricinctum, F. poae, F. langsethiae, F. sporotrichioides, F. equiseti, F. proliferatum, F. verticilloides and Microdochium nivale
and M. majus, were used to identify and quantify these species. The assays were designed to target the same gene in each
species and the DNA quantity was used as a measure for the fungal biomass revealing the true prevalence of the individual
species. Ten of the twelve species was found in Danish cereals, only F. verticilloides and F. proliferatum did not occur at all.
Great annual variations were observed, but clear indications of host preferences of the different Fusarium species were
found. In wheat F. graminearum was found to be the predominant species followed by F. avenaceum and F. culmorum
which were also found in relatively high amounts. In barley and oats F. langsethiae, F. avenaceum, and F. poae were the
dominating species in incidence as well as biomass. In triticale F. poae occurred with the highest incidence but F. culmorum
was the dominant species when looking at the biomass. In rye F. avenaceum and F. culmorum were the most frequent occurring species but according to biomass F. avenaceum was the dominating species. M. nivale and M. majus were found at
high incidence and in significant amounts across all years and cereal species. M. majus showed clear preferences for wheat
while M. nivale were the dominant species in barley, triticale, oat and rye. PCA analysis of the data further revealed that
several species frequently occur together in the FHB complex one group contain F. graminearum, F. culmorum, F. avenaceum and M. nivale/majus and another group contain F. langsethiae and F. tricinctum. To get an idea of the development
of the FHB complex over time 8 samples of each wheat and barley collected from 1957 to 2000 were obtained from the
ASKOV long-term studies of animal manure and mineral fertilizers situated in Mid-Jutland. F. culmorum, F. avenaceum and
F. poae were prevalent in all samples. F. graminearum was first found in significant amounts in wheat samples from 19972000. The findings of F. graminearum can be correlated to increased growth of maize and winter crops along with increased use of reduced tilling and climate changes in Denmark.
22
VISIONER FOR KORN
VISIONS FOR CEREALS
SESSION 7: CEREALS FOR THE FUTURE
Phytases in cereals
H. Brinch-Pedersen1, G. Dionisio1, C.K. Madsen1, K. Welinder2, M. Jørgensen2, V. Glitsø3, P.B. Holm1
1
Aarhus University, Faculty of Agricultural Sciences, Dept. of Genetics and Biotechnology, Research Centre
Flakkebjerg, DK-4200 Slagelse, Denmark
2
Aalborg University, Department of Biotechnology, DK-9000 Aalborg, Denmark
3
Novozymes A/S, Kroghhøjvej 36, 2880 Bagsværd, Denmark
Barley (Hordeum vulgare L.), wheat (Triticum aestivum L.) and rye (Secale cereale L.) possess a significant phytase activity in
the mature seeds. Cereals like maize (Zea mays L.) or rice (Oryza sativa L.) possess little or virtually no pre-formed phytase
activity in the mature seed and depend fully on de novo synthesis during germination. Wheat, barley, rye, maize and rice all
possess purple acid phosphatase genes that expressed in Pichia pastoris gives fully functional phytases (PAPhys) with very
similar enzyme kinetics. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys.
In barley, wheat and rye, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (i.e. barley: HvPAPhy_a and
HvPAPhy_b1, HvPAPhy_b2; wheat: TaPAPhy_a1, TaPAPhy_a2 and TaPAPhy_b1, TaPAPhy_b2). In rice and maize only the
“b” type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 shared 86.0 and
85.7% identical amino acid sequence, respectively and TaPAPhya1/a2 and TaPAPhyb1/b2 shared up to 90.1%
(TaPAPhy_a2 and TaPAPhy_b2) amino acid sequence. In spite of these similarities, the PAPhy_a/b isoforms were differentially expressed with the PAPhy_a isogenes being expressed mainly during grain development and the PAPhy_b isogenes
being expressed mainly during germination. Wheat TaPAPhy was localized to the vacuoles of the aleurone layer. Peptide
mapping of TaPAPhy purified from wheat bran and from germinating seeds confirmed that pre-formed phytase in mature
seeds and phytase de novo formed during germination is constituted mainly by the TaPAPhy_ a isoforms and the
TaPAPhy_b isoforms, respectively.
VISIONER FOR KORN
VISIONS FOR CEREALS
23
TILLING for low phytic acid (lpa) in wheat
Anna Maria Torp, Sven Bode Andersen, Søren K. Rasmussen
Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40,
DK-1871 Frederiksberg C, Denmark
Phytic acid (PA, InsP6) is the main storage form of phosphorus in cereal seeds. PA causes a number of problems in both husbandry and in human nutrition. In husbandry the main problem is that monogastric animals cannot digest and utilize PA,
which might result in environmental phosphate pollution due to excretion of PA. Stored PA reduces the bioavailability of iron
and other minerals, which may contribute to “hidden hunger” in human populations where cereals are the primary source of
nutrition.
One way to deal with some of the problems outlined above would be to identify low phytic acid (lpa) mutants impaired in
PA biosynthesis or transport. In recent years, a number of genes affecting these processes have been identified in cereals,
particularly in rice, barley and maize. Thus one strategy to identify a large number of such lpa mutants would be to use TILLING (Targeting Induced Local Lessions IN Genomes), a method that combines chemical or physical mutagenesis with PCR
based screening to identify allelic mutations in one or more target gene.
The first committed step in the biosynthesis of phytic acid is catalysed by myo-inositol 3-phosphate synthase (MIPS). We
have cloned the three wheat homologues encoding this enzyme and have developed gene specific primers for each of
them. These primer pairs have been used to screen a TILLING population of hexaploid spring wheat ‘Amaretto’ for mutations
in each of the three MIPS homologues. In this population an average of 4-8 mutations are detected for each plate run
(2x96=192 plants) corresponding to a mutation frequency of 2-4% per gene fragment. Thus it has been possible to identify a
large range of mutations causing truncated proteins (premature stop codon, and splice mutations) or single amino acid
changes for each of the three wheat MIPS homologues. Some of these mutants are currently undergoing tests for phytic acid
content in the laboratory.
24
VISIONER FOR KORN
VISIONS FOR CEREALS
Shade avoidance and social plants
Sven Bode Andersen, Wibke Wille, Lars Pødenphant Kiær, Hans Werner Griepentrog,
Jannie Maj Olsen, Jacob Weiner
University of Copenhagen, Faculty of Life Sciences, Department of Agriculture and Ecology
The project Evolutionary Agroecology is a program of excellence from Copenhagen University aiming at alternative solutions to weed control in agricultural production. We are pursuing an approach towards reduced herbicide use based on the
basic hypothesis that high density high spatial uniformity in cultivation will improve crop competition against weeds. While
the potential of this approach has been demonstrated, development of varieties optimized for high density weed suppression behaviour will be necessary to fully exploit this potential. We hypothesize that reduced "shade avoidance" behaviour
will increase the efficacy of weed suppression, by promoting offensive "weed suppression" (rather than shade avoidance)
behaviour and social collaboration among the crop plants, which will not "waste" resources competing with each other but
cooperate to produce high yield and quality.
In the field, wheat lines showing variation in shade avoidance and yield under high density high uniformity are identified by
field evaluation of large gene bank collections of cultivated wheat. We have shown huge difference in weed suppression
among 140 varieties of wheat, which were not due to general vigour, germination or height. Almost one million chemically
mutagenized wheat plants have been screened to isolate stable mutants with modified shade avoidance reactions. Combined the two approaches pave the way for both basic and applied studies on weed control through high density agriculture.
VISIONER FOR KORN
VISIONS FOR CEREALS
25
LemnaTec image based plant phenotyping
Ralph Schunk, Dirk Vandenhirtz, Uwe Lippert, Matthias Eberius
LemnaTec GmbH, Schumanstraße 18, 52146 Würselen, Germany
matthias.eberius@lemnatec.com
www.lemnatec.de
Due to the development of highly automated genetic analysis, plant genomics has immensely enlarged our understanding
of the genetic structure of plants over the last two decades.
The fast evolving need to identify interactions between genes and environmental factors (biotic and abiotic) that brings
about a certain plant phenome made it necessary to develop quantitative, reproducible and highly automated plant phenotyping systems for large plant numbers.
Phenotyping systems such as these have to integrate reproducible plant management (randomisation, watering, stress induction) and comprehensive imaging of root and shoot far beyond human vision (visible light, fluorescence, near infrared,
infrared, THz) as well additional chemical analysis methods. Immediate and automated image analysis of the stored images and further data transformation using plant shape and plant growth models are the important intermediate steps before undertaking statistical data analysis of the phenotyping results to characterise plant phenotypes quantitatively. Such
quantitative data contributes in a decisive way to the further analysis of gene functions (tilling, QTL etc.), especially under
fluctuating or stress-induced environmental conditions with a special focus on complex traits like yield or drought tolerance.
This presentation will provide a survey on phenotyping technology and the close interaction between phenotyping technologies, modelling approaches and the new opportunities of fast and automated high-throughput genomics.
26
VISIONER FOR KORN
VISIONS FOR CEREALS
SESSION 8: NEW ASPECTS OF CEREALS
Health promoting compounds in amaranth – a pseudocereal
crop for a future warmer climate
Inge Fomsgaard
Aarhus University, Faculty of Agricultural Sciences, Department of Integrated Pest Management
Amaranth is a subtropical crop with remarkable properties and a special history. The native population in South America
and Mexico domesticated amaranth more than 6000 years ago. It was a hardy crop that predated maize. It is also the
oldest grain to be grown in the U.S. When the Spanish conquerors came to America they did not like to see natives mixing
animal blood into the popped grains and turning it into religious-like figurines. It looked almost like the Christian sacrament.
Therefore the cultivation of amaranth was prohibited in Latin America in the 15-16th century.
Four years ago the European Commission financed the AMARANTH:FUTURE-FOOD project – a collaborative project between Latin American and European scientists. Amaranth belongs to the genera Amaranthus in the family Amaranthaceae.
It is thus closely related to quinoa, another subtropical plant, and to spinach and red beet.
The seeds of amaranth were – and are – used as flour for bread and other staples. Amaranth leaves are consumed as fresh
baby leaves in salad or boiled when harvested at a more mature stage. When we compare the nutritious value of amaranth
with other cereals, we find that amaranth is higher in proteins, fibres, vitamins and minerals, folate, lysine, tryptophan, phytosterols and squalen. Amaranth is gluten-free.
The AMARANTH:FUTURE-FOOD project showed that the health promoting flavonoid rutin was present in high concentrations
in seeds and even higher in leaves. In seeds, the content of rutin exhibited large variations in crops grown in different location/environmental conditions.
Hydrolysed proteins are very often used as emulgators and stabilisers. Our collaborators from Argentina showed that amaranth protein hydrolysates have very good emulsifying and foaming properties and might be the future of emulsifying
agents. They also showed that hydrolysed amaranth proteins have antihypertensive and antitumour effects.
Recent cultivation trials in Denmark with three amaranth varieties showed that they could reach maturity in 3 months. Amaranth needs low amounts of nitrogen, can grow in very different climates and can resist drought and flooding. If focus were
put on the development of varieties, amaranth could probably be an interesting future crop in Denmark.
This work was part of the European Commission’s Sixth Framework Programme, contract number 032263
AMARANTH: FUTURE-FOOD.
VISIONER FOR KORN
VISIONS FOR CEREALS
27
AROMAWHEAT: Aroma traits in modern wheat and landraces
Gerrard Starr
University of Copenhagen, Faculty of Life Sciences, Department of Food Science
Wheat is an important daily staple cereal which is cultivated for human and animal consumption. Consumers mostly consume wheat as bread and the aroma of bread is an important quality for consumer acceptance, yet little interest has been
paid to the aroma of wheat as a quality parameter. The emphasis of breeding programs has hitherto been on producing
new varieties with increased yield and bread volumes. In 2002 Michael Czerny and Peter Schieberle determined that odorants which were present in wheat flour were also present in bread crumb and they concluded that the choice of wheat flour
was an important influence on bread aroma quality. Finding out how much differentiation there is between wheat varieties
and how much these differences might influence bread flavour would be of interest to producers, plant breeders and consumers alike.
In the PhD Project: “Aroma traits in modern wheat and landraces” the aroma composition of 200 different wheat varieties
and landraces are being analysed using Dynamic Headspace Extraction and Gas Chromatography- Mass Spectrometry. 24
selected varieties have been further evaluated by a trained sensory panel for their qualities as cooked grains and as flour
porridge.
The PhD Project “Aroma traits in modern wheat and landraces” is funded by the Danish Ministry for Food Agriculture and
Fisheries.
Reference:
Czerny, M.; Schieberle, P. Important Aroma Compounds in Freshly Ground Wholemeal and White Wheat Flour- Identification and Quantative Canges during Sourdough Fermentation. J.Agric.Food Chem. 2002, Vol 50, No 23, pp 6835-6840.
Project manager: Gerrard Starr, Stud. PhD.
Supervisors: Associate professor Åse Solvej Hansen, Associate professor Mikael Agerlin Petersen.
Project co-ordinator Birthe Møller Jespersen
Department of Food Science
Rolighedsvej 30,
1958 Frederiksberg C
28
VISIONER FOR KORN
VISIONS FOR CEREALS
AROMAWHEAT: Formation of bread flavor
Anja Niehues Birch
Quality and Technology, Department of Food Science, Faculty of Life Sciences, University of Copenhagen
annb@life.ku.dk
Bread quality is a very important consideration as bread is a staple food eaten daily. Bread quality criteria have mainly focussed on bread volume with very little attention being paid to how the flavour of bread is influenced by fermentation conditions. Today industrially produced wheat bread is often made from doughs with a high concentration of yeast and with a
high fermentation temperature in order to decrease the time of fermentation. A short fermentation time results in an economical benefit and a continuous flow on the production line. However, it is widely held that a longer fermentation time results in bread with a more pleasant flavour, although few studies have been done in this area. Knowledge of the different
fermentation conditions is of interest for the bread industry in order to improve and control the flavour in bread crumb. In the
ongoing PhD project “Formation of Bread Flavour” the effects of the fermentation conditions such as temperature and yeast
concentration on bread crumb flavour have been investigated by dynamic headspace extraction and Gas Chromatography Mass Spectrometry analysis. The effects of fermentation conditions on flavour formation are explained from two important mechanisms producing aroma compounds in bread crumb; the yeast metabolism during fermentation and lipid oxidation.
The PhD project “Formation of Bread Flavour” is funded by KU LIFE, Lantmännen Unibake and FOOD Research School.
VISIONER FOR KORN
VISIONS FOR CEREALS
29
DELTAGERLISTE / LIST OF PARTICIPANTS
Per Aaslo
Gunter Backes
Finn Borum
Aarhus Universitet
Københavns Universitet
Sejet Planteforædling
Det Jordbrugsvidenskabelige Fakultet
Det Biovidenskabelige Fakultet
fbp@sejet.com
Institut for Genetik og Bioteknologi
Institut for Jordbrug og Økologi
per.aaslo@agrsci.dk
guba@life.ku.dk
Henrik Brinch-Pedersen
Aarhus Universitet
Reino Aikasalo
Merethe Bagge
Det Jordbrugsvidenskabelige Fakultet
Boreal Plant Breeding Ltd.
Sejet Planteforædling
Institut for Genetik og Bioteknologi
reino.aikasalo@boreal.fi
henrik.brinchpedersen@agrsci.dk
Andrea Bellucci
Sven Bode Andersen
Københavns Universitet
Torben Brøchner
Københavns Universitet
Det Biovidenskabelige Fakultet
Aarhus Universitet
Det Biovidenskabelige Fakultet
Institut for Jordbrug og Økologi
Det Jordbrugsvidenskabelige Fakultet
Institut for Jordbrug og Økologi
andreabellucci@life.ku.dk
Institut for Biosystemteknologi
sba@life.ku.dk
tobr@agrsci.dk
Anja Niehues Birch
Ole Andersen
Københavns Universitet
Ole Thomsen Buus
Sejet Planteforædling
Det Biovidenskabelige Fakultet
Aarhus Universitet
oan@sejet.com
Institut for Fødevarevidenskab
Det Jordbrugsvidenskabelige Fakultet
annb@life.ku.dk
Institut for Genetik og Bioteknologi
ole.buus@agrsci.dk
Lars Andersen
DLF-TRIFOLIUM A/S
Birte Boelt
LHA@DLF.DK
Aarhus Universitet
Jens Michael Carstensen
Det Jordbrugsvidenskabelige Fakultet
DTU Informatics
Institut for Genetik og Bioteknologi
jmc@videometer.com
Henrik Andrén
birte.boelt@agrsci.dk
BoMill AB
henrik.andren@bomill.com
Morten Arngren
Sergio Casado
Jørgen Bonde
Aarhus Universitet
Skærtoft Mølle
dashone02@hotmail.com
jb@skaertoft.dk
DTU Informatics
info@arngren.com
Luigi Cattivelli
Søren Borg
Genomics Research Centre
Aarhus Universitet
luigi.cattivelli@entecra.it
Bende Astrup
Det Jordbrugsvidenskabelige Fakultet
Aarhus Universitet
Institut for Genetik og Bioteknologi
Det Jordbrugsvidenskabelige Fakultet
soren.borg@agrsci.dk
Michael Christiansen
Institut for Genetik og Bioteknologi
Aarhus Universitet
bende.astrup@agrsci.dk
Det Jordbrugsvidenskabelige Fakultet
Institut for Genetik og Bioteknologi
michael.wagner@agrsci.dk
30
VISIONER FOR KORN
VISIONS FOR CEREALS
David B. Collinge
Morten Haastrup
Lars Ipsen
Københavns Universitet
Videncentret for Landbrug
Monsanto Crop Sciences
Det Biovidenskabelige Fakultet
mhs@vfl.dk
lars.ipsen@monsanto.com
Åse Hansen
Susanne Jacobsen
Københavns Universitet
Danmarks Tekniske Universitet
Behrooz Darbani
Det Biovidenskabelige Fakultet
Institut for Systembiologi
Aarhus Universitet
Institut for Fødevarevidenskab
sja@bio.dtu.dk
Det Jordbrugsvidenskabelige Fakultet
aah@life.ku.dk
Institut for Plantebiologi og Bioteknologi
dbc@life.ku.dk
Institut for Genetik og Bioteknologi
darbani.behrooz@agrsci.dk
Jon Arne Dieseth
Ahmed Jahoor
Poul Møller Hansen
Nordic Seed
FOSS Analytical A/S
jah@nordicseed.com
pmh@foss.dk
Graminor AS
jon.arne.dieseth@graminor.no
Matthias Eberius
Esben K. Jensen
Preben Klarskov Hansen
Agrolab GmbH
AgroTech A/S
esben.jensen@agrolab.eu
pkh@agrotech.dk
LemnaTec GmbH
matthias.eberius@lemnatec.com
Lars Eriksen
Anni Jensen
Jacob Hansen
Nordic Seed
Nordic Seed
anj@nordicseed.com
JPH@nordicseed.com
Valsemøllen A/S
ler@valsemollen.dk
Lars Eriksen
Kurt Hjortsholm
Martin Jensen
Aarhus Universitet
Sejet Planteforædling
Det Jordbrugsvidenskabelige Fakultet
khj@sejet.com
Institut for Havebrugsproduktion
Sejet Planteforædling
martin.jensen@agrsci.dk
lbe@sejet.com
Preben Bach Holm
Aarhus Universitet
Jens Due Jensen
Inge Fomsgaard
Det Jordbrugsvidenskabelige Fakultet
Nordic Seed
Aarhus Universitet
Institut for Genetik og Bioteknologi
jdj@nordicseed.com
Det Jordbrugsvidenskabelige Fakultet
prebenb.holm@agrsci.dk
Inst. for Plantebeskyttelse og Skadedyr
inge.fomsgaard@agrsci.dk
Birthe Jespersen
Inger Bæksted Holme
Københavns Universitet
Aarhus Universitet
Det Biovidenskabelige Fakultet
Per Gregersen
Det Jordbrugsvidenskabelige Fakultet
Institut for Fødevarevidenskab
Aarhus Universitet
Institut for Genetik og Bioteknologi
bm@life.ku.dk
Det Jordbrugsvidenskabelige Fakultet
inger.holme@agrsci.dk
Institut for Genetik og Bioteknologi
per.gregersen@agrsci.dk
Lise Nistrup Jørgensen
Christina Ingvardsen
Aarhus Universitet
Københavns Universitet
Det Jordbrugsvidenskabelige Fakultet
Morten Gylling
Det Biovidenskabelige Fakultet
Inst. for Plantebeskyttelse og Skadedyr
Fødevareøkonomisk Institut
Institut for Jordbrug og Økologi
lisen.jorgensen@agrsci.dk
gylling@foi.dk
cri@life.ku.dk
VISIONER FOR KORN
VISIONS FOR CEREALS
Johannes Ravn Jørgensen
Merete Møller Engelsen
Lotte Olesen
Aarhus Universitet
Novozymes A/S
Aarhus Universitet
Det Jordbrugsvidenskabelige Fakultet
mmqn@novozymes.com
20072858@post.au.dk
Sara M. Mørch
Jihad Orabi
Københavns Universitet
Københavns Universitet
Morten Jørgensen
Det Biovidenskabelige Fakultet
Det Biovidenskabelige Fakultet
KWS Scandinavia A/S
Institut for Jordbrug og Økologi
Institut for Jordbrug og Økologi
m.jorgensen@kws.com
saram@life.ku.dk
jio@life.ku.dk
Anders M. Klöcker
Linda Kærgaard Nielsen
Brian B. Pedersen
FødevareErhverv
Aarhus Universitet
Nordic Seed
ankl@ferv.dk
Det Jordbrugsvidenskabelige Fakultet
bbp@nordicseed.com
Institut for Genetik og Bioteknologi
johannes.jorgensen@agrsci.dk
Inst. for Plantebeskyttelse og Skadedyr
lindakaergaard.nielsen@agrsci.dk
Søren Knudsen
Svend Pedersen
Carlsberg A/S
skn@crc.dk
Plantedirektoratet
Bruno Sander Nielsen
svp@pdir.dk
Landbrug og Fødevarer
bsn@lf.dk
Sergio Lopez
Jens Lund Pedersen
Aarhus Universitet
sergiotiri@hotmail.com
DLA Agro
Nanna Hellum Nielsen
jlp@dlaagro.com
Nordic Seed
nhn@nordicseed.com
Stefan Lundgren
Kim Bonde Petersen
Perten Instruments AB
slundgren@perten.com
Nordic Seed
Else Bøje Nielsen
kbp@nordicseed.com
RAGT Nordics
Enielsen@ragt.fr
Preben Mikkelsen
Bhaniswor Pokhrel
AT Electronic
pm@atelectronic.dk
Aarhus Universitet
Claus Nymand
bhanu816@gmail.com
KWS Scandinavia A/S
c.nymand@kws.com
Tine Bloch Mortensen
Morten Poulsen
Aarhus Universitet
20071169@post.au.dk
Abed Fonden
Erling Olesen
breedex@poulsen.mail.dk
Sejet Planteforædling
eol@sejet.dk
Lisbeth Munksgaard
Søren K. Rasmussen
Aalborg Universitet
lmu@adm.aau.dk
Københavns Universitet
Annette Olesen
Det Biovidenskabelige Fakultet
Lantmännen SW Seed
Institut for Jordbrug og Økologi
aol@swseed.com
skr@life.ku.dk
Peter Olesen
Morten Rasmussen
Det Strategiske Forskningsråd
NordGen
po@actifoods.com
morten.rasmussen@nordgen.org
Flemming Møller
Danisco A/S
flemming.moller@danisco.com
31
32
VISIONER FOR KORN
VISIONS FOR CEREALS
Tina Salomonsen
Hongyan Sun
Conny Wang Hansen
Novozymes A/S
Aarhus Universitet
Fødevareministeriet
tsom@novozymes.com
Det Jordbrugsvidenskabelige Fakultet
FødevareErhverv, GUDP-kontoret
Institut for Genetik og Bioteknologi
cowh@ferv.dk
sun.hongyan@agrsci.dk
Johan Sander
Syngenta
johan.sander@syngenta.com
Wibke Wille
Abida Sultan
Københavns Universitet
Danmarks Tekniske Universitet
Det Biovidenskabelige Fakultet
Institut for Systembiologi
Institut for Jordbrug og Økologi
asu@bio.dtu.dk
wiwi@life.ku.dk
Eivor Svensson
Flemming Yndgaard
Lantmännen SW Seed
Nordisk Statistik & Data Konsult
eivor.svensson@swseed.com
flemming.yndgaard@syngenta.com
Institut for Jordbrug og Økologi
Mike Taylor
Inger Åhman
jks@life.ku.dk
Limagrain GmbH
Sveriges lantbruksuniversitet
mike.taylor@limagrain.de
inger.ahman@ltj.slu.se
Aarhus Universitet
Hanne Cecilie Thomsen
Ole Kirk Østergaard
Det Jordbrugsvidenskabelige Fakultet
Københavns Universitet
Lantmännen Cerealia A/S
Institut for Fødevarekvalitet
Det Biovidenskabelige Fakultet
ole.kirk.ostergaard@lantmannen.com
helenef.seefeldt@agrsci.dk
Institut for Jordbrug og Økologi
Jan Schade
BoMill AB
schade@post5.tele.dk
Jan Schjørring
Københavns Universitet
Det Biovidenskabelige Fakultet
Helene Fast Seefeldt
hct@life.ku.dk
Md. Shafiqul Islam Sikdar
Aarhus Universitet
Hans Thordal-Christensen
Det Jordbrugsvidenskabelige Fakultet
Københavns Universitet
Institut for Genetik og Bioteknologi
Det Biovidenskabelige Fakultet
shafiqulislam.sikdar@agrsci.dk
Institut for Jordbrug og Økologi
htc@life.ku.dk
Gerrard Starr
Københavns Universitet
Anna Maria Torp
Det Biovidenskabelige Fakultet
Københavns Universitet
Institut for Fødevarevidenskab
Det Biovidenskabelige Fakultet
starr@life.ku.dk
Institut for Jordbrug og Økologi
amt@life.ku.dk
Henrik Stilund
Danish Agro
Mohammad Nasir Uddin
hes@danishagro.dk
Aarhus Universitet
Det Jordbrugsvidenskabelige Fakultet
Institut for Genetik og Bioteknologi
Einar Strand
Bioforsk / Norsk Landbruksrådgiving
einar.strand@bioforsk.no
mohammadnasir.uddin@agrsci.dk
VISIONER FOR KORN
VISIONS FOR CEREALS
33
CEREALIENETVÆRKETS
ÅRSMØDE 2010
Arrangør
Forum for Cerealier i samarbejde med Dansk Cerealforening.
David B. Collinge, KU-LIFE
Morten Haastrup, Videncentret for Landbrug
Kurt Hjortsholm, Sammenslutningen af Danske Sortsejere
Preben Bach Holm, AU-DJF
Johannes Ravn Jørgensen, AU-DJF (formand)
Søren K. Rasmussen, KU-LIFE
Birte Svensson, DTU
Ole Kirk Østergaard, Lantmännen Cerealia A/S
Sekretariat:
Eventuelle spørgsmål om årsmødet kan rettes til sekretariatet:
INSTITUT FOR GENETIK OG
BIOTEKNOLOGI
Det Jordbrugsvidenskabelige Fakultet
Aarhus Universitet
Forsøgsvej 1
4200 Slagelse
Att.: Bende Astrup
Tlf.: 8999 3646 / Fax: 8999 3501
E-mail: Bende.Astrup@agrsci.dk
www.cernet.dk
Sted
Cerealienetværkets årsmøde 2010 afholdes den 26. og 27. oktober på
Hotel Frederik d. II
Idagaardsvej 3
4200 Slagelse
Tlf.: +45 58 53 03 22
www.fr2.dk