Sheaves on Surfaces and Generalized Appell Functions
Transcription
Sheaves on Surfaces and Generalized Appell Functions
Sheaves on Surfaces and Generalized Appell Functions Jan Manschot GEOQUANT September 18th, 2015 Outline • Motivation: Yang-Mills path integral and S-duality • Sheaves on rational surfaces • Explicit expressions for generating functions • Generalized Appell functions Based on: 1407.7785 1109.4861 Classical Yang-Mills theory with gauge group G on 4-manifold S: - Gauge potential: A ∈ Ω1 (S, g) - Field strength: F = dA + A ∧ A ∈ Ω2 (S, g) R R iθ - Action: S[A] = − g12 S Tr F ∧ ∗F + 8π 2 S Tr F ∧ F For quantitative results beyond the classical theory, consider topologically twisted N = 4 U(r ) Yang-Mills on S: Vafa, Witten (1994) Z hr (τ ) = DADψDX e −S[A,ψ,X ] with τ = θ 2π + 4πi g2 Path integral localizes on Bogomolny’i-Prasad-Sommerfield solutions: - minimize S[A], e.g. ASD-instantons: F = − ∗ F R - instanton number: κ(F ) = − 8π1 2 S Tr F ∧ F ∈ Z - e −S[A] = q κ with q = e 2πiτ Generating function: ⇒ hr (τ ) = X Ω(κ) q κ + R(τ, τ̄ ) κ - Ω(κ): Euler number of inst. moduli space ∼ BPS-invariant - R(τ, τ̄ ): arises due to reducible connections: A1 0 e.g. r = 2 : A = 0 −A1 S-duality Electric-magnetic duality: Montonen, Olive (1977) (F , ∗F ) → (∗F , −F ) g → gL S: τ → −1/τ Translations: 1 8π 2 ⇒ Z Tr F ∧ F ∈ Z T : τ → τ + 1 is a symmetry of the theory S + T generate SL2 (Z) S-duality group Modularity Instanton equations are invariant under S-duality ⇒ modular transformation properties are expected for hr (τ ): hr aτ + b cτ + d ∼ (cτ + d) −χ(S)/2 hr (τ ), a b c d ∈ SL2 (Z) Verification of EM-duality for U(r = 1, 2) YM and complex surfaces using algebraic-geometric techniques Vafa, Witten (1994) From YM theory to vector bundles Computation of hr (τ ) for rational surfaces is possible using methods for complex surfaces Gottsche, Nakajima, Yoshioka,. . . Donaldson-Uhlenbeck-Yau theorem: ASD connections ⇔ - stable holomorphic vector bundles - reducible connections Characterized by their Chern classes ci ∈ H 2i (S, Z): c1 = i Tr F , 2π 1 1 c2 − c12 = 2 Tr F ∧ F 2 8π Gieseker stability Let C (S) ∈ H 2 (S, R) be the ample cone of S. Choose polarization (Kähler modulus) J ∈ C (S), and define the slope: c1 (E ) · J µJ (E ) := r (E ) Definition: A sheaf E is stable if for every subsheaf E 0 ( E , µJ (E 0 ) < µJ (E ) ( semi-stable ⇒ µJ (E 0 ) ≤ µJ (E ) ) Agrees with stability based on central charge in large volume limit: limJ→∞ Z (E , B + iJ) Douglas (2000), Bridgeland (2002) Wall-crossing On varying J, a sheaf E can cease to be stable or reversely become stable. This happens accross walls of marginal stability (WMS) Definition: Let 0 ⊂ E 0 ⊂ E , and G = E /E 0 and. A wall W (E 0 , E ) ⊂ C (S) is a codimension 1 subspace of C (S) such that for Jw ∈ W (E , E 0 ) µJw (E 0 ) − µJw (E ) = 0 but for J ∈ / W (E 0 , E ) µJ (E 0 ) − µJ (E ) 6= 0 Invariants Algebraic-geometric approach can determine more refined invariants than the Euler number Let MJ (γ) (MJ (γ)) be the moduli space (stack) of semi-stable sheaves with γ = (r , c1 , c2 ) Let γ be relatively prime, J · KS < 0 and not on a wall ⇒ MJ (γ) is smooth, compact and of expected dimension Let I(γ, w ; J) be the virtual Poincaré function of MJ (γ) Joyce (2004) If γ is relatively prime, then I(γ, w ; J) := where p(X , s) = w − dimC MJ (γ) p(MJ (γ), w ), w − w −1 P2 dimC (X ) i=0 bi s i with bi = dim H i (X , Z) Generating function Generating function: Hr ,c1 (z, τ ; S, J) := X I(γ, w ; J) q r ∆− c2 −1 2 c1 ) - discriminant: ∆ = 1r (c2 − r 2r aτ +b - modular parameter: q = e 2πiτ , τ → cτ +d - elliptic parameter: w = e 2πiz , z → cτz+d r χ(S) 24 Rational ruled surfaces Σl Rational ruled surface π : Σ` → P1 - H2 (Σ` , Z): generators C , f - Intersection numbers: C 2 = −`, f 2 = 0, C · f = 1 - Restriction to the rational ruled surface Σ1 in this talk See the refs for other ruled surfaces & their blow-ups/downs - Ample cone: C (Σ1 ) = {m(C + f ) + nf ; m, n > 0} Outline of computations n O J0,1 n m 1. Determine invariants for boundary polarization W1 W2 O 2. Wall-crossing W3 m Suitable polarization Conjecture: JM (2011) Hr ,c1 (z, τ ; Σ` , J0,1 ) = 0 if c1 · f = 6 0 mod r Hr (z, τ ) if c1 · f = 0 mod r where Hr (z, τ ) is the infinite product: Hr (z, τ ) := i (−1)r −1 η(τ )2r −3 , θ1 (2z, τ )2 θ1 (4z, τ )2 . . . θ1 ((2r − 2)z, τ )2 θ1 (2rz, τ ) 1 with η(τ ) = q 24 Q∞ n=1 (1 − q n ), 2 θ1 (z, τ ) = r r2 r ∈Z+ 12 (−1) q P wr ∼ P1 are equivalent to direct sums ⇒ Reason: bundles on f = unstable for c1 · f 6= 0 mod r Proofs: r = 1: Gottsche (1990), r = 2: Yoshioka (1995), general r : Mozgovoy (2013) Wall-crossing Determine I(γ, w ; J 0 ) by adding (substracting) HN-filtrations for J (J 0 ) which correspond to semi-stable sheaves for J 0 (J) Wall-crossing formula: I(γ, w ; J 0 ) = X S({γi }, J, J 0 ) w − P i<j (ri cj −rj ci )·KS γ=γ1 +···+γ` ri ≥1 ∀i ` Y I(γi ; w , J) i=1 For all i = 1, . . . , ` − 1, we have either P P 1. µJ (γi ) ≤ µJ (γi+1 ) and µJ 0 ( ij=1 γj ) > µJ 0 ( `j=i+1 γj ), or P P 2. µJ (γi ) > µJ (γi+1 ) and µJ 0 ( ij=1 γj ) ≤ µJ 0 ( `j=i+1 γj ), then S = (−1)k with k # 1. is true, else S = 0. Joyce (2004) Explicit expressions for r = 1, 2 & Σ1 Rank 1: H1,c1 (z, τ ; Jm,n ) = H1 (z, τ ) Gottsche (1990) Rank 2: using wall-crossing formula H2,βC −αf (z, τ ; Jm,n ) = 1 < |w | < |q δβ,0 H2 (z, τ ) + H1 (z, τ ) 2 X 1 ( sgn(b 2 −1 4 | 1 b 2 + 1 ab 2 − ε) − sgn(bn − am − ε) ) w −b+2a q 4 (a,b)=−(α,β) mod 2 n + J Indefinite theta function: O m + D ab= 1 1 1 0 + - Hoppe, Spindler (1980); Ellingsrud, Strømme (1987), Yoshioka (1994/5), Gottsche, Zagier (1996) Explicit expressions II Specialize to J = J1,0 , β = 1: Geometric sum =⇒ 1 2 H2,C −αf (z, τ ; Σ1 , J1,0 ) = H1 (z, τ ) 2 X b=1 mod 2Z Yoshioka (1994/5), Bringmann, JM (2010) Specialization of Appell function A` (u, v ; τ ) 1 w 2α−b q 4 b + 2 αb 1 − w 4qb Appell functions I Appell function: A(u, v ; τ ) = e πiu X (−1)n e 2πinv q n(n+1)/2 n∈Z 1 − e 2πiu q n • Appell (1884): building blocks of doubly periodic functions • Ramanujan (1920): mock theta functions • Zwegers (2002): non-holomorphic completion Â(u, v ; τ )→ transforms as weight 1 Jacobi form Completion: Â(u, v ; τ ) = A(u, v ; τ ) + θ1 (z, τ ) R(u − v ; τ ) Z i∞ 1 ga,b (u) 1 q a2 e −2πia(b+ 2 ) du Period integral: R(aτ + b; τ ) = 2i p −i(z + τ ) −τ̄ Appel functions II Higher level/multi-variable generalizations appearing in mathematical physics: • Vacuum character of N = 2, 4 superconformal algebra Eguchi, Taormina (1988) ˆ • Characters of admissible sl(m|n)-representations Kac, Wakimoto (2000), Semikhatov, Taormina, Tipunin (2003) • Mirror symmetry of elliptic curves Polishchuk (1998) Completion of the generalizations all involve 1-dimensional period integrals Hr ,c1 (z, τ ; J1,0 ) for r ≥ 2 Hr ,c1 (z, τ ; J1,0 ) can be determined explicitly for all (r , c1 ) using wall-crossing formula of D. Joyce (2004) JM (2014), Toda (2014) Example: X w −6k q 3k 2 H3,0 (z, τ ; J1,0 ) = H3 (z, τ ) + 2H1 (z, τ )H2 (z, τ ) 1 − w 6 q 3k k∈Z +H1 (z, τ )3 X k1 ,k2 ∈Z 2 2 w −2(k1 +2k2 ) q k1 +k2 +k1 k2 (1 − w 4 q 2k1 +k2 )(1 − w 4 q k2 −k1 ) • Quadratic form for A2 root lattice in numerator • Two terms in denominator • Function cannot be written as product of two Appell functions Generalized Appell functions Suggests further generalization: =⇒ Appell functions with signature (n+ , n− ) Let: • Λ: n+ -dimensional positive definite lattice • {m j }: set of n− vectors ∈ Λ∗ 1 X q 2 Q(k) e 2πiv ·k AQ,{m j } (u, v ; τ ) = Qn − 2πiuj q m j ·k ) j=1 (1 − e k∈Λ Modular completion will require higher dimensional period integral Blow-up formula Blow-up φ : S̃ → S Bott & Tu Easy relation between generating functions: Hr ,c̃1 (z, τ ; φ∗ J, S̃) = Br ,k (z, τ ) Hr ,c1 (z, τ ; J, S), with c̃1 = φ∗ c1 − kCe and Br ,k (z, τ ) is a Ar −1 theta function Identities for Appell functions Blow-up formula ⇒ relations between Hr ,c̃1 (z, τ ; φ∗ J, S̃) ⇒ relations between Appell functions Let S = P2 and S̃ = Σ1 Then Hr ,C +f (z, τ ; J1,0 , Σ1 ) Hr ,f (z, τ ; J1,0 , Σ1 ) = Br ,0 (z, τ ) Br ,1 (z, τ ) E.g. r = 2: 2 1 2 X q b − 4 w 2b−3 X q b +b w 2b−2 1 1 − θ3 (2z, 2τ ) 1 − w −4 q 2b−1 θ2 (2z, 2τ ) 1 − w −4 q 2b b∈Z =− b∈Z iη(τ )3 θ1 (4z, τ ) θ2 (2z, 2τ ) Familiar quasi-periodicity relation Zwegers (2002) For A2 Appell functions Identities take the following form: 1 2 b3,0 (z) k ,k ∈Z (1 − 1 2 + = 2iη 3 w 2 q 2k1 +k2 )(1 X w − −3k 3k 2 q θ1 (2z)b3,0 (z) k∈Z 1 − w 3 q 3k η 6 θ1 (z) θ1 (2z)2 θ1 (3z) b3,0 (z) − 2 2 w −k1 −2k2 q k1 +k2 +k1 k2 X w 2 q k2 −k1 ) − iη 3 θ1 (2z)b3,1 (z) . Proven by Bringman, JM, Rolen (2015) 1 X 2 1 k +k +k k +k +k + w −k1 −2k2 −1 q 1 2 1 2 1 2 3 b3,1 (z) k ,k ∈Z (1 − 1 2 w 2 q 2k1 +k2 +1 )(1 X 3k 2 −2k+ 1 3 w −3k+1 q k∈Z 1 − w 3 q 3k−1 + − w 2 q k2 −k1 ) 2 1 X w −3k−1 q 3k +2k+ 3 k∈Z 1 − w 3 q 3k+1 Conclusions Generating functions of invariants of moduli spaces can be determined explicitly in terms of generalized Appell functions with signature (n+ , n− ) Applications: • Semi-stable sheaves • q-series • Electric-magnetic duality • Quantum black hole state counting • Relation to topological strings on elliptic Calabi-Yau manifolds • ...
Similar documents
Gauge Theory and Generalized Appell Functions
I will explain in this talk how specializations of AQ,{m j } occur as building blocks of: • (for physicists) the partition function of N = 4 supersymmetric topologically twisted Yang-Mills theory ...
More information