Legemiddelinteraksjoner – også et problem med biologiske
Transcription
Legemiddelinteraksjoner – også et problem med biologiske
7/28/2015 Introduksjon Legemiddelinteraksjoner – også et problem med biologiske legemidler • En rekke legemidler trukket fra markedet grunnet legemiddelinteraksjoner (dødsfall) – Mibefradil, cerivastatin, terfenadin • Biologiske legemidler ble antatt å være frie for farmakokinetisk interaksjonsproblematikk Hege Christensen Farmasøytisk institutt Seksjon for farmasøytisk biovitenskap Universitetet i Oslo h.s.christensen@farmasi.uio.no Farmakokinetikk Renal utskillelse Utskillelse galle Biologiske legemidler Introduksjon Vanlige legemidler Renal utskillelse • 1990-tallet: En rekke legemidler trukket fra markedet grunnet interaksjoner (dødsfall) – Mibefradil, cerivastatin, terfenadin Uspesifikk clearance (proteolyse) Reseptor-mediert clearance (internalisering, proteolyse) Høy MW Parenteral administrasjon Lavt V d Proteinbinding lite betydning t1/2 lang (dager, uker) Transport (P-gp) Metabolisme (CYP) Lav MW Oral administrasjon Distribueres til vev Proteinbinding kan være viktig t1/2 kort (timer) • Biologiske legemidler ble antatt å være frie for farmakokinetisk interaksjonsproblematikk • Endret immunologisk aktivitet fører til endret nivå av legemiddelmetaboliserende enzymer og transportører Synergisme i tarm og lever CYP3A4 og P-glykoprotein Variasjon i farmakokinetiske prosesser Plasma konsentrasjon Biotilgjengelighet - Begrenser biotilgjengelighet Dose· F AUC = Cl Enterocytter Lever CYP3A4 AUC Clearance CYP3A4 Metabolitt Biotilgjenge li g dose Legemiddel Opptakspumpe P-glykoprotein P-glykoprotein Tid 1 7/28/2015 Interindividuell variabilitet i evne til å metabolisere/transportere vanlige legemidler Immunologisk respons og CYP-metabolisme • Akutt øvre luftveisinfeksjon i astmatiske barn ga ↑t1/2 (60% ↓ Cl) for teofyllin under infeksjonen i forhold til 1 mnd. etter (teofyllinintoksikasjon) • Genetisk polymorfisme • Miljømessige årsaker – Legemiddelinteraksjoner – Sigarettrøyk, grapefruktjuice, johannesurt • Sykdomsrelaterte faktorer • Antatt at virusinfeksjonen påvirket enzymer involvert i teofyllin metabolisme (nedregulert CYP1A2) – Immunologisk respons og frisetting av cytokiner Chang KC. et al. Lancet 1978; 1132-33. Inflammatorisk sykdom - RA 80 mg verapamil Isoptin® N=8 RA pasienter AUC ca. 4-ganger høyere HIV-pasienter CYP3A4 • Lavere Cl/F • Høyere biotilgjengelighet • Lavere CYP3A4 aktivitet 7 ganger økt IL-6 Friske, frivillige personer CYP2D6 • Genotypet som EM, fenotypet som PM ved høy sykdomsaktivitet ( Jones AE. et al. 2010; 66: 475-485) Mayo PR. et al. Br J Clin Pharmacol 2000; 50, 605-613. Pasienter med alvorlig kreft IL-6 og endring i cyclosporin PK Endogen IL-6 Nedsatt CYP3A4 aktivitet Årsak til intraindividuell variabilitet i CsA PK • 37% CYP2C19 PM status i pasienter med normal genotype metabolismekapasitet i kreftpasienter Helsby NA et al. Br J Cancer 2008; 99, 1251-55. Chen et a. Clin Pharmacol Ther 1994; 55: 649. 2 7/28/2015 Fenokonversjon av legemiddelmetaboliserende enzymer - NAT2, CYP1A2, 2C8, 2C9, 2C19, 3A4, 2E1 og 2D6 • • • • • • • Krefttilstander HIV-infeksjon Akutte infeksjoner Hjertesvikt, nyresvikt, leversvikt Transplanterte pasienter Sepsis Inflammatoriske lidelser – RA, SLE, sykelig overvekt …. Proteinuttrykk av CYP3A4 i sykelig overvektige pasienter Invers sammenheng mellom BMI og uttrykk av CYP3A4 Ulvestad et al. Clin Pharm Ther 2013; 93: 275-282 Shah RR and Smith RL. DMD 2015; 43: 400-410. Biologiske legemidler i Norge Virkestoff Indikasjoner Cytokiner Interferon alfa-2a Hepatitt, kreft Interferon alfa-2b Hepatitt, cancer Interferon beta-1a Multippel sklerose Interferon beta-1b Multippel sklerose Interferon gamma-1b Kronisk granulomatøs sykdom Peginterferon alfa-2b Hepatitt Peginterferon alfa-2a Hepatitt Anticytokiner, interleukinhemmere Anakinra Revmatoid artritt Basiliksimab Organtransplantasjon Canakinumab Div. syndromer, urinsyregikt Tocilizumab Revmatoid artritt Ustekinumab Psoriasis Interferon-α • IFN-α til 5 pasienter med kronisk hepatitt B – Cl for teofyllin ↓ 30-80 % Williams SJ et al. Lancet 1987; 330: 939. • IFN-α-2b til 17 pasienter med melanom − 60% ↓ CYP1A2 aktivitet (koffein som probe) − 40% ↓ CYP2C19 aktivitet (mephenytoin som probe) Islam M et al. Clin Cancer Res 2002; 8: 2480. Anticytokiner, TNF-alfa hemmere Adalimumab Revmatoid artritt Certolizumab Revmatoid artritt Etanercept Revmatoid artritt Golimumab Revmatoid artritt Infliksimab Revmatoid artritt, ulcerøs kolitt, psoriasis IFN-α-2a (Roceron ) 50% ↓ clearance av teofyllin (interaksjonsavsnitt Felleskatalogen) Hermann M. et al. Norsk Farmasøytisk Tidsskrift 2015 (in press) Monoklonale antistoffer og CYPmetabolisme • Nedsetter konsentrasjonen av cytokiner og kan gjenopprette CYP-aktiviteten • Redusert plasmakonsentrasjon og mulig terapisvikt av legemidler • FDA forsiktighetsregel først på rilonacept (2008) Sykdom-simvastatin-tocilizumab interaksjon i pasienter med RA Før tocilizumab • Simvastatin før og etter tocilizumab (n=12) • 57% redusert AUC en uke etter injeksjon Etter tocilizumab • Økt CYP3A4-aktivitet • Effekten vedvarte i 4 uker Schmitt et al. Clin Pharm Ther 2011; 89 (5). 3 7/28/2015 Tocilizumab RoActemra Legemiddelinteraksjoner med biologiske legemidler Utdrag fra SPC • Monitorere warfarin og cyclosporin ved oppstart og seponering Biologisk Legemiddel legemiddel som påvirkes CYP-enzym Effekt Interferoner (INF) • Kan få nedsatt effekt av CYP3A4 substrater som P-piller, statiner og kalsiumkanalblokkere INF-alfa Teofyllin CYP1A2 30-80% redusert clearance INF-beta Teofyllin CYP1A2 26% redusert clearance INF-alfa Erytromycin CYP3A4 15% redusert CYP3A4 aktivitet INF-alfa-2b, INF-beta Warfarin* CYP3A4, CYP2C9 Økt konsentrasjon INF-alfa Cyclofosfamid CYP2C19, CYP3A 60% redusert clearance INF-alfa-2b Koffein CYP1A2 60% redusert CYP1A2 aktivitet Erytromycin CYP3A4 50% redusert CYP3A4 aktivitet Tocilizumab Omeprazol CYP2C19 30% redusert AUC Tocilizumab Simvastatin CYP3A 60% redusert AUC Tocilizumab Simvastatin CYP3A 40-60% redusert AUC 140% økt t1/2 Interleukiner • Effekten av tocilizumab på CYP-enzym aktiviteten kan vedvare i flere uker etter seponering pga. lang t1/2 IL-2 Monoklonale antistoffer Hermann et al. NFT 2015 (in press) Mekanisme CYP3A4 m-RNA IL-6 og CYP3A4 aktivitet humane hepatocytter CYP3A4 protein Dickman et al. DMD 2011; 39. Cytokiner regulerer genuttrykk The role of cyt okines in t he regulat ion of drug disposit ion: ext ended f unct ional pleiot ropism ? Effekt av cytokiner på CYP uttrykk og aktivitet in vitro A. Cytokine mediated regulation of drug disposition B. PXR mediated regulation of drug disposition C. Crosstalk between NF-kB and PXR mediated regulation of drug disposition TNFa IL-6 J A K P PS IKK P TA T3 P IKK P P P STAT3 STAT3 Expert Opin. Drug Metab. Toxicol. Downloaded from informahealthcare.com by Norwegian Knowledge Cntr Health Svcs on 11/03/11 For personal use only. K A J 3 T A T S PXR ligand PXR IKK NF-kB NF-kB P P IkB IkB IkB PXR AP-1 NF-kB RXR Drug Metabolite CYP3A4 PXR ABCB1 Drug Transcription factor binding site CYP3A4/ABCB1 Nucleus Liptrott Opinand Drug Metab Toxicol 2011; 341. Figure 1. Schemat ic represent at ion of t he regulat ion ofNJ, drugOwen dispositA. ionExpert by cyt okines nuclear recept ors. A. Cyt okine7: may act direct ly on genes encoding t ransport ers via immune-relat ed t ranscript ion f act ors such as AP-1. B. Induct ion of PXR-mediat ed regulat ion of drug disposit ion in response t o a PXR ligand: ligand binds t o PXR w hich t hen t ranslocat es t o t he cell nucleus and binds it s het erodimer part ner RXR w hich in t urn binds response element s upst ream of t ransport er and drug met abolising enzyme genes. C. TNF-a-mediat ed regulat ion of drug disposit ion: TNF-a act ivat es NF-kB w hich t hen t ranslocat es t o t he cell nucleus and act ivat es t arget genes w hilst also int erf ering w it h PXR--RXR complexes binding t o t heir response element s. AP-1: Activator protein 1; PXR: Pregnane X receptor; RXR: Retinoid-X receptor. subsequent downregulation of expression [87] . AP-1 also has binding motifs on several other transporters such as ABCC2 [88] and BCRP [89] . The PI3K/Akt pathway has also been linked to DC activation, IL-12 secretion by DC and DC survival [90] . Furthermore, inhibition of Akt activation hasbeen shown to reduceABCB1 and ABCC2 expression [91] . A proposed mechanism f or direct cyt okine regulat ion of drug t ransport ers and drug met abolising enzymes via int racellular signalling 6.3 post-transcriptional and translational. However, there are some data to suggest that cytokines may exert a direct effect on expression. Figure 1A summarises a possible mechanism for the direct effect of cytokineson theregulation of drug disposition genes. Here, IL-6 binds to the a-subunit of the IL-6 receptor, and induces homo or heterodimerisation of the b-subunits [92] . Stimulation of the IL-6 receptor complex activates JAK tyrosine kinases, resulting in phosphorylation of tyrosine sites on STAT proteins [93] . The STAT proteins then homo or heter- 4 7/28/2015 Immunologisk respons og REVI EW S legemiddeltransport a Intestinal epithelia b Hepatocytes OAT2 OCT1 Blood Intestine P-gp i lymfocytter - pasienter med SLE og RA OATP1B1 OATP2B1 OAT7 OATP1B3 NTCP Blood OATP OCT1 M embrane transporters Membrane-associated proteins that govern the transport of solutes (for example, drugs and other xenobiotics) into and out of cells. Transporters can play a vital role in determining drug concentrations in the systemic circulation and in cells. The two major superfamilies of membrane transporters are the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies. The blood–brain barrier consists of endothelial cells connected by tight junctions. The endothelial cells, which are surrounded by astrocytes, separate the circulating blood and the brain interstitial space. The role of the blood–brain barrier is to protect the central nervous system by restricting and preventing the entry of toxic substances including drug molecules and bacteria into the brain. Included in this protective barrier are transporters such as P-glycoprotein. Drug–drug interaction (DDI). Concomitant administration of multiple drugs can result in altered levels of the drugs compared with administration of the drugs alone. DDI can result in higher (inhibition) or lower (induction) levels of the drug. For example, if drug A (‘perpetrator’ drug) inhibits a membrane transporter that drug B (‘victim’ drug) uses to enter into the cell, administration of drug A can lower the level of drug B in the cell and also potentially increase the level of drug B in the systemic circulation. MRP3 ASBT MRP4 MCT1 MRP6 BSEP BCRP OST –OST P-gp MRP2 Bile Terapiresistens BCRP MRP3 P-gp MRP2 Blood MATE1 d Blood–brain barrier c Kidney proximal tubules Urine Brain Basolateral OAT4 OATP4C1 Blood–brain barrier PEPT1 OST –OST URAT1 OCT2 PEPT1, PEPT2 OAT1 MRP2, MRP4 OAT2 MATE1, MATE2-K Brain capillary endothelial cells P-gp BCRP MRP5 MRP4 Blood P-gp Apical/ luminal OATP1A2 OATP2B1 OAT3 OCTN1, OCTN2 Figure 1 | Selected human transport proteins for drugs and endogenous substances. Transporters in plasma membrane domains of intestinal epithelia, hepatocytes, kidney proximal tubules and brain capillary endothelial cells are Giacomini KM et al. |Nature reviews 2010: 9 Drug Discovery presented. Those coloured in red indicate that the selected transporters are described inNature detail Reviews in this manuscript. Those coloured in blue indicate that the transport proteins are of importance but are not described in this manuscript. a | Intestinal epithelia contain in their apical (luminal) membrane several uptake transporters including one or more members of the organic anion transporting polypeptide (OATP) family; peptide transporter 1 (PEPT1; SLC15A1); ileal apical sodium/bile acid co-transporter (ASBT; SLC10A2); and monocarboxylic acid transporter 1 (MCT1; SLC16A1). The apical ATP-dependent efflux pumps include multidrug resistance protein 2 (MRP2; ABCC2); breast cancer resistance protein (BCRP; ABCG2); and P-glycoprotein (P-gp; MDR1, ABCB1). The basolateral membrane of intestinal epithelia contains organic cation transporter 1 (OCT1; SLC22A1); heteromeric organic solute transporter (OSTα–OSTβ); and MRP3 (ABCC3). b | Human hepatocyte uptake transporters in the basolateral (sinusoidal) membrane include the sodium/ taurocholate co-transporting peptide (NTCP; SLC10A1); three members of the OATPfamily (OATP1B1 (SLCO1B1), OATP1B3 (SLCO1B3) and OATP2B1 (SLCO2B1)); organic anion transporter 2 (OAT2; SLC22A7) and OAT7 (SLC22A9); and OCT1. Efflux pumps in the hepatocyte basolateral membrane include MRP3, MRP4 (ABCC4) and MRP6 (ABCC6). Apical (canalicular) efflux pumps of the hepatocyte comprise P-gp; bile-salt export pump (BSEPor SPGP; ABCB11); BCRP (ABCG2); and MRP2. In addition, multidrug and toxin extrusion protein 1 (MATE1; SLC47A1) is located in the apical hepatocyte membrane. c | Kidney proximal tubules contain in the apical (luminal) membrane OAT4 (SLC22A11); urate transporter 1 (URAT1; SCL22A12); PEPT1 and PEPT2 (SLC15A2); MRP2 and MRP4; MATE1 and MATE2-K (SLC47A2); P-gp; organic cation/ergothioneine transporter (OCTN1; SLC22A4); and organic cation/carnitine transporter (OCTN2; SLC22A5). Basolateral uptake transporters in proximal tubule epithelia include OATP4C1 (SLCO4C1); OCT2; and OAT1, OAT2 and OAT3 (SLC22A8). d | Apical (luminal) transport proteins of brain capillary endothelial cells contributing to the function of the blood–brain barrier include the uptake transporters OATP1A2 and OATP2B1; and the efflux pumps P-gp, BCRP, MRP4 and MRP5 (ABCC5). Note that localization of transporters to particular membranes and tissues is sometimes controversial; therefore, the International Transporter Consortium erred on the conservative side in only showing the localization of transporters for which good evidence exists. Interaksjoner mellom biologiske legemidler og P-gp Ts ujimura S, Tanak a Y. Clin Ex p Nephrol 2011 Interaksjoner med biologiske legemidler – konsekvens for legemiddelutvikling Drug-met abolizing enzymes (DMEs). These are enzymes responsible for chemical modification of drugs usually to increase rate of elimination. The activity of these enzymes can be altered through inhibition or induction, thus affecting the rate of metabolism. describe the selected transporters as well as other important transporters. Note that clinical data documenting the importance of these transport proteins with respect to drug disposition and/or toxicity continues to emerge. TABLES 1,2 include clinically relevant information with respect to DDIs and genetic polymorphisms. Examples of clinically relevant DDIs that can be explained, in part or in full, by modulation of transporter activity are compiled in TABLE 3 . Below, we present an overview of P-gp, breast cancer resistance protein (BCRP; also known as ABCG2); organic cation transporters (OCTs) and organic anion transporters (OATs); and organic anion transporting polypeptides (OATPs). For ease of reading we refer to MDR1/P-gp • Studie i rotter (Ben reguiga M. Pharm Res 2005; 22: 1829-36) – Interferon-α og -Υ ga økt biotilgjengelighet av digoxin (hemmende effekt på P-gp) NATURE REVIEWS | DRUG DISCOVERY VOLUM E 9 | M A RCH 2010 | 217 © 20 10 Macmillan Publishers Limited. All rights reserved • 2 studier i friske frivillige forsøkspersoner (Zhou H et al. J Clin Pharmacol 2004; 44: 543-50 og 1244-51) – Etanercept (Enbrel) og digoxin eller warfarin – Ingen interaksjon – Burde vært utført i pasienter med inflammasjon (Huang SM. Clin Pharm Ther 2010; 87: 497-503) Huang et al. Clin Pharm Ther 2010; 87: 497-503. Oppsummering • Infeksjon/inflammasjon og biologiske legemidler (cytokiner) kan nedsette metabolisme via ulike legemiddelmetaboliserende enzymer • Bortfall av immunologisk stimuli (antistoffer) kan gjenopprette metabolismekapasitet og føre til terapisvikt av visse legemidler • Interaksjonsstudier med biologiske legemidler bør utføres - i pasienter 5