SIXER
Transcription
SIXER
SCUBA-2 Imaging Exploration of the Epoch of Reionization (SIXER) Yoichi Tamura (IoA, UTokyo) on behalf of the proposal tiger team: K. Kohno, S. Ishii, T. Izumi, Y. Yamaguchi, R. Makiya (UTokyo) M. Ouchi, S. Fujimoto, Y. Ono (ICRR, UTokyo) T. Nagao (RCSCE, Ehime U.) B. Hatsukade, Y. Matsuda (NAOJ-Chile), T. T. Takeuchi (Nagoya), K. Morokuma (NRO) 6 November 2014 1 ❖ HSC SSP のようなかたちの、semi-public survey を想定しています ❖ この場にいる皆さんには、ぜひプロポーザルにご参加ください!(いや、それはマズいとい う人だけ、ご連絡ください。。。) 2 Cosmic star formation history: Roles of dusty galaxy population Burgarella+ ...? ...? Bouwens+ Burgarella et al. 2013 ❖ ❖ Cosmic SFR density (SFRD) peaks at z = 1-3. What is the role of dusty galaxies at z > 4? Madau & Dickinson 2014 ❖ ❖ Cosmic evolution of extinction. What is the role of dust in z > 4 galaxies? cosmic “obscured” star-formation through the cosmic time is still unknown. 3 AzTEC selects many “red” SMGs (so-called “500-um peakers”) 40% of AzTEC 1.1-mm sources are actually 500-um peakers! (40% of SMGs are at z > 3?) ❖ Characterizing “red” SMGs are important in studying z > 4 SF history. 500 um peakers (h igh -z Red /lo w -T )→ ❖ 4 SCUBA-2 SCUBA-2 (Holland+13) ❖ Submm Common User Bolometer Array 2 (Holland+13) ❖ Large-format bolometer array camera using TES + SQUID technologies ❖ Simultaneous 450 and 850 um observations with 5120 pix each + dichroic filter (yield ~ 70%) ❖ ❖ FoV: 45 arcmin2 each θHPBW: 8” (450um) and 13” (850um) ❖ ❖ ❖ Ω850um = 1/6 of SPT, 1/4 of AzTEC/ASTE Mapping speed ~ 10–15 arcmin2/hr/mJy2 (fastest!) SMURF (Chappin+13) ❖ Well-constructed, user-friendly reduction software suite and pipelines ❖ High fidelity reproduction of astronomical emission using the maximum likelihood approach 450 and 850 um windows (PWV = 1mm) 450 um filter Iterative modeling... Extended emission recovered 850 um filter 5 SCUBA2 Imaging Exploration of the EoR (SIXER): The Survey Concept ❖ SCUBA-2 Intensive Exploration of the Epoch of Reionization (SIXER) ❖ ❖ ❖ ❖ Proposal will be submitted in 2014 Nov, survey will start in 2015 Feb. Systematic survey of S > 20 mJy SMGs at z > 4 (especially, z > 6). Submm properties of z > 4 QSOs (including ~10 z > 6 QSOs). Submm properties of z > 4 LBGs/LAEs Exploring ~100 mJy submm transients such as blazars (too small area?) Method / strategy ❖ ❖ ❖ ❖ ❖ “From discoveries to complete follow-up observations” Science from SIXER (+ HerMES and HSC surveys) ❖ ❖ ❖ ❖ ❖ 10x wider, 3x more luminous layer than S2CLS 200–600 “S850 > 20mJy” SMGs over ~50 deg2 by spending ~1000 hr HerMES Level 5 data (~35 deg2, σ500um ~ 4 mJy) Deep optical images and huge QSO/LBG/LAE samples from HSC-Deep/Wide Easy pre-selection with SPIRE, easy follow-up with ALMA (ASTE, LMT, ...) toward ~200 spectroscopic sample. Merits ❖ ❖ Follow-up is easy! Will feed flux-limited sample of SMGs for ALMA/ASTE Less confusion effect, lensing magnification, ... 6 Why S850 > 20 mJy? Easy pre-selection and follow-up ❖ Easy SPIRE pre-selection ❖ ❖ ❖ unveil a new population that has not been revealed by Herschel. SPIRE 500um (HerMES/L5) will detect all SIXER sources at 0 < z < 5. “SPIRE-dropouts” (or “850-um peakers”) will isolate z > 6 candidate SMGs. ❖ ❖ Easy identification with ALMA snapshots in 850 um continuum ❖ ❖ ❖ 10 s integration will result in a >50σ detection. Observing ~600 SIXER sources will take just 2 hr. Easy redshift determination with ALMA spectral scan in 3 mm ❖ ❖ ❖ ❖ e.g. λpeak ~ 500, 600, 700 um at z = 5, 6 and 7, respectively (for a graybody with Tdust = 40K and β=1.5). will double (triple?) the number of SMGs with spec-z. A 5-min spectral scan over the whole Band 3 will yield a >5σ detection. 17 hr integration will yield ~200 spectroscopic redshifts of SMGs. Feeding a set of bright SMGs to be followed up by DESHIMA/ASTE. 7 5σ limiting FIR luminosity 500-um peakers 850-um peakers 8 Limiting LFIR vs survey area at z=2 + SASSy SPT AzTEC ◆+ S2CLS SPIRE confusion limit (1σ) r pe r ee e D Wid & Oliver+2012 9 Limiting LFIR vs survey area at z=6 SPIRE confusion limit (1σ) SPT + SIXER (Legacy-type survey) AzTEC ◆ + S2CLS r pe r ee e D Wid & Oliver+2012 10 SMG science ❖ サーベイから得られるもの ❖ 200個を超える明るい (S850 > 20 mJy) SMG のサンプル ❖ すべてのCO輝線を検出するには ALMA で合計 17hr (on-source)。限られた個数 (<10) に対しても、CARMA でもフォローアップが可能になる。 ❖ ❖ 赤方偏移、分子ガス質量、ダスト質量、dust-to-gas ratio が得られる。 サイエンスケース ❖ Bright SMGの赤方偏移分布 (z > 4 も高精度で)。星形成率密度の進化。 ❖ z > 4, 5 でのダスト生成メカニズムへの制限 11 Dust in z > 5 objects Nozawa et al. 2014, arXiv:1410.7861 Graphite carbon Amorphous carbon z = 6.3 QSO ❖ ❖ 遠方 QSO で大量のダスト (~10^8 Msun) が見つかった ❖ Type SNe II で説明しようとすると、巨大な dust yield (~0.1-1 Msun/SN) が必要 ❖ 星間空間中のダスト成長 (shuttering+coagulation) (Asano+13, Nozawa+14) 減光曲線のかたちがちがう? ❖ 分子雲内部で効率的に amorphous carbon を主成分としたダスト成長が生じている (Nozawa+14) z > 5 QSO のダスト質量 + (分子)ガス質量の測定によって検証することが重要→ ALMA, SCUBA-2 12 LBG Science 藤本さん、大内さん、小野さん [A/I: HSC samples plan] Seiji Fujimoto, Masami Ouchi, Yoshiaki Ono (ver. 2) 2014/10/27 1. JCMTサーベイでHSC/LBGサンプルをStackingしたときdust emissionの見積もり。 z 6 LBGsサンプル個数の間違いを修正(コラムずれでした..) • from Tamura-san slide サーベイスピードは右図青線が妥当ということでサーベイ • 1. 27deg^2 1σ 3.0mJy 3. 80deg^2 1σ 5.7mJy 2. の広さと深さをそれに対応させた上で、右図の3ケースで再 導出。 50deg^2 1σ 4.0mJy β-IRXの関係を見るために各redshiftソース全部stacking • するのではなく光度毎でstackingを行った。 HSC/deep samples HSC/wide samples z=4 0.6 0.6 0.4 0.4 0.4 0.4 0.2 -2.1 -2 3.6σ -1.9 -1.8 -1.7 beta 0 -1.5 -1.4 -1.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 beta -1.6 -1.5 -2.2 -1.3 -1.4 -2 -1.9 -1.8 -1.7 beta -1.6 -1.5 -1.4 -1.3 -2.2 0.4 0.4 0.4 0.4 4.7σ -0.2 -2.2 0.2 0 0 0 -2.1 -2 -1.9 -1.8 -1.7 beta 4.5σ -0.2 -1.6 -1.5 -2.2 -1.3 -1.4 log(Ffir/F1600) 0.6 log(Ffir/F1600) 0.6 -2.1 -2 -1.9 -1.8 -1.7 beta -1.5 -2.2 -1.3 -1.4 -2 -1.9 -1.8 -1.7 beta -1.6 -1.5 -1.4 -1.3 -2.2 0.4 0.4 0.4 0 3.2σ -0.2 -2.2 -2.1 -2 -1.9 -1.8 -1.7 beta 3.1σ -0.2 -1.6 -1.5 -1.4 -2.2 -1.3 -2.1 -2 -1.9 -1.8 -1.7 beta -1.6 -1.5 -1.4 log(Ffir/F1600) 0.4 log(Ffir/F1600) 0.6 log(Ffir/F1600) 0.6 0 0.2 0 -0.2 -0.2 -2.2 -1.3 -1.6 -1.5 3.7σ -2.1 -2 -1.9 -1.8 -1.7 beta -1.6 -1.5 -1.4 -2.1 -2 -1.9 -1.8 -1.7 beta -1.3 -2.2 -1.6 -1.5 -1.4 -1.3 広さあまり関係ない. • さが効く->狭い方が 50deg^2 1σ 4.0mJy -1.4 2.6σ 有利. -1.3 -2.1 -2 -1.9 -1.8 -1.7 beta -1.6 -1.5 80deg^2 1σ 5.8mJy -1.4 -1.3 βが小さい(uv暗い) ものはサーベイの深 • 0.2 0 β -1.8 -1.7 beta -0.2 -2.1 0.6 0.2 -1.9 0.2 0.6 0.2 -2 0 -0.2 -1.6 -2.1 βが大きい(uv明る い)側ではサーベイの 27deg^2 1σ 3.0mJy -0.2 -2.1 0.6 0.2 4.8σ 0.2 0.6 0.2 • 0 -0.2 -0.2 -1.6 log(Ffir/F1600) log(Ffir/F1600) log(Ffir/F1600) 0.2 0 -0.2 -2.2 0.2 log(Ffir/F1600) 0.6 log(Ffir/F1600) 0.6 0 log(Ffir/F1600) z=7 z=6 z=5 log(Ffir/F1600) log(Ffir/F1600) 結果: z 7ソースも非検出 であってもupper limitはつく. 13 QSO Science 2014年10月8日@IoA SCUBA-2/JCMT survey QSO science検討 QSO science検討班 (泉拓磨、長尾透) SMBHは母銀河より先に成長したのか? 低光度quasarの大量観測 + stacking解析を利用して、微分形マゴリ アン関係の赤方偏移進化を(極力観測バイアスを低減して)捉える。 14 Low-z Disk Galaxies 諸隈さん、竹内さん 15 Activities and Timeline - Start of SIXER (winter?) - Initial results (σ = 5 mJy, A ~ 10 deg2) - (ALMA Cycle 3) 2016 - Continuation of SIXER - Interim results (σ = 5 mJy, A ~ 30 deg2) - (ALMA Cycle 4?) 2017 - Completion of SIXER (winter?) - Final results (σ = 5 mJy, A ~ 50 deg2) - (ALMA Cycle 5?) Follow-up observations 2015 Kickoff (8E) JCMT Science WS (9B) 1st proposal team meeting (9M) SCUBA-2/SMURF seminar (10B) 2nd proposal team meeting (10B) Announcement (11M) JCMT proposal (informal letter?) (12B) Input from the HSC survey 2014 Quick completion in short period (~2yr) - 16 Feasibility study / field selection 17 Lensed SMGs SIXER S2CLS SIXER - Total exposure time is fixed to 1000 hr. - The model counts are scaled using a factor of S1.1mm/S850um = 0.51. - 200–300 > 5σ sources or ~1000 > 3.5σ sources may be detected in 1000 hr. S2CLS SIXER S2CLS Number counts (updated) 18 4. Pipeline • – 1 hour – – Jack-knife map Jack-knife map temporary file FAINT_POINT_SOURCES_JACKKNIFE – A 1835 map A 1835 S/N map Viewgraph prepared by Yamaguchi-san 19 Level Name Area (deg2) Budget (hr) L1 ECDFS [CDFS-SWIRE] 0.35, 0.58, 11.4, 10.9 20, 8.8, 41, 50 1.1, 3.3 03h32 –27d50 COSMOS 2.8, 4.4 50, 25 2.0, 4.9 10h00 +02d10 GOODS-North 0.55 14 bad data? Groth-Strip [EGS-HerMES] 0.60, 2.7 4, 23 3.2, 5.1 14h20 +52d50 (maybe yes) Lockman-North [Lockman-SWIRE] 0.65, 7.6 4, 41 3.2, 4.9 10h47 +58d00 SWIRE Lockman-E-ROSAT [Lockman-SWIRE] 0.57, 1.4, 7.6 3, 5, 41 3.2, 4.9 10h47 +58d00 SWIRE UDS 2, 19 11, 46 3.4, 6.2 02h18 –05d05 HSC-U/D/W SWIRE SpUDS VVDS 2, 19 10, 46 3.4, 6.2 02h26 –04d30 HSC-D/W SWIRE CDFS-SWIRE 11.4, 10.9 42, 50 3.3 03h32 –28d10 Lockman-SWIRE 17.4, 7.6 14, 41 11, 4.9 10h47 +58d00 SWIRE EGS-HerMES 2.7 23 5.1 14h20 +52d50 (maybe yes) Bootes-HerMES 3.3, 10.6 20, 28 3.2, 6.1 14h33 +34d10 SDWFS ELAIS-N1-HerMES 3.3 21 3.9 16h10 +54d20 σ500 (mJy) RA Dec HSC HSC-U/D/W VLA IRAC VLASS-D GOODS SWIRE SIMPLE VLASS-D S-COSMOS L2 L3 GOODS L4 L5 YT’s first impression Accessible from ALMA VLASS-D HSC-D VLASS-D GOODS SWIRE SWIRE 20 EGS Level 5 v Le Lev 3 3 Lev 3 ELAIS-N1 Lev 5 Level 5 Bootes FLS Lockman-SWIRE Level 6 Level 5 Level 6 XMM-LSS 30 deg2 Level 6 ECDFS 1 deg2 Level 4 Level 4 Lev 1 Level 5 COSMOS Level 2 21 XMM-LSS HerMES SIXER ES rM e H VLASS (Wide) /L3 SERVS/IRAC SWIRE VLA S2CLS HSC-D SW IRE /IR AC H / ES M er L3 SERVS Average SMG (z = 1, 2, 3, 4, 5, 6, 7, 8) HerMES/L6 HSC-D SIXER? (10 deg2) 22 COSMOS HerMES SIXER S-COSMOS/IRAC VLASS (Deep) S2CLS HSC-D LA V S S Her MES / S-COSMOS L2 Average SMG (z = 1, 2, 3, 4, 5, 6, 7, 8) HSC-D CLS? (4.0 deg2) 23 ev el 6 da ta あ り ELAIS-N1 er M ES /L VLASS 【 田 村 注 】 H HerMES SIXER H E M r e L S/ 5 SWIRE VLASS (Deep) HSC-D SE S RV S/ W IR A IR C E/ IR A SERVS C Average SMG (z = 1, 2, 3, 4, 5, 6, 7, 8) HSC-D SIXER? (3.2 deg2) SIXER? (9.4 deg2) 24 ECDF-S HerMES VLASS SIXER SWIRE VLASS (Deep) SERVS/IRAC RAC SWIRE/I E HerM S/L5 SERVS Average SMG (z = 1, 2, 3, 4, 5, 6, 7, 8) SIXER? (8.5 deg2) 25 Lockman Hole HerMES SIXER IR A /L 3 SWIRE RV S/ rM ES SE He C HerMES/L3 H er M ES /L S W IR IR / E A C SERVS Average SMG (z = 1, 2, 3, 4, 5, 6, 7, 8) 5 SIXER? (11 deg2) 26 Bootes HerMES SIXER SDWFS S D W FS R /I A 5 Average SMG (z = 1, 2, 3, 4, 5, 6, 7, 8) C HerME S/L E M r He S/L6 HSC-D SIXER? (8 deg2) 27 Deep 2/3 PI Obs (partially available) SIXER HSC-D Average SMG (z = 1, 2, 3, 4, 5, 6, 7, 8) HSC-D SIXER? (7 deg2) 28 Visibility plot 29
Similar documents
İSTATİSTİKLERLE TÜRKİYE Turkey in Statistics 2014
the most recent data available during the publication period. Data sources given at the last chapter of the publication are assumed to be a good starting point for the users who want to reach more ...
More information