THE RESEARCH OF WILD CRANBERRY (Vaccinium oxycoccos L
Transcription
THE RESEARCH OF WILD CRANBERRY (Vaccinium oxycoccos L
VYTAUTAS MAGNUS UNIVERSITY Judita Žukauskien÷ THE RESEARCH OF WILD CRANBERRY (Vaccinium oxycoccos L.) DNA VARIABILITY AND PHENOLIC COMPOUNDS IN BERRIES Summary of Doctoral Disertation Physical Science, Biochemisry (04 P) Kaunas, 2009 The doctoral disertation was caried out at Vytautas Magnus University in 2005-2009. Scientific Supervisor: Assoc. Prof. dr. Algimantas Paulauskas (Vytautas Magnus University, Physical Science, Biochemistry – 04 P) Consultant: Dr. (HP) Remigijus Daubaras (Vytautas Magnus University, Biomedical science, Biology – 01 B) The Committee of the doctoral dissertation: Chairman: Dr. Rolandas Meškys (Institute of Biochemistry, Physical Science, Biochemistry – 04 P) Members: Dr. Prof. dr. Laima Ivanovien÷ (Kaunas medicine university, Physical Science, Biochemistry – 04 P) Prof. hab dr. Eugenija Kupčinskien÷ (Vytautas Magnus University, Biomedical science, Biology – 01 B) Dr. Juozas Labokas (Institute of Botany of Vilnius University, Biomedical science, Biology – 01 B) Dr. Zita Naučien÷ (Vytautas Magnus University, Physical Science, Biochemistry – 04 P) Opponents: Dr. Jolita Radušien÷ (Institute of Botany of Vilnius University, Physical Science, Biochemistry – 04 P) Dr. Rytis Rugienius (Lithuania Institute of Horticulture, Biomedical science, Biology – 01 B) The Doctoral Disertation will be beffended on the 9th of December 2009 at 3p.m. in a public meeting of the Doctoral committee at Vytautas Magnus University, Faculty of Nature Science, no 101 Adress: Vileikos st. 8, LT-44404, Kaunas, Lithuania The summery of Doctoral Dissertation was distributed on the 9 of November 2009. The Disertation can be rewiewed in M. Mažvydas National Librery of Lithuania and at the Libraries of Vytautas Magnus University and institute of Biochemistry. VYTAUTO DIDŽIOJO UNIVERSITETAS Judita Žukauskien÷ PAPRASTOSIOS SPANGUOLöS (Vaccinium oxycoccos L.) DNR ĮVAIROVöS IR FENOLINIŲ JUNGINIŲ UOGOSE TYRIMAI Daktaro Disertacijos Santrauka Fiziniai mokslai, biochemija (04 P) Kaunas, 2009 Disertacija rengta 2005 – 2009 m. Vytauto Didžiojo universitete Mokslinis vadovas: prof. hab. Dr.Algimantas Paulauskas (Vytauto Didžiojo universitetas, fiziniai mokslai, biochemija – 04 P) Konsultantas: Hab. Dr. R. Daubaras (Vytauto Didžiojo universitetas, biomedicinos mokslai, biologija – 01B) Disertacija ginama Vytauto Didžiojo universitete, biochemijos mokslo kryptie taryboje: Primininkas: Dr. Rolandas Meškys (Biotechnologijos institutas, Fiziniai mokslia, Biochemija – 04 P) Nariai: Dr. Prof. dr. Laima Ivanovien÷ (Kauno medicinos unoversitetas, Fiziniai mokslia, Biochemija – 04P) Prof. hab dr. Eugenija Kupčinskien÷ (Vytauto Didžiojo universitetas, Biomedicinos mokslai, Biologija – 01 B) Dr. Juozas Labokas (Vilniaus universiteto botanikos institutas, Biomedicinos mokslai, Biologija – 01B) Dr. Zita Naučien÷ (Vytauto Didžioj universitetas, Fiziniai mokslia, Biochemija – 04P) Oponentai: Dr. Jolita Radušien÷ (Vilniaus universiteto botanikos institutas, Fiziniai mokslia, Biochemija – 04P) Dr. Rytis Rugienius (Lietuvos sodininkyst÷s ir daržininkyst÷s institutas, Biomedicinos mokslai, Biologija – 01B) Disertacija bus ginama viešame Biochemijos mokslo krypties tarybos pos÷dyje 2009 m. gruodžio 10 d. 15 val. Vytauto Didžiojo universiteto II rūmuose, 101 auditorijoje. Adresas: Vileikos g. 8, LT-44404, Kaunas, Lietuva. Disertacijos santrauka išsiuntin÷ta 2009 m. lapkričio 9d. Disertacija galima peržiūr÷ti Lietuvos nacionalin÷je M. Mažvydo bibliotekoje, Biochemijos instituto ir Vytauto Didžiojo universiteto bibliotekose. INTRODUCTION Genetic variability of Lithuanian wild berry plants is determined by weather conditions. In Lithuanian forests among the most common edible berry plant is mentioned blueberry (Vaccinium mytrillus L.), cowberry (Vaccinium vitis–idaea L.), raspberry (Rubus idaeus L.) and strawberry (Fragaria vesca L.). In wetlands quite abundant wild cranberry (Vaccinium oxycoccos L.) much less – small cranberry (Vaccinium microcarpum L.). Wild cranberry is appreciable because of medical characteristic of berries that exhibit a high antioxidant activity (Wang et al., 1996). The largest cranberry biological effect is associated with high concentrations of phenolic compounds (Mann, 2003; Huang et al., 2003). In 1998 in Lithuania began to take an interest about cranberry biochemical consumption (Povilaityt÷ ir kt., 1998). In comparison of some chemical compounds and consumption it was found that wild and American cranberries is quite similar. However, biochemical works with a wild cranberry done slightly. It is established that the antioxidant activity of the fruit and their products is linked to in qualitative and quantitative composition of polyphenols which is different in terms of geographical regions and climatic features (Kahkonen ey al., 2001). Therefore Lithuania cranberry must be carried out biochemical tests and compare with other cranberries growing in other climates as thoroughly as possible. As flavonoids are important chemical compounds in biological systems, there are performed genetic flavonoids studies in the world. Biosynthesis of flavonoids is linked to genes that have been isolated from many plant species and has been widely studied on the molecular level (Hahlbrock and Scheel, 1989; Martin et al., 1991; Holton and Comish, 1995; Boss et al., 1996; Winkel-Shirley, 2001). But such kind of studies is not carry out in Lithuania yet. Vytautas Magnus university Kaunas botanical garden takes part in the National Biodiversity Conservation Strategy and Action Program which have been prepared and adopted in 1996. This program provides to preserve the country's main ecosystems, species and populations and lay the foundations for their sustainable use and management for future generations. In this convention is mentioned and Čepkeliai, Kamanos, Viešvil÷, Žuvintas and Girutiškio reserves, where is solving one major problem - conservation of biological diversity. It was observed that a wild cranberry has a lot of morphological differences, that’s why has been carried out cranberry morphological characteristics evaluation (Daubaras and Česonien÷, 2004). However, it is not clear whether these differences are genetic, or collected forms significantly differ from forms in natural populations. Therefore it is important and necessary not only morphological, but also the genetic researches of wild cranberry in these reserves. Because of economic value of cranberry genetic diversity has long been interested in breeders. It is important to select natural forms with big productivity, resistance to adverse environmental factors (diseases), good fruit taste and size (Vorsa, 1994). In the first stage of cranberry natural forms evaluation focuses on the morphological characteristics (berry size and shape, color, presence of cuticle wax, leaf shape) (Novy and Vorsa, 1995). Because of complicated morphological descriptors separating cranberry clones, upspring of classification errors. Molecular markers allow direct assessment of genetic diversity in order objectively determine the genetic material differences (Patamsyt÷ et al., 2008). Another one aspect is a concern about invasive species of American cranberry (Vaccinium macrocarpon Aiton.). Because this invasive species increasingly spreading 5 throughout the berry growers in Lithuania increase probability that a wild cranberry growing in Lithuania ecological niches will be replaced as species by American cranberry. According to this, we have to investigate naturally growing wild cranberry genetic resources in Lithuania and neighboring countries. Following the above-mentioned purposes is necessary not only morphological and genetic studies of wild cranberry, but also and biochemical. Summarizing the results of Lithuanian researchers it can be said that in Lithuania, compared to other countries, cranberry berry biochemical studies are slightly carried out. There were performed the morphological and biochemical comparisons, but genetic and biochemical data comparisons were not done. Such kind of comparisons in other countries was not detected also. Chemical composition of the wild and American cranberry is different as already mentioned above. However, it is unclear whether these differences are determined by the growth conditions of phenotypic or genotype. It arose and purpose of this work. The aim of study – to investigate wild cranberry V. Oxycoccos DNA variability and flavonol compounds in berries. Also to establish internecine relations between morphologic, genetic and biochemic composition. Main task of the study • Using morphophysiological, RAPD and SSR methods evaluate genetic variability of Lithuanian, Estonian, Swedish and Norwegian wild cranberry populations. • To evaluate connections of morphologic and genetic features of wild cranberry. • To evaluate biochemical consumption and genotype connections of wild cranberry The scientific novelty of the work. Although, morphologic investigation methods and some biochemic features of wild cranberry (Vaccinium oxycoccos) were done in Lithuania. The genetic variability of cranberries weren’t examined in Lithuania. Genetic analysis of wild cranberry clones from Vytautas Magnus University Kaunas botanical garden collection were done. Using random amplified DNA and microsatelite methods were evaluated genetic variability of wild cranberry. Were compared genetic variability of collection clones and natural populations. For the first time in Lithuania and in the world were done comparison of morphologic and biochemical, morphologic and genetic, and genetic and biochemical internecine relations using statistical methods. There were obtained 3 RAPD and 7 SSR fragments specific to clones genotype. Approval of the research work. The main research findings were published in three international periodical reviewed journal included in the Master Journal List of Institute of Scientific Information and three publications - in peer reviewed journals. Study results were presented at nine international and Lithuanian conferences. Volume of the work. The dissertation is written in Lithuanian and consists of the Introduction, Material and Methods, Results, Discussions, List of author’s publications and List of references. The dissertation is comprised of 111 pages. Data of the research study are presented in the 35 figures and 22 tables. 6 MATERIAL AND METHODS Sampling of wild cranberries. Fifty-six clones with clearly differing morphologic features (color, size, shape of berry and productivity) (Daubaras and Česonien÷, 2004) were collected from three populations in Lithuania bogs (Čepkeliai, Žuvintas, Kamanos and Aukštaitija) during 1995–1999. The cuttings of collected clones were planted in the Kaunas Botanical Garden collection into special peat (pH 4.0-5.0) beds. These clones were selected for further evaluation ex situ The definite geographical positions of their habitats were established by the GPS Magelan 315 receiver (GARMIN Corporation, USA). Morphologic wild cranberry clones characterization and evaluation were done according to descriptor for cranberries (Plekhanova ir Zamorskaja 1993; Budriūnien÷, 1997, 1997a). For genomic DNA comparison of collection population there were done analysis and with groups of natural populations. Samples were collected during 2006 – 2008m. (samples in Sweden were sampled by - R. Daubaras, L. Česonien÷, L. Kardell; in Norway – A. Paulauskas, O. Rosef; Estijoje – A. Paulauskas ir J. Radzijevskaja, in Lithuania - R. Daubaras, L. Česonien÷, L, M. Jodinskien÷ ir J. Žukauskien÷). Avoiding of cluster immixture in natural populations, samples were picked not less than 5 m. from each other. For DNA extraction were used 151 shoots of wild cranberry from different places. In Lithuania cranberries (109 samples) were collected from 4 Lithuania reserves (Čepkeliai, Žuvintas, Viešvil÷ and Kamanos) and Aukštaitija national park (Table 1). For Lithuanian populations comparison there were analyzed and 3 wild cranberry populations (42 samples) from other countries: Estonia, Sweden and Norway (Table 2.1). Table 1. Locations of wild cranberry samples, quantity of samples, coordinates of locations. In brackets first number – quantity of clones from collection samples, second number – quantity of samples from natural population Eil. Locality, state Coordinate Nr. North East Quantity of latitude longitude samples per population 1. Čepkeliai, (Lithuania) 54o00’ 24o25’ 34 (13+21) o o 2. Žuvintas, (Lithuania) 54 23’ 23 25’ 40 (18+22) o o 3. Kamanos, (Lithuania) 56 15’ 21 35’ 17 4. Viešvil÷, (Lithuania) 22o55’ 10 55o00’ 5. 6. 7. 8. 9. Aukštaitija nationals park, (Lithuania) Sooma nationals park, (Estonia) Hinibu, (Norway) Northmayer, (Sweden) Taglamyren (Sweden) Total: 55o40’ 25o80’ 8 58˚26’ 25˚06’ 10 58˚34’ 57˚01’ 56º43’ 08˚27’ 014˚22’ 014º25’ 9 11 13 151 7 Morphologic research. Eighteen morphologic properties of shoots, leaves and berries for the morphologic characterization of the clones were used along the descriptor list for cranberries (Budriūnien÷, 1997). An average weight of a berry was calculated by assessing the average weight of 50 berries with three replications. Berries were characterized depending on the size: very small (<0.3g); small (0.3-0.5g); medium (0.61.0g); large (1.1-1.5g); very large (>1.5g). Uprights (flowering shoots) length was measured at the end of vegetation. The main phenological phases of the investigated clones were recorded also. The least significant difference values (LSD) corroborated differences between the investigated clones. During four years (2001, 2002, 2003, 2004) clones were observed and evaluated using such morphologic parameters as: vegetation parameters, beginning of blossoming, beginning of berry ripening, end of berry ripening. The length of generative uprights was also measured, capacity of the berries, leaf length, leaf width, berry weight. These morphological data were used for statistical analysis. Table 2. Primers and their sequences used for RAPD analysis Primer Sequence of oligonucleotide primers (5‘→3’) Opa-01 5’-CAGGCCCTTC-3’ Opa-04 5’-AATCGGGCTG-3’ Opa-05 5’-AGGGGTCTTG-3’ Opb-11 5’-GTAGACCCGT-3’ Opa-10 5’-GTGATCGCAG-3’ Opa-09 5’-GGGTAACGCC-3’ Roth-06 5’-GCACGCCGGA-3’ Roth-08 5’-CGCCCTCAGC-3’ ROT-09 5’-GCACGGTGGG-3’ DNA analysis using RAPD method. DNA extraction and RAPD analysis were done exactly as previously described (Areškevičiūt÷, 2006). Nine 10 nt long primers of random sequence (Fermentas, Lietuva; Roth, Germany) were used (Table 2). DNA amplification was performed in a thermocycler (Mastercycler, Eppendorf, Germany) under the following conditions: initial denaturation for 4 min at 94 °C, 44 cycles of denaturation for 1 min at 94 °C, primers annealing for 1 min at 35 °C, extension for 2 min at 72 °C followed by a final extension for 5 min at 72 °C. DNA analysis using SSR method. DNA extraction were done as previously described (Areškevičiūt÷, 2006). Nine primers (Table 3) 20 – 23 nt long primers (Biomers, Germany) were used. DNA amplification reaction was performed by modifications of S Boches et all., (2005) recommendations. Reaction mix made of: 12,5 µl 2xPCR Master Mix (0,05 U/µl Taq DNA polymerase; 4mM MgCl2; 0,4mM each dNTP), 0,5µl each primer (concentration pmol/µl ), 7,5µl twice distilled water and 4µl (5ng) DNA. PCR reaction was performed in a thermocycler (Mastercycler, Eppendorf, Germany) according to Boches et all., (2005). PCR product were obtained by ABI 3130 xl Genetic analyzer (Applied Biosystems), length of fragments were detected using standard of ROX – 500. Fragments were set using program GeneMapper v.3.5. (Applied Biosystems). 8 Table 3. Primers used for microsatelites analysis Primer Sequence of oligonucleotide primers (5‘→3’) F:TCCACCCACTTCACAGTTCA Ca112f R:GTTTATTGGGAGGGAATTGGAAAC F:TAGTGGAGGGTTTTGCTTGG Ca169f R:GTTTATCGAAGCGAAGGTCAAAGA F:TCAAATTCAAAGCTCAAAATCAA Ca421f R:GTTTAAGGATGATCCCGAAGCTCT F:GTCTTCCTCAGGTTCGGTTG Ca483f R:GAACGGCTCCGAAGACAG F:CGGTTGTCCCACTTCATCTT CA794F R:GTTTGAATTTGGCTTCGGATTC F:CAATCCATTCCAAGCATGTG Na800 R:GTTTCCCTAGACCAGTGCCACTTA F:GCAACTCCCAGACTTTCTCC Na1040 R:GTTTAGTCAGCAGGGTGCACAA F:GCGAAGAACTTCCGTCAAAA Vcc_j9 R:GTGAGGGCACAAAGCTCTC F:ATTTGGTGTGAAACCCCTGA Vcc_s10 R:GTTTGCGGCTATATCCGTGTTTGT Chemical composition. The amount of total phenolics in the cranberry extracts was determined with the Folin-Ciocalteu reagent according to the method of Slinkard and Singleton (Slinkard and Singleton, 1977) using gallic acid as a standard. Samples (1.0 ml, two replicates) were introduced into test cuvettes, and then 5.0 ml of FolinCiocalteu’s reagent and 4.0 ml of Na2CO3 (7.5%) were added. The absorbtion of all samples was measured at 765 nm using the Genesys-10 UV-VIS spectrophotometer (Thermo Spectronic, Rochester, USA) after incubating at 20°C for 1.0 h. Results were expressed as milligrams of gallic acid equivalent (GAE) per 100 gram of fresh weight. Total anthocyanin assay. The pigments were extracted from 5g of fresh cranberry with 95% (v/v) food grade ethanol acidified with 0.1 M HCl with a purpose to assay the total amount of anthocyanins (Rubinskiene et al., 2005). The berries were ground with quartz sand and the extraction was continued with 20 ml portions of solvent until the sample became colorless. The extract was diluted with acidified ethanol until 100 mL pH of the extracts was 1.2. The absorption was measured on a spectrophotometer Genesys-10 UV-VIS (Thermo Spectronic, Rochester, USA) at 535 nm. The amount of anthocyanins was expressed as prevailing cyaniding-3-galactoside and calculated in mg/100g. HPLC analysis of anthocianins. The extracts were analyzed by HPLC using a reversed phase C18 LiChrospher R_100 RP 18e column (125 × 4 mm, 5 µm) (Merck, Darmstadt, Germany). The eluents were (A) 4% H3PO4 in water, and (B) 100% HPLC-grade acetonitrile (Merck) (Rubinskiene and others 2005). Gradien: 0 min - 10% B, 4 min – 14% B, 10 min - 16% B, 25 min - 30% B, 26 min - 10% B. Flow rate was 0.8 mL/min, 20 µL was injected. The samples were filtered through a 0.45-µm cellulose syringe filter before analysis. Detection was performed using a UV detection system Agilent 1200 (Agilent Technologies, JAV), at 520 nm. 9 Radical scaverin test. Radical scavenging activity (RSA) against stable 2,2-diphenyl-1picrylhydrazyl hydrate (DPPH∗) was determined spectrophotometrically (Blois 1958). When DPPH∗ (2 mL) reacts with an antioxidant compound (50 µL), which can donate hydrogen, it is reduced. The changes in color (from deep-violet to light-yellow) were measured at 515 nm after 20 min. The RSA was calculated by the following formula: RSA = [( Ab − Aa ) / Ab ]× 100% where AB is the absorption of blank sample (t =0min) and AS is the absorption of tested sample. Statistical methods. Relationships among V.oxycoccos individuals were evaluated using a dendrogram based on Nei and Li’s (1979) genetic distances. It was generated by the UPGMA (unweighted pair group method) cluster analysis method. Calculation of genetic distances and UPGMA cluster analyses were performed with the TREECON program for Windows V 1.3b (Nei and Li, 1979). PC analysis was performed with the GenAlEx 6 program (Peakall and Smouse, 2006). Calculation of the observed number of alleles, Nei’s (Peer et all., 1994; Nei and Nalt, 1973) gene diversity (H), Shannon’s Information Index (I), total gene diversity (Ht), gene diversity within populations (Hs), gene diversity among populations (Gst = (Ht–Hs) / Ht), gene flow (Nm = 0.5 (1–Gst) / Gst) and generation of a Nei’s genetic distance based dendrogram were carried out with POPGENE V 1.31 software (Yeh and Yang 1999).Stepwise multiple correlations (twotailed significance level) were used to determine which combinations of genetic variables were associated with morphologic traits (SPSS 13.0 for Windows). The test for the significance of each RAPD product band was done using the Pearson Chi-Square (Kish, 1987). The results were statistically analyzed and the significance of differences was calculated using ANOVA for Excel vers.3.1. The correlation (r) and variation (V) coefficients were calculated using STAT for Excel vers.1.5 (Tarakanovas and Raudonius, 2003). RESULTS AND DISCUSSION Investigation of wild cranberries. For Lithuanian wild cranberries analysis was chosen 3 different populations groups: Vytautas Magnus University Kaunas Botanical garden (VMU KBG) clones populations (56 clones from Čepkeliai, Žuvintas, Kamanos reserves and Aukštatija national park), Lithuanian natural populations (53 samples from Žuvintas, Čepkeliai and Viešvil÷ rezerves) and not Lithuanian natural populations (42 samples from Estonia, Sweden and Norvay). Firs of all using different measurements and carry out observations were examined morphologic variability of VMU KBG collection clones. The second stage of work was evaluation of morphologic variability. Genetic variability were evaluated for all three wild cranberry groups. Genetic variability were checked using two method: random amplified polymorphic DNA (RAPD) and simple sequence repeats (SSR) Third stage of work was to carry out flavonoids consumption and RSA analysis with VMU KBG clones. This analysis was done using chromatographic and spectrophotometric methods. 10 Last stage of the work was correlations search of all three work stages. Looking for correlations between biochemical and genetic, biochemical and morphologic and genetic and morphologic features. Morpfhologic research of wild cranberries (V. oxycoccos). The determination of berry shape of European cranberry revealed high variability. The most common were clones with round or oblate berries (Table 4). The average width and height of a berry varied from 1.00 to 1.35 cm and from 0.99 to 1.41 cm, respectively. The color of berries was red or dark red at full maturation. Only two clones (98-Č-19 and 98-Č-20) were distinguished for pink while the berries of clone 99-Ž-10 for purple color. The berries of clones 98-Č-06 and 99-Ž-09 were covered with a waxy coat. Table 4. Morphological characteristics of berries of V. oxycoccoss Clone Length x width of a Prevailing Color of a berry berry, cm shape of a berry 99-Ž-03 1.11 x 1.12 round dark red 99-Ž-04 1.19 x 1.21 round dark red 99-Ž-07 1.38 x 1.29 cylindrical red 99-Ž-09 1.02 x 1.04 round dark red 99-Ž-10 1.00 x 1.28 oblate purple 99-Ž-11 1.21 x 1.29 oblate red 99-Ž-12 1.35 x 1.25 ovale dark red 99-Ž-13 1.29 x 1.21 ovale dark red 99-Ž-16 1.16 x 1.32 oblate dark red 99-Ž-18 0.99 x 1.28 oblate dark red 98-Č-01 1.17 x 1.22 oblate red 98-Č-04 1.21 x 1.17 round dark red 98-Č-06 1.17 x 1.24 round dark red 1.16 x 1.17 cylindrical dark red 98-Č-15 98-Č-15A 1.11 x 1.35 oblate red 98-Č-17 1.15 x 1.00 ovale dark red 98-Č-19 1.31 x 1.17 ovale pink 98-Č-20 1.41 x 1.34 cylindrical pink Reliable differences in the average weight of a berry were ascertained since Fisher’s criterion was F05(fact)=42.04>F05(theor)=1.7 (Figure 1). An average berry weight of clones investigated was 0.94g (LSD05=0.052). It has been found that the berries of twelve clones fall into the group of medium-sized (0.6-1.0g), the berries of five clones were large (1.1-1.5g). Only the clone from Čepkeliai (98-Č-17) was distinguished by small berries. The average berry weight of clones 99-Ž-03, 99-Ž-11, 99-Ž-13, 98-Č-01, 98-Č-06 and 98-Č-19 varied slightly, variation coefficient V<10%. The largest variation of berry weight was detected in the clone 99-Ž-03 (V=19.3%). The collection of cranberry clones during expeditions in situ was based upon the selection of samples conspicuous in berry shape, coloration and size. The latest evaluation of clones of European cranberry revealed high variability in berry shape and weight ex situ as well. The berries of four clones 99-Ž-07, 99-Ž-11, 99-Ž-12, 99-Ž-16 from Žuvintas and one clone 98-Č-20 from Čepkeliai were distinguished for the largest 11 average weight of a berry (1.16g, 1,11g, 1.09g, 1.08 and 1.15g, respectively). The berries of these clones could be equal to the some cultivars of American cranberry (Budriūnien÷, 1998). Figure 1. The average weight of a berry of O. palustris clones in 2003-2005 in grams, LSD05=0.052 During four years (2001, 2002, 2003, 2004) clones were observed and evaluated using such morphologic parameters as: beginning of vegetation and blossoming, beginning of berry ripening, end of berry ripening, the length of generative uprights also was measured, capacity of the berries, leaf length, leaf width, berry weight. These morphological data were used for statistical analysis. Biochemical research of wild cranberry (V. oxycoccos). The consumption of wild cranberry anthocyanins was calibrated during earlier analysis. Using method of mass spectrometry was confirmed pigments elution secession (Jasutien÷ et al., 2006). The cxromatogtram of cranberries antocianyns extract is shown in Figure 2 and quantative and qualitative consumption of anthocyanins cranberry in Table 5. 12 Absorbtion n ele av W t, gh , Time min. nm Figure 2. Ethanols extract chromatograme of Kaunas botanical garden of Vytautas Magnus university wild cranberry clones, registered in diapazone of visible wavelength Table 5 Wild cranberry V. oxycoccos extract quantitative consumption of anthocyanins in VMU Kaunas botanical garden collection Žuvintas and Aukštaitija populations clones Peonidin-3glucoside Peonidin-3arabinoside 1,65±0,32 Not found 7,18±1,29 1,18±0,31 5,88±1,46 2,37±2,45 0,28±0,48 2,22±0,01 3,39±0,72 0,13±0,12 1,13±0,48 1,01±0,03 1,13±0,44 4,03±0,12 2,98±0,18 Peonidin-3galactoside 14,88±0,45 17,95±1,54 15,58±1,16 22,00±1,56 17,44±2,00 25,22±2,14 17,61±1,21 23,28±1,42 14,23±0,88 20,84±0,58 24,70±0,02 26,77±0,13 18,97±0,18 15,12±0,22 20,65±0,48 Cyanidin-3arabinoside 99-ž-04 99-ž-05 99-ž-08 99-ž-10 99-ž-11 99-ž-13 99-ž-15 99-ž-16 99-ž-17 99-ž-18 95-a-03 95-a-04 95-a-05 95-a-07 95-a-09 Cyanidin-3glucoside Sample Cyanidin-3galactoside Quantity of anthocyan in percents (%.) 17,49±1,78 21,17±0,17 17,39±0,77 21,12±0,15 17,76±2,56 22,82±0,25 22,70±0,93 25,11±0,04 40,49±0,52 21,65±0,60 22,00±0,30 22,81±0,65 23,19±0,74 17,13±0,08 20,07±0,53 31,63±2,18 36,48±1,35 21,33±0,64 34,79±2,54 27,76±2,89 29,25±1,21 34,30±2,59 26,08±0,15 18,17±1,19 33,02±0,61 32,73±0,12 31,08±3,44 32,24±0,17 35,34±4,97 32,21±0,48 12,09±0,17 2,98±1,03 23,33±0,87 3,26±3,21 17,15±2,32 5,07±0,27 1,92±1,06 5,78±0,92 8,69±0,47 2,25±0,81 2,80±1,15 3,42±2,45 1,85±0,19 4,84±2,64 6,92±1,21 22,27±1,63 21,41±0,88 15,19±0,79 17,65±1,09 14,01±5,90 15,27±0,63 23,19±0,69 17,53±0,32 15,03±0,47 22,11±0,85 16,64±0,16 14,91±0,17 22,62±0,58 23,15±0,09 17,17±0,31 13 Cranberry and specific components within their berries are being associated with human health attributes, such as maintenance of urinary tract health and antioxidant status (Vorsa et al., 2002). The berries of European cranberry are one of the best sources of phenolic compounds if compare with the other berry plants, such as strawberry, black currant, raspberry etc. (Moyer et al., 2002). The results of this study corroborated significant variability for total phenolics as well as for anthocyanins amounts. The Kaunas botanical garden clones of European cranberry were compared according to the total amount of phenolic compounds. The clones accumulated from 224 (clone 99-ž-04) to 482 mg/100g (clone 95-a-07) of phenolic compounds The total amount of phenolics in the clones from Aukštaitija on average attained 432 mg/100g, the same in clones from Žuvintas 299 mg/100g. In accordance with total amount of anthocyanins the clone 99-ž-16 from Žuvintas was distinguished (103mg/100g). The amount of anthocyanins attained from 41 to 103 mg/100g in Žuvintas clones and the same from 79 to 99 mg/100g in Aukštaitija clones. The clones of European cranberry accumulated on average 78 mg/100g of total amounts of anthocyanins. Radical scavenging activity (RSA) against stable 2.2-diphenyl-1-picrylhydrazyl hydrate (DPPH∗) were evaluated ethanol extracts from berries. All analyzed samples were characterized of antioksidant activity, radical scavenging activity after one hour were from 85% (99-ž-04) to 77% (95-a-5). Average RSA of analyzed 15 samples was 82%. In wild and American cranberries dominate the same 6 anthocyanins (cianidin-3galactoside, cianidin-3-glucoside, cianidin-3-arabinoside, peonidin-3-galactoside, peonidin-3-glucoside ir peonidin-3-arabinoside) (Fuleki and Francis, 1968; Jacquemart, 1997; Vorsa et all., 2005). Quantitative wild cranberry analysis of anthocyanins has shown different consumption in separate cranberries clones. Clone 99-ž-05 haven had cianidin-3-gliucoside. In another sample from Žuvintas reserve revealed that the same athocianin constitute 7.18%. On average biggest part of anthocyanins constitute peonidin-3-galactoside (30.43±2.9%), the smallest part – cianidin-3-glucoside (2.47±0.6%). Comparing dominant anthocyanins of wild and American cranberries anthocyanins (Vorsa et all., 2005) with biggest and smallest amounts were the same. But comparing them with main anthocianns of others wild cranberries detected others authors (Jacquemart, 1997) cianidin-3-glucoside were attributed to biggest amounts anthocyanins. But in our researched wild cranberries clones this not proved out. Genetic research of V. oxycoccos using RAPD and SSR. In our study, RAPD markers proved to be a powerful method for the detection of spatial genetic variation based on the literature (Nei and Li, 1979). To analyse all three wild cranberry groups we chose nine Opa and Roth primers. Evaluating RAPD results of fifty-six V. oxycoccos clones from Vytautas Magnus University Kaunas botanical garden collection, we obtained 213 fragments (Figure 3), reflecting a rich allelic diversity among the populations. The size of the amplified fragments ranged from 100 to 2750 bp, 99.53 % of loci were polymorphic. The number of bands per primer ranged from 15 (OPB-11) to 31 (Roth-09) (Table 6). In Lithuanian natural population from Viešvil÷, Čepkeliai and Žuvintas (53 samples) were obtained 209 fragments. The size of the amplified fragments ranged from 14 125 to 2750 bp, 98.56 % of loci were polymorphic. The number of bands per primer ranged from 15 (OPB-11) to 31 (Roth-08). In not Lithuanian natural populations from Estonia, Sweden and Norway (42 samples) were obtained 240 fragments. The size of the amplified fragments ranged from 125 to 3000 bp, 96.39 % of loci were polymorphic. The number of bands per primer ranged from 15 (OPB-11) to 46 (Roth-08). For SSR analysis all analysed groups (VMU Kaunas botanical garden clones) were chosen nine primers (Ca112f, Ca169f, Ca421f, Ca483f, CA794f, Na800, Na1040, Vcc_j9, Vcc_s10). Evaluating SSR results of all analysed groups were obtained 62 fragments. The size of the amplified fragments ranged from 46 to 328 bp. Most different fragments (18) were obtained in VMU KBG clones with CA794f primer. Least fragments (3) were found with Ca112f, Ca169f and Vcc_s10 primers. Table 6. Genetic characteristic of wild cranberry population groups. In sharpen fount marked data of each investigated group Population groups. Population Shanon’s Information Index (I) KBG collection populations Čepkeliai Žuvintas Kamanos Aukštatija Total Čepkeliai Žuvintas Viešvil÷ Total Norway Sweden Estonia Total Natural Lithuanian populations Natural not Lithuanian populations 0,22±0,24 0,12±0,19 0,09±0,13 0,19±0,24 0,20±0,13 0,16 ±0,15 0,14±0,13 0,12±0,17 0,16±0,10 0,22±0,23 0,17±0,15 1,52±0,50 0,22±0,14 Nei’s gene Observet diversity (H) mean number of alleles (Na) 0,14±0,17 0,07±0,12 0,05±0,08 0,12±0,16 0,10±0,09 0,08±0,09 0,08±0,09 0,07±0,10 0,08±0,07 0,14±0,15 0,09±0,09 0,13±0,15 0,12±0,09 0,15±0,50 1,37±0,48 1,37±0,48 1,43±0,50 2,00±0,07 1,69±0,46 1,63±0,49 1,39±0,49 1,99±0,12 1,56±0,50 1,75±0,44 0,20±0,23 1,97±0,19 The number The of percentage polymorphic of loci polymorphic loci %(P) 111 79 78 92 212 145 131 81 206 140 186 129 240 52,11 37,09 36,62 43,19 99,53 69,38 62,68 38,76 98,56 56,22 74,70 51,81 96,39 15 16 Figure 3. RAPD agarose gel electrophoresis profiles of different Vaccinium oxycoccos population’s individuals. Lines marked with letters and numbers (k1, k2…) represents the individual that belong to different population. M – DNA size markers is given in base pairs (bp). a) Estonia and Žuvintas natural populations individuals profiles with Opa-10 primer; b) Norway natural population individuals profiles with Opa-01 primer; c) Sweden natural population individuals profiles with Opa-05 primer; d) VMU Kaunas botanical garden Kamanos collection clones profiles with Opa-09 primer; e) VMU Kaunas botanical garden Aukštaitija collection clones profiles with Opa-09 primer. In natural Lithuanian and not Lithuanian populations most different fragments (14 and 9) were obtained with CA794f. Least fragments (3) were found with primers Ca112f (in both groups of natural populations) and Ca169f, Na800 and Na1040 (in natural not Lithuanian populations group). With 3 SSR primers (Vcc_s10, Na800 ir Na1040) in natural Lithuanian populations were obtained no bands. In Lithuanian natural populations primers Vccj_9 and ca169 were monomorphic. Primer Ca169f were monomorphic in two VMU KBG clones collections –and primer ca169 – Čepkeliai and Aukštaitija were monomorphic in Aukštaitija and Žuvintas clones populations. Other authors (Boches et al., 2005) obtained most fragments with Na800 primer and least with Ca112f ir Ca169f To estimate genetic variation between populations, the values of Shannon’s Information Index (I), Nei’s gene diversity (H) and the observed number of alleles per locus (Na), number and percentage of polymorphic loci were calculated (Table 6). For all populations Nei’s genetic diversity was 0.08. And for each population group ranged from 0.08 (Lithuanian natural populations) to 0.10 (KBG collection clones) to 0.12 (natural not Lithuanian populations). These data shows that proliferation of all these groups are vegetative. This kind of reproduction is mentioned and other authors (Bartish et al., 2000a). Meaning of Shannon’s Information Index for all groups for KBG clones – 0.2, natural Lithuanian populations – 0.16 and natural not Lithuanian populations – 0.22 also point up the way of proliferation. A low genetic diversity within but a high diversity among populations is expected (Kreher, 2000). Plants with highest genetic diversity within and among populations can better adapt to different environmental conditions. Analyzing molecular variance of Vaccinium and other plant species were observed that biggest part of molecular variance were within populations (Stewart and Excoffier, 1996; Jordano and Godoy 2000; Jürgens et all., 2007). Average molecular variance within Vaccinium species populations were 87.7% and within populations were 27.7%. Highest molecular variance was detected within American cranberry (V. macrocarpon) populations (more than 91%) (Stewart and Excoffier, 1996). In V. ulingosum – 90.3% (Kreher et all., 2000) in V. myrtillus – 86.19% (Albert et all., 2004, Garkava-Gustavson et all., 2005). Comparing RAPDs results Lithuanian KBG collection V. oxycoccos samples appears to maintain a quite low level of the genotypic variance within (75%) (Figure 4). But genotypic variation of natural populations was close to other Vaccinium species. In this work using AMOVA analysis genetic variability among KBG clones populations were 25% (RAPD) and 12% (SSR). Genetic variability among V. oxycoccos clones was lower than in others Vaccinium species (75% by RAPD data and 88% by SSR). According to literature in other Vaccinium species genetic variability ranged from 86 to 96% (according to AMOVA-RAPD) (Stewart and Exocoffier 1996; Person and Gustavsson 2001; Albert et al., 2005a; Albert et all. 2005b). And according to SSR data in others clonal species genetic variability ranged from 71 to 86% (Godt and Hamrick, 1999; Reusch et al., 2000; Bockelmann et al., 2003; Tsyusko 2005). Determined genetic variability values in VMU KBG colonal populations were similar to others clonal species. Comparing results of both methods (RAPD and SSR) biggest clonal genetic variability were determined using RAPD than SSR method. Comparing analysed natural populations, biggest part of molecular variance were within than among analyzed natural wild cranberry populations and ranged from 93% (in natural lithuanian) to 87% (natural not Lithuanian populations) as and in others Vaccinium species (Stewart and Excoffier, 1996; Jordano and Godoy, 2000; Kreher et 17 al., 2000; Persson and Gustavsson, 2001; Albert et al., 2004, Garkava-Gustavsson et al., 2005; Jürgens et al., 2007). Genetic variability distribution among regions were also not big – 7% (Figure 5). Although regions are geographically far each other, but genetic variability among them are marginally small. So small regional partitioning can reflect wild cranberry outspread. There is prediction, that distribution of molecular variance among and within populations in total searched samples is influenced by genetic variability of total analysed samples. Within Hippophae rhamnoides ssp. Rhamnoides populations genetic variability were 15% (Bartish et al., 1999a) but when research wee done with all group of genes variability increased till 59.6% (Bartish et al., 2000b). But in our research this prediction do not proof out. Although number of samples in Lithuanian natural populations were bigger than in natural not Lithuanian populations but genetic variability were lower. This could bee explained by intensive cranberry picking in Lithuania. In this way was decreased genetic variability of Lithuanian cranberry. While in other counties (especially in Norway and Sweden) cranberries picking are not so intensiv. Fiure 4. Molecular variance in percents distribution among and within investigated wild cranberries populations by RAPD Figure 5. Molecular variance in percents distribution: among and within natural wild cranberries populations, among and within individuals and among regions by SSR 18 To estimate the relationship between V. oxycoccos populations, Nei’s genetic distance between pairs of populations was calculated. To generate graphs principal coordinate analysis (PCA) was used. Graphs show genetic distances among samples and populations. The PCA and UPGMA analyses by individuals have revealed that Čepkeliai populations of V.oxycoccos had homogenous genotype and all samples are in one lineage. Kamanos, Žuvintas and Aukštaitija populations go to one site and have mixed genotypes (Figure 6 and 8). The observed different and mixed lineages confirm the prediction that these two Lithuanian V. oxycoccos populations are ancestral to one population before glaciation and that the Čepkeliai population differed from them. In the Lithuanian glaciation stage of pomeranija only asmall part of Lithuania was not covered by ice, which includes Čepkeliai Reserve. Thus, the Čepkeliai represents the first bog uncovered by ice. In the next stage of ice retreat the Žuvintas Reserve Bog was uncovered (South Lithuanian ice retreat stage) later Aukštatija National Park (Midle Lithuania ice retreat stage) and followed by the Kamanos Reserve Bog. According to Lithuania deglaciation periods, these four isolated populations genetical separated into different lineages (Figure 7). The resulting different and mixed lineages can confirm prediction that these three Lithuanian V. oxycoccos populations were derived from one population before glaciation`s and the Čepkeliai population differed from them. This prediction also confirms and PCA analysis (Figure 6). Postglacial decolonization one more factor that could have influenced these differences is because the populations Čepkeliai, Žuvintas, Kamanos and Aukštatija (Webb and Bartelein, 1992). Figure 6. UPGMA dendrogram based on Nei’s genetic distances between individuals of V. oxycoccos from VMU Kaunas botanical garden collection clones 19 Figure 7. Locations of sampling of VMU Kaunas botanical garden populations of V. oxycoccos from Lithuania (1 – Čepkleliai , 2 – Žuvintas, 3 – Kamanos rezerves, 4 – Aukštatija national park). Different lines on Lituania map show different Lithuania glaciation stages. Line with dots – North Lithuania, line with square – middle Lithuania, line with dashes – Pomeranija glaciation stage. According to RAPD results samples distribution in PCA plane by different examined groups showed distinction of three populations from others. VMU KBG Čepkeliai collection samples and from not Lithuanian natural population group Norway and Estonian populations. All others samples from different populations made mixed groups (Figure 8). According to SSR results samples distribution in PCA plane by different examined groups showed one population VMU KBG Kamanos clones distinction from others populations. Lithuanian natural populations were in one mixed group and distribute in all two-dimensional plane. There do not made groups by populations. All natural populations samples also do not made groups by populations, but Norway populations were in one two-dimensional plane side with Viešvil÷ population. That kind of group formation show biggest genetic similarity of these two populations (Figure 9). This similarity confirms and distribution by populations (Figure 11). 20 Figure 8. Principal coordinate analysis of all three wild cranberries researched groups (VMU Kaunas botanical garden collection, natural Lithuanian, natural not Lithuanian populations) genetic similarity by individuals using RAPD Figure 9. Principal coordinate analysis of all three wild cranberries researched groups (VMU Kaunas botanical garden collection, natural Lithuanian, all natural populations) genetic similarity by individuals using SSR Figure 10. Principal coordinate analysis of all three wild cranberries researched groups (VMU Kaunas botanical garden collection, natural Lithuanian, all natural populations) genetic similarity by populations using RAPD 21 According to RAPD results distribution by populations in PCA plane by different examined groups most genetical similar in VMU KBG group were Kamanos and Aukštaitija clones populations. Farthest in this group were Čepkeliai population as like in distribution in PCA plane by individuals (Figure 10). According to Nei genetic distance genetical farthest in natural Lithuanian populations group were Čepkeliai and Viešvil÷ populations. Genetical nearest in all natural populations group were Norway population with all natural Lithuanian populations. According to genetic distances most similar populations distinction from each other were 0.001. PCA analysis by SSR results revealed different results from RAPD in VMU KBG group. Most similar populations were Žuvintas and Kamanos (0.096), and most distinct Aukštaitija and Žuvintas (0.243) clones populations (Figure 11). In natural Lithuanian populations biggest genetic distance was among Žuvintas and Viešvil÷ (0.86) and smallest genetic distance were among Čepkeliai and Žuvintas (0.57). According to Nei genetic distance biggest distinct among all natural populations were among Čepkeliai and Norway (2.28) and smallest among Norway and Viešvil÷ (0.637) populations. Figure 11. Principal coordinate analysis of all three wild cranberries researched groups (VMU Kaunas botanical garden collection, natural Lithuanian, all natural populations) genetic similarity by populations using SSR 22 Figure 12. UPGMA dendrogram based on Nei’s genetic similarities between V. oxycoccos all natural populations. Estonia Sweden Norway Viešvil÷ Žuvintas Čepkeliai Table 7. Genetic distances by Nei (1978) among wild cranberry all natural populations. In sharpen fount marked data genetical most similar and most different populations Čepkeliai 0.0000 Žuvintas 0.0036 0.0000 0.0053 0.0042 0.0000 Viešvil÷ 0.0064 0.0063 0.0065 0.0000 Norway 0.0141 0.0131 0.0150 Sweden 0.0165 0.0000 0.0087 0.0087 0.0087 0.0093 0.0141 0.0000 Estonia Estimating relationships among natural populations of V. oxycoccos to generate dendrogram UPGMA analysis were used (Figure 12). Lithuanian natural populations made one cluster from Norway and Sweden populations. Estonian population made separate cluster from all others populations from this group. Least genetic distance among natural populations was detected among Žuvintas and Čepkeliai populations (0.0036) and biggest genetic distance were among Norway and Sweden (0.0165). Not far from biggest genetic distance meaning were and Sweden and Estonian also Estonian and Čepkeliai natural populations (0.0141) (Table 7). Comparing RAPD and SSR results, SSR showed more differences among individual than RAPD. That kind of results could be because of mutations occurrence during time (chromosome aberrations, aneuploidy, polyploidy etc.), witch were chosen because of vegetative propagation in plants. Simple sequence repeats is more sensitive method that could reveal mutation by 1 nucleotide. That’s why we can see biggest distinction in collection clones. Different scientists analyzing different plant collections by using RAPS and SSR methods remark that in such research is important to find individual DNR fragments. Such fragments can be used in further selection works and searching for genes coding some features (Garkava-Gustavsson et al., 2005). In this work after VMU Kaunas botanical garden clones collection analysis with 9 RAPD primers were identified 3 specific fragments. These fragments can be used for identification of different clones: clone Žuvintas 5 (99-Ž-05) – Roth 61200, clone Kamanos 4 (96-K-04) – Opa 5100, and clone Kamanos 9 (96-K-09) – Opa 1125. In previous Kaunas botanical garden wild cranberry collection researches (Budriūnien÷ 1998, Daubaras et al., 2004) were marked late (95-A-3, 96-K-07) and early (96-K-2, 96-K-3, 96-K-4 96-K-15 and 96-K-17) clones also clones with big productivity (95-A-5, 95-A-9, 96-K-8, 96-K-10, 96-K-13). There were especially important specific fragments in these separated clones. As it is mentioned above fragment Opa 5100,is specific for clone Kamanos 4 (96-K-04) and this clone is attached to early clones. With SSR primers for late, early and with big productivity clones were obtained 7 specific fragments: Aukštaitija 3 (95-A-03) - ca 421150, ca 483304, Kamanos 2 23 and 15 (96-K-02 and 96-K-15) - ca 483316, Kamanos 3 (96-K-03) - ca794233, Kamanos 7 (96-K-07) - Na800227, Kamanos 8 (96-K-08) - Vccj 9139, Kamanos 10 (96-K-10) Ca794251. According to clones separation in to these three groups, we decided to check do they genetical separate into different groups. For that reason according to genetic distances and using UPGMA method were draw dendrogrames (Figure 12 and 13). As we can see from dendrogrames cluster according to early, late phases and big productivity did not separated. Figure 13.UPGMA dendrogram based on Nei’s genetic distances between Kaunas botanical garden collection 7 V. oxycoccos early (96-K-k-2, 96-K-3, 96-K-4 96-K-15 and 96-K-17) and late (95-A-3 and 96-K-07) clones using RAPD. Bootstraps are shown in percents. Figure 14. UPGMA dendrogram based on Nei’s genetic distances between Kaunas botanical garden collection 5 V. oxycoccos clones with biggest productivity (96-K-13 (k13), 96-K-8 (k8), 96-K-10 (k10), 95-A-09 (a9) and 95-A-05 (a5)) and 6 clones with smallest productivity (99-Ž-03 (z3), 99-Ž-09 (z9), 99-Ž-13 (z13) 98-Ž-05 (c5), 98-Ž-06 (c6) ir 98-Ž-17 (c17)). Bootstraps are shown in percents. Correlation analysis of biochemical, molecular and morphologic features in Vytautas Magnus University Kaunas botanical garden collection clones. After conducting correlative analysis it has been established that there exists the negative relationship between average berry weight and total amount of anthocyanins. The coefficient of correlation was r= -0.657 (at the level of probability α=0.01). The clones with small and dark red berries (98-Č-17, 98-Č- 06, 99-Ž-09, 99-Ž-13) accumulated the largest amounts of anthocyanins (Table 4, Figure 1). This data motivate the selection of clones with putative large amount of anthocyanins in situ and the preservation in the collection ex situ with the purpose to use of them in the further breeding works. Anthocyanins form a part of phenolics. So it is expected to find correlations between phenols and anthocyanins quantities (Table 8). That kind of correlations was 24 detected in American cranberry (Kalt et al., 1999; Sun et al., 2002; Vinson et al., 2001), plums and peaches (Bolívar et al., 2006). We also established linear dependence between total amounts of anthocyanins and phenolics . Table 8. Phenolics and anthocyanins quantity correlation analysis of wild cranberry clones from VMU Kaunas botanical garden Aukštaitija and Žuvintas populations (p – reliability, r – correlation coefficient, dash “-“ not significant correlation coefficient) r=0.60 r=0.68 r=0.54 populations p=0.03 p=0.01 p=0.05 r=0.61 mg/100g berries p=0.03 Anthocyanins r=0.70 r=0.57 mg/ml p=0.01 p=0.04 mg/ml mg/100g mg/ml mg/100g berries berries Phenols Anthocyanins Roth-08 Opb-11 Roth-06 Opa-10 Opa-09 Opa-05 Opa-01 Opa-04 Roth-09 Table 9. Morphologic and RAPD fragments correlation analysis of wild cranberry clones from VMU Kaunas botanical garden populations. Numbers show how many correlations were obtained (dash “-“ not significant correlation meanings when p>0.05). Total number of correlations with morphologic Morphologic features characteristics Start of 4 5 1 4 3 3 6 3 1 30 vegetation Beginning of 3 4 - 1 2 3 5 2 1 21 blossom Beginning of 1 1 - 1 2 - 5 berries ripening End of berries 1 - 1 1 1 1 - 1 6 ripening Length of generative 2 2 - 1 1 6 uprights - 1 1 5 Volume of berry 3 2 1 1 2 1 1 1 1 1 11 Leaf length 4 3 1 3 3 3 17 Leaf width 5 1 2 1 4 1 14 Berry mass Total number of 25 16 5 14 10 16 18 7 4 115 correlations Using chi-square test, 119 out of 213 RAPD band products, were identified as significantly contributing (p<0.05). We made correlations search between RAPD fragments and biochemical features in VMU KBG collection Žuvintas and Aukštaitija 25 clones. There were detected 19 correlations. Biggest part of correlations were with peonidin-3-galactoside. Analyzing total amount of phenol and anthocyanins were find 5 correlations. That kind of correlations could be related with biosynthesis ways of flavonoids. This process in biggest part is depended of phenological stages and variety of flavonoids (Vvedenskava and Vorsa, 2004). There were found some correlations between RAPD fragments and 9 different morphologic features. Biggest part of them was beginning of vegetation. Biggest part of genetic correlations was found with Roth-09 praimer (Table 9). After some more investigations these correlations could be used in the further breeding works. It could release detection of early and late clones. CONCLUSIONS 1. Because of carried out samples with best features selection during collection formation in Vytautas Magnus university Kaunas botanical garden wild cranberry (V. oxycccsos) collection clones genetic variability within populations is lower than in natural Lithuanian populations (in collection populations – 75%, in Lithuanian natural populations – 93%). 2. Defined lower genetic diversity in Lithuanian natural populations than in not Lithuanian natural populations reveal, about intensive cranberries picking in Lithuania (different than in Norway, Sweden and Estonia analyzed places), markedly reduce genetic diversity of Lithuanian cranberries. 3. Established negative relationship between average berry weight and total amount of anthocyanins, motivate select clones which predicted have biggest anthocyanins amounts in situ, and carry out to preserve them in ex situ collection for further selections works. 4. Established amount of phenols in wild cranberry clones of Vytautas Magnus University Kaunas botanical garden collection, showed, that purposeful wild cranberry selection let reach results close to American cranberries (Vaccinium macrocarpon Aiton) rates. 5. Reviewed biochemic and genetic correlations between Vytautas Magnus University Kaunas botanical garden collection Žuvintas and Aukštaitija collection populations were revealed 19 correlations with 16 different fragments. Biggest part of them was with peonidin-3-galaktosides, and biggest part of genetic data correlations were with Roth-09 primer. These correlations can be used for selection works. 6. Reviewed correlations among 9 morphologic features and RAPD fragments detected with 9 primers, biggest part of morphologic correlations were revealed with beginning of vegetation and blossoming, and biggest part of genetic correlations were with Roth-09 primer, these correlations can be used for selection works. Suggestion: on purpose that VMU KBG collection populations reflected biodiversity if wild cranberry, collection populations should be added of accidentally picked samples. 26 SANTRAUKA IVADAS. Paprastoji (Vaccinium oxycoccos L.) spanguol÷ yra vertinama d÷l gydomosiomis savyb÷mis pasižyminčių uogų, kurios išsiskiria dideliu antioksidaciniu aktyvumu (Wang et al., 1996). Didžiausias spanguolių biologinis efektas yra susijęs su didel÷mis koncentracijomis fenolinių junginių (Mann, 2003; Huang et al., 2003). Lietuvoje spanguolių biochemine sud÷timi prad÷ta dom÷tis dar 1998 m (Povilaityt÷ ir kt., 1998).. Tačiau biocheminių darbų su paprastąja spanguole atlikta nedaug. Yra nustatyta, kad vaisių, uogų bei jų produktų antioksidacinis aktyvumas susijęs su polifenolių kokybine ir kiekybine sud÷timi, kuri yra skirtinga d÷l geografinių regionų ir klimato sąlygų ypatumų (Kahkonen ey al., 2001). Tod÷l reikia kuo nuodugniau atlikti Lietuvoje augančių paprastųjų spanguolių biocheminius tyrimus, bei palyginti su spanguol÷mis augančiomis kitomis klimato sąlygomis.Kadangi flavonoidai yra svarbūs cheminiai junginiai biologin÷se sistemose, pasaulyje atliekami ir genetiniai flavonoidų tyrimai. Flavanoidų biosintez÷ yra susieta su genais, kurie buvo išskirti iš daugelio augalų rūšių ir buvo plačiai tyrin÷jami molekuliniame lygmenyje (Hahlbrock and Scheel, 1989; Martin et al., 1991; Holton and Comish, 1995; Boss et al., 1996; WinkelShirley, 2001). Tačiau toki tyrimai Lietuvoje dar n÷ra atlikti. Spanguolių genetin÷ įvairov÷ jau senokai domina selekcininkus, kadangi jos turi ūkinę reikšmę. Svarbu atrinkti tokias gamtines formas, kurios pasižym÷tų produktyvumu, atsparumu nepalankiems aplinkos veiksniams (ligoms), geru uogų skoniu ir dydžiu (Vorsa, 1994). Pirminiame spanguolių gamtinių formų vertinime d÷mesys kreipiamas į morfologinius požymius (Novy and Vorsa, 1995). Molekuliniai žymenys sudaro galimybę tiesioginiam genetin÷s įvairov÷s vertinimui, siekiant objektyviai nustatyti genetin÷s medžiagos skirtumus (Patamsyt÷ et al., 2008). Buvo pasteb÷ta, jog paprastoji spanguol÷ turi labai daug morfologinių skirtumų, d÷l to buvo atliktas spanguolių morfologinių požymių įvertinimas (Daubaras and Česonien÷, 2004). Tačiau ar tie skirtumai yra genetiniai, ar surinktos formos daug skiriasi nuo gamtinių populiacijų – neaišku. D÷l to yra svarbūs ir reikalingi ne tik morfologiniai, bet ir genetiniai šių rezervatų paprastosios spanguol÷s tyrimai. Dar vienas keliantis susirūpinimą aspektas yra invazin÷ stambiauog÷s spanguol÷s (Vaccinium macrocarpon Aiton.) rūšis. Kadangi invazin÷ stambiauog÷s spanguol÷s rūšis Lietuvoje vis daugiau plinta tarp uogų augintojų, did÷ja tikimyb÷, kad Lietuvoje augančių paprastosios spanguol÷s ekologines nišas užims stambiauog÷ spanguol÷ ir išstums ją kaip rūšį. Tuo tikslu turime ištirti natūraliai Lietuvoje ir kaimynin÷se šalyse augančių spanguolių genetinius išteklius. Sekant aukščiau pamin÷tais tikslais, yra reikalingi ne tik morfologiniai ir genetiniai paprastosios spanguol÷s tyrimai, bet ir biocheminiai. Kaip jau yra min÷ta aukščiau aprašytuose darbuose, chemin÷ paprastosios ir stambiauog÷s spanguolių sud÷tis yra skirtinga. Tačiau neaišku, ar šie skirtumai yra nulemti fenotipo augimo sąlygų, ar genotipo. Iš to ir kilo šio darbo tikslas Darbo tikslas: ištirti paprastosios spanguol÷s V. oxycoccos DNR kintamumą ir fenolių sud÷tį uogose bei nustatyti morfologinių, genetinių požymių ir fenolinių junginių tarpusavio ryšius. Darbo uždaviniai: 1. Įvertinti skirtingų (lietuviškų, estiškų, švediškų ir norvegiškų) spanguolių populiacijų genetinę įvairovę panaudojus morfofiziologinius, APPD ir SSR žymenis. 2. Ištirti fenolinių junginių kiekius spanguolių uogose Įvertinti spanguolių biochemin÷s sud÷ties ir genotipo sąsajas. 3. 27 4. Įvertinti morfologinių ir genetinių požymių sąsajas. Mokslinis naujumas ir praktin÷ reikšm÷. Lietuvoje iki šiol buvo tirtos paprastųjų spanguolių morfologin÷s savyb÷s bei keletas darbų atlikta tiriant paprastosios spanguol÷s biochemines savybes. Šiame darbe pirmą kartą Lietuvoje įvertinta paprastosios spanguol÷s (Vaccinium oxycoccos L.) genetin÷ įvairov÷. Atlikta VDU Kauno botanikos sodo paprastosios spanguol÷s kolekcijos genetin÷ analiz÷. Naudojant atsitiktinai pagausintos polimorfin÷s DNR ir mikrosatelitų metodus, įvertinus paprastosios spanguol÷s genetinį kintamumą, kuris buvo mažesnis Lietuviškų gamtinių populiacijų nei užsienietiškų. Palyginus Vytauto Didžiojo universiteto Kauno botanikos sodo kolekcijos klonų genetinę įvairovę su gamtin÷mis populiacijomis, kolekcijos vidupopuliacin÷ imčių genetin÷ įvairov÷ buvo ženkliai mažesn÷ nei lietuviškose gamtin÷se populiacijose. Pirmą kartą Lietuvoje bei pasaulyje buvo atlikta paprastosios spanguol÷s, morfologin÷s ir genetin÷s sąsajos (daugiausiai jų aptikta su Roth–09 pradmeniu ir tarp vegetacijos ir žyd÷jimo pradžios) bei genetinių ir biocheminių požymių ryšių analiz÷ (daugiausiai koreliacijų aptikta su peonidin–3 galaktozidais, o daugiausiai genetinių duomenų sąsajų aptikta su Roth–09 pradmeniu). Paprastoji spanguol÷ (V. oxycoccos) yra vienas vertingiausių laukinių uoginių augalų, aptinkamų Lietuvoje. Ji yra vertinama visame pasaulyje d÷l gydomųjų savybių. Atlikta genotipų sąsajų paieška su biocheminiais ir morfologiniai duomenimis, gali būti panaudota kryptingam kolekcijos pavyzdžių tvarkymui bei naujų paprastosios spanguol÷s veislių selekcijai. Patikrinus biochemines ir genetines sąsajas, tarp Kauno botanikos sodo kolekcijos Žuvinto ir Aukštaitijos populiacijų imčių, buvo aptikta 19 sąsajų su 16 skirtingų fragmentų iš kurių daugiausiai fragmentų koreliacijų aptiktų su peonidin–3 galaktozidais, o daugiausiai genetinių duomenų sąsajų aptikta su Roth–09 pradmeniu, šias sąsajas galima naudoti selekciniams tyrimams. Norint, kad VDU Kauno botanikos sodo kolekcijos populiacijų imtys atspind÷tų paprastosios spanguol÷s gamtinę bioįvairovę, kolekcijos populiacijų imtis reik÷tų papildyti atsitiktinai rinktais pavyzdžiais. Darbo aprobavimas. Darbo rezultatai paskelbti 6 publikacijose, iš jų trys paskelbtos žurnaluose įrašytuose į Mokslin÷s informacijos instituto sąrašą (ISI), trys – kituose Lietuvos ir užsienio moksliniuose žurnaluose. Disertacijos tema pristatyta 9 pranešimai vietin÷se ir tarptautin÷se konferencijose. Išvados 1. Vytauto Didžiojo universiteto Kauno botanikos sodo paprastosios spanguol÷s (V. oxycccsos) kolekcijos vidupopuliacin÷ imčių genetin÷ įvairov÷ yra ženkliai mažesn÷ nei lietuviškose gamtin÷se populiacijose (kolekcijos populiacijų imtyse – 75%, lietuviškose gamtin÷se populiacijose – 93%), d÷l kolekcijos formavimo metu vykdytos kryptingos spanguolių uogų su geresn÷mis savyb÷mis atrankos. 2. Nustatytas mažesnis lietuviškų gamtinių populiacijų, lyginant su užsienietiškom populiacijom genetinis kintamumas parodo, kad Lietuvoje vykdomas intensyvus spanguolių rinkimas (skirtingai nei Norvegijos, Švedijos ir Estijos tirtose vietov÷se), žymiai sumažino lietuviškų spanguolių genetinę įvairovę. 3. Aptikta bendro antocianinų kiekio neigiama koreliacija su uogos dydžiu skatina atrinkti tuos klonus, kurie sp÷jama, turi didelį antocianinų kiekį in situ ir toliau siekti juos išsaugoti kolekcijoje ex situ tolimesniems selekciniams darbams. 28 4. Aptikti fenolių kiekiai Vytauto Didžiojo universiteto Kauno botanikos sodo klonų, parod÷, kad kryptinga paprastosios spanguol÷s atranka leidžia pasiekti rezultatus artimus stambiauogių spanguolių (Vaccinium macrocarpon Aiton) rodikliams. 5. Patikrinus biochemines ir genetines sąsajas, tarp Kauno botanikos sodo kolekcijos Žuvinto ir Aukštaitijos populiacijų imčių, buvo rasta 19 sąsajų su 16 skirtingų fragmentų, iš kurių daugiausiai fragmentų koreliacijų aptikta su peonidino-3galaktozidais, o daugiausiai genetinių duomenų sąsajų – su Roth-09 pradmeniu. Šias sąsajas galima naudoti selekciniams tyrimams. 6. Atlikus su 9 pradmenimis aptiktų fragmentų ir 9 skirtingų morfologinių požymių duomenų sąsajų paiešką, nustatyta, kad daugiausiai morfologinių duomenų sąsajų rasta su vegetacijos ir žyd÷jimo pradžia, o daugiausiai genetinių duomenų sąsajų – su Roth09 pradmeniu, šios sąsajos gali būti panaudotos ankstyvųjų ir v÷lyvųjų klonų paieškai. Pasiūlymai: norint kad VDU KBS kolekcijos populiacijos imtys atspind÷tų paprastosios spanguol÷s bioįvairovę, kolekcijos populiacijų imtis reik÷tų papildyti atsitiktinai rinktais pavyzdžiais. Paskelbti straipsniai disertacijos tema 1. L. Česonien÷, R. Daubaras, J. Areškevičiūt÷, P. Viškelis. 2006. Evaluation of Morphological Peculiarities, Amount of Total Phenolics and Anthocyanins in Berries of European Cranberry (Oxycoccos palustris). Baltic Forestry, 12 (1): 5963. 2. J. Areškevičiūt÷, A. Paulauskas, L. Česonien÷, R. Daubaras. 2006. Genetic characteristic of wild cranberry (Vaccinium oxycoccos) collected from Čepkeliai reserve using RAPD method. Biologija.1: 5-7 3. J. Žukauskien÷, A. Paulauskas, L. Česonien÷, R. Daubaras. 2009. Genetic structure of isolated (Vaccinium oxycoccos) populations in Lithuania. Proceedings of the Latvian academy of science. Section B. 63(1/2): 33-36. 4. J. Areškevičiūt÷, A. Paulauskas, R. Daubaras, L. Česonien÷. 2005. Atsitiktinai amplifikuotos polimorfin÷s DNR metodo pritaikymas paprastosios spanguol÷s (Oxycoccos palustris) įvairov÷s tyrimams. Lietuvos biologin÷ įvairov÷: būkl÷, struktūra, apsauga. Vilnius. 6-13. ISBN 1822-2781 5. Česonien÷ L., Daubaras R., Areškevičiūt÷ J. 2007. Investigation of genetic resources of European cranberry Oxycoccos palustris (Ericaceae) in Lithuania. Monographs of Botanical Gardens. 1: 61-64. 6. J.E. Paičiūt÷, I. Dežicait÷, J. Žukauskien÷, A. Paulauskas. 2007. Genetic characteristic of morphologic different clones of Vaccinium oxycoccos collected from Žuvintas, Čepkeliai. Kamanos rezerve and Aukštaitija national park. The Vital Nature Sign. 10-14. ISBN 978-9955-12-213-5 Konferencijų pranešimų tez÷s: 1. Areškevičiūt÷ J., Paulauskas A., Česonien÷ L., Daubaras R. 2005. Genetic characteristic of wild cranberry (Vaccinium oxycoccos) of morphologically different forms collected form Žuvintas reserve. International conference: Biodiversity, molecular ecology and toxicology., Palanga. 7. 2. Areškevičiūt÷ J., Daubaras R., Česonien÷ L. 2005. Phenotypic diversity of wild cranberry Vaccinium oxycoccos in Žuvintas and Čepkeliai reserves in Lithuania. 3th 29 3. 4. 5. 6. 7. 8. 9. 30 International Conference: Research and conservation of biological diversity in Baltic Region. Daugavpils. 20. Areškevičiūt÷ J., Paulauskas A., Česonien÷ L., Daubaras R. 2006. Čepkelių rezervate surinktų paprastosios spanguol÷s (Vaccinium oxycoccos) genetin÷ charakteristika atliekant AAPD analizę. Kur gamta siejasi su mokslu. Kaunas. 1617. Česonien÷ L., Daubaras R., Žukauskien÷ J. 2007. Investigation of genetic resources of European cranberry in Lithuania. The 2nd International Conference of Eastern and Central European Botanic Gardens. Poland. 47. Paičiūt÷ E., Dežicait÷ I., Žukauskien÷ J., Paulasukas A.. 2007. Genetic characteristic of morphologic different clones of Vaccinium oxycoccos collected from Žuvintas, Čepkeliai. Kamanos rezerve and Aukštaitija national park. The Vital Nature Sign. Kaunas. 10-14. Žukauskien÷ J., Paulauskas A., Česonien÷ L., Daubaras R. 2007. Genetic structure of isolated Vaccinium oxycoccos populations. 4th International Conference: Research and conservation of biological diversity in Baltic Region. Daugavpils. 137. Žukauskien÷ J., Paulauskas A. 2007. Genetic variation and phylogeographic relationship among Lithuanian wild cranberries (Vaccinium oxycoccos). 4th Baltic genetical congress. Daugavpils. 183. Žukauskien÷ J., Paulauskas A., Daubaras R.. 2008. Genetic variation and development between morphologic features in Vaccinium oxycoccos. International scientific conference actualities in plant physiology. Lithuanian University of Agriculture. Babtai. Žukauskien÷ J., Paulauskas A., Česonien÷ L., Daubaras R. 2009. Vaccinium oxycoccos Morphology and RAPD Marker Characterizations NJF seminar and international scientific conference „Vaccinium ssp. and less known small fruit: challenges and risks”. Jelgava Judita Žukauskien÷ Vytauto Didžiojo universiteto biologijos katedros doktorant÷ Darbo adresas: Namų adresas: Molekulin÷s ekologijos ir genetikos laboratorija S. Žukausko 37-48 Biologijos katedra LT Kaunas Gamtos mokslų fakultetas Tel.: +37068661332 Vytauto Didžiojo universitetas Vileikos 8 LT 44404 Tel.: 8-37 327902 Faksas: 8-37 327916 El. paštas: j.zukauskiene@gmf.vdu.lt Gimimo vieta ir data: 1981 m. kovo 15, Kaunas Lietuva. Išsilavinimas: 1999-2003 m. Vytauto Didžiojo universitetas gamtos mokslų fakultetas – biologijos bakalaur÷; 2003-2005 m. Vytauto Didžiojo universitetas gamtos mokslų fakultetas – molekulin÷s biologijos ir biotechnologijos magistr÷; 2006-2007 m. Vytauto Didžiojo universitetas edukologijos ir pedagogikos fakultetas – pedagogikos profesinis išsilavinimas. Darbin÷ veikla: 2004-2008 m. Ekologin÷s genetikos būrelio vadov÷ Kauno moksleivių aplinkotyros centre ir Vytauto Didžiojo universitete. 2004-2008 m. biologijos katedros laborant÷. Stažuot÷s: Mokslin÷ stažuot÷ Lenkijoje Varšuvos botanikos centro, bioįvairov÷s saugojimo ir tyrimų centre 2007 06 04 – 2007 07 04. Tyrimų sritis: paprastosios spanguol÷s molekuliniai bei biocheminiai tyrimai. 31 Judita Žukauskien÷ THE RESEARCH OF WILD CRANBERRY (Vaccinium oxycoccos L.) DNA VARIABILITY AND PHENOLIC COMPOUNDS IN BERRIES Summary of Doctoral Dissertation Išleido ir spausdino – Vytauto Didžiojo universiteto leidykla (S. Daukanto g. 27, LT-44249 Kaunas) Užsakymo Nr. 132. Tiražas 50 egz. 2009 11 09. Nemokamai.