SIXER

Transcription

SIXER
SCUBA-2 Imaging Exploration
of the Epoch of Reionization
(SIXER)
Yoichi Tamura (IoA, UTokyo)
on behalf of the proposal tiger team:
K. Kohno, S. Ishii, T. Izumi, Y. Yamaguchi, R. Makiya (UTokyo)
M. Ouchi, S. Fujimoto, Y. Ono (ICRR, UTokyo)
T. Nagao (RCSCE, Ehime U.)
B. Hatsukade, Y. Matsuda (NAOJ-Chile),
T. T. Takeuchi (Nagoya), K. Morokuma (NRO)
6 November 2014
1
❖
HSC SSP のようなかたちの、semi-public survey を想定しています
❖
この場にいる皆さんには、ぜひプロポーザルにご参加ください!(いや、それはマズいとい
う人だけ、ご連絡ください。。。)
2
Cosmic star formation history:
Roles of dusty galaxy population
Burgarella+
...?
...?
Bouwens+
Burgarella et al. 2013
❖
❖
Cosmic SFR density (SFRD) peaks at z = 1-3.
What is the role of dusty galaxies at z > 4?
Madau & Dickinson 2014
❖
❖
Cosmic evolution of extinction.
What is the role of dust in z > 4 galaxies?
cosmic “obscured” star-formation through
the cosmic time is still unknown.
3
AzTEC selects many “red” SMGs
(so-called “500-um peakers”)
40% of AzTEC 1.1-mm sources are actually 500-um peakers! (40% of SMGs are
at z > 3?)
❖
Characterizing “red” SMGs are important in studying z > 4 SF history.
500 um peakers
(h
igh
-z Red
/lo
w
-T
)→
❖
4
SCUBA-2
SCUBA-2 (Holland+13)
❖
Submm Common User Bolometer Array 2 (Holland+13)
❖
Large-format bolometer array camera using TES +
SQUID technologies
❖
Simultaneous 450 and 850 um observations with
5120 pix each + dichroic filter (yield ~ 70%)
❖
❖
FoV: 45 arcmin2 each
θHPBW: 8” (450um) and 13” (850um)
❖
❖
❖
Ω850um = 1/6 of SPT, 1/4 of AzTEC/ASTE
Mapping speed ~ 10–15 arcmin2/hr/mJy2 (fastest!)
SMURF (Chappin+13)
❖
Well-constructed, user-friendly reduction software
suite and pipelines
❖
High fidelity reproduction of astronomical emission
using the maximum likelihood approach
450 and 850 um windows
(PWV = 1mm)
450 um filter
Iterative modeling...
Extended emission
recovered
850 um filter
5
SCUBA2 Imaging Exploration of the EoR
(SIXER): The Survey Concept
❖
SCUBA-2 Intensive Exploration of the Epoch of Reionization (SIXER)
❖
❖
❖
❖
Proposal will be submitted in 2014 Nov, survey will start in 2015 Feb.
Systematic survey of S > 20 mJy SMGs at z > 4 (especially, z > 6).
Submm properties of z > 4 QSOs (including ~10 z > 6 QSOs).
Submm properties of z > 4 LBGs/LAEs
Exploring ~100 mJy submm transients such as blazars (too small area?)
Method / strategy
❖
❖
❖
❖
❖
“From discoveries to complete follow-up observations”
Science from SIXER (+ HerMES and HSC surveys)
❖
❖
❖
❖
❖
10x wider, 3x more luminous layer than S2CLS
200–600 “S850 > 20mJy” SMGs over ~50 deg2 by spending ~1000 hr
HerMES Level 5 data (~35 deg2, σ500um ~ 4 mJy)
Deep optical images and huge QSO/LBG/LAE samples from HSC-Deep/Wide
Easy pre-selection with SPIRE, easy follow-up with ALMA (ASTE, LMT, ...)
toward ~200 spectroscopic sample.
Merits
❖
❖
Follow-up is easy! Will feed flux-limited sample of SMGs for ALMA/ASTE
Less confusion effect, lensing magnification, ...
6
Why S850 > 20 mJy?
Easy pre-selection and follow-up
❖
Easy SPIRE pre-selection
❖
❖
❖
unveil a new population that has not been revealed by Herschel.
SPIRE 500um (HerMES/L5) will detect all SIXER sources at 0 < z < 5.
“SPIRE-dropouts” (or “850-um peakers”) will isolate z > 6 candidate SMGs.
❖
❖
Easy identification with ALMA snapshots in 850 um continuum
❖
❖
❖
10 s integration will result in a >50σ detection.
Observing ~600 SIXER sources will take just 2 hr.
Easy redshift determination with ALMA spectral scan in 3 mm
❖
❖
❖
❖
e.g. λpeak ~ 500, 600, 700 um at z = 5, 6 and 7, respectively (for a graybody with Tdust = 40K and β=1.5).
will double (triple?) the number of SMGs with spec-z.
A 5-min spectral scan over the whole Band 3 will yield a >5σ detection.
17 hr integration will yield ~200 spectroscopic redshifts of SMGs.
Feeding a set of bright SMGs to be followed up by DESHIMA/ASTE.
7
5σ limiting FIR luminosity
500-um peakers
850-um peakers
8
Limiting LFIR vs survey area at z=2
+ SASSy
SPT
AzTEC ◆+ S2CLS
SPIRE confusion limit (1σ)
r
pe r
ee e
D Wid
&
Oliver+2012
9
Limiting LFIR vs survey area at z=6
SPIRE confusion limit (1σ)
SPT
+ SIXER
(Legacy-type survey)
AzTEC ◆ + S2CLS
r
pe r
ee e
D Wid
&
Oliver+2012
10
SMG science
❖
サーベイから得られるもの
❖
200個を超える明るい (S850 > 20 mJy) SMG のサンプル
❖
すべてのCO輝線を検出するには ALMA で合計 17hr (on-source)。限られた個数
(<10) に対しても、CARMA でもフォローアップが可能になる。
❖
❖
赤方偏移、分子ガス質量、ダスト質量、dust-to-gas ratio が得られる。
サイエンスケース
❖
Bright SMGの赤方偏移分布 (z > 4 も高精度で)。星形成率密度の進化。
❖
z > 4, 5 でのダスト生成メカニズムへの制限
11
Dust in z > 5 objects
Nozawa et al. 2014, arXiv:1410.7861
Graphite carbon
Amorphous carbon
z = 6.3 QSO
❖
❖
遠方 QSO で大量のダスト (~10^8 Msun) が見つかった
❖
Type SNe II で説明しようとすると、巨大な dust yield (~0.1-1 Msun/SN) が必要
❖
星間空間中のダスト成長 (shuttering+coagulation) (Asano+13, Nozawa+14)
減光曲線のかたちがちがう?
❖
分子雲内部で効率的に amorphous carbon を主成分としたダスト成長が生じている
(Nozawa+14)
z > 5 QSO のダスト質量 + (分子)ガス質量の測定によって検証することが重要→ ALMA, SCUBA-2
12
LBG Science
藤本さん、大内さん、小野さん
[A/I: HSC samples plan] Seiji Fujimoto, Masami Ouchi, Yoshiaki Ono (ver. 2) 2014/10/27
1. JCMTサーベイでHSC/LBGサンプルをStackingしたときdust emissionの見積もり。
z 6 LBGsサンプル個数の間違いを修正(コラムずれでした..)
•
from Tamura-san slide
サーベイスピードは右図青線が妥当ということでサーベイ
•
1.
27deg^2 1σ 3.0mJy
3.
80deg^2 1σ 5.7mJy
2.
の広さと深さをそれに対応させた上で、右図の3ケースで再
導出。
50deg^2 1σ 4.0mJy
β-IRXの関係を見るために各redshiftソース全部stacking
•
するのではなく光度毎でstackingを行った。
HSC/deep samples
HSC/wide samples
z=4
0.6
0.6
0.4
0.4
0.4
0.4
0.2
-2.1
-2
3.6σ
-1.9
-1.8 -1.7
beta
0
-1.5
-1.4
-1.3
-2.2
-2.1
-2
-1.9
-1.8 -1.7
beta
-1.6
-1.5
-2.2
-1.3
-1.4
-2
-1.9
-1.8 -1.7
beta
-1.6
-1.5
-1.4
-1.3
-2.2
0.4
0.4
0.4
0.4
4.7σ
-0.2
-2.2
0.2
0
0
0
-2.1
-2
-1.9
-1.8 -1.7
beta
4.5σ
-0.2
-1.6
-1.5
-2.2
-1.3
-1.4
log(Ffir/F1600)
0.6
log(Ffir/F1600)
0.6
-2.1
-2
-1.9
-1.8 -1.7
beta
-1.5
-2.2
-1.3
-1.4
-2
-1.9
-1.8 -1.7
beta
-1.6
-1.5
-1.4
-1.3
-2.2
0.4
0.4
0.4
0
3.2σ
-0.2
-2.2
-2.1
-2
-1.9
-1.8 -1.7
beta
3.1σ
-0.2
-1.6
-1.5
-1.4
-2.2
-1.3
-2.1
-2
-1.9
-1.8 -1.7
beta
-1.6
-1.5
-1.4
log(Ffir/F1600)
0.4
log(Ffir/F1600)
0.6
log(Ffir/F1600)
0.6
0
0.2
0
-0.2
-0.2
-2.2
-1.3
-1.6
-1.5
3.7σ
-2.1
-2
-1.9
-1.8 -1.7
beta
-1.6
-1.5
-1.4
-2.1
-2
-1.9
-1.8 -1.7
beta
-1.3
-2.2
-1.6
-1.5
-1.4
-1.3
広さあまり関係ない.
•
さが効く->狭い方が
50deg^2
1σ 4.0mJy
-1.4
2.6σ
有利.
-1.3
-2.1
-2
-1.9
-1.8 -1.7
beta
-1.6
-1.5
80deg^2
1σ 5.8mJy
-1.4
-1.3
βが小さい(uv暗い)
ものはサーベイの深
•
0.2
0
β
-1.8 -1.7
beta
-0.2
-2.1
0.6
0.2
-1.9
0.2
0.6
0.2
-2
0
-0.2
-1.6
-2.1
βが大きい(uv明る
い)側ではサーベイの
27deg^2
1σ 3.0mJy
-0.2
-2.1
0.6
0.2
4.8σ
0.2
0.6
0.2
•
0
-0.2
-0.2
-1.6
log(Ffir/F1600)
log(Ffir/F1600)
log(Ffir/F1600)
0.2
0
-0.2
-2.2
0.2
log(Ffir/F1600)
0.6
log(Ffir/F1600)
0.6
0
log(Ffir/F1600)
z=7
z=6
z=5
log(Ffir/F1600)
log(Ffir/F1600)
結果:
z 7ソースも非検出
であってもupper
limitはつく.
13
QSO Science
2014年10月8日@IoA
SCUBA-2/JCMT survey
QSO science検討
QSO science検討班
(泉拓磨、長尾透)
SMBHは母銀河より先に成長したのか?
低光度quasarの大量観測 + stacking解析を利用して、微分形マゴリ
アン関係の赤方偏移進化を(極力観測バイアスを低減して)捉える。
14
Low-z Disk Galaxies
諸隈さん、竹内さん
15
Activities and Timeline
- Start of SIXER (winter?)
- Initial results (σ = 5 mJy, A ~ 10 deg2)
- (ALMA Cycle 3)
2016
- Continuation of SIXER
- Interim results (σ = 5 mJy, A ~ 30 deg2)
- (ALMA Cycle 4?)
2017
- Completion of SIXER (winter?)
- Final results (σ = 5 mJy, A ~ 50 deg2)
- (ALMA Cycle 5?)
Follow-up observations
2015
Kickoff (8E)
JCMT Science WS (9B)
1st proposal team meeting (9M)
SCUBA-2/SMURF seminar (10B)
2nd proposal team meeting (10B)
Announcement (11M)
JCMT proposal (informal letter?) (12B)
Input from the HSC survey
2014
Quick completion in short period (~2yr)
-
16
Feasibility study / field selection
17
Lensed
SMGs
SIXER
S2CLS
SIXER
- Total exposure time is fixed to 1000 hr.
- The model counts are scaled using a factor of
S1.1mm/S850um = 0.51.
- 200–300 > 5σ sources or
~1000 > 3.5σ sources may be detected in 1000 hr.
S2CLS
SIXER
S2CLS
Number counts (updated)
18
4. Pipeline
• 
–  1 hour
– 
–  Jack-knife map
Jack-knife map
temporary file
FAINT_POINT_SOURCES_JACKKNIFE
– 
A 1835 map
A 1835 S/N map
Viewgraph prepared by Yamaguchi-san
19
Level
Name
Area (deg2)
Budget (hr)
L1
ECDFS
[CDFS-SWIRE]
0.35, 0.58,
11.4, 10.9
20, 8.8,
41, 50
1.1, 3.3
03h32
–27d50
COSMOS
2.8, 4.4
50, 25
2.0, 4.9
10h00
+02d10
GOODS-North
0.55
14
bad data?
Groth-Strip
[EGS-HerMES]
0.60, 2.7
4, 23
3.2, 5.1
14h20
+52d50
(maybe yes)
Lockman-North
[Lockman-SWIRE]
0.65, 7.6
4, 41
3.2, 4.9
10h47
+58d00
SWIRE
Lockman-E-ROSAT
[Lockman-SWIRE]
0.57, 1.4, 7.6
3, 5, 41
3.2, 4.9
10h47
+58d00
SWIRE
UDS
2, 19
11, 46
3.4, 6.2
02h18
–05d05
HSC-U/D/W
SWIRE
SpUDS
VVDS
2, 19
10, 46
3.4, 6.2
02h26
–04d30
HSC-D/W
SWIRE
CDFS-SWIRE
11.4, 10.9
42, 50
3.3
03h32
–28d10
Lockman-SWIRE
17.4, 7.6
14, 41
11, 4.9
10h47
+58d00
SWIRE
EGS-HerMES
2.7
23
5.1
14h20
+52d50
(maybe yes)
Bootes-HerMES
3.3, 10.6
20, 28
3.2, 6.1
14h33
+34d10
SDWFS
ELAIS-N1-HerMES
3.3
21
3.9
16h10
+54d20
σ500 (mJy)
RA
Dec
HSC
HSC-U/D/W
VLA
IRAC
VLASS-D
GOODS
SWIRE
SIMPLE
VLASS-D
S-COSMOS
L2
L3
GOODS
L4
L5
YT’s first
impression
Accessible from
ALMA
VLASS-D
HSC-D
VLASS-D
GOODS
SWIRE
SWIRE
20
EGS
Level 5
v
Le
Lev 3
3
Lev 3
ELAIS-N1
Lev 5
Level 5
Bootes
FLS
Lockman-SWIRE
Level 6
Level 5
Level 6
XMM-LSS
30 deg2
Level 6
ECDFS
1 deg2
Level 4
Level 4
Lev 1
Level 5
COSMOS
Level 2
21
XMM-LSS
HerMES
SIXER
ES
rM
e
H
VLASS
(Wide)
/L3
SERVS/IRAC
SWIRE
VLA
S2CLS
HSC-D
SW
IRE
/IR
AC
H
/
ES
M
er
L3
SERVS
Average SMG
(z = 1, 2, 3, 4, 5, 6, 7, 8)
HerMES/L6
HSC-D
SIXER? (10 deg2)
22
COSMOS
HerMES
SIXER
S-COSMOS/IRAC
VLASS
(Deep)
S2CLS
HSC-D
LA
V
S
S
Her
MES
/
S-COSMOS
L2
Average SMG
(z = 1, 2, 3, 4, 5, 6, 7, 8)
HSC-D
CLS? (4.0 deg2)
23
ev
el
6
da
ta
あ
り
ELAIS-N1
er
M
ES
/L
VLASS
【
田
村
注
】
H
HerMES
SIXER
H
E
M
r
e
L
S/
5
SWIRE
VLASS
(Deep)
HSC-D
SE
S
RV
S/
W
IR
A
IR
C
E/
IR
A
SERVS
C
Average SMG
(z = 1, 2, 3, 4, 5, 6, 7, 8)
HSC-D
SIXER? (3.2 deg2)
SIXER? (9.4 deg2)
24
ECDF-S
HerMES
VLASS
SIXER
SWIRE
VLASS
(Deep)
SERVS/IRAC
RAC
SWIRE/I
E
HerM
S/L5
SERVS
Average SMG
(z = 1, 2, 3, 4, 5, 6, 7, 8)
SIXER? (8.5 deg2)
25
Lockman Hole
HerMES
SIXER
IR
A
/L
3
SWIRE
RV
S/
rM
ES
SE
He
C
HerMES/L3
H
er
M
ES
/L
S
W
IR
IR
/
E
A
C
SERVS
Average SMG
(z = 1, 2, 3, 4, 5, 6, 7, 8)
5
SIXER? (11 deg2)
26
Bootes
HerMES
SIXER
SDWFS
S
D
W
FS
R
/I
A
5
Average SMG
(z = 1, 2, 3, 4, 5, 6, 7, 8)
C
HerME
S/L
E
M
r
He
S/L6
HSC-D
SIXER? (8 deg2)
27
Deep 2/3
PI Obs (partially available)
SIXER
HSC-D
Average SMG
(z = 1, 2, 3, 4, 5, 6, 7, 8)
HSC-D
SIXER? (7 deg2)
28
Visibility plot
29

Similar documents

İSTATİSTİKLERLE TÜRKİYE Turkey in Statistics 2014

İSTATİSTİKLERLE TÜRKİYE Turkey in Statistics 2014 the most recent data available during the publication period. Data sources given at the last chapter of the publication are assumed to be a good starting point for the users who want to reach more ...

More information