PAN-AMERICAN JOURNAL OF AQUATIC SCIENCES
Transcription
PAN-AMERICAN JOURNAL OF AQUATIC SCIENCES
PAN-AMERICAN JOURNAL OF AQUATIC SCIENCES - PANAMJAS Executive Editor: Maria Cristina Oddone Scientific Editors: Gonzalo Velasco, Ana Cecília Giacometti Mai, Pablo Muniz, Ronaldo Angelini, Danilo Calliari, and Samantha Eslava G. Martins Honorary members: Jorge P. Castello, Omar Defeo, and Kirk Winemiller. Advisory committee: Júlio N. Araújo, André S. Barreto, Sylvia Bonilla S., Francisco S. C. Buchmann, Adriana Carvalho, Marta Coll M., César S. B. Costa, Karen Diele, Ruth Durán G., Gisela M. Figueiredo, Sergio R. Floeter, Alexandre M. Garcia, Ricardo M. Geraldi, Denis Hellebrandt, David J. Hoeinghaus, Simone Libralato, Luis O. Lucifora, Paul G. Kinas, Monica G. Mai, Rodrigo S. Martins, Manuel Mendoza C., Aldo Montecinos, Walter A. Norbis, Enir G. Reis, Getúlio Rincon Fo., Marcelo B. Tesser, João P. Vieira, and Michael M. Webster. PanamJAS is a non-profit Journal supported by researchers from several scientific institutions. PanamJAS is currently indexed in Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Aquatic Sciences and Fisheries Abstracts (ASFA) Directory of Open Access Journals (DOAJ) Online Access to Research in the Environment (OARE) IndexCopernicus International Thomson BiologyBrowser database Electronic Resources from Smithsonian Institution Libraries Divulgador Científico Ensenadense Sistema de Bibliotecas SISBI-UFU PAN-AMERICAN JOURNAL OF AQUATIC SCIENCES 2006, 1-2 2009, 4 (2) Quarterly Journal ISSN 1809-9009 (On Line Version) CDU 570 Cover photo of this issue: A male of Hippocampus reidi (Teleostei, Syngnathidae) after releasing their newborns into the environment. The article reporting this event is available on page 154 of this issue. Picture captured by Ana C. G. Mai in the mangrove region of Rio Camurupim River, state of Piauí, Brazil. Pan-American Journal of Aquatic Sciences Research articles Richness of common names of Brazilian reef fishes. FREIRE, K. M. F. & CARVALHO FILHO, A. ..........................................................................................96 Evolution and state of the art of fishing capacity management in Peru: The case of the anchoveta fishery. ARANDA, M. …………………………………………………….……………………………….146 Size and number of newborn juveniles in wild Hippocampus reidi broods. MAI, A. C. G. & LOEBMANN, D. …..……………………………………………………………… 154 Cortisol and Glucose: Reliable indicators of fish stress? MARTINÉZ-PORCHAS, M., MARTÍNEZ-CÓRDOVA, L. R. & RAMOS-ENRIQUEZ, R. ............................158 Aspectos biológicos do peixe-olhudo-dentinho, Synagrops bellus (Actinopterygii: Acropomatidae), da plataforma externa e talude superior do estado de São Paulo, Brasil. VASKE JÚNIOR, R., TEIXEIRA, A. F. & GADIG, O. B. F. ………………………………………… 179 First confirmed record of the blunthead puffer, Sphoeroides pachygaster (Osteichthyes: Tetraodontidae) off the Algerian coast (south-western Mediterranean). HEMIDA, F., BEN AMOR, M. M. & CAPAPÉ, C. .................................................................................188 A fauna de peixes na bacia do Rio Jucuruçu, leste de Minas Gerais e extremo Sul da Bahia. SARMENTO-SOARES, L. M., MAZZONI, R. & MARTINS-PINHEIRO, R. F. .......................................... 193 Occurrence of the white anglerfish, Lophiodes beroe Caruso, 1981 (Lophiiformes: Lophiidae), in Brazilian waters. ROTUNDO, M. M. & VASKE JÚNIOR, T. …………………………………………………………... 208 A mutton hamlet Alphestes afer (Bloch, 1793) reproductive event in northeast Brazil. MEDEIROS, D. V., NUNES, J. A. C. C. & SAMPAIO, C. L. S. ………………………………………. 212 New record of the alien mollusc Rapana venosa (Valenciennes 1846) in the Uruguayan coastal zone of Río de la Plata. LANFRANCONI, A., HUTTON, M., BRUGNOLI, E. & MUNIZ, P. ..........................................................216 Biofouling of the golden mussel Limnoperna fortunei (Dunker, 1857) over the Anomura crab Aegla platensis Schmitt, 1942. LOPES, M. N., VIEIRA, J. P. & BURNS, M. D. M. ..............................................................................222 Pan-American Journal of Aquatic Sciences (2009) 4 (2): 96-250 Zooplankton (Cladocera and Rotifera) variations along a horizontal salinity gradient and during two seasons (dry and rainy) in a tropical inverse estuary (Northeast Brazil). SILVA, A. M. A., BARBOSA, J. E. L., MEDEIROS, P. R., ROCHA, R. M., LUCENA-FILHO, M. A. & SILVA, D. F. ………………………………………………………………………………………. 226 Larval fish assemblage in a tropical estuary in relation to tidal cycles, day/night and seasonal variations. BONECKER, F. T., CASTRO, M. S. & BONECKER, A. C. T. ………………………………………… 239 Gametogenesis in the mangrove mussel Mytella guyanensis from northern Brazil. GOMES, C. P., BEASLEY, C. R., PEROTE, S. M. O., FAVACHO, A. S., TAGLIARO, C. H., FERREIRA, M. A. P. & ROCHA, R. M. .................................................................................................................247 Diffusion Material - Do not cite Original scientific photographs PANDYA, P. J. & VACHHRAJANI, K. D. ………………………………………………………………I Original scientific photographs LIRA, S. M. A., AMARAL, F. M. D. & FARRAPEIRA, C. M. R. .............................................................. II Pan-American Journal of Aquatic Sciences (2009) 4 (2): 96-250 Richness of common names of Brazilian reef fishes KÁTIA MEIRELLES FELIZOLA FREIRE1 & ALFREDO CARVALHO FILHO2 1 Universidade Federal do Rio Grande do Norte, Departamento de Oceanografia, Praia de Mãe Luíza S/N, Mãe Luíza, Natal-Rio Grande do Norte, Brazil, 59014-100. Email: kfreire2006@yahoo.com.br 2 Fish Bizz Ltda., Rua Moncorvo Filho 51, São Paulo, Brazil, 05424-070. Email: alfie@telnet.com.br Abstract. The richness of common names of Brazilian reef fishes is high (7.2 names per species) and mostly so if the species are commercially important. The high richness of names for easily seen species such as reef fishes represents one of the Berlin’s attributes leading to the naming process of living things. The attribute ‘size’ was also tested and indicated that species of intermediate size receive more names than smaller or larger ones. These names have several origins, but come mainly from Latin or native languages (Tupi/Tupi-Guarani). Several categories of words are used in these names as core or modifiers: non-fish animals, morphology, plants, persons, color pattern, behavior, taste/smell, habitat/ecology, size, and locality/area. A list of unique common names is proposed for all 547 reef fish species found in Brazil based on the available array of names. We suggest these names are used whenever cited in a national context. Key words: common name, folk nomenclature, Berlin’s attributes Resumo. Riqueza de nomes comuns de peixes recifais brasileiros. A riqueza de nomes comuns de peixes recifais brasileiros é elevada (7,2 nomes por espécie), principalmente para espécies que são comercialmente importantes. A elevada riqueza de nomes de espécies facilmente visíveis como as de peixes recifais representa um dos atributos de Berlin que leva ao processo de atribuição de nomes às coisas vivas. O atributo ‘tamanho’ foi também testado e indicou que espécies de tamanho intermediário recebem mais nomes do que espécies menores ou maiores. Estes nomes têm várias origens, mas vêm principalmente do Latim ou de línguas nativas (Tupi/Tupi-Guarani). Muitas categorias de palavras são usadas nestes nomes, como núcleo ou como modificadores: outro animal que não peixe, morfologia, planta, pessoa, padrão de cor, comportamento, sabor/cheiro, habitat/ecologia, tamanho e localidade/área. Uma lista de nomes comuns únicos é proposta para todas as 547 espécies de peixes recifais encontradas no Brasil baseada nos nomes disponíveis. Sugerimos que esses nomes sejam usados sempre que forem citados em um contexto nacional. Palavras-Chave: nome comum, nomenclatura popular, atributos de Berlin Introduction The first main effort to standardize scientific names of living beings according to the binomial nomenclature introduced by Linneaus goes back to 1842 with the production of the Strickland Code (Minelli 1999). Since then several documents were produced, culminating, for animals, with the fourth edition of the International Code of Zoological Nomenclature in 2000. This represents an attempt to decrease the incidence of synonymy (two or more names for the same species) and homonymy (same name for more than one species). For fishes, the main effort to update scientific nomenclature is by William N. Eschmeyer in his three volumes published in 1998, which have been continuously updated online (Eschmeyer 2008). Even though the scientific nomenclature is intended to facilitate communication among different cultures and languages, it is almost restricted to the academic realm. Common names are used by local communities, commercial and recreational fishers, divers, in restaurants, by aquarists, in fisheries statistics, and in legislation, in some cases in association with the corresponding scientific names, but most of the times as a standing alone identification. These different groups may use Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Richness of common names of Brazilian reef fishes 97 different common names that also reflect local culture. This poses some problems when dealing with species at a national level. North America recognized the importance of dealing with standard common names a long time ago, and published the first list of standardized English names of fishes for that region in 1948. Since then, there has been a continuous effort on this matter, culminating with the sixth edition of common and scientific names of North American fishes, extending the coverage to include species occurring in Mexican waters (Nelson et al. 2004). Similar effort was undertaken in Portugal, leading to a list of common and scientific names for aquatic organisms found in Portuguese waters (Sanches 1989). The Food and Agriculture Organization (FAO) has also put some effort into the standardization of common names of commercial species around the world in its three official languages (English, French and Spanish) (Garibaldi & Busilacchi 2002). Brazil is well known for its cultural diversity and this is also reflected in the richness of common names of fishes. This richness called the attention of William A. Gosline in the 1940s (Gerald R. Smith, Univ. Michigan, Museum of Zoology, MI, USA, pers. comm.) and has been constantly cited in several sources (see, e.g.,Welcomme et al. 1979). It was not until Freire & Pauly (2003) that a quantification for this richness was made available in a national scale, indicating that in average six names are used for each marine fish species in Brazil, with a maximum of 31 names used for one species. Homonymy is also common. Freire (2006) also found a high richness of common names for freshwater fish species in Brazil (three common names per species, based on a smaller database of names), with a maximum of 30 names for one species. There has been no known initiative to standardize the common names of Brazilian fishes using the variety available. The growing concern with biodiversity loss and the effect of anthropogenic activities on biodiversity stress the importance of assessing taxonomic adequacy (Vecchione et al. 2000). The bad effect of the misidentification associated with common names recorded in national fishery statistics should also not be underestimated (Freire & Pauly 2005). This work presents an assessment of the richness of common names for reef and reefassociated fish species, and will provide an initial list of unique common names for these species. Hopefully this initiative will trigger a more comprehensive movement towards the use of similar process for all other fish species in Brazil. Materials and Methods All names compiled in the database (NAMEDAT) presented here originate from 43 local lists of common names of fishes extending from the state of Pará to the state of Rio Grande do Sul, and for more than 50 years (from 1953 to 2004): FAO (1953), Barcellos (1962), Brandão (1964), Ihering (1968), Eskinazi-Leça (1967), Mutti Pedreira (1971), Anon. (1976), SUDENE (1976), Carvalho & Branco (1977), CEPA-MA (1978), Figueiredo (1977), Figueiredo & Menezes (1978), Lima & Oliveira (1978), Rosa (1980), Menezes & Figueiredo (1980), Figueiredo & Menezes (1980), Chao et al. (1982), Paiva (1981), Santos (1982), Nomura (1984), Menezes & Figueiredo (1985), Suzuki (1986), Godoy (1987), Martins-Juras (1987), Soares (1988), Begossi (1989), Lopes (1989), Begossi & Figueiredo (1995), Ferreira et al. (1998), Santos et al. (1998), Carvalho-Filho (1999), Ferreira (1999), Rocha & Costa (1999), CEPENE (2000), Figueiredo & Menezes (2000), Szpilman (2000), Ferreira & Cava (2001), Ávila da Silva & Carneiro (2003), Ramires & Barrella (2003), UNIVALI/CTTMar (2004), Sampaio & Nottingham (2008), Mário Barletta (pers. comm., Universidade Federal de Pernambuco, Brazil), and Cláudio Sampaio (pers. comm., Museu de Zoologia da Universidade Federal da Bahia, Brazil). This database is based on an extension of a previous work by the first author for marine and estuarine fishes in Brazil (Freire & Pauly 2005) that currently includes a total of 4,649 common names referring to 734 marine and estuarine species (63%) of a total of 1,168 listed in FishBase, a global electronic encyclopedia of fishes (Froese & Pauly 2008). A total of 547 reef or reef-associated fish species (here after referred only as ‘reef species’) are recorded to date in Brazilian waters. Within the context of this study, reef is defined as any and all formation built-up of consolidated bottoms, of organic or inorganic origin, and which top is no deeper than 30 m from the surface in the lowest tide known for that geographic area. For the fish fauna named as “reef fish”, the ecological niche also includes the sandy and/or rubble bottom immediately adjacent to a distance of 20 m from the ecotone. Thus, any fish species that uses the reef or its adjacencies for any activity, including shelter, feeding, reproduction, growth, cleaning or passage, is considered as reef fish. The richness of common names for all reef species was calculated in terms of synonyms (number of common names for each species). An indication of the degree in which one fish species shares the same name (homonyms) was also given. Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 FREIRE & CARVALHO FILHO 98 For comparison purposes, this analysis was performed for all reef or reef-associated fish species and compared with other fish species. The analysis of the common names included origin of names, descriptors used in the core of the name and as first and second modifiers, relation to commercial importance and size. The origin of the names was defined based on Tibiriçá (1984), Bueno (1998), Ferreira (1999), and Cunha (2001). Information on habitat, fish size, and English common name was obtained from FishBase (Froese & Pauly 2008) and local commercial importance from Carvalho-Filho (1999), Szpilman (2000), FISHTEC (2003), Espírito Santo (2005), Gasparini et al. (2005), and SEAP/PROZEE/IBAMA (2006). Commercial importance was defined based on the interest for food consumption and/or for aquarists. Catch data were obtained from an extension of the database compiled by Freire (2003), based on national bulletins, and represent an average for the period from 1995 to 2000. For the standardization of common names, a unique name was chosen using an initial list of species with only one name available. Then, we dealt first with species having increasingly higher richness of common names, i.e., with species with only 2 common names, 3, 4, and so on. Emphasis was given in the first stage to species of commercial importance, which would contribute to improvement in the recording system of catch statistics. In cases where names were not available, they were borrowed from the list of Portuguese names assembled by Sanches (1989), translated from other languages to Portuguese, or created based on the criteria used for existing names. We also made use of criteria defined in Robins et al. (1991) for North American fishes (updated in Nelson et al. 2004). Preference was given to simple and descriptive names. Names tied to scientific names, the ones that include the word ‘common’, and names that honour people or were offensive were avoided. The spelling available in the most widely used Portuguese dictionary in Brazil – Aurélio (Ferreira 1999) was used. Two additional criteria were used: no inclusion of hyphens (to avoid different spellings) and capitalization of the first letter of the common name. Names that have been cited in more publications and used in more Brazilian states were given priority. Finally, the diversity of origin languages was kept as much as possible, including native and African languages. Results Quantifying the richness of the common names. No common name was found for 175 out of the 547 fish species recognized as reef or reefassociated. It is worth pointing out that about 41% of those were not associated with any English name, according to FishBase. Many of the unamed species were criptic (76 out of 117 criptic species) or nocturnal (6 out of 10). The degree of synonymy among reef species was very high, with 7.2 names per species in average (excluding those unnamed species). This degree will probably get higher the more sources of names are used in the database. Reef species had a higher degree of synonymy as evidenced by a higher number of species with more names and lesser number of species with only one name (Fig. 1). For criptic species, the degree of synonymy was much lower: 2.8 names per species in average. One has to consider that these mean values actually represent minimum averages of names’ richness, as they will probably increase the more sources are incorporated in the names’ database. a) 140 Reef Others 120 100 80 60 40 20 0 0 5 10 15 20 25 30 35 Number of common names 40 b) 10000 45 50 Reefs Others 1000 100 10 1 0 2 4 6 8 10 12 14 Number of species 16 18 20 Figure 1. Nomenclatural richness of Brazilian marine fishes (reef and other non-reef species): a) frequency of scientific species that have one to forty-six common names (synonymy); b) frequency of common names that correspond to one to twenty scientific species (homonymy). Three species presented 30 or more common names: Opisthonema oglinum (38), Carangoides crysos (34), and Bathygobius soporator (30). Details on the complexity of names (and synonymy) are presented for one species, C. crysos (Fig. 2). Note that some of these names are only different spellings of the same word: garujuba, guarajuba, and Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Richness of common names of Brazilian reef fishes 99 garajuba; guaraçu and guaracu; guaraçuma, guarassuma, and guaraxuma; and xarelete, xalerete, xerelete, xererete, and xereleté. Nine of these common names were associated with records in fishery statistics (according with the database compiled by Freire, 2003): garajuba, graçainha, guaricema, guaracema, xaréu, taguara, xerelete, Non-commercial names Cavaca [0] Carapau [11] Cavaco [1] Oligoplites saurus {15} xixarro, and solteira (Fig. 2). Twenty-five of them were not associated with any catch record. Sixteen out of the 34 names were related to no other species than C. crysos: cavaca, chumberga, garajuba preta, garujuba, guaraçu, guaracu, guarainha, guaraxuma, xalerete, graçainha, taguara, xaréu dourado, xaréu pequeno, xererete, xereleté, and xumberga. Commercial names Carangoides crysos {34} Garajuba (1854) [4] Aspistor luniscutis {36} Graçainha (2) [0] Guaricema (802) [3] Chumberga [0] Guaracema (289) [2] Garajuba preta [0] Carangoides bartholomaei {3} Xaréu (3195) [4] Carangoides ruber {3} Garujuba [0] Chloroscombrus chrysurus {16} Guarajuba [3] Guaraçu [0] Caranx latus {16} Taguara (9) [0] Xerelete (1992) [2] Guaracu [0] Xixarro (2860) [7] Selar crumenophthalmus {10} Solteira (85) [5] Guarainha [0] Trachurus lathami {6} Oligoplites saliens {11} Guaraçuma [1] Decapterus macarellus {11} Guarassuma [1] Decapterus punctatus {7} Xarelete [3] Eucinostomus gula {13} Trachinotus carolinus {19} Thyrsitops lepidopoides {4} Trachinotus marginatus {2} Guaraxuma [0] Xalerete [0] Caranx lugubris {7} Parona signata {14} Xaréu dourado [0] Caranx hippos {21} Xaréu pequeno [0] Manezinho [1] Xaréu branco [4] Oligoplites saurus {15} Hemicaranx amblyrhynchus {7} Alectis ciliaris {23} Xererete [0] Xereleté [0] Pseudocaranx dentex {2} Xaréu amarelo [1] Xaréu xixá [1] Xixarro pintado [1] Xumberga [0] Figure 2. Portuguese common names associated with Carangoides crysos in Brazil. Names associated with catch records are presented in the top-right. Mean annual catches (only for years with positive record) for commercial names are presented in parentheses (tonnes).The number of additional species associated with each common name is presented in brackets. The number of common names associated with each species (besides the ones shown) is presented in braces. Gray boxes indicate common names not related to any species other than C. crysos. Origin of the common names. The highest number of common names used to describe Brazilian reef or reef-associated fishes come from Latin (37%), followed by Tupi/Tupi-Guarani (30%), and Brazilianism (15%) (Table I). Brazilianism is defined as ‘word created by Brazilians’ (Ferreira 1999). Spanish, Greek, Arabic, and African together represent 15% of all names. Native languages correspond to 1% of all names and may include Tupi/Tupi-Guarani. However, the sources used did not indicate the specific language. One should consider that there are about 187 living native languages in Brazil, some of them spoken by only a dozen of people (SIL International, 2008). The influence of African languages in this field is very low compared to other fields. Table I. Origin of the common names of reef Brazilian fishes. Origin Count % Latin 898 37 Tupi/Tupi-Guarani 717 30 Brazilianism 329 14 Spanish 121 5 Greek 114 5 Arabic 79 3 African 48 2 Native 29 1 Others 84 3 Total 2419 100 Descriptors used for the names. Names of Brazilian fishes are formed by a single word or by a Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 FREIRE & CARVALHO FILHO 100 composite of up to four words. The first word (or core) represents mainly primary lexemes, followed by non-fish animal, morphology, plant, person (generic), color pattern, behavior, and person (specific) (Fig. 3). Taste/smell, habitat/ecology, size, and locality/area are not commonly used as core. Core Modifier 1 40 Modifier 2 30 20 mod. for abundance locality/area size habitat/ecology taste/smell person (specific) behavior color pattern other person (generic) plant inanimate object primary lexeme 0 morphology 10 non-fish animal Relative frequency (%) 50 Figure 3. Relative frequency of each descriptor used in the core, modifier 1 and modifier 2 for reef and reef-associated Brazilian fishes. Effect of commercial importance and size. Species of commercial interest had an average of 8.2 common names per species and noncommercial species had a lower synonymy rate (4.6). Figure 4 indicated that species of no commercial interest were usually small and had less than 15 names per species (with Bathygobius soporator being an exception, with 30 common names). Species of commercial interest were larger and had a wider range of names. Many species had more than 15 names, with a maximum of 38 names for Opisthonema oglinum. It is interesting to point out that very large species had few names resulting in an asymmetry in the relationship between degree of synonymy and size. A total of 68% of the species with no common name for which size information was available were smaller than 0.20 m. Only seven species with no name were larger than 1 m: Callechelys bilinearis, Channomuraena vittata, Himantura schmardae, Mobula japonica, Mobula tarapacana, Mobula thurstoni, and Muraena melanotis. No. of common names 40 30 20 10 0 0 1 2 3 4 5 6 7 8 Total length (m) Figure 4. Relationship between the number of common names and the maximum size of each reef species. Closed diamonds indicate species of no commercial interest and open squares indicate commercial species (food or aquarium trade). Note that one non-commercial species 20 m long (with three common names) was removed from the graph to better represent the remaining species (Rhincodon typus) . Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Richness of common names of Brazilian reef fishes 101 A total of 87 species included in this database are in the ornamental trade. These species were associated to a mean number of 4.8 common names, which was smaller than the average of 7.2 for reef species in general. These species were mainly smaller than 1 m and those species with no common name were very small (6-10 cm; Fig. 5). No. of common names 25 20 15 10 5 0 0 50 100 150 200 250 300 Total length (cm) Figure 5: Relationship between the number of common names and the maximum size of each reef fish species for ornamental trade. Standardization of common names. Only seven species of Brazilian reef fishes had a unique common name that refers to no other species in the database compiled here (Table II). The remaining species had more than one common name or shared the same name with other species. To overcome this confusion, a list was created containing all names linked to each species and a unique common name was proposed for each one of the 547 reef species occurring in Brazil (Table III). These unique names indicate that only one common name was used for each species and that name was not shared with any other species. Table II. List of reef species presenting one unique common name in Brazil, based in the sources presented here and included on NAMEDAT. Species Carcharhinus signatus Conger triporiceps Dactyloscopus tridigittatus Entomacrodus vomerinus Haemulon chrysargyreum Muraena retifera Negaprion brevirostris Portuguese name Cação noturno Congro dentão Tanduju mirim Macaco pérola Cocoroca boquinha Moréia de roseta Cação limão Discussion The degree of synonymy was high among reef species in Brazil. This corroborates one of the Berlin’s principles: species that are more visible (such as reef species) are more prone to be named (Berlin 1992). However, several reef species had no name, which indicates that not only the habitat, associated to the ease of access, is important in the naming process. Other factors also play a role and are discussed below. Commercial importance has been stated as one of the Berlin’s attributes leading to the English name Night shark Manytooth conger Sand stargazer ― Smallmouth grunt Reticulate moray Lemon shark naming process of plants and animals (Berlin 1992). It is related to the utilitarian concept defended by Hunn (1982), and was demonstrated for Philippines fishes by Palomares & Pauly (1999) and for Brazilian marine fishes by Freire & Pauly (2005). We analyzed the influence of the commercial importance on the richness of common names of reef fish species occurring in Brazil and found that the degree of synonymy is much higher for commercialspecies (8.2 names per species) than for non-commercial species (4.6). Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 1 Ablennes hians Agulha, Agulha fita, Agulha pintada, Carapiá, Zambaia taba Carapiá Carvalho-Filho (1999) 2 Abudefduf saxatilis Acará da pedra, Camisa de meia, Camiseta, Cará das pedras, Sargento Carapiaçaba, Carapicu, Castanheta, Maria mole, Oá, Palhaço, Peixe sargento, Querê querê, Querquerê, Saberé, Saberê, Salema feiticeira, Sargento, Sinhá rosa, Soldado moura, Tinhuma, Tinhuna, Viuvinha 3 Acanthistius brasilianus Badejo, Garoupa, Garoupa senhor de engenho, Mero, Senhor de engenho, Senhor de engenho Serigado focinhudo, Serigado mero 4 Acanthistius patachonicus 5 Acanthocybium solandri Aimpim, Cavala, Cavala aimpim, Cavala aipi, Cavala aipim, Cavala Cavala aipim empinge, Cavala impim, Cavala pim, Cavala wahoo, Guarapicu, Guarapucu, Wahoo 6 Acanthostracion polygonia Baiacu caixão, Cofre, Peixe cofre, Peixe cofre colméia, Peixe vaca 7 Acanthostracion quadricornis Baiacu caixão, Baiacú chifrudo, Baiacu de chifre, Chifrudo, Cofre de Cofre de chifre chifre, Peixe boi, Peixe cofre, Peixe cofre riscado, Peixe vaca, Taoca, Taóca, Toaca Carvalho-Filho (1999) 8 Acanthurus bahianus Acaraúna azul e preta, Bahianus, Barbeiro, Cirurgião, Lanceta, Peixe Acaraúna cinza cirurgião Freire, pers. comm. 9 Acanthurus chirurgus Acaraúna, Acaraúna preta, Barbeiro, Barbeiro comum, Carauna, Caraúna, Acaraúna preta Caraúna preta, Cirurgião, Lanceta, Peixe cirurgião, Peixe doutor Nomura (1984) 10 Acanthurus coeruleus Acara úna, Acaraúna azul, Acaraúna azul e preta, Acaraúna preta, Acaraúna azul Barbeiro, Barbeiro azul, Caraúna azul, Cirurgião azul, Lanceta, Peixe cirurgião, Peixe doutor Nomura (1984) 11 Acanthurus monroviae NENHUM 12 Achirus lineatus Aramaçá, Aramaçá tapa, Linguado, Maraçapeba, Sôia, Solha, Solha Aramaçá tapa redonda, Tapa Badejo argentino, Badejo do sul Badejo do sul Peixe cofre colméia 102 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented. Carvalho-Filho (1999) Nomura (1984) Carvalho-Filho (1999) Nomura (1984) IBAMA Inst. Normativa 14/2004 Anon. (1976) FREIRE & CARVALHO FILHO Cirurgião de espinho Rangel, pers. comm.** amarelo Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 13 Acyrtops beryllina NENHUM Ventosa esmeralda Rangel & CarvalhoFilho, pers. comm. 14 Acyrtus pauciradiatus NENHUM 15 Aetobatus narinari Limpa vidro de noronha Sampaio, pers. comm.*** Ajeru, Ajuru, Arraia morcego, Arraia pintada, Cação anjo, Narinari, Raia chita Carvalho-Filho (1999) Papagaio, Pintada, Raia chita, Raia leopardo, Raia pintada Enguia, Moréia, Muriongo Muriongo amarelo Mod. from CarvalhoFilho (1999) 17 Albula nemoptera Ubarana, Ubarana focinho de rato Juruna mirim 18 Albula vulpes Álbula, Arabaiana boca de rato, Bicudo, Focinho de rato, Juruma, Juruna, Juruna açú Obarana, Obarana focinho de rato, Obarana rato, Parati mico, Peixe rato, Ratão, Robalo da pedra, Tubarana, Ubarana, Ubarana boca de rato, Ubarana do norte, Ubarana focinho de rato, Ubarana mirim, Ubarana rato, Ubarana roliça, Urubaiana boca de rato Carvalho-Filho, pers. comm. Mod. from Nomura (1984) 19 Alectis ciliaris Abacataia, Abacatina, Abacatuaia, Abacatuia, Abacatúxia, Abacutaia, Xaréu branco Aleto, Aracaguira, Aracambé, Aracanguira, Aracangüira, Aranguira, Galo, Galo bandeira, Galo de capacho, Galo do alto, Galo fita, Galo pluma, Galo rabudo, Peixe galo, Peixe galo do Brasil, Xaréu bandeira, Xaréu branco, Xaréu penacho 20 Alopias vulpinus Cação macaco, Cação pena, Cação raposa, Rabilongo, Rabudo, Raposa, Tubarão raposa comum Mod. from Suzuki (1986) Tubarão raposa 21 Alphestes afer Aruçapeba, Badejo, Cerigado vermelho, Garaçapé, Garoupa, Garoupa Pirapiranga gato, Garoupa rajada, Gato, Peixe gato, Pira piranga, Pirá piranga, Pirapiranga, Ruçapeba, Sapa, Sapá, Sapé, Sapé pintado, Sapê pintado, Serigado vermelho, Sulalepa, Sulapeba Nomura (1984) 22 Aluterus heudelotii Peixe porco Carvalho Filho & Freire, pers. comm. 23 Aluterus monoceros Cangulo, Cângulo, Cangulo comum, Gudunho, Peixe porco, Peixe rato, Gudunho comum Perua, Pirá acá Gudunho serrilhado Carvalho-Filho (1999) Mod. from Nomura (1984) 103 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 16 Ahlia egmontis Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES 24 Aluterus schoepfii Peixe porco, Peixe lixa, Peixe rato, Peroá pena, Porco lixa, Raquet Gudunho galhudo laranja Cangulo de areia, Cangulo pavão, Cangulo velho, Peixe porco, Peixe Cangulo pavão rato, Raquete listrado Peixe gavião, Pinos, Sarampinho Pinos Carvalho Filho & Freire, pers. comm. Carvalho-Filho, pers. comm. Mod. from Nomura (1984) using FishBase Carvalho-Filho, pers. comm. 25 Aluterus scriptus 26 Amblycirrhitus pinos UNIQUE NAME SOURCE Carvalho-Filho (1999) 27 Amphichthys cryptocentrus 28 Anarchias similis Cuíca, Mamangá liso, Pacamão, Pacamon, Peixe sapo, Pucumã Pacamão bocon NENHUM Moréia lobo 29 Anarchopterus tectus NENHUM Peixe cachimbo ilhéu Carvalho-Filho, pers. comm. 30 Anchoa cubana Manjuba Manjuba cubana Carvalho-Filho, pers. comm. 31 Anchoa filifera Manjuba Manjuba de fita Carvalho-Filho, pers. comm. 32 Anchoa lyolepis Enchoveta, Manjuba, Manjuba boca de rato Manjuba boca de rato Begossi & Figueiredo (1995) 33 Anchoa tricolor Enchova, Enchoveta, Irico, Manjuba, Manjuba branca, Tungão Manjuba branca 34 Anchoviella lepidentostole Don don, Manjuba, Manjuba de Iguape, Manjubinha, Sardinha, Manjuba de Iguape Sardinha selvagem 35 Anisotremus moricandi Avô do pirambú, Fumeiro 38 Antennarius multiocellatus 39 Antennarius striatus Lima & Oliveira (1978) Avila da Silva & Carneiro (2003) Mod. Ferreira & Cava (2001) Beiçudo, Perambu, Pirambu, Pirambú, Salema, Salema açu, Salgo, Sargo verdadeiro Salgo de beiço, Sargo, Sargo beiçudo, Sargo de beiço, Zumbi Ferrugem, Frade, Mercador, Par de leme, Salema, Salema branca, Salema Salema de freio, Sambuari, Selumixira Aniquim, Antenarius, Peixe sapo Peixe sapo de recife Mod. from Nomura (1984) Antenarius, Guaperva, Peixe pescador, Peixe pescador riscado, Peixe Peixe pescador sapo riscado Sampaio (2008) 40 Anthias salmopunctatus Antias de São Pedro e São Paulo Canário do mar Nomura (1984) Mod. from Szpilman (2000) & Nottingham Carvalho-Filho, pers. comm. FREIRE & CARVALHO FILHO 36 Anisotremus surinamensis 37 Anisotremus virginicus Avô do pirambu 104 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). COMMON NAMES UNIQUE NAME SOURCE 41 Apogon americanus Apogon, Apogon brasileiro, Cardeal fogo, Olhão, Totó vermelho Totó vermelho Carvalho-Filho (1999) 42 Apogon planifrons NENHUM Totó rosa Carvalho-Filho, pers. comm. 43 Apogon pseudomaculatus Apogon, Apogon de duas manchas, Gordinho, Leopoldina, Totó Totó leopoldina Begossi & Figueiredo (1995) 44 Apogon quadrisquamatus NENHUM Totó dourado Carvalho-Filho, pers. comm. 45 Apogon robbyi NENHUM Totó listrado 46 Archosargus probatocephalus 47 Archosargus rhomboidalis Sargento, Sargo, Sargo de dente, Sargo do mar, Sorgo Sargo de dente Carvalho-Filho, pers. comm. Nomura (1984) 48 Ariosoma balearicum 49 Ariosoma opistophthalmus 50 Arothron firmamentum Caicanha, Canhanha, Caranha, Frade, Guatucupajuba, Mercador, Canhanha Salema, Salema branca, Salema da pedra, Salema feiticeira, Sambuio, Sambulho, Sargo, Sargo de dente, Choupa, Canhanda, Frade, Mercador, Guatucupa-Juba NENHUM Congro das baleares Nomura (1984) NENHUM Congrinho olhão NENHUM Baiacu de estrela Carvalho-Filho, pers. comm. Carvalho-Filho, pers. comm. Carvalho-Filho, pers. comm. Carvalho-Filho, pers. comm. Barletta (2002)* 51 Astrapogon puncticulatus Apogon bangai Totó pintadinho 52 Astrapogon stellatus NENHUM Totó de concha 53 Astroscopus y-graecum Aniquim, Bacalhau, Mira céu, Miracéu, Pomboca, Tanduju Pomboca 54 Atherinella blackburni Mamarreis, Papa boba Papa boba 55 Atherinella brasiliensis Charuto, João duro, Mamarreis, Manjuba, Manjuba verde, Papa boba, Manjuba verde Peixe rei, Peixe reis, Piaba dura, Piquitinga, Pititinga, Varapau Sanches (1989) Sampaio & Nottingham (2008) Lima & Oliveira (1978) 105 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº SPECIES Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 56 Atherinomorus stipes Mamarreis Mamarreis cabeçuda Mod. from Szpilman (2000) 57 Aulostomus strigosus Peixe trombeta, Peixe trompete Corneta 58 Auxis rochei Bonito, Bonito cachorro, Cavala Bonito cachorro Carvalho-Filho, pers. comm. Szpilman (2000) 59 Balistes capriscus Acará fuso, Acará mocó, Acaramuçu, Acarapicu, Acarapucu, Peixe porco verdadeiro Cangulo, Cangulo branco, Cangulo da parede, Cangulo de Fernando, Cangulo papo amarelo, Cangurro, Capado, Capão, Fantasma, Maracuguara, Peixe porco, Peroá, Peroatinga, Perua, Peruá, Pirá acá, Piraaca, Piruá, Porco, Porquinho Mod. from Nomura (1984) 60 Balistes vetula Cangulo, Cangulo do alto, Cangulo fernande, Cangulo papo amarelo, Cangulo rei Cangulo real, Cangulo rei, Cangulo verdadeiro, Cangurro, Capado, Capão, Gatilho rainha, Lírio, Peixe gatilho, Peixe porco, Peroá, Peruá, Piruá, Vetula Sampaio & Nottingham (2008) 61 Barbulifer ceuthoecus Peixe ventosa, Pregador Rangel & CarvalhoFilho, pers. comm. Carvalho-Filho, pers. comm. Carvalho-Filho, pers. comm. Ventosa barbuda 62 Bascanichthys paulensis NENHUM Miroró paulista 63 Bathygobius mystacium NENHUM Amoré baiano Aimoré, Amboré, Amborê, Amoré, Amorê, Amoré guaçu, Amoreia, Amoré de buzo Amoréia, Aramaré, Babosa, Candunga, Cunduda, Emborê, Florete, Imborê, Macaco, Maiuíra, Maria da toca, Moré, Moré de buzo, Moré garoupa, Moré preto, Moreia, Moréia, Mucurungo, Muçurungo, Muré, Mussurungo, Peixe capim, Peixe flor, Peixe macaco, Tajacica 65 Bodianus insularis Bodião, Bodião oceânico 66 Bodianus pulchellus Bodião, Bodião do fundo, Bodião vermelho, Budião, Budião arara, Budião fogueira Budião batata, Budião branco, Budião vermelho, Budião fogueira, Gudião, Papagaio, Pitubeiro, Pulchelus Budião oceânico Mod. from Lima & Oliveira (1978) Sampaio & Nottingham (2008) Begossi & Figueiredo (1995) FREIRE & CARVALHO FILHO 64 Bathygobius soporator 106 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). 67 Bodianus rufus Bigodeiro, Bodião, Bodião azul, Bodião judite, Bodião papagaio, Budião, Budião papagaio Budião batata, Budião papagaio, Budião rufus, Gudião, Papagaio, verdadeiro Paratucaro, Pretucano, Rufus Carvalho-Filho (1999) 68 Boridia grossidens Carvalho-Filho (1999) 69 Bothus lunatus Cocoroca sargo, Corcoroca, Corcoroca sargo, Peixe pedra, Roncador, Cocoroca sargo Sargo, Sargo de beiço Linguadinho pavão, Linguado, Linguado ocelado, Solha, Tapa Linguadinho pavão 70 Bothus maculiferus NENHUM 71 Bothus ocellatus Carvalho-Filho (1999) 72 Bothus robinsi Aramaçá, Aramaçã, Linguadinho ocelado, Linguado, Linguado arco-íris, Linguado arco íris Maraçapeba, Sôia, Solha, Tapa Solha duas pintas Linguado, Solha 73 Brotula barbata NENHUM Brótula barbuda Carvalho-Filho, pers. comm. 74 Bryx dunckeri Peixe cachimbo Mod. from Nomura (1984) 75 Calamus bajonado Pargo pena, Pena salgo Peixe cachimbo de nariz curto Pena salgo Nomura (1984) 76 Calamus calamus Peixe pena, Salgo Peixe pena olhão Mod. from Suzuki (1986) 77 Calamus mu Pargo pena, Peixe pena Peixe pena brasileiro Mod. from Nomura (1984) 78 Calamus penna 79 Calamus pennatula Caratinga, Pampo pena, Pargo, Pargo pena, Peixe pena, Pena, Pena Peixe pena branco branco Pargo pena, Peixe pena, Pena Peixe pena amarelo 80 Callechelys bilinearis NENHUM Miroró de duas listras FishBase**** 81 Callionymus bairdi Peixe pau, Dragãozinho Dragãozinho Carvalho-Filho (1999) Cangulo das índias Carvalho-Filho, pers. comm. 83 Cantherhines macrocerus 84 Cantherhines pullus Solha manchada Cangulo, Macrocerus, Peixe porco, Peixe porco de pintas brancas, Porco Porquinho pintado pintado, Porquinho pintado Cangulho velho, Cangulo, Cangulo bastardo, Cangulo da pedra, Cangulo Cangulo de pedra de pedra, Cangulo Fernando, Cangulo pavão, Peixe porco, Peixe porco de pintas laranjas, Porco pintado, Pullus Sampaio & Nottingham (2008) Mod. from FishBase Mod. from Soares (1988) Mod from Nomura (1984) Mod. from Nomura (1984) Carvalho-Filho (1999) Carvalho & Branco (1977) 107 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 COMMON NAMES 82 Cantherhines dumerili NENHUM UNIQUE NAME SOURCE Nº SPECIES Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 85 Canthidermis maculata NENHUM Cangulo oceânico pintado FishBase 86 Canthidermis sufflamen Peixe porco, Peroá do alto Peroá do alto Sampaio, pers. comm. 87 Canthigaster figueiredoi Baiacu, Baiacu de recife, Cantigaster Baiacu de recife mirim Mod. from IBAMA Inst. Normativa 14/2004 88 Caralophia loxochila NENHUM Miroró ilhéu 89 Carangoides bartholomaei Carapau, Garajuba, Guaraiúba, Guarajuba, Xarelete amarelo, Xarelete Xarelete amarelo azul, Xaréu, Xaréu amarelo, Xerelete amarelo 90 Carangoides crysos Carapau, Cavaca, Cavaco, Chumberga, Garaçuma, Garajuba, Garajuba Carapau verdadeiro preta, Garujuba, Graçainha, Guaracema, Guaracu, Guaraçu, Guaraçuma, Guarainha, Guarajuba, Guarassuma, Guaraxuma, Guaricema, Manezinho, Solteira, Taguara, Xalerete, Xarelete, Xaréu, Xaréu amarelo, Xaréu branco, Xaréu dourado, Xaréu pequeno, Xaréu xixá, Xerelete, Xereleté, Xererete, Xixarro, Xixarro pintado, Xumberga Carvalho-Filho (1999) 91 Carangoides ruber Algodão, Carapau, Garajuba, Guaricema, Guaricema branca, Xarelete Xarelete azul azul Aracimbora, Cabeçudo, Carango, Cáranx, Carimbamba, Cavala, Xaréu verdadeiro Corimbamba, Durão, Guaracema, Guaracimbora, Guaricema, Guiará, Guiaru, Manezinho, Olhudo, Papaterra, Xarelete, Xaréu, Xaréu branco, Xaréu cabeçudo, Xaréu preto, Xaréu roncador, Xaréu vaqueiro, Xaréu verdadeiro, Xarso, Xerelete, Xeréu, Xexém Carvalho-Filho (1999) 93 Caranx latus Arachimbóia, Aracimbora, Araximbora, Carapau, Caraximbora, Guarajuba Garacimbora, Garaximbora, Graçaim, Graçarim, Guaracema, Guaracimbora, Guaraiúba, Guarajuba, Guarambá, Guarassuma, Guaraximbora, Guaricema, Olhudo, Xarelete, Xaréu, Xaréu graçarim, Xaréu olhudo, Xaréu preto, Xaréu xaralete, Xaréu xixá, Xerelete, Xixarro Nomura (1984) 94 Caranx lugubris Ferreiro, Fumeiro, Pargo ferreiro, Xarelete, Xaréu branco, Xaréu cabeça Xaréu preto preta, Xaréu preto, Xeréu preto Nomura (1984) 92 Caranx hippos 108 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Carvalho-Filho, pers. comm. Carvalho-Filho (1999) Rocha & Costa (1999) FREIRE & CARVALHO FILHO Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 95 Carapus bermudensis Sarapó, Tira faca Sarapó de pepino Mod. from Szpilman (2000) 96 Carcharhinus acronotus Cação, Cação lombo preto, Corta garoupa, Lombo preto, Cação de Cação de focinho preto Carvalho-Filho, pers. comm. focinho preto, Cação flamengo, Marracho 97 Carcharhinus brevipinna Cação, Cação agulha preta, Cação galha preta, Galha preta, Machote, Galha preta Serra garoupa, Sucuri de ponta petra Carvalho-Filho (1999) 98 Carcharhinus falciformis Cação, Cação de cima d'água, Cação lombo preto, Cação seda, Lombo preto Focinhudo, Lombo preto, Negrinho, Tubarão de lombo preto Carvalho-Filho, pers. comm. 99 Carcharhinus galapagensis Carvalho-Filho, pers. comm. 100 Carcharhinus leucas Cabeça chata, Cação, Cação baiacu, Cação branco, Cação de rio, Cabeça chata Cação do raso, Cação fidalgo, Cação flamengo, Pirarara, Sicuri branco, Tubarão, Tubarão de água doce, Tubarão touro Nomura (1984) 101 Carcharhinus limbatus Cação, Cação de fundo, Cação do fundo, Cação galha preta, Cação Serra garoupa peru, Cação ponta preta, Cação sicuri, Corta garoupa, Galha preta, Machote, Serra garoupa, Sicuri, Sicuri de galha preta, Sicuri de ponta preta, Sucuri da galha preta, Tubarão galha preta Nomura (1984) 102 Carcharhinus longimanus Estrangeiro, Galha branca Galha branca Nomura (1984) 103 Carcharhinus perezi Bico fino, Cabeça chata, Cação, Cação da pedra, Cação coralino, Olho Olho branco branco, Tubarão caribenho, Tubarão dos corais, Tubarão dos recifes Carvalho-Filho, pers. comm. 104 Carcharhinus signatus Cação noturno Szpilman (2000) 105 Carcharias taurus Cação da areia, Cação de areia, Cação galhudo, Cação macho, Cação Mangona magonga, Caçoa, Magonga Suzuki (1986) 106 Caulolatilus chrysops Batata, Batata da pedra, Michola, Peixe batata Nomura (1984) 107 Centropomus ensiferus Camorim cabo de machado, Camorim espora, Camorim peba, Robalo branco Camorim sovela, Camuri, Camurim, Camurim branco, Camurim sovela, Camuripeba, Robalete, Robalito, Robalo, Robalo corcunda, Robalo espora, Robalo galhudo Cação noturno Batata da pedra Mod. from Lima & Oliveira (1978) 109 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Cação baia, Cação do alto, Cação de fora, Tubarão do alto, Tubarão Cação do alto dos Galápagos, Cabeça de cesto Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES 108 Centropomus mexicanus Robalo UNIQUE NAME SOURCE Robalo de escama grande Carvalho-Filho (1999) 109 Centropomus parallelus Cambriaçu, Camburiapeva, Camorim corcunda, Camorim peba, Robalo peba Camorim pena, Camorim tapa, Camuri, Camurim, Camurim amarelo, Camurim apuá, Camurim branco, Camurim corcunda, Camurim peva, Camuripeba, Camurupeba, Cangoropeba, Cangurupeba, Robalo, Robalo peba, Robalo peva 110 Centropomus Bicudo, Cambriaçu, Camburiaçu, Camorim, Camorim açu, Camuri, Robalo verdadeiro undecimalis Camurim, Camurim açu, Camurim açú, Camurim branco, Camurim cabo de machado, Camurim preto, Camurimpema, Camuripeba, Camuripema, Cangoropeba, Canjurupeba, Escalho, Robalão, Robalo, Robalo bicudo, Robalo branco, Robalo camurim, Robalo de galha, Robalo estoque, Robalo flecha, Robalo flexa, Rolão Suzuki (1986) 111 Centropyge aurantanota Centropige, Centropige dorso de fogo Mod. from IBAMA Inst. Normativa 14/2004 Nomura (1984) Anjo dorso de fogo Carvalho & Branco (1977) 112 Cephalopholis fulva Caraúna, Catoá, Catuá, Garoupa, Garoupa chita, Garoupa diamante, Piraúna Garoupa pintada da Bahia, Garoupinha, Garoupinha vermelha, Jabu, Jabú, Pirauna, Piraúna, Praúna 113 Cerdale fasciata NENHUM 114 Chaetodipterus faber Enxada, Paru, Parú, Paru branco, Parú enxada, Paru jandaia, Paru Enxada preto, Parum, Parum branco, Parum enxada, Parum rajado, Peixe enxada, Tareira Nomura (1984) 115 Chaetodon ocellatus Beija moça, Bicudinha, Bicudo, Borboleta, Borboleta amarelo, Borboleta ocelado Borboleta ocelado, Caco de prato, Jandaia, Namorado, Parum amarelo, Parum bicudo, Saberé, Viuvinha Sampaio & Nottingham (2008) 116 Chaetodon sedentarius Bicudo, Borboleta, Borboleta dos recifes, Borboleta namorada, Moca, Borboleta namorada Namorado bicudo, Sedentarius Beijo de moça, Boca de moça, Borboleta, Borboleta listrada, Borboleta listrada Borboleta listrado, Carapiaçaba, Castanhola, Freire, Paru, Paru mulato, Parum, Peixe borboleta, Quebra prato, Striatus, Tinhuna frade Carvalho-Filho (1999) Peixe lombriga listrado Carvalho-Filho, pers. comm. Carvalho-Filho (1999) FREIRE & CARVALHO FILHO 117 Chaetodon striatus 110 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME 118 Channomuraena vittata Caramuru malha de jibóia Caramuru malha de jibóia Sampaio & Nottingham (2008) 119 Cheilopogon cyanopterus Peixe voador, Voador, Voador de fernando, Voador holandês 120 Cheilopogon exsiliens 121 Cheilopogon melanurus 122 123 124 NENHUM SOURCE Voador de fernando Nomura (1984) Voador de asa listrada FishBase 125 Chilomycterus spinosus NENHUM Baiacu espinho comum Carvalho-Filho, pers. comm. 126 Chilorhinus suensonii Cobrinha, Congro mirim Congro mirim Carvalho-Filho (1999) 127 Chloroscombrus chrysurus Arriba saia, Caico, Caracaxá, Carapau, Favinha, Favoleta, Folha, Palombeta Folha de mangue, Garapau, Juva, Juvá, Palombeta, Palometa, Pilombeta, Polombeta, Saia rôta, Vento leste 128 Chromis enchrysura NENHUM Donzela de rabo amarelo FishBase 129 Chromis flavicauda Donzela, Donzela rabo amarelo Donzela cobalto Mod. from Szpilman (2000 ) 130 Chromis jubauna NENHUM Donzela jubauna 131 Chromis multilineata Chromis, Cromis, Cromis tesoura, Donzela, Donzela marrom Mulata Carvalho-Filho, pers. comm. Carvalho-Filho (1999) 132 Chromis scotti NENHUM Donzela roxa FishBase 133 Citharichthys arenaceus Linguado, Solha Linguado de areia costeiro Freire, pers. comm. Carvalho-Filho (1999) 111 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Carvalho-Filho, pers. Peixe voador, Pirabebe, Tainhota, Tainhota voadeira, Voador, Voador preto comm. Voador cascudo, Voador do alto Chilomycterus antennatus Baiacu espinho, Baiacu espinho antenado Baiacu espinho antenado Sampaio & Nottingham (2008) Chilomycterus antillarum Baiacu de espinho, baiacu espinho rendado Baiacu espinho rendado Sampaio & Nottingham (2008) Chilomycterus reticulatus Baiacu de espinho Baiacu espinho pintado Carvalho-Filho, pers. comm. Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 134 Citharichthys macrops Linguado Linguado onça Carvalho-Filho, pers. comm. 135 Clepticus brasiliensis Clepticus brasileiro, Budião fantasma, Peixe fantasma Budião fantasma Sampaio & Nottingham (2008) 136 Conger orbignyanus Cobra do mar, Côngrio, Congro, Congro preto, Congro verdadeiro, Congro preto Enguia Univali (2004) 137 Conger triporiceps Congro dentão Szpilman (2000) 138 Cookeolus japonicus Cassumba de mero, Olho de boi, Olho de cão, Olho de vidro, Olho de vidro Piranema do fundo Carvalho-Filho, pers. comm. 139 Corniger spinosus Mariquita vovó, Olho de vidro, Talhão, Vovó Talhão Nomura (1984) 140 Coryphaena equiselis Dourado, Dourado de Santo Antônio, Dourado palombeta Dourado palombeta Szpilman (2000) 141 Coryphaena hippurus 142 Coryphopterus dicrus Dalfinho, Dourado, Dourado de alto mar, Dourado do mar, Dourado Graçapé, Grassapé, Guaraçapé, Guaraçapema, Macaco, Peixe tábua, Sapé Amoré dois pontos NENHUM 143 Coryphopterus eidolon NENHUM Amoré pálido Rangel, pers. comm. 144 Coryphopterus glaucofraenum Gobi de areia, Gobi de vidro, Gobião de freio, Maria da toca Amoré vidro Mod. from Sampaio & Nottingham (2008) 145 Coryphopterus thrix NENHUM Amoré pintado Rangel, pers. comm. 146 Cosmocampus albirostris Cachimbo, Peixe cachimbo, Peixe cachimbo de focinho branco 147 Cryptotomus roseus Batata, Bodião batata, Budião Peixe cachimbo de focinho branco Periquito Sampaio & Nottingham (2008) Carvalho-Filho, pers. comm. 148 Ctenogobius boleosoma Maria da toca, Rondom, Amoré de garça Amoré de garça Carvalho-Filho, pers. comm. 149 Ctenogobius saepepallens NENHUM Amoré vírgula 150 Ctenogobius stigmaticus Amoré rondom Rangel & Carvalho-Filho, pers. comm. Mod. from Lima & Oliveira (1978) Nomura (1984) Rangel, pers. comm. FREIRE & CARVALHO FILHO Amoré, Rondom Congro dentão 112 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME SOURCE 151 Cyclopsetta chittendeni Linguado, Linguado mexicano, Linguado pintado, Rodovalho Linguado pintado Carvalho-Filho (1999) 152 Cyclopsetta fimbriata Linguado, Tapa FishBase 153 Cypselurus comatus Voador holandês Linguado de nadadeira pintada Voador holandês 154 Dactylopterus volitans 155 Dactyloscopus crossotus Cabra bode, Cajaleó, Cajaléu, Coió, Falso voador, Peixe Coió Nomura (1984) voador, Pirabebe, Pirapebebe, Voador, Voador cascudo, Voador coió, Voador das pedras, Voador de fundo, Voador de pedra, Voador de pedras, Voador Santo Antônio NENHUM Miracéu de olho grande FishBase 156 Dactyloscopus foraminosus NENHUM Miracéu malhado 157 Dactyloscopus tridigittatus Tanduju mirim Miracéu de areia 158 Dasyatis americana 159 Dasyatis centroura 160 Dasyatis guttata 161 Dasyatis hipostigma Arraia, Raia, Raia cravadora, Raia lixa, Raia manteiga, Raia Aiereba prego, Aiereba, Arraia branca, Arraia de prato, Arraia Aireba, Arraia, Arraia prego, Raia, Raia manteiga, Raia prego Raia prego de cauda áspera Arraia, Arraia bico de remo, Arraia bicuda, Arraia branca, Raia branca Arraia lixa, Jabebiretê, Jabiretê, Raia, Raia branca, Raia lixa, Raia lixo, Raia prego NENHUM Raia manteiga lisa 162 Dasyatis marianae Arraia de prato, Raia mariquita 163 Decapterus macarellus Carapau, Cavalinha, Cavalinha de reis, Cavalinha do reis, Chicharro alamarim Chicharro, Chicharro alamarim, Chicharro calabar, Chicharro cavala, Garapau, Xixarro, Xixarro branco, Xixarro calabar, Xixarro cavala Carvalho & Branco (1977) 164 Decapterus punctatus Mod. from CarvalhoFilho (1999) 165 Decapterus tabl Carapau, Chicharro, Chicharro branco, Chicharro de olho Chicharro pintado grande, Chicharro pintado, Peixe rei, Xixarro, Xixarro branco, Xixarro de olho grande, Xixarro pintado Chicharro roliço Xixarro roliço Raia mariquita Szpilman (2000) Carvalho-Filho, pers. comm. Carvalho-Filho, pers. comm. Carvalho-Filho (1999) Freire, pers. comm. Nomura (1984) Ciência Hoje Gomes et al. (2000) Mod. from Sampaio, pers. comm. 113 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 166 Decodon puellaris Ministro Ministro Sampaio, pers. comm. 167 Dermatolepis inermis Garoupa gostosa, Gostosa, Piranema, Piranema pintado, Sapé da Piranema pintada pedra Nomura (1984) 168 Diapterus auratus Carapeba, Carapeba branca, Carapeva, Carapicu, Caratinga, Peixe Carapeba branca prata, Tinga Nomura (1984) 169 Diapterus rhombeus Acarapeba, Acarapeva, Carapeba, Carapeba branca, Carapeva, Caratingaitê Caratinga, Caratingaitê, Peixe prata Barletta (2002) 170 Diodon holocanthus 171 Diodon hystrix Sampaio & Nottingham (2008) Nomura (1984) 172 Diplectrum bivittatum Baiacu, Baiacu de espinho, Baicu espinho, Baiacu espinho Baiacu espinho manchado, Peixe ouriço manchado Baiacu de espinho, Baiacu espinho pintalgado, Baiacu graviola, Baiacu graviola Graviola, Peixe ouriço Michole de areia anão Jacundá, Michole da areia 173 Diplectrum formosum Canguito, Jacundá, Margarida, Michole, Michole da areia, Michole Michole de areia listrado Sampaio & Nottingham (2008) de areia, Michole de areia listrado, Michóli, Mixole, Mixole da areia, Mixole de areia 174 Diplectrum radiale Jacundá, Margarida, Michole, Michóle, Michole da areia, Michole Michole aipim de areia, Michole de areia costeiro, Mixole, Mixole da pedra, Papa terra, Peixe aipim 175 Diplobatis picta NENHUM 176 Diplodus argenteus Chinelão, Maímbá, Maria chinelo, Marimbá, Marimbá chinelo, Marimbá Marimbau, Pargo branco, Pinta no cabo, Sargo Nomura (1984) 177 Doratonotus megalepis Budião, Gudião, Folha verde, Peixe dragão, Sabonete anão Folha verde Carvalho-Filho (1999) 178 Dules auriga Jacundá, Mariquita, Mariquita de penacho, Vovó Mariquita de penacho Mod. from Sampaio & Nottingham (2008) 179 Echeneis naucrates Agarrador, Pegador, Peixe pegador, Peixe piolho, Piolho, Piolho de Pegador listrado cação, Piolho de tubarão, Piraquiba, Rêmora, Rêmora de listra Mod. from Nomura (1984) 180 Echidna catenata Camuflada, Caramuru de listra, Moréia, Moréia listada, Moréia Moréia zebra zebra Freire, pers. comm. Raia elétrica pintada 114 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Mod. from Ferreira (1999) Freire, pers. comm. FishBase FREIRE & CARVALHO FILHO SPECIES COMMON NAMES UNIQUE NAME SOURCE 181 Echiopsis intertinctus Cobra pintada, Congro, Enguia, Miroró, Moréia Miroró leopardo 182 Echiophis punctifer NENHUM Miroró sarampo Mod. from Carvalho-Filho (1999) Carvalho-Filho, pers. comm. 183 Elacatinus figaro Néon, Neon goby Amoré neon Mod. from Carvalho-Filho (1999) 184 Elacatinus pridisi NENHUM Neón de trindade Rangel, pers. comm. 185 Elacatinus phthripophagus NENHUM Neón de Noronha Carvalho-Filho, pers. comm. 186 Elagatis bipinnulata Arabaiana, Arabaiana azul, Arabaiana norte, Camisa de meia, Arabaiana azul Enxova, Guaxum, Guaxumba, Olhete, Peixe rei, Xixarro salmão Carvalho-Filho (1999) 187 Elops saurus Albarana, Barana, Baranda, Obarana, Oiá, Robalo da pedra, Ubarana Tijubarana, Tubarana, Ubarama, Ubarana, Ubarana açu, Ubarana cabo de machado, Ubaranaçu, Urubaiana, Urubaiana pau, Urubaiana verdadeira, Urubarana Nomura (1984) 188 Emblemaria australis NENHUM Macaquinho do cascalho Carvalho-Filho, pers. comm. 189 Emblemariopsis occidentalis NENHUM Macaquinho bandeira FishBase 190 Emblemariopsis signifera Cabeça preta, Macaquinho Macaquinho cabeça preta Mod. from Carvalho-Filho (1999) 191 Emmelichthys ruber NENHUM Chicharro vermelho Carvalho-Filho, pers. comm. 192 Enchelycore anatina Caramuru cachorro, Caramuru de dente, Moréia, Moréia Moréia víbora cachorro, Moréia de dente Carvalho-Filho, pers. comm. 193 Enchelycore carychroa Caramuru cachorro, Caramuru preto, Caramuru vinagre, Moréia vinagre Moréia, Moréia cachorro, Moréia negra, Moréia vampiro Carvalho-Filho, pers. comm. 194 Enchelycore nigricans Caramuru cachorro, Caramuru de dente, Caramuru preto, Moréia cachorro Caramuru vinagre, Moréia, Moréia negra, Moréia cachorro, Moréia vampiro, Moréia vinagre Carvalho-Filho (1999) 195 Enneanectes altivelis NENHUM Macaquinho parati Carvalho-Filho, pers. comm. 115 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 196 Enneanectes smithi NENHUM Macaquinho dos penedos Carvalho-Filho & Freire, pers. comm. 197 Entomacrodus vomerinus Macaco pérola Macaco pérola Carvalho-Filho (1999) 198 Epinephelus adscensionis 199 Epinephelus flavolimbatus Rocha & Costa (1999) Badejo, Badejo pintado, Garoupa chita, Garoupa gato, Garoupa Garoupa gato pintada, Gato, Mero gato, Peixe gato, Piragica, Pirapiranga Cherne, Cherne amarelo, Cherne claro, Cherne galha amarela Cherne galha amarela Cepene (2000) 200 Epinephelus itajara 201 Epinephelus marginatus 202 Epinephelus morio Garoupa, Garoupa bichada, Garoupa de São Tomé, Garoupa de Garoupa São Tomé segunda, Garoupa São Tomé, Garoupa verdadeira, Garoupa vermelha, Garoupa vermelha de abrolhos, Garoupa vermelha dos Abrolhos, Piragia Suzuki (1986) 203 Epinephelus mystacinus Cherne escuro, Cherne listrado, Piraroba Rocha & Costa (1999) 204 Epinephelus nigritus Rocha & Costa (1999) 205 Epinephelus niveatus Cherne, Cherne negro, Cherne queimado, Chernete, Chernote, Cherne queimado Garoupa, Mero, Mero negro, Mero preto, Piraroba, Serigado h Badejo branco, Cerigado cherne, Cerigado tapoã, Cherna, Cherna Cherne claro preta, Cherna preto, Cherne, Cherne claro, Cherne pintado, Cherne tapoan, Cherne verdadeiro, Chernete, Chernote, Garoupa, Mero preto, Serigado cherne, Serigado tapoan, Xerne 206 Equetus lanceolatus Bacalhau, Bilro, Cabeça de coco, Cavaleiro de bandoleira, Bilro listrado Equetos, Maria nagô, Maria negra Carvalho-Filho, pers. comm. 207 Equetus punctatus Bacalhau Bilro pintado 208 Eucinostomus argenteus Carapeba, Carapicu, Carapicú, Carapicu pena, Carapipiacuaçu, Carapicu pena Escrivão Carvalho-Filho, pers. comm. Nomura (1984) Canapu, Canapú, Canapu guaçu, Canapuguaçu, Cunapu guaçu, Mero verdadeiro Merete, Mero, Mero canapu, Mero canapum, Mero preto, Merote, Mirete, Nero Galinha do mar, Garoupa, Garoupa barriga amarela, Garoupa Garoupa verdadeira crioula, Garoupa preta, Garoupa verdadeira, Piracuca Cherne listrado 116 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Carvalho & Branco (1977) Nomura (1984) Rocha & Costa (1999) FREIRE & CARVALHO FILHO Nº SPECIES 209 Eucinostomus gula COMMON NAMES UNIQUE NAME Acarapicu, Cacundo, Carapau, Carapeba, Carapicu, Carapicu açu, Carapicu branco Carapicu branco, Carapicu sem dente, Carapicupeba, Carapim, Carataí, Escrivão, Primituma, Riscador SOURCE Ferreira (1999) 210 Eucinostomus harengulus Carapicu açu Carapicu açu Suzuki (1986) 211 Eucinostomus lefroyi Carapicu, Carapim Carapicu manchado Mod. from Nomura (1984) 212 Eucinostomus melanopterus Cacundo, Carapeba, Carapicu, Carapicu açu, Carapicu branco, Carapicu bandeira Escrivão, Riscador Mod. from Soares (1988) 213 Eugerres brasilianus Acará tinga, Carapeba, Carapeba branca, Carapeba de lista, Caratinga vivóca Carapeba de listra, Carapeba listada, Carapeba listrada, Carapeba rajada, Carapeva, Carapitanga, Carapitinga, Caratinga, Caratinga i ó Albacora, Bonito, Bonito cachorro, Bonito pintado, Bonito rajado, Bonito pintado Curuatá pinima, Merma Barletta (2002) 214 Euthynnus alleteratus Cajaleo, Cajaleó, Coió, Holandês, Peixe voador, Pirabebe, Santo Voador verdadeiro Antônio, Tainhota, Voador, Voador cascudo, Voador de pedra, Voador do fundo, Voador verdadeiro 216 Fistularia petimba Agulhão trombeta, Timbáli, Trombeta 217 Fistularia tabacaria Agulhão trombeta, Agulheta, Cachimbau, Cachimbo, Catimbau, Cachimbau azul Peixe cachimbo, Peixe corneta, Peixe trombeta, Petimbo, Petimbuaba, Trombeta, Trombeta pintada Cação, Cação cabeça chata, Cação jaguara, Cação jaguará, Cação Tubarão tigre tigre, Cação tintureiro, Gata, Gatinha, Jaguara, Jaguará, Tigre, Tintureira, Tintureiro, Tubarão tigre, Tubarão tintureira Bagre, Bagre amarelo, Bagre branco, Bagre curiaçu, Bagre de Bagre urutu manta, Bagre do Natal, Bagre guri, Bagre guriaçu, Bagre guru, Bagre leilão, Bagre mandi, Bagre mandim, Bagre pararê, Bagre urutu, Bagre veludo, Beiçudo, Cabeçote, Guriaçu, Pareré 218 Galeocerdo cuvier 219 Genidens genidens Nomura (1984) Brandão (1964) Cachimbau vermelho Carvalho-Filho, pers. comm. Mod. from Nomura (1984) Suzuki (1986) Nomura (1984) 220 Gerres cinereus Carapeba, Carapicu açú Carapicu listrado Carvalho-Filho, pers. comm. 221 Gillellus greyae NENHUM Miracéu seta FishBase 117 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 215 Exocoetus volitans Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). 225 Gobiesox punctulatus NENHUM Peixe ventosa pintado Freire, pers. comm. 226 Gobiosoma hemigymnum Amboré zebra Amoré zebra Mod. from Carvalho-Filho (1999) 227 Gobiosoma nudum NENHUM Amoré mirim Carvalho-Filho, pers. comm. 228 Gobulus myersi NENHUM Amoré de dorso pálido FishBase 229 Gonioplectrus hispanus Bandeira espanhola, Jabu do fundo Bandeira espanhola Rocha & Costa (1999) 230 Gramma brasiliensis Grama, Camarolete Camarolete Carvalho-Filho, pers. comm. 231 Gymnachirus nudus Aramaçã, Linguado zebra, Solha, Solha zebra Aramaçá zebra Mod. from Nomura (1984) 232 Gymnothorax funebris 233 Gymnothorax miliaris 234 Gymnothorax moringa Amoréia verde, Camburú marrom, Caramuru, Caramuru verde, Moréia verde Moréia, Moréia verde Caramuru banana, Caramuru bombóia, Caramuru dourado, Moréia banana Caramuru jibóia, Caramuru mulato, Caramuru pinima, Moréia, Moréia amarela, Moréia banana, Moréia de rabo amarelo, Moréia dourada, Moréia rabo dourado Aimoré, Amoréia pintada, Camburú pintado, Caramuru, Caramuru Moréia pintada pinima, Caramuru pintado, Enguia, Miroró, Moréia, Moréia americana, Moréia pintada, Moréia verde, Morongo, Mororó, Mussulina, Mutuca, Mututuca, Sangrador, Tororó, Totoró 235 Gymnothorax ocellatus Amoréia, Amorepinima, Caramuru, Caramuru de areia, Caramuru Moréia de areia pinima, Miroró, Moréia, Moréia amarela, Moréia de areia, Moréia de pedra, Moréia ocelada, Moréia pintada, Mutuca, Mututuca 118 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SOURCE Nº SPECIES COMMON NAMES UNIQUE NAME Nomura (1984) 222 Ginglymostoma Barroso, Cação arumaru, Cação lixa, Lambaru, Lixa, Peixe anjo, Cação lixa cirratum Tubarão enfermeira, Tubarão lixa, Tubarão pajem, Urumaru, Gata, Cação-Arumaru, Urumaru, Uaromaru. FishBase 223 Gnatholepis thompsoni NENHUM Amoré de mancha dourada Limpa vidro, Peixe ventosa, Pregador 224 Gobiesox barbatulus Peixe ventosa de bigode Carvalho-Filho, pers. comm. Suzuki (1986) Carvalho-Filho (1999) Carvalho-Filho (1999) FREIRE & CARVALHO FILHO Carvalho-Filho (1999) COMMON NAMES UNIQUE NAME SOURCE Moréia bombóia Carvalho-Filho, pers. comm. SPECIES 236 Gymnothorax polygonius NENHUM 237 Gymnothorax vicinus Caramuru, Caramuru mulato, Caramuru pinima, Moréia, Moréia Moréia preta amarela, Moréia boca preta, Moréia preta Carvalho-Filho, pers. comm. 238 Gymnura altavela Arraia, Arraia borboleta, Arraia manteiga, Arraia parati, Borboleta, Raia borboleta de espinho Raia, Raia amarela, Raia borboleta, Raia gererera, Raia manteiga Mod. from Carvalho (1999) 239 Gymnura micrura Arraia, Arraia baté, Arraia borboleta, Arraia caã, Arraia comum, Raia borboleta lisa Arraia manteiga, Borboleta, Carapiaçava, Raia borboleta, Raia manteiga, Raia mariquita, Raia olho de ovelha, Raia olhuda Mod. from Nomura (1984) 240 Haemulon album Arrebenta panela, Cocoroca branca, Corcoroca, Pirambu 241 Haemulon aurolineatum Corcoroca, Cotinga, Quatinga, Sapuruna, Sapuruna branca, Xira, Xira dourada Xira branca, Xira dourada Lima & Oliveira (1978) 242 Haemulon chrysargyreum Cocoroca boquinha Szpilman (2000) 243 Haemulon melanurum Lima & Oliveira (1978) 244 Haemulon parra Sapurana, Sapurana de lista, Sapuruna preta, Supuruna de listra, Sapuruna preta Xirão Biquara, Cambuba, Cancan, Cancanhe, Carrapato, Cocoroca, Cancanhe Cocoroca mulata, Corcoroca mulata, Macassa, Negramina, Pirambu, Pirambú, Xira branca 245 Haemulon plumieri Abiquara, Biquara, Boca de fogo, Boca de velha, Cambuba, Cocoroca boca velha Capiúma, Capiúna, Cocoroca, Cocoroca mulata, Corcoroca, Corcoroca boca de velha, Corcoroca mulata, Corocoroca, Corocoroca boca de fogo, Corocoroca mulata, Crocoroca, Macaca, Negra mina, Negramina, Pirambu, Sapuruna, Uribaco, Xira Carvalho-Filho (1999) 246 Haemulon squamipinna Quatinga amarela, Xira, Xira amarela 247 Haemulon steindachneri Cambuba, Carrapato, Cocoroca boca larga, Corcoroca boca de Cocoroca boca larga fogo, Corcoroca boca larga, Corcoroca de boca larga, Corcoroca sargo, Farofa, Macassa, Macasso, Quatinga, Xirão Cocoroca branca Cocoroca boquinha Xira amarela Szpilman (2000) Ferreira & Cava (2001) Ferreira & Cava (2001) Szpilman (2000) 119 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 248 Haemulon striatum Cocoroca listrada, Xira Cocoroca listrada Szpilman (2000) 249 Halichoeres bathiphillus Budião de Fundo Budião de fundo Carvalho-Filho (1999) 250 Halichoeres bivittatus Budião, Gudião vermelho, Punheta, Sabonete listrado Budião sabonete Carvalho-Filho, pers. comm. 251 Halichoeres brasiliensis Budião azul, Budião sipica, Budião verde, Mangarueira, Radiatus, Budião verde Sabonete brasileiro Carvalho-Filho (1999) 252 Halichoeres dimidiatus Carvalho-Filho, pers. comm. 253 Halichoeres penrosei Budião papagaio, Budião azul, Bodião dourado, Cianocéfalo, Budião azul Ministro, Peixe rei, Sabonete cara amarela brasileiro Budião ocelado Budião, Maculipina, Mangarueira, Sabonete ocelado 254 Halichoeres poeyi 255 Mod. from Sampaio & Nottingham (2008) Lima & Oliveira (1978) Halichoeres radiatus Bindalo, Bodião, Bodião rei, Budião, Budião puxê, Budião verde, Budião puxê Gudião, Peixe rei, Poei, Poei verde, Punheta, Sabonete verde, Verdugo Bindalo, Bodião bindaló Budião bindalo 256 Halieuticthys aculeatus NENHUM Carvalho-Filho, pers. comm. 257 Harengula clupeola 258 Harengula jaguana Sardinha, Sardinha casca dura, Sardinha cascuda, Sardinha lage, Sardinha lage Savelha Sardinha, Sardinha cascuda, Savelha cascuda Sardinha cascuda 259 Hemicaranx amblyrhynchus Hemiramphus balao Cabeça dura, Cabeçudo, Cara de gato, Catarro, Palombeta do alto, Vento leste Vento leste, Vento leste do verão, Xixarro Agulha, Agulhinha, Panaguaiú Agulha azul Carvalho-Filho (1999) 261 Hemiramphus brasiliensis Agulha, Agulha crioula, Agulha preta, Agulhinha, Farnangaio, Agulha preta Farnangalho, Peixe agulha, Tarangalho Nomura (1984) 262 Heteroconger camelopardalis Heteroconger longissimus NENHUM Heteropriacanthus cruentatus Imperador, Olho de cão, Olho de cão das pedras, Olho de vidro, Olho de fogo Olho de fogo, Piranema 260 264 NENHUM Enguia de jardim manchada Enguia de jardim marrom Sazima et al. (in press) Barletta (2002) Nomura (1984) Freire, pers. comm. Carvalho-Filho, pers. comm. Carvalho-Filho, pers. comm. Anon. (1976) FREIRE & CARVALHO FILHO 263 Cacuá do alto 120 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME SOURCE 265 Himantura schmardae NENHUM Raia raspadora Freire, pers. comm. 266 Hippocampus erectus 267 268 Hippocampus patagonicus Hippocampus reidi 269 Hirundichthys affinis Cavalo marinho pintado Mod. from Nomura (1984) Cavalo marinho mirim Carvalho-Filho, pers. NENHUM comm. Sampaio & Nottingham Cavalinho, Cavalinho do mar, Cavalinho marinho, Cavalo marinho, Cavalo marinho de Cavalo marinho de focinho longo focinho longo (2008) Holandês, Peixe voador, Voador, Voador comum, Voador holandes Voador comum Brandão (1964) 270 Histrio histrio Peixe doutor, Peixe pescador, Peixe sargaço 271 Holacanthus ciliaris 272 Holacanthus tricolor Anjo rainha, Borboleta, Ciliaris, Enxada, Papu, Paru branco, Paru Peixe anjo rainha rajado, Parum amarelo, Parum dourado, Parum jandaia, Peixe anjo, Peixe anjo rainha, Peixe borboleta Enxada, Paru de pedra, Paru fumaça, Paru papagaio, Paru soldado, Paru fumaça Parum dourado, Parum jandaia, Peixe borboleta, Peixe soldado, Soldado, Tambuatá, Tamuatá, Tricolor, Vigário 273 Holocentrus adscensionis Cachaça, Jaguaraçá, Jaguareça, Jaguareçá, Jaguarica, Jaguariça, Jaguareçá açú Jaguariçá, Jaguaruça, Jaguaruçá, Jaguriçá, João cachaça, João guriçá, Juguriçá, Mariquita, Mariquita olhão, Olho de vidro, Realito, Tararaca Nomura (1984) 274 Holocentrus rufus 275 Hypleurochilus fissicornis Hypleurochilus pseudoaequipinnis Hyporhamphus roberti Jaguareçá, Jaguariçá, Jaguariçá, Jaguaruçá, João cachaça, Juguriçá, Tararaca Mariquita, Tararaca Macaco de chifre Macaco, Maria da toca 276 277 Cavalinho, Cavalinho do mar, Cavalo marinho, Hipocampo Peixe sargasso Carvalho & Freire, pers. comm Sampaio & Nottingham (2008) Carvalho & Branco (1977) NENHUM Macaco ostra Carvalho-Filho, pers. comm. Carvalho-Filho, pers. comm. Freire, pers. comm. Agulha, Agulhinha, Panaguaiu, Panaguaiú Agulha fina FishBase 278 Hyporhamphus unifasciatus Agulha, Agulha branca, Farnangalho, Panaguaiú, Peixe agulha, Agulha branca Tarangalho 279 Hypsoblennius invemar Macaquinho pavão, Sarampinho Sarampinho Nomura (1984) Carvalho-Filho, pers. comm. 121 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME SOURCE 280 Ichthyapus ophioneus NENHUM Enguia bicuda Carvalho-Filho, pers. comm. 281 Inermia vittata NENHUM Chicharro listrado Carvalho-Filho, pers. comm. 282 Istiophorus platypterus Agulhão, Agulhão bandeira, Agulhão de vela, Agulhão vela, Agulhão vela Bacho, Basho, Bicudo, Espadim azul, Guebo, Guebucu, Guebuçu, Guebuçú, Sailfish Nomura (1984) 283 Kaupichthys hyoproroides NENHUM Carvalho-Filho, pers. comm. 284 Kyphosus incisor Pijirica, Pirabanha, Piraboca, Piragica, Pirajica, Piranjica, Pirajica amarelada Quará, Salema do alto, Salema preta Mod. from Szpilman (2000) 285 Kyphosus sectatrix Pirabanha, Piraboca, Piragica, Pirajica, Piramboca, Pirangica, Pirajica preta Pirangica amarela, Pirangica comum, Piranjica, Quara, Salema açú, Salema do alto, Salema preta Mod. from Menezes & Figueiredo (1985) 286 Labrisomus cricota Garrião Maria da toca cricota Carvalho-Filho, pers. comm. 287 Labrisomus kalisherae Garrião, Guavina Maria da toca olhão Carvalho-Filho, pers. comm. 288 Labrisomus nuchipinnis Folha seca, Garguelo, Garrião, Garrião de papo vermelho, Maria da toca garrião Garrião guloso, Garrião macaco, Guavina, Guloso, Imborê, Imborê de chio, Imborê folha seca, Macaco, Maria da toca, Mariongo, Moré, Peixe macaco, Quatro olhos Mod. from Carvalho-Filho (1999) 289 Lachnolaimus maximus NENHUM Budião porco Carvalho-Filho, pers. comm. 290 Lactophrys bicaudalis Baiacu caixão, Peixe cofre Baiacu caixão pintado Mod. from Soares (1988) 291 Lactophrys trigonus Baiacú, Baiacu caixão, Baiacu chifrudo, Baiacu cofre, Baiacu Baiacu caixão búfalo sem chifre, Baiacu sem espinhos, Cofre, Ostracião, Peixe cofre, Peixe vaca, Taoca, Vaca sem chifre Mod. from Nomura (1984) 292 Lactophrys triqueter Baiacu, Baiacu caixão, Baiacu cofre, Baiacu sem espinho, Guamaiacu apé Cofre, Guamaiacu apé, Ostracião, Peixe cofre, Peixe vaca, Taoca, Toaca, Vaca sem chifre Santos (1982) Falsa moréia marrom FREIRE & CARVALHO FILHO Nº 122 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 293 Letharchus aliculatus NENHUM Miroró baiano Carvalho-Filho, pers. comm. 294 Liopropoma carmabi NENHUM Mariquita arlequim Carvalho-Filho, pers. comm. 295 Lobotes surinamensis Brejereba, Cará do mar, Chancharrona, Crauaçu, Croaçu, Prejereba Dorminhoco, Frejereba, Frejereva, Gereba, Peixe folha, Peixe sono, Pejereba, Pijareba, Piraca, Piracá, Piráca, Pirajeva, Prejereba, Prejereva, Xancarona, Xancarrona, Xanxarrona Baúna, Caranha de mangue, Carapitanga, Pargo mulato Baúna Nomura (1984) Ariocó, Caranha, Caranha vermelha, Caranho, Caranho verdadeiro, Cioba Caranho vermelho, Carapitanga, Ceoba, Chioba, Cioba, Cioba verdadeira, Ciobinha, Cioquira, Guaiúba, Rabo aberto, Sioba, Siquira, Sirioba, Siriúba, Vermelho caranha, Vermelho cioba, Vermelho de fundo Boca negra, Pargo, Pargo boca negra, Pargo boca preta, Saçupema, Vermelho boca negra Saçupema boca preta, Vermelho, Vermelho boca negra, Vermelho de fundo, Vermelho do fundo Caúba, Ceoba, Cioba, Cioba mulata, Gaiero, Goiúba, Guaiuba, Guaiúba Guaiúba, Guaiúva, Guajuba, Mulata, Rabo aberto, Rabo amarelo, Saioba, Sarmão, Saúba, Sioba, Siova, Sirioba Nomura (1984) 300 Lutjanus cyanopterus Caranha, Caranha do fundo, Caranho, Vermelho caranho Rocha & Costa (1999) 301 Lutjanus jocu Baúna, Baúna de fogo, Baúna do alto, Baúna fogo, Caranha, Dentão Carapitanga, Chiova, Cioba, Cioquira, Dentão, Pirá siririca, Sioba, Siobinha, Siririca, Vermelho, Vermelho dentão, Vermelho siriúba Acará aia, Acaraaia, Acarapitanga, Acarapuã, Caranha, Pargo verdadeiro Carapitanga, Caraputanga, Cherne vermelho, Dentão, Pargo, Pargo cachucho, Pargo olho de vidro, Pargo real, Pargo verdadeiro, Sacupema, Saçupema, Vermelho, Vermelho dentão, Vermelho do fundo Areiacó, Areocó, Ariacó, Aricó, Ariocó, Baúna, Caranho, Caranho Ariocó verdadeiro, Caranho vermelho, Carapitanga, Ciobinha, Dentão, Oriocó, Siobinha, Siuquira, Vermelho, Vermelho aricó, Vermelho ariocó, Vermelho henrique, Vermelho verdadeiro, Vermelho xióva 296 Lutjanus alexandrei 297 Lutjanus analis 299 Ocyurus chrysurus 302 Lutjanus purpureus 303 Lutjanus synagris Caranha do fundo Carvalho & Branco (1977) Nomura (1984) Nomura (1984) Cepene (2000) Nomura (1984) 123 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 298 Lutjanus bucanella Carvalho-Filho, pers. comm. Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 304 Lutjanus vivanus Acará aia, Acarapitanga, Carapitanga, Cherne vermelho, Vermelho olho amarelo Rocha & Costa (1999) Dentão, Olho de vidro, Papaterra estrela, Pargo olho de vidro, Vermelho, Vermelho de olho amarelo, Vermelho do fundo, Vermelho olho amarelo, Vidrado 305 Lythrypnus brasiliensis NENHUM 306 Makaira nigricans Agulhão, Agulhão azul, Agulhão negro, Agulhão preto, Agulhão negro Espadarte preto, Kurokawa, Marlim azul, Marlim azul do Atlântico, Marlin, Marlin azul, Merlim 307 Malacanthus plumieri 308 Malacoctenus delalandei Bom nome, Peixe da rainha, Peixe pica, Pirá Macaquinho 309 Manta birostris Arraia boca de gaveta, Arraia duas cabeças, Diabo do mar, Jamanta gigante Jamanta, Manta, Morcego do mar, Peixe diabo, Raia jamanta 310 Megalops atlanticus Camaripim, Camarupi, Camarupim, Camarupim tarpão, Camurupim Camburupu, Camorubi, Camorupim, Camuripema, Camuripi, Camuripim, Camurupi, Camurupim, Camurupim pema, Cangôa, Cangurupi, Cangurupim, Canjurupi, Canjurupim, Conjurupi, Parapema, Pema, Perapema, Pirapema, Pomboca, Tarpão Nomura (1984) 311 Melichthys niger Cangulo, Cangulo fernande, Cangulo francês, Cangulo Cangulo preto negro, Cangulo preto, Me pega por favor, Niger, Peixe porco, Peroá preto Carvalho & Branco (1977) 312 Microdesmus bahianus NENHUM Peixe lombriga baiano Freire, pers. comm. 313 Microdesmus longipinnis NENHUM Peixe lombriga rosa FishBase 314 Micrognathus crinitus Agulha do mar, Peixe cachimbo Peixe cachimbo preto Mod. from Szpilman (2000) 315 Micrognathus erugatus 316 Microgobius carri NENHUM NENHUM Peixe cachimbo estrela Carvalho-Filho, pers. comm. Amoré de listra amarela FishBase Amoré arlequim Pirá Macaquinho comum 124 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Carvalho-Filho, pers. comm. Cepene (2000) Nomura (1984) Mod. from Carvalho-Filho (1999) Mod. from Carvalho-Filho (1999) FREIRE & CARVALHO FILHO SPECIES COMMON NAMES UNIQUE NAME SOURCE 317 Microphis brachyurus Peixe cachimbo, Sabiá Peixe sabiá Mod. from Nomura (1984) 318 Microspathodon chrysurus Chrysurus, Crisurus, Donzela azul, Jóia Donzela azul Carvalho-Filho (1999) 319 Mobula hypostoma Arraia boca de gaveta, Jamanta, Jamanta mirim Jamanta mirim Carvalho-Filho (1999) 320 Mobula japanica Arraia boca de gaveta Jamanta de cauda espinhosa FishBase 321 Mobula tarapacana Arraia boca de gaveta Jamanta chilena FishBase 322 Mobula thurstoni Arraia boca de gaveta Jamanta de cauda lisa FishBase 323 Mola mola Lua, Peixe lua, Peixe roda, Sol Peixe lua Nomura (1984) 324 Monacanthus ciliatus Cangulo, Cangulo de fernando, Peixe porco, Peruá, Pirá aca, Porquinho de franja Piraaca, Porquinho Carvalho-Filho, pers. comm. 325 Moringua edwardsi NENHUM FishBase 326 Mugil curema Caíca, Mondego, Parati, Paratí, Parati guaçú, Parati olho de Tainha pratiqueira fogo, Paratibu, Paratiguera, Pratiqueira, Pratiquera, Sassaiuba, Saúna, Saúna olho de fogo, Solé, Tainha, Tainha de olho amarelo, Tainha do olho amarelo, Tainha do olho preto, Tainha parati, Tainha pitiu, Tainha sajuba, Tainha verdadeira Mod. from Szpilman (2000) 327 Mulloidichthys martinicus Salmonete, Saramonete, Saramunete, Trilha, Trilha amarela Saramonete amarelo Mod. from Ferreira & Cava (2001) 328 Muraena melanotis NENHUM Moréia colméia FishBase 329 Muraena pavonina Caramuru de chifre, Moréia de pintas brancas, Moréia pavão, Moréia pavão Moréia pintada Carvalho-Filho (1999) 330 Muraena retifera Moréia de roseta Carvalho-Filho (1999) 331 Mycteroperca acutirostris Badejete, Badejo mira, Badejo saltão, Mira, Miracelo, Saltão, Badejo mira Serigado tapoã Nomura (1984) 332 Mycteroperca bonaci Badejo, Badejo ferro, Badejo preto, Badejo quadrado, Cerigado Badejo quadrado preto, Quadradinho, Serigado, Serigado preto, Sirigado Carvalho-Filho (1999) Enguia macarrão Moréia de roseta 125 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES 333 Mycteroperca interstitialis 334 Mycteroperca microlepis 335 Mycteroperca tigris 336 Mycteroperca venenosa 337 Myrichthys breviceps 338 Myrichthys ocellatus 339 Myripristis jacobus 340 Myrophis platyrhynchus 341 Myrophis punctatus COMMON NAMES Água fria, Badejo, Badejo amarelo, Cabra, Cabrinha, Mané nego, Pirambeba, Serigado, Sirigado Badejo, Badejo bicudo, Badejo branco, Badejo brando, Badejo da areia, Badejo de areia, Badejo saltão, Badejo sapateiro, Garoupa, Serigado badejo Badejo, Badejo mira, Badejo tigre, Serigado, Sirigado UNIQUE NAME Badejo amarelo SOURCE Szpilman (2000) Badejo de areia Suzuki (1986) Badejo tigre Szpilman (2000) Badejo, Badejo ferro, Badejo serigado, Badejo vermelho, Piragia, Piragira, Pirangira, Serigado ferro, Sirigado, Sirigado panã Miriquitis, Miroró, Miroró pintado, Murucutuca pintada, Mutuca Miriquitis amarela, Moréia, Muriongo, Murucutuca ocelada, Mutuca, Mututuca Fogueira, Juguaraçá, Mariquita, Mariquita do alto, Mariquita olhão, Miripristis, Olho de vidro, Peixe gato, Pirapiranga, Vovó de mariquita Badejo ferro Suzuki (1986) Miroró de pintas brancas Carvalho-Filho, pers. comm. Mututuca Ferreira & Cava (2001) Fogueira Carvalho-Filho (1999) Muriongo narigudo NENHUM Congro, Enguia, Moréia, Muriongo, Muriongo mirim, Muriongo mirim Miroró de rio Treme treme do norte NENHUM Carvalho-Filho, pers. comm. Carvalho-Filho (1999) 343 Narcine brasiliensis Arraia, Arraia elétrica, Emplasto, Raia elétrica, Raia Treme treme do sul emplasto, Raia treme treme, Treme treme, Tremelga Mod. from Nomura (1984) 344 Naucrates ductor Camisa de meia, Ductor, Peixe piloto, Piloto, Remeiro, Peixe piloto Romeiro Tubarão limão Cação limão Nomura (1984) 342 Narcine bancrofti 346 347 348 349 Neoconger mucronatus Nicholsina usta Odontaspis ferox Odontoscion dentex NENHUM Budião, Budião batata, Budião sabonete NENHUM Corvina dos recifes, Dentudo, Maria mole, Pescada, Pescada cambucu, Pescada canguçu, Pescada cascuda, Pescada de pedra, Pescada dentuça, Pescada dentuda, Pirucaia Enguia de crista Papagaio esmeralda Mangona lisa Pescada de pedra Carvalho-Filho, pers. comm. Mod. from Nomura (1984) FishBase Carvalho-Filho, pers. comm. Carvalho-Filho, pers. comm. Carvalho-Filho (1999) FREIRE & CARVALHO FILHO 345 Negaprion brevirostris 126 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME SOURCE 350 351 352 353 Ogcocephalus declivirostris Ogcocephalus nasutus Ogcocephalus notatus Ogcocephalus vespertilio Bacacuá Batimbau Cacuá Peixe morcego verdadeiro Carvalho-Filho, pers. comm. Cepa (1978) Carvalho-Filho, pers. comm. Mod. from Nomura (1984) 354 Oligoplites palometa Peixe morcego, cacuá, bacacuá Batimbau, Peixe morcego Cacuá, Peixe morcego, Pirá andirá Bacacuá, Cachimbo, Cacuá, Guacari, Guacu cuia, Guacucuia, Oncocéfalo, Peixe cachimbo, Peixe morcego, Peixe morcego do focinho longo, Pirá andirá Gaivira, Guaibira, Guaivira, Salteira, Tibiro, Tibiro amarelo, Tibiro de couro Guaivira amarela Mod. from Nomura (1984) 355 Oligoplites saliens Gaivira, Guaivira, Guajuvira, Guarivira, Guavira, Guivira, Guaivira salteira Salteira, Solteira, Táboa, Tibiro, Tibiro saltador, Xaveia, Xavéia Mod. from Nomura (1984) 356 Oligoplites saurus Cavaco, Gaivira, Goivira, Guaibira, Guaivira, Guajuvira, Guaivira branca Guaravira, Guarivira, Guavira, Pamparrona, Salteira, Solteira, Tábua, Tibiro, Tibiro branco, Tiburo Mod. from Nomura (1984) 357 Omobranchus punctatus NENHUM Mod. from FishBase 358 Ophichthus cylindroideus Cobra do mar, Jucutuca, Moréia, Muçum, Muçum do mar, Porongo Rosa (1980) 359 Ophichthus ophis Muçum pintado, Muriongo Miroró pintado Mod. from Suzuki (1986) 360 Ophidion holbrooki Congro, Congro rosa, Falso congro, Miro Miro Carvalho-Filho (1999) 361 Ophioblennius trinitatis Blênio, Macaco de rabo vermelho, Maria da toca oceânico Macaco de rabo vermelho Carvalho-Filho (1999) 362 Opisthonema oglinum Caiçara, Maçambê, Manjuba, Manjuba lombo azul, Manjubão, Sardinha bandeira Moromba, Sardinha, Sardinha azul, Sardinha baleia, Sardinha bandeira, Sardinha barriga larga, Sardinha branca rio ribeira, Sardinha chata, Sardinha da lage, Sardinha de galha, Sardinha de gato, Sardinha de penacho, Sardinha do alto, Sardinha facão, Sardinha falcão, Sardinha gaia, Sardinha galho, Sardinha gato, Sardinha gulosa, Sardinha lage, Sardinha lais, Sardinha laje, Sardinha larga, Sardinha lombo azul, Sardinha maromba, Sardinha penacho, Sardinha peú, Sardinha preta, Sardinha roliça, Sardinha verdadeira, Sardinha verde, Sargo, Xangó Macaco de mordaça Nomura (1984) 127 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 363 Opistognathus brasiliensis NENHUM Bocão do alto Carvalho-Filho, pers. comm. 364 Opistognathus cuvieri NENHUM Bocão da boca amarela Carvalho-Filho, pers. comm. 365 Opistognathus lonchurus NENHUM Bocão bigode FishBase 366 Opsanus beta NENHUM Pacamão estrangeiro Carvalho-Filho, pers. comm. 367 Orthopristis ruber 368 Ostichthys trachypoma Cambuba, Canguito, Cocoroca, Cocoroca comum, Cocoroca jurumirim Cocoroca jumirim, Cocoroca jurumin, Cocoroca jurumiri, Cocoroca jurumirim, Cocoroca verdadeira, Corcoroca, Corcoroca da pedra, Corcoroca jurumim, Corcoroca jurumiri, Corcoroca jurumirim, Corcoroca legítima, Corcoroca verdadeira, Coró de pedra, Cotinga, Sapuruna, Uribaco NENHUM Soldado do olho grande 369 Otophidium chickcharney NENHUM Congro fantasma 370 Otophidium dormitator NENHUM Congro dorminhoco 371 Oxyurichthys stigmalophius NENHUM Amoré nadadeira pintada FishBase 372 Pagrus pagrus Pagro, Palgo, Pargo, Pargo amarelo, Pargo liso, Pargo Pargo rosa olho de vidro, Pargo rosa, Pargo róseo, Pargo vermelho Cepene (2000) 373 Parablennius marmoreus Blênio, Maria da toca das algas Mod. from IBAMA Inst. Normativa 14/2004 374 Parablennius pilicornis Blênio, Macaco, Maria da toca, Maria da toca das pedras Macaco das pedras Mod. from IBAMA Inst. Normativa 14/2004 375 Paraclinus arcanus Macaquinho de mancha verde Macaquinho de mancha verde Carvalho-Filho (1999) 376 Paraclinus rubicundus Macaco verde Macaquinho verde Mod. from IBAMA Inst. Normativa 14/2004 Szpilman (2000) From English (Carvalho Filho, 1999) FishBase Carvalho Filho & Freire, pers. comm. FREIRE & CARVALHO FILHO Macaco das algas 128 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented SPECIES COMMON NAMES UNIQUE NAME SOURCE 377 Paraclinus spectator NENHUM Macaquinho de vela Carvalho-Filho, pers. comm. 378 Paralabrax dewegeri Mané velho Mané velho Carvalho-Filho, pers. comm. 379 Paralichthys brasiliensis Carvalho-Filho (1999) 380 Paralichthys isosceles Catraio, Lenguado, Lenguado de praia, Linguado, Linguado Linguado de praia aramaçá, Linguado de praia, Linguado preto, Rodovalho, Solha, Solha aramaçá Linguado, Linguado areia, Linguado de areia, Linguado Linguado transparente transparente 381 Paralichthys patagonicus Linguado, Linguado branco Linguado branco Avila da Silva & Carneiro (2003) 382 Paralichthys tropicus Linguado, Solha Linguado tropical FishBase 383 Paranthias furcifer Boquinha, Esquentamento, Namorado, Pargo mirim, Pargo Pargo mirim pincel, Peixe santo Nomura (1984) 384 Pareques acuminatus Anteninha, Bandeirinha, Bilró, Cabeça de coco, Doutor, Maria nagô Equetos, Equetus, Maria nagô, Obispo, Submarino Nomura (1984) 385 Parexocoetus brachypterus Peixe voador, Voador Do inglês (Carvalho Filho, 1999) 386 Pempheris schomburgki Carvalho-Filho (1999) 387 Phaenomonas longissima Machadinha, Manteiga, Olhudo, Papudinha, Pelada, Piaba Piaba do mar do mar, Sardinha barriguda, Sardinha do mar brabo, Sardinha gorda, Sardinha ouro Muriongo comprido NENHUM 388 Phaeoptyx pigmentaria Apogon pintado, Cardeal pintado, Olhão, Totó, Totó chita, Totó chita Totó pintadinho Carvalho-Filho, pers. comm. 389 Pinguipes brasilianus Nomura (1984) 390 Platybelone argalus Batata, Michole quati, Mixole coati, Mixole quati, Michole quati Namorado Agulha, Agulhão Agulha rabo de quilha 391 Platygillellus brasiliensis NENHUM Tanduju tigre Carvalho-Filho, pers. comm. 392 Plectrypops retrospinis Fusquinha, Plectripops, Plic ploc, Soldado Fusquinha Carvalho-Filho (1999) Voador vela Univali (2004) Carvalho-Filho, pers. comm. FishBase 129 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME 393 Polydactylus oligodon Carvalho-Filho, pers. comm. 394 Polydactylus virginicus Barbudinho, Barbudo, Parati barbado, Parati barbudo, Barbudo piraguaba Piracuaba, Piraguá, Piraguaba, Tainha barbuda Barbado, Barbudo, Barbudo amarelo, Parati barbado, Parati Barbudo amarelo barbudo, Parati de barba, Piracuaba, Piraguaba 395 Pomacanthus arcuatus Arcuatus, Enxada, Frade, Frade cinza, Gordinho, Jandaia, Paru beija moça Mercador, Paru, Paru beija moça, Paru bordado, Paru branco, Paru cinza, Paru da pedra, Parú da pedra, Paru dourado, Paru frade, Paru fumaça, Paru listrado, Paru preto, Parum dourado, Parumbeba, Peixe frade, Perambeba, Sambuio Nomura (1984) 396 Pomacanthus paru Suzuki (1986) 397 Pomadasys corvinaeformis Enxada, Frade, Frede, Jandaia, Paru, Parú, Paru da pedra, Paru Frade de pedra, Paru frade, Paru listrado, Paru preto, Parum dourado, Peixe anjo Abiquara, Arrebenta panela, Biquara, Cocoroca, Cocoroca Coró boca roxa legítima, Corcoroca, Corcoroca legítima, Corcoroca verdadeira, Coró, Coró boca roxa, Coró branco, Coroque branco, Juquiri branco, Roncador 398 Pomatomus saltatrix Anchova, Anchoveta, Anchovinha, Anxova, Enchova, Enchova Enchova baeta, Enchoveta, Enchoveta baeta, Enchovinha, Enxova, Enxoveta, Marisqueira, Perna de moça, Piquitinga Nomura (1984) 399 Porichthys kymosemeum Beatinha, Beatriz, Biatriz, Mamangá liso, Mamangava Rosa (1980) 400 Porichthys porosissimus Aniquim de areia, Bacalhau, Bagre sapo, Magangá, Mamangá Mangangá liso liso, Mamangava, Mangangá, Mangangá liso, Monaguaba, Niquim, Peixe fosforescente, Peixe sapo, Piramangaba Figueiredo & Menezes (1978) 401 Priacanthus arenatus Cantador, Figueira, Fogueira, Imperador, Mirassol, Olhão, Olho Olho de cão de boi, Olho de cão, Olho de fogo, Olho de vidro, Olho do diabo, Piranema, Pirapema Nomura (1984) 402 Priolepis dawsoni NENHUM Amoré pijama Carvalho-Filho, pers. comm. 403 Priolepis hipoliti NENHUM Amoré ferrugem Freire & Carvalho-Filho, pers. comm. Beatriz 130 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SOURCE Carvalho & Branco (1977) Lima & Oliveira (1978) FREIRE & CARVALHO FILHO Nº SPECIES COMMON NAMES UNIQUE NAME 404 Prionace glauca 405 Prionotus punctatus Azul, Bico doce, Cação azul, Cação focinhudo, Cação mole Tubarão azul mole, Focinhudo, Lombo preto, Mole mole, Tubarão azul, Cabra, Cabrinha, Cascudo, Peixe cabra, Voador bico de Cabrinha Santo Antônio pato, Voador de pedra, Voador Santo Antônio 406 Pristigenys alta 407 SOURCE Suzuki (1986) Mod. from Nomura (1984) Carvalho-Filho, pers. comm. Pristipomoides aquilonaris Vermelho voraz Vermelho voraz Carvalho-Filho, pers. comm. 408 Prognathodes brasiliensis Borboleta, Borboleta bicuda, Borboleta trombeta Borboleta bicuda Carvalho-Filho, pers. comm. 409 Prognathodes guyannensis NENHUM Borboleta de fundo Carvalho-Filho, pers. comm. 410 Prognathodes obliquus Borboleta dos penedos Mod. from Sampaio & Nottingham (2008) 411 Prognichthys occidentalis Voador, Peixe voador Voador do raso Carvalho-Filho, pers. comm. 412 NENHUM Língua de lixa Carvalho-Filho, pers. comm. 413 Pronotogrammus duplicidentatus Pseudocaranx dentex 414 Pseudogramma gregoryi NENHUM Sabaõzinho do alto Carvalho-Filho, pers. comm. 415 Pseudopercis numida Namorado, Namorado verdadeiro Namorado verdadeiro Rocha & Costa (1999) 416 Pseudopercis semifasciatus Namorado, Namorado listrado Namorado listrado Rocha & Costa (1999) 417 Pseudupeneus maculatus 418 Psilotris batrachodes Beija moça, Canaiú, Pirametara, Sabonete, Salamonete, Saramonete pintado Salmão pequeno, Salmonejo, Salmonete, Salmonete da pedra, Saramonete, Saramunete, Trilha Amoré sapo NENHUM 419 Psilotris celsus NENHUM Peixe borboleta de São Pedro e São Paulo Falsa guarajuba, Garapoá, Guaracimbora, Pracumandá, Garapoá Xaréu, Xaréu branco Nomura (1984) Mod. from Nomura (1984) FishBase Amoré de espinho grande FishBase 131 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Piranema do fundo Cassumba de mero, Olhão, Piranema, Piranema do fundo Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). Nº SPECIES COMMON NAMES UNIQUE NAME SOURCE 420 Ptereleotris randalli NENHUM Linha azul Carvalho-Filho, pers. comm. 421 422 Quassiremus ascensionis Rachycentron canadum NENHUM Miroró de pintas pretas Beijo pirá, Beijupirá, Beiupirá, Bejupirá, Bijupirá, Biupirá, Bijupirá Cação de escama, Cação de escamas, Canado, Chancarona, Parabiju, Parambeju, Parambiju, Parambijú, Paramiju, Parandiju, Peixe rei, Pirá biju, Pirabeju, Pirabiju, Pirambiju, Pirapiju 423 Raneya brasiliensis Congro, Lagarto do mar Congrinho de praia Carvalho-Filho, pers. comm. 424 Remora australis Rêmora Rêmora de baleia Mod. from Szpilman (2000) 425 Remora remora 426 Remorina albescens Agarrador, Pegador, Peixe pegador, Peixe piolho, Piolho de Rêmora comum cação, Piolho de tubarão, Piraquiba, Rémora, Rêmora Rêmora branca Pegador, Rêmora 427 Rhincodon typus Cação estrela, Pintadinho, Tubarão baleia Tubarão baleia Suzuki (1986) 428 Rhinobatos horkeli Arraia viola, Cação viola, Raia viola, Viola Raia viola brasileira Mod. from Nomura (1984) 429 430 Rhinobatos lentiginosus Rhinobatos percellens NENHUM Arraia viola, Cação viola, Guitarra, Raia viola, Viola Raia viola do Atlântico Raia viola do sul FishBase Mod. from Nomura (1984) 431 Rhinoptera bonasus Arraia cabocla, Arraia moitão, Raia, Raia focinho de vaca, Raia Ticonha sapo, Raia ticonha, Ticonha, Raia-Boi, Arraia-de-duas-cabeças, Arraia-jamborana Nomura (1984) 432 Rhinoptera brasiliensis Arraia ticonha, Raia boi, Ticonha Carvalho-Filho, pers. comm. 433 Rhizoprionodon lalandii Bico de surela, Bico de suvela, Bico fino, Bicudinho, Caçonete, Cação alecrim Cação aipim, Cação alecrim, Cação alegrim, Cação anjo, Cação babaqueiro, Cação bicudo, Cação de bico doce, Cação fidalgo, Cação frango, Cação frango olhudo, Cação babaqueiro, Cação rabo seco, Cor de enxofre, Cucuri, Fecha venda, Frango, Figuinho, lauê, Lustroso, Rabo seco, Sicuri, Sucuri, Tubarão frango, Tubarão frango olhudo Carvalho-Filho, pers. comm. Nomura (1984) Mod. from Suzuki (1986) Mod. from Nomura (1984) Carvalho-Filho, pers. comm. FREIRE & CARVALHO FILHO Raia boi 132 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). UNIQUE NAME SOURCE SPECIES COMMON NAMES 434 Rhizoprionodon porosus Cação, Cação alecrim, Cação bicudo, Cação de praia, Cação Cação frango fidalgo, Cação frango, Cação rabo seco, Caçonete, Cucuri, Fecha venda, Figuinho, Frango Carvalho-Filho (1999) 435 Rhomboplites aurorubens Arcoco, Areocó, Caranha, Carapitanga, Chioba, Chiova, Cioba, Realito Ciova, Mulata, Paramirim, Pargo pinanga, Pargo piranga, Piranga, Realito, Sioba, Siobinha, Vermelha do ar, Vermelhinho, Vermelho, Vermelho olho mole, Vermelho paramirim, Vermelho piranga, Xióva Carvalho-Filho (1999) 436 Ribeiroclinus eigenmanni NENHUM Macaquinho do sul Carvalho-Filho, pers. comm. 437 Risor rubber NENHUM Amoré de esponja 438 Rypticus bistrispinus Badejo sabão, Badejo sabão pintalgado, Sabão Badejo sabão mirim Rangel & Freire, pers. comm. Carvalho-Filho, pers. comm. 439 Rypticus randalli Badejo sabão, Peixe sabão Badejo sabão marrom Carvalho-Filho, pers. comm. 440 Rypticus saponaceus Badejo, Badejo sabão, Badejo sabão comum, Cerigado sabão, Badejo sabão comum Peixe sabão, Sabão, Sabonete, Saramonete, Serigado sabão 441 Rypticus subbifrenatus Badejo sabão Badejo sabão pintado Mod. from Szpilman (2000) 442 Sarda sarda Bonito serrinha 443 Sardinella aurita Sardinha charuto Avila da Silva & Carneiro (2003) Nomura (1984) 444 Sardinella janeiro Sardinha verdadeira Nomura (1984) 445 Sargocentron bullisi Baquara, Bonito, Bonito atlântico, Bonito serrinha, Cavala, Sarda, Sarrajão, Serra, Serra comum, Serra de escama, Serra Alacha, Maromba, Sardinha, Sardinha charuto, Sardinha de lata, Sardinha legítima, Sardinha maromba, Sardinha verdadeira, Sardinha verdadeira grande, Sardinha verdadeira pequena Biribiri, Boca torta, Charuto, Escamuda, Manjuvão, Maromba, Sardinha, Sardinha azul, Sardinha charuto, Sardinha de galha, Sardinha do reino, Sardinha legítima, Sardinha maromba, Sardinha verdadeira NENHUM Jaguareçá listrado Carvalho-Filho, pers. comm. Sampaio & Nottingham (2008) 133 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). UNIQUE NAME SOURCE Nº SPECIES COMMON NAMES 446 Scartella cristata 447 Scartella poiti Mod. from Nomura (1984) & Macaco, Macaco verde, Marachomba, Maria da toca, Peixe Marachomba verde macaco Carvalho-Filho (1999) NENHUM Marachomba de trindade Carvalho-Filho, pers. comm. 448 Scarus trispinosus 449 Scarus zelindae 450 Scomber colias 451 Scomberomorus brasiliensis 452 Scomberomorus cavalla 453 Scomberomorus regalis 454 Bico verde, Budião, Budião azul, Budião preto, Budião Papagaio azul roxo, Budião una, Peixe papagaio, Papagaio preto, Papagaio una Budião banana, Peixe papagaio zelinda, Scarus banana Papagaio banana Szpilman (2000) Cavala, Cavala de reino, Cavala do reino, Cavala sardinheira, Cavalinha, Muzundo, Muzundu, Muzundum, Periquito, Serra de escama, Sororoca Caroroca, Cavala, Cavala pintada, Escalda mar, Sarda, Serra, Serrá, Serra pima, Serra pininga, Serrapinima, Serrinha, Sororoca, Sororóca Cavala, Cavala aipim, Cavala branca, Cavala impingem, Cavala perna de moça, Cavala preta, Cavala sardinheira, Cavala verdadeira, Perna de moça, Serra, Sororoca Cavala, Cavala boca larga, Cavala branca, Cavala canguçu, Cavala pintada, Cavala sardinheira, Cavala serra, Serra, Serra penincho, Serra pininga, Sororoca, Sororoca pinima Cavala sardinheira Nomura (1984) Serra Nomura (1984) Cavala Nomura (1984) Serra pininga Carvalho & Branco (1977) Scorpaena bergi NENHUM Mangangá cabeça de ganso FishBase 455 Scorpaena brasiliensis 456 Scorpaena calcarata Beatinha, Beatinha pintada, Beatriz, Mamangá, Mangangá, Mangangá vermelho Mangangá pintado, Mangangá vermelho, Niquim, Niquim da pedra, Niquim de pedra, Peixe escorpião, Peixe Mangangá cabeça lisa Mangangá 457 Scorpaena dispar Mangangá, Moriati 458 Scorpaena grandicornis Beatinha, Beatriz, Mangangá, Mangangá de espinho, Mangangá de pluma Niquim da pedra, Niquim de pedra, Peixe escorpião, Mangangá de chifres Mod. from Ferreira & Cava (2001) Carvalho-Filho (1999) Mod. from Carvalho & Branco (1977) Mod. from Rocha & Costa (1999) Mod. from Nomura (1984) FREIRE & CARVALHO FILHO Mangangá corcunda 134 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME SOURCE 459 Scorpaena inermis NENHUM Mangangá cogumelo FishBase 460 Scorpaena isthmensis Beatriz, Mamangá, Mangangá, Mangangá cara lisa, Moréia Mangangá cara lisa ati cara lisa, Peixe pedra 461 Scorpaena mellissi NENHUM 462 Scorpaena plumieri 463 Scorpaenodes caribbaeus Anequim, Aniquim, Aniquim beatriz, Aniquim de pedra, Mangangá axila roxa Baetinha, Beatinha, Beatinha axila rocha, Beatriz, Biriati, Briati, Mamangá, Mangangá, Mangangá axila roxa, Moreiati, Moriati, Niquim, Niquim da pedra, Niquim de pedra, Peixe escorpião, Peixe pedra, Sarrão Beatinha colorada Beatriz, Mangangá 464 Scorpaenodes insularis NENHUM Beatinha dos penedos Carvalho-Filho, pers. comm. 465 Scorpaenodes tredecimspinosus Mangangá Beatinha de recife Carvalho-Filho, pers. comm. 466 Selar crumenophthalmus Carapau, Chicharro, Chicharro olho grande, Garajuba, Chicharro olho grande Garapau, Guarajuba, Gurapau, Gurapu, Manequinho, Olhão, Olhudo, Xixarro olho de boi, Xixarro, Xixarro olho grande, Xixarro olhudo 467 Selene brownii Galo, Peixe galo 468 Selene vomer Abatucaia, Alfaquim, Aracaguira, Aracanguira, Capão, Galo, Galo de penacho Galo bandeira, Galo da costa, Galo de fita, Galo de penacho, Galo do alto, Galo do morro, Galo fita, Galo proa de bote, Galo verdadeiro, Peixe galo, Peixe galo de penacho, Testudo Carvalho-Filho (1999) 469 Seriola dumerili Arabaiana, Arabaiana pintada, Olhete, Olho de boi, Pitangola, Olho de boi Tapiranga, Tapireca, Tapireçá, Urubaiana Carvalho-Filho, pers. comm. 470 Seriola fasciata Arabaiana, Olhete, Olhete listrado, Olho de boi, Pitangola, Olhete listrado Urubaiana Szpilman (2000) 471 Seriola lalandi Arabaiana, Arabaiana pintada, Olhete, Olho de boi, Pitangola, Olhete comum Tapiranga, Tapireça, Tapireçá, Urubaiana Mod. from Nomura (1984) Sampaio & Nottingham (2008) Mangangá dos penedos Carvalho-Filho, pers. comm. Galo de recife Sampaio & Nottingham (2008) Carvalho-Filho, pers. comm. Carvalho & Branco (1977) Carvalho-Filho, pers. comm. 135 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). UNIQUE NAME SOURCE Nº SPECIES COMMON NAMES 472 Seriola rivoliana Arabaiana, Fumeiro, Olhete bacamarte, Olho de boi, Olho de Olhete bacamarte boi fumeiro, Piloto, Remeiro 473 Serranus annularis NENHUM Mariquita de dorso laranja FishBase 474 Serranus atrobranchus Jacundá Mariquita de orelha negra FishBase 475 Serranus baldwini Badejinho lanterna, Mariquita pintada, Mero, Peixe gato, Mariquita pintada Serranus laranja 476 Serranus chionaraia NENHUM 477 Serranus flaviventris Jacundá, Mariquita, Pirucaia, Serigado xerne, Serrano, Mariquita pirucaia Serranus barriga branca, Traíra, Traíra das pedras, Vovó 478 Serranus phoebe Jacundá, Sete fundão Sete fundão IBAMA Inst. Normativa 14/2004 479 Serranus tabacarius Jacundá Mariquita fumo Mod. from FishBase 480 Sparisoma amplum Batata, Bobó, Budião, Budião bandeira, Budião batata, Papagaio de recife Budião comum, Budião de recifes, Budião papagaio, Budião vermelho, Papagaio bandeira, Papagaio espelho, Peixe papagaio, Peixe papagaio dos recifes Mod. from Ferreira & Cava (2001) 481 Sparisoma axillare Batata, Bobó, Budião, Budião batata, Budião caranha, Papagaio cinza Budião cinza, Budião verde, Papagaio verde, Peixe papagaio, Peixe papagaio cinzento Carvalho-Filho, pers. comm. 482 Sparisoma frondosum Batata, Bobó, Bodião roxo, Budião, Budião agassiz, Budião Papagaio sinaleiro barriga azul, Budião enxofrado, Budião verde, Papagaio, Papagaio aquarela, Peixe papagaio, Peixe papagaio sinaleiro Mod. from Sampaio & Nottingham (2008) 483 Sparisoma radians Batata, Bobó, Bodião verde, Budião, Peixe papagaio dentuço Papagaio verde dentuço Mod. from Nomura (1984) 484 Sparisoma tuiupiranga NENHUM 485 Sphoeroides greeleyi Baiacu, Baiacu areia, Baiacu mirim, Baiacu pinima, Baiacu Baiacu areia pintado, Baiacu verde Mariquita arlequim Ihering (1968) Carvalho-Filho (1999) Carvalho-Filho, pers. comm. Freire, pers. comm. Carvalho-Filho, pers. comm. Martins-Juras (1987) FREIRE & CARVALHO FILHO Papagaio vermelho 136 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME SOURCE 486 Sphoeroides pachygaster Baiacu, Guima das paredes Baiacu gigante Carvalho-Filho, pers. comm. 487 Sphoeroides spengleri Baiacu, Baiacú, Baiacu mirin, Baiacu pinima Baiacu pinima Carvalho-Filho (1999) 488 Sphoeroides testudineus Baiacu, Baiacú, Baiacu de croa, Baiacu dondon, Baiacu Baiacu quadriculado franguinho, Baiacu mirim, Baiacu pininga, Baiacu pintado, Baicu quadriculado, Guamaiacu mirim 489 Sphoeroides tyleri Baiacu 490 Sphyraena barracuda Bacuda, Barracuda, Bicuda, Bicuda cachorra, Bicuda de corso, Barracuda Carama, Carana, Corama, Gaviana, Goirana, Gorana, Guarana, Pescada, Pescada bicuda, Pescada goiva 491 Sphyraena borealis Bicuda, Barracuda, Bicuda de corso, Bicuda goirana 492 Sphyraena guachancho Barracuda, Bicuda, Bicuda branca, Bicuda goirana, Bicudinha, Bicuda branca Corama, Coroma, Goirana, Gorana, Pescada bicuda, Pescada goirana, Pescadinha bicuda 493 Sphyraena tome Bicuda, Pescada bicuda 494 Sphyrna lewini Cação cornudo, Cação martelo, Cação rudela, Cambeva, Cambeva preta Cambeva preta, Cornudo, Martelo, Peixe martelo, Rudela, Suzuki (1986) 495 Sphyrna mokarran Cação martelo, Cação panã, Cambeva, Martelo, Panã, Peixe Martelo gigante martelo Mod. from Carvalho & Branco (1977) 496 Sphyrna tiburo Cação, Cação campeba, Cação chapéu, Cação martelo, Cação Cambeva pata panã, Cação pata, Cação rodela, Cação rudela, Cambeva pata, Chapéu armado, Martelo, Pata, Peixe martelo, Rodela, Rudela, Tubarão panã Carvalho-Filho (1999) 497 Squatina punctata Cação anjo, Tubarão anjo espinhudo, Anjo, Anjo do mar Anjo da pedra Carvalho-Filho, pers. comm. 498 Starksia brasiliensis NENHUM Maria da toca malhada Carvalho-Filho, pers. comm. 499 Starksia multilepis NENHUM Maria da toca escamosa FishBase Baiacu de cavanhaque Bicuda goirana Bicuda pescada Sampaio & Nottingham (2008) Carvalho-Filho, pers. comm. Nomura (1984) Carvalho-Filho, pers. comm. Carvalho & Branco (1977) Mod. from Rocha & Costa (1999) 137 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). UNIQUE NAME SOURCE Nº SPECIES COMMON NAMES 500 Stegastes fuscus 501 Stegastes pictus Café torrado, Castanheta, Donzela, Donzela escura, Saberé café torrado Donzelinha, Maria mole, Maria preta, Querê querê, Saberê Cará, Castanheta, Donzela bicolor, Gregório, Saberé, Saberé bicolor Saberê, Saberê bicolor Mod. From Carvalho-Filho (1999) Mod. from Carvalho-Filho (1999) 502 Stegastes rocasensis Donzela, Saberé Saberé de Rocas Carvalho-Filho, pers. comm. 503 Stegastes sanctipauli Donzela de São Pedro e São Paulo Donzela de São Pedro 504 Stegastes trindadensis NENHUM Donzela de Trindade Mod. from Sampaio & Nottingham (2008) Freire, pers. comm. 505 Stegastes uenfi Donzela cinza, Gregório, Maria preta Donzela cinza 506 Stegastes variabilis Anjo, Cará, Castanheta, Donzela, Donzela amarela, Donzela Saberé amarelo cacau, Donzelinha amarela, Saberê, Saberê amarelo 507 Stephanolepis hispidus Cangulo, Cangulo Fernando, Esfaldado, Esfalfado, Porquinho de pedra Gudunho, Negro mina, Peixe porco, Peixe porco de pedra, Peroazinho, Peruá, Piraaca, Piruá, Porquinho, Porquinho de fronte reta Mod. from Carvalho-Filho (1999) 508 Stephanolepis setifer Cangulo, Peixe porco, Peixe porco de pedra, Peruá, Pirá aça, Porquinho de penacho Porquinho de penacho Sampaio & Nottingham (2008) 509 Storrsia olsoni NENHUM Tanduju de Rocas Carvalho-Filho, pers. comm. 510 Strongylura marina Agulha, Agulhão, Agulhinha Agulha do Atlântico Mod. from Godoy (1987) 511 Strongylura timucu 512 Stygnobrotula latebricola Acarapindá, Agulha, Agulhão, Agulhão roliço, Carapiá, Timucu Peixe agulha, Petimbuaba, Timbucú, Timicu, Timucu, Timucú, Timuçu Brótula negra, Latebrícola, Viúva negra Viúva negra 513 Syacium micrurum Linguado, Linguado da areia, Linguado dáreia, Solha, Tapa 514 Syacium papillosum Sampaio & Nottingham (2008) Carvalho-Filho (1999) Carvalho-Filho, pers. comm. FREIRE & CARVALHO FILHO Carvalho-Filho (1999) Mod. from Figueiredo & Menezes (2000) Aramaçá, Aramaçã, Linguado, Linguado da areia, Linguado Linguado do olho riscado Carvalho-Filho (1999) dáreia, Linguado de areia, Linguado do olho riscado, Solha, Solha de dente Linguado de canal 138 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME SOURCE 515 Symphurus diomedeanus Língua de mulata, Língua de mulato, Solha Língua de mulata de nadadeira pintada Szpilman (2000)/FishBase 516 Symphurus plagusia Língua, Língua de mulata, Língua de mulato, Língua de vaca, Língua de mulata de bochecha escura Linguado, Linguado mulato, Solha, Solha linguado Mod. from Nomura (1984) 517 Symphurus rhytisma Língua de mulata 518 Synodus foetens Bonome, Coió, Jacaré, Lagartixa, Lagarto, Lagarto do mar, Lagarto papo branco Peixe lagartixa, Peixe lagarto, Peixe lagarto costeiro, Tira vira, Tiravira, Traíra, Traíra do bico fino, Traíra do mar, Traíra do papo branco, Traíra papo branco Mod. from Carvalho & Branco (1977) 519 Synodus intermedius Calango, Lagartixa, Lagarto do mar, Peixe lagarto, Peixe Lagarto do raso lagarto de areia, Tira vira, Traíra, Traíra branca, Traíra das pedras, Traíra de água salgada, Traíra do mar, Traíra preta Carvalho-Filho, pers. comm. 520 Synodus saurus NENHUM 521 Synodus synodus Bom nome, Peixe lagarto, Peixe lagarto vermelho, Calango, Lagarto vermelho Lagarto do mar, Peixe pica, Traíra do mar 522 Thalassoma noronhanum Budião de Noronha, Sabonete das ilhas, Talassoma azul 523 Thalassophryne montevidensis 524 Thalassophryne nattereri Aniquim, Aniquim da lama, Moreiatim, Niqui, Niquim, Niquim Niquim do mar comum, Niquim da areia, Niquim do mar Nomura (1984) 525 Thalassophryne punctata Moreiatim, Niquim, Pacamão Szpilman (2000) 526 Thunnus albacares Albacora, Albacora da lage, Albacora da laje, Albacora de lage, Albacora laje Albacora de laje, Albacora lage, Albacora laje, Albacora lajeira, Alvacora, Alvacora lajeira, Atum, Atum amarelo, Atum galha amarela, Kihada, Kimeji, Kiwada, Lageira Rocha & Costa (1999) 527 Thunnus atlanticus Albacora, Albacora preta, Albacora rabo seco, Albacorinha, Albacorinha Atum, Atum negro, Atum preto, Binta Nomura (1984) Língua de mulata do rabo preto Lagarto azul Budião de Noronha Caboza, Mangangá, Niquim, Niquim barrado, Niquim do sul, Tumi tumi Tumi tumi Moreiatim Mod. from Szpilman (2000) Carvalho-Filho, pers. comm. Mod. from IBAMA Inst. Normativa 14/2004 Sazima et al. (2003) Carvalho-Filho (1999) 139 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME SOURCE 528 Tomicodon australis NENHUM Peixe ventosa mirim Carvalho-Filho, pers. comm. 529 Trachinocephalus myops Peixe cobra, Peixe lagarto, Traíra, Traíra branca, Traíra das Traíra do mar pedras, Traíra de água salgada, Traíra do alto, Traíra do mar Carvalho & Branco (1977) 530 Trachinotus carolinus Cangueiro, Enxova, Palombeta, Palometa, Palumbeta, Pampo cabeça mole Pampano, Pamplo, Pampo, Pampo amarelo, Pampo cabeça mole, Pampo da espinha mole, Pampo de cabeça mole, Pampo real, Pampo verdadeiro, Pereroba, Pirabora, Piraroba, Samenduara, Semenduara, Solteira Nomura (1984) 531 Trachinotus falcatus Arabebéu. Aracanguira, Arebebéu, Arecangura, Aribebéu, Pampo garabebéu Cernambiguara, Garabebel, Garabebéu, Pampo, Pampo arabebéu, Pampo galhudo, Pampo garabebéu, Pampo gigante, Pampo verdadeiro, Rombudo, Sangue de boi, Sernambiguara, Sernambiquara, Tambó Lima & Oliveira (1978) 532 Trachinotus goodei Aracanguito, Aratobaia, Aratubaia, Galhuda, Galhudinho, Pampo galhudo Galhudo, Jiriquiti, Pampino, Pampo, Pampo aracanguira, Pampo de espinha mole, Pampo espinha mole, Pampo galhudo, Pampo listado, Pampo listrado, Pampo malhado, Pampo mirim, Pampo riscado, Sargento, Sernambiquara Nomura (1984) 533 Trachurus lathami Carapau, Chicharro, Garaçuma, Surel argentino, Xinxarro, Chicharro lombo preto Xixarro, Xixarro de lombo preto, Xixarro do lombo preto Mod. from Nomura (1984) 534 Trichiurus lepturus Catana, Embira, Espada, Guaravira, Imbira, Peixe espada, Peixe Espada fita Nomura (1984) 535 Tylosurus acus Agulhão, Agulhão bebé, Agulhão bebeu, Agulhão lambaio, Agulhão lambaio Timbale Szpilman (2000) 536 Tylosurus crocodilus Agulhão, Agulhão bebé, Agulhão bebeu, Agulhão verde, Zamboque Zambaio roliço, Zamboque Lima & Oliveira (1978) FREIRE & CARVALHO FILHO Nº 140 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). SPECIES COMMON NAMES UNIQUE NAME 537 Umbrina coroides Betara, Cabeça seca, Castanha, Castanha riscada, Chora Castanha riscada chora, Corcoroca da areia branca, Coró branco, Corvina, Corvina branca, Corvina de linha, Corvina listada, Corvina nova, Corvina rajada, Corvina riscada, Cururuca lavrada, Cururuca riscada, Embetara, Embitara, Juruna, Mbetara, Ombrino, Papa terra, Papaterra de dentes, Roncador, Roncador taboca, Sargento, Tametara, Tembetara Nomura (1984) 538 Upeneus parvus Saramonete, Trilha, Trilha pena Trilha anã Mod. from Ávila da Silva & Carneiro (2003) 539 Uraspis secunda Boca de algodão, Cara de gato, Língua de algodão, Sabão Cara de gato Mod. from Nomura (1984) 540 Uropterygius macularius NENHUM Moréia manchada Carvalho-Filho, pers. comm. 541 Urotrygon microphthalmum Raia, Raia de fogo Raia de fogo Carvalho-Filho, pers. comm. 542 Xanthichthys ringens Cangulo mirim, Cangulo rei, Cangulo do alto, Gatilho preto Cangulo mirim Lima & Oliveira (1978) 543 Xyrichthys incandescens NENHUM Curuá fogo Carvalho-Filho, pers. comm. 544 Xyrichtys martinicensis NENHUM Curuá rosado FishBase 545 Xyrichtys novacula Bodião curuá, Budião, Budião de areia, Gudião, Peixe Budião curuá dragão Nomura (1984) 546 Xyrichtys splendens Carvalho-Filho, pers. comm. 547 Zapteryx brevirostris Budião curuá, Curuá verde, Peixe dragão, Peixe dragão Curuá verde verde Raia, Viola, Viola de cara curta Viola de cara curta SOURCE Nomura (1984) * Barletta (2002) corresponds to Mário Barletta (pers. comm., Universidade Federal de Pernambuco, Brazil); ** Rangel, pers. comm. (Carlos Rangel, Universidade Federal Fluminense, Centro de Estudos Gerais, Departamento de Biologia Marinha, Brazil); *** Sampaio, pers. comm. (Cláudio Sampaio, Museu de Zoologia da Universidade Federal da Bahia, Brazil); ****FishBase indicates common names translated and/or modified from www.fishbase.org 141 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Nº Richness of common names of Brazilian reef fishes Table III. List of all common names associated with Brazilian reef fish species and their unique name chosen according to the source presented (cont.). FREIRE & CARVALHO FILHO 142 Thus, there is an impact of the diversity of names when trying to assess how fisheries affect the resources (see, p. ex., Freire & Pauly 2005). Species commercialized among aquarists were associated to 4.8 common names each, which was smaller than the average of 7.2 for reef species in general. This probably occurs because these species are mainly exported (Monteiro-Neto et al. 2003) and their English names are commonly used in the international market. Size is another factor leading to the richness of fish names (one of the Berlin’s attributes). According to Hunn (1999), larger species have more names. The author presented evidence for several groups: mammals, birds, fishes and even plants. However, his evidence was based on rather poor regression fits. We showed here that species of intermediate size are more prone to be named and the richness of names decrease for the largest species. Even though the richness of names is important from the cultural point of view, it poses problems when dealing with regional or national scales. Problems are similar to the evidenced by the use of synonyms of scientific names and raise from the fact that we do not know what we are referring to (see, p.ex., Minelli 1999). The correct identification of species is a sine qua non condition to proper assess the effect of fishing on the local biodiversity. The use of the national official list of common names proposed here would be appropriate whenever species are dealt with in a national context (in scientific publications or reports), in catch statistics, and/or in legislation, just to represent the species with a name more accessible to the general public than the scientific name. For those cases where the species are dealt in a more local context, their local names should be used as usual and thus, the original richness of names is kept. The proposed unique names are not intended to replace local names, which reflect all the knowledge local communities have about their local resources, but represent only names to be used at a national scale, chosen based on well-established criteria from the array of existing names. The same procedure could be used for all the other marine and freshwater species. Acknowledgements We would like to thank all those who kindly sent their publications with common names; to those who suggested common names for species with no known published name; to D. Pauly who introduced the first author to the ‘world’ of common names; and to Cláudio Sampaio and two anonymous referees for their valuable corrections and suggestions. References Anon. 1976. Nomenclatura. Peixes marinhos espécies comerciais e suas diversas denominações locais. Boletim do Mercado Pesqueiro 8(11-12): 347-386. Ávila da Silva, A. O. & Carneiro, M. H. 2003. Produção pesqueira marinha do Estado de São Paulo no ano 2000. Série de Relatórios Técnicos n.11. São Paulo, Instituto de Pesca. 14 p. Barcellos, B. N. 1962. Nomes comuns dos peixes da costa do Rio Grande do Sul e seus correspondentes em sistemática. Boletim do Instituto de Ciências Naturais, Porto Alegre 15: 7-20. Begossi, A. 1989. Tabus alimentares na Ilha de Búzios, uma comunidade de pescadores. São Paulo, IOUSP, F. Ford, IUCN. Begossi, A. & Figueiredo, J. L. 1995. Ethnoichthyology of southern coastal fishermen: cases from Búzios Island and Sepetiba Bay (Brazil). Bulletin of Marine Science 56(2): 710-717. Berlin, B. 1992. Ethnobiological classification. Principles of categorization of plants and animals in traditional societies. Princeton, New Jersey, Princeton University Press. 335 p. Brandão, J. M. 1964. Glossário de nomes dos peixes: sistemático, português, inglês. Boletim de Estudos de Pesca 4(6): 1-59. Bueno, F. S. 1998. Vocabulário Tupi-Guarani Português. São Paulo, Brazil, Éfeta Editora. 688 p. Carvalho, V. A. & Branco, R. L.1977. Relação de espécies marinhas e estuarinas do nordeste brasileiro. P.D.P. Documentos Técnicos 25: 60 p. Carvalho-Filho, A. 1999. Peixes: costa brasileira. São Paulo, Melro. 320 p. CEPA-MA. 1978. Plano estadual de desenvolvimento da pesca. Subsídios ao IV Plano Nacional de Desenvolvimento da Pesca 1979/85. São Luís, Brasil, Secretaria da Agricultura. Comissão Estadual de Planejamento Agrícola (CEPA-MA). 175 p. CEPENE. 2000. Boletim estatístico da pesca marítima e estuarina do nordeste do Brasil - 1999. Tamandaré, Centro de Pesquisa e Extensão Pesqueira do Nordeste/IBAMA. 150 p. Chao, L. N., Pereira, L. E., Vieira, J. P., Bemvenuti, M. A. & Cunha, L. P. R. 1982. Relação Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Richness of common names of Brazilian reef fishes 143 preliminar dos peixes estuarinos e marinhos da Lagoa dos Patos e região costeira adjacente, Rio Grande do Sul, Brasil. Atlântica 5: 67-75. Cunha, A. G. 2001. Dicionário etimológico Nova Fronteira da língua portuguesa. Rio de Janeiro, Nova Fronteira. 839 p. Eschmeyer, W. N. 2008. Catalog of fishes. http://research.calacademy.org/research/ ichthyology/catalog/fishcatsearch.html (Accessed in 10/12/2008). Eskinazi-Leça, A. M. 1967. Lista preliminar dos peixes estuarinos de Pernambuco e estados vizinhos (Brasil). Trabalhos Oceanográficos da Universidade Federal de Pernambuco 9(11): 265-274. Espírito Santo, R. V., Isaac, V. J., Silva, L. M. A., Martinelli, J. M., Higuchi, H. & Saint-Paul, U. 2005. Peixes e camarões do estuário do litoral bragantino, Pará, Brasil. Belém, MADAM. 268 p. FAO, 1953. As pescarias brasileiras. Roma, Divisão de Pescas. 61 p. Ferreira, A. B. H. 1999. Dicionário Aurélio Eletrônico - Século XXI. Rio de Janeiro, Brasil, Lexicon Informática Ltda. Ferreira, B. P. & Cava, F. 2001. Ictiofauna marinha da APA Costa dos Corais: lista de espécies através de levantamento da pesca e observações subaquáticas. Boletim Técnico Científico do CEPENE 9(1): 167-180. Ferreira, B. P., Corrêa, F. C. & Ferraz, A. N. 1998. Relações morfométricas em peixes recifais da zona econômica exclusiva brasileira, região nordeste. Boletim Técnico Científico do CEPENE 6(1): 61-76. Figueiredo, J. L. 1977. Manual de peixes marinhos do sudeste do Brasil. I. Introdução. Cações, raias e quimeras. São Paulo, Brazil, Museu de Zoologia, Universidade de São Paulo. 104 p. Figueiredo, J. L. & Menezes, N. A. 1978. Manual de peixes marinhos do sudeste do Brasil. II. Teleostei (1). São Paulo, Brazil, Museu de Zoologia, Universidade de São Paulo. 110 p. Figueiredo, J. L. & Menezes, N. A. 1980. Manual de peixes marinhos do sudeste do Brasil. III. Teleostei (2). São Paulo, Brazil, Museu de Zoologia, Universidade de São Paulo. 90 p. Figueiredo, J. L. & Menezes, N. A. 2000. Manual de peixes marinhos do sudeste do Brasil. VI. Teleostei (5). São Paulo, Brazil, Museu de Zoologia, Universidade de São Paulo. 116 p. FISHTEC. 2003. O arrendamento de embarcações pesqueiras como instrumento de consolidação do desenvolvimento da pesca oceânica no Brasil. Natal, FISHTEC Consultores Associados. 43 p. Freire, K. M. F. 2003. A database of landing data on Brazilian marine fisheries from 1980 to 2000. Fisheries Centre Research Reports 11(6): 181-189. Freire, K. M. F. 2006. Analysis of common names of Brazilian freshwater fishes. Fisheries Centre Research Reports 14(4): 7-11. Freire, K. M. F. & Pauly, D. 2003. What's in there? Common names of Brazilian marine fishes. Fisheries Centre Research Reports 11(1): 439-444. Freire, K. M. F. & Pauly, D. 2005. Richness of common names of Brazilian marine fishes and its effect on catch statistics. Journal of Ethnobiology 25(2): 279-296. Froese, R. & Pauly, D. 2008. FishBase. http://www.fishbase.org. (Accessed in 10/12/2008). Garibaldi, L. & Busilacchi, S. 2002. ASFIS list of species for fishery statistics purposes. Rome, FAO. 258 p. Gasparini, J. L., Floeter, S. R., Ferreira, C. E. L. & Sazima, I. 2005. Marine ornamental trade in Brazil. Biodiversity and Conservation 14(12): 2883-2899. Godoy, M. P. (1987). Peixes do estado de Santa Catarina. Florianópolis, Brazil, Editora da UFSC. 571 p. Hunn, E. 1982. The utilitarian factor in folk biological classification. American Antropologist 84: 830-847. Hunn, E. 1999. Size as limiting the recognition of biodiversity in folkbiological classifications: one of four factors governing the cultural recognition of biological taxa. Pp. 47-69. In: Medin, D. L. & Atran, S. (Eds.). Folkbiology. Cambridge, Mass., Massacchusetts Institute of Technology. 524 p. Ihering, R. v. 1968. Dicionário dos animais do Brasil. Brasília, Editora Universidade de Brasília. 790 p. Lima, H. H. & Oliveira, A. M. E. 1978. Segunda contribuição ao conhecimento dos nomes vulgares de peixes marinhos do nordeste brasileiro. Boletim de Ciências do Mar 29: 1-26. Lopes, P. R. D. 1989. Catálogo dos peixes marinhos do laboratório de ictiologia da Universidade Federal do Rio de Janeiro. Parte I: Chondrichthyes (Rajiformes). Teleostei (Elopiformes a Dactylopteriformes). Revista Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 FREIRE & CARVALHO FILHO 144 Brasileira de Zoologia 6(2): 201-217. Martins-Juras, I. A. G., Juras, A. A. & Menezes, N. A. 1987. Relação preliminar dos peixes da Ilha de São Luís, Maranhão, Brasil. Revista Brasileira de Zoologia 4(2): 105-113. Menezes, N. A. & Figueiredo, J. L. 1980. Manual de peixes marinhos do sudeste do Brasil. IV- Teleostei (3). São Paulo, Brazil, Museu de Zoologia, Universidade de São Paulo. 96 p. Menezes, N. A. & Figueiredo, J. L. 1985. Manual de peixes marinhos do sudeste do Brasil. VTeleostei (4). São Paulo, Brazil, Museu de Zoologia, Universidade de São Paulo. 105 p. Minelli, A. 1999. The names of animals. Trends in Ecology & Evolution 14(12): 462-463. Monteiro-Neto, C., Cunha, F. E. A., Nottingham, M. C., Araújo, M. E., Rosa, I. L. & Barros, G. M. L. 2003. Analysis of the marine ornamental fish trade at Ceará State, northeast Brazil. Biodiversity and Conservation 12: 12871295. Mutti Pedreira, J. M. 1971. Dicionário de peixes de couro do Brasil. Belém, SUDAM, Assessoria de Programação e Coordenação Divisão de Documentação. 122 p. Nelson, J. S., Crossman, E. J., Espinosa-Pérez, H., Findley, L. T., Gilbert, C. R., Lea, R. N. & Williams, J. D. 2004. Common and scientific names of fishes from the United States, Canada, and Mexico. Bethesda, Maryland, American Fisheries Society, Special Publication 29. 386 p. Nomura, H. 1984. Nomes científicos dos peixes e seus correspondentes nomes vulgares. Pp. 2763. In: Nomura, H. (ed.). Dicionário dos peixes do Brasil. Brasília, Brasil, Editerra. 482 p. Paiva, M. P. 1981. Recursos pesqueiros marinhos e estuarinos do norte do Brasil. Brasília, SUDEPE. 127 p. Palomares, M. L. D., Garilao, C. V. & Pauly, D. 1999. On the biological information content of common names: a quantitative case study of Philippine fishes. Nouméa, Société Française d'Ichtyologie & Institut de Recherche pour le Développement: 861-866 Ramires, M. & Barrella, W. 2003. Ecologia da pesca artesanal em populações caiçaras da estação ecológica de Juréia-Itatins, São Paulo, Brasil. Interciência 28(4): 208-213. Robins, C. R., Bailey, R. M., Bond, C. E., Brooker, J. R., Lachner, E. A., Lea, R. N. & Scott, W. B. 1991. Common and scientific names of fishes from the United States and Canada. American Fisheries Society, Special publication, 20: 183 p. Rocha, L. O. F. & Costa, P. A. S. 1999. Manual de identificação de peixes marinhos para a costa central. Programa REVIZEE / SCORECentral. 66 p. Rosa, R. S. 1980. Lista sistemática de peixes marinhos da Paraíba. Revista Nordestina de Biologia 3(2): 205-226. Sampaio, C. L. S. & Nottingham, M. C. 2008. Guia para identificação de peixes ornamentais Volume 1: espécies marinhas. IBAMA, Brasília. 205 p. Sanches, J. G. 1989. Nomeclatura portuguesa de organismos aquáticos (Proposta para normalização estatística). Lisboa, Instituto Nacional de Investigação das Pescas, n. 14. 322 p. Santos, E. 1982. Nossos peixes marinhos (Vida e costume dos peixes do Brasil). Belo Horizonte, Brasil, Editora Itatiaia Limitada. 265 p. Santos, M. C. F., Freitas, A. E. T. S. & Silva, M. M. 1998. Composição da ictiofauna acompanhante da pesca de camarão em Tamandaré/PE e Pontal do Peba/AL. Boletim Técnico Científico do CEPENE 6(1): 47-60. Sazima, I., Krajewski, J.P., Bonaldo, R.M. & Sazima, C. Uma história do mundo natural: peixes recifais em Fernando de Noronha. (in press). SEAP/PROZEE/IBAMA. 2006. Monitoramento da atividade pesqueira no litoral do Brasil. Relatório técnico final. Brasília, SEAP/PROZEE/IBAMA. 328 p. SIL International. 2008. Languages of Brazil. From: Ethnologue: Languages of the World. 15th edition. www.ethnologue.com (Accessed in 10/12/2008). Soares, L. H. 1988. Catálogo dos peixes do litoral do Estado do Rio Grande do Norte. Boletim do Departamento de Oceanografia e Limnologia do Centro de Biociências da Universidade Federal do Rio Grande do Norte 7: 1-39. SUDENE. 1976. Pesquisas dos recursos pesqueiros da plataforma continental maranhense. Série Estudos de Pesca 6: 1-67. Suzuki, C. R. 1986. Guia de peixes do litoral brasileiro. Rio de Janeiro, Brazil, Edições Marítimas. 394 p. Szpilman, M. 2000. Peixes marinhos do Brasil: Guia prático de identificação. Rio de Janeiro, Instituto Ecológico Aqualung. 288 p. Tibiriçá, L. C. 1984. Dicionário Tupi-Português Com esboço de gramática de tupi antigo. Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Richness of common names of Brazilian reef fishes 145 Santos, Brasil, Traço Editora. 200 p. UNIVALI/CTTMar. 2004. Boletim estatístico da pesca industrial de Santa Catarina - ano 2003. Itajaí, Universidade do Vale do Itajaí , Centro de Ciências Tecnológicas da Terra e do Mar. 80 p. Vecchione, M., Mickevich, M. F., Fauchald, K., Collette, B. B., Williams, A. B., Munroe, T. A. & Young, R. E. 2000. Importance of assessing taxonomic adequacy in determining fishing effects on marine biodiversity. ICES Journal of Marine Science 57: 677-681. Welcomme, R. L., Richards, R. & Neiva, G. S. 1979. Relatório da missão sobre peixes ornamentais. PDP Série Documentos Traduzidos,9:1-41. Received October 2008 Accepted February 2009 Published online April 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 96-145 Evolution and state of the art of fishing capacity management in Peru: The case of the anchoveta fishery MARTIN ARANDA1 1 AZTI Tecnalia, Technological Institute for Fisheries and Food. Marine Research Division. Herrera Kaia - Portualdea, z/g; E-20110. Spain. E-mail: maranda@pas.azti.es Abstract. The Peruvian anchoveta fishery began in the early 1950s and has become one of the most important fisheries in the world in terms of landings and fishmeal production. Fisheries management in Peru has evolved from regulated open access to recently introduced individual vessel quota management. This paper aims to examine the evolution of fishing capacity management and identify the management actions that have determined the current levels of fishing overcapacity. A lack of a solid policy to stop fishing capacity accumulation together with management susceptibility to industry pressure are likely the main causes of the historical levels of overcapacity, which has recently encouraged a drastic change in the management system. Key words: Peruvian anchoveta, fishing capacity, regulated open access, IVQs, ITQs Resumen. Evolución y situación de la gestión de la capacidad de pesca en Perú: El caso de la pesquería de anchoveta. La pesquería de anchoveta peruana se inició a principios de los años cincuenta y se ha convertido en una de las pesquerías más importantes del mundo en términos de desembarques y producción de harina de pescado. La gestión de la pesquería ha evolucionado desde un acceso abierto regulado a un sistema de cuotas individuales por embarcación. Este artículo tiene como objetivo revisar la evolución de la gestión de la capacidad de pesca e identificar las decisiones que han determinado los niveles actuales de sobrecapacidad. La falta de una política sólida para impedir la acumulación de la capacidad de pesca junto con una gestión susceptible a la presión de la industria serian las causas principales de los niveles históricos de sobrecapacidad que han demandado un cambio drástico en la gestión de la pesquería. Palabras clave: Anchoveta peruana, capacidad de pesca, acceso abierto regulado, IVQs, ITQs Introduction Fishing overcapacity is an acute problem that threatens marine fisheries due to over-fishing while producing significant economic waste (FAO 1999). One notable case of capacity accumulation is that of the Peruvian pelagic fishery. The fishery focuses on the exploitation of anchoveta (Engraulins ringens) for fish meal production. Other pelagics are mainly utilised in canning and freezing (Fig. 1). The anchoveta fishery is managed using a ‘top-down’ approach where the management authority attempts to enforce a Total Allowable Catch (TAC). High abundance of anchoveta and historical management decisions have allowed the development of a large fleet (Fig. 2). Throughout the history of the fishery, capacity accumulation has been considered detrimental to its sustainability. Overcapacity tends to be more dangerous due to the continuous threat of El Niño. The collapse of the anchoveta fishery in early 1970s shows how a natural phenomenon together with over-fishing, can drive a resource to exhaustion (Boerema & Gulland 1973, Tsukuyama 1983). The crash of the anchoveta fishery has become a paradigmatic case for study and is analysed in several academic texts e.g. Hilborn & Walters (1992). Currently, high levels of capacity are being suggested as the cause of the race for fish a situation where 1200 vessels competing for the TAC have reduced the fishing season to 50 days (Fig. 3). The government has recently passed Law 1084 which advocates the implementation a new system to manage the fleet through individual vessel quotas (IVQs). This paper reviews the theoretical concepts Pan-American Journal of Aquatic Sciences (2009), 4(2): 146-153 Evolution and state of the art of fishing capacity management in Peru behind overcapacity and the race for fish; examines the diverse management measures undertaken by the Peruvian government, from the early times of the fishery to the recently introduced management decisions; and assesses the new management scheme as a tool to reduce fishing capacity. Theoretic background. It is widely recognised that pure and regulated open access are the main causes of overcapacity. Pure open access is defined as the state where access rights do not exist or are poorly defined. In a regulated open access, access rights are weakly defined and the management system attempts unsuccessfully to enforce a Total Allowable Catch (TAC). Due to the common pool characteristic of resource exploitation, individuals have the incentive of taking a bigger share of the TAC. This race for fish encourages fishers to invest in larger and more modern vessels to ensure larger individual shares (Grevobal & Munro 1999). Consequently, resources are gradually depleted and the fishing season becomes shorter. Because of rent dissipation, the fishery becomes vulnerable to adverse economic and resource shocks. In this context, fishers may press the government to provide subsidies to alleviate economic distress, increase the TAC or lengthen the fishing season. Other factors that may lead to overcapacity are inter alia the evolution of competitive fishing industries, the rapid development of harvesting technology and the expansion of fish markets (Cunningham & Grévobal 2001). The traditional management of resources that stipulate input (i.e. limits on fishing effort, closed seasons and fishing gear) and output restrictions (i.e. TACs) may not control capacity efficiently. On the contrary, they may induce redistribution of effort across fisheries or accumulation of capacity (Grévobal & Munro 1999). Among the management measures to counteract capacity building, Ward and Metzner (2002) outline two types of strategies: incentive blocking measures and incentive adjusting measures. The former measures aim at blocking fleet capacity building. They include limited license programs, vessel buyback schemes, gear and vessel restrictions, individual vessel quotas (IVQs), TACs, and individual effort quotas. The main difficulty in implementing these measures is ensuring compliance. Should a fisher be prevented from increasing profits by a certain regulation, he will have the incentive to circumvent that regulation; hence he will find the means to increase capacity by increasing or substituting inputs. This fact is prone to occur where penalties and mechanisms of enforcement are not strong enough to prevent non- 147 compliance. On the other hand, incentive adjusting measures offer long-term strategies to control overcapacity by creating a sense of ownership, thus the race for fish may be eliminated by fishers themselves through capacity reduction. Even though incentive adjusting measures are the most effective solutions to counteract overcapacity, they are hard to implement since they require a drastic change in the management apparatus. These measures comprise territorial use rights (TURFs), individual transferable quotas (ITQs) and collective fishing rights (Ward & Metzner 2002). Early fishing capacity management. The production of fishmeal started in Peru in 1950. Landings of Peruvian anchoveta increased rapidly from 1200 tons in 1951 to more than 6.6 million tons in 1963 converting the Peruvian fishmeal industry into the largest in the world (Christy & Scott 1967, Bottemanne 1972). In 1963, the scientific authority, IMARPE (“Instituto del Mar del Perú”) was founded. In 1965, scientists recommended the first TAC of 7 million tons and the first closed season to deter heavy exploitation (IMARPE 1965, Clark 1976). Due to resource abundance and high demand for fishmeal, the fishing fleet experienced fast growth. In 1951, 25 vessels were registered. In 1964, the fleet had expanded to 1744 boats. This frenzy of shipbuilding persisted throughout the 1960s and early 1970s (see Fig. 2). The fleet was built without clear and strong restrictions since management rules were poorly defined. The administration and formulation of the Peruvian fishery policy was spread amongst diverse ministries, none of which had fisheries management as their main task (Hammergren 1981). In 1965, IMARPE reported that there was evidence of overexploitation and recommended measures to deter the escalating rate of fleet building (IMARPE 1965). In 1969, the military government created the Ministry of Fisheries and empowered it as the national management authority (Guerra 1972). Only restrictions to fishmeal plant installation were devised (Montoya 2003), however, and in 1971, landings reached 12.3 million tons which is the highest level ever experienced for a single-species fishery in the world (see Fig. 1). Then, in 1972, the industry was hit by a particularly strong El Niño event. During 1972-73, the anchoveta population was seriously depressed (Tsukuyama 1983). Two major causes may have produced the collapse of anchoveta: the El Niño event and overfishing (Boerema & Gulland 1973). Since 1965 IMARPE recommended TACs but in practice, catches exceeded the scientifically recommended Pan-American Journal of Aquatic Sciences (2009), 4(2): 146-153 M. ARANDA 148 denationalized the fishing fleet due to the impossibility of subsidizing the fleet during years of poor catches (Glantz 1979). In early 1980s, the anchoveta stock apparently began to recover but was hit again by the strong El Niño 1982-83 (Tsukuyama 1983). The population of anchoveta was again seriously reduced. Throughout the rest of the 1980s, the stock did not recover to former levels. In this period, few management measures were undertaken in relation to fleet size. One of the most notable measures was the export of idle purse seiners to other countries in Latin-America (Sueiro 1996). The effect of the 1980s crisis was reflected in deterioration and age of the fleet. In late 1980s, 80% of the 373 boats that composed the industrial fleet were poorly equipped and older than 20 years (Garcia Mesinas 1993). quota. It was obvious that the enforcement system was not strong enough to ensure compliance with the TACs. Because of the fleet size, adherence to a TAC of 7.5 million tons required a shorter fishing season. Few boat owners could afford to tie up their boats due to fishmeal plants demanding raw material to satisfy the high international demand (Laws 1997). After the catastrophic El Niño, the military government nationalised the industry with the aim of rationalizing the activity and preserving the resource (Glantz 1979). The government created the state owned Pesca-Peru. This large company started its activities with 1154 fishing vessels and 99 fishmeal plants. The government decided to apply corrective measures such as a drastic reduction of the fleet and a moratorium on vessel licensing and construction (Laws 1997). In 1976, the government 14,000 anchovy 12,000 sardine mackerel & jack mackerel total Thousands tons 10,000 8,000 6,000 4,000 2,000 0 2006 2004 2002 2000 1998 1996 1994 1992 1990 1988 1986 1984 1982 1980 1978 1976 1974 1972 1970 1968 1966 1964 1962 1960 1958 1956 1954 1952 1950 Figure 1. Evolution of the Peruvian pelagic fisheries 1950-2006. Data source: PRODUCE. The 1990s: a new era of capacity building. Throughout the period 1990-1995 and 1995-2000, a new democratic government adopted neo-liberal economic policies. The most important action was the privatisation of Pesca-Peru. The new policies and the recovery of anchoveta stocks offered an optimal environment for the industry to invest in fleet and processing capacity. Industry’s investment in the period 1991-1995 was estimated at $ 400 million. (Aguilar et al. 2000). Consequently, the fleet experienced a sharp increase in capacity. In 1990, the fleet consisted of 386 vessels and by 1996 it had increased to 727. In December 1992, the current General Law of Fisheries (Gobierno del Perú 1992) was promulgated and forms the backbone of fisheries management in Peru. The General Law devised measures to prevent capacity building. Article 24, for example, required new vessel entries to be balanced by decommissioning older boats. Many firms were authorised to build vessels only for the human consumption fishery. These firms found, however, means to divert effort to the anchoveta fishery (Thorpe et al. 2000). Consequently, overcapacity levels were again reached. Pan-American Journal of Aquatic Sciences (2009), 4(2): 146-153 Evolution and state of the art of fishing capacity management in Peru In 1998, the government passed Law 26920 (Gobierno del Peru 1998) which authorises owners of boats larger than 30 m3 of fish-hold capacity to harvest anchoveta for the fish meal industry. This segment is known locally as the ‘Viking’ fleet due to the wide shape of the hull. Law 26920 has partially alleviated the economic needs of a sector of the artisanal fleet but has substantially increased fleet size up to 1200 purse seiners (see Fig. 1). Currently, the pelagic industrial fleet comprises two clearly differentiated segments: the large-scale fleet and the wooden fleet. This fleet sector is comprised mainly of steel vessels, larger than 120 m3 carrying capacity. It is composed of 608 vessels with a combined fish-hold capacity of circa 180000 m3. The small-scale fleet ranges from 30 m3 to 119 m3 carrying capacity and comprises 592 purse seiners with a combined fish-hold capacity of circa 32000 m3. During recent years, great concern has arisen regarding the fishing activities of the latter sector due to the fact that part of the fleet lacks the mandatory satellite-tracking devices. This renders them prone to committing illegal fishing of anchoveta for industrial purposes within 5 nautical miles of the coast. By law, this zone is reserved for artisanal fishing. Both segments of the fleet supply raw material to 140 fishmeal plants scattered along the Peruvian littoral. Local researchers have realised that the overcapacity of the industrial fleet generates a race for fish behaviour that shortens fishing seasons and increases running costs (Chavez 2000). Overcapacity has also been a concern for the stakeholders. In 1998, the National Society of Fisheries, the most influential association of fishing companies, proposed a decommissioning programme where firms wishing to stay in the fishery had to buy out 25000 m3 from those firms wishing to leave the trade. They suggested the creation of a fund contributed to by fishmeal producers with a fee of 10 dollars per tone of fishmeal exported (Anon 1998). In 2007 the association of boat owners, which represents the small-scale operators, suggested to the government to buy back capacity from boat owners wishing to leave the activity. They suggest the creation of a fund contributed to by all boat owners with a fee of 2 dollars per landed anchovy (PRODUCE 2007). Since 2006 the levels of capacity exhibit strong dynamics associated with changes in ownership and the concentration of capacity by the largest operators. For example, the seven largest companies concentrate 50% of fish-hold capacity (Arroyo 2007). As recently as 2007, fishing 149 companies invested $ 800 million dollars in buying out fishing capacity to increase their participation in the fishery (Anon. 2007). Implementation of IVQs to enhance capacity control. Incentive-adjusting measures to counteract overcapacity such as Individual Transferable Quotas (ITQs) were first proposed by the World Bank in 1992 (Hidalgo 2002). In 2002, the Vice-ministry of Production (former Ministry of Fisheries) proposed the introduction of an ITQ system in the fishery for anchoveta and sardine. In June 2003, a new fisheries administration confirmed to the local media the government’s willingness to implement an ITQ scheme from 2004 (Anon 2003). The proposal was finally shelved. These measures have proven to be difficult to implement due to strong opposition by certain factions of fishermen and politicians due to their belief that they will be detrimental to the social fabric. Indeed, theoretically, ITQs may produce a concentration of wealth in a few efficient hands by expelling less efficient agents from the fishing activity (del Valle et al. 2006). In June 2008, the Presidency of the Republic enacted Law 1084 (Gobierno del Perú 2008) entitled ‘Maximum Catch Limits per Vessel’. This new management instrument can be categorised as an incentive-blocking capacity measure which utilises IVQs. It aims to control capacity and deter the race for fish. The decision to introduce individual quotas is a potential turning point in the management of this fishery and has been welcomed by the National Society of Fisheries, despite having faced opposition from the Association of Boat Owners of the 26920 (PRODUCE 2007). The recently launched Peruvian IVQ system is described in Aranda (2009). The large-scale and the small-scale fleets are eligible for initial allocation of a share of the Total Allowable Catch (TAC). The rights allocation is based on the best years of landings since 2004. Rights allocation is carried out on a temporary basis; the validity period of an allocated right is 10 years. Rights are attached to the vessel itself and the fishing license. Should a boat be withdrawn, its remaining rights can be accumulated to other boats belonging to the same boat owner. Should a boat not fully utilise its rights in a given season, it cannot carry over the remaining rights into the following season. The IVQ scheme assures rights-holders that the management system will not changeby devising the Contract of Permanence of the Management System. This legal instrument may enhance security and provide stakeholders incentives to invest in modernisation of fleets and plants.The government Pan-American Journal of Aquatic Sciences (2009), 4(2): 146-153 M. ARANDA 150 relies on such incentives to motivate stakeholders to eliminate redundant capacity. 2,000 14,000 1,800 Vessels 12,000 anchovy 1,600 Fleet size 1,200 8,000 1,000 6,000 800 600 4,000 Anchovy landings (1,000 tons) 10,000 1,400 400 2,000 200 2006 2004 2002 2000 1998 1996 1994 1992 1990 1988 1986 1984 1982 1980 1978 1976 1974 1972 1970 1968 1966 1964 1962 1960 1958 1956 1954 1952 0 1950 0 Figure 2. Comparison between fleet size and anchovy landings 1950-2006. Data source: PRODUCE. 1,400 300 Vessels Days 1,200 250 1,000 800 150 600 Fishing season Fleet size 200 100 400 50 200 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 0 1990 0 Figure 3.Comparison between fleet size and the length of the fishing season. Source: PRODUCE The IVQ system enhances the monitoring, control and surveillance system (MCS) by mandatory installation of satellite-tracking devices (VMS) in every single vessel. Costs of the improved MCS are to be recovered from the stakeholders. The new management instrument also devises a variety of provisions to counteract the social distress that may arise from the IVQ approach, such as voluntary retirement of crews and measures to provide labour opportunities for crews outside the fishing activity. The Peruvian IVQ model aims at stopping the race for fish without allowing the full transferability of rights and thus concentration of wealth amongst a few operators. The choice of non-transferability, however, may not substantially cut down overcapacity (Arnason 2000). Pan-American Journal of Aquatic Sciences (2009), 4(2): 146-153 Evolution and state of the art of fishing capacity management in Peru Conclusions and final considerations Due to the failure of regulated open access, the management of fishing capacity in Peru has been characterised by the implementation of measures aimed at correcting rather then preventing capacity accumulation. Throughout five decades of history, managers have been unable to deter capacity building in a fishery where resource abundance and high international demand for fishmeal have encouraged investment. In addition, governments in the 1990s allowed capacity building to both support the re-emergence of the industry and alleviate distress in the small-scale fisheries. Due to these measures the fleet has expanded to a size similar to that prior to the big crash in the 1970s (Fig. 2). A lack of a solid policy on the prevention of capacity accumulation and the feeblenesses of the system to withstand pressure from fishers are likely the main causes of capacity accumulation throughout the history of the fishery. The introduction of the IVQ system is a breakthrough in the management process and establishes a well defined platform for the control of capacity as it allocates rights only to licensed vessels and does not allow new entries. It does not, however, make provisions for voluntary or mandatory withdrawal of redundant capacity either. So, capacity levels may remain fairly constant or only be reduced smoothly if stakeholders decide to withdraw less viable units in order to reduce costs. The provisions allowing the accumulation of rights in cases of withdrawals of given boats may result in some boat owners deciding to harvest their quotas using fewer vessels. However, this fishery is economically attractive. Large investments in capacity building prove this point. Since the purchase of vessels is the only way outsiders may enter the fishery, it is likely that vessels and their associated rights and licenses will attain high prices. Thus it would be an incentive for rights holders to not decommission their fishing vessels. In this context, if the strict system of control of individual catches fails, it could give raise to a new race for fish. The fear of the concentration of rights has determined the non-transferability of the new system. However, concentration is a phenomenon that has taken place in the fishery anyway, especially during the last 3 years. Complementary measures to allow a certain degree of transferability among boat owners may speed up fleet reduction since more efficient agents will buy out rights and eliminate less viable vessels. The case of the Icelandic management system is a good example of this phenomenon (Arnason 2008). Transferability also 151 provides flexibility to compensate surpasses in the use of individual quotas since boat owners may buy or rent quotas to compensate quota overshooting and thus avoid discarding. International examples such as the Norwegian IVQ system show that boat owners try to incorporate missing transferability (Hersoug et al. 2000). Hence, clear rules should be established to allow accountable transferability. In addition, incentives to decommission and even scrap less viable vessels should be provided to permanently eliminate the threat of a latent race for fish. Acknowledgments The author wishes to express his gratitude to one anonymous reviewer and to his colleague Israel Montoya at the Universidad Nacional Federico Villarreal del Peru for his valuable aid in supplying key information. The author is also indebted with AZTI Tecnalia for its support in the writing of this manuscript and with Paul de Bruyn for the revision of the English. Any error remains the sole responsibility of the author. References Aguilar, A., Reid, C., Thorpe, A. 2000. The political economy of marine fisheries development in Peru, Chile and Mexico. Journal of LatinAmerican Studies, 32: 503-527. Anon. 2003. Perú – cuotas pesqueras a partir del 2004. La Republica, 15 de abril 2003. Anon. 2007. Peru in $ 800 million buy-up speed. Fishing News International, November 1st 2007, accessible at http://www.intrafish.no/fni/archive/?action=S earch. (Accessed at 18/01/2009). Anon. 1998. Propuesta del sector pesquero empresarial, con relación al sistema de sistema de cuotas individuales transferibles. Pesca, noviembre-diciembre 1998: 5-6. Aranda, M. 2009. Developments on fisheries management in Peru: The new individual vessel quota system for the anchoveta fishery. Fisheries Research, 96: 308-312. Arnason, R., 2008. Iceland’s ITQ system creates new wealth. Electronic Journal of Sustainable Development, 1 (2): 36–41. Accessible at http://www.ejsd.org/docs/ICELANDS_ITQ_S YSTEM_CREATES_NEW_WEALTH.pdf Arroyo, E. 2007. Proceso de adquisiciones en el sector pesca. Repercusión en el financiamiento. Pesca Responsable, Año X, 47, agosto 2007: 32-33. Arnason, R. 2000. Property rights as a means of Pan-American Journal of Aquatic Sciences (2009), 4(2): 146-153 M. ARANDA 152 economic organization. Pp. 14 – 25. In: R. Shotton (Ed.). Use of property rights in fisheries management. FAO Fisheries Technical Paper 404/1. FAO, Rome, 320 p. Boerema, L. K., Gulland, J. A. 1973. Stock assessment of the Peruvian anchoveta (Engraulis ringens) and management of the fishery. Journal of the Fisheries Research Board of Canada, 30: 2226-2235. Bottemanne, C.J. 1972. Economía de la pesca. Fondo de Cultura Económica, México, 570 p. Clark, W. G. 1976. The lessons of the Peruvian anchoveta. California Cooperative Oceanic Fisheries Investigation, Reports, Volume XIX, 1st July 1975 to 30th July 1976: 57 – 63. Christy, F.T, Scott, A. 1967. La pesca oceánica. Explotación de una riqueza común. Uteha, Mexico, 305 p. Chavez, C. 2000. Flota pesquera industrial pelágica. Pesca, Marzo-Abril, 2000: 15–17. Cunningham, S. and Grévobal, D. 2001. Managing fishing capacity. A review of policy and technical issues. FAO Fisheries Technical Paper 409. FAO, Rome, 60 p. del Valle, I., Hoefnagel, H., Astorkiza, K., Astorkiza, I. 2006. Right-based fisheries management. Pp. 53 – 84. In: Motos, L., Wilson, D. (Eds.). The knowledge base for fisheries management. Elsevier, Amsterdam, 454 p. FAO. 1999. International plan of action on the measurement of fishing capacity. FAO, Rome. Glantz, M. H. 1979. Science, politics and economics of the Peruvian anchoveta fishery. Marine Policy, July 1979: 201-210. Gobierno del Perú. 1992. Ley general de pesca. Aprobada por Decreto Ley 25977. Publicada en el diario oficial El Peruano, 22 de diciembre de 1992. Gobierno del Perú. 1998. Ley 26920. Ley que exceptúa del requisito de incremento de flota al que se refiere el articulo 24 de la Ley General de Pesca a aquellos armadores que cuenten con embarcaciones de madera de hasta 110 m3. Publicada en el diario oficial El Peruano, 31 de enero de 1998. Gobierno del Perú. 2008. Ley 1084. Ley sobre límites máximos de captura por embarcación. Aprobada por Decreto Ley 1084. Publicado en el diario oficial El Peruano, 28 de junio de 2008. Grévobal, D. and Munro, G. 1999 Overcapitalisation and excess capacity in world fisheries: Underlying economics and methods of control. Pp. 1 – 48. In: D. Grevóbal (Ed.). Managing fishing capacity. Selected papers on underlying concepts and issues. FAO Fisheries Technical Paper 386. FAO, Rome, 206 p. Guerra, A. 1972. Fisheries management in Peru. Marine Pollution Bulletin, Volume 3, Issue 3, March 1972: 39-40. Hammergren, L. 1981. Peruvian political and administrative responses to El Niño, organizational, ideological, and political constraints on policy change. In: Glantz, M., Thompson, J. (Eds.). Resources management and environmental uncertainty. Lessons from coastal upwelling fisheries. Wiley Series in Advance Environmental Science and Technology, John Wiley and Sons, New York, 510 p. Hersoug, B., Holm, P., Stein, A.R., 2000. The missing T. Path dependency within an individual vessel quota system—the case of the Norwegian cod fisheries. Marine Policy, 24: 319–330. Hidalgo, J. 2002. Cuotas individuales de pesca: Propuesta de política para la eficiencia pesquera y la conservación de los recursos hidrobiológicos. Sociedad Peruana de Derecho Ambiental, Lima, 151 p Hilborn, R., Walters, C. 1992. Quantitative fisheries stock assessment. Chapman and Hall Inc., London, 570 p. IMARPE. 1965. Efectos de la pesca en el stock de anchoveta. Informe Instituto del Mar del Perú, Nº 7, 16 p. Laws, E., 1997. El Niño and the Peruvian anchoveta. University Science Books, California, 58 p. Montoya, I. 2003. Dimensionamiento optimo de la flota de consumo humano indirecto. Tesis de ingeniero pesquero. Universidad Nacional Federico Villarreal, Lima, 112 p. PRODUCE. 2007. Informe final de evaluación y propuestas acerca de la pesquería industrial de anchoveta, Comisión especial, Resolución Ministerial 215-2006PRODUCE. Noviembre del 2007, Lima. Sueiro, J.C. 1996. Estimación del Esfuerzo Pesquero en la Flota Industrial de Cerco 1986-1993. Tesis de economista. Universidad Católica del Perú, Lima, 120 p. Thorpe, A., Aguilar, A., Reid, C. 2000. The new economic model and marine fisheries development in Latin America. World Development, 28 (9): 1689-1702. Tsukayama, I., 1983. Recursos pelágicos y sus Pan-American Journal of Aquatic Sciences (2009), 4(2): 146-153 Evolution and state of the art of fishing capacity management in Peru pesquerías en Perú. Revista Comisión Permanente del Pacífico Sur, 13: 25–63. Ward J. M. and Metzner, R. 2002. Fish harvesting capacity, excess capacity, and overcapacity. 153 A synthesis of measurements studies and management strategies in marine capture fishery. FAO Fisheries Report No.691, Rome, 89 p. Received September 2008 Accepted February 2009 Published online April 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 146-153 Size and number of newborn juveniles in wild Hippocampus reidi broods ANA CECÍLIA GIACOMETTI MAI1 & DANIEL LOEBMANN2 1 Laboratório de Ictiologia, Universidade Federal do Rio Grande - FURG, Av Itália km 8, CEP 96201-900, Rio Grande, RS, Brazil. E-mail: anacecilia_mai@yahoo.com.br 2 UNESP, Rio Claro – SP, Instituto de Biociências, Laboratório de Herpetologia. Av. 24A, 1515, Bairro Bela Vista, CEP 13506-900 Rio Claro, SP, Brazil. E-mail: contato@danielloebmann.com Abstract. Four births of Hippocampus reidi Ginsburg, 1933 were monitored for the first time under natural conditions. This study provides the fish estimate of fecundity in the wild, which is an important parameter for assessing population dynamics and management strategies. Key words: Seahorse, reproduction, fecundity, newborn size. Resumo. Número e tamanho dos recém-nascidos de Hippocampus reidi em ambiente natural. Quatro eventos de nascimento de Hippocampus reidi Ginsburg, 1933 foram acompanhados pela primeira vez em ambiente natural. Este estudo traz a estimativa da fecundidade da espécie em ambiente natural, que é um importante parâmetro para avaliar a dinâmica populacional e estratégias de manejo. Palavras-chave: Cavalo-marinho, reprodução, fecundidade, tamanho dos recém-nascidos. Total reproductive success, ideally defined as the lifetime total offspring to reach maturity (i.e. to be able to breed), is the product of fecundity (number of offspring produced per mating event), number of mating events per season, adult reproductive life span and offspring survival (Clutton-Brock 1988). For seahorses, underwater surveys and catch data has been recently utilized in models to estimate the duration of the reproductive season, female spawning frequency, male brooding frequency, and batch fecundity (Curtis 2007). In general, in most of the seahorses species, the males release about 100 - 300 young per pregnancy, but brood size can range from as few as five, for the small species H. zosterae, to approximately 2000 young by a single H. ingens male (Foster & Vincent 2004). The present study measures the number and size of juvenile H. reidi under natural conditions. During the period of December 2006 to March 2007, throughout visual search method in the borders of the Camurupim River estuary, Piauí state, Brazil (UTM 0230727, 9676724; 24 M zone; Datum WGS 84), males found with distended pouch were encaged and monitored daily, until the offspring birth. The cage was rectangular with dimensions of 30 x 30 x 45 cm, covered with mesh of 0.5 mm, and containing an artificial holdfast for the male to grasp. The algae Caulerpa sertularioides or Enteromorpha sp. (and its associated fauna) were offered in order to complement the diet of the seahorses. Also, the cage was cleaned daily to avoid the mesh clogging by micro algae and sediment. This research was authorized by Brazilian Institute of Environment and Renewable Natural Resources (IBAMA - license number 10682-1). From each male studied, the following parameters were taken: the height of the individuals measured according to Curtis & Vincent (2006) and the size of the brood pouch. After giving birth, the male was released to the same place where it had been found. Simultaneously, the total number of newborns was recorded. Ten individuals per brood were randomly chosen and photographed with Digital Machine (Cannon A620). The photographs were analyzed with the software Image Tools for Windows v. 3.0, making it possible to record the size of newborns. After this procedure, the offspring Pan-American Journal of Aquatic Sciences (2009), 4(2): 154-157 Size and number of newborn juveniles in wild Hippocampus reidi broods were released in the environment. During this study, three pregnant males were monitored. In order to avoid pseudo-replication, only the first brood recorded for each male was included in the analysis, recognized by the presence 155 of nature tags. The monitored males ranged in height from 15.1 to 16.5 cm (mean 15.6 cm) and the newborns from 0.44 to 0.66 cm (mean 0.54 ± 0.051 cm; n= 30). Offspring number ranged from 202 to 652 (mean 375 ± 242.4; n= 3) (Table I). Table I. Morphometric data of Hippocampus reidi from each reproductive male and their respective offspring, birth date, and captivity period of the males in the cage. A A B C Height (mm) 151 152 140 165 Pouch length (mm) 31.1 31.3 30.3 35.6 Birth date (month/day/year) 12/29/2006 02/09/2007 01/06/2006 03/15/2007 Days in the cage 3 1 6 6 Offspring number 202 274 652 271 Mean offspring height (mm) 5.4 4.9 5.1 5.8 Standard deviation in offspring height 0.38 0.61 0.41 0.56 Range in offspring height (mm) 5-5.9 4.1-6.1 4.4-5.7 5-6.6 There is no published data which describes the reproduction of H. reidi in the wild (Rosa et al. 2002). On laboratorial conditions the number of offspring ranged from 1000 to 1536 and measured approximated 0.7 cm for H. reidi samples from latitude 13oN (Vincent 1990). So, the fecundity and the mean height of the newborns found in this study are lower to those previously recorded. It is expected a relationship between latitude and several lifehistory variables, mainly because environmental factors such as temperature and photoperiod that vary with latitude are known to affect the physiological function in many species (Thresher 1988). According to Foster & Vincent (2004) the size of the adults, eggs, and young increase with increasing latitude, although brood size does not. The male A had two events of pregnancy monitored, with a number of 202 and 274 offspring respectively, and showed a time interval of 42 days between each born. The breeding season of H. reidi extends for at least eight months (Vincent 1990). In most study sites from Brazil H. reidi has been reported as a species reproductively active yearround, however, peaked from October to February (summer months) (Rosa et al. 2007). According to Silveira (2000), which studied this species under laboratorial conditions, a male is able to mate two days after the birth of offspring and its pregnancy lasted from 12 to 20 days, depending on the water temperature. In this way, it is not possible to conclude if the gap of 42 days between the pregnancies of male A could characterize a consecutive pregnancy. The morphometric comparison of an adult male with a newborn (Fig. 1a, b) shows that although embryos and adults are similar in the external aspect, some measurements showed an expected and pronounced non-proportionality. For example, although the newborns were 26 times smaller than adults in height, juvenile head length, and snout diameter were on average only 18 and 11 times smaller, respectively (Table II). This nonproportionality of newborn is important once it allows the capture of bigger prey from the mesoplancton (0.2-20 mm), as can be seen for many other fish species. Table II. Length relationships of adults and newborns Hippocampus reidi. All measurements are in millimeters. Adult Newborn Adult/newborn Height 136 5.14 26 Head length 32.8 1.86 18 Trunk length 56.1 1.66 34 Tail length 69.4 2.46 28 Snout diameter 4.6 0.42 11 Evidence suggests that many seahorse populations are declining due to unsustainable exploitation and more seahorse species have been included in the World Conservation Union red list of threatened species (IUCN 2007). Also, the genus Hippocampus was listed by the Convention on International Trade in Endangered Species of Wild Fauna e Flora (CITES 2004). To the date, the conservation status of Hippocampus reidi is considered as ‘data deficient’ for IUCN’s red list. For this reason, these findings may contribute to the development of effective fisheries management strategies for this species. Pan-American Journal of Aquatic Sciences (2009), 4(2): 154-157 A. C. G. MAI & D. LOEBMANN 156 Figure 1. Specimens of Hippocampus reidi: a) brooding male and, b) newborn. Acknowledgments We are very thankful to Maria Cristina Oddone (Secretaria Especial de Aqüicultura e Pesca (SEAP), Brasília, DF) and Mônica G. Mai (Universidade Federal de São Carlos) for revising and improving the grammar and style of the manuscript. To unidentified referees for valuated suggestions on earlier versions of the manuscript. This study was support for financial recourses from PADI-Foundation. ACGM was supported by master degree scholarship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and DL is supported by doctoral scholarship from the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq). References Clutton-Brock, T. H. 1988. Reproductive success. Studies of individual variation in contrasting breeding systems. Chicago, IL: The University of Chicago Press, 548 p. Curtis, J. M. R. 2007. Validation of a method for estimating realized annual fecundity in a multiple spawner, the long-snouted seahorse (Hippocampus guttulatus), using underwater visual census. Fishery Bulletin, 105(3): 327- 336. Curtis, J. M. R. & Vincent, A. C. J. 2006. Life history of an unusual marine fish: survival, growth and movement patterns of Hippocampus guttulatus Curvier 1829. Journal of Fish Biology, 68: 707-733. CITES, 2004. Convention on International Trade in Endangered Species of Wild Fauna e Flora. Meeting of the nomenclature committee Geneva (Switzerland), 19 August 2003. Project Seahorse, 5 p. Foster, S. J. & Vincent, A. C. J. 2004. Life history and ecology of seahorses: implications for conservation and management. Journal of Fish Biology, 65: 1-61. IUCN, 2007. IUCN Red List of Threatened Species - World Wide Web electronic publication, accessible at www.iucnredlist.org. (Accessed 07/19/2007). Rosa, I. L., Oliveira, T. P. R., Castro, A. L. C., Moraes, L. E. S., Xavier, J. H. A., Nottingham, M. C., Dias, T. L. P., BrunoCosta, L. V., Araújo, M. E., Birolo, A. B., Mai, A. C. G. & Monteiro-Neto, C. 2007. Population characteristics, space use and habitat associations of Hippocampus reidi. Pan-American Journal of Aquatic Sciences (2009), 4(2): 154-157 Size and number of newborn juveniles in wild Hippocampus reidi broods Neotropical Ichthyology, 5(3): 405-414. Silveira, R. B. 2000. Comportamento reprodutivo e desenvolvimento inicial de Hippocampus reidi Ginsburg, 1933 em laboratório. Biociências, 8(1): 115-122. Thresher, R. E. 1988. Latitudinal variation in egg 157 sizes of tropical and. sub-tropical North Atlantic shore fishes. Environmental Biology of Fishes, 21: 17-25. Vincent, A. C. J. 1990. Reproductive ecology of seahorses. PhD. Thesis. University of Cambridge, Cambridge, 101 p. Received February 2008 Accepted February 2009 Published online April 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 154-157 Cortisol and Glucose: Reliable indicators of fish stress? MARCEL MARTÍNEZ-PORCHAS1, LUIS RAFAEL MARTÍNEZ-CÓRDOVA2 & ROGELIO RAMOS-ENRIQUEZ3 1 Centro de Investigaciones Científicas y de Educación Superior de Ensenada. CICESE. Departamento de Acuicultura. Km. 107 Carretera Tijuana–Ensenada. 22860. Ensenada Baja California, México. Email: marcelmp_6@hotmail.com 2 Universidad de Sonora. Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora. DICTUS. Bldv. Luis Donaldo Colosio. 83000. Hermosillo, Sonora 3 Universidad de Sonora. Laboratorio de Análisis Clínicos e Investigación de la Universidad de Sonora. LACIUS. Bldv. Luis Donaldo Colosio. 83000. Hermosillo, Sonora. Abstract. Stress in fish has been widely studied. Cortisol and glucose are two of the most common stress indicators. In spite of the extended use of these indicators and their acceptance, some inconsistencies have been reported in the results of several experimental studies, much of them associated to undefined and uncontrolled variables which may alter the response in secretion of cortisol and glucose into the bloodstream. Most of those factors are not considered as direct stressors but have an effect on the intensity of the response which makes them a source of error. Some of those factors are related to metabolic changes in the organisms as an adaptation or acclimation mechanism; other are extrinsic to the fishes; other sources of error are caused unconsciously by the researcher during manipulation or due to inadequate control of variables, and may lead to intrinsic changes. The present paper is a contribution on the review of the most evident factors that may affect results when using cortisol and/or glucose as fish stress indicators. Some suggestions to avoid or minimize erroneous results in such investigations are also presented. Keywords: Blood chemistry, blood parameters, blood sugar, biochemical responses, corticoids, stress indicators. Resumen. ¿Cortisol y glucosa: fiables indicadores de estrés de los peces? El estrés en los peces ha sido ampliamente estudiado. El cortisol y la glucosa son dos de los indicadores de estrés más comunes. A pesar del extenso uso de estos indicadores y su aceptación, se han reportado algunas inconsistencias en los resultados de muchos experimentos, algunos de ellos asociados a variables que no son controladas, las cuales pueden alterar la respuesta de secreción de cortisol y glucosa. Muchos de esos factores no son considerados estresores directos, pero tienen un efecto en la intensidad de respuesta, lo cual los vuelve una fuente de error. Algunos de esos factores están relacionados con cambios metabólicos en los organismos, como un mecanismo de aclimatación o adaptación; otros son extrínsecos a los peces y otros más son causados inconscientemente por el investigador mediante la manipulación o inadecuado control de variables, lo cual puede provocar cambios intrínsecos. El presente manuscrito es una contribución en la revisión de los factores más evidentes que pueden afectar los resultados cuando se usa cortisol y/o glucosa como indicadores de estrés en peces y a su vez se mencionan algunas sugerencias para evitar o minimizar resultados erróneos. Palabras clave: Azúcar sanguínea, corticoides, indicadores de estrés, parámetros sanguíneos, química sanguínea, respuestas bioquímicas. Introduction In recent years the concept of stress as applied to fish has awaked the interest among scientists dedicated to the research of environmental influences on health (Barreto et al. 2006). There are discrepancies from the different authors about the stress definition. One of the most Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Cortisol and Glucose: Reliable indicators of fish stress? accepted is described as chemical and physical factors causing body reactions that may contribute to disease and-or death (Rottmann et al. 1992). Stress is also known as “the nonspecific response of the body to any demand made upon it” (Selye 1973). Although there are several definitions, most of them refer to an “altered state” which increases the energy demand. According to Selye (1985) stress should be divided into two phases: “eustress” or the healthy stress and “distress” or bad stress. Eustress occur as a response of the organism undergoing situations that provoke physiological changes that optimize its biological performance, for example exercise. Distress occurs when certain factor promotes physiological changes into an organism that may compromise organism’s integrity. Major part of stress research is focused on distress phase. The response to stress in fish is characterized by the stimulation of the hypothalamus, which results in the activation of the neuroendocrine system and a subsequent cascade of metabolic and physiological changes (Wedemeyer 1990, Lowe & Davison 2005). These changes enhance the tolerance of an organism to face an environmental variation or an adverse situation while maintaining a homeostasis status (Mazeaud et al. 1977, Pickering, 1981). Under conditions of stress, the body of the fish emits immediate responses recognized as primary and secondary responses. The primary response is the perception of an altered state by the central nervous system (CNS) and the release of the stress hormones, cortisol and catecholamines (adrenaline and epinephrine) into the bloodstream by the endocrine system (Randall & Perry 1992). Secondary responses occur as a consequence of the released stress hormones (Barton & Iwama 1991), causing changes in the blood and tissue chemistry, e.g. an increase of plasma glucose (Barton 1997, Begg & Pankhurst 2004). This entire metabolic pathway produces a burst of energy to prepare the fish for an emergency situation (Rottmann et al. 1992). Some plasma chemicals may be useful tools to evaluate the health and/or stress condition of the fishes (Sadler et al. 2000a, Campbell 2004, Wagner & Congleton 2004). Because stress has been reported to elevate plasma cortisol (Pottiner & Mosuwe 1994, Wendelaar-Bonga 1997, Pottinger et al. 2003, Haukenes et al. 2008) and glucose levels (Silbergeld 1974, Wedemeyer & Yasutake 1977, David et al. 2005), many researchers consider as a “rule of thumb” that fishes undergoing stressful situations exhibit plasmatic increases of cortisol and glucose (Hattingh 1977, Balm et al. 1989, Barcellos 159 et al. 1999). In spite of the extensive use of cortisol and glucose levels as stress indicators, there are some inconsistencies in the results of various experiments that in some cases would be attributed to unknown situations. This is a review on the effectiveness of glucose and cortisol as stress indicators in fish and we attempt to identify possible errors within different scenarios and make some recommendations. Cortisol. Cortisol is the principal glucocorticoid secreted by the interrenal tissue (steroidogenic cells) located in the head-kidney of teleost fish (Iwama et al. 1999). This hormone is released by the activation of the hypothalamus-pituitary-interrenal axis (HPI axis) (Mommsen et al. 1999). When an organism undergoes stress conditions, the hypothalamus releases corticotropin-releasing factor (CRF) toward blood circulation. This polypeptide further stimulates secretion of adrenocorticotrophic hormone (ACTH) from the anterior pituitary gland (Fryer & Lederis 1986) which finally activates the release of cortisol by the interrenal tissue (Mommsen et al. 1999). Cholesterol is the precursor of cortisol; this sterol is transformed to pregnenolone by the action of the enzyme P450 side chain cleavage (P450SCC) in the inner mitochondrial membrane. Then pregnenolone is further converted into 11deoxycortisol by steroidogenic enzymes and this product is finally converted to cortisol by enzyme 11b-hydroxylase (Miller 1998, Castillo et al. 2008). The secretion of cortisol is slower than catecholamines, but its effects are more prolonged (Gamperl et al. 1994a, b; Waring et al. 1996), combining mineral and glucocorticoid actions to restore homeostasis (Wendelaar-Bonga 1997, Maule et al. 1993, Colombe et al. 2000). Cortisol activates glycogenolysis and gluconeogenesis processes in fish; but also causes that chromaffin cells increase the release of catecholamines which further increase glycogenolysis and modulate cardiovascular and respiratory function (Reid et al. 1992, Reid et al. 1998). This whole process increases the substrate levels (glucose) to produce enough energy according with the demand. Factors that can affect the intensity of response. The intensity of response is not always caused by a specific stressor in any experiment; instead it may be modulated or affected by alien factors that are not considered as direct stressors (Frisch & Anderson 2005) but that may further impact cortisol secretion (Fig. 1). Those factors that affect/modulate the response may be from intrinsic Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 MARTINEZ-PORCHAS ET AL. 160 nature when some factors depend basically on the genotype or phenotype of the organism and from extrinsic nature when response is affected by external factors. Figure 1. Briefly view of the dynamics of cortisol and catecholamine in the production of glucose. (+) means positive modulation and (–) means negative modulation. Intrinsic. Heritability is considered as a modulator with progeny groups of high response and low response showing a similar intensity of cortisol secretion as their ancestors (Pottinger & Carrick 1999). Also age has been identified as one of those factors (Pottinger & Mosuwe 1994), for example, Sakakura et al. (2002) reported an increase of immunoreactive cortisol concentrations during the transition from larval to juvenile stage of yellowtail (Seriola quinqueradiata). Pottinger et al. (1995) identified sexual maturity as a factor related with the intensity of response in fishes. Gilmour et al. (2005) mentioned that cortisol response is variable even in salmonid fishes of the same stock and that subordinate organisms showed a higher response than dominant ones; this is in agreement with Doyon et al. (2003) report, where they documented that socially subordinate salmonids exhibit enhanced CRF mRNA in the preoptic area. Another factor that may affect results is the fact that in some cases cortisol is rapidly converted into cortisone (Kime 1978) which is significantly less immunoreactive than cortisol. Some authors have reported increases in the concentrations of plasma cortisone of stressed fishes (Weisbart & McGowan 1984, Patiño et al. 1987, Pottinger et al. 1992). Extrinsic. Extrinsic factors may affect a variety of biochemical functions within the fish organism such as cortisol biosynthesis and release rates. Environmental color is reported to have an effect on cortisol secretion (Van der Salm et al. 2004). A higher intensity of cortisol response is documented in Pargus pargus acclimated in black tanks as compared with those in gray and white tanks when fish were exposed to crowding stress (Rotllant et al. 2003). In some species the magnitude of the stress response varies with respect of a previous thermal acclimation or acclimatization (Strange et al. 1977, Stouthart et al. 1998, Lankford et al. 2003). As an example Koldkjær et al. (2004) reported differences in plasma cortisol of rainbow trout (Oncorhynchus mykiss) when comparing results in warm months versus cold months. Also Stouthart et al. (1998) hypothesized that the rearing temperature for eggs and larvae of fish can influence the induction of cortisol response. Differences in the intensity of response might occur in domesticated organisms as compared with non-domesticated ones (Jentoft et al. 2005). Nutritional status (Pottinger 1998; Pottinger et al. 2003) is another factor that may affect the response; for instance, serotonin which is a HPI axis regulator increases when administered dietary tryptophan (serotonin precursor) (Lepage et al. 2002, 2003). Reid et al. (1998) made a review about the adrenergic response in fish and mentioned that the regulation in the production of stress hormones is influenced by adverse internal or external conditions in the history of the fish (anoxia, pollution, nutritive stress, physical stress). This last argument can be explained because those organisms require energy and necessitate an “alteration in the capacity to express the adrenergic stress response”. The rate of cortisol clearance is another step in the cortisol cycle that may be influenced by environmental factors. Liver is the key organ for cortisol disposal with the hepato-biliary system as the main biochemical pathway for cortisol clearance (Wilson et al. 1998, Vijayan & Leatherland 1990). However the efficiency of that process is reported to be altered by stress, salinity, maturity, nutritional state, etc (Mommsen et al. 1999). If a modulator of response is not identified, experiments may provide erroneous results, thereby it is indispensable to know cortisol basal levels of any experimental species. There are species-specific and stressor-specific cortisol values that may serve as general guidelines (Barton & Imawa 1991, Gamperl et al. 1994b, Iwama et al. 2006) to avoid over or sub estimating the cortisol response (Table I). We suggest standardizing physiological and biochemical status off all experimental organisms previously to the beginning of any experiment. For instance: a prior acclimation of experimental fishes to laboratory conditions (temperature, dissolved oxygen, water quality, nutritional status, Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Cortisol and Glucose: Reliable indicators of fish stress? photoperiod, size, weight, color and shape of experimental containers); organisms should be from the same progenies or at least from the same place of collection. It also has been suggested that high variability in response from one organism to another (even from the same species) may be avoided by using clonal groups of fishes (Plaut & Gordon 1994). However this is a difficult task and would not be possible in many cases and also clonal groups may be only useful in specific studies, for example to test genetically modified organisms. Although these are common sense suggestions, sometimes these are not followed, leading to abnormal results. To illustrate this, fishes from polluted sites may have a different response than those acclimated to laboratory conditions. Organisms accustomed to the harassing of predators will show a weak stress response during the experiments as compared with others that thrive in environments without predators. There are other several situations that have an effect on the stress response. Acute and chronic stress. In experiments of acute stress, the cortisol response is rapid but regularly becomes weak or disappears some hours after the exposure to stress (Davis Jr. & McEntire 2006). In most fishes, cortisol reaches highest concentration 1 hour after being stressed, and returns to basal levels after 6 hours (Iwama et al. 2006). Cortisol levels of red drum during some handling procedures grew rapidly, but decreased to the basal state within 48 hours (Robertson et al. 1987). Common dentex (Dentex dentex) increased its glucose and cortisol levels immediately after handling and then returned to the basal level after 8 hours (Morales et al. 2005). Carp (Cyprinus carpio) increased plasma cortisol when retained in anglers´ keep nets but returned to basal levels within 4 hours (Pottinger 1998). It has been suggested that after stress, the cortisol levels of fishes return to basal levels to avoid tissue damage (Wendelaar-Bonga 1997). This damage has been observed in salmons, where high levels of cortisol cause death in Pacific salmon (Oncorhynchus spp) by tissue degeneration and damage of homeostatic mechanisms (Dickhoff 1989, Stein-Behrens & Sapolsky 1992). Thus, cortisol test is a good option in acute stress experiments, but it is indispensable to measure cortisol immediately after stress and over time, because a single and/or a late test will have a high probability to be far from the real response. In chronic-stress experiments some fish showed a weak increase of cortisol (Barton et al. 161 2005, Fast et al. 2008) probably caused by exhaustion of the endocrine system as a result of prolonged hyperactivity (Hontela et al. 1992) or an habituation of the organism to that condition. For example, when an organism undergoes suboptimal conditions for a considerable period of time, the release of cortisol decreases because the interrenal tissue of stressed fishes becomes less sensitive to the action of ACTH or other pituitary hormones (Vijayan and Leatherland 1990, Mommsen et al. 1999). This culminates in less cortisol secretion than expected. In consonance, Barton et al. (1987) observed that cortisol levels of juvenile rainbow trout increased in acute exposure to stress, but returned to basal after a chronic exposure. Although there are exceptions (Gil-Barcellos et al. 2006, Ramsay 2006), because in the absence of the ACTH some other pituitary hormones can increase the secretion of cortisol (Wilson et al. 1998). For instance, different hormones such as alpha-melanocyte-stimulating hormone (MSH), endorphin from the pars intermedia (PI) (Lamers et al. 1992, 1994; Metz et al. 2005) and some sympathetic nerve fibers (Arends et al. 1999) have been implicated in cortisol release during the chronic phase in fishes, functioning as an emergency system. However if the sub-optimal condition persists this system may be also depleted. Therefore, cortisol response would not be a sufficient but rather a less reliable tool to examine stress status after chronic stress experiments. Previous experience to stress conditions should also be considered as a chronic exposure, which is another source of error that appears when the fish has been acclimated to conditions of stress or was acclimatizated to a certain stress factor in its environment that the collector did not notice. Barton et al. (2005) observed a less intense response of fish acclimated to chronic confinement (70 ng mL-1) than fish acclimated to low density (139 ng mL-1) when submitted both to acute handling stress. Rainbow trout (O. mykiss) submitted to a 6-week exercise program showed less cortisol concentration than unexercised trout when both were in rest condition (Woodward & Smith 1985). Pickering & Pottinger (1987b) hypothesized an acclimation of the HPI axis assessed by changes in plasma cortisol levels. Perhaps this means that the fish used to stress require a lesser amount of cortisol to reach the same quantity of energy (glucose). On the other hand, Selye (1936) reported that during the first 6-48 hours after an organism undergoes adverse conditions it suffers changes in blood chemicals (cortisol increase), which is called Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 162 Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Table I. Plasma cortisol values of different species of fishes before and after being stressed. Cortisol (nmol/l) Species Stressor Prestress Poststress Exposure References Atlantic char Salvelinus alpinus Handling 5 449 Acute Lyytikäinen et al. (2002) Atlantic salmon Salmo salar Sea lice challenge 99 339 Chronic Bowers et al. (2000) Atlantic salmon (diploid) Salmo salar Confinement 27 151 Acute Sadler et al. (2000b) Atlantic salmon (triploid) Salmo salar Confinement 27 124 Acute Sadler et al. (2000b) Brook trout (diploid) Salvelinus fontinalis Handling and confinement 19 242 Acute Benfey & Biron (2000) Brook trout (triploid) Salvelinus fontinalis Handling and confinement 2 146 Acute Benfey & Biron (2000) Common carp Cyprinus carpio Density 19 206 Acute Ruane et al. (2002) Pallid sturgeon Confinement 5 16 Acute Barton et al. (2000) Pallid sturgeon Scaphirhynchus albus Handling 5 8 Acute Barton et al. (2000) Rainbow trout Oncorhynchus mykiss Chemical exposure 49 110 Chronic Benguira et al. (2002) Rainbow trout (diploid) Oncorhynchus mykiss Handling and confinement 77 698 Acute Benfey & Biron (2000) Rainbow trout male Oncorhynchus mykiss Trapping 16 380 Acute Clements et al. (2002) Rainbow trout female Oncorhynchus mykiss Trapping 57 764 Acute Clements et al. (2002) Sea bream Sparus aurata Crowding 13 358 Chronic Ortuño et al. (2001) Walleyes Stizostedion vitreum Capture and transport 33-315 380-480 Acute Barton et al. (2003) Scaphirhynchus albus MARTINEZ-PORCHAS ET AL. Cortisol and Glucose: Reliable indicators of fish stress? BEGINNING OF STRESS EXPOSURE BIOCHEMICAL PARAMETERS “general alarm reaction” (GAR). If those conditions continue, blood chemicals return to normal (general adaptation syndrome) due to some modifications in 163 the metabolism. But, if the stressful environment prevails, the GAR symptoms appear again caused by energy depletion (Fig. 2). GENERAL ALARM REACTION GENERAL ALARM REACTION GENERAL ADAPTATION SYNDROME EXHAUSTION TIME Figure 2. Biochemical responses of fishes undergoing chronic stress (Selye 1936). The responses change with respect to time; the fish modifies and regulate the biochemical processes to restore the homeostasis (GAR), but the duration of this mechanism depends on the availability of energy reserves. When Pickering & Pottinger (1987b) experimented with salmonids under crowding conditions, they concluded that changes in cellular composition were better stress indicators than plasma cortisol levels. Likewise we agree with those authors and recommend that cortisol may be a primary stress indicator in acute rather than chronic experiments. However cortisol may be reported as complementary data of chronic experiments. Chemicals. Several pollutants can stress the fish, activating alarm reactions producing a primary and a secondary response (Brown 1993). In Atlantic salmon (Salmo salar), cortisol and glucose levels increased after being exposed to high aluminum concentrations (Ytrestøyl et al. 2001). Roche & Bogué (1996) argued that one of the most frequent responses in fish blood to specific chemical intoxication is cortisolemia. Nevertheless Wendelaar-Bonga (1997) explained that “the exposure to chemicals may directly compromise the stress response by interfering with specific neuroendocrine control mechanisms”. Some chemicals affect metabolic pathways which eventually will influence neural and interrenal tissue functions. In agreement with this finding, it has been observed that cortisol secretion can be affected by environmental contaminants because xenobiotic chemicals such as DDT are toxicants targeting multiple sites along the HPI axis, resulting in secretion of less bioactive ACTH, which in turn will promote a minor cortisol release from the interrenal tissue (Aluru et al. 2004; Hontela 1997). Several studies have corroborated the impairment in the cortisol synthesis and secretion due the action of chemicals. Gravel & Vijayan (2006) studied the impacts of three pharmaceuticals (acetaminophen, ibuprofen, and salicylic acid) in rainbow trout and supported the hypothesis that these pharmaceuticals disrupt steroidogenesis in fish interrenal tissue. These findings were also tested in vitro and observed that salicylic acid produced a depression of ACTH stimulation in cortisol secretion and a lower gene expression of steroidogenic acute regulatory (StAR) protein, which is involved in steroidogenesis of cortisol (Hontela 2006); the same author also stated that StAR protein may be a sensitive target of many environmental pollutants, ranging from pesticides to pharmaceuticals. Also, the expression of StAR and P450SCC decreased in fish exposed to xenobiotics because they bind aryl hydrocarbon–receptor (AhR), a cytosolic ligand- Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 MARTINEZ-PORCHAS ET AL. 164 induced transcription factor, with a consequent depress of steroidogenic enzyme activity and finally altering the cortisol production and secretion (Aluru et al. 2005). Therefore many pollutants halt cortisol secretion and even if the fish is under stress this will probably not be reflected in cortisol response. Pickering & Pottinger (1987a) observed that the exposure of brown trout (Salmo trutta) to poor quality water resulted in a 50% suppression of the cortisol release. Brodeur et al. (1997) reported an impairment of the cortisol stress-response in the yellow perch (Perca flavescens) from polluted sites. Langiano & Martínez (2008) did not observed any change in plasma cortisol of neotropical fish Prochilodus lineatus when exposed to different concentrations of a glyphosphate-based herbicide at different periods, while difference in glucose levels were assessed. These results suggest that the interrenal response may be contaminant specific. Thus the estimation of cortisol as a toxic stress indicator may be in doubt, and if no response is observed in fishes under obvious stressful conditions, then cortisol should be replaced by more useful tests to evaluate the effect of any chemical compound on any species. To mention some examples: medium lethal dose (LD50) (Sprague 1969), behavior (Sprague 1971), histopathological indicators (Schwaiger et al. 1997), blood parameters (Iwama et al. 1995) or enzymatic activity (oxidative stress enzymes) (Pedrajas et al. 1995, Gorbi & Regoli 2004). Anesthesia and Sampling. When sampling cortisol in fishes, it is necessary to handle the organisms. This handling eventually aware the organism and provokes an alarm reaction altering the level of pituitary hormones and thus increases the possibilities to obtain less precise results. Anesthetics have been used to reduce pain and awareness, and thus avoid metabolism enhancement (increase of cortisol or other parameters) in fish. To this respect, Small (2003) documented that anesthetics reduce or block the activation of HPI axis, so blood chemicals would not be altered at sampling process. However, Flodmark et al. (2002) mentioned that some anesthetics per se (i.e. tricaine and 2phenoxyethanol) are stressful and may raise plasma cortisol. Similar conclusion was assessed by Barton & Peter (1982) when observed that 2phenoxiethanol and tricaine increased blood cortisol in the trout Salmo gairdneri. A possible explanation for these abnormal results may be that oxygen concentration in water significantly decreases when an anesthetic is added and HPI axis is activated rather than blocked (Bolasina 2006). Palić et al. (2006) evaluated the effectiveness of three anesthetics (MS 222, metomidate and enguenol) in fathead minnows, concluding that MS 222 did not block the activation of HPI axis, instead they had better results using metomidate. Although 2phenoxiethanol and tricaine are the two most used anesthetics, we do not recommend their use for cortisol and glucose evaluation because of the possibility of erroneous increased results. Some anesthetics though have been shown to halt secretion of cortisol. Clove oil showed to be a strong blocker of cortisol increase in channel catfish (Ictalurus punctatus) (Small 2003). In contrast, it was documented that clove oil did not block cortisol secretion in stressed sea bream (Pagrus major). Isoeugenol was shown to diminish 60% blood cortisol in channel catfish exposed to confinement, whereas metomidate showed greater effectiveness in blocking cortisol release under high ammonium concentrations (Small 2004). Olsen et al. (1995) intraperinoteally injected ACTH into Atlantic salmon to promote cortisol secretion; they reported that metomidate blocked cortisol release, whilst high cortisol levels were found when using tricaine (MS 222). Metyrapone has also shown successful results as a cortisol synthesis blocker (Hopkins et al. 1995). However, metyrapone and etomidate halt cortisol secretion by inhibiting 11β-hydroxylase, a key enzyme in the conversion of 11-deoxycortisol to cortisol (Dang & Trainer 2007). This hindrance in the biochemical pathway of cortisol generation may compromise physiological status of organisms limiting adaptation capacity, and perhaps leading them to death. In this case, these anesthetics may be used if a single sample of every fish is required, for example when fishes are sacrificed while sampling (heart puncture), such as the case of small size fishes. But, if more than one sample (from caudal vein) of every fish is needed or the investigator does not intend to sacrifice the animal (animal management ethics), then it is not recommended to use metyrapone nor isoenguenol, and maybe other anesthetics constitute better options, perhaps sacrificing precision for the survival of the experimental organisms. Results are very contrasting, the efficacy of anesthetics seems to be species-specific and prior tests would be required and report how much of the cortisol response is due to anesthetic and how much is due to the stressor. It is also worth to mention that some of the above studies only tested a single dose of anesthetic. Thus it is unknown if the kind of anesthetic per se is inefficient or the dose was not adequate. In a recent experiment Welker et al. (2007) tested four Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Cortisol and Glucose: Reliable indicators of fish stress? concentrations of MS 222 (0, 90, 120 and 180mg·l-1) in the channel catfish and reported that the highest cortisol level was found in the treatment without anesthetic (0mg·l-1), but the treatment with the highest level of anesthetic (180mg·l-1) also increased the cortisol concentrations. The best results were obtained with the dose of 90mg·l-1. Therefore, prior tests should consider not only anesthetics themselves, but also explore the adequate dose. Also it is important to establish the time at which samples should be taken, because apparently the time after applying the anesthetic has an effect on the secretion of cortisol. Welker et al. (2007) found that the MS 222 effectively blocked cortisol secretion of channel catfish during the first 20 minutes after anesthetizing, but the levels tended to increase after 25 minutes. Water temperature is another point of concern at the time of administering any anesthetic. Park et al. (2008) proved the efficacy of clove oil in anesthetizing fishes and their physiological responses when administered it at different concentrations and temperatures, finding that the optimal dose (lower cortisol and glucose secretion) decreased at higher temperatures. Non invasive methods. Non invasive methods have been used as indirect indicators of stress. In 1994, Sorensen & Scott found that goldfish released steroid to the water, and that one of those steroids was cortisol. After that, the measurement of cortisol in water to evaluate stress status in fish was proposed (Scott et al. 2001). Ellis et al. (2004) measured free cortisol released into water by rainbow trout. Lower et al. (2005) tagged two species of fishes, the common carp (Cyprinus carpio) and the rutilus (Rutilus rutilus) reporting that cortisol in water increased from 70 to 400 and from 170 to 2000 pg/g/h respectively. This method has the advantage that fishes are not stressed up when sampling due to null or minimal intervention. Moreover there is no necessity to bleed and hurt the animal to measure cortisol. However Scott & Ellis (2007) pointed out that in some cases cortisol in water is too low to be measured by conventional methods, being necessary to extract and concentrate cortisol from water, because the highest proportion of cortisol is eliminated through hepatic processes, while renal and branchial routes play a secondary role in steroid elimination (Idler & Truscott 1972, Butler 1973). Scott & Ellis also suggested that only free cortisol and not conjugated steroid fractions (sulphated and glucuronidated steroids) have to be measured to evaluate stress response, because “the concentration of free steroid in the water equates to the 165 concentration of ‘physiologically active’ steroid in the plasma, which is very close to the moment in time that the sample is taken. This method also faces the problem of fish mass and water flow rate, because cortisol secretion is in direct proportion to fish biomass and flow rate modifies cortisol concentration. Thus, very similar biomasses are required in every experimental unit, together with calculations considering flow rate (see Scott & Ellis 2007). Furthermore, the method can not be used to measure individual cortisol levels, unless tests of single organisms are carried out. Despite those related problems, this method emerges as an interesting alternative to substitute cortisol measurements in plasma. Another non invasive method to measure cortisol is to measure it in feces. This procedure has been reported by some authors, but with limited success (Oliveira et al. 1999, Turner et al. 2003). Also the major part of free cortisol releasing occurs through the gills (Ellis et al. 2005). Despite the advantage of being non intrusive, this method does not have yet the precision of direct evaluations (plasma cortisol levels; Huntingford et al. 2006) or water cortisol measurement for what its use is of limited practical value. Glucose. Glucose is a carbohydrate that has a major role in the bioenergetics of animals, being transformed to chemical energy (ATP), which in turn can be expressed as mechanical energy (Lucas 1996). In suboptimum or stressful conditions (internal or external) the chromaffin cells release catecholamine hormones, adrenaline and noradrenaline toward blood circulation (Reid et al. 1998). Those stress hormones in conjunction with cortisol mobilize and elevate glucose production in fish through glucogenesis and glycogenolysis pathways (Iwama et al. 1999) to cope with the energy demand produced by the stressor for the “fight of flight” reaction. This glucose production is mostly mediated by the action of cortisol which stimulates liver gluconeogenesis and also halts peripheral sugar uptake (Wedemeyer et al. 1990). Glucose is then released (from liver and muscle) toward blood circulation and enters into cells through the insulin action (Nelson & Cox 2005). Regardless of the wide use of glucose as an indicator of stress, some authors (Mommsen et al. 1999, Flodmark et al. 2001) emphasized that care has to be taken when using plasma glucose as the only indicator. It has been reported that glucose content is a less precise indicator of stress than cortisol (Wedemeyer et al. 1990, Pottinger 1998). Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 MARTINEZ-PORCHAS ET AL. 166 Mommsen et al. (1999) were skeptical about the use of glucose as a stress indicator, whereas Simontacchi et al. (2008) stated that glucose and cortisol “cannot be considered itself as reliable stress indicators”. Factors that affect the intensity of response. Similar to cortisol, some factors can indirectly alter the response of glucose levels in blood. Vijayan & Moon (1994) suggests that “the rearing history including nutritional status may affect the stress response and glucose clearance rates”. That affirmation is supported by other authors who concluded that blood glucose results have to be interpreted with care, taking into account extrinsic factors such as diet, life stage, time since last feeding and season of the year, etc., because they may affect liver glycogen stores (Nakano & Tomlinson 1967, Barton et al. 1988, McLeay 1977, Wedemeyer et al. 1990). Nutritional status is a factor that can have an effect in the glucose response. The intake of diets with different lipid and protein content resulted in different responses of blood glucose of the orangespotted Grouper (Epinephelus coioides) when it was exposed to cold stress (Cheng et al. 2006). The channel catfish under fasting conditions evidenced hyperglycemia after 30 days of experiment (22.8 versus 4.7 ng·ml-1 in the control group) (Peterson & Small 2004). Glucose also varies between species and stage of development (Iwama et al. 2004, Hemre et al. 2002). Woodward & Strange (1987) observed that wild rainbow trout experienced a cortisol increase 3 times greater than hatchery fish when exposed to net confinement and electroshock. To avoid erroneous results we also suggest prior standardization of organisms before any stress experiment. On the other hand as previously stated, stress hormones such as catecholamines, cortisol and others may be influenced by internal or external conditions in the history of the fish (anoxia, pollution, nutritive stress, physical stress) (Reid et al. 1998). Cortisol is known to increase blood glucose, herein a disruption in cortisol secretion may conclude in an altered glucose response. However there have been observed increases in blood glucose whilst cortisol secretion is impaired (Costas et al. 2008). Some authors suggest that this increase in glucose may be attributed to a different mechanism of the action of cortisol, (catecholamine action for instance) (Vijayan et al. 1991, 1994; Trenzado et al. 2006). To this respect, it has been demonstrated that catecholamines itself can increase sugar levels (Wagner et al. 2003). Catecholamines promote the phosphorylation of the enzyme glycogen phosphorylase which results in a glycogenolysis increase (Vijayan & Moon 1992); then, if catecholamine production or secretion is modified also glucose response may be affected. When Nilsson (1989) exposed crucian carp (Carassius carassius) to anoxic conditions (76-169 h), a significantly decrease in stored noradrenaline in kidney head was observed. However Reid et al. (1998) also concluded that those effects are reversible under normoxic conditions. As in the cortisol case it is indispensable to know basal or pre-stress levels of the species to be studied (Table II). Energy demand. As mentioned, sugar levels increase during stress, however some authors reported a weak rise of glucose (Davis Jr. & McEntire 2006), others found no change (Rotllant & Tort 1997, Jentoft et al. 2005), and even a decrease (Wood et al. 1990). Sometimes no significant changes in plasma glucose may be observed, because under stress the fish is rapidly consuming the energetic substrates generated (glucose) since the main function of the central nervous system (CNS) is to maintain homeostasis. West et al. (1993) argued that during peak activity glucose use can increase by almost 30fold. However it is possible that fish exposed to chronic stress suffer substrate depletion that leads to a decrease on plasma glucose (Fig. 2). The freshwater fish rohu (Labeo rohita) exposed to high fenvalerate (an insecticide) concentrations, presented the maximum glucose level in the fourth day of exposure, but the level began to decrease over time until depleted (David et al. 2005). From those results, a weak or no change in plasma glucose may be attributed to a high energy demand so that glucose cannot be accumulated (acute experiments) or the organism be habituated (chronic experiments). A decrease of glucose is linked to depletion of reserve energy. If it is not part of the experiment, fishes should not be exercised during experimental or acclimation period to avoid an increase in energy demand; this caution will reduce the risk to obtain abnormal results, nonetheless glucose response is still more variable than cortisol response. Rapid measurements. Normally the increase of glucose in plasma is not as rapid as for cortisol. Many researchers documented an increase of glucose minutes or days after the stress (Pratap & Wendelaar-Bonga 1990, Hemre & Krogdahl 1996, Barcellos et al. 1999, Falahatkar & Barton 2007) because cortisol triggers glucose production. Measuring glucose just after an acute experiment is Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Glucose (mmol/l) Species Stressor Prestress Poststress Exposure References Atlantic cod Gadus morhua Nitrite exposure 0.17 0.23 Chronic Bald notothen Pagothenia borchgrevinki Temperature 4.5 10 Chronic Siikavuopio & Sæther (2006) Lowe & Davison (2005) Channel catfish Ictalurus punctatus Handling 1.7 2.8 Acute Welker et al. (2007) Coral trout Capture and handling Chronic Frisch & Anderson (2005) 1.6 7.9 Plectropomus leopardus 1.9 7.4 Emerald rockcod Trematomus bernacchii Temperature 1.5 7.5 Chronic Lowe & Davison (2005) Matrinxã Brycon amazonicus Handling and transportation 2.8 10 Acute Urbinati & Carneiro (2006) Nile tilapia Oreochromis niloticus Electroshock 2.2 6.4 Acute Barreto & Volpato (2006) Nile tilapia Social stressor 1.9 6.7 Acute Barreto & Volpato (2006) Rainbow trout Oncorhynchus mykiss Pollutant 4.2 9 Acute Miller et al. (2007) Rainbow trout Copper and air exposure 5.1 7.2 Chronic/Acute Gagnon et al. (2006) Sunshine bass Morone chrysops x saxatilis Temperature and confinement 6.1 10.5 Chronic/Acute Davis & Peterson (2006) White sturgeon Acipenser transmontanus Air exposure 1.6 1.7 Acute Zuccarelli et al. (2008) 167 Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Plectropomus maculatus Cortisol and Glucose: Reliable indicators of fish stress? Table II. Plasma glucose values of different species of fishes before and after being stressed. In every line is indicated if the kind of exposure to the stressor was acute or chronic. When Chronic/Acute appears, it indicates that the fish was first acclimated to any condition and thereafter exposed to an acute stressor. MARTINEZ-PORCHAS ET AL. 168 considered a source of error, because there is the probability of not measuring any change. For instance, Perez-Casanova et al. (2008) increased water temperature of Atlantic cod (Gadus morhua) at a rate of 2°C·h-1 and measured glucose every 2°C, not finding statistical differences from 10 to 24°C (a critical temperature). These results appeared probably because the change in blood glucose levels might occurrs minutes, hours or even days later (Langiano & Martínez 2008). Thus single measures of glucose are not a real indicator, rather it is recommended to measure glucose over time as in the cortisol case. For chronic experiments, the acclimation period should be long enough to ensure that in case of observing a null or weak glucose response, that response is not caused by the general adaptation syndrome (Fig. 2). Some authors suggest 3 weeks of acclimation for laboratory experiments (Houston 1982; Johnsson et al. 2003), however this is not a rule and may vary among species and stressors. Fast et al. (2008) did not observe a rise of glucose in the Atlantic salmon during acute experiments, but reported an increase when the fish were exposed to prolonged stress. A 3-week period of crowding stress elevated cortisol and glucose in gilthead seabream (Sparus auratus) (Tort et al. 1996). Therefore, unlike in acute experiments, glucose can be measured immediately after a chronic exposure to stressful conditions. Blood samples can be extracted during the chronic experiments, but if the experimental units are limited and all the samples have to be taken from the same tanks, it is not recommendable to measure cortisol over time, because the consequent handling and manipulation of organisms may lead to erroneous results in the future samples. Nevertheless, if it is necessary to measure glucose over time, it is recommended that sampling is not very frequent, while a limited number of samplings should be established. Anesthesia and sampling. Some irregularities have been reported in glucose response when anesthetics are used before sampling. The ideal role of anesthetics is to minimize fish stress response, prevent any negative impact on performance and thus measure real values of glucose or other blood components (Pickering 1998). Nevertheless, some anesthetics do not fit with that role. Ortuño et al. (2002) tested four anesthetics (MS 222, benzocaine, 2-phenoxytehanol and quinaldine) in gilthead seabream and reported that basal glucose level was 3.6 mmol·l-1 and increased to 5.6, 11.1, 11.9 and 16.4 mmol·l-1 when exposed to MS 222, benzocaine, 2-phenoxytehanol and quinaldine respectively; also immune response was depressed by benzocaine and 2-phenoxyethanol, but not by MS 222 or quinaldine. In another experiment, Iversen et al. (2003) exposed Atlantic salmon to other four anesthetics (metomidate, clove oil, Aqui-S™ and Benzoak®) not finding any increase in plasma glucose. On the other hand, Velíšek et al. (2005) reported a significant increase in rainbow trout glucose when anesthetized with clove oil. Also clove oil and MS 222 blocked cortisol secretion but increased glucose in another experiment with rainbow trout (Wagner et al. 2003). Those controversial results suggest that perhaps anesthetic efficacy in halting glucose increase is speciesdependant and also previous tests may be required (see Anesthesia and sampling in cortisol section). Other stress indicators. Previously we documented that many studies utilized cortisol and glucose as sole stress indicators of stress in fish; however regarding the several factors that can affect these responses give us to consider that cortisol and glucose are not enough as stress indicators. Iwama et al. (2004) argued that “none of the current indicators of stress, including the stress hormones, are 100% suitable in reflecting stressed states in fish”; in consonance with that, it is recommendable to complement cortisol and glucose with other stress indicators to establish a more complete profile of the experimental organism. In the case of cortisol it is known that in some fishes a small increase in plasma cortisol leads to an alteration in amino acid metabolism (Hopkins et al. 1995), for this reason it is plausible to consider that the activity of those enzymes involved in amino acid metabolism would be a complement or also a more accurate indicators of stress even if cortisol response is weak. Glutamine synthase for example, has been observed to increase with small response of cortisol (Reid et al. 1998). Otherwise, it is possible to measure intermediate enzymes of glycolysis (phosphoenol pyruvate carboxykinase, fructose 1,6-biphosphate, glucose 6-phosphatase), since cortisol and catecholamines positively influence that process. For instance, Vijayan et al. (2003) exposed rainbow trout to cortisol treatments and reported an increase in the abundance of phosphoenolpyruvate carboxykinase (PEPCK) mRNA. DziewulskaSzwajkowska et al. (2003) documented an increase of glucose 6-phosphatase when injected a high dose of cortisol in the common carp. However, there are other important parameters that should be taken into account to study stress. For instance catecholamines are recognized as a stress indicator; adverse conditions Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Cortisol and Glucose: Reliable indicators of fish stress? activates the HPI axis and catecholamines are released into blood stream (Iwama 2007). Melanocyte stimulating hormone (α-MSH) is a peptide produced in the pituitary cells of several fishes (Kawauchi et al. 1984; Lamers et al. 1991) and proved to increase in stressful conditions (Arends et al. 1999, 2000). Lactate is a chemical compound that plays a role in anaerobic metabolism of animals, produced from pyruvate via the enzyme lactate dehydrogenase during exercise and is considered as a stress indicator in fishes because its levels are enhanced in under adverse situations (Thomas et al. 1999; Grutter & Pankhurst 2000). Eventually, fish also respond at the cellular level to stressors. This response comprises some protein changes, for example an enhancement in heat shock protein (hsps) synthesis (Iwama et al. 1998, 2004). In cells of stressed organisms there is an increase in the production of hsps which are required to assist the folding of nascent polypeptide chains, act as a molecular chaperone and mediate the repair and degradation of altered or denatured proteins to maintain homeostasis. On the other hand, different non-invasive methods can be used to complement the biochemical and molecular parameters. The ventilation rate and oxygen consumption represent an adequate alternative because they are indicators of the metabolic rate due to high activity, stress, etc. However, Alvaenga & Volpato (1995) stated that metabolic differences derived from social stress usually show data with high variance, masking important differences among treatments and that the oxygen consumption and ventilation rate can complement the stress studies. This method is very simple and if the water is clear enough the measurements can simply be determined visually. It has been observed that the ventilation rate and oxygen consumption increase with different stressors such as, presence of predators, air exposure, light intensity, etc. (Brown et al. 2005, Sager et al. 2000, Thompson et al. 2008). However despite ventilation rate is a very sensitive test, it has the limitation that the severity of any stimulus or stressor is not reflected in this parameter (Barreto & Volpato 2004) and thus, it is only useful to indicate if the fish is being stressed or not, but not how much. Other non-invasive methods are the measurement of the excretion of nitrogenous compounds such as ammonia and urea, gas exchange (carbon dioxide) and others (Walsh et al. 1994, Evans et al. 2003). These non-invasive methods are good candidates to complement the cortisol and glucose as stress indicators, although they have the same limitation as the non-invasive 169 methods to measure cortisol (see above). These suggestions are not a rule of thumb and may be replaced or complemented with others, depending on the nature of the stressor. In that manner, false results obtained by using any particular stress test may be validated or contrasted with others. Conclusions Cortisol and glucose cannot be eliminated from the stress indicators list, but due to their high variability they must be complemented with other measurements such as other stress hormones, hsps, blood-cell counts (preferably in chronic experiments), non-invasive methods and/or others, in order to have a more complete profile about the stress status of any fish. Cortisol may be useful only in acute stress experiments and monitored throughout time. To be used as stress indicator, the physiological status of organisms should be standardized. Anesthetics efficiency shows many inconsistencies and there is controversy about the convenience to use an effective metabolism blocker anesthetic or a non harmful anesthetic due to animal management ethics. It is important, as long as possible, to select an adequate anesthetic according to the species, which effectively blocks metabolism while causing a minimum damage to the animal integrity. The dose of the anesthetic and the water of temperature are subjects of concern. Non invasive methods such as measuring cortisol in water are a suitable alternative to avoid anesthetic problems. Glucose measurements show many inconsistencies and should be a complement of stress tests rather than a main indicator. It also can be used as a tool to provide a point of reference for a particular species. Results may be more realistic if standardization of organisms and experimental conditions are done, and organisms are not exercised prior sampling blood. Repeated glucose measures have to be done during or after acute exposures, but during chronic experiments the sampling should not be very frequent, because the handling and manipulation of organisms may affect the future measurements. In using both cortisol and glucose as stress indicators the researcher needs to be careful to identify possible situations or factors that may influence the stress response of the fish as long as possible and to be certain they are not part of the experiment. On the other hand, the use of these two indicators as pollution or toxic stress indicators is Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 MARTINEZ-PORCHAS ET AL. 170 not adequate, rather behavior and oxidative stress tests are recommended. Finally in the scientific task of monitoring stress, the reliability of the results may be significantly increased if adequate and enough number of tests is carried out. References Aluru. N., Jorgensen. E. H., Maule, A. G. & Vijayan, M. M. 2004. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous arctic charr. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 287: 787–793. Aluru, N., Renaud, R., Leatherland, J.F. & Vijayan, M. M. 2005. Ah receptor–mediated impairment of interrenal steroidogenesis involves StAR protein and P450scc gene attenuation in rainbow trout. Toxicological Sciences, 84: 260–269. Alvarenga, C.M.D., Volpato, G.L., 1995. Agonistic profile and metabolism in alevins of the Nile tilapia. Physiological Behavior, 57: 75–80. Arends, R. J., Mancera, J. M., Munoz, J. L., Wendelaar Bonga, S. E. & Flik, G. 1999. The stress response of the gilthead sea bream (Sparus aurata L.) to air exposure and confinement. Journal of Endocrinology, 163: 149–157. Arends, R. J., Rotllant, J., Metz, J. R., Mancera, J. M., Wendelaar Bonga, S. E. & Filk, G. 2000. α-MSH acetylation in the pituitary gland of the sea bream (Sparus aurata L.) in response to different backgrounds, confinement and air exposure. Journal of Endocrinology, 166: 427–435. Balm, P. H. M., Lambert, J. D. G. & WendelaarBonga, S. E. 1989. Corticosteroid biosynthesis in the interrenal cells of the teleost fish, Oreochromis mossambicus. General and Comparative Endocrinology, 76: 53-62. Barcellos, L. J. G., Nicolaiewsky, S., de Souza, S. M. G. & Lulhier, F. 1999. Plasmatic levels of cortisol in the response to acute stress in Nile tilapia, Oreochromis niloticus (L.), previously exposed to chronic stress. Aquaculture Research, 30: 437-444. Barreto, R. E. & Volpato, G. L. 2006. Stress responses of the fish Nile tilapia subjected to electroshock and social stressors. Brazilian Journal of Medical and Biological Research, 39: 1605-1612 Barton, B. A. & Peter, R. E. 1982. Plasma cortisol stress response in fingerling rainbow trout, Salmo gairdneri Richardson, to various transport conditions, anesthesia, and cold shock. Journal of Fish Biology, 20: 39–51. Barton, B. A., Schreck, C. B. & Barton, L. D. 1987. Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Diseases of Aquatic Organisms, 2:173-185. Barton, B. A., Schreck, C. B. & Fowler, L. G. 1988. Fasting and diet content affect stress-induced changes in plasma glucose and cortisol in juvenile chinook salmon. The Progressive Fish Culturist. 50: 16-22. Barton, B. A. & Iwama, G. K. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Reviews of Fish Diseases, 1: 3-26. Barton, B. A. 1997. Stress in finfish: past, present and future – a historical perspective. In: Iwama, G. K., Pickering, A. D., Sumpter, J. P. & Schreck, C. B. (eds). Fish Stress and Health in Aquaculture. Cambridge University Press, Cambridge. Barton, B. A., Bollig, H., Hauskins, B. L. & Jansen, C. R. 2000. Juvenile pallid (Scaphirhynchus albus) and hybrid pallid×shovelnose (S. albus×platorynchus) sturgeons exhibit low physiological responses to acute handling and severe confinement. Comparative Biochemistry and Physiology, 126: 125-134. Barton, B. A., Haukenes, A. H., Parsons, B. G. & Reed, J. R. 2003. Plasma cortisol and chloride stress responses in juvenile walleyes during capture, transport, and stocking procedures. North American Journal of Aquaculture, 65: 210–219. Barton, B. A., Ribas, L., Acerete, L. & Tort, L. 2005. Effects of chronic confinement on physiological responses of the juvenile gilthead sea bream, Sparus aurata L. to acute handling. Aquaculture Research, 36: 172179. Barreto, R. E. & Volpato-Braz, G. L. 2006. Stress responses of the fish Nile tilapia subjected to electroshock and social stressors. Journal Biological and Medical Research, 39: 16051612. Begg, K. & Pankhurst, N. W. 2004. Endocrine and metabolic responses to stress in a laboratory population of the tropical damselfish Acanthochromis polyacanthus. Journal of Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Cortisol and Glucose: Reliable indicators of fish stress? Fish Biology, 64: 133–145. Benfey, T. J. & Biron, M. 2000. Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvenis fontinalis). Aquaculture, 184: 167176. Benguira, S., Leblond, V. S., Weber, J-P. & Hontela, A. 2002. Loss of capacity to elevate plasma cortisol in rainbow trout (Oncothynchus mykiss) treated with a single injection of o,p′Dichlorodiphenyldichloroethane. Environmental Toxicology and Chemistry, 21: 1753–1756. Bolasina, S. N. 2006. Cortisol and hematological response in Brazilian codling, Urophycis brasiliensis (Pisces, Phycidae) subjected to anesthetic treatment. Aquaculture International, 14: 569-575. Bowers, J. M., Mustafa, A., Speare, D. J., Conboy, G. A., Brimacombe, M., Sims, D. E. & Burka, J. F. 2000. The physiological response of Atlantic salmon, Salmo salar L., to a single experimental challenge with sea lice, Lepeophtheirus salmonis. Journal of Fish Diseases, 23: 165–172. Brodeur, J. C., Sherwood, G., Rasmussen, J. B. & Hontela, A. 1997. Impaired cortisol secretion in yellow perch (Perca flavescens) from lakes contaminated by heavy metals: in vivo and in vitro assessment. Canadian Journal of Fisheries and Aquatic Sciences, 54: 2752– 2758. Brown, C., Gardner, C. & Braithwaite, V.A., 2005. Differential stress responses in fish from areas of high and low-predation pressure. Journal of Comparative Physiology, 175, 305–312. Butler, D. G. 1973. Structure and function of the adrenal gland of fishes. American Zoologist, 13: 839-379. Brown, J. A. 1993. Endocrine responses to environmental pollutants. In: Rankin, J. C. & Jensen, F. B. (eds). Fish Ecophysiology. Chapman & Hall, London. 276–296p. Campbell, T. W. 2004. Blood biochemistry in lower vertebrates. In: 55th Annual Meeting of the American College of Veterinary Pathologists (ACVP) & 39th Annual Meeting of the American Society of Clinical Pathology (ASVCP), ACVP and ASVCP (ed) Castillo, J., Castellana, B., Acerete, L., Planas, J. V., Goetz, F. W., Mackenzie, S. & Tort, L. 2008. Stress-induced regulation of steroidogenic acute regulatory protein expression in head kidney of Gilthead seabream (Sparus aurata). Journal of Endocrinology, 196: 313–322. 171 Cheng, A. C., Chen, C. Y., Liou, C. H. & Chang, C. F. 2006. Effects of dietary protein and lipids on blood parameters and superoxide anion production in the grouper, Epinephelus coioides (Serranidae: Epinephelinae). Zoological Studies, 45: 492-502. Clements, S. P., Hicks, B. J., Carragher, J. F. & Dedual, M. 2002. The effect of a trapping procedure on the stress response of wild rainbow trout. North American Journal Fisheries Management, 22: 907–916. Colombe, L., Fostier, A., Bury, N., Pakdel, F. & Guiguen, Y. 2000. A mineralocorticoid-like receptor in the rainbow trout, Oncorhynchus mykiss: cloning and characterization of its steroid binding domain. Steroids, 65: 319328. Costas, B., Aragão, C., Mancera, J. M., Dinis, M. T. & Conceição, L. E. C. 2008. High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup 1858) juveniles. Aquaculture Research, 39: 1-9. Dang, C. N. & Trainer, P. 2007. Pharmacological management of cushing’s syndrome: An update. Arquivos Brasileiros de Endocrinologia & Metabologia, 51: 13391348. David, M., Shivakumar, R., Mushigeri, S. B. & Kuri, R. C. 2005. Blood glucose and glycogen levels as indicators of stress in the freshwater fish, Labeo rohita under fenvalerate intoxication. Journal of Ecotoxicology & Environmental Monitoring, 15: 1-5. Davis, K. B. & Peterson, B. C. 2006. The effect of temperature, stress, and cortisol on plasma IGF-I and IGFBPs in sunshine bass. General and Comparative Endocrinology, 149: 219– 225. Davis Jr, K. B. & McEntire, M. E. 2006. Comparison of the cortisol and glucose stress response to acute confinement and resting insulin-like growth factor-I concentrations among white bass, striped bass and sunshine bass. Aquaculture America Book of Abstracts p 79. Dickhoff, W. W. 1989. Salmonids and annual fishes: Death after sex. In: Schreibman, M. P. & Scanes, C. G. (eds) Development, maturation, and senescence of neuroendocrine systems: A comparative approach. Academic press, New York. Doyon, C., Gilmour, K. M., Trudeau, V. L. & Moon, T. W. 2003. Corticotropin-releasing factor and neuropeptide Y mRNA levels are elevated in Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 172 the preoptic p areea of sociaally suborddinate rainbow trout. General G an nd Comparaative Endoocrinology, 133: 1 260–271. Dziewulskaa-Szwajkowsska, D., ozzi ska-Gabbska, M., Adamowicz, A A., Wojtaszzek, J. & Dzugaj, A. 20003. The effeect of high doose of cortisool on glucoose-6-phosphhatase andd fructosee-1,6bisphhosphatase activity, annd glucose and fructoose-2,6-bisphhosphate concentration c n in L.). carp tissues (Cyprinus carpio Comparative Biiochemistry and Physioology Part B, 135: 485--491. Ellis, T., Jaames, J. D., Stewart, C. & Scott, A. A P. 2004. A non-invaasive stress assay a based upon u measurement of free f cortisol released intoo the waterr by rainboow trout. Journal J of Fish Bioloogy, 65: 12333–1252. Evans, D. H., H Piermarinni, P. M. & Choe, C K. P. 2003. 2 The multifunction m nal fish gill: Dominant siite of gas exchange, osmoregulaation, acid--base regullation, and excretion of nitrogeenous wastee. Physiologiical Reviewss, 85: 97-1777. Falahatkar, B. & Bartoon, B. A. 20007. Prelimiinary obserrvations of physiologiccal responsees to acutee handling and a confinem ment in juvvenile belugga Huso husoo L. Aquacu ulture Reseaarch, 38: 1786-1789. Fast, M. D.,, Hosoya, S.,, Johnson, S.. C. & Afonsso, L. O. B. B 2008. Corrtisol responnse and imm munerelateed effects of o Atlantic salmon (SSalmo salarr Linnaeus) subjected s to short- and longl term stress. Fish and Shellfissh Immunollogy, 24: 194-204. Frisch, A. J. J & Andersoon, T. A. 20005. Physioloogical stresss responses of o two speciies of coral trout (Plecctropomus leeopardus annd Plectropoomus macuulatus). Com mparative Biiochemistry and Physiology Part A, 140: 317--327. Flodmark, L. L E. W., Urke, U H. A., Halleraer, J. J H., Arnekkleiv, J. V., Vøllestad, L. L A. & Poléoo, A. B. S. 2001. Cortiisol and gluccose responsses in juvennile brown trrout subjected to a fluctuating flow regime in ann artificial strream. Journ nal of Fish Biology, 60:: 238–248. Fryer, J. L. & Ledeeris, K. 19986. Controol of corticcotropin seecretion in teleost fishes. Amerrican Zoologist, 26: 10117–1026. Gagnon, A., Jumarie, C. & Hontela, A. 2006. Efffects of Cuu on plasma cortisol c and cortisol secretion by adrenocortica a al cells off rainbow trout (Oncoorhynchus mykiss). m Aqu uatic Toxicollogy, 78: 59-65. Gamperl, A. A K., Vijayaan, M. M. & Boutilier, R. R G. 1994a. Epinephhrine, noreppinephrine, and cortissol in cannuulated concenntrations MARTINEZ-PORCHAS O ET AL. seawater-aacclimated rainbow w troutt (Oncorhynnchus mykisss) following g black-boxx confinemeent and epinephrine injection.. Journal of o Fish Bioloogy, 45: 313--324. Gam mperl, A. K.,, Vijayan, M M. M. & Bou utilier, R. G.. 1994b. Experimentaal control of stresss hormone levels in fishes: tech hniques andd applications. Reviewss on Fish Biology B and d Fisheries,, 4: 215-255.. Gill--Barcellos, L. L G., Kreuutz, L. C. & Mezzalira-Quevedo, R. 2006. P Previous ch hronic stresss does not alter the ccortisol resp ponse to ann additionall acute stresssor in jundiiá (Rhamdiaa quelen, Quoy Q and Gaimard) fingerlings.. Aquacultture, 253: 317-321. Gilm mour, K. M.., DiBatista, J. D. & Th homas, J. B.. 2005. Phyysiological ccauses and co onsequencess of social status in sallmonid fish. Integrativee and Comparative Bioology, 45: 26 63-273. Gorb bi, S. & Regoli, F.. 2005. In nduction off cytochrom me P4501A A and biliary PAH H metabolitees in Euuropean eeel Anguillaa anguilla: Seasonal, ddose- and tim me-responsee variabilityy in field annd laboratory y conditions.. Marine Environmen E ntal Researcch, 58: 511–– 515. Grav vel, A. & Vijayan, M M. M. 2006 6. Salicylatee disrupts interrenal i steeroidogenesiis and brainn glycocortiicoid receptoor expression n in rainbow w trout. Toxxicological S Sciences, 93: 41–49. Gruttter, A. S. & Pankhurst, N. W. 2000.. The effectss of captuure, handlinng, confinement andd ectoparasiite load on pplasma levelss of cortisol,, glucose and a lactate in the coraal reef fishh Hemigymnnus melapteerus. Journ nal of Fish h Biology, 57: 5 391–401. Hatttingh, J. 19777. Blood sugar as an indicator off stress in the t freshwatter fish, Lab beo capensiss (Smith). Journal J of F Fish Biolog gy, 10: 191–– 195. Hau ukenes, A. H., Barton, B.. A. & Bolligs, H. 2008.. Cortisol responses oof pallid stturgeon andd yellow perch p folowing challlenge withh lipopolysaaccharide. Joournal of Fiish Biology,, 72: 780-7884. Hem mre, G-I. & Krogdahll, Å. 1996.. Effect off handling and fish sizee on second dary changess in carboohydrate metabolism in Atlanticc salmon, Salmo saalar L. Aquaculture A e n, 2: 249–2522. Nutrition Hem mre, G-I., Moommsen, T. P P. & Krogdaahl, Å. 2002.. Carbohyddrates in fissh nutrition: effects onn growth, glucose meetabolism and a hepaticc enzymes. Aquacultu ure Nutritio on, 8: 175-194. Pan-Americaan Journal of Aquatic A Sciennces (2009), 4(2): 158-178 Cortisol and Glucose: Reliable indicators of fish stress? Hontela, A., Rasmussen, J. B., Audet, C. & Chevalier, G. 1992. Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury. Archives of Environmentan Contamination and Toxicology, 22: 278-283. Hontela, A. 1997. Endocrine and physiological responses of fish to xenobiotics: Role of glucocorticosteroid hormones. Reviews in Toxicology, 1: 1-46. Hontela, A. 2006. Corticosteroidogenesis and StAR protein of rainbow trout disrupted by humanuse pharmaceuticals: Data for Use in Risk Assessment. Toxicological Sciences, 93: 1–2. Hopkins, T. E., Wood, C. M. & Walsh, P. J. 1995. Interactions of cortisol and nitrogen metabolism in the ureogenic Gulf toadfish, Opsanus beta. Journal of Experimental Biology, 198: 2229–2235. Houston, A. H. 1982. Thermal effects upon fishes. Publication of the Environmental Secretariat 18566, 1–200. Huntingford, F. A., Adams, C., Braithwaite, V. A., Kadri, S., Pottinger, T. S., Sandøe, P. & Turnbull, J. F. 2006. Current issues in fish welfare. Journal of Fish Biology, 68: 332372. Idler, D. R. & Truscott, B. 1972. Corticosteroids in fish. In: Idler, D. R. (ed) Steroids in Nonmammalian Vertebrates. Academic Press, New York, pp. 127–211. Iversen, M., Finstad, B., McKinley, R. S. & Eliassen, R. A. 2003. The efficacy of metomidate, clove oil, Aqui-S™ and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquaculture, 221: 549-566. Iwama, G. K., Morgan, J. D. & Barton, B. A. 1995. Simple field methods for monitoring stress and general condition of fish. Aquaculture Research, 26: 273-282. Iwama, G. K., Thomas, P. T., Forsyth, R. B. & Vijayan, M. M. 1998. Heat shock protein expression in fish. Reviews on Fish Biology and Fisheries, 8: 35-56. Iwama, G. K., Vijayan, M. M., Forsyth, R. B. & Ackerman, P. A. 1999. Heat shock proteins and physiological stress in fish. American Zoologist, 39: 901-909. Iwama, G. K., Afonso, L. O. B. & Vijayan, M. M. 2006. Stress in fishes. In: Evans, D. H. & Claiborne, J. B. The Physiology of fishes. 319-342. Taylor and Francis, 3rd edition. 601 p. USA. 173 Iwama, G. K., Afonso, L. O. B., Todgham, A., Ackerman, P. & Nakano, K. 2004. Are hsps suitable for indicating stressed states in fish?. Journal of Experimental Biology, 207:1519. Iwama, G. K. 2007. The welfare of fish. Diseases of Aquatic Organisms, 75: 155–158. Jentoft, S., Aastveit, A. H., Torjesen, P. A. & Andersen, Ø. 2005. Effects of stress on growth, cortisol and glucose levels in nondomesticated Eurasian perch (Perca fluviatilis) and domesticated rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A, 141: 353-358. Johnsson, J. I., Parkkonen, J. & Förlin, L. 2003. Reduced territorial defense in rainbow trout fry exposed to a paper mill effluent: using the mirror image stimulation test as a behavioral bioassay. Journal of Fish Biology, 62: 959964. Kawauchi, H., Kawazoe, I., Adachi, Y., Buckley, D. I. & Ramachandran, J. 1984. Chemical and biological characterization of salmon melanocyte-stimulating hormone. General and Comparative Endocrinology, 53: 37-48. Kime, D. E. 1978. The hepatic catabolism of cortisol in teleost fish – adrenal origin of 11oxotestosterone precursors. General and Comparative Endocrinology, 35: 322-328. Koldkjær, P., Pottinger, T. G., Perry, S. F. & Cossins, A. R. 2004. Seasonality of the red blood cell stress response in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 207: 357-367. Lamers, A. E., Balm, P. H. M., Haenen, H. E., Jenks, B. G. & Wendelaar-Bonga, S. E. 1991. Regulation of differential release of αmelanocytestimulating hormone forms from the pituitary of a teleost fish, Oreochromis mossambicus. Journal of Endocrinology, 129: 179-187. Lamers, A. E., Flik, G., Atsma, W. & WendelaarBonga, S. E. 1992. A role for di-acetyl alphamelanocyte-stimulating hormone in the control of cortisol release in the teleost Oreochromis mossambicus. Journal of Endocrinology, 135: 285–292. Lamers, A. E., Flik, G. & Wendelaar-Bonga, S. E. 1994. A specific role for TRH in release of diacetyl alpha-MSH in tilapia stressed by acid water. American Journal of PhysiologyRegulatory, Integrative and Comparative Physiology, 267: 1302–1308. Langiano, V. C. & Martínez, C. B. R. 2008. Toxicity Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 MARTINEZ-PORCHAS ET AL. 174 and effects of a glyphosphate-based herbicide on the neotropical fish Prochilodus lineatus. Comparative Biochemistry and Physiology Part C, 147:2 22-231. Lankford, S. E., Adams, T. E. & Cech, J. J. Jr. 2003. Time of day and water temperature modify the physiological stress response in green sturgeon, Acipenser medirostris. Comparative Biochemistry and Physiology, 135: 291-302. Lowe, C. J. & Davison, W. 2005. Plasma osmolarity, glucose concentration and erythrocyte responses of two Antarctic nototheniid fishes to acute and chronic thermal change. Journal of Fish Biology, 67: 752–766. Lower, N., Moore, A., Scott, A. P., Ellis, T., James, J. & Low, P. J. 2005. A non-invasive method to assess the impact of electronic tag insertion on stress levels in fishes. Journal of Fish Biology, 67: 1202–1212. Lucas, A. 1996. Physical concepts of bioenergetics. In: Lucas, A. (ed). Bioenergetics of aquatic animals. English edition, Taylor & Francis, France. Lyytikäinen, T., Pylkkö, P., Ritola, O. & LindströmSeppä, P. 2002. The effect of acute stress and temperature on plasma cortisol and ion concentrations and growth of Lake Inari Arctic charr, Salvelinus Alpinus. Environmental Biology of Fishes, 64: 195202. Maule, A. G., Shreck, C. B. & Sharpe, C. 1993. Seasonal changes in cortisol sensitivity and glucocorticoid receptor affinity and number in leukocytes of coho salmon. Fish Physiology and Biochemistry, 10: 497-506. Mazeaud, M. M., Mazeaud, F. & Donaldson, E. M. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Transactions of the American Fisheries Society, 106: 201-212. McLeay, D. J. 1977. Development of a blood sugar bioassay for rapidly measuring stressful levels of pulpmill effluent to salmonid fish. Journal of the Fisheries Research Board of Canada, 34: 477-485. Metz, J. R., Geven, E. J.W., van den Burg, E.H. & Flik, G. 2005. ACTH, MSH, and control of cortisol release: cloning, sequencing, and functional expression of the melanocortin-2 and melanocortin-5 receptor in Cyprinus carpio. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 289: 814-826. Miller, W. L. 1988. Molecular biology of steroid hormone synthesis. Endocrine Reviews, 9: 295–318. Miller, L. L., Wang, F., Palace, V. P. & Hontela, A. 2007. Effects of acute and sub chronic exposures to waterborne selenite on the physiological stress response and oxidative stress indicators in juvenile rainbow trout. Aquatic Toxicology, 83: 263-271. Mommsen, T. P., Vijayan, M. M. & Moon, T. W. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Reviews on Fish Biology and Fisheries, 9: 211–268. Morales, A. E., Cardenete, G., Abellán, E. & GarcíaRejón, L. 2005. Stress-related physiological responses to handling in common dentex (Dentex dentex Linnaeus, 1758). Aquaculture Research, 36: 33-40. Nakano, T. & Tomlinson, N. 1967. Catecholamine and carbohydrate concentrations in rainbow trout (Salmo gairdneri) in relation to physical disturbance. Journal of the Fisheries Research Board of Canada, 24: 1701-1715. Nelson, D. L. & Cox, M. M (eds). 2005. Lehninger Principles of Biochemistry. 4th ed.; WH Freeman and Co. New York. 1013p. Nilsson, G. E. 1989. Effects of anoxia on catecholamine levels in brain and kidney of the crucian carp. American Journal of Physiology, 257: 10–14. Olsen, Y. A., Einarsdottir, I. E. & Nilssen, K. J. 1995. Metomidate anaesthesia in Atlantic salmon, Salmo salar, prevents plasma cortisol increase during stress. Aquaculture, 134: 155-168. Oliveira, R. F., Canario, A. V. M. & Bsharry, R. 1999. Hormones, behavior and conservation of littoral fishes: current status and prospects for future research. In: Almada, V. C., Oliveira, R. F., Gonçalves, E. J. (eds) Behaviour and Conservation of Littoral Fishes, Blackwell Publishing, Lisboa. 149178p. Ortuño, J., Esteban, M. A. & Meeguer, J. 2001. Effects of short-term crowding stress on the gilthead steabream (Sparus aurata L.) innate immune response. Fish & Shellfish Imumunology, 11: 187-197. Ortuño, J., Esteban, M. A. & Meeguer, J. 2002. Effects of four anaesthetics on the innate immune response of gilthead seabream (Sparus aurata L.). Fish & Shellfish Imumunology, 12: 49–59. Palić, D., Herolt, D. M., Andreasen, C. B., Menzel, Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Cortisol and Glucose: Reliable indicators of fish stress? B. W. & Roth, J. A. 2006. Anesthetic efficacy of tricaine methanesulfonate, metomidate and eugenol: Effects on plasma cortisol concentration and neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Aquaculture, 254: 675– 685. Park, M. O., Hur, W. J., Im, S-Y., Seol, D-W., Lee, J. & Park, I-S. 2008. Anaesthetic efficacy and physiological responses to clove oilanaesthetized kelp grouper Epinephelus bruneus. Aquaculture Research, 39: 877-884. Patiño, R., Redding, J. M. & Schreck, C. B. 1987. Interrenal secretion of corticosteroids and plasma cortisol and cortisone concentrations after acute stress and during seawater acclimation in juvenile coho salmon (Oncorhynchus kisutch). General and Comparative Endocrinology, 68: 431–439. Pedrajas, J. R., Peinado, J. & López-Barea, J. 1995. Oxidative stress in fish exposed to model xenobiotics. Oxidatively modified forms of Cu, Zn-superoxide dismutase as potential biomarkers. Chemico-Biological Interactions, 98: 267-282. Pérez-Casanova, J. C., Afonso, L. O. B., Johnson, S. C., Currie, S. & Gamperl, A. K. 2008. The stress and metabolic responses of juvenile Atlantic con Gadus morhua L. to an acute thermal challenge. Journal of Fish Biology, 72: 899-916. Peterson, B. C. & Small, B. C. 2004. Effects of fasting on circulating IGF-binding proteins, glucose, and cortisol in channel catfish (Ictalurus punctatus). Domestic Animal Endocrinology, 26: 231-240. Pickering, A. D. 1981. Introduction: the concept of biological stress. In: Pickering, A. D. (ed) Stress and Fish. Academic Press, London. Pickering, A. D. & Pottinger T. G. 1987a. Poor water quality suppresses the cortisol response of salmonid fish to handling and confinement. Journal of Fish Biology, 30: 363-374. Pickering, A. D. & Pottinger, T. G. 1987b. Crowding causes prolonged leucopenia in salmonid fish, despite interrenal acclimation. Journal of Fish Biology, 30: 701-712. Pickering, A. D. 1998. Stress responses of farmed fish. In: Black, K. D. & Pickering, A. D. (eds). Biology of Farmed Fish. Sheffield Academic Press, Sheffield. 222–255p. Plaut, I. & Gordon, M. S. 1994. Swimming metabolism of wild type and cloned zebrafish Brachydanio rerio. Journal of Experimental Biology, 194: 209-223. 175 Pottinger, T. G., Moran, T. A. & Cranwell, P.A. 1992. The biliary accumulation of corticosteriods in rainbow trout, Oncorhynchus mykiss, during acute and chronic stress. Fish Physiology and Biochemistry, 10: 55–66. Pottinger, T.G. & Mosuwe, E. 1994. The corticosteroidogenic response of brown and rainbow trout alevins and fry to environmental stress during a critical period. General and Comparative Endocrinology, 95: 350-362. Pottinger, T. G., Balm, P. H. & Pickering, A. D. 1995. Sexual maturity modifies the responsiveness of the pituitary-interrenal axis to stress in male rainbow trout. General and Comparative Endocrinology, 98: 311-320. Pottinger, T. G. 1998. Changes in blood cortisol, glucose and lactate in carp retained in anglers’ keepnets. Journal of Fish Biology, 53: 728742. Pottinger, T. G. & Carrick, T. R. 1999. Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. General and Comparative Endocrinology, 116: 122132. Pottinger, T. G., Carrick, T. R., Appleby, A. & Yeomans, W. E. 2000. High blood cortisol levels and low cortisol receptor affinity: is the chub, Leuciscus cephalus, a cortisol-resistant species?. General and Comparative Endocrinology, 120: 108–117. Pottinger, T. G., Rand-Weaver, M. & Sumpter, J. P. 2003. Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilization. Comparative Biochemistry and Physiology Part B, 136: 403-417. Pratap, H. B. & Wendelaar-Bonga, S. E. 1990. Effects of water-borne cadmium on plasma cortisol and glucose in the cichlid fish Oreochromis mossambicus. Comparative Biochemistry and Physiology, 95:313-317. Ramsay, J. M., Feist, G. W., Varga, Z. M., Westerfield, M., Kent, M. L. & Schreck, C. B. 2006. Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio. Aquaculture, 258: 565-574. Randall, D. J. & Perry, S. F. 1992. Catecholamine. In: Hoar, W. S., Randall, D. J., Farrell, T. P. (eds) Fish Physiology, Vol. XII, Academic Press, New York. Reid, S. D., Moon, T. W. & Perry, S. F. 1992. Rainbow trout hepatocyte beta-adrenoceptors, catecholamine responsiveness, and effects of cortisol. American Journal of Physiology, Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 MARTINEZ-PORCHAS ET AL. 176 262: 794-799. Reid, S. G., Bernier, N. J. & Perry, S. F. 1998. The adrenergic stress response in fish: control of catecholamine storage and release. Comparative Biochemistry and Physiology Part C, 120: 1-27. Robertson, L., Thomas, P., Arnold, C. R. & Trant, J. M. 1987. Plasma cortisol and secondary stress responses of red drum to handling, transport, rearing density, and a disease outbreak. The Progressive Fish Culturist, 49: 1-12. Roche, H. & Bogué, G. 1996. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Marine Environmental Research, 41: 27-43. Rotllant, J. & Tort, L. 1997. Cortisol and glucose responses after acute stress by net handling in the sparid red porgy previously subjected to crowding stress. Journal of Fish Biology, 51: 21–28. Rotllant, J., Tort, L., Montero, D., Pavlidis, M., Martinez, M. & Wendelaar-Bonga, S. E. & Balm, P. H. 2003. Background colour influence on the stress response in cultured red porgy Pagrus pagrus. Aquaculture, 223: 129-139. Rottmann, R. W., Francis-Floyd, R. & Durborow, R. 1992. The role of stress in fish disease. SRAC Publication No 474. 4p. Ruane, N. M., Carballo, E. C. & Komen, J. 2002. Increased stocking density influences the acute physiological stress response of common carp Cyprinus carpio (L.). Aquaculture Research, 33: 777-784. Sadler, J., Wells, R. M. G., Pankhurst, P. M. & Pankhurst, N. W. 2000a. Blood oxygen transport, rheology and hematological responses to confinement stress in diploid and triploid Atlantic salmon, Salmo salar. Aquaculture, 184: 349-361. Sadler, J., Pankhurst, N. W., Pankhurst, P. M. & King, H. 2000b. Physiological stress responses to confinement in diploid and triploid Atlantic salmon. Journal of Fish Biology, 56: 506-518. Sager, D. R., Hocutt, C. H. & Stauffer, J.R. 2000. Base and stressed ventilation rates for Leiostomus xanthurus Lacepede and Morone americana (Gmelin) exposed to strobe lights. Journal of Applied Ichthyology, 16: 89–97. Schwaiger, J., Wanke, R., Adam, S., Pawert, S., Honnen, W. & Trienskorn, R. 1997. The use of histopathological indicators to evaluate contaminant-related stress in fish. Journal of Aquatic Ecosystem Stress and Recovery, 6: 75-86. Scott, A. P., Pinillos, M. & Ellis, T. 2001. Why measure steroids in fish plasma when you can measure them in water?. In: Goos, H. J. T., Rastogi, R. K., Vaudry, H. & Pierantoni, R. (eds). Perspectives in Comparative Endocrinology: Unity and Diversity. The Proceedings of the 14th International Congress of Comparative Endocrinology, Sorrento, Italy, 26-30 May, 2001. Monduzzi Editore S.p.A.-Medimond Inc., Bologna, Italy. pp. 1291–1295. Scott, A. P. & Ellis, T. 2007. Measurement of fish steroid in water – a review. General and Comparative Endocrinology, 153: 392-400. Selye, H. 1936. A syndrome produced by diverse nocuous agents. Nature, 138:32-32. Selye, H. 1973. The evolution of the stress concept. American Scientist, 61: 692–699. Selye, H. 1985. Stress: Eustress, distress and human perspectives. In: Day, S. (ed). Life stress. Vol III. Van Nostrand Reinhold, Cincinnati. Siikavuopio, S. I. & Sæther, B-J. 2006. Effects of chronic nitrite exposure on growth in juvenile Atlantic cod, Gadus morhua. Aquaculture, 255: 351–356. Simontacchi, C., Poltronieri, C., Carraro, C., Bertotto, D., Xiccato, G., Trocino, A. & Radaelli 2008. Alternative stress indicators in sea bass Dicentrarchus labrax, L. Journal of Fish Biology, 72: 747-752. Small, B. C. 2003. Anesthetic efficacy of metomidate and comparison of plasma cortisol responses to tricaine methanesulfonate, quinaldine and clove oil anesthetized channel catfish Ictalurus punctatus. Aquaculture, 218: 177-185. Small, B. C. 2004. Effect of isoeugenol sedation on plasma cortisol, glucose, and lactate dynamics in channel catfish Ictalurus punctatus exposed to three stressors. Aquaculture, 238:469-481. Sorensen, P. W. & Scott, A. P. 1994. The evolution of hormonal sex pheromones in teleost fish: poor correlation between the pattern of steroid release by goldfish and olfactory sensitivity suggests that these cues evolved as a result of chemical spying rather than signal specialization. Acta Physiologica Scandinavica, 152: 191-205 Sprague, J. B. 1969. Measurement of pollutant toxicity to fish I. Bioassay methods for acute toxicity. Water Research, 3: 793-821. Sprague, J. B. 1971. Measurement of pollutant toxicity to fish III. Bioassay methods for acute Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Cortisol and Glucose: Reliable indicators of fish stress? toxicity. Water Research, 5: 245-266. Stein-Behrens, B. A. & Sapolsky, R. M. 1992. Stress, glucocorticoids, and aging. Aging, 4:197-210. Stouthart, A. J. H. X., Lucassen, E. C. H. E. T., Van Strien, F. J. C., Balm, P. H. M., Lock, R. A. C., Wendelaar-Bonga, S. E. 1998. Stress responsiveness of the pituitary-interrenal axis during early life stages of common carp (Cyprinus carpio). Journal of Endocrinology, 157: 127–137. Silbergeld, E. K. 1974. Blood glucose: A sensitive indicator of environmental stress in fish. Bulletin of Environmental Contamination and Toxicology, 11: 20-25. Strange, R. J., Schreck, C. B. & Golden, J. T. 1977. Corticoid stress response to handling and temperature in salmonids. Transactions of the American Fisheries Society, 106: 213218. Thomas, P. M., Pankhurst, N. W. & Bremner, H. A. 1999. The effect of stress and exercise on post-mortem biochemistry of Atlantic salmon and rainbow trout. Journal of Fish Biology, 54: 1177–1196. Thompson, L. A., Cooke, S. J., Donaldson, M. R., et al. 2008. Physiology, behavior, and survival of angled and air-exposed largemouth bass. North American Journal of Fisheries Management, 28: 1059-1068. Tort, L., Sunyer, J. O., Gómez, E. & Molinero, A. 1996. Crowding stress induces changes in serum hemolytic and agglutinating activity in the gilthead sea bream Sparus aurata. Veterinary Immunology and Immunopathology, 51: 179-188. Tort, L., Puigcerver, M., Crespo, S. & Padrós, F. 2002. Cortisol and haematological response in sea bream and trout subjected to the anaesthetics clove oil and 2-phenoxyethanol. Aquaculture Research, 33: 907-910. Turner, J. W., Nemeth, R. & Rogers, C. 2003. Measurement of fecal glucocorticoids in parrotfishes to assess stress. General and Comparative Endocrinology, 133: 341–352. Trenzado, C. E., Carrick, T. R. & Pottinger, T. G. 2003. Divergence of endocrine and metabolic responses to stress in two rainbow trout lines selected for differing cortisol responsiveness to stress. General and Comparative Endocrinology, 133: 332-340. Urbinati, E. C. & Carneiro, P. C. F. 2006. Sodium chloride added to transport water and physiological responses of Matrinxã Brycon amazonicus (Teleost: Characidae). Acta 177 Amazonica, 24: 569-572. Van der Salm, A. L., Martínez, M., Flik, G. & Wendelaar-Bonga, S. E. 2004. Effects of husbandry conditions on the skin colour and stress response of red porgy, Pagrus pagrus. Aquaculture, 241: 371-386. Velíšek, J., Svobodová, Z. & Piačková, V. 2005. Effects of clove oil anaesthesia on rainbow trout (Oncorhynchus mykiss). Acta Veterinaria Brno, 74:139-146. Vijayan, M. M. & Leatherland, J. F. 1990. High stocking density affects cortisol secretion and tissue distribution in brook char, Salvelinus fontinalis. Journal of Endocrinology, 124: 311–318. Vijayan, M. M., Ballantyne, J. S. & Leatherland, J. F. 1991. Cortisol-induced changes in some aspects of the intermediary metabolism of Salvelinus fontinalis. General and Comparative Endocrinology, 82: 476-486. Vijayan, M. M. & Moon, T. W. 1992. Acute handling stress alters hepatic glycogen metabolism in food-deprived rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences, 49: 22602266. Vijayan, M. M., Pereira, C. & Moon, T. W. 1994. Hormonal-stimulation of hepatocyte metabolism in rainbow-trout following an acute handling stress. Comparative Biochemistry and Physiology Part C, 108: 321-329. Vijayan, M. M. & Moon, T. W. 1994. The stress response and the plasma disappearance of corticosteroid and glucose in a marine teleost, the sea raven. Canadian Journal of Zoology, 72: 379–386. Vijayan, M. M., Raptis, S. & Sathiyaa, R. 2003. Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout. General and Comparative Endocrinology, 132: 256-263. Wagner, G. N., Singer, T. D. & McKinley, R. S. 2003. The ability of clove oil and MS-222 to minimize handling stress in rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research, 34: 1139-1146. Wagner, T. & Congleton, J. L. 2004. Blood chemistry correlates of nutritional condition, tissue damage, and stress in migrating juvenile chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 61: 1066–1074. Walsh, P. J., Tucker, B. C. & Hopkins, T. E. 1994. Effects of confinement/crowding on Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 MARTINEZ-PORCHAS ET AL. 178 ureogenesis in the Gulf toadfish Opsanus beta. Journal of Experimental Biology, 191: 195-206. Waring, C. P., Stagg, R. M. & Poxton, M. G. 1996. Physiological responses to handling in the turbot. Journal of Fish Biology, 48: 161–173. Wedemeyer, G. A. & Yasutake, W. T. 1977. Clinical methods for the assessment of the effects of environmental stress on fish health. Tech Pap USFWS no 89. Wedemeyer, G. A., Barton, B. A. & McLeay, D. J. 1990. Stress and acclimation. In: Schreck, C. B. & Moyle, P. B. (eds). Methods for Fish Biology. MD: American Fisheries Society, Bethesda. 491-527p. Welker, T.L., Lim, C., Yildrim-Askoy, M. & Kelsius, P.H. 2007. Effect of buffered and unbuffered tricaine methanesulfonate (MS222) at different concentrations on the stress responses of channel catfish, Ictalurus punctatus Rafinesque. Journal of Applied Aquaculture, 19: 1-18. Weisbart, M. & McGowan, L. K. 1984. Radioimmunoassay of cortisone in the adult Atlantic salmon Salmo salar L. General and Comparative Endocrinology, 55: 429–436. Wendelaar-Bonga, S. E. 1997. The stress response in fish. Physiological Reviews, 77: 591-625. West, T. G., Arthur, P. G., Suarez, R. K., Doll, C. J. & Hochachka, P. W. 1993. In vivo utilization of glucose by heart and locomotory muscles of exercising rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 177: 63–79. Wilson, J. M., Vijayan, M. M., Kennedy, C. J., Iwama, G. K. & Moon, T. W. 1998. Naphthoflavone abolishes interrenal sensitivity to ACTH stimulation in rainbow trout. Journal of Endocrinology, 157: 63–70. Wood, C. M., Walsh, P. J., Thomas, S. & Perry, S. F. 1990. Control of red blood cell metabolism in rainbow trout after exhaustive exercise. Journal of Experimental Biology, 154: 491507. Woodward, J. J. & Smith, L. S. 1985. Exercise training and the stress response in rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology, 26: 435-447. Woodward, C. C. & Strange, R. J. 1987. Physiological stress responses in wild and hatchery-reared rainbow trout. Transactions of the American Fisheries Society, 116: 574– 579. Ytrestøyl, T., Finstad, B. & McKinley, R. S. 2001. Swimming performance and blood chemistry in Atlantic salmon spawners exposed to acid river water with elevated aluminum concentration. Journal of Fish Biology, 58: 1025–1038. Zuccarelli, M. D., Kusakabe, M. K., Nakamura, I., Prentice, E. F., Young, G. & Ingermann, R. L. 2008. Acute stress response of Kootenai River white sturgeon Acipenser transmontanus Richardson reflected in peritoneal fluid and blood plasma. Journal of Fish Biology, 72: 1831–1840. Received January 2009 Accepted March 2009 Published online May 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 158-178 Aspectos biológicos do peixe-olhudo-dentinho, Synagrops bellus (Actinopterygii: Acropomatidae), da plataforma externa e talude superior do estado de São Paulo, Brasil. TEODORO VASKE JÚNIOR1, ALINE FREIRE TEIXEIRA2 & OTTO BISMARCK FAZZANO GADIG2 1 UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique s/n CEP: 11330-900 São Vicente SP. Email: vaske@ig.com.br 2 UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique s/n CEP: 11330-900 São Vicente SP. Resumo. São apresentados aspectos biológicos do peixe-olhudo-dentinho, Synagrops bellus, que ocorre em regiões de quebra de plataforma e talude superior na costa de São Paulo, sudeste do Brasil. A espécie representou cerca de 71,6% e 9,7% em número das capturas realizadas com rede de arrasto de fundo nas isóbatas de 300 m e 500 m, respectivamente. Os tamanhos de 266 exemplares variaram entre 130 e 265 mm de comprimento total, com proporção de 55,9% de machos e 44,1% de fêmeas, onde a maior parte dos exemplares encontrava-se em maturação. Foram encontrados 22 itens alimentares com destaque para peixes Myctophidade, camarões Penaeidea e Caridea, megalopas de Brachyura, estomatópodes, cefalópodes Enoploteuthidae e Cranchiidae, e pterópodes e tunicados. O quociente intestinal tende a diminuir com o aumento de tamanho do corpo e o número de rastros branquiais está entre 16 e 17. A relação pesocomprimento foi de PT = 6,0x10 -6 x CT3,12, r 2 = 0,9495. Synagrops bellus é um importante elo de transferência de energia entre o zooplâncton e micronécton, e os grandes predadores demersais e pelágicos na quebra de plataforma no sudeste do Brasil. Palavras-chave: peixe, águas profundas, alimentação, reprodução, relação peso-comprimento, Abstract. Biological aspects of the blackmouth bass Synagrops bellus (Actinopterygii: Acropomatidae), from the outer shelf and upper slope of São Paulo State, Brazil. Biological aspects of the blackmouth bass Synagrops bellus from the outer shelf and upper slope along the coast of São Paulo, southeastern Brazil, are presented. The species represented about 71.6% and 9.7% in number of the total catch performed by balloom trawl in the isobaths of 300m and 500m respectively. Body sizes of 266 individuals ranged between 130 and 265mm total length, with sex ratio of 55.9% males, and 44.1% females, where most individuals were in maturation stage. Twenty two food items were found, pointing out Myctophidae fishes, Penaeidea and Caridea shrimps, Brachyuran megalopae, Enoploteuthidae and Cranchiidae cephalopods, pteropods and tunicates. The intestinal coefficient increases as the body size increase, and the number of gill rakers ranged between 16 and 17. Length-weight relationship was WT = 6.0x10-6 x TL3.12, r 2 = 0.9495. Synagrops bellus is an important link between zooplankton and micronekton, and demersal and pelagic predators in the outer shelf and upper slope in southwestern Brazilian coast. Key words: fish, deep water, feeding, reproduction, length-weight relationship Introdução Desde o começo do Programa REVIZEE em 1995, um estudo abrangente dos recursos vivos da Zona Econômica Exclusiva foi realizado ao longo da costa brasileira, incluindo regiões de borda de talude, onde muitas espécies tinham suas ocorrências desconhecidas. Dentre elas, os peixes do gênero Synagrops (família Acropomatidae), representado por onze espécies, duas das quais, S. bellus e S. spinosus, registradas em águas brasileiras (Figueiredo & Meneses 1980, Haimovici et al. 1994, Carvalho Fo 1999, Figueiredo et al. 2002, Perez et Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 VASKE JUNIOR ET AL. 180 al. 2003, Mincarone et al. 2004, Muto et al. 2005, Costa et al. 2007), onde costumam ocorrer em águas profundas na plataforma externa e talude superior. Synagrops bellus (Fig. 1) é a maior espécie do gênero atingindo até 30 cm, com distribuição no Atlântico ocidental, desde o Canadá até o Rio Grande do Sul (Mejia et al., 2001). Esta espécie representa entre 29 e 44% do total da captura em peso de peixes entre 250 m e 350 m no sul do Brasil (Haimovici et al. 1994). Figura 1. Peixe-olhudo-dentinho, Synagrops bellus, coletado no talude do estado de São Paulo. Apenas mais recentemente, foi dada mais atenção aos recursos de plataforma externa e talude superior, através dos levantamentos faunísticos realizados no âmbito do Programa REVIZEE (Figueiredo et al. 2002, Haimovici et al. 2004, Bernardes et al. 2005, Muto et al. 2005, Costa et al. 2005). O fundo da plataforma externa e talude superior ao largo de Santos se apresentam com predomínio de áreas planas, com raras protuberâncias, composto basicamente por areia lamosa e lama arenosa (Figueiredo & Madureira 2004), que facilitam o arrasto de fundo. Estudos de alimentação de peixes demersais de profundidade no sudeste do Brasil ainda são escassos, entre os quais se destaca uma análise sobre a composição de dieta e comparações intraespecíficas para nove espécies de peixes (Muto et al. 2005), e também para outras três espécies representativas da ictiofauna onde a espécie congênere S. spinosus foi analisada (Nascimento 2006). No intuito de dar seguimento aos estudos de peixes de profundidade da região sudeste, o presente trabalho analisa dados biológicos de S. bellus da costa de São Paulo, particularmente a composição por tamanhos, alimentação, aspectos de maturação gonadal, e relação peso-comprimento, visando a obtenção de informações biológicas básicas da espécie, até então desconhecidas para a costa brasileira. Material e Métodos As amostras foram obtidas em dezembro de 2007 pelo NPq “Soloncy Moura” (CEPSULIBAMA), durante dois arrastos realizados cada um ao longo das isóbatas de 300 m e 500 m ao largo de Santos no estado de São Paulo (Fig. 2). Foi utilizada uma rede de portas para arrasto profundo, do tipo balloom trawl de 439 malhas, 160 mm na boca e 70 mm no sacador. Os arrastos foram efetuados entre 9 h e 13 h nas posições 26º21’S; 46º23’W e 25º50’S; 46º47’W. Para o propósito deste estudo, os exemplares coletados nas duas posições foram analisados em conjunto. A duração de cada arrasto foi de 30 minutos com velocidade do navio entre dois e três nós. Imediatamente após a captura, os peixes foram congelados a bordo e posteriormente o comprimento total (CT) de cada peixe foi medido em milímetros e o peso úmido total (PT) em gramas em laboratório. Após as tomadas de medidas e peso, e determinação de sexo, os estômagos foram removidos e preservados em solução de formalina 4 %. Após o descongelamento das gônadas foi determinado o estágio de maturação de cada exemplar, descartando-se os exemplares duvidosos. Os itens alimentares foram identificados ao menor táxon possível, contados, medidos em mm e pesados em centésimos de grama. O conteúdo estomacal de cada predador incluiu lista de itens alimentares e grau de repleção Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 Aspectos biológicos do peixe-olhudo-dentinho, Synagrops bellus estomacal conforme a seguinte escala: I – vazio; II um quarto preenchido; III - metade preenchido; IV três quartos preenchido; V – cheio. A importância de cada presa nos conteúdos estomacais foi obtida através do Índice de Importância Relativa (IRI) modificado para peso (Pinkas et al. 1971): IRIi = %FOi x (%Ni + %Pi) onde: % FOi - porcentagem da freqüência de ocorrência de cada item % Ni - porcentagem em número de cada item % Pi - porcentagem em peso de cada item Para o cálculo de IRI não foram considerados como conteúdo os bicos isolados de cefalópodes, evitando-se assim a sobrestimativa em número deste grupo (Vaske & Rincón 1998). No entanto, para o estudo do tamanho das presas ingeridas, os bicos foram utilizados para se obter o comprimento do manto do cefalópode predado. As equações de regressão utilizadas para se estimar o manto dos cefalópodes a partir dos bicos foram as obtidas por Clarke (1986). Uma relação peso-comprimento foi determinada para 266 exemplares de ambos os 181 sexos, conforme a equação potencial: PT = a CT b onde PT é o peso total úmido (g), CT é o comprimento total (cm), “a” é a constante, e “b” é o coeficiente alométrico. O coeficiente de 2 determinação de Pearson (r ) foi usado para indicar a qualidade da regressão. A escala de maturação sexual macroscópica de Vazoller (1996) foi usada para analisar o grau de maturação gonadal conforme quarto estágios: A – imaturo, quando não é possível distinguir diferenciação de sexo; B – em maturação, com ovócitos em vitelogênese e produção de espermatozóides; C – maturo, com gônadas ocupando 2/3 da cavidade abdominal, gônada fêmea cilíndica, vascularizada e ovócitos grandes, gônada macho, esbranquiçada, volumosa; D – desovada, e E – em repouso, gônadas flácidas e esvaziadas. O número de rastros branquiais e o Quociente Intestinal (QI) foram obtidos para se ter idéia da preferência por determinados tipos de presas (Zavala-Camin 1996): QI = CI / CT onde: CI = comprimento do intestino (cm) CT = comprimento total (cm) Figura 2. Localização (X) da procedência das amostras de Synagrops bellus, na região do talude do estado de São Paulo.. Resultados A espécie representou 71,6% em número do total de peixes capturados no arrasto de 300 m e 9,7% dos peixes de 500 m. Os comprimentos totais de 266 S. bellus variaram entre 130 e 265 mm, com uma moda evidente entre 180 e 190 mm (Fig. 3). A relação peso-comprimento obtida para 266 exemplares com sexos agrupados é apresentada na Figura 4. Um total de 201 estômagos foi aproveitado Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 VASKE JUNIOR ET AL. 182 para análise, onde 22 itens alimentares foram identificados, dos quais oito representantes de cefalópodes, dez crustáceos, dois peixes, um pterópode, e um tunicado (Tabela I). De acordo com a classificação por IRI, peixes Myctophidae foram o principal item alimentar de S. bellus, apesar de peixes terem sido pouco representativos em diversidade na dieta. A seguir vieram camarões Penaeidea e Caridea, megalopas de Brachyura, estomatópodes, os cefalópodes Enoploteuthidae e Cranchiidae, e os pterópodes e tunicados. Todos os organismos foram representados por formas larvais e jovens, com exceção de Brachyscelus crusculum, Phronima sp., e Cavolinia sp. Houve uma notável presença de bicos acumulados do polvo epipelágico Ocythoe tuberculata. Sua presença nos estômagos se deu na forma de um a cinco pares de bicos, cujas regressões resultaram em polvos jovens entre 4,3 e 5,7cm de comprimento de manto. n=266 média = 190,3 mm 25 20 15 % 10 5 0 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 Comprimento total (mm) Figure 3. Distribuição de comprimentos de Synagrops bellus no sudeste do Brasil. 250 n = 266 y = 10 - 6 x 3,12 r2 = 0,9495 Peso total (g) 200 150 100 50 0 0 50 100 150 200 250 300 Comprimento total (mm) Figure 4. Relação peso-comprimento para Synagrops bellus no sudeste do Brasil. Em sete exemplares selecionados aleatoriamente com comprimentos entre 14,5 e 23 cm, foram contados os rastros branquiais que totalizaram 16 unidades, com exceção de um exemplar que apresentou 17 rastros. Nos mesmos sete exemplares o QI apresentou uma tendência de diminuição a medida que a espécie aumenta de tamanho (Tabela II). Os comprimentos corporais dos itens alimentares variaram entre 5 e 75 mm, sem tendência clara de preferências por tamanhos (Fig. 5). Os graus de repleção estomacal de 201 estômagos estiveram representados por 35,8% de estômagos vazios e 64,2% com presença de alimento (Fig. 6). Para 136 peixes, a razão sexual foi de 76 fêmeas (55,9%) e 60 machos (44,1%). Os estágios de maturação gonadal foram possíveis de se observar em 33 exemplares machos, com 48,5% no estágio A e 51,5% no estágio B. Para 29 fêmeas as proporções foram de 27,6% no estágio A, 68,9% no estágio B e 3,5% no estágio C. Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 Aspectos biológicos do peixe-olhudo-dentinho, Synagrops bellus 183 Tabela I. Porcentagem em número, peso, e frequência de ocorrência dos itens alimentares de Synagrops bellus. Os dez itens mais importantes conforme IRI são enumerados de 1 a 10. Itens alimentares N %N P %P FO %FO IRI Enoploteutis anapsis Enoploteutis leptura Cranchiidae Ocythoe tuberculata Histioteuthidae Japetella diaphana Cephalopoda Argonauta sp. Cefalópodes Penaeidae Brachyura (megalopa) Caridea Stomatopoda Nephropidae Decapoda Scyllaridae Copepoda Brachyscelus crusculum Phronima sp. Crustáceos Myctophidae Teleostei Peixes Cavolinia sp. Tunicata Outros TOTAL 9 6 8 6 6 2 1 1 39 32 14 11 6 2 3 1 2 2 1 74 40 12 52 2 1 3 168 5,4 3,6 4,8 3,6 3,6 1,2 0,6 0,6 23,40 19 8,3 6,6 3,6 1,2 1,8 0,6 1,2 1,2 0,6 43,90 23,80 7,10 30,90 1,20 0,60 1,80 100 10 6,2 1 13,80 8,60 1,40 0,1 0,10 17,3 9,1 6,1 6,9 1,4 2,5 0,2 2 0,1 1 0,1 29,4 18,8 7 25,8 0,1 0,1 0,2 72,7 23,90 12,50 8,50 9,50 1,90 3,40 0,30 2,70 0,10 1,40 0,10 40,40 25,90 9,60 35,50 0,10 0,10 0,20 100 8 4 6 6 3 2 1 1 6,6 3,3 4,9 4,9 2,5 1,6 0,8 0,8 6 7 8 10 23 12 10 6 2 3 1 2 1 1 18,80 9,80 8,20 4,90 1,60 2,50 0,80 1,60 0,80 0,80 2 4 5 9 35 13 28,70 10,70 1 3 2 1 1,60 0,80 Tabela II. Dados de Quociente Intestinal (QI) e número de rastros branquiais para sete indivíduos de Synagrops bellus. Comprimento CT (cm) do intestino (cm) QI Rastros 14,5 12 82,76 16 15,5 10 64,52 17 17 12 70,59 16 17 12 70,59 16 17,5 13 74,29 16 23 15 65,22 16 23 16 69,57 16 Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 VASKE JUNIOR ET AL. 184 n = 49 média = 37,1 mm 25 20 15 % 10 5 0 10 20 30 40 50 60 70 80 90 100 Comprimento das presas (mm) Figura 5. Comprimento das presas de Synagrops bellus. 45 40 35 30 25 % 20 15 10 5 0 I II III IV V Repleção estomacal Figura 6. Graus de repleção estomacal de Synagrops bellus. Discussão Apesar da representatividade e constância em arrastos de águas profundas ao longo da costa sudeste-sul, a espécie não é aproveitada comercialmente. No entanto, é parte importante no ecossistema de quebra de talude, evidenciado pelo espectro alimentar que a caracteriza como predadora de organismos pelágicos de pequeno porte (dezenas de mm). Synagrops bellus apresenta corpo robusto, olhos grandes, dentição forte, e cauda furcada, que lhe conferem capacidade para investir com eficiência sobre suas presas na coluna d’água. Por outro lado, faz parte da dieta de outros predadores demersais locais como Polymixia lowei e chega a ser o terceiro item em importância na dieta de Lophius gastrophysus (Muto et al. 2005). Também é parte integrante da dieta de grandes predadores pelágicos do sudeste e sul do Brasil como Thunnus albacares (Vaske Jr & Castello 1998, Zavala-Camin 1981), Xiphias gladius (Zavala-Camin 1981, Mello 1992), Istiophorus platypterus, Tetrapturus albidus (Zavala-Camin 1981) e Thunnus obesus (Mello 1992), funcionando como um elo de transferência de energia entre o zooplâncton e micronécton, e os predadores topo do ecossistema pelágico. O fato de ser presa constante de grandes predadores evidencia que S. bellus faz deslocamentos verticais consideráveis na coluna d’água, o que lhe é vantajoso para obter um espectro alimentar heterogêneo como o observado, mas também a torna presa potencial para grandes predadores. Nascimento (2006) analisou 953 estômagos da espécie congênere Synagrops spinosus na mesma região, dos quais 197 com conteúdo, encontrando peixes, crustáceos e cefalópodes, onde o item crustáceo foi estudado mais detalhadamente. A alta porcentagem de estômagos vazios (66%) encontrada por Nascimento (2006) foi atribuída a um provável horário de alimentação mais intensa nas amostras de período noturno. No presente estudo, a maioria dos estômagos continha alimento no horário de coleta diurno, no entanto, para se inferir horários de alimentação em ambientes entre 300 e 500 m onde a luz praticamente não faz diferença ao longo do dia, seriam necessários arrastos em horários definidos, onde é provável que a disponibilidade de presas possa estar associada à grande migração vertical diária do micronécton. Dentre os principais itens alimentares de S. bellus destacam-se organismos que realizam grandes migrações verticais diárias em Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 Aspectos biológicos do peixe-olhudo-dentinho, Synagrops bellus quebras de plataforma como Myctophidae, Enoploteuhidae, Cranchiidae, Histioteuthidae, entre outros. Se a estratégia de S. bellus for de se deslocar na coluna dágua acompanhando a migração do micronécton, é provável que os períodos de alimentação mais intensa sejam entre a madrugada e crepúsculo, como observado por Nascimento (2006), para S. spinosus. Em relação a presença do polvo epipelágico Ocythoe tuberculata, restrito ao ambiente epipelágico (0 a 150 m) (Roper & Young 1975), e comumente encontrado em conteúdos estomacais de grandes peixes pelágicos, como atuns e agulhões (Vaske Jr. & Castello 1998, Vaske Jr et al. 2004), pode-se inferir que S. bellus faz incursões no epipelágico com certa freqüência, já que S. bellus é caracterizada como espécie demersal-pelágica (Haimovici et al. 1994). Dessa forma, se O. tuberculata é restrito as camadas superficiais, a sua presença na alimentação de S. bellus é um indicativo que evidencia a constante migração vertical na coluna d’água de S. bellus, embora provavelmente se concentre na maior parte do tempo em águas mais profundas, como observado em outras capturas (Haimovici et al. 1994, Mincarone et al. 2004, Muto et al. 2005). Não foi capturado nenhum exemplar em outras artes de pesca utilizadas na região e que trabalham com iscas como pargueiras, espinhel de fundo e armadilhas (Haimovici et al. 2004, Martins et al. 2005), devido a uma provável limitação de tamanho de boca com o tamanho das iscas empregadas nas artes de pesca. Pela observação de que intestinos mais curtos e algumas unidades de rastros branquiais possam ser indicativos de hábito mais carnívoro (Zavala-Camin 1996), é provável que na amplitude de tamanhos aqui estudados, os peixes tenham uma preferência por presas com maior massa muscular. Segundo Nascimento (2006), S. spinosus pode ser considerado como consumidor secundário que realiza migrações na coluna d’água, onde jovens preferem se alimentar de pequenos crustáceos no fundo e adultos preferem mais peixes e cefalópodes na coluna d’água. Um estudo futuro de QI com tamanhos mais representativos de larvas, jovens e adultos, poderá confirmar se o QI é maior nessas fases em relação às presas encontradas. A maior parte dos estágios de maturação observados estava na fase de maturação. De acordo com Sinque & Muelbert (1997) larvas de Synagrops sp. são observadas no estuário de Rio Grande (RS) em períodos de forte entrada de água salgada, o que pode ser um indício de que indivíduos maturos desovem em águas de plataforma externa e migrem nas fases jovens e adultas para a quebra do talude, 185 uma vez que exemplares adultos não são encontrados em profundidades até 119 m no sul do Brasil (Haimovici et al. 1996). Dessa maneira, S. bellus parece ser uma espécie abundante em quebras de plataforma, sobretudo em torno da isóbata dos 300 m, exercendo papel importante como presa e predador na transferência de energia nesse ecossistema. Agradecimentos Os autores são gratos à tripulação do NPq “Soloncy Moura”(CEPSUL-IBAMA), e aos professores e alunos da UNESP-CLP que colaboraram nas coletas durante o embarque. Referências Bernardes, R. A., Rossi-Wongtschowski, C. L. D. B., Wahrlich, R., Vieira, R.C., Santos, A. P. & Rodrigues, A. R. 2005. Propecção pesqueira de recursos demersais com armadilhas e pargueiras na Zona Econômica Exclusiva da região Sudeste-Sul do Brasil. Série Documentos REVIZEE-Score Sul. Edusp, São Paulo, 112 p. Carvalho-Filho, A. 1999. Peixes: Costa Brasileira. Melro, São Paulo, 320 p. Clarke, M. R. 1986. A handbook for the identification of cephalopods beaks. Oxford University Press, London and New York, 355 p. Costa, P. A. S., Martins, A. S., Olavo G. (Eds.). 2005. Pesca e potenciais de exploração de recursos vivos na região central da Zona Econômica Exclusiva Brasileira. Série Livros – Documentos REVIZEE - Score Central. Museu Nacional do Rio de Janeiro, Rio de Janeiro, 248 p. Costa, P. A. S., Braga, A. C., Melo, M. R. S., Nunan, G. W. A., Martins, A. S. & Olavo, G. 2007. Assembléias de teleósteos demersais no talude da costa central brasileira. Pp. 87-107. In: Costa, P. A. S., Olavo, G., Martins, A. S. (Eds.). Biodiversidade da fauna marinha profunda na costa central brasileira. Museu Nacional do Rio de Janeiro, Rio de Janeiro, 184 p. Figueiredo, J. L. & Menezes, N. A. 1980. Manual de peixes marinhos do sudeste do Brasil III. Teleostei (2). Museu de Zoologia, Universidade de São Paulo, 90 p. Figueiredo, J. L., Santos, A. P., Yamaguti, N., Bernares, R. A. & Wongtschowski, , C. L. B. 2002. Peixes da Zona Econômica Exclusiva do Sudeste e Sul do Brasil. Levantamento com rede de meia água. EDUSP, São Paulo, Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 VASKE JUNIOR ET AL. 186 242 p. Figueiredo, A. G. & Madureira, L. S. P. 2004. Topografia, composição, refletividade do substrato marinho e identificação de províncias sedimentares na região sudeste-sul do Brasil. Série Documentos REVIZEEScore Sul. Edusp, São Paulo, 64 p. Haimovici, M., Martins, A. S., Figueiredo, J. L.& Vieira, P. C. 1994. Demersal bony fish of the outer shelf and upper slope of the Southern Brazil Subtropical Convergence Ecosystem. Marine Ecology Progress Series, 108: 59-77. Haimovici, M., Martins, A. S. & Vieira, P. C. 1996. Distribuição e abundância de peixes teleósteos demersais sobre a plataforma continental do sul do Brasil. Revista Brasileira de Biologia, 56(1):27-50. Haimovici, M., Ávila-da-Silva, A. O., Tutui, S. L. S., Bastos, G. C. C., Santos, R. A., & Fischer, L. G. 2004. Prospecção pesqueira de espécies demersais com espinhel-de-fundo na região sudeste-sul do Brasil. In: Haimovici, M., Ávilada-Silva, A. O., Rossi-Wongtachowski, C. L. D. B. (Eds.) Prospecção pesqueira de espécies demersais com espinhel-de-fundo na Zona Econômica Exclusiva da Região Sudeste-Sul do Brasil. Série Documentos REVIZEE Score Sul. Instituto Oceanográfico – USP, São Paulo, 112 p. Martins, A. S., Olavo, G. & Costa P. A. S. 2005. Recursos demersais capturados com espinhel de fundo no talude superior da região entre Salvador (BA) e o Cabo de São Tomé (RJ). Pp. 109-128. In: Costa P. A. S., Martins, A. S., Olavo, G. (Eds.) Pesca e potencial de exploração de recursos vivos da região central da Zona Econômica Exclusiva Brasileira. Série Livros – Documentos REVIZEE - Score Central. Museu Nacional do Rio de Janeiro, Rio de Janeiro, 248 p. Mejia, L. S., Arturo-Acero, P., Roa, A. & SAAVEDRA, L. 2001. Review of the Fishes of the Genus Synagrops from the Tropical Western Atlantic (Perciformes:Acropomatidae). Caribbean Journal of Science, 37 (3-4): 202-209. Mello, R. M. 1992. Análise de conteúdos estomacais, intensidade de alimentação, idade e crescimento do espadarte, Xiphias gladius (Xiphioidei: Xiphiidae), no sul do Brasil. Dissertação de Mestrado. Fundação Universidade Federal do Rio Grande, Rio Grande, 105 p. Mincarone, M. M., Consulim, C. E. E., Kitahara, M. V., Lima, A. T.; Lima e Silva, C. M., Neves, R. D., Soto, J. M. R. & Souza Filho, M. B. 2004. Report on the demersal fishes sampled by onboard observers off Southern Brazil. Mare Magnum, 2(1-2):127-144. Muto, Y. E., Silva, M. H. C., Vera, G. R., Leite, S. S. M., Navarro, D. G. & Rossi-Wongtschowski, C. L. D. B. 2005. Alimentação e relações tróficas de peixes demersais da plataforma continental externa e talude superior da região Sudeste e sul do Brasil. Série Documentos REVIZEE-Score Sul. Edusp, São Paulo, 64 p. Nascimento, M. C. 2006. Alimentação de peixes na plataforma continental externa e talude superior na região sudeste-sul do Brasil. Dissertação de Mestrado. Instituto de Biociências, UNESP, Rio Claro, 89 p. Perez, J. A. A., Warlich, R., Pezzuto, P. R., Schwingel, P. R., Lopes, F. R. A., RodriguesRibeiro, M. 2003. Deep-sea fishery off Southern Brazil: Recent trends of the Brazilian Fishing Industry. Journal of Northwest Atlantic Fisheries Science, 31:1-18. Pinkas, L., Oliphant, M. S. & Iverson, I. L. K. 1971. Food habits of albacore, bluefin tuna, and bonito in Californian waters. California Fish and Game, 152: 105 p. Roper, C. F. E. & Young, R. E. 1975. Vertical distribution of pelagic cephalopods. Smithsonian Contributions to Zoology, 209: 1-51. Sinque, C., & Muelbert, J. H. 1997. Ichthyoplankton. Pp. 51-55. In: Seeliger, U., Odebrecht, C., Castello, J. P. (Eds.). Subtropical Convergence Environments: the coast and sea in the Southwestern Atlantic. Springer-Verlag, Berlin, 308 p. Vaske Júnior, T. & Castello, J. P. 1998. Conteúdo estomacal da albacora-laje, Thunnus albacares, durante o inverno e primavera no sul do Brasil. Revista Brasileira de Biologia, 58(4): 639647. Vaske Júnior, T. & Rincón Filho, G. 1998. Conteúdo estomacal dos tubarões azul (Prionace glauca) e anequim (Isurus oxyrinchus) em águas oceânicas no sul do Brasil. Revista Brasileira de Biologia, 58(3): 443-450. Vaske Júnior, T., Vooren, C. M. & Lessa, R. P. 2004. Feeding habits of four species of Istiophoridae (Pisces: Perciformes) from northeastern Brazil. Environmental Biology of Fishes, 70: 293304. Vazzoler, A. E. A. M. 1996. Biologia da reprodução de peixes teleósteos: teoria/prática. EDUEM, Maringá, 169 p. Zavala-Camin, L. A. 1981. Hábitos alimentares e Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 Aspectos biológicos do peixe-olhudo-dentinho, Synagrops bellus distribuição dos atuns e afins (Osteichthyes Teleostei) e suas relações ecológicas com outras espécies pelágicas das regiões sudeste e sul do Brasil. Tese de Doutorado. Instituto de 187 Biociências, Universidade de São Paulo, 237 p. Zavala-Camin, L. A. 1996. Introdução aos estudos sobre alimentação natural em peixes. EDUEM, Maringá, 129 p. Received February 2008 Accepted March 2009 Published online May 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 179-187 First confirmed record of the blunthead puffer, Sphoeroides pachygaster (Osteichthyes: Tetraodontidae) off the Algerian coast (south-western Mediterranean) FARID HEMIDA1, MOHAMED MOURAD BEN AMOR2 & CHRISTIAN CAPAPÉ3 1 Ecole Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ESSMAL), BP 19 Bois des Cars, 16320 Dely Ibrahim, Algiers, Algeria. Email: hemidafarid@yahoo.fr 2 Institut National des Sciences et Technologies de la Mer, port de pêche, 2060 La Goulette, Tunisia. Email: benamor7@yahoo.fr 3 Laboratoire d’Ichtyologie, Case 104, Université Montpellier 2, Sciences et Techniques du Languedoc, 34095 Montpellier cedex 5, France. Email: capape@univ-montp2.fr Abstract. A blunthead puffer Sphoeroides pachygaster (Müller & Troschel, 1848) was recorded for the first time in the Algerian waters, off the eastern region close to the Tunisian border. The specimen was an adult male; it measured 330 mm in total length and weighed 650 g. Key words: distribution, migration, Algerian ichthyofauna, Maghreb shore. Resumo. Primeiro registro confirmado do baiacu Sphoeroides pachygaster (Osteichthyes: Tetraodontidae) na plataforma argelina (sudoeste do Mediterrâneo). Um exemplar do baiacu Sphoeroides pachygaster (Müller & Troschel, 1848) foi registrado pela primeira vez em águas argelinas, águas fora da região leste próximo à fronteira da Tunísia. O espécime foi um macho adulto, com 330 mm de comprimento total e peso de 650 g. Palavras-chave: distribuição, migração, ictiofauna argelina, costa de Maghreb. The blunthead puffer Sphoeroides pachygaster (Müller & Troschel, 1848) is a relative deep water species, found between 100 and 500 m of depth, and distributed circumglobally in tropical and temperate waters (Shipp 1990, Sampaio et al. 2001). S. pachygaster presents a widespread amphiatlantic distribution, off the western Atlantic, the species was reported from New England to southern Brazil (Golani et al. 2002), while off the eastern Atlantic, the species was recorded from Irish waters (Wheeler & Van Oijen 1985), the Bay of Biscay (Quéro et al. 1998, 2003), off Portugal (Albuquerque 1954-1956). The species is known to be reported south Strait of Gibraltar, from off Morocco, Senegal (Séret & Opic 1981) to the Gulf of Guinea (Blache et al. 1970, Shipp 1990), southward probably to South Africa (Smith & Heemstra 1986). The species is also reported from the Indian Ocean (Golani et al. 2002) and the Pacific (Hardy 1981). Sphoeroides pachygaster formed a well established population in the Mediterranean Sea, where it was reported to date, at least 26 times between the first record off Mallorca, Balearic Islands, which occurred in 1979 (Oliver 1981), and 2004 according to Psomadakis et al. (2006). Recently, three additional records were reported by Peristeraki et al. (2006) and Ligas et al. (2006, 2007). The species was reported from Adriatic Sea, Aegean Sea, Italian seas, the eastern Levant Basin and southern Tunisian coast. Although the ‘core’ of the Mediterranean population seems to be located off the southeastern Tunisian coast, especially the Gulf of Gabès (Bradaï et al. 2004). Golani et al. (2002) wrongly considered the occurrence of S. pachygaster as probable off the Algerian coast, due to fact that no specimen being available for confirmation despite investigations were regularly conducted during four decades at Algerian fishing sites and fish markets. However, on 22 November 2008, a Pan-American Journal of Aquatic Sciences (2009), 4(2): 188-192 First confirmed register of Sphoeroides pachygaster off the Algerian coast specimen of Sphoeroides pachygaster was trawled at a depth of approximately 150 m, on sandy-muddy 189 bottom, at about 20 km west to Annaba, in the eastern region of the Algerian coast (Fig. 1). Figure 1. Map of the Mediterranean showing the Maghreb coast and capture site (black star) of the specimen of Sphoeroides pachygaster off the Algerian coast. The specimen was weighed to the nearest gram and measured to the nearest millimetre; all measurements with percents of total length (% of TL) and counts are summarized in Table I, following Ragonese et al. (1997). The specimen was photographed (Fig. 2), preserved in 5% buffered formaline, and deposited in the Ichthyological Collection of the University of Bab Ezzouar (Algiers), Faculté des Sciences Biologiques, under the catalogue number FSB/HAL IV B 12. Identification was made by skin completely smooth with total lack of scales, spines and body plates; one lateral line on each side convoluted; body inflatable, with large head and snout rounded; with a beak-like jaws with two large teeth on each jaw forming a dental plate with entire cutting edge; eyes big and ovale with a flat interorbital space; dorsal fin single placed in front of the similar shaped anal fin, pelvic fin absent and caudal fin truncated or slightly concave; colour greyish on dorsal surface with brownish spots, belly whitish pale grey, caudal fin base dark. Both macroscopic and microscopic examination allowed to consider the specimen as a mature adult male, no food was found in the gut. Morphology, colour, morphometric measurements and meristic counts of the Algerian blunthead puffer agree with previous descriptions (Tortonese 1986, Ragonese et al. 1997, Golani et al. 2002, Psomadakis et al. 2006). Nevertheless, slight variations were observed when compared with material from the south-western Atlantic (Sampaio et al. 2001). This recent finding is the first welldocumented and confirmed record of S. pachygaster off the Algerian coast. Consequently, S. pachygaster could be considered at present as a new additional species for the Algerian ichthyofauna. Records of the species generally occurred in the western and central Mediterranean, suggesting a migration from the eastern Atlantic through Gibraltar Strait. However recent findings in the eastern Mediterranean cannot exclude the possibility of a lessepsian migration (sensu Por 1978), according to Psomadakis et al. (2006), but also a more ancient presence of S. pachygaster, mainly in the south-eastern Mediterranean according to Relini & Orsi-Relini (1995) who referred to ancient literature (see Golani et al. 2002). The specimen described in this note was captured in the eastern area close to the Tunisian where the species is substantially established, so a migration from the Tunisian waters where the species is substantially established cannot be totally excluded, as it was the case for the filefish Stephanolepis diaspros Fraser-Brünner, 1940, a lessepsian migrant. This species develops and reproduces in the southern Gulf of Gabès (ZouariKtari et al. 2008), it migrated northward in Tunisian waters and was found in a brackish area the Lagoon of Bizerte (Fig. 1) by Bdioui et al. (2004) and more recently off Tabarka, city located close to the Algerian border (Fig. 1) by Ben Amor & Capapé Pan-American Journal of Aquatic Sciences (2009), 4(2): 188-192 HEMIDA ET AL. 190 (2008). Similar pattern could explain the occurrence of S. pachygaster in Algerian waters, but this suitable hypothesis needs to be confirmed by genetic methods prior definitive statement. Table I. Morphometric measurements and meristic counts carried out on the specimen of Sphoeroides pachygaster captured off the Algerian coast. Morphometric measurements in mm % of TL Total length (TL) 330 100 Standard length 295 89.4 Head length 100 30.3 Head width 70 21.2 Head height 60 18.2 Eye horizontal diameter 21 6.4 Eye vertical diameter 21 6.4 Interobital space 30 9.1 Snout length 40 12.1 Postorbital length 35 10.6 Width of pedunculum 35 10.6 Width of gill opening 25 7.6 Predorsal length 215 65.2 Preanal length 225 68.2 Dorsal fin length 25 7.6 Dorsal fin base length 11 3.3 Anal fin length 30 9.1 Anal fin base length 11 3.3 Pectoral fin length 30 9.1 Caudal fin length 38 11.5 Body thickness 90 27.3 Body height 90 27.3 Nostrill greatest diameter 6 1.8 Nostrill lesser diameter 4 1.2 Internarial space 30 9.1 Meristic counts Dorsal fin rays Anal fin rays Pectoral fin rays Caudal fin rays Figure 2. Sphoeroides pachygaster captured off the Algerian coast (scale bar = 50 mm). Pan-American Journal of Aquatic Sciences (2009), 4(2): 188-192 8 8 15 10 First confirmed register of Sphoeroides pachygaster off the Algerian coast Acknowledgements The authors wish to thank two anonymous referees for helpful and useful comments that allowed improving the manuscript. They are also grateful to Si Hadj Aissa, carreau n° 9, at Algiers Fishery who kindly provided the specimen of Sphoeroides pachygaster. References Albuquerque, M. R. 1954-1956. Peixes de Portugal. Portugaliae Acta Biologica, 5: 1-1164. Bdioui, M., Gharssallah, H., Ben Naceur, L. & M’Rabet, R. 2004. Première mention du poisson-bourse Stephanolepsis diaspros (Fraser-Brünner, 1940) dans la lagune de Bizerte. Bulletin de l'Institut National des Sciences et Technologies de la Mer de Salammbô, 31: 119-121. Ben Amor, M. M. & Capapé, C. 2008. Occurrence of a filefish closely related to Stephanolepis diaspros (Osteichthyes: Monacanthidae) off northern Tunisian coast (south-western Mediterranean). Cahiers de Biologie marine, 49: 323-328. Blache, J., Cadenat, J. & Stauch, J. 1970. Clés de détermination des poissons de mer signalés dans l'Atlantique oriental tropical (entre le 20 ème parallèle N. et le 15 ème parallèle S. Faune tropicale ORSTOM, 18: 1-479. Bradaï, M. N., Quignard, J. P., Bouaïn, A., Jarboui, O., Ouannes-Ghorbel, A., Ben Abdallah, L., Zaouali, J. & Ben Salem, S. 2004. Ichtyofaune autochtone et exotique des côtes tunisiennes: recensement et biogéographie. Cybium, 28(4): 315-328. Golani, D., Orsi-Relini L., Massuti, E. & Quignard, J. P. 2002. CIESM Atlas of exotic species in the Mediterranean. Vol. 1. Fishes. (F. Briand editor). Monaco, CIESM Publications. 256 p. Hardy, G. S. 1981. New records of pufferfishes (Family Tetraodontidae) from Australia and New Zealand, with notes on Sphoeroides pachygaster (Müller and Troschel) and Lagocephalus sceleratus (Gmelin). RecordsNational Museum of New Zealand, 1(20):311-316. Ligas, A., Sirna, R. & Sartor, P. 2006. Prima segnalazione di Sphoeroides pachygaster (Müller & Troschel, 1848) (Pisces, Tetraodontidae) nel Mar Tirreno Settentrionale. Biologia Marina Mediterranea, 13: 274-275. Ligas, A., Sirna, R. & Sartor, P. 2007. New findings 191 of Fistularia commersonii Rüppell, 1835 and Sphoeroides pachygaster (Müller & Troschel, 1848) in the northern Tyrrhenian Sea. Atti de la Società toscana di Scienze naturale, Memorie, Serie B, 144: 131-133. Oliver, P. 1981. Sobre la aparición de algunos peces raros en las Islas Baleares. Boletino Instituto Español de Oceanografía, 6: 59-64. Peristeraki, P., Lazarakis, G., Skarvelis, M., Georgiadis, M. & Tserpes, G. 2006. Additional records on the occurrence of alien fish species in the eastern Mediterranean Sea. Mediterranean Marine Science, 7: 61-66. Por, F.D. 1978. Lessepsian migration. The influx of Red Sea into the Mediterranean by the way of the Suez Canal.. Berlin, Ecological studies, 23, Springer-Verlag, 228 p. Psomadakis, P. N., Ceddia, P. & Vacchi, M. 2006. Additional record of Sphoeroides pachygaster (Pisces: Tetraodontidae) in the Tyrrhenian Sea and notes on the distribution of the species in the Mediterrranean. JMBA2 – Biodiversity records. 1-4. Accessible at http://www.mba.ac.uk/jmba/pdf/5186.pdf. Quéro, J. C., Du Buit, M. H. & Vayne, J.J. 1998. Les observations de poissons tropicaux et le réchauffement des eaux dans l’Atlantique européen. Oceanologica Acta., 21(2): 345361. Quéro, J. C., Porché, P. & Vayne, J. J. 2003. Guide des poissons de l’Atlantique européen. Les Guides du naturaliste. Lonay (Switzerland)Paris, Delachaux & Niestlé, 465 p. Ragonese, S., Jereb, P. & Morana, U. 1997. Morphometric relationships of Sphoeroides pachygaster (Pisces, Tetraodontidae) of the Strait of Sicily (Mediterranean Sea). Cahiers de Biologie marine, 38: 283-289. Relini, M. & Orsi Relini, L. 1995. Pesci palla in Mediterraneo, presenze antiche et recenti. Biologia Marina Mediterranea, 2(2): 509511. Sampaio, C. L. S., Lopes, P. R. D. & Olavo, G. 2001. Registros de Lagocephalus lagocephalus (Linnaeus, 1758) e Sphoeroides testudineus (Muller & Troschel, 1848) (Actinopterygii:Tetraodontidae) para o litoral da Bahia, Nordeste do Brasil. Interciência, Venezuela, 26(4): 157-160. Séret, B. & Opic, P. 1981. Poissons de mer de l’Ouest africain tropical. Paris, ORSTOM, 416 p. Shipp, R. L. 1990. Tetraodontidae. p. 1341-1345. In: J. C. Quéro, J. C. Hureau, C. Karrer, A. Post & L. Saldanha (Eds.), Check-list of the Pan-American Journal of Aquatic Sciences (2009), 4(2): 188-192 HEMIDA ET AL. 192 Fishes of the eastern tropical Atlantic, Unesco 2, Paris. Smith, M. C. & Heemstra, P. C. 1986. Smiths’sea fishes. Berlin, Heidelberg, New York, London, Paris, Tokyo, Springer-Verlag editor. 1047 p. Tortonese, E. 1986. Tetraodontidae. p. 1341-1345. In: P.J.P. Whitehead, J.C. Hureau, J. Nielsen, E. Tortonese (Eds.), Fishes of the northeastern Atlantic and the Mediterranean, 1984-1986, Unesco 1, Paris. Wheeler, A. & Van Oijen, M. J. P. 1985 The occurrence of Sphoeroides pachygaster (Osteichthyes- Tetraodontiformes) off NorthWest Ireland. Zoologissche Mededeelingen, 59 (11): 101-107. Zouari-Ktari, R., Bradai M. N. & Bouain, A. 2008. The feeding habits of the Lessepsian fish Stephanolepis diaspros (Fraser-Brünner, 1940) in the Gulf of Gabès (eastern Mediterranean Sea). Cahiers de Biologie marine, 49: 329-335. Received February 2009 Accepted April 2009 Published online May 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 188-192 A fauna de peixes na bacia do Rio Jucuruçu, leste de Minas Gerais e extremo Sul da Bahia LUISA MARIA SARMENTO-SOARES1, ROSANA MAZZONI2 & RONALDO FERNANDO MARTINS-PINHEIRO1 1 Museu de Biologia Prof. Mello Leitão. Laboratório de Zoologia. Av. José Ruschi, 4, Centro, Santa Teresa-ES, Brasil. Email: biobahia@nossacasa.net 2 Universidade do Estado do Rio de Janeiro- UERJ. Depto. Ecologia. Laboratório de Ecologia de Peixes - sala 225, Av. São Francisco Xavier, 524- Maracanã, 20550-013, Rio de Janeiro- RJ. Resumo. No presente estudo investigou-se a ictiofauna da bacia do Rio Jucuruçu, localizada no leste de Minas Gerais e no Extremo Sul da Bahia, Brasil. Através do estudo da composição das espécies na bacia do Rio Jucuruçu verificaram-se os padrões de distribuição espacial e o endemismo. Foram investigados catorze pontos amostrais no vale do rio, sendo relacionadas 51 espécies, pertencentes a 30 famílias em 9 ordens. Destas, 21 espécies estão presentes unicamente no delta do rio. As espécies consideradas constantes foram Astyanax aff. rivularis, Characidium sp.5 e Geophagus brasiliensis. Foram estimadas a riqueza, a diversidade, a uniformidade e a dominância. O terço superior do Jucuruçu apresentou baixa diversidade e alta dominância, devido ao predomínio da Astyanax aff. rivularis. O terço inferior apresentou alta diversidade e baixa dominância. A diversidade de espécies mudou ao longo do gradiente do rio. Houve aumento na riqueza de espécies no sentido do terço inferior, devido à presença de espécies marinhas unicamente nas proximidades da foz. Parte da ictiofauna é substituída ao longo do gradiente do rio. A redução na disponibilidade de micro-ambientes característicos de áreas vegetadas em trechos da bacia influencia a ocorrência e distribuição de algumas espécies. Espécies registradas historicamente estão desaparecendo. Palavras-Chave: Peixes de riacho, diversidade, água doce, conservação, nordeste do Brasil. Abstract. The fish fauna of Rio Jucuruçu basin, eastern Minas Gerais and southern Bahia State. The present study aims to investigate the fishes along the Jucuruçu River basin, in eastern Minas Gerais and extreme southern Bahia, Brazil. Spatial distribution and endemism of fish species along the Jucuruçu River was analyzed. Fourteen localities were investigated along the river valley. There were related 51 species, belonging to 30 families into 9 orders. Between them, 21 species were present only on the river mouth. The species considered constant along river were Astyanax aff. rivularis, Characidium sp.5 and Geophagus brasiliensis. The richness, the diversity, the equitability and the dominancy are estimated. The upper stretch is the section with less diversity and higher dominance, due to the predominance of the species Astyanax aff. rivularis. The lower stretch had the higher diversity and the less dominance. Species diversity changed along river gradient. There is increased species richness towards the lower stretch, with many marine species present uniquely in this section. In spite of the increased fish diversity towards river mouth, there were observed faunal substitution along river gradient. The low availability of microhabitats characteristic of vegetated areas in portions of rivers is pointed out as influencing the occurrence and distribution of some species. Some historically recorded species are nowadays disappearing. Key Words: stream fishes, diversity, freshwater, conservation, northeastern Brazil. Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 SARMENTO-SOARES ET AL. 194 Introdução O extremo sul da Bahia é uma região de variados ambientes para peixes de água doce, entrecortada por diversas bacias hidrográficas de pequeno e médio porte. A riqueza hídrica contrasta com o baixo conhecimento de sua fauna ictiológica, mas iniciativas para se conhecer melhor os peixes de água doce da região têm revelado a existência de uma diversificada fauna, especialmente de espécies endêmicas. A destruição da Floresta Atlântica no extremo sul da Bahia vem aumentando e no vale do Rio Jucuruçu existe o agravante de a extensa área de drenagem fluvial carecer de unidades de conservação de caráter público. Atualmente, encontra-se em fase de avaliação a Unidade de Conservação Serras de Itamarajú (MMA/SBF/NAPMA, 2006), mas a proposta de área protegida não inclui as cabeceiras do rio Jucuruçu, que é crítica para a sobrevivência do próprio rio (Sarmento-Soares & Pinheiro 2007a). A maioria das espécies de peixes de água doce na região inclui animais pequenos, de hábitos crípticos, que se ocultam entre a vegetação aquática ou sob rochas submersas. Estes peixes mantêm íntima associação com a floresta e sua sobrevivência é dependente da manutenção de áreas vegetadas e da qualidade e quantidade das águas (Oyakawa et al. 2006). A conservação da biota aquática pode ser conduzida pela preservação dos sistemas hídricos, através de sua proteção integral ou de estratégias de zoneamento de acordo com as atividades praticadas ao longo do vale do rio (Casatti et al. 2008). Em razão da paisagem fluvial e do isolamento geográfico, é intuitivo que tomemos como alvo de conservação da biota aquática as espécies endêmicas de peixes de água doce (Casatti et al. 2008). Para termos melhor compreensão destes endemismos, precisamos de conhecimento acerca da diversidade ictiofaunística na área a ser estudada. No sul da Bahia as informações acerca das populações naturais de peixes são incompletas, carecendo de conhecimento detalhado sobre os padrões de distribuição e biologia populacional da maioria das espécies. Alguns registros de espécies amostradas na bacia e/ou depositadas em coleções científicas aparecem em banco de dados e em relatório técnico (Sarmento-Soares & MartinsPinheiro 2008). O Projeto BioBahia – “Diversidade, endemismo e análise biogeográfica de Siluriformes em sistemas hídricos pouco explorados no Extremo Sul da Bahia (Osteichthyes: Ostariophysi)”, estuda os sistemas hídricos, do extremo sul baiano e vem realizando uma avaliação detalhada desta região. No presente estudo investigamos a distribuição e endemismo das comunidades de peixes na bacia do Rio Jucuruçu. Material e Métodos Área de Estudo. O vale do rio Jucuruçu permaneceu com ocupação indígena desde o século XVI e até a segunda metade do século XX, passando por lento e gradual processo de colonização. O ciclo de exploração madeireira, iniciado na década de 60, causou mudanças profundas na região e durante pouco mais de 20 anos modificou sua paisagem, restando hoje apenas fragmentos florestais, da cobertura de Floresta Atlântica. Em decorrência da ocupação do vale por fazendas, grande parte da mata ciliar dos rios foi removida, observando-se intenso assoreamento, facilmente evidenciado pelas baixas profundidades nos locais de amostragem e qualidade do leito. As primeiras informações sobre as espécies de peixes de água doce no Rio Jucuruçu foram colhidas apenas ao final do século XX, já durante este processo de remoção das matas nativas e alteração dramática da paisagem (Sarmento-Soares & Martins-Pinheiro 2008). A bacia do Jucuruçu tem área de 5.284,30 2 km (MMA/SRH, 1997). Este rio nasce com o nome de Córrego da Prata no contraforte ocidental da Serra dos Aimorés, em Minas Gerais, a cerca de 1000 m de altitude, e cruza o extremo sul da Bahia, no sentido oeste-leste (Fig. 1), percorrendo a extensão de 241 km. O terço superior da bacia do Jucuruçu foi considerada como a área desde as nascentes até o encontro com o Ribeirão Dois de Abril no povoado de Dois de Abril (Fig. 2, Tabela I). Neste trecho as declividades são mais acentuadas, e a ocorrência de intrusões dos maciços graníticos se reflete na organização da rede de drenagem do Jucuruçu, eventualmente marcada por encachoeiramentos. O médio Jucuruçu vai até o encontro com o Córrego Jundiar, nas cercanias de Itamarajú (Fig. 2, Tabela I). A declividade neste trecho é mais suave, pela influência do relevo plano dos Tabuleiros Costeiros. O baixo Jucuruçu segue das cercanias de Itamarajú até a foz, na cidade do Prado (Fig. 2, Tabela I). Entre Itamarajú e Prado, o rio Jucuruçu segue encaixado em uma falha (Graben sensu Saadi 1998) de baixo curso fluvial. Em direção à foz, aparece extensa baixada com relevo quase plano com inundações periódicas da planície associadas ao período chuvoso. A expedição BioBahia, realizada entre Outubro e Novembro de 2004 (Sarmento-Soares 2005), e complementada em Dezembro e Janeiro de 2006 e 2007 (Sarmento-Soares 2007) contribuiu para o Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 A fauna de peixes da bacia do rio Jucuruçu 195 conhecimento da ictiofauna da bacia como um todo. Foram amostrados 13 trechos do rio Jucuruçu, somando à avaliação histórica de um 14º trecho (Fig. 2, Tabela I). Figura 1. Localização do rio Jucuruçu. Figura 2. Mapa da bacia do rio Jucuruçu indicando os catorze pontos de amostragem recentes e os pontos históricos. Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 Ponto UF Município Local Coordenadas Altitude (m) Espécies capturadas Data 196 Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 Tabela I. Localização geográfica, horário de amostragem, condições da água e substrato do fundo dos pontos na bacia do Rio Jucuruçu. Característica da água: (T1) Transparente amarelada; (T2) Transparente cor de chá e (T3) Marrom turva. Substrato: (Ae) Areia; (Ai) Argila; (C) Cascalho; (L) Lodo; (P) Pedra e (R) Rocha. Profund. (m) Água Substrato Terço superior 1 MG Palmópolis Rio Jururuçu 16º44'02"S 40º25'35"W 607 4 26/10/ 2004 1,0 a 2,0 T1 R-Ae 2 MG Palmópolis Córrego Bananeiras 16º44'48"S 40º25'46"W 605 7 26/10/ 2004 0,3 a 0,5 T3 Ae-Ai 3 MG Palmópolis Ribeirão Dois de Abril 16º50'19"S 40º24'21"W 400 6 26/10/ 2004 0,3 a 1,0 T3 L 4 MG Palmópolis Córrego Seco 16º50'55"S 40º24'31"W 442 10 27/10/ 2004 0,3 a 0,5 T3 R-L 5 MG Palmópolis Córrego das Novas 16º51'12"S 40º23'42"W 432 3 27/10/ 2004 1,0 a 1,5 T3 R-L 6 MG Palmópolis Rio Dois de Abril 16º50'21"S 40º19'10"W 358 9 26/10/ 2004 0,8 a 1,5 T1 Ae Terço médio BA Jucuruçu Córrego da Onça 16º49'49"S 40º15'05"W 379 7 26/10/ 2004 0,3 a 0,5 T1 Ae 8 BA Jucuruçu Rio Jucuruçu 16º50'10"S 40º08'40"W 138 11 26/10/ 2004 1,0 a 1,2 T1 R-Ae 9 BA Jucuruçu Rio Jucuruçu 16º51'06"S 39º53'53"W 119 10 25/10/ 2004 0,5 a 1,0 T1 Ae-C 10 BA Itamaraju Córrego São Pedro 16º54'24"S 39º45'15"W 67 10 25/10/ 2004 0,5 a 1,5 T1 R-P 11 BA Itamaraju Córrego do Jundiar 17º01'35"S 39º35'57"W 27 10 25/10/ 2004 0,5 a 0,7 T1 Ae-C Terço inferior 12 BA Prado Rio João de Corongo 17º05'42"S 39º27'00"W 14 7 31/12/2006 1,0 a 1,5 T2 Ae 13 BA Prado Afluente do Rio Jucuruçu 17º16'15"S 39º17'57"W 6 3 31/12/2006 1,0 a 1,5 T1 Ae-Ai 14 BA Prado Foz do Rio Jucuruçu 17º20'34"S 39º13'23"W 0 24 Histórico 1,0 a 5,0 T3 Ae-L SARMENTO-SOARES ET AL. 7 A fauna de peixes da bacia do rio Jucuruçu 197 De acordo com os registros históricos disponíveis até o ano 2000, a bacia do Rio Jucuruçu havia sido amostrada em dez localidades (SarmentoSoares & Pinheiro 2008). As amostragens evidenciadas neste estudo somadas às coletas antigas se complementam, permitindo uma avaliação mais homogênea da distribuição das espécies em toda a bacia. Amostragem. As atividades de campo foram realizadas durante o dia, pela manhã até o crepúsculo, cobrindo três ou quatro localidades por dia. Cada uma das localidades foi amostrada percorrendo-se um trecho de aproximadamente 50 metros rio acima. Cada um dos pontos de amostragem foi localizado por GPS, fotografado e caracterizado quanto às condições ambientais. As amostragens foram realizadas com o uso de tarrafa tipo argola (8 mm de malha e 16 m de perímetro), rede passaguá (2,5 mm de malha), picarés (malhas de 2,5 e 5,0 mm), rede de arrasto tipo Trawl (malha 5 mm; 2,6 m de altura e 10 m de comprimento), redes de arrastos (malha de 5 mm e 8 mm), tarrafa multifilamento (malha de 8 mm) e redes de espera (malhas de 15 mm e 25 mm). Casos em que os métodos convencionais revelaram-se pouco eficientes, o mergulho livre foi empregado para localização e captura de exemplares. Em cada ponto foi usada uma combinação dos recursos de pesca de forma assegurar uma exaustiva amostragem de leito, fundo e margem do local amostrado. Os exemplares coletados foram fotografados vivos, em aquário de campo, fixados em formalina a 10% e transportados para o laboratório, onde foram triados, transferidos para conservação em álcool a 70%, identificados e catalogados. A licença de coleta para a expedição foi solicitada junto ao Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA (processo número 02006.002926/06-17), confirmando-se através do registro #1906091 emitido pelo SISBIO. Informações históricas acerca da ictiofauna na região de estudo, foram obtidas a partir de consulta ao banco de dados do projeto NEODAT (The Inter-Institutional Database of Fish Biodiversity in the Neotropics –NEODAT Project/NSF) e a partir de relatório técnico disponível (MMA/SRH, 1999), cujos registros encontram-se disponibilizados em Sarmento-Soares & Martins-Pinheiro (2008). Taxonomia. A classificação taxonômica dos exemplares seguiu Buckup et al. (2007) para peixes de água doce e Carvalho Filho (1999) e Menezes et al. (2003), para peixes marinhos. Em uma parcela dos indivíduos capturados foram tomadas informações morfométricas e merísticas para identificação específica. Dúvidas sobre a identificação de espécies foram resolvidas através da avaliação de caracteres anatômicos. Os exemplares foram catalogados nas coleções ictiológicas do MBML - Museu de Biologia Professor Mello Leitão e MNRJ - Museu Nacional, Universidade Federal do Rio de Janeiro (Sarmento-Soares & MartinsPinheiro 2007b). Análise de dados. Para a caracterização da ictiofauna presente na bacia do Rio Jucuruçu, foram realizadas avaliações de constância, suficiência de amostragem, rarefação, riqueza, dominância, diversidade e uniformidade. Os valores de Constância de Ocorrência (C) das diferentes espécies foram calculados, segundo Dajoz (1983), a partir da equação: C=(p÷P)×100; onde C é o valor de constância da espécie; p é a quantidade de pontos em que apareceu a espécie e P o número total de pontos. As espécies foram consideradas constantes quando apresentaram C ≥ 50, acessórias quando 25 ≤ C < 50 e ocasionais quando C < 25. Foram realizadas estimativas de espécies com e sem as espécies marinhas periféricas (Myers, 1938). As curvas de suficiência da amostragem foram construídas pelo método Mao Tau (Colwell et al., 2004). Como estimadores de riqueza foram usados os índices de riqueza não-paramétricos: Chao2, Jackknife1, Jackknife2 e Bootstrap. Estes índices estimam o número de espécies ainda por serem coletadas, baseados numa quantificação de raridade. Os estimadores Chao2, Jackknife1, Jackknife2 e Bootstrap, são baseados em incidência e utilizam o número de “Uniques” e “Duplicates”, que são o número de espécies encontradas em somente uma e/ou duas amostras, respectivamente, para as estimativas de riqueza (Colwell & Coddington 1994). Para a obtenção da riqueza específica foi utilizado o índice de riqueza de Margalef (M), que se baseia na relação entre o número de espécies identificadas e o número total de indivíduos coletados, calculado da seguinte forma: M=(S-1) ÷ (ln n), onde S é a quantidade de espécies e n é o número total de indivíduos. Para estimativa da dominância (D) foi usada a relação: D=Σ (ni÷n)2; onde ni é a quantidade de exemplares da espécie i. A dominância varia de 0 (todas as espécies estão igualmente representadas) até 1 (uma espécie domina a comunidade completamente). A estimativa da diversidade foi realizada utilizando-se o Índice de Shannon-Wiener: H=-Σ(ni÷n) × (ln (ni÷n)). Este é um índice de diversidade que leva em conta o número de Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 SARMENTO-SOARES ET AL. 198 indivíduos e quantidade de espécies. Varia de 0 para comunidades com uma única espécie até valores elevados (acima de 5.0) para comunidade com muitas espécies e poucos exemplares de cada espécie (Magurran, 2006). A uniformidade (“equitability”) foi calculada usando-se o índice de Pielou (1969): e=H÷log S. Para os diferentes índices e curvas foi utilizado o programa PAST versão 1.90 (Hammer et al, 2007). Resultados Foram amostrados na bacia do Rio Jucuruçu 14 pontos (da cabeceira a foz), sendo 1 histórico e 13 recentes (Tabela I, Fig. 3). Figura 3. Pontos de amostragem (P) ao longo da bacia do rio Jucuruçu . Terço Superior: P1- rio Jucuruçu em Palmópolis; P2- córrego Bananeiras; P3- ribeirão Dois de Abril na Fazenda Antonio Gildo; P4- córrego Seco; P5riacho afluente do córrego das Novas; P6- rio Dois de Abril em Dois de Abril.; Terço Médio: P7- córrego da Onça; P8rio Jucuruçu próximo a Jucuruçu. Terço P9- rio Jucuruçu; P10- córrego são Pedro, P11- córrego do Jundiar. Terço inferior: P12- rio João de Corongo; P13- afluente do rio Jucuruçu; e P14- rio Jucuruçu em Prado. Na bacia do Jucuruçu foram registradas 51 espécies, pertencentes a 30 famílias em 9 ordens, considerando-se tanto as amostragens recentes, das expedições ictiológicas, como as históricas, de registros de coleções (Tabela II, Fig. 4). Os Ostariophysi foram maioria com 30 espécies (Fig. 4,a-h), representando 58,8% da riqueza total registrada na bacia, seguidos pelos Perciformes (Fig. 4, i-j) com 12 espécies que representam 23,5%; Clupeiformes, com 3 espécies e 5,9%; Cyprinodontiformes e Pleroneuctiformes, com 2 espécies e 3,9% cada e ainda Lophiiformes e Gasterosteiformes, com 1 espécie e 2,0% cada. Dentre os Ostariophysi, os Siluriformes foram os mais representativos, com 15 espécies (50,0%), seguidos pelos Characiformes com 14 espécies (46,7%). O terceiro grupo representativo de Ostariophysi, Gymnotiformes, foi representado por uma única espécie (3,3% do total). A lista taxonômica das espécies de peixes conhecidas para a bacia, incluindo os registros históricos está apresentada na Tabela II. Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 A fauna de peixes da bacia do rio Jucuruçu 199 Figura 4. Algumas espécies de peixes na bacia do rio Jucuruçu. (a) Leporinus copelandii; (b) Astyanax aff.rivularis; (c) Mimagoniates microlepis; (d) Imparfinis aff.minutus; (e) Trichomycterus pradensis; (f) Hypostomus cf. affinis; (g) Parauchenipterus striatulus; (h) Gymnotus carapo; (i) Centropomus parallelus; (j) Awaous tajasica. Tabela II. Espécies de peixes conhecidas para a Bacia do rio Jucuruçu, suas localidades e ocorrência. Asteriscos (*) indicam registros históricos. Localidades Ordem/ Família Espécies (ocorrência) Clupeiformes Pristigasteridae Odontognathus mucronatus (Poey, 1867) (*) 1 (4,3%) Pellona harroweri Lacepède, 1800 (*) 1 (4,3%) Clupeidae Harengula jaguana Poey, 1865 (*) 1 (4,3%) Characiformes Curimatidae Cyphocharax gilbert (Quoy & Gaimard, 1824) 2 (8,7%) Prochilodontidae Prochilodus vimboides Kner, 1859 (*) 2 (8,7%) Anostomidae Leporinus conirostris Steindachner, 1875 2 (8,7%) Leporinus copelandii Steindachner, 1875 5 (21,7%) Leporinus cf. steindachneri 2 (8,7%) Crenuchidae Characidium sp.5 15 (65,2%) Characidae Astyanax aff. lacustris 12 (43,5%) Astyanax aff. rivularis 16 (69,6%) Hyphessobrycon bifasciatus Ellis, 1911 1 (4,3%) Moenkhausia doceana (Steindachner, 1877) (*) 1 (4,3%) Oligosarcus acutirostris Menezes, 1987 2 (8,7%) Mimagoniates microlepis (Steindachner, 1876) 1 (4,3%) constância de Constância de ocorrência Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Constante Constante Constante Ocasional Ocasional Ocasional Ocasional Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 SARMENTO-SOARES ET AL. 200 Tabela II. Espécies de peixes conhecidas para a Bacia do rio Jucuruçu, suas localidades e ocorrência. Asteriscos (*) indicam registros históricos (cont.). Localidades Ordem/ Família Espécies (ocorrência) Erythrinidae Hoplerythrinus unitaeniatus (Agassiz, 1829) 1 (4,3%) Hoplias malabaricus (Bloch, 1794) 7 (30,4%) Siluriformes Trichomycteridae Trichomycterus pradensis Sarmento-Soares et. al 2005 5 (21,7%) Callichthyidae Scleromystax prionotos (Nijssen & Isbrüecker, 1980) 4 (17,4%) Loricariidae Neoplecostominae New genus and species 3 (13,0%) Hypoptopomatinae Otothyris travassosi Garavello, Britski & Schaeffer, 4 (17,4%) 1998 Parotocinclus sp. 4 (17,4%) Hypostomus cf. affinis 7 (30,4%) Pseudopimelodidae Microglanis pataxo Sarmento-Soares et al., 2006. 1 (4,3%) Heptapteridae Imparfinis aff. minutus 6 (26,1%) Pimelodella aff. vittata 9 (39,1%) Rhamdia sp. 7 (30,4%) Ariidae Arius phrygiatus Valenciennes 1840 (*) 1 (4,3%) Bagre bagre (Linnaeus, 1758) (*) 1 (4,3%) Cathorops spixii (Agassiz, 1829) (*) 1 (4,3%) Auchenipteridae Pseudauchenipterus affinis (Steindachner, 1877) (*) 1 (4,3%) Parauchenipterus striatulus (Steindachner, 1877) 2 (8,7%) Gymnotiformes Gymnotidae Gymnotus carapo Linnaeus, 1758 3 (13,0%) Lophiiformes Ogcocephalidae Ogcocephalus notatus (Linnaeus, 1758) 1 (4,3%) Cyprinodontiformes Poeciliidae Poecilia vivipara Bloch & Schneider, 1801 8 (34,8%) Poecilia reticulata Peters, 1859 3 (13,0%) Gasterosteiformes Syngnathidae Microphis brachyurus (Bleeker, 1853) (*) 1 (4,3%) Perciformes Centropomidae Centropomus paralellus Poey, 1860 (*) 1 (4,3%) Serranidae Rypticus randalli Courtenay, 1967 (*) 1 (4,3%) Carangidae Caranx latus Agassis, 1831 (*) 1 (4,3%) Selene vomer (Linnaeus, 1758) 1 (4,3%) Trachinotus goodei Jordan & Evermann, 1896 (*) 1 (4,3%) Haemulidae Haemulon plumieri (Lacèpede, 1812) (*) 1 (4,3%) Pomadasys corvinaeformis (Steindachner, 1868) (*) 1 (4,3%) Sciaenidae Paralonchurus brasiliensis (Steindachner, 1875) (*) 1 (4,3%) Umbrina coroides Jordan & Evermann, 1896 (*) 1 (4,3%) Cichlidae Geophagus brasiliensis (Quoy & Gaimard, 1824) 13 (56,5%) Eleotridae Eleotris pisonis (Gmelin, 1789) 1 (4,3%) Gobiidae Awaous tajasica Lichtenstein, 1822 3 (13,0%) Pleuronectiformes Paralichthyidae Citharichthys spilopterus Günther, 1862 (*) 1 (4,3%) Achiridae Achirus lineatus (Linnaeus, 1758) (*) 1 (4,3%) A suficiência de amostragem (Fig. 5a,b) indica maior inclinação para a curva histórica (Fig. 5a), sugerindo baixa estabilização, visto que com cerca de metade das localidades constância de Constância de ocorrência Ocasional Acessória Ocasional Ocasional Ocasional Ocasional Ocasional Acessória Ocasional Acessória Acessória Acessória Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Acessória Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Ocasional Constante Ocasional Ocasional Ocasional Ocasional coletadas amostradas, apenas 62% das espécies haviam sido amostradas. Em contraste, com as amostragens recentes, houve tendência mais acentuada de estabilização, sendo que com Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 A fauna de peixes da bacia do rio Jucuruçu metade das aproximadamente sido registradas 201 localidades amostradas, 84% das espécies haviam (Fig. 5b), indicando que mesmo com o incremento do número de amostragens, o número de espécies tende a permanecer igual. Figura 5. Curvas dos coletores espécie-ponto geradas de acordo com o método Mao Tau. Linhas azuis representam uma área de confiança de 95%. (a) Coletas históricas. (b) Amostragens recentes. Observa-se uma melhor estabilização na curva de coletas recentes. Das espécies coletadas, Microglanis pataxo Sarmento-Soares et al. (2006) e Trichomycterus pradensis Sarmento-Soares et al. (2005) foram descritas como novas. Cinco outras espécies possuem “status” taxonômico ainda indefinido, Characidium sp.5, Parotocinclus sp., Hypostomus cf. affinis, Rhamdia sp., juntamente com um novo Neoplecostominae. Parotocinclus sp. é espécie potencialmente nova e está em processo de descrição. O novo gênero e espécie de Neoplecostominae foi identificado por R.E. Reis e E.H.L. Pereira (com. pess.) e vem sendo estudado pela equipe. As demais espécies não identificadas em nível específico pertencem a grupos taxonômicos bastante complexos e podem representar novos táxons no âmbito de trabalhos de revisão. A única espécie exótica registrada para a bacia do Rio Jucuruçu é o barrigudinho Poecilia reticulata. Tal espécie é originária do litoral norte da América do Sul, entre Venezuela e o estado brasileiro do Amapá (Lucinda & Costa, 2007). É interessante notar que esta espécie não aparecia nos registros históricos. Três espécies foram consideradas constantes, baseando-se na constância de ocorrência (C), com presença em mais da metade dos pontos amostrados; sete foram consideradas acessórias e as 41 restantes foram reconhecidas como ocasionais (Tabela II). Na parte alta da bacia não foi registrada nenhuma espécie da divisão periférica, na parte média foi registrada apenas Awaous tajasica e na parte baixa foram registradas 20 espécies periféricas. O índice Bootstrap mostrou-se menos sensível a inclusão das espécies periféricas, com estimativas de 9,4% (com as periféricas) a 16,8% (sem as periféricas) do total de espécies amostradas. Os demais índices não paramétricos, no entanto, mostraram-se bastante sensíveis a esta inclusão. O mais sensível foi o índice Chao 2, 47,8% (com as periféricas) a 6,8% (sem as periféricas) do total de espécies amostradas (Tabela III). A avaliação dos índices paramétricos considerando os peixes marinhos de estuário (periféricos); e ainda os mesmos índices caso excluídas tais espécies marinhas, apresentaram resultados próximos para os dois grupos; com exceção do índice de Margalef. O aumento do índice de Margalef na parte baixa da bacia e na bacia como um todo, quando se consideram as espécies periféricas, é devido ao fato destas espécies estarem em grande número e representadas por poucos exemplares. Os valores dos índices de diversidade de Shannon-Weiner (H’) e de dominância (D) foram diferentes entre os trechos da bacia (Tabela III). O terço superior é a seção com menor diversidade e maior dominância, devido ao predomínio da espécie Astyanax aff. rivularis. O terço inferior, entretanto, tem a mais alta diversidade e a menor dominância. O terço médio, com 26 espécies amostradas, apresentou valores intermediários de diversidade e dominância. A diversidade de espécies mudou ao longo do gradiente fluvial. Houve um aumento na riqueza Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 SARMENTO-SOARES ET AL. 202 de espécies em direção ao terço inferior, com muitas espécies marinhas periféricas presentes unicamente naquele trecho. Além do aumento na diversidade em direção à foz, houve substituição ictiofaunística ao longo do gradiente fluvial. Algumas espécies de água doce habitam apenas rios de grande porte, tais como adultos de Cyphocharax gilbert, Leporinus cf. steindachneri, Leporinus conirostris, Prochilodus vimboides e Pseudauchenipterus affinis, registrados apenas para o canal principal do rio Jucuruçu e grandes tributários. As amostragens em pequenos tributários permitiram a captura das seguintes espécies não previamente assinaladas para a bacia: Awaous tajasica, Gymnotus carapo, Hoplerythrinus unitaeniatus, Hyphessobrycon bifasciatus, Microglanis pataxo, Poecilia reticulata, Rhamdia sp. e Trichomycterus pradensis. Sete espécies de pequeno porte, com tamanho adulto inferior a 50 mm SL, foram registradas na bacia do Rio Jucuruçu, representadas pelos ostariofíseos Characidium sp.5, Mimagoniates microleps, Otothyris travassosi, Parotocinclus sp., Microglanis pataxo e ainda pelos poecilídeos Poecilia vivipara e Poecilia reticulata. A maioria das espécies de tamanho pequeno pôde ser encontrada nos terços superior a médio, com menor incidência no terço inferior, apesar do esforço de amostragem ter sido equivalente em todos os trechos fluviais. Tabela III. Estimativa não-paramétrica de riqueza de espécies e descritores da ictiofauna na Bacia do Rio Jucuruçu (com e sem a presença dos peixes marinhos da divisão periférica). TOTAL SEM MARINHOS ESTIMADORES Superior Médio Baixo Bacia Superior Médio Baixo Bacia 19,6 31,2 160,7 97,7 19,6 30,2 42,3 32,2 Chao 2 20,4 33,7 71,6 75,9 20,4 32,7 34,1 35,7 Jackknife 1 22,8 36,6 95,3 94,4 22,8 35,6 42,8 36,0 Jackknife 2 18,0 29,7 53,5 61,3 18,0 28,7 26,6 33,1 Bootstrap DESCRITORES Espécies coletadas (S) Exemplares (n) Dominância (D) Diversidade Shannon (H) Riqueza Margalef (M) Uniformidade (e) Superior 16 601 0,20 2,00 2,34 0,72 Médio 26 981 0,16 2,32 3,63 0,71 Baixo 41 191 0,08 2,99 7,62 0,80 Discussão A predominância dos Ostariophysi repete um arranjo comum da fauna de água doce das bacias da região neotropical formada essencialmente por peixes pertencentes a este grupo (Lowe McConnell, 1999). Entre as 51 espécies registradas na bacia, 26 não foram capturadas durante os trabalhos de campo ao longo do Jucuruçu. Destas, 18 espécies eram de peixes marinhos presentes apenas no estuário do rio, trecho onde as amostragens históricas foram consideradas suficientes, e 8 eram peixes de água doce. Apesar de não terem sido localizadas no Jucuruçu, as espécies C. gilbert, C. paralellus, Leporinus cf. steindachneri e P. affinis foram registradas em sistemas hídricos vizinhos, no extremo sul da Bahia (e.g., Sarmento-Soares et al., 2007, 2008). Apesar de não terem sido encontradas na bacia do Jucuruçu, M. doceana, L. conirostris, P. vimboides e E. pisonis habitam outros rios do extremo sul, com registro recente no rio Peruípe ou rio Itanhém (obs. pess). Bacia 51 1773 0,14 2,58 6,68 0,66 Superior 16 601 0,20 2,00 2,34 0,72 Médio 25 978 0,16 2,31 3,49 0,72 Baixo 21 157 0,12 2,48 3,96 0,81 Bacia 30 1736 0,15 2,48 3,89 0,72 A avaliação comparativa da biota é uma tarefa imprescindível quando da tomada de decisões sobre áreas a preservar. Os vários índices de diversidade calculados indicam uma diversidade crescente da parte alta do rio para a parte baixa o que estaria de acordo com o conceito de rio contínuo (Vannote et al., 1980), o que pode estar associado a uma progressiva adição de micro-hábitats. No terço superior predominam córregos de leito raso e substrato de cascalho e pedras, sendo gradualmente substituído por fundo de areia e gramíneas marginais no terço médio, e por grandes poças, com locas e ramos submersos no terço inferior. Não foram registradas espécies com distribuição exclusiva ao terço superior da bacia, mas algumas destas tiveram ocorrência limitada aos terços alto e médio. Esta distribuição se aplica a Characidium sp.5, T. pradensis, Parotocinclus sp. e Hypostomus cf. affinis, espécies tipicamente habitantes das cabeceiras de rios e riachos. Espécies Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 A fauna de peixes da bacia do rio Jucuruçu 203 de água doce das planícies fluviais foram unicamente registradas no terço inferior, tais como H. bifasciatus, M. microlepis e P. affinis. As espécies de Auchenipteridae do gênero Pseudauchenipterus são peixes de água doce preferencialmente encontrados próximos ao estuário de rios (Akama 1999, Sarmento-Soares & MartinsPinheiro 2007c). A bacia do rio Jucuruçu drena uma região geologicamente conhecida como Tabuleiros Costeiros do Grupo Barreiras, caracterizada por relevo de inclinação moderada a suave, amplamente distribuída ao longo do norte do Espírito Santo e sul da Bahia (Braun & Ramalho 1980). A topografia pode ser considerada um fator de forte influência sobre a distribuição longitudinal das espécies de peixes (Caramaschi, 1986), podendo explicar a ausência de populações de peixes com distribuição restrita às cabeceiras do Rio Jucuruçu. As zonas ripárias do Rio Jucuruçu atualmente encontram-se quase que totalmente desflorestadas, à exceção da região próxima ao estuário, onde ainda existem manguezais, isto contribui para a incidência direta de luz solar sobre o rio e a elevada temperatura da água compromete a sobrevivência de certas espécies (Casatti, 2004). Muitas das espécies de peixes não foram encontradas em trechos desflorestados, possivelmente por não tolerarem a intensa luminosidade e as alterações químicas na composição da água. As espécies consideradas constantes como Astyanax aff. lacustris, Astyanax aff. rivularis, Characidium sp.5, Geophagus brasiliensis e Pimelodela aff. vittata conseguem adaptar-se às novas condições dos ambientes aquáticos. A bacia do Jucuruçu encontra-se melhor vegetada nas proximidades das planícies litorâneas, como exemplificado pelo registro único de certas espécies. Alguns peixes de pequeno porte dependem da vegetação marginal para alimentação, como é o caso de M. microleps (Mazzoni & Iglesias-Rios, 2002). A presença desta espécie unicamente no Rio João de Corongo, no curso inferior do Jucuruçu, pode ser decorrência das condições ambientais naquele local, um dos poucos trechos onde se observou a presença de mata ciliar em razoável estado de conservação. Outra espécie de Characiformes, H. bifasciatus, foi unicamente encontrada em um afluente do rio Jucuruçu no terço inferior. Os cinco exemplares encontrados no local estavam junto à vegetação submersa. A ocorrência desta espécie em um único ponto da bacia do Jucuruçu parece indicar uma baixa tolerância às alterações de cobertura vegetal observadas em outras localidades mais à montante. Menezes et al. (1990) ressaltam que certas espécies de Hyphessobrycon ocupam ambientes aquáticos restritos, que se alterados ou destruídos podem levar a seu desaparecimento. Dentre os Siluriformes, Costa et al. (2004) assinalaram a presença de uma nova espécie de Microcambeva para a bacia do Rio Jucuruçu, que se encontra em processo de descrição (Wilson J.E.M. Costa, com. pess.). As duas espécies conhecidas de Microcambeva abrigam peixes pequenos, com tamanho inferior a 50 mm SL, habitantes de fundos arenosos de pequenos rios rasos (Costa & Bockmann, 1994; Oyakawa et al., 2006). No rio Jucuruçu Microcambeva pode representar uma espécie rara. A Serra do Espinhaço, com altas montanhas, corresponde ao divisor natural das águas entre alto São Francisco e as drenagens litorâneas. Estas montanhas, com elevações entre 1.000 a 1.300 metros, aparentemente funciona como uma barreira biogeográfica eficiente para peixes de água doce, pois uma considerável parcela da ictiofauna é diferenciada nos dois sistemas hídricos. Apesar do isolamento, o alto rio São Francisco, em Minas Gerais, e as drenagens litorâneas do extremo sul da Bahia compartilham elementos da ictiofauna, como Cyphocharax gilbert e Hoplerythrinus unitaeniatus. Grupos de taxonomia complexa nas drenagens litorâneas têm sido atribuídos como co-específicos de peixes do Alto Rio São Francisco. No caso do rio Jucuruçu, as espécies Astyanax aff. lacustris, Astyanax aff. rivularis, Imparfinis aff. minutus e Pimelodella aff. vittata foram associadas aos nomes de espécies na drenagem do rio das Velhas, um dos principais contribuintes do Alto São Francisco, em Minas Gerais. A diversidade da ictiofauna na drenagem do rio das Velhas é razoavelmente bem estudada (Lütken, 2001 e Alves & Pompeu, 2001). No rio Jucuruçu muitas espécies são potencialmente novas, porém os nomes para tais peixes ainda estão indisponíveis, no aguardo de descrição formal. A semelhança morfológica observada entre os peixes do Alto São Francisco e das drenagens litorâneas sugere uma história hidrológica compartilhada em algum momento. A delimitação de áreas de endemismo é um dos principais tópicos na análise biogeográfica (Crisci et al., 2003). Uma área de endemismo pode ser reconhecida pela congruência na distribuição de diferentes taxa (Harold & Mooi, 1994). Congruência quanto aos padrões de distribuição entre diferentes espécies de peixes de água doce é observada para as drenagens costeiras entre o norte do Espírito Santo e Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 SARMENTO-SOARES ET AL. 204 o extremo sul da Bahia. A ictiofauna aqui estudada exemplifica esta situação de endemismo regional, como pode ser ilustrado pelos padrões de congruência na distribuição de Oligosarcus acutirostris e Pseudauchenipterus affinis. Outras espécies de peixes possuem distribuição similar, como Mimagoniates sylvicola, reportado por Sarmento-Soares & Martins-Pinheiro (2006a), Rachoviscus graciliceps, reportado por SarmentoSoares & Martins-Pinheiro (2006b), Aspidoras virgulatus reportado por Sarmento-Soares et al. (2007), Phalloceros ocellatus reportado por Lucinda (2008) e Simpsonichthys myersi reportado por Costa (2003). Todas estas espécies de peixes habitam os rios que cortam os Tabuleiros Costeiros entre o norte do Espírito Santo e o extremo sul da Bahia. Áreas são sistemas abertos e muitas vezes têm histórias múltiplas e complicadas, e assim sendo não há respostas simples para explicar padrões biogeográficos (Funk, 2004). A inferência sobre uma evolução conjunta da ictiofauna de água doce entre o norte do Espírito Santo e o extremo sul da Bahia merece ser investigada com maior profundidade. Agradecimentos Agradecemos aos colegas do Setor de Zoologia, Museu de Biologia Prof. Mello Leitão. Somos gratos a Gustavo W. Nunan, Marcelo R. Britto e Paulo A. Buckup pela cooperação junto ao setor de Ictiologia do Museu Nacional/ UFRJ. Aos colegas Arion T. Aranda, Carine C. Chamon e Rogério L.Teixeira pelo empenho e ajuda nos trabalhos de campo. Agradecemos a Edson H.L. Pereira, Flavio F.C.T. Lima, Marcelo R. Britto, Paulo H.F. Lucinda, Roberto E. Reis, Wilson J.E.M. Costa e Z. Margarete Lucena pela ajuda com as identificações de espécies e/ou informações sobre os ambientes. A L. Casatti pelas sugestões e leitura crítica do manuscrito. Somos gratos a Benevaldo G. Nunes pela ajuda e incentivo para publicação. Financiamento para os trabalhos de campo foi dado pelo All Catfish Species Inventory (http://clade.acnatsci.org/allcatfish), com fundos da National Science Foundation, USA, NSF DEB0315963. Somos gratos ao apoio da UFRJ/ MNRJ (Universidade Federal do Rio de Janeiro/ Museu Nacional), pelo veículo utilizado para transporte durante os trabalhos de campo referentes à primeira expedição. Agradecemos ao Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA/ SISBIO) pela licença de coleta regional para a área de estudo. Ao povo da vila de Cumuruxatiba, Prado, pela hospitalidade, incentivo e apoio para realização de nosso trabalho com os peixes do Extremo Sul da Bahia. A autora principal recebeu financiamento parcial através de bolsa de pós-doutorado sênior pelo CNPq (processo # 154358/2006-1). Material Examinado. Espécies de peixes coletadas ao longo da bacia do Rio Jucuruçu, com o número de registro e número de exemplares em cada lote (em parênteses): Astyanax aff. lacustris: MNRJ 28619(9), MNRJ 28616(1), MNRJ 28611(2), MNRJ 28606(3), MNRJ 28676(2), MNRJ 28599(2), MNRJ 28596(11). Astyanax aff. rivularis: MNRJ 28621(6), MNRJ 28623(37), MNRJ 28625(19), MNRJ 28620(115), MNRJ 28615(3), MNRJ 28607(38), MNRJ 28602(47), MNRJ 28600(167), MNRJ 28591(25), MNRJ 32120(16), MBML 1456(6), MNRJ 32168(10). Awaos tajasica: MNRJ 28339(1), MNRJ 28337(1), MNRJ 28333(1). Characidium sp.5: MNRJ 29072(15), MNRJ 29075(62), MNRJ 29068(24), MNRJ 29076(17), MNRJ 29067(52), MNRJ 29066(33), MNRJ 29064(38), MNRJ 29061(3), MNRJ 29058(39), MNRJ 29056(9). Geophagus brasiliensis: MNRJ 28346(20), MNRJ 28347(3), MNRJ 28345(3), MNRJ 28343(1), MNRJ 28342(7), MNRJ 28338(5), MNRJ 28335(21), MNRJ 28334(1), MNRJ 28332(6), MNRJ 32115(3), MNRJ 32113(5). Gymnotus carapo: MNRJ 28617(9), MNRJ 28597(2), MNRJ 32211(5), MBML 1452(5). Hoplerythrinus unitaeniatus: MNRJ 28330(1). Hoplias malabaricus: MNRJ 28348(2), MNRJ 28344(2), MNRJ 28349(1), MNRJ 28341(7), MNRJ 28331(2). Hyphessobrycon bifasciatus: MNRJ 32103(5), Hypostomus cf. affinis: MNRJ 29074(5), MNRJ 29069(1), MNRJ 29063(8), MNRJ 29059(1), MNRJ 29057(1). Imparfinis aff. minutus: MNRJ 28622(4), MNRJ 28618(52), MNRJ 28612(4), MNRJ 28605(1), MNRJ 28592(11). Leporinus copelandii: MNRJ 28340(1), MNRJ 29062(3), MNRJ 28336(1). Microglanis pataxo: MNRJ 28397(10). Mimagoniates microlepis: MNRJ 32213(22), MBML 1452(5), Neoplecostominae (Nova espécie): MNRJ 28613(1), MNRJ 28609(1), MNRJ 28601(21). Oligosarcus acutirostris: MNRJ 28604(3). Otothyris travassosi: MNRJ 28614(1), MNRJ 28593(52), MNRJ 32051(3), MBML 1455(2). Parauchenipterus striatulus: MNRJ 28594(2), MNRJ 28296(24), MNRJ 28295(74). Pimelodella aff. vittata: MNRJ 29071(2), MNRJ 29073(31), MNRJ 29070(2), MNRJ 29065(4), MNRJ 29060(1), MNRJ 29055(11). Poecilia reticulata: MNRJ 28624(3), MNRJ 28626(26), MNRJ 28610(45). Poecilia vivipara: MNRJ 28608(3), MNRJ 28603(12), MNRJ 28598(1), MNRJ 28595(2), MNRJ 32041(4), MBML 1453(4). Rhamdia sp. 1: MNRJ 29114(2), MNRJ 32217(1), Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 A fauna de peixes da bacia do rio Jucuruçu 205 MBML 1436(1), MNRJ 29113(12), MNRJ 32195(1), MNRJ 29112(1), MNRJ 29111(3), MNRJ 32073(1). Scleromystax prionotos: MNRJ 28707(1), MNRJ 28706(15). Trichomycterus pradensis: MNRJ 28489(2), MNRJ 28488(12), MNRJ 28483(20), MNRJ 28487(9), MNRJ 28486(1). Referências bibliográficas Akama, A. 1999. Sistemática do gênero Pseudauchenipterus Bleeker, 1862 (Siluriformes, Auchenipteridae). Dissertação de Mestrado. Instituto de Biociências, Universidade de São Paulo, São Paulo, 123 p. Alves, C. B. M. & Pompeu, P. S. 2001. Peixes do Rio das Velhas: passado e presente. SEGRAC. Belo Horizonte, 194 p. Braun, O. P. G. & Ramalho, R. 1980. Geomorfologia da Bahia. Revista Brasileira de Geografia, 42(4): 822–860. Buckup, P. A., Menezes, N. A. & Ghazzi, M. S. 2007. Catálogo das espécies de peixes de água doce do Brasil. Série livros 23. Museu Nacional, Rio de Janeiro, 195 p. Caramaschi, E. P. 1986. Distribuição da ictiofauna de riachos das Bacias do Tietê e do Paranapanema, junto ao divisor de águas (Botucatu, SP). Tese de Doutorado. Departamento de Ciências Biológicas, Universidade Federal de São Carlos, São Carlos, 80 p. Carvalho Filho, A. 1999. Peixes: Costa Brasileira. 3a. edição. Melro, São Paulo, 320 p. Casatti, L. 2004. Ichthyofauna of two streams (silted and reference) in the upper Paraná river basin, southeastern Brazil. Brazilian Journal of Biology, 64(4): 757-765. Casatti, L. ; Langeani, F. ; Menezes, N. A. ; Oyakawa, O. T. ; Braga, F. M. S. 2008. Peixes de água doce. Pp. 95-98. In: Rodrigues, R. R. & Bononi, V. L. R. (Org.): Diretrizes para conservação e restauração da biodiversidade no Estado de São Paulo. Instituto de Botânica, São Paulo, 245 p. Colwell, R. K. & Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society (Series B), 345: 101–118. Colwell, R. K., Mao, C. X. & Chang, J. 2004. Interpolating, extrapolating and comparing incidence-based species accumulation curves. Ecology, 85: 2717–2727. Costa, W. J. E. M. & Bockmann, F.A. 1994. A new genus and species of Sarcoglanidinae (Siluriformes: Trichomycteridae) from southeastern Brazil, with a re-examination of subfamilial phylogeny. Journal of Natural History, 28 (3): 715-730. Costa, W. J. E. M. 2003. The Simpsonichthys flavicaudatus species group (Cyprinodontiformes: Rivulidae: Cynolebiatinae): phylogenetic relationships, taxonomic revision and biogeography. Ichthyological Explorations of Freshwaters, 14 (1): 31–60. Costa, W. J. E. M., Lima, S. M. Q. & Bizerril, C. R. S. F. 2004. Microcambeva ribeirae sp. n. (Teleostei: Siluriformes: Trichomycteridae): a new sarcoglanidine catfish from the Rio Ribeira do Iguape basin, southeastern Brazil. Zootaxa, 563: 1–10. Crisci, J. V., Katinas, L. & Posadas, P. 2003. Historical Biogeography: an introduction. Harvard University Press. Cambridge, Massachusetts. London, 250pp. Dajoz, R. 1983. Ecologia Geral. Vozes, Petrópolis, 472 p. Funk, V.A. 2004. Revolutions in historical biogeography. Pp. 647-657. In: Lomolino, M.V., Sax, D.F. & Brown, J.H. (Eds.): Foundations of biogeography: classic papers with commentaries. University of Chicago Press, Chicago. Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2007. PAST - PAlaeontological STatistics, version 1.89. World Wide Web electronic publication, accessible at http://folk.uio.no/ohammer/past/ past.pdf (accessed 20/03/2009). Harold, A. S. & Mooi, R. D. 1994. Areas of endemism: Definition and recognition criteria. Systematic Biology, 43: 261- 266. Lowe McConnell, R. H. (Ed.) 1999. Estudos ecológicos de comunidades de peixes tropicais. Edusp, São Paulo, 535p. Lucinda, P. H. F. 2008. Systematics and biogeography of the genus Phalloceros Eigenmann, 1907 (Cyprinidintiformes: Poeciliidae: Poeciliinae), with the description of twenty-one new species. Neotropical Ichthyology, 6(2): 113–158. Lucinda, P. H. F. & Costa, W. J. E. M. 2007. Família Poeciliidae. Pp. 134–137. In: Buckup, P. A., Menezes, N. A. & Ghazzi, M. S. (Eds.). Catálogo das espécies de peixes de água doce do Brasil. Série livros 23. Museu Nacional, Rio de Janeiro, 195 p. Lütken, C.F. 2001. Peixes do rio das Velhas: uma contribuição para a ictiologia do Brasil. Pp. 23-164. In: Alves, C.B.M. & Pompeu, P.S. (Org.). Peixes do Rio das Velhas: passado e presente. SEGRAC, Belo Horizonte, 194 p. Mazzoni, R. & Iglesias-Rios, R. 2002. Distribution Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 SARMENTO-SOARES ET AL. 206 Pattern of two fish species in a coastal stream in southeast Brazil. Brazilian Journal of Biology, 62(1): 171–178. Menezes, N. A., Buckup, P. A., Figueiredo, J. L. & de Moura, R. L. 2003. Catálogo das espécies de peixes marinhos do Brasil. Museu de Zoologia da Universidade de São Paulo, São Paulo, 160 p. Menezes, N. A., Castro, R. M. C., Weitzman, S. H. & Weitzman, M. J. 1990. Peixes de riacho da floresta costeira atlântica brasileira: um conjunto pouco conhecido e ameaçado de Vertebrados. Pp. 290–295. In: Academia de Ciências do Estado de São Paulo (Ed.). II Simpósio de Ecossistemas da Costa Sul e Sudeste Brasileira: Estrutura, Função e Manejo. Academia de Ciências do Estado de São Paulo, São Paulo. MMA – Ministério do Meio Ambiente/ SRHSecretaria de Recursos Hídricos. 1997. Plano diretor de recursos hídricos da bacia do extremo sul. Volume 6. Documento síntese. Governo do Estado da Bahia, Superintendência de Recursos Hídricos, Salvador, 430 p. MMA – Ministério do Meio Ambiente/ SRHSecretaria de Recursos Hídricos. 1999. Estudos de ictiofauna. Relatório parcial nº. 10 (versão definitiva). Plano Diretor de Recursos Hídricos das Bacias do Leste (rios Mucuri, São Mateus, Itanhém (Alcobaça), Peruípe, Jucuruçu e Buranhém). Fundação Arthur Bernardes, Viçosa, 77 p. MMA – Ministério do Meio Ambiente/ SBF/NAPMA- Núcleo dos Biomas Mata Atlântica e Pampa 2006. Proposta da Equipe Técnico-científica para Ampliação da Rede de Unidades de Conservação de Proteção Integral no Sul e Extremo Sul da Bahia. Governo Federal, Brasília. Myers, G.S. 1938. Fresh-water fishes and West Indian zoogeography. Annual Report of the Board of Regents of the Smithsonian Institution, 92: 339-364. NEODAT II - The Inter-Institutional Database of Fish Biodiversity in the Neotropics. University of Michigan (UMMZ), the American Museum of Natural History (AMNH) and the University of New Orleans (UNO). Project funded by National Science Foundation grants. World Wide Web electronic publication, accessible at http://www.neodat.org (acessed 26/06/2008). Oyakawa, O. T., Akama, A., Mautari, K. C. & Nolasco, J. C. 2006. Peixes de riachos da Mata Atlântica. Editora Neotropica, São Paulo. Pielou, E. C. 1969. Association tests versus homogeneity tests: their use in subdividing quadrats into groups. Vegetation, 18: 4–18. Saadi, A. 1998. Neotectônica dos tabuleiros do sul da Bahia. In: MME/SMM/CPRM/SR Salvador. (Org.). Programa Informações para Gestão Territorial: Projeto Porto Seguro - Santa Cruz Cabrália. SalvadorBA: Companhia de Pesquisa de Recursos Minerais-CPRM, v. 3, p. 40-55. Sarmento-Soares, L. M. 2005. Evaluation of fish fauna in less explored aquatic systems of southern Bahia-BioBahia project. World Wide Web electronic publication, accessible at http://www.flmnh.ufl.edu/fish/acsi/reports /04-15_Porto1.doc or http://www.nossa casa.net/biobahia/doc/0415_Sarmento_Soares. pdf (acessed 20/03/2009). Sarmento-Soares, L. M. 2007. Evaluation of fish fauna in less explored aquatic systems of southern Bahia-BioBahia project II. World Wide Web electronic publication, accessible at http://www.flmnh.ufl.edu/fish/acsi/reports/ 06-45_report.pdf or http://www.nossacasa.net /biobahia/doc/06-45_Sarmento_Soares.pdf (acessed 20/03/2009). Sarmento-Soares, L. M. & Martins-Pinheiro, R. F. 2006a. Mimagoniates sylvicola (Characidae: Glandulocaudinae): espécie ameaçada de extinção em riachos litorâneos do Extremo Sul da Bahia, Brasil. Boletim da Sociedade Brasileira de Ictiologia, 83: 3-4. Sarmento-Soares, L. M. & Martins-Pinheiro, R. F. 2006b. Rachoviscus graciliceps (Characidae: Incertae Sedis) sobrevivente nos pequenos riachos do extremo sul da Bahia, Brasil. Boletim da Sociedade Brasileira de Ictiologia, 85: 4–5. Sarmento-Soares, L. M. & Martins-Pinheiro, R. F. 2007a. Criação e ampliação de novas Unidades de Conservação no sul da Bahia um estudo da ictiofauna. World Wide Web electronic publication, accessible at http://www.nossacasa.net/biobahia/doc/UC_2 007-01.pdf (acessed 20/ 03/2009). Sarmento-Soares, L. M & Martins-Pinheiro, R. F. 2007b. Relação do material coletado e identificado pelo Projeto Biobahia- fase 1 e 2. World Wide Web electronic publication, accessible at http://www.nossacasa.net/ biobahia/doc/biobahia.pdf (accessed 13/06/ 2008). Sarmento-Soares, L. M & Martins-Pinheiro, R. F. Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 A fauna de peixes da bacia do rio Jucuruçu 207 2007c. Os Auchenipteridae do Leste do Brasil. Boletim da Sociedade Brasileira de Ictiologia, 87: 7–8. Sarmento-Soares, L. M. & Martins-Pinheiro, R. F. 2008. Registro de coleta do material histórico das bacias do extremo sul da Bahia. World Wide Web electronic publication, accessible at http://www.nossa casa.net/biobahia/doc/ historicas.pdf (accessed 13/06/2008). Sarmento-Soares, L. M., Martins-Pinheiro, R. F., Aranda, A. T. & Chamon, C. C. 2005. Trichomycterus pradensis, a new catfish from southern Bahia coastal rivers, northeastern Brazil (Siluriformes: Trichomycteridae). Ichthyological Explorations of Freshwaters, 16(4): 289–302. Sarmento-Soares, L. M., Martins-Pinheiro, R. F., Chamon, C. C. & Aranda, A. T. 2006. Microglanis pataxo, a new catfish from southern Bahia coastal rivers, northeastern Brazil (Siluriformes: Pseudopimelodidae). Neotropical Ichthyology, 4(2): 157–166. Sarmento-Soares, L. M., Mazzoni, R. & MartinsPinheiro, R. F. 2007. A fauna de peixes na bacia do Rio Peruípe, extremo Sul da Bahia. Biota Neotropica, 7 (3): 291- 308. World Wide Web electronic publication, accessible at http://www.biotaneotropica.org.br/v7n3/ pt/abstract?article+bn02107032007 ISSN 1676-0603. (accessed 13/03/2009). Sarmento-Soares, L. M., Mazzoni, R. & MartinsPinheiro, R. F. 2008. A fauna de peixes dos Rios dos Portos Seguros, extremo Sul da Bahia, Brasil. Boletim do Museu de Biologia Mello Leitão, 24: 121- 144. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37:130–137. Received November 2008 Accepted March 2009 Published online May 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 193-207 Occurrence of the white anglerfish, Lophiodes beroe Caruso, 1981 (Lophiiformes: Lophiidae), in Brazilian waters. MATHEUS MARCOS ROTUNDO1 & TEODORO VASKE JÚNIOR2 1 Acervo Zoológico da UNISANTA (AZUSC), Rua Oswaldo Cruz, 266 - Bloco B - 3º andar/ sala B-31A CEP:11045-907, Santos SP. Email: mmrotundo@unisanta.br 2 Laboratório de Elasmobrânquios, UNESP, Praça Infante Dom Henrique s/n CEP: 11330-900 São Vicente SP Email: vaske@ig.com.br Abstract. One specimen of the lophiid white anglerfish, Lophiodes beroe was collected for the second time in Brazilian waters, which far extends the limit distribution of the species to southeastern region (25o00’08’’S). Key Words: New record, ichthyofauna, trawl fishery, upper slope, Southwestern Atlantic Resumo. Ocorrência do peixe-pescador-branco, Lophiodes beroe Caruso, 1981 (Lophiiformes: Lophiidae), em águas brasileiras. Um espécime do peixe-pescador-branco, Lophiodes beroe foi coletado pela segunda vez em águas brasileiras, o que amplia o limite de distribuição da espécie para a região sudeste do Brasil (25o00’08’’S). Palavras-chave: Novo registro, ictiofauna, pesca de arrasto, talude superior, Atlântico sudoeste Lophiiformes are known as anglerfishes due to the illicium and the esca, a pendulous fleshy structure modified from the first spine of the dorsal fin that are used as false bait for capture of preys. With the exception of the Neoceratiidae, all families of this order show this structure, varying widely in shape, size, and presence of the esca, among other characters (Nelson 2006). The Lophiidae is represented by four genera and twenty five species (Caruso 1983), where Lophius is the most important genus due to its commercial value. In Brazilian waters the main species of the family, the monkfish, Lophius gastrophysus Miranda Ribeiro, 1915, recently became a target species of deep waters fishing fleet in the southern and southeastern regions (Perez et al. 2002a,b; Perez et al. 2003a,b; Perez & Wharlich 2005, Valentim et al. 2007, 2008). Lophius gastrophysus occurs from North Carolina (USA) to Argentina in waters usually between 40 and 180 m, but also occur up to 660 m deep (Figueiredo et al. 2002), and is captured by deepwater gillnet fishery and as bycatch of shrimp fishery (Wharlich et al. 2004, Valentim et al. 2007). Another genus, Lophiodes contains 13 species (Caruso 1985, Froese & Pauly 2009). Costa et al. (2007) reported about the occurrence of Lophiodes beroe in Brazilian waters, during a deep exploratoryfishing cruise performed by the R/V Thalassa, between 11oS and 22oS in 2000, but the authors just cite its presence without any further explanation. The main diagnostic characteristics that differs Lophiodes beroe from the similar L. gastrophysus are the body slightly narrow than L. gastrophysus, and the gill openings of Lophiodes that are very large and extends not only behind the pectoral fin, but in front of it as well (Caruso 1985) (Fig. 1). In Lophius gill opening is more restricted, being located below and behind the pectoral fin. Also, the pectoral fin shape in Lophiodes is narrow and paddle-like, with a relatively low number of rays (14-21), whilst in Lophius the pectoral fin is broad and fan-like, with a relatively high number of rays (22-28). In the present report, one specimen was also captured by the R/V Soloncy Moura (CEPSULIBAMA) in the position 25º00’08’’S;45º27’38’’W straight ahead Ilha Comprida, São Paulo state, southeastern-Brazil, 99.5 m deep along the upper slope coast (Fig. 2). Our specimen measured Pan-American Journal of Aquatic Sciences (2009), 4(2): 208-211 Occurrence of the white anglerfish Lophiodes beroe in Brazilian waters 157 mm total length, with 18 pectoral fin rays. In the description of the species, Caruso (1981) observes that L. beroe inhabits the Western North Atlantic, with northern distribution at 24º24’N. According Caruso et al. (2007), L. beroe attains a maximum size of 300 mm, commonly observed with 150 mm, restricted in region between Southeastern USA and northern coast of South America. The present sample extends the South American limit of the species to more than 3500 km in straight line to 25oS, in southeastern Brazil. 209 Although L. beroe attains smaller lengths than L. gastrophysus, both are similar in shape, which may cause confusion during identification onboard by the fishermen, and so, individuals of L. beroe may be normally included as part of the commercial catches of L. gastrophysus. In this way, it is probable that the species range can be even extended for southernmost waters. The specimen is stored in the Zoological collection of Santa Cecília University (UNISANTA) - AZUSC 2632. Figure 1. Dorsal view and main differences between one monkfish (A), Lophius gastrophysus (400 mm total length) and the white anglerfish (B), Lophiodes beroe (AZUSC 2632, 157 mm total length). Arrows indicate the gill openings that are very large and extends in front of the pectoral fin in L. beroe. The paddle-like shape of the pectoral fin is also evident in L. beroe. Pan-American Journal of Aquatic Sciences (2009), 4(2): 208-211 M. M. ROTUNDO & T. VASKE JUNIOR 210 Figure 2. Distribution of Lophiodes beroe in the Atlantic coast (dashed area). Limit of the northern distribution (24º24’N); record of the R/V Thalassa (2000) (●); present study (x). Acknowledgments The authors are grateful to Dr. Otto Bismarck Fazzano Gadig who provided support in the UNESP-CLP laboratories, and to the crew of the R/V Soloncy Moura (CEPSUL-IBAMA) during samples. References Caruso, J. H. 1981. The systematics and distribution of the lophiid anglerfishes: I. A revision of the genus Lophiodes with the description of two new species. Copeia, 1(3): 522–549. Caruso, J. H. 1983. The systematics and distribution of the lophiid anglerfishes. II. Revisions of the genera Lophiomus and Lophius. Copeia, 1:1130. Caruso, J. H. 1985. The systematics and distribution of the lophiid anglerfishes. III. Intergeneric Relationships. Copeia, 4: 870-875. Caruso, J. H., Ross, S. W., Sulak, K. J. & Sedberry, G. R. 2007. Deep-water chaunacid and lophiid anglerfishes (Pisces:Lophiiformes) off the south-eastern United States. Journal of Fish Biology, 70:1015-1026. Costa, P. A. S., Braga, A. C., Melo, M. R. S., Nunan, G. W. A., Martins, A. S. & Olavo, G. 2007. Assembléias de teleósteos demersais no talude da costa central brasileira. P 87-107. In Costa, P. A. S., Olavo, G. & Martins, A. S. (Eds.) Biodiversidade da fauna marinha profunda na costa central brasileira – Rio de Janeiro : Museu Nacional. 184 p. Figueiredo J. L., Santos A.P., Yamaguti N., Bernardes R.A. & Rossi-Wongtschowski C. L. D. B. 2002. Peixes da zona econômica exclusiva da região sudeste-sul do Brasil: Levantamento com rede de meiaágua. Ed. EDUSP: Imprensa de São Paulo. 242 p. Froese, R. & Pauly, D. (eds) 2009. FishBase, World Wide Web electronic publication; www.fishbase.org, version (03/2009). Nelson, J.P. 2006. Fishes of the World, 4th ed. John Wiley & Sons, New Jersey, 601 p. Perez J. A. A. & Wahrlich R. 2005. A bycatch assessment of the gillnet monkfish Lophius gastrophysus fishery off southern Brazil. Fisheries Research, 72: 81–95. Perez, J. A. A., Pezzuto, P. R., Andrade, H. A., Schwingel, P. R., Rodrigues-Ribeiro, M. & Wahrlich, R. 2002a. O Ordenamento de uma nova pescaria direcionada ao peixe-sapo (Lophius gastrophysus) no Sudeste e Sul do Brasil. Notas Técnicas FACIMAR, 6: 65–83. Pan-American Journal of Aquatic Sciences (2009), 4(2): 208-211 Occurrence of the white anglerfish Lophiodes beroe in Brazilian waters Perez, J. A. A., Pezzuto, P. R., Schwingel, P. R., Wahrlich, R., Lopes, F. R. A., Andrade, H. A. & Ribeiro, M. R. 2002b. Análise da pescaria do peixe-sapo Lophius gastrophysus no Sudeste e Sul do Brasil - Ano 2001. Ações Prioritárias ao Desenvolvimento da Pesca e Aquicultura no Sul do Brasil. Convênio MAPA/ SARC/ DPA/ 03/ 2001. Perez, J. A. A., Wahrlich, R., Pezzuto, P. R. & Lopes, F. R. A. 2003a. Estrutura e dinâmica da pescaria do peixe-sapo Lophius gastrophysus no Sudeste e Sul do Brasil. Boletim do Instituto de Pesca, 28 (2): 205– 231. Perez, J. A. A., Wahrlich, R., Pezzuto, P. R., Schwingel, P. R., Lopes, F. R. A., & Rodrigues-Ribeiro, M. 2003b. Deep-sea fishery off southern Brazil: recent trends of the Brazilian fishing industry. Journal of the 211 Northwest Atlantic Fisheries Sciences, 31: 1–18. Valentim, M. F. M., Vianna, M. & Caramaschi, E. P. 2007. Length structure of monkfish, Lophius gastrophysus (Lophiiformes, Lophiidae), landed in Rio de Janeiro. Brazilian Journal of Aquatic Science and Technology, 11(1):31-36. Valentim, M. F. M., Caramaschi, E. P. & Vianna, M. 2008. Feeding ecology of monkfish Lophius gastrophysus in the south-western Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom, 88(1): 205–212. doi:10.1017/S0025315408000301 Wahrlich, R., Perez, J. A. A. & Lopes, F. R. A. 2004. Aspectos tecnológicos da pesca do peixe-sapo (Lophius gastrophysus) com rede de emalhar no sudeste e sul do Brasil. Boletim do Instituto Pesca, 30: 87–98. Received February 2009 Accepted April 2009 Published online June 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 208-211 A mutton hamlet Alphestes afer (Bloch, 1793) reproductive event in northeast Brazil 1,2,3 DIEGO VALVERDE MEDEIROS , JOSÉ DE ANCHIETA C. C. NUNES 3,4 & CLÁUDIO L. S. SAMPAIO 3 1 Centro de Pesquisa e Conservação dos Ecossistemas Aquático - BIOTA AQUÁTICA. Email: bolamedeiros@gmail.com 2 Centro de Ecologia e Conservação Animal – ECOA Grupo de Estudos de Ambientes Recifais da Bahia 4 Museu de Zoologia, Instituto de Biologia, Universidade Federal da Bahia 3 Abstract. We present here the first record of a reproductive event of the mutton hamlet, Alphestes afer, in Brazilian waters. Four individuals participated in the event, which lasted approximately 30 minutes at dusk. Keywords: reproductive event, mutton hamlet, Alphestes afer, shallow waters, northeast Brazil Resumo. Um evento reprodutivo da garoupa-rajada Alphestes afer (Bloch, 1793) no Nordeste do Brasil. Apresentamos aqui o primeiro registro em águas brasileiras de um evento reprodutivo da garoupa-rajada, Alphestes afer. Quatro indivíduos participaram do evento que durou aproximadamente 30 minutos no período do crepúsculo. Palavras-chave: evento reprodutivo, garoupa-rajada, Alphestes afer, águas rasas, nordeste brasileiro The Epinephelidae family is an important group of carnivorous marine fishes that occur in tropical and subtropical waters throughout world. The family was recently revalidated following molecular and morphologic studies, which separated some species that were previously part of Serranidae (Smith & Craig 2007). Along the Brazilian coast there are probably 25 species of this family, including groupers and hinds (Carvalho-Filho, pers. com.). The mutton hamlet, Alphestes afer, is found in the southwest Atlantic from Florida (USA) to Santa Catarina (Brazil), including the Bermuda Islands, Bahamas and Cuba in the Caribbean Sea and Western Africa from Guinea, type locality, and São Tomé and Prince (Craig et al. 2006, Hostim et al. 2006, Wirtz et al. 2007, Sampaio & Nottingham 2008). It is a relatively small-sized species that reaches 33 cm of total length (TL). The muttom hamlet displays solitary and sedentary habits during the day, sheltering in rocky crevices and above algae. It feeds mainly on crustaceans at dusk and after nightfall (Randall 1967, Heemstra & Randall 1993, Sampaio & Nottingham 2008). We report here a reproductive behaviour of a small school of mutton hamlet. Our observations occurred opportunistically in 05 October (2008) in the rocky reef of Farol da Barra, located at the entrance of Baía de Todos os Santos – BTS (northeast of Brazil). We observed the behavior of the fishes using the focal group method while snorkeling (Altmann 1974). Photographic records were obtained with a Sony WPC 4 MP. The sequence of events occurred at dusk (5:20p.m. to 6p.m.) at two meters in depth, during high tide, with ~3m of horizontal water transparency and at crescent moon phase. The site where the observation was made has a sandy bottom, filamentous and foliage algae and the zoanthid Palythoa sp. Four grouped individuals were sighted. The largest individual (A) had ~30 cm TL, apparently a female, presenting a lighter coloration and big belly, while the other three had between 20 to 25 cm TL (B, C, e D) (most likely males) and displayed a Pan-American Journal of Aquatic Sciences (2009), 4(2): 212-215 A mutton hamlet Alphestes afer reproductive event in northeast Brazil darker coloration, typical of courting male epinephelids (Tresher 1984, DeLoach & Humann 1999). During the observations, individuals B, C, and D followed A, attempting to approach it. However, only one fish (B) was able to maintain direct contact with individual (A). Individual B bit the back of A and also behaved agonistically when the other fishes approached. Subsequently, 213 individuals A and B rested laterally to the substrate (Fig. 1) where they maintained physical contact between their bellies. The release of their gametes occurred after a few minutes close to the substratum. The other two individuals moved away to a distance of approximately 1 m from the spawning couple. The episode lasted approximately 30 minutes. Figure 1. Two individuals of Alphestes afer during a reproductive event. Note the physical contact between the individuals. Photographed by D.V. Medeiros. One day before, in same locality and horary was observed many muttons hamlet closeness, probably as same individuals the after day; however no signs of reproduction event were registered. Reef fish exhibit a great variety of reproductive strategies, from spawning aggregations to spawning in pairs (Tresher 1984, Domeier & Colin 1997, DeLoach & Humann 1999, Krajewski & Bonaldo 2005). Some groupers make their way to spawning sites in the beginning of spring and summer, migrating long distances to a specific location in order to join with other individuals (Tresher 1984, Shapiro 1987, Sadovy 1996, DeLoach & Humann 1999). We believe that because of the small size and sedentary habits, A. afer was not pursuing breeding migration. The majority of marine fish, specially groupers of the Epinephelidae family, that display lunar spawning rhythms, reproduce at the new or full moon (Domeier & Colin 1997), suggesting that there may be some selective advantages associated with spawning at spring tide as the tide has greater amplitude (Johannes 1978). Moreover, the lunar cycles apparently help to synchronize the spawn (Lowe-Mcconnell 1999). The event reported here occurred at the crescent moon, making it difficult to associate A. afer spawning synchronization with the lunar cycle. Curiously, non-lunar spawning has been reported for a few species of epinephelids (Hereu et al. 2006, Erisman et al. 2007, 2009). Among the Atlantic marine fish species, the Epinephelidae, Serranidae and Lutjanidae family received great research and conservation attention because of their characteristic of forming spawning aggregations (Claro & Lindeman 2003, Sadovy & Domeier 2005). A reproductive aggregation occurs Pan-American Journal of Aquatic Sciences (2009), 4(2): 212-215 MEDEIROS ET AL. 214 when one or more species convene at a certain place and time with a reproductive end. When a large number of normally dispersed fishes organize in predetermined areas and times, they become highly vulnerable to overfishing (Colin et al. 2003, Sadovy & Cheung 2003, Sadovy & Domeier 2005). Previous studies have documented that from the original five historic aggregation sites in the Caiman Island for Epinephelus striatus, three are inactive or commercially extinct due to overfishing (Whaylen et al. 2004). In Brazil, the goliath grouper Epinephelus itajara, an endangered species according to IUCN (The World Conservation Union) (Tak-Chuen & Ferreira 2006), is known to reproduce during summer, with reproductive aggregations observed in December (full moon) and occasionally in January and February in Babitonga bay, Santa Catarina (Brazil) (Gerhardinger et al. 2006, 2007). However, no bibliographic or anecdotal information exists concerning reproductive aggregations of small and cryptic epinephelids, such as A. afer. We do not consider the reproductive event described herein a spawning aggregation, since only two individuals spawned simultaneously. In spite of its relatively small size, A. afer is captured for consumption and ornamental trade within BTS (Sampaio & Nottingham 2008). The only similar feature between the reproduction of large groupers and the reproductive event of A. afer reported here was the dusk period (Claro & Lindeman 2003). Our observations confirm that mutton hamlet can spawn in shallow waters. We suggest that shallow reefs inside the BTS are an important reproductive site for A. afer. However, future studies focusing on the periodicity of these events, the influence of lunar phases, the average size at sexual maturation and possible occurrence of migration for reproductive events will elucidate some of the questions raised in this paper. Acknowledgements Dra. Alina Sá Nunes (UCSal/UNIME) the loan of digital camera, Camilo M. Ferreira (UESC) and Ericka C.O. Coni (CI do Brasil) for suggestions on the manuscripts, Leo Dutra (CMAR), Clarice Lino (Fundação Pró Tamar), and Katie Brennan for assistance on the English version. Alfredo de Carvalho Filho (Fish Bizz Ltda.) for valuable information about the family Epinephelidae. The Programa Institucional Brasileiro de Iniciação Científica - Universidade Católica do Salvador Fundação de Amparo à Pesquisa do Estado da Bahia provided a fellowship to the author senior. References Altmann, J. 1974. Observational study of behavior: sampling methods. Behaviour, 49: 226 – 265. Claro R. & K.C. Lindeman, 2003. Spawning aggregation sites of snapper and grouper species (Lutjanidae and Serranidae) on the insular shelf of Cuba. Gulf and Caribbean Research, 14(2): 91-106. Colin, P. L., Sadovy, Y. & Domeier, M.L. 2003. Manual for the study and conservation of reef fish spawning aggregations, Society for the Conservation of Reef Fish Aggregations special publications, 1:1-98. Craig, M. T., P. Wirtz, P. Bartsch & P. Heemstra. 2006. Redescription and validation of Alphestes afer (Bloch 1793) as an amphiAtlantic grouper species. Cybium, 30(4): 327-331. Craig, M.T. & Hastings, P.A. 2006. A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyol. Res. 54: 1–17. DeLoach, N. & Humann, P. 1999. Reef Fish Behavior: Florida, Caribbean, Bahamas. New World Publications, 359p. Domeier, M.L. & Colin, P.L. 1997. Tropical reef fish spawning aggregations: defined and reviewed. Bulletin of Marine Science 60: 698–726. Erisman, B.E., Buckhorn, M.B. & Hastings, P.A. 2007. Spawning patterns in the leopard grouper, Mycteroperca rosacea, in comparison with other aggregating groupers. Mar. Biol. 151:1849–1861. Erisman., B.E., Konotchick, T.H. & Blum, S. 2009. Observations of spawning in the Leather Bass, Dermatolepis dermatolepis (Teleostei: Epinephelidae), at Cocos Island, Costa Rica. Environ. Biol. Fish. 85:15–20. Gerhardinger, L.C., Medeiros, R., Marenzi, R.C., Bertoncini, A.A & Hostim- Silva, M. 2006. Local Ecological Knowledge on the Goliath Grouper Epinephelus itajara. Neotropical Ichthyology. 4(4):441-450. Gerhardinger, L.C., Medeiros, R.P., Marenzi, R.C., Godoy, E.A., Freitas, M.O., Andrade, A.B. & Hostim-Silva, M. 2007. Conhecimento Ecológico Local no Planejamento e Gestão de Áreas Marinhas Protegidas e na Conservação de Agregações Reprodutivas de Peixes: A Experiência do Projeto Meros do Brasil. In: MMA - Série Áreas Protegidas do Brasil. (Org.). Áreas Aquáticas Protegidas como Instrumento de Gestão Pesqueira. Brasília: Pan-American Journal of Aquatic Sciences (2009), 4(2): 212-215 A mutton hamlet Alphestes afer reproductive event in northeast Brazil MMA, 1: 107-129p. Heemstra, P.C. & Randall, J.E. 1993. FAO Species Catalogue (Vol.16) Groupers of the World (Family Serranidae, Subfamily Epinephelinae). Food and Agriculture Organization of the United Nations, Rome. 382p. + 31 plates. Hereu, B., Diaz, D., Pasqual, J., Zabala, M. & Sala, E. 2006. Temporal patterns of spawning of the dusky grouper Epinephelus marginatus in relation to environmental factors. Mar. Ecol. Prog. Ser. 325:187–194. Hostim-Silva, M., Andrade, A.B., Machado, L.F., Gerhardinger, L.C., Daros, F.A. Barreiros, J.P. & Godoy, E.A.S. 2006. Peixes de costão rochoso de Santa Catarina: Arvoredo. Itajaí: Universidade do Vale do Itajaí. 134 p. Johannes, R.E. 1978. Reproductive strategies of coastal marine fishes in tropics. Environ. Biol Fish. 3(1):65-84. Krajewski, J.P. & Bonaldo, R.M. 2005. Spawning out of aggregations: record of a single spawning dog snapper pair at Fernando de Noronha Archipelago, Equatorial Western Atlantic. Bulletin of Marine Science, 77(1): 165–167. Lowe-Mcconnel, R. H. 1999. Estudos ecológicos de comunidades de peixes tropicais. Ed. Universidade de São Paulo. 534p. Randall, J.E. 1967. Food habits of reef fishes of the West Indies. Stud. Trop. Oceanorgr. 5: 665847. Sadovy, Y. & Cheung, W.L. 2003. Near extinction of a highly fecund fish: the one that nearly got away. In: Fish and Fisheries. 4: 86– 99. Sadovy, Y. & Domeier, M. 2005. Are aggregationfisheries sustainable? Reef fish fisheries as a 215 case study. Coral Reefs 24: 254–262. Sadovy, Y.J. 1996. Reproduction of reef fisheries species, In: Reef Fisheries (Polunin, N.V.C. & C.M. Roberts, eds.), pp 15-59. Chapman & Hall, London. 477 p. Sampaio, C.L.S. & Nottingham, M.C. 2008. Guia para Identificação de Peixes Ornamentais Volume I: Espécies Marinhas. 1. ed. Brasília: Edições IBAMA, 205 p. Shapiro, D.Y. 1987. Reproduction in groupers. In: Tropical Snappers and Groupers: biology and fisheries management (Polovina, J.J. & S. Ralston, Eds.), pp 295–329. Westview, Boulder, Colo. 659 p. Smith, WM.L. & Craig, M.T. 2007. Casting the Percomorph net widely: The importance of broad taxonomic sampling in the search for the placement of Serranid and Percid Fishes. Copeia, 2007(1) 35–55. Tak-Chuen, C.T & Ferreira, B.P. 2006. Epinephelus itajara. In: IUCN 2007. 2007 UCN Red List of Threatened Species. <www.iucn redlist.org>. Downloaded on 14 February 2008. Thresher, R.E. 1984. Reproduction in Reef Fishes. TFH Publication, Neptune City, NJ. 399p. Whaylen, L., Pattengill-Semmens, C.V., Semmens, B.X., Bush, P.G., & Boardman, M. R. 2004. Observations of a Nassau grouper, Epinephelus striatus, spawning aggregation site in Little Cayman, Cayman Islands, including multi-species spawning information. Environ. Biol. Fishes 70: 305–313. Wirtz, P., Ferreira, C.E.L., Floeter, S.R., Fricke, R., Gasparini, J.L., Iwamoto, T., Rocha, L.A., Sampaio, C.L. & Schliewen, U. 2007. Coastal fishes of São Tomé and Príncipe – an update. Zootaxa, 1523, 1–48. Received February 2009 Accepted March 2009 Published online June 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 212-215 New record of the alien mollusc Rapana venosa (Valenciennes 1846) in the Uruguayan coastal zone of Río de la Plata. ANDREA LANFRANCONI*, MARISA HUTTON, ERNESTO BRUGNOLI & PABLO MUNIZ Sección Oceanología, Facultad andrea.lanfranconi@gmail.com de Ciencias, Iguá 4225, Montevideo 11400, Uruguay. * E-mail: Abstract. Rapana venosa, an invasive gastropod reported for the Río de la Plata estuary since 1998, represents a serious risk to the shellfish fauna with economic value of the region. In this contribution new records in the Uruguayan coastal zone of the easternmost distribution limit are presented. Also are discussed potential impacts of the range expansion over the local biodiversity. Key words: biological invasion, gastropods, biodiversity, estuary, South-western Atlantic. Resumen. Nuevo registro del molusco Rapana venosa (Valenciennes 1846) en la zona costera Uruguaya del Río de la Plata. Rapana venosa, molusco invasor reportado para el Río de la Plata desde 1998, representa un riesgo para la malacofauna de importancia económica de la zona. Se presentan resultados sobre su límite este de distribución para la costa uruguaya y se discuten sus potenciales impactos en la biodiversidad autóctona. Palabras clave: invasión biológica, gastrópodos, biodiversidad, estuario, Atlántico Sud Occidental. As in other areas of the world, the southwestern Atlantic enclose many exotic aquatic species (Schwindt 2001, Orenzans et al. 2002, Silva & Souza 2004) and Uruguayan ecosystems are not an exception of this scenario (Brugnoli et al. 2005, 2006, Muniz et al. 2005). Rapana venosa (Gastropoda, Muricidae) is a large carnivore whelk native from Asia (Tsi 1983, Chung et al. 1993). It has been recorded in the Río de la Plata estuary for the first time in 1998 by Scarabino et al. (1999) and Pastorino et al. (2000). This species is frequently found in surveys carried out in the middle and outer portions of the estuary (Giberto et al. 2006, Carranza & Rodríguez 2007, Carranza et al. 2007, Cortelezzi et al. 2007). Rapa whelks show wide termohaline tolerance (Chung et al. 1993, ICES 2004), fast growth, high fertility (ICES 2004, Harding et al. 2007a), a planktonic phase ranging from 14 to 80 days (Mann & Harding 2000), tolerance to water pollution and hypoxia (Zolotarev 1996). All of these traits made this organism a successful invader. Furthermore, this voracious predator of molluscs (Savini et al. 2002) can be considered one of the most unwelcome invasive species impacting large native mollusc populations (Drapkin 1963, Zolotarev 1996, Giberto et al. 2006). Despite its importance as an invasive species little is known in South America about its distribution, population structure, and potential ecological impacts on the native benthic community and on the trophic web. Having highlighted Rapana venosa ecological importance, the present contribution aims to report the expansion of its distribution range in the Uruguayan coastal zone, and also to analyze morphometric variables, sex-ratio and epibionts coverture of the collected organisms. The Río de la Plata (34º-36º30’ S, 55º58º30’ W) is a large extension (38,000 km2) and shallow (5-25 m) coastal plain estuary that according to salinity can be divided in upper (< 0.4) and outer (0-33) (Framiñan et al. 1999) zones. This study was carried out in a coastal area localized in the outer zone (Fig. 1), characterized by rocky shores and sandy beaches. Pan-American Journal of Aquatic Sciences (2009), 4(2): 216-221 New record of the alien mollusc Rapana venosa in the Uruguayan coastal zone of Río de la Plata 217 Figure 1. South America, and Uruguay with the sampling zone studied in the Uruguayan coastal zone ( ). Data was obtained by scuba diving on April 15 of 2006, using an squared sampler (5x5 m) covering an area of 25 m2 in Playa Hermosa (34°50´38´´S, 55°18´09´´W) at late afternoon. Depth, water temperature and salinity were measured in situ using a field conductimeter and an echo-sounder (Table I). Collected specimens of Rapana venosa were immediately frozen and examined later in the laboratory. Total shell length (SL) and Total shell width (SW) were measured using a calliper (0.1 mm) (Fig. 2). Total animal wet weight (TW) was recorded using a digital scale balance (0.1 g). To analyze the relationship between SL and other two variables, regression test were performed using the four common models (i.e. lineal, logarithmic, exponential and geometric), verifying with the determination coefficient the best one. The sex was determined by the presence of penis and reddishbrown gonads (male) and absence of penis and the presence of gonopore and yellow gonads (female). Also we analyzed organisms for signs of imposex anomalies in the reproductive apparatus, the imposition of male sexual characters including a penis and vas deferens onto females under toxic effects of pollutants (Mann et al. 2006). Coverage type and percentage of epibionts were also determined. Environmental variables measured in the sampling site are presented in Table I. The total number of snails recorded was 18 (0.72 individuals/m2). Shell length ranged between 57.3 and 81.2 mm, width between 45.1 and 61.3 mm and total weight ranged from 41.1 to 91.1 g. The best fit for Log SL vs. Log SW and Log SL vs. Log TW relationship was obtained applying a lineal model (Y= ax+b), with R2 of 0.68 and 0.73 respectively (Fig. 3). The ratio of males and females was 0.64, being 39% and 61% mean values of males and females respectively. The lack of imposex signs in females of the present study could be interpreted as a symptom of a healthy population or a signal that this population had not been exposed enough time to TBT to develop signs of imposex. In relation to the epibionts the following taxa were identified: Coelenterata (Anthozoa: Anemone sp.), Annelida (Polychaeta: Polydora sp.), Mollusca (Bivalvia: Ostrea sp.), Arthropoda (Crustacea: not identified barnacles) and Bryozoa (Cheilostomata: Membranipora sp.), being the last two the most abundant. The majority of the specimens (67%) presented low epibionts cover (0-25% of coverage). Table I. Tolerance range of Rapana venosa to temperature, salinity, type of sediment and depth at native regions and other invaded regions, and the data obtained in this work (study area). Study Area Native region Other invaded regions 1.5 ND up to 40 sand-rock hard sand sand -rock Temp. (°C) 18.5 4-35 7-24 Salinity 16.6 ND 25-32 Depth (m) Substratum (type) ND = no data Pan-American Journal of Aquatic Sciences (2009), 4(2): 216-221 218 A. LANFRA ANCONI ET AL. m in thhe present stud dy. SW= totall Figure 2. Raapana venosa: Ventral and dorsal view, with biometriic variables measures shell width, SL= S total shelll length. Figure 3. Raapana venosa: Relationships between SL vs SW and SL vs TW. Equuation of the bbest model fittted and R2 aree also presenteed in the figuree. Eveen though the reducced numberr of organisms collected in i this stuudy, the reesults obtained coould be useeful as an approach too the potentially problem p thatt this invasioon could cauuse in the Uruguayyan coastal zone. z As farr as we know w the present daata constitutted the firrst approachh to population feature f in the eastern disstribution lim mit of the species in Uruguay.. Figure 4 shhows the advvance of rapa poppulations sinnce 2005. Thhe abundancce of rapa individdual here reeported (0.772 individual/m2) are higher thhan those repported by Saavini et al. (22004) for the norrthern Adriaatic Sea. Thhe size rangge of organisms here h recordeed and the coommon pressence of egg masses with liviing larvae, during d the auustral summer (peersonal obseervations of the authors) are both an inddication thatt R. venosa populationss are matu ure and estabblished. Considering all stuudies perform med in thiss regio on of South America, thhe present distribution off R. venosa v seems to be restrricted exclussively to thee Río de la Plata estuary (Figure 4). The lack of rapaa indiv viduals in the t Atlantic Ocean coaast could bee attrib buted to thee presence oof the nativ ve gastropodd Stra amonita h haemastoma (Linnaeus 1767,, Murricidae), sincce the environmental ch haracteristicss of this t zone arre in the raange established for R. veno osa. S. haaemastoma could be a possiblee com mpetitor that occupies a similar ecological nichee and is also a larrge active prredator (Rios 1994) thatt seem ms to be higghly salinityy dependent and cannott enteer the estuarry, then, is restricted to o the oceann wateers. Howeveer, the questiion about iff rapa whelkk Pan-Americaan Journal of Aquatic A Sciennces (2009), 4(2): 216-221 New record of the alien mollusc Rapana venosa in the Uruguayan coastal zone of Río de la Plata can outcompete S. haemastona is still open. Since molluscan invasions in estuaries and marine ecosystems have hardly altered communities (Carlton 1999), the need for specific research on this topic is highlighted as a warning to native biodiversity loss. The life history and reproductive strategies of R. venosa, combining characteristics of both r and K strategies, facilitates its development in niches that may be available or used in the new habitats and fruitfully compete with native species that share habitat requirements (Harding et al. 2007b). -33 Rapana venosa -34 Uruguay N A -35 B Río de la Plata Argentina -36 -37 -59 -58 -57 -56 -55 -54 -53 Figure 4. Distribution of Rapana venosa, modified of Brugnoli et al. 2007. Black dots: distribution at 2005; red dots, actual range of distribution: A: Playa Hermosa (this report), B: Punta del Este (unpublished data, collected in October 2008). In the Río de la Plata estuary the coexistence of this predator (R. venosa) with populations of native bivalves (e.g. Mactra isabelleana, Ostrea puelchana) could be related to the predation pressure over this indigenous species (Giberto et al. 2006). The Uruguayan coastal zone, and particularly the outer Río de la Plata, has important mussel banks of the commercially exploitable blue mussel (Mytilus edulis platensis) which are the first mollusc resource of the country (Riestra & Defeo 1994). In this sense, the spread of R. venosa could be a threat for this natural resource, as stated before by Scarabino et al. (1999). Moreover, local fishermen reported that rapa whelks usually are found in the long lines eating over the baits (dead fish) near the rocky shores where also mussels are inhabiting (mean depth of 2 m). Researches on the first stages of invasions are necessary in order to detect exotic species before they cause damage to local community and ecosystems. It is clear that once established in the new environment, the eradication of exotic species is not easy (de Poorter 1999). Therefore, only with a good knowledge of the distribution, ecology, life history and impacts of alien species it would be 219 possible to improve management and control. Acknowledgment Special thanks to EC Incofish Project Contract 003739 (WP3) for partially supported the study. Thanks to M. Diaz, F. Scarabino, I. Pereyra, J.M. Clemente and M. Bessonart for collaboration in the field sampling. The manuscript was enhanced by the comments and suggestios of three anonymous reviewers. References Brugnoli, E., Clemente, J., Boccardi, L., Borthagaray, A. & Scarabino, F. 2005. Update and prediction of golden mussel (Limnoperna fortunei): distribution in the principal hydrographic basin of Uruguay. Anais da Academia Brasileira de Ciências, 77: 235244. Brugnoli, E., Clemente, J., Riestra, G., Boccardi, L. & Borthagaray, A. I. 2006. Especies acuáticas exóticas en Uruguay: situación, problemática y gestión. Pp. 351-361. In: Menafra, R., Rodríguez-Gallego, L., Scarabino, F. & Conde, D. (Eds.). Bases para la conservación y manejo de la costa uruguaya. Vida Silvestre, Montevideo, Uruguay, 668 p. Brugnoli, E., Muniz ,P., Venturini, N. & Burone, L. 2007. Environmental Perturbation and Coastal Benthic Biodiversity in Uruguay. Pp. 75-126. In: Willis, I. C. (Ed.). Progress in Environmental Research. Nova Publishers, New York, 309 p. Carranza, A. & Rodríguez, M. 2007. On the benthic mollusk of Banco Inglés (Río de la Plata). Animal, Biodiversity and Conservation, 30: 161-168. Carranza, A., Scarabino, F. & Ortega, L. 2007. Distribution of Large Benthic Gastropods in the Uruguayan Continental Shelf and Río de la Plata Estuary. Journal of Coast Research, 24(1A): 161-168. Carlton, J. 1999. Molluscan invasions in marine and estuarine communities. Malacología, 41: 439454. Chung, E. Y., Kim, S. Y. & Kim, Y. G. 1993. Reproductive ecology of the purple shell Rapana venosa (Gastropoda: Muricidae), with special reference to the reproductive cycle, depositions of egg capsules and hatchings of larvae. Korean Journal of Malacology, 9: 115. Cortelezzi, A., Rodrígues-Capitulo, A., Boccardi, L. & Arocena, R. 2007. Benthic assemblages of Pan-American Journal of Aquatic Sciences (2009), 4(2): 216-221 A. LANFRANCONI ET AL. 220 a temperate estuarine system in South America: Transition from a freshwater to an estuarine zone. Journal of Marine Systems, 68: 569-580. de Poorter, M. 1999 Borrador de Guías para la prevención de pérdidas de diversidad biológica ocasionadas por invasión biológica. Cuarta Reunión del Órgano Subsidiario de Asesoramiento Científico, Técnico y Tecnológico. Documento de Base. Unión Internacional para la Naturaleza. 15 p. Drapkin, E. 1963. Effect of Rapana bezoar Linné (Mollusca, Muricade) on the Black Sea fauna. Doklady Akademii Nauk SRR, 151: 700703. Framiñan, M. B., Etala, M. P., Acha, E. M., Guerrero, R. A., Lasta, C. A. & Brown, O. B. 1999. Physical characteristics and processes of the Rio de la Plata estuary. Pp. 161-194. In: Perillo, G. M. E., Piccolo, M. C. & PinoQuivira, M. (Eds.). Estuaries of South America: their geomorphology and dynamics. Springer, Berlin, 223 p. Giberto, D. A., Bremec, C. S., Schejter, L., Schiariti A., Mianzan, H. & Acha E. 2006. The invasive Rapa Whelk Rapana venosa (Valenciennes, 1846): status and potentialecological impacts in the Río de la Plata estuary, Argentina-Uruguay. Journal of Shellfish Research, 25: 919-924. Harding, H. M., Mann, R. & Kilduff, C. W. 2007a. The effects of female size on fecundity in a large marine gastropod Rapana venosa (Muricidae). Journal of Shellfish Research, 26: 33-42. Harding, J. M., Kingsley-Smith, P., Savini, D. & Mann, R. 2007b. Comparison of predation signatures left by Atlantic oyster drills (Urosalpinx cinerea Say, Muricidae) and veined rapa whelks (Rapana venosa Valenciennes, Muricidae) in bivalve prey. Journal of Experimental Marine Biology and Ecology, 352: 1-11. ICES (International Council for the Exploration of the Sea). 2004. Alien Species Alert: Rapana venosa (veined whelk). Mann, R., Occhipinti, A. & Harding, J. M. (Eds.). ICES Cooperative Research Report N° 264 , 14p. Mann, R. & Harding, J. M. 2000. Invasion of the North American Atlantic coast by a large predatory Asian mollusc. Biological Invasions, 2: 7-22. Mann, R., Harding, J. M. & Wesctcott, E. 2006. Occurrence of imposex and seasonal patterns of gametogenesis in the invading veined rapa whelk Rapana venosa from Chesapeake Bay, USA. Marine Ecology Progress Series, 310: 129-138. Muniz, P., Clemente, J. & Brugnoli, E. 2005. Benthic invasive pests in Uruguay: a new problem or an old one recently perceived? Marine Pollution Bulletin, 50: 1014-1018. Orensanz, J. M., Schwindt, E., Pastorino, G., Bortolus, A., Casas G., Darrigran, G., Elías, R., López Gappa J. J., Obenat, S., Pascual, M., Penchaszadeh, P., Piriz, M. L., Scarabino, F., Spivak, E. D. & Vallarino, E. A. 2002. No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic. Biological Invasions, 4: 115-143. Pastorino, G., Penchaszadeh, P. E., Schejter, L. & Bremec, C. 2000. Rapana venosa (Valenciennes, 1846) (Mollusca: Muricidae): a new gastropod in south Atlantic waters. Journal of Shellfish Research, 19: 897-899. Riestra, G. & Defeo, O. 1994. Aspectos de la dinámica poblacional y estructura de la comunidad del mejillón Mytilus edulis platensis en la Costa Atlántica Uruguaya. Comunicaciones de la Sociedad Malacológica Uruguaya, 7: 345-356. Rios, E. 1994. Seashells of Brazil. Editora da FURG, Rio Grande, 368 p. Savini, D., Harding, J. M., & Mann, R. 2002. Rapa whelk Rapana venosa (Valenciennes, 1846) predation rates on hard clams Mercenaria mercenaria (Linnaus, 1758). Journal of Shellfish Research, 21: 777-779. Savini, D., Castellazi, M., Favruzzo, M. & Occhipinti-Ambrogi, A. 2004. The alien mollusc Rapana venosa (Valenciennes 1846; Gastropoda, Muricidae) in the northern Adriatic Sea: population structure and shell morphology. Chemistry and Ecology 20: 411-424. Scarabino, F., Menafra, R. & Etchegaray, P. 1999. Presencia de Rapana venosa (Valenciennes, 1846) (Gastropoda: Muricidae) en el Río de la Plata. Boletín de la Sociedad Zoológica de Uruguay (Segunda Época), 11: 40. Schwindt, E. 2001. Impacto de un poliqueto exótico y formador de arrecifes. Pp. 109-113. In: Iribarne, O. (Ed.). Reserva de la Biosfera Mar Chiquita: Características físicas y ecológicas. Editorial Martín, Mar del Plata, 320 p. Silva, J. S. & Souza, R. C. 2004. Água de lastro e bioinvasão. Pp. 1-10. In: Silva, J. S. & Pan-American Journal of Aquatic Sciences (2009), 4(2): 216-221 New record of the alien mollusc Rapana venosa in the Uruguayan coastal zone of Río de la Plata Souza, R. C. (Eds.). Agua de lastro e bioinvasão, Interciencia, Río de Janeiro, 224p. Tsi, C. Y., Ma, X. T., Lou, Z. K. & Zhang, F. S. 1983. Illustrations of the fauna of China 221 (Mollusca). Science Press, Beijing, 2: 1-150. Zolotarev, V. 1996. The Black Sea ecosystem changes related to the introduction of new mollusks species. P.S.Z.N.I: Marine Ecology, 17: 227-236. Received January 2009 Accepted May 2009 Published online June 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 216-221 Biofouling of the golden mussel Limnoperna fortunei (Dunker, 1857) over the Anomura crab Aegla platensis Schmitt, 1942. MICHELLE N. LOPES*; JOÃO P. VIEIRA & MARCELO D. M. BURNS Universidade Federal do Rio Grande, Instituto de Oceanografia, Laboratório de Ictiologia, CP 474, Rio Grande, RS, Brazil. Phone: +55-53 3233 6539; FAX: +55-53 3233 6602. *Email: michellebiors@yahoo.com.br Abstract .This note reports the first occurrence of golden mussel Limnoperna fortunei (Dunker, 1857) colonizing (biofouling) the surface body of the anomuran crab Aegla platensis Schmitt, 1942 on the São Gonçalo channel, Mirim Lagoon, Brazil. One live individual of A. platensis (25.5 mm tail to head; 2.8 g) was colleted at São Gonçalo channel carrying 62 individuals (30.4 g) of L. fortunei, with total length ranging from 7 to 23 mm. The total weight recorded for the crab was 10 times lower than the total weight of the bivalves incrusted, which suggest that this could be a new factor affecting the preservation of this endemic South America crab that is already in a vulnerable state of conservation in the Rio Grande do Sul, state. Like A. platensis, other benthic invertebrates could be also negatively affected by L. fortunei, and further investigation is currently needed to assess the potential ecological negative effects on the local biodiversity. Key-words: Biodiversity, biofouling, Limnoperna fortunei, South America. Resumo. Bioincrustação de mexilhão dourado Limnoperna fortunei (Dunker, 1857) sobre o caranguejo Anomura Aegla platensis Schmitt, 1942. Esta nota relata a primeira ocorrência da colonização de mexilhão dourado Limnoperna fortunei (Dunker, 1857) sobre a superfície do corpo (biofouling) do crustáceo Anomura Aegla platensis Schmitt, 1942 no canal São Gonçalo, Lagoa Mirim, RS, Brasil. Um exemplar vivo de A. platensis (25,5 milímetros de comprimento total; 2,8 g de peso) foi coletado no Canal São Gonçalo com 62 indivíduos de L. fortunei (30,4 g) fixados sobre sua carapaça, com comprimento total variando de 7 a 23 mm. O peso total registrado para o crustáceo foi aproximadamente 10 vezes menor do que o peso total dos bivalves incrustados, o que sugere que este fator seria um novo agravante ao estado de conservação destes crustáceos, endêmicos da América do Sul, que já se encontram em estado vulnerável de conservação na região do Rio Grande do Sul. Assim como A. platensis, outros invertebrados bentônicos podem estar sendo ameaçados pelo L. fortunei, sugerindo a necessidade de futuras investigações sobre bioincrustação no sistema. Palavras-chave: Biodiversidade, bioincrustação; Limnoperna fortunei, América do Sul. Although species distribution changes naturally over time, human activities greatly increase the rate and the spatial scale of these changes by accidentally or deliberately moving organisms across the world (Ricciardi & MacIsaac 2000). The introduction of invasive species threatens native biodiversity, ecosystem functioning, animal and plant health, and human economies. Limnoperna fortunei (Dunker 1857), the Asian golden mussel, is an invasive freshwater species that shares several features with the zebra mussel Dreissena polymorpha (Pallas 1771), arguably the most influential animal to ever invade North American fresh waters (Thorp et al. 1998). Both have filter-feeding habits, are epifaunal and attach to hard substrates by means of a byssus and have fast growth rates (Boltovskoy & Cataldo 1999, Boltovskoy et al. 2006, Karatayev et al. 2007a). Its veliger larvae allows a quick dispersal through several mechanisms including water currents, animal and ship transport (ballast waters), and fishing activities (Morton 1977, Garcia & Protogino 2005), although the attachment to vessels is by far the most important dispersion mechanism of golden mussel Pan-American Journal of Aquatic Sciences (2009), 4(2): 222-225 Biofouling of the golden mussel Limnoperna fortunei over the Anomura crab Aegla platensis (Boltovskoy et al. 2006, Karatayev et al. 2007b). The golden mussel was first found in South America in the coast of Río de la Plata, Buenos Aires province (Pastorino et al. 1993). Its occurrence has been reported in the main hydrologic systems of the region: coastal zones of Río de la Plata (Darrigran et al. 1998), Paraguay, Paraná, Salado and Uruguay Rivers (Darrigran & Ezcurra de Drago 2000, Darrigran 2002). It was first recorded in Patos Lagoon in 1999 by Mansur et al. (1999, 2003) and in 2005 was found at the adjacent Mirim Lagoon, probably through a dispersion via the São Gonçalo channel that connects both lagoons (Langone 2005, Burns et al. 2006a, 2006b). The combination of early sexual maturity, high fecundity, semelparity and wide environmental tolerance probably allow L. fortunei to be a successful invader into new environments. The high densities of golden mussel and their fixation to the substrate by its byssal threads result in the formation of a new continuous microenvironment, which provide a new substrate by some epifaunal species and, at the same time, can lead to the displacement of other organisms (Darrigran 2002). Colonization is not restricted to man-made structures, such as revetments, piers, rock armors, gabions, boat hulls and others, since the golden mussel also settles on biogenic material such as debris, driftwood, reed roots (Boltovskoy et al. 2006). Among the potential impacts associated with the presence of this invasive bivalve, the rapid change produced in benthic communities should be noted. Since its invasion of the Plata Basin, L. fortunei has modified the natural occurrence and abundance of several native macroinvertebrates species (Martin & Darrigran 1994, Darrigran et al. 1998). In the area of Guaíba lake at Patos Lagoon system, Mansur et al. (2003) reported that the golden mussel attaches to at least 6 species of mollusks in numbers up to ca. 300 individuals per host. In several cases this overgrowth may hinder the host’s normal displacement and valve mobility. Darrigran et al. (2002), in Argentina, also reported the settlement of the golden mussel on other bivalve species, as well as in the anomuran crab Aegla platensis Schmitt, 1942. The present paper reports the first occurrence of L. fortunei colonizing the surface body of A. platensis in the São Gonçalo channel. Bottom trawl sampling was carry out in São Gonçalo channel in waters 3 to 6 m deep (Fig. 1) on June 13th, 2008. Sampling was conducted using a fishermen wood boat (10.9 m long, with a 60 Hp motor). Five minutes sample (approximately 400 m beginning at 32º7’40.86” S; 52º36’41.91”) were 223 performed using an 10.5 m (head rope) shrimp trawl (1.3 cm bar mesh wings and body with a 0.5 cm bar mesh cod end liner, and a pair of weighted outer doors. Figure 1. Mirim Lagoon and its drainage basin (62.250 Km2), showing the São Gonçalo channel that connecting it with the Patos Lagoon. The red dot represent the location (32º7’40.86” S; 52º36’41.91” O) where A. platensis was collected. Modified from Machado (2007). One live individual of A. platensis (25.5 mm tail to head; 2.8 g) was colleted carrying 62 individuals (30.4 g) of L. fortunei, with total length (TL) ranging from 7 to 23 mm (Fig. 2). In addition to the golden mussel, 28 live gastropods (Heleobia spp.) were also observed trapped into the byssus net. Figure 2. Specimen collected, showing the fouling of L. fortunei on A. platensis. Comparing the size ranges of the golden mussels with those reported on the literature (Magara et al. 2001, Maroñas et al. 2003) it is possible to suggest that the majority of the golden Pan-American Journal of Aquatic Sciences (2009), 4(2): 222-225 M. N. LOPES ET AL. 224 mussel individuals found attached to A. platensis can be considered adults with more than 2 years (>17mm TL; Fig. 3), suggesting that the colonization started long time before the sampling date. The total weight recorded for the crab (2.8 g) was 10 times lower than the total weight of the bivalves incrusted (30.4 g), which could suggest that this infested crab would have more difficulties in finding shelter and/or avoiding predation and increased rates of energy consumption. Figure 3. Size range of L. fortunei observed at A. platensis. The aeglids are a peculiar group of crustaceans because they are the only Anomura that occurs on fresh waters. They are endemic to South America and occur in streams, rivers, lakes and currents. They show nocturnal activity and sheltered under rocks, leaf litter and plant debris during the day. They are vulnerable to changes on their habitat, and they are under serious risks to become extinct even before they had been properly studied (BondBuckup & Buckup 1994). Thus, the macrofouling of L. fortunei on A. platensis on São Gonçalo Channel reported here could be another potential factor leading to the population decline of this crab, which is already in a vulnerable conservation state (BondBuckup & Buckup 1994). Like A. platensis, other benthic invertebrates could be also negatively affected by L. fortunei. Further investigation is currently needed to assess the current finding and its potential ecological negative effects on the local biodiversity, including eventual indirect effects in the community structure and local food webs. References Boltovskoy, D. & Cataldo, D. 1999. Population dynamics of Limnoperna fortunei, an invasive fouling mollusc, in the lower Paraná river (Argentina). Biofouling 14:255–263. Boltovskoy, D., Correa, N., Cataldo, D. & Sylvester, F. 2006. Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biological Invasions 8:947–963. Bond-Buckup, G. & Buckup, L. 1994. A família Aeglidae (Crustacea, Decapoda, Anomura). Arquivos de Zoologia, São Paulo 32(4):159346. Burns, M.D.M., Geraldi, R.M., Garcia, A.M., Benvenuti, C.E., Capitoli, R.R. & Vieira, J.P. 2006a. Primeiro registro de ocorrência do mexilhão dourado Limnoperma fortunei (Dunker 1857) na bacia de drenagem da Lagoa Mirim, RS, Brasil. Biociências 14(1):83-84. Burns, M.D.M., Garcia, A.M., Bemvenuti, M.A., Vieira, J.P., Marques, D.M.L.M., Moresco, A. & Condini, M.V.L. 2006b. Bivalvia, Mytilidae, Limnoperna fortunei: distribution extension. Check list (UNESP) 2:41-43. Darrigran, G. & Ezcurra de Drago, I. 2000. Invasion of the exotic freshwater mussel Limnoperna fortunei (Dunker 1857) (Bivalvia: Mytilidae) in South America. The Nautilus 114:69–73. Darrigran, G., Martín, S.M., Gullo, B. & Armendáriz, L. 1998. Macroinvertebrates associated with Limnoperna fortunei (Dunker 1857) (Bivalvia: Mytilidae) in Río de la Plata, Argentina. Hydrobiologia 367:223–230. Darrigran, G. 2002. Potential impact of filterfeeding invaders on temperate inland freshwater environments. Biological Invasions 4:145– 156. García, M.L. & Protogino, L.C. 2005. Invasive freshwater mollusks are consumed by native fishes in South America. Journal of Applied Ichthyology 21:34–38. Karatayev, A.Y., Boltovskoy, D., Padilla, D.K., & Burlakova, L.E. 2007a. The Invasive Bivalves Dreissena polymorpha and Limnoperna fortunei: Parallels, Contrasts, Potential Spread and Invasion Impacts. Journal of Shellfish Research, Vol. 26, No. 1, 205–213. Karatayev, A.Y., Padilla, D.K., Minchim, D., Boltovskoy, D. & Burlakova, L.E. 2007b. Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Pan-American Journal of Aquatic Sciences (2009), 4(2): 222-225 Biofouling of the golden mussel Limnoperna fortunei over the Anomura crab Aegla platensis Biological Invasions 9:161–180 Langone, J.A. 2005. Notas sobre el mejillón dorado Limnoperna fortunei (Dunker, 1857) (Bivalvia, Mytilidae) en Uruguay. Publicación Extra del Museo Nacional de Historia Natural y Antropología (Montev., en línea) [núm. 1]. Machado, G. 2007. Demanda e disponibilidade hídrica no sistema Lagoa Mirim- São Gonçalo- Rio Grande do Sul. Revista Discente Expressões Geográficas. Florianópolis–SC 03:61-82. Magara, Y., Matsui, Y., Gotto, Y. & Yuasa, A. 2001. Invasion of the non-indigenous nuisance mussel, Limnoperna fortunei, into water supply facilities in Japan. Journal of Water Supply: Research and Technology – AQUA (50) 3:113-124. Mansur, M.C., Valer, R.M. & Aires, N. 1999. Limnoperna fortunei (Dunker 1857) molusco bivalve invasor na bacia do Guaíba, Río Grande do Sul, Brasil. Biociencias, Porto Alegre 7:147–149. Mansur, M.C., Pinheiro dos Santos, C., Darrigran, G., Hydrich, I., Calli, C. & Rossoni Cardoso, F. 2003. Primeros dados quali-quantitativos do mexilhãodourado, Limnoperna fortunei (Dunker), no Delta do Jacuí, no Lago Guaíba e na Laguna dos Patos, Río Grande do Sul, Brasil e alguns aspectos de sua invasão no novo ambiente. Revista Brasileira de 225 Zoologia 20:75–84. Maroñas, M.E., Darrigran, G.A, Sendra, E.D.& Breckon G. 2003. Shell growth of the golden mussel, Limnoperna fortunei (Dunker, 1857) (Mytilidae), in the Río de la Plata, Argentina. Hydrobiologia 495: 41–45. Martin, S.M. & Darrigran, G.A. 1994. Limnoperna fortunei (Dunker, 1857) en el Balneario Bagliardi, Río de la Plata. Alteración en la composición de la malacofauna litoral. Tankay 1:161–166. Morton, B. 1977. The populations dynamics of Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilacea) in Plover Cove reservoir, Hong Kong. Malacologia 16:165182. Pastorino, G., Darrigran, G., Martin, S. & Lunaschi, G. 1993. Limnoperna fortunei (Dunker 1857) (Mytilidae), nuevo bivalvo invasor en aguas del Río de la Plata. Neotrópica 39:34. Ricciardi, A. & MacIsaac, H.J. 2000. Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends in Ecology & Evolution 15:62–65. Thorp, J.H., Alexander, J., Bukaveckas, Jr. B., Cobbs, G. & Bresko, K. 1998. Responses of Ohio River and Lake Erie dreissenid mollusc populations to changes in temperature and turbidity. Canadian Journal of Fisheries and Aquatic Sciences 55:220–229. Received March 2009 Accepted April 2009 Published online June 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 222-225 Zooplankton (Cladocera and Rotifera) variations along a horizontal salinity gradient and during two seasons (dry and rainy) in a tropical inverse estuary (Northeast Brazil) ANA M. A. SILVA1*, JOSÉ E. L. BARBOSA1, PAULO R. MEDEIROS2, RENATO M. ROCHA3, MILTON A. LUCENA-FILHO3 & DIÓGENES F. SILVA3 1 Departamento de Biologia, Universidade Estadual da Paraíba (UEPB), Av. das Bananeiras, 351, CEP 58109-753, Campina Grande, PB, Brazil. *ana.maria.bio@gmail.com 2 Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba (UFPB), Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil ³Laboratório de Ecologia do Semi-Árido (LABESA), Universidade Federal do Rio Grande do Norte (UFRN), R. José Evaristo, CEP 59300-000, Caicó, RN, Brazil. Abstract. The present study investigated the influence of environmental variables on the spatial and temporal composition of the most abundant zooplankton groups (Cladocera and Rotifera) in a tropical inverse estuary located in a salt pond-dominated area. Zooplankton and twelve environmental variables were sampled at nine permanent stations throughout a two-year period (Sep 2005 to Sep 2007). A total of nineteen species, mostly freshwater dwellers, was detected throughout the study and ten species accounted for 97% of all individuals. Mean species richness and abundance were significantly higher at the uppermost stations, but only during the rainy seasons, when salinity drastically decreased due to freshwater input. According to multiple regression and canonical correspondence analyses salinity, nutrients, pluviometry, pH, Chlorophyll-a and transparency were the most important predictors of zooplankton community structure. The low community diversity and strong dominance of the pollution-tolerant Brachionus genus (80% of all individuals) support the idea that only plastic species are able to cope with harsh spatial and seasonal variations such as the ones observed during our observations in the estuary. Key words: Brazil, community, estuary, salinity gradient, zooplankton. Resumo. Variações do zooplâncton (Cladocera e Rotifera) ao longo de um gradiente horizintal de salinidade e durante duas estações (seca e chuvosa) em um estuário tropical inverso (Nordeste do Brasil). O presente estudo avaliou a influência de variáveis ambientais na composição espacial e temporal dos grupos zooplanctônicos mais abundantes (Cladocera e Rotifera) em um estuário tropical inverso localizado numa área dominada por salinas. O zooplâncton e doze variáveis ambientais foram amostrados em nove pontos permanentes ao longo de um período de dois anos (Set 2005 a Set 2007). Um total de dezenove espécies, a maioria habitante da água doce, foi observado durante o estudo e dez espécies representaram 97% de todos os indivíduos. As médias de riqueza de espécies e abundância foram significativamente maiores nos pontos superiores próximos à margem do rio, mas somente durante os períodos chuvosos, quando a salinidade reduziu-se drasticamente devido ao influxo de água doce. De acordo com as análises de regressão múltipla e correspondência canônica, salinidade, nutrientes, pluviometria, pH, Clorofila-a e transparência foram os mais importantes preditores da estrutura da comunidade do zooplâncton. A baixa diversidade de comunidade e forte dominância do gênero Brachionus, tolerantes a poluição (80% de todos os indivíduos), suporta a idéia de que somente espécies plásticas são capazes de suportar variações espaciais e sazonais adversas como as observadas durante as nossas observações no estuário. Palavras-chave: Brasil, comunidade, estuário, gradiente de salinidade, zooplâncton. Pan-American Journal of Aquatic Sciences (2009), 4(2): 226-238 Zooplankton variation in a tropical inverse estuary (Northeast Brazil) Introduction Brackish waters of typical estuarine systems are the result of a mixture in freshwater and salt water inputs (Remane & Schlieper 1971, McLusky & Elliott 2004). Thus, one expects to find a horizontal gradient of salt concentration in these estuaries, with freshwater nearby the river border and salinity increasing seawards to reach typical oceanic levels. However, some estuaries show the opposite pattern, with a horizontal gradient of salt concentration increasing upstream (Hammer 1986, Simier et al. 2004). Salinity is amongst the most important environmental factors with the potential to significantly influence estuarine communities (Savenije 2006). Therefore, fluctuations in salinity and other environmental factors (e.g. temperature, pH, nutrients and pigments) on both spatial and seasonal scales, play major ecological roles promptly controlling the composition and distribution of estuarine species (Prado-Por & Lansac-Tôha 1984, Lansac-Tôha & Lima 1993). This is true, given that only select species are able to cope with major environmental shifts (Hammer 1993). The Mossoró River Estuary (MRE) is a 24 km inverse system in which salinity decreases from the river border towards the sea, with salt concentrations varying between saline and brackish. Located in a semi-arid region, the high daily evaporation rates (~1 cm/m³), low annual rainfall and consequently low river outflow, are responsible for this inverse pattern. Although inverse estuaries are often considered a synonym for hypersaline estuaries, in some cases such as in the MRE, salt concentrations rarely exceed 50 g/l, which is stated by Hammer (1986) as the minimum concentration for a water body to be classified as hypersaline (see McLusky & Elliott 2004, Simier et al. 2004). The salt industry has been exploiting the MRE for over 300 years and nowadays over 25 ponds for salt extraction are permanently located along the estuary’s margin. The gross annual salt production is approximately 2,400,000 tons and the Rio Grande do Norte State (RN) is responsible for up to 90% of Brazil’s salt production, with the highest contribution coming from the MRE. As a consequence of the long history of unregulated exploitation, mangrove forests have been submitted to high levels of impact, currently covering a substantially smaller area relative to the original. Atypical environments like the MRE encompass a very small portion of the inland aquatic environments of the world (Sassi 1991, Hammer 1993), but are of high scientific and economic 227 interest because of their uniqueness (Hammer 1986, McLusky & Elliott 2004) and income prospective (Coetzee et al. 1996, Lamberth & Turpie 2003). Despite the importance of inverse estuaries, many ecological processes which take place therein are still poorly known, and need more thorough investigations, especially at the community-level (Hammer 1986, Sassi 1991, Neumann-Leitão et al. 1992, Bos et al. 1996, Williams 1998, Derry et al. 2003). Furthermore, areas which are subject to high degradation due to human activities are particularly important since species composition can be altered throughout the years (Matsumura-Tundisi & Tundisi 2003). The present study aimed at evaluating zooplankton community composition spatially (along a salinity gradient) and temporally (encompassing dry and rainy seasons). We focused on Cladocera and Rotifera zooplankton provided those constitute the more diverse and abundant metazooplankton groups in the study area. It was hypothesized that salinity acts as a restraining force on species abundance, whereas freshwater input (and its associated nutrients) has a positive effect on the community. Material and methods Study area. The study was carried out at the Mossoró River Estuary (MRE), located in a floodplain with an area of 14,276 km² in Rio Grande do Norte (RN) state, northeastern coast of Brazil (Fig. 1). The inlet extends for about 24 km from the lower reach (salinity: ~ 10), nearby the South Atlantic Ocean, to the uppermost portion (~ 28), delimited by the river border, yet still influenced by tidal fluctuation. Salinity increases, however, from the lower reach of the estuary towards the sea and typical marine regimes are observed in the ocean. It has a maximum depth of 10 m with an average of 6 m. The region is under semi-arid climatic influence, typically receiving low, yet concentrated annual rainfall (rainy season between Feb and Jun). The Caatinga, vegetation region dominated by xeric shrublands and thorn forests, encloses most of the area, albeit Restinga and Atlantic Forest areas are also present. In addition, the estuary is under the influence of constant winds (> 7 km/h during ~ 75% of the year) and high water temperatures (~ 29ºC) yearlong. Sampling design.Monthly samples were collected during two consecutive years (Sep-05 to Sep-07) at 9 permanent sampling stations following a horizontal gradient (~ 24 km) (Fig. 1). Throughout the study span, 225 samples were collected during the day (between 0800 and 1600) and at high tides Pan-American Journal of Aquatic Sciences (2009), 4(2): 226-238 228 (for standarrdizing samppling). Althoough the verrtical were profile waas not invvestigated, samplings s A. M. A. A SILVA ET AL. standardized andd collected w within the firsst 2 m of thee wateer column. Figure 1. Mossoró M Riverr Estuary andd associated zones. z Samplling stations indicated by numbers and d direction off increasing saalinity gradiennt indicated byy arrows. Insett: location of the t study areaa in the Northeeastern coast of o Brazil. Zoooplankton was w collectedd using a 600 µm mesh size plankton p net of 25 cm mouth diameteer by filtering 700 l of water at each sampling s staation. Volume filtered was estimated e byy calculatingg the horizontal tow t distancee with regardds to diametter of mouth apertture area. Thhe collected individuals were preserved inn 5% formalldehyde satuurated with sugar s (Haney andd Hall 19733). Three alliquots (1 ml m of volume eaach) were taken from m each sam mple (between 800 and 140 ml m of volume) and counteed on a Sedgwickk-Rafter cham mber. If an aliquot hadd less than 100 inndividuals annother one was w examinedd and the resultss combinedd. The meean numberr of each individuals of the threee aliquots represented r sample. Quualitative and a quantitaative data were calculated simultaneous s sly. Twelve environmeental variaables weree asseessed at the same statioons as the zooplankton. z . Tran nsparency (Secchi diskk), temperatture (digitall therm mometer), salinity (Fisher portablee refraactometer) and a pH (Hannna portablee membranee pHm meter) were measured inn situ. Dissollved oxygenn was measuredd followingg Winkler``s method.. Nutrrients conceentrations ((ammonia NH N 3, nitritee NO2, nitrate NO3 andd total phosphorous) p ) weree estimatedd accordingg to the proceduress desccribed by Rodier R (19775), Mackeereth et al. (197 78) and APHA A (19955). Chlorop phyll-a andd Pheo ophytin concentrationns were determinedd specctrophotomettrically baseed on the proceduress desccribed in AP PHA (1995). Pluviometriic rates weree prov vided by LA ABESA (Laaboratory off Semi-Aridd Pan-Americaan Journal of Aquatic A Sciennces (2009), 4(2): 226-238 Zooplankton variation in a tropical inverse estuary (Northeast Brazil) Ecology) at the margin of estuary nearby each sampling station. Ecological indices and data analysis. Species richness was expressed as the total number of species in each sample. Additionally, log-based Shannon`s index (H’) was calculated using Primer 5 software as a measure of community diversity (see Krebs 1989). Since data departed from normality, spatial and seasonal variations were evaluated by performing, respectively, non-parametric rank-based Kruskal-Wallis one-way ANOVA and Friedman ANOVA tests on Statistica 7 software (Sokal & Rohlf 1995). All comparisons and correlations (below) were considered significant when p values were < 0.05. Stepwise multiple-regression analyses (MRA) were made using Statistica 7 to determine the proportion of variance in zooplankton numbers which could be attributed to environmental data (Sokal & Rohlf 1995). In the regression models, zooplankton abundances, richness and diversity (separated by season) were entered as dependent variables, and the environmental variables as predictors of their variance. Data from rare species (i.e., those which contributed < 1% of total abundance) were excluded from the individual species correlations, but contributed to total richness, diversity and abundance. Prior to the analyses, data was log-transformed (base 10) and linearity between variables and multicolinearity between independent variables were tested (Sokal & Rohlf 1995), but data proved to be non-linear. In addition to the MRA, a canonical correspondence analysis (CCA) was performed with log-transformed data (natural) using CANOCO 4.5 software (ter Braak & Smilauer 1998). For this test, all species were included, but the downweighting of rare species option was employed. The Monte-Carlo randomization test (499 permutations under the reduced model) was performed to assess the probability of the observed pattern being due to chance (see ter Braak 1986). Results Environmental characterization. No significant spatial variation was observed for pluviometry (Fig. 2), but significant seasonal variation was detected (Fig. 3). Salinity values increased significantly upstream (between stations 1 and 9) (Fig. 2) and were significantly lower during the rainy seasons (Fig. 3). Water temperature also 229 increased significantly upstream (Fig. 2), with a trend towards higher values during the second rainy season (Fig. 3). No significant spatial differences were observed for pH values (Fig. 2), but lower values were observed during the second rainy season (Fig. 3). Water transparency values decreased significantly upstream (Fig. 2) and showed significant seasonal variation (Fig. 3). Although spatial and seasonal differences were detected for oxygen, no clear spatial patterns were observed and a small trend towards higher values during the dry season was detected (Figs. 2 and 3). No spatial variation was detected for any of the nutrients (Fig. 2). Between seasons, higher values of NO2, NO3 and total phosphorous were observed during the rainy seasons (Fig. 3). Chlorophyll-a and Pheophytin values significantly increased upstream (Fig. 2) and a significant trend towards higher values during the first rainy season was observed (Fig. 3). Species composition and distribution. A total of 157,464 individuals belonging to 16 rotifer species (Anuraeopsis fissa (Gosse), Brachionus angularis (Gosse), Brachionus calyciflorus Pallas, Brachionus caudatus Barrois & Daday, Brachionus falcatus Zacharias, Brachionus leydigi (Rousselet), Brachionus patulus (Müller), Brachionus plicatilis Müller, Brachionus urceolaris (Müller), Epiphanes macrourus (Barrois & Daday), Filinia longiseta (Ehrenberg), Filinia opoliensis (Zacharias), Hexarthra mira (Hudson), Keratella tropica (Apstein), Keratella valga (Ehrenberg) and Polyarthra vulgaris Ehrenberg) and 3 cladoceran species (Ceriodaphnia cornuta (Sars), Diaphanosoma spinulosum Herbst and Moina minuta Hansen) were collected throughout the study span. The ten most abundant species, which accounted for 97% of all collected individuals, were (mean ind.l-1; relative abundance): B. urceolaris (245.7; 35.1%), B. plicatilis (146.5; 20.9%), B. calyciflorus (79.2; 11.3%), B. leydigi (73.9; 10.6%), C. cornuta (47.2; 6.7%), E. macrourus (40.4; 5.7%), H. mira (12.6; 1.8%), K. tropica (12.4; 1.8%), F. opoliensis (10.1; 1.4%) and B. falcatus (8.6; 1.2%). Each of the remaining nine species contributed to less than 1% of all collected individuals. Species richness significantly increased upstream (Fig. 4) and community diversity (Shannon’s index) showed a similar significant pattern, albeit less marked (Fig. 4). Significant seasonal fluctuations were observed for species richness and diversity, which showed higher values especially during the second rainy season (Fig. 4). Pan-American Journal of Aquatic Sciences (2009), 4(2): 226-238 230 A. M. A. A SILVA ET AL. Figure 2. Mean M values (± ± SE) of montthly records of o environmen ntal variables sampled duriing the 2-yearrs observationn period at 9 permanent p stattions at the Mossoró M Riverr Estuary. SE variations specify the temp mporal variancees of the dataa within each sampling stattion. KW ANO OVA results of comparisons among staations indicateed: *significan nt at p < 0.055 and **signifi ficant at p < 0.001. Ressults of spatiaal distributioon of the ten most abundant species reevealed som mewhat sim milar w significcant spatiall differences in patterns, with the densityy of five sppecies, whichh showed peaks p of abundaances betw ween statioons 6 andd 9 (Fig. 5). Allso, all speciies showed highly h signifficant seasonal vaariation in abundance a w with clear peaks p during the rainy seasoons, particullarly the seecond one. Zoooplankton-eenvironmenttal variaables associationns. Predictorrs of zooplannkton commuunity weree fairly diffeerent betweenn the two seaasons (Tablee I). According A to the regresssion modells, the mostt impo ortant variaables responnsible for zooplanktonn variaance were pH, water temperaturee, NO2 andd Chlo orophyll-a during d the dry seasonss, and totall phossphorous, waater transparrency, NO3, salinity andd pH during d the raainy seasons. For the canonical ccorresponden nce analysis,, the Monte-Carllo test waas significan nt (test off sign nificance of all canonicaal axes: tracce: 0.65; F-ratio o: 3.58; p < 0.01). Cum mulatively, ax xes 1 and 2 Pan-Americaan Journal of Aquatic A Sciennces (2009), 4(2): 226-238 Zooplanktonn variation in a tropical inveerse estuary (N Northeast Brazzil) accounted for 63.9% of the total variance, with zooplanktonn-environmeental variablees correlationns of 0.77 (Axis 1) and 0.53 (Axis 2). Within W the biiplot, two generall, somewhat divergent, groups g of species were distincct. The first group compprised 14 species whicch correlatted positiveely with phossphorous, NH H3, water teemperature, a, or o pluviomettry; the secoond group speccies which correlated positively transsparency or salinity s (Fig.. 6). 231 NO3, totall ChlorophyllC comprised c 5 with waterr Figure 3. Ennvironmental variables (± SE) S sampled throughout t a 2-year 2 periodd at the Mossooró River Estu uary averagedd for the 9 staations. SE varriations speciffy the spatial variances off the data witthin each sam mpled month. Shaded areass indicate the rainy seasonss. Friedman ANOVA A resuults of comparrisons among months indiccated: **signiificant at p < 0.001. Pan-Americcan Journal off Aquatic Scieences (2009), 4(2): 4 226-2388 232 A. M. A. A SILVA ET AL. Figure 4. Mean M values (± ± SE) of twoo ecological indices (richness and Shannnon’s index of diversity) sampled at 9 permanent sttations reflectiing an increassing salinity gradient g (left panel), p and thrroughout a 2-year period (rright panel) att the Mossoró River Estuaryy. SE variatioons specify thee temporal vaariances of thee data within eeach sampling g station (left)) and the spatiial variances of o the data within each sam mpled month (right). Shadeed areas indiccate the rainy seasons. KW W ANOVA andd Friedman ANOVA A resultts of comparissons spatially and temporallly, respectiveely, indicated: **significantt at p < 0.001. Figure 5. Mean M densities (± SE) of tenn zooplanktonn species sam mpled at 9 perm manent statioons reflecting an increasingg salinity gradient (left paneels), and throuughout a 2-yeear period (rig ght panels) att the Mossoróó River Estuarry. Data from m rare species (i.e. those whhich contribuuted to less thhan 1% of tottal abundancee) were excludded from the analyses. SE E variations sppecify the tempporal variancees of the data within each sampling s statiion (left) and the spatial vaariances of thee data within each e sampled month (right)). Shaded areaas indicate thee rainy seasonns. KW ANOV VA and Friedm man ANOVA A results of com mparisons spaatially and tem mporally, respectively, indiccated: *signifi ficant at p < 0..05 and **sign nificant at p < 0.001. Pan-Americaan Journal of Aquatic A Sciennces (2009), 4(2): 226-238 Zooplankton variation in a tropical inverse estuary (Northeast Brazil) Discussion Zooplankton (Cladocera and Rotifera) in the Mossoró river estuary (MRE) was characterized mostly by freshwater species with a fairly low richness compared to other tropical estuaries (e.g. Rougier et al. 2005). Nevertheless, Lansac-Tôha & Lima (1993) made monthly collections throughout a year and detected even lower richness than the present study, suggesting that our results are consistent with some estuary-based investigations, where species richness tend to be lower than freshwater and marine environments (see Hammer 1986, Neumann-Leitão 1994). The low richness observed in the present study clearly reflected the striking spatial and seasonal fluctuations, particularly of salinity, on freshwater dwellers. This is a common pattern, as acknowledged by many authors (e.g. Prado-Por & Lansac-Tôha 1984, Sassi 1991, Hammer 1993, Lansac-Tôha & Lima 1993, Keller & Conlin 1994, Williams 1998, Herbst 2001, Ara 2002, Derry et al. 2003, Toumi et al. 2005) suggesting a large-scale occurrence of these relationships. Derry et al. (2003) studying temperate saline lakes discerned patterns of community composition along a gradient of salt concentration. In tropical estuaries of Brazil, similar findings have also been observed (see Prado-Por & Lansac-Tôha 1984, Lansac-Tôha & Lima 1993, Lopes 1994, Neumann-Leitão 1994, Magalhães et al. 2006). Further, richness and abundance increased upstream, a seemingly inconsistency with the observed negative relationship between zooplankton and salinity, given that salt concentrations increased likewise. However, species richness and abundance at the more saline stations were only high during the rainy seasons, when salt concentration substantially decreased due to higher freshwater input. This alone explains the seemingly odd higher richness and abundance at the more saline stations, but not the prevailing lower values at the less saline ones. Seasonal salinity fluctuations due to freshwater runoff were high at the more saline stations and a corresponding high fluctuation in species numbers was also observed. Conversely, both salinity and species numbers showed very small seasonal fluctuations at the less saline stations, likely because the area was not significantly affected by the freshwater input and was under higher tidal dynamics. Hence, these stations uphold similar salt concentrations yearlong, and it is reasonable to associate the small variation in community composition at these stations to a lack of seasonal salinity fluctuation. At the higher stations, however, 233 richness and abundance increased as salinity decreased. In fact, the majority of the species identified in our study was exclusively found in the stations nearby the river and during the second rainy season (see below). It is likely, however, that other factors may have supported the observed higher numbers at these higher stations, since, despite the proximity to the river, salinity still remained higher there than at the lower stations. As detected by some authors (Keller & Conlin 1994, Herbst 2001), in addition to salinity, small-scale differences in factors such as ion composition (Derry et al. 2003), food availability (Toumi et al. 2005) and predation pressure (Williams 1998) may significantly alter the structure of zooplankton communities in saline environments. These processes need yet to be investigated in the MRE. Alternatively, the more conspicuous shifts in community composition at the higher stations may be related to the rapid freshwater discharge which displaced the individuals towards the estuary. Rougier et al. (2005) reported a similar finding associating higher rotifer richness in the estuary during the rainy season to a mixing of populations across the estuarine zone due to fluvial hydrodynamics. It is not clear, however, if this was a strictly mechanical passive dislocation or if some active horizontal movement was made by the species, since most individuals were alive when collected, suggesting a tolerance to the conditions. Whatever factor is involved, freshwater input was a highly important determinant of species numbers as previously acknowledged by other authors (e.g. Osore et al. 1997, Mwaluma et al. 2003, Paranaguá et al. 2005, Rougier et al. 2005, Magalhães et al. 2006). It is likely that richness and abundance were higher during the rainy seasons due to more favorable conditions provided by the rain, particularly, diluting salt concentration, since most species identified are typical freshwater dwellers. The influence of these factors on other groups not evaluated here, such as copepods (albeit not a diverse/abundant group in the MRE; author’s personal observations), may divulge additional information. Further, striking differences of richness and abundance between the two rainy seasons were observed. Since pluviometric rates were similar on both rainy seasons, this suggests that other factors also influenced the species. Higher values of water temperature, NO3 and total phosphorous and lower values of pH, salinity, NO2 and Chlorophyll-a were observed during the second rainy season. Pan-American Journal of Aquatic Sciences (2009), 4(2): 226-238 Dependent variables Predictors (contribution to total R²) F df P R² 4.96 − 2.79 3.02 4.9 − 3.74 − 1.86 − 3.64 2.63 5.48 − 5.38 − 4.82 3.7 2.58 3.12 2.54 4.67 7.62 4.49 3.24 3.29 12, 122 − 12, 122 12, 122 12, 122 − 12, 122 − 12, 122 − 12, 122 12, 122 12, 122 − 12, 77 − 12, 77 12, 77 12, 77 12, 77 12, 77 12, 77 12, 77 12, 77 12, 77 12, 77 <0.001 NS <0.01 <0.001 <0.001 NS <0.001 NS <0.05 NS <0.001 <0.01 <0.001 NS <0.001 NS <0.001 <0.001 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 0.3 − 0.2 0.2 0.3 − 0.3 − 0.2 − 0.3 0.2 0.4 − 0.5 − 0.4 0.4 0.3 0.3 0.3 0.4 0.5 0.4 0.3 0.3 S T pH -0.2 0.4 Tr O2 NH3 NO2 NO3 TP Ch-a Ph P 0.29 0.4 0.3 -0.4 0.4 0.26 -0.2 0.2 0.27 0.25 0.2 0.3 0.25 0.4 0.3 0.4 0.22 0.32 -0.2 0.19 0.4 0.3 0.27 -0.4 0.3 0.25 0.3 -0.5 0.5 0.42 -0.4 -0.33 -0.3 -0.26 -0.3 0.3 0.3 0.2 0.2 -0.2 0.23 0.29 0.3 0.3 -0.3 0.29 DS: dry season; RS: rainy season; S: salinity; T: temperature; Tr: water transparency; O2: dissolved oxygen; NH3: ammonia; NO2: nitrite; NO3: nitrate; TP: total phosphorous; Ch-a: Chlorophyll-a; Ph: Pheophytin; P: pluviometry; NS: non-significant. A. M. A. SILVA ET AL. Ceriodaphnia cornuta DS Brachionus calyciflorus DS Brachionus leydigi DS Brachionus urceolaris DS Brachionus plicatilis DS Brachionus falcatus DS Epiphanes macrourus DS Filinia opoliensis DS Hexarthra mira DS Keratella tropica DS Richness DS Diversity DS Abundance DS Ceriodaphnia cornuta RS Brachionus calyciflorus RS Brachionus leydigi RS Brachionus urceolaris RS Brachionus plicatilis RS Brachionus falcatus RS Epiphanes macrourus RS Filinia opoliensis RS Hexarthra mira RS Keratella tropica RS Richness RS DiveRSity RS Abundance RS Regression 234 Pan-American Journal of Aquatic Sciences (2009), 4(2): 226-238 Table I. Stepwise multiple regression analyses between zooplankton richness and abundance (dependent variables) and environmental variables (predictors) during two seasons (dry and rainy) at the Mossoró River Estuary. Zooplanktonn variation in a tropical inveerse estuary (N Northeast Brazzil) These obsservations confirm the t correlaations observed inn the CCA, where w tempeerature, NO3 and total phospphorous weree strong preedictors of most species. The positive reelation betweeen zooplankkton, water tempperature annd high cooncentrationss of nutrients haas been deteected by maany authors (e.g. Montú 19880, Nascim mento-Vieira & Sant'-A Anna 1989, Neum mann-Leitãoo et al. 19992, Lopes 1996; 1 Breitburg ett al. 1999; Park P & Marshhall 1999). It is a consensus that t an increease in the concentratioon of 2355 nutrrients influennces the topp levels of a food webb through a cascaade of interaactions (e.g. Seip 1991,, Forrrester et all. 1999, A Anderson et al. 2002).. Therrefore, zoopplankton inndividuals were w likelyy beneefited by thiis increase dduring the second s rainyy seasson in the preesent study. It is not cleaar, however,, how w the high vallues of Chlorrophyll-a du uring the firstt rainy y season, which is an indicato or of highh phyttoplankton abundance, limited zooplanktonn abun ndance. Figure 6. Orrdination bipllot of 19 zoopplankton speciies (points) an nd 12 environnmental variabbles (arrows) sampled at 9 permanent sttations througghout a two-yeear period sam mpling effort at the Mossorró River Estuaary. Cer cor: Ceriodaphniaa cornuta; Braa cal: Brachioonus calyciflorrus; Bra ley: B. leydigi; Brra urc: B. urcceolaris; Bra pli: B. plicatiilis; Epi Mac:: Epiphanes macrourus; m Mooi min: Moinaa minuta; Braa fal: B. falcattus; Bra cau: B. B caudatus; F Fil opo: Filin nia opoliensis;; Hex mir: Hexxarthra mira; Ker tro: Keraatella tropica; Dia spi: Diap aphanosoma sppinulosum; Brra pat: B. patu ulus; Bra ang:: B. angularis;; Anu fis: Anuuraeopsis fissaa; Fil lon: F. longiseta; l Kerr val: Keratellla valga; Pol vvul: Polyarthrra vulgaris. S:: salinity; T: teemperature; Tr: T water transsparency; O2: dissolved ox xygen; NH3: ammonia; a NO2: nitrite; NO3: nitrate; TP:: total phosphoorous; Ch-a: Chlorophyll-a C a; Ph: Pheophyytin; P: pluvio ometry. Acccording to mean tottal phosphoorous values, the estuary waas characterizzed as eutroophic during the dry seasonss and hyperreutrophic duuring the rainy seasons. Also, A accorrding to mean m Chlorophylll-a values, thhe estuary was w characterrized m d during the drry seasons an nd eutrophicc as mesotrophic during the rainy seasons (Carrlson 1977). Two sppecies (Epipphanes maccrourus andd Bracchionus plicaatilis) showeed positive relationships r s with h salinity. The T latter sppecies has demonstrated d d Pan-Americcan Journal off Aquatic Scieences (2009), 4(2): 4 226-2388 A. M. A. SILVA ET AL. 236 great resistance to salinity fluctuations (Madhupratap 1986, Derry et al. 2003) and this may have also been the case for E. macrourus. In addition, the genus Brachionus, which is renowned to tolerate polluted waters (Sampaio et al. 2002, Dulic et al. 2006, Sousa et al. 2008), accounted for 80% of all individuals collected throughout the study span, suggesting an ecological plasticity for the species of this genus and further supporting the notion that only tolerant species are able to survive in highly dynamic environments. In extreme conditions predation and competition pressures could be reduced, and tolerant species may benefit by residing at these areas (Madhupratap 1986, Neumann-Leitão 1994, Herbst 2001). Acknowledgements We would like to thank the personnel of LABESA (Laboratory of Semi-Arid Ecology) and LEAq (Laboratory of Aquatic Ecology) for field and lab assistance, the anonymous referees and D. Calliari, whose comments were of great importance. We are also indebted to CNPq and CAPES for providing financial support. References Anderson, D. M.; Gilbert, P. M.; Burkholder, J. M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25: 704-726. APHA. 1995. Standard methods for the examination of water and waste water. American Public Health Association, Washington, 1524 p. Ara, K. 2002. Temporal variability and production of Temora turbinata (Copepoda: Calanoida) in the Cananéia Lagoon estuarine system, São Paulo, Brazil. Scientia Marina, 66: 399-406. Bos, D. G., Cumming, B. F., Watters, C. E. & Smol, J. P. 1996. The relationship between zooplankton, conductivity and lakewater ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. International Journal of Salt Lake Research, 5: 1-15. Breitburg, D. L., Sanders, J. G. & Gilmour, C. C. 1999. Variability in responses to nutrients and trace elements, and transmission of stressor effects through an estuarine food web. Limnology and Oceanography, 44: 837-863. Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography, 22: 361-380. Coetzee, J. C., Adams, J. B. & Bate, G. C. 1996. A botanical importance rating system for estuaries. Journal of Coastal Conservation, 2: 131-138. Derry, A. M., Prepas, E. E. & Hebert, P. D. N. 2003. A comparison of zooplankton communities in saline lakewater with variable anion composition. Hydrobiologia, 505: 199-215. Dulic, Z. Mitrovic-Tutundzic, V., Markovic, Z. & Zivic, I. 2006. Monitoring water quality using zooplankton organisms as bioindicators at the Dubica fish farm, Serbia. Archives of Biological Sciences, 58: 245-248. Forrester, G. E.; Dudley, T. L., Grimm, N. B. 1999. Trophic interactions in open systems: effects of predator and nutrients on stream food chains. Limnology and Oceanography, 44: 1187-1197. Hammer, U. T. 1986. Saline Ecosystems of the World. Junk Publishers, Dordrecht, 632 p. Hammer, U. T. 1993. Zooplankton distribution and abundance in saline lakes of Alberta and Saskatchewan, Canada. International Journal of Salt Lake Research, 2: 111-132. Haney, J. F. & Hall, D. J. 1973. Sugar-coated Daphnia: A preservation technique for Cladocera. Limnology and Oceanography, 18: 331-333. Herbst, D. B. 2001. Gradients of salinity stress, environmental stability and water chemistry as a templet for defining habitat types and physiological strategies in inland salt waters. Hydrobiologia, 466: 209-219. Keller, W. & Conlin, M. 1994. Crustacean zooplankton communities and lake morphometry in Precambrian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 51: 2424-2434. Krebs, C. J. 1989. Ecological methodology. HarpeCollins Publishers, New York, 654 p. Lamberth, S. J. & Turpie, J. K. 2003. The role of estuaries in South African fisheries: economic importance and management implications. African Journal of Marine Science, 25: 131157. Lansac-Tôha, F. A. & Lima, A. F. 1993. Ecologia do zooplâncton do estuário do rio Una do Prelado (São Paulo, Brasil). Acta Limnologica Brasiliensia, 6: 82-96. Lopes, R. M. 1994. Zooplankton distribution in the Guarau River Estuary (South-eastern Brazil). Estuarine, Coastal and Shelf Science, 39: 287-302. Lopes, R. M. 1996. Hydrography and zooplankton community structure: a comparative study among estuaries of the Juréia-Itatins ecological station (Southeastern Brazil). Revista Nerítica, 10: 27-40. Pan-American Journal of Aquatic Sciences (2009), 4(2): 226-238 Zooplankton variation in a tropical inverse estuary (Northeast Brazil) Mackereth, F. J. H., Heron, J., Talling, J. F. 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association Scientific Publication, 36: 121. Madhupratap, M. 1986. Zooplankton standing stock and diversity along an oceanic track in the western Indian Ocean. Bulletin of the National Institute of Oceanography, 16: 463-467. Magalhães, A., Costa, R. M., Liang, T. H., Pereira, L. C. C. & Ribeiro, M. J. S. 2006. Spatial and temporal distribution in density and biomass of two Pseudodiaptomus species (Copepoda: Calanoida) in the Caeté River Estuary (Amazon region – North of Brazil). Brazilian Journal of Biology, 66: 421-430. Matsumura-Tundisi, T. & Tundisi, J. G. 2003. Calanoida (Copepoda) species composition changes in the reservoirs of São Paulo State (Brazil) in the last twenty years. Hydrobiologia, 504: 215-222. McLusky, D. S. & Eliott, M. 2004. The estuarine ecosystem: ecology, threats and management. Oxford University Press, London, 214 p. Montú, M. 1980. Zooplâncton do estuário da Lagoa dos Patos. I. Estrutura e variações temporais e espaciais da comunidade. Revista Atlântica, 4: 53-72. Mwaluma, J., Osore, M., Kamau, J. & Wawiye, P. 2003. Composition, abundance and seasonality of zooplankton in Mida Creek, Kenya. Western Indian Ocean Journal of Marine Science, 2: 147-155. Nascimento-Vieira, D. A. & Sant’-Anna, E. M. E. 1989. Composition of zooplankton in the Timbó River estuary (Pernambuco-Brazil). Trabalhos do Instituto Oceanográfico da Universidade Federal de Pernambuco, 20: 77-97. Neumann-Leitão, S., Paranaguá, M. N. & Valentim, J. L. 1992. The planktonic rotifers of the estuarine lagunar complex of Suape (Pernambuco, Brazil). Hydrobiologia, 232: 133-143. Neumann-Leitão, S. 1994. Resenha literária sobre o zooplâncton estuarino no Brasil. Trabalhos Oceanográficos, 23: 25-53. Osore, M. K., Tackx, M. I. M. & Daro, M. H. 1997. The effect of rainfall and tidal rhythm on the community structure and abundance of the zooplankton of Gazi Bay, Kenya. Hydrobiologia, 356: 117-126. Paranaguá, M. N., Neumann-Leitão, S., NogueiraParanhos, J. D., Silva, T. A. & Matsumura- 237 Tundisi, T. 2005. Cladocerans (Branchiopoda) of a tropical estuary in Brazil. Brazilian Journal of Biology, 65: 107-115. Park, G. S. & Marshall, H. G. 2000. Estuarine relationships between zooplankton community structure and trophic gradients. Journal of Plankton Research, 1: 121135. Prado-Por, A. M. S. & Lansac-Tôha, F. A. 1984. The distribution of brackish water Calanoida (Copepoda) along the coasts of Brazil. Hydrobiologia, 113: 147-150. Remane, A., Schlieper, C. 1971. The biology of brackish waters. Wiley Interscience, New York, 372 p. Rodier, J. L., 1975. Analyse de l’eau: Eaux naturelles, eaux residuals, eaux de mer. Dunod, Paris, 692 p. Rougier, C., Pourriot, R., Lam-Hoai, T. & Guiral, D. 2005. Ecological patterns of the rotifer communities in the Kaw River estuary (French Guiana). Estuarine, Coastal and Shelf Science, 63: 83-91. Sampaio, E. V., Rocha, O., Matsumura-Tundisi, T. & Tundisi, J. G. 2002. Composition and abundance of zooplankton in the limnetic zone of seven reservoirs of the Paranapanema River, Brazil. Brazilian Journal of Biology, 62: 525-545. Sassi, R. 1991. Phytoplankton and environmental factors in the Paraíba do Norte River estuary, northeastern Brazil: composition, distribution and quantitative remarks. Boletim do Instituto Oceanográfico, 39: 93-15. Savenije, H. H. G., 2006. Salinity and tides in alluvial estuaries. Elsevier Science, Amsterdam, 208 p. Seip, K. L. 1991. Phosphorus and nitrogen limitation of algal biomass across trophic gradients. Aquatic Sciences - Research Across Boundaries, 56: 1015-1621. Simier, M., Blanc, L., Aliaume, C., Diouf, P. S. & Albaret, J. L. 2004. Spatial and temporal structure of fish assemblages in an “inverse estuary”, the Sine Saloum system (Senegal). Estuarine, Coastal and Shelf Science, 59: 69-86. Sokal, R. R. & Rohlf, F. J. 1995. Biometry - the principles and practice of statistics in biological research. W. H. Freeman & Company, New York, 887 p. Sousa, W., Attayde, J. L., Rocha, E. S. & Anna, E. M. E. 2008. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid Pan-American Journal of Aquatic Sciences (2009), 4(2): 226-238 A. M. A. SILVA ET AL. 238 northeastern Brazil. Journal of Plankton Research, 30: 699-708. ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67: 1167-1179. ter Braak, C. J. F. & Smilauer, P. 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, 332 p. Toumi, N., Ayadi, H., Abid, O., Carrias, J. F., SirneNgando, S., Boukhris, M. & Bouain, A. 2005. Zooplankton distribution in four ponds of different salinity: a seasonal study in the solar salterns of Sfax (Tunisia). Hydrobiologia, 534: 1-9. Williams, W. D. 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia, 381: 191-201. Received March 2009 Accepted May 2009 Published online June 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 226-238 Larval fish assemblage in a tropical estuary in relation to tidal cycles, day/night and seasonal variations FABIANA TEIXEIRA BONECKER1,2, MÁRCIA SALUSTIANO DE CASTRO1,3 & ANA CRISTINA TEIXEIRA BONECKER1,4 1 Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia , CCS, Bloco A, Ilha do Fundão. 21941-590, Rio de Janeiro, Brasil. E-mail: 2 fabianabonecker@gmail.com, 3 mscastro@biologia.ufrj.br, 4 ana@biologia.ufrj.br Abstract. The Mucuri River estuary is a salt wedge ecosystem located in Northeast Brazil with an average depth of 4 m in the main channel and wide mangrove vegetation along its margins. This study aimed to analyze the occurrence and abundance of larval fish in relation to seasonal, day/night and tidal variations, and to verify the influence of temperature and salinity on this assemblage. Sampling was conducted at a fixed station located in the entrance of the estuary at every six hours along one tide cycle every three months from March 2002 to December 2004. Oblique hauls were done using a bongo net. A total of 7,230 larval fish from 22 families and 33 species were identified. The highest number of taxa was recorded during the flood tide and night sampling. The highest average densities occurred during the night sampling and in the rainy period, except by 2004 when the highest mean value was recorded in the dry season at night. The highest average densities and number of taxa obtained during flood tide suggested an important contribution of the adjacent coastal zone on the composition of larval assemblage. Larval fish assemblage did not change significantly between rainy and dry periods and it is also true for day/night variation. Larval assemblage of the Mucuri River estuary was dominated by Engraulidae, Gobiidae and Sciaenidae and was mainly influenced by tidal variation. Keywords: Larval fish assemblage, seasonal variation, day/night variation, tidal variation, Mucuri estuary, Brazil. Resumo. Assembléia de larvas de peixes em um estuário tropical em relação aos ciclos de marés e variações nictemerais e sazonais. O estuário do rio Mucuri é um ecossistema de cunha salina localizado no nordeste do Brasil, apresentando profundidades médias de 4 m no canal principal e vasta vegetação de mangue nas suas margens. Este estudo teve como objetivo analisar a ocorrência e a abundância das larvas de peixes em relação às variações sazonais, nictemerais e de maré e verificar a influência da temperatura e da salinidade sobre essa assembléia. As coletas foram trimestrais, em uma estação fixa localizada na entrada do estuário, a cada 6 horas, ao longo de um ciclo de maré, de março de 2002 a dezembro de 2004.Os arrastos oblíquos foram efetuados com rede bongô. Foi identificado um total de 7.230 larvas de peixes, incluindo 22 famílias e 33 espécies. O maior número de táxons foi registrado durante a maré enchente, nas amostragens noturnas. As maiores densidades médias ocorreram nas amostras noturnas na estação chuvosa, com exceção do ano de 2004 quando a maior densidade média ocorreu na estação seca durante a noite. As maiores densidades médias e número de táxons obtidas durante a maré enchente sugere uma importante contribuição da zona costeira adjacente sobre a composição da assembléia de larvas. A assembléia de larva de peixe não mudou significativamente entre o período chuvoso e o seco e o mesmo foi observado para a variação dia/noite. A assembléia de larvas do estuário do rio Mucuri foi dominada por Engraulidae, Gobiidae e Sciaenidae e foi principalmente influenciada pela variação de maré. Palavras-chave: Assembléia de larvas de peixes, variação sazonal, variação dia/noite, estuário do rio Mucuri, Brasil. Pan-American Journal of Aquatic Sciences (2009), 4(2): 239-246 F. T. BONECKER ET AL. 240 Introduction Estuaries have ecological value and have frequently been referred to as fish nursery areas (Franco-Gordo et al. 2003, Berasategui et al. 2004) and sustain many marine fish species mainly represented by larvae and juveniles (DuffyAnderson et al. 2003, Castro et al. 2005). Adults and larval fish occurrence and distribution in an estuary vary according to environmental changes like: precipitation regime, estuary morphology that determines the intensity and distance of the salt wedge inversion, tidal dynamic, current velocity and the availability of food resources (Camargo & Isaac 2003, Ré 2005). Temperature and salinity are important environmental factors influencing the occurrence, density and growth of eggs and larval fish in estuarine regions (Faria et al. 2006, Ramos et al. 2006a). Larval fish assemblage can also be seasonally influenced in an estuarine region (Harris & Cyrus 2000) and seasonal variations have been well documented (Morais & Morais 1994, BarlettaBergan et al. 2002, Ré 2005). However, most studies developed along the Brazilian coast on estuarine larval fish are limited to the north and south Brazil and few works developed in the southeast region (Barletta-Bergan et al. 2002, Joyeux et al. 2004). The Mucuri River is a salt wedge estuary with a semi-diurnal regime situated in the Northeast of Brazil (18°06’02”S and 039°34’0”W). The rainy season extends from November to April and the dry period occurs from May to October (Castro & Bonecker 1996). Although the Mucuri estuary serves as repository for industrial waste, it is important for the local population because of the subsistence fishery activity. There is also a regionally important artisanal fishery upon blue crabs (Schwamborn & Bonecker 1996). Previous studies in this ecosystem have focused on the zooplankton community variation (Aben-Athar & Bonecker 1996) and the meroplankton distribution (Castro & Bonecker 1996, Schwamborn & Bonecker 1996). However, neither the relationship between larval fish assemblage and environmental parameters, nor the short-term temporal variations on larval fish density have been studied. Therefore, this study analyzes the occurrence and abundance of larval fish in the Mucuri River estuary in relation to seasonal, day/night and tidal variations and verifies the influence of temperature and salinity on this assemblage. Material and methods Sampling. Samples were collected at a fixed point (18°05’45.7”S and 39°33’07.7W”) in the mouth of Mucuri River estuary (Figure 1). Sampling was performed at every three months, from March 2002 to December 2004, during the rainy (March and December) and dry periods (June and September). In each survey, sampling was done at every six hours during the flood and ebb tides. Figure 1. Sampling station location (*) in Mucuri River estuary. Pan-American Journal of Aquatic Sciences (2009), 4(2): 239-246 Larval fish assemblage in a Tropical estuary in relation to tidal cycles, day/night and seasonal variations Ichthyoplankton was collected through oblique hauls using a bongo net of 0.6 m diameter and 2.5 m length with 330 and 500 µm mesh sizes. Larval fish were more abundant and taxa number were greater in samples collected with the 500 µm mesh. Therefore, only samples obtained with this mesh were used. A flowmeter (General Oceanics Inc.) was used in order to quantify the volume of water filtered. Samples were fixed in 4% buffered seawater-formalin solution. Temperature and salinity were measured at the surface, mid-water and bottom using a thermosalinometer (LabComp). Due to the shallow depth and low data variation (CV%) the average values of temperature and salinity were used. Numerical density was expressed as the number of specimens per 100 m3. Some yolk-sac and damaged larvae could not be identified and were not considered in the analysis. The larval fish list was based on Nelson (2006). Data analysis. Analysis of variance (ANOVA) was applied to verify if the differences among densities collected during the three years were significant. Student t test was used to test differences between samples collected during the dry and wet seasons, day and night, and in flood and ebb tides. In these analyses, the statistical program Statistica 6.0 was used. One-way analysis of similarity (ANOSIM) and multidimensional scaling (MDS) were performed based on a matrix of 45 samples and taxa that occurred in more than five stations to determine the significance of seasonality, day/night and tidal cycle in the structure of the larval fish assemblage (Clarke & Gorley 2001). Three samples were excluded from the analyses because there were no 241 larval fish. Density data were transformed to log(x+1) and the results were considered significant at significance level <5%. Similarity percentages analyses (SIMPER) were used to identify taxon contribution to the factor that influenced significantly the assemblage formation. Species that accounted for more than 90% were considered key species. BIO-ENV, a correlation analysis between abiotic and biotic data, was employed using the Spearman correlation coefficient. The biotic matrix was the same used to ANOSIM and SIMPER and the abiotic matrix was based on temperature and salinity data. These analyses were done using the PRIMER 5.0 for Windows program. Results Environmental conditions. Temperature average values showed a similar pattern both in the flood and ebb tides, during the day and night sampling. During the flood tide water temperature varied between 23.13oC and 28.90oC; while in the ebb tide it ranged from 24.50oC to 29.70oC. The highest values were recorded during the rainy season and the lowest values occurred in the dry period. Salinity average values varied greatly during this study especially in ebb tides when most values were lower than 20. During the flood tide salinity ranged from 29.35 to 37.63 and in the ebb tide varied between 0.13 and 27.90. The highest mean salinity values were recorded in the flood tide, while the lowest mean values were obtained during ebb tide (Figure 2). Salinity varied also seasonally and higher mean values were obtained during the dry period, both in the ebb and flood tides (Figure 2). 60 50 40 Salinity 30 20 10 0 -10 Mean ±SD ±1,96*SD -20 Rainy Ebb Dry Ebb Rainy Flood Dry Flood Season and tide Figure 2. Box and whisker diagrams of salinity (seasonality and tide analyses). Pan-American Journal of Aquatic Sciences (2009), 4(2): 239-246 F. T. BONECKER ET AL. 242 Larval fish assemblage: Taxonomic composition and abundance. A total of 7,230 larval fish was identified along the study, comprising 22 families and 33 species (Table I). Engraulidae, Anchoa spinifer, Clupeidae, Syngnathidae, Gerreidae, Sciaenidae, Stellifer stellifer, Stellifer sp. and Gobiidae were recorded in all samples (Table I). However, some species occurred exclusively in one tidal or sampling period (Table I). The greatest number of taxa (36) was recorded during the nocturnal flood tide, while the lowest number of taxa (18) was collected during the diurnal ebb tide (Table I). Engraulidae was most abundant in 2002 and 2004, and represented more than 40% of the total catch. In 2003, Gobiidae dominated and contributed with more than 30%. Sciaenidae was the third in abundance (> 8 %) in the study period. Other families that represented more than 1% in at least one study year were Clupeidae, Pristigasteridae, Syngnathidae, Gerreidae, Eleotridae and Achiridae. ANOVA analysis showed no significant differences among larval fish densities obtained along the years (p = 0.5). Therefore, the other analyses were done considering the three years together. Average larval densities were significantly greater in the nocturnal samples than in the diurnal ones (p = 0.01) and during the flood tide (p << 0.05). However, there was no significant difference between dry and rainy season (p = 0.2) in relation to larval densities. Larval fish composition in relation to seasonality, day/night and tidal cycles. The ANOSIM analysis indicated that larval fish assemblages during the rainy and dry seasons were similar to one another (R = 0.032; p = 0.12), as were during the day and night sampling (R = 0.009; p = 0.56). Significant differences on larval assemblage were observed during the flood and ebb tides (R = 0.46; p = 0.001) and it was also revealed in MDS plot (Figure 3). During the flood tide Engraulidae was the discriminating taxon representing 41% followed by Gobiidae (20%) and Sciaenidae (15%); while in the ebb there was greater contribution of Syngnathidae (38%), Engraulidae (21%) and Sciaenidae (16%). According to BIO-ENV analysis, changes on larval fish assemblages were more correlated with salinity than with temperature, as was expected since assemblages in the Mucuri estuary were determined by tide variation. Discussion The Mucuri River estuary is under a seasonal regime typically tropical, which is defined by two seasons: rainy (summer), when precipitation is very frequent and intense; and dry period (winter) when there is a critical decline of rain (Nimer 1989). This pattern described in the literature was also found during the present study. Unsurprisingly, the salinity pattern varied in accordance to seasonality being typical of tropical humid regions that are influenced by precipitation and tide, as previously reported for other tropical estuaries (Barletta et al. 2005, Castro et al. 2005). The number of taxa recorded during this study (45) was higher than the previous study developed in the same ecosystem (24) (Castro & Bonecker 1996). Other studies developed in different estuaries showed a higher taxa number, e.g. in Lima estuary (50) (Ramos et al. 2006b); Caeté River estuary (63) (Bartella-Bergan et al. 2002); in the French Guiana (59) (Morais & Morais 1994). However, it is important to stress that when one compares larval fish assemblages of estuarine regions one should considerate the methodology used, sampling effort, the extension of water bodies and environmental conditions (Barletta et al. 2005, Ramos et al. 2006b). The greater number of sampling stations defined in other estuaries listed above and monthly sampling contributed to increase the number of taxa collected when compared with the present study. Probably, the number of taxa would be higher in Mucuri estuary if larvae were collected in more than one station and if samples were taken monthly. The majority of taxa recorded in this study had already been cited to the Mucuri River estuary (Castro & Bonecker 1996) except by the Atherinopsidae (A. brasiliensis), Carangidae (C. chysurus and Oligoplites sp.) and Haemulidae. Only Ophichthidae (Myrophis punctatus) that had already been recorded from this estuary (Castro & Bonecker 1996) was not collected in this study. The larval fish assemblage of the Mucuri estuary is composed by few species with high abundance, like Engraulidae, Gobiidae and Sciaenidae. According to Joyeux et al. (2004), larval fish assemblages in Brazilian estuaries are structured around Gobiidae, Sciaenidae and Engraulidae or Clupeidae. Dominance of these species was also recorded in different estuarine and coastal regions (Grijalva-Chon et al. 1992, Bartella-Bergan et al. 2002, Castro et al. 2005, Faria et al. 2006). According to the literature the dominance of engraulids at lower latitudes is common while clupeids are less abundant (Bartella-Bergan et al. 2002). Pan-American Journal of Aquatic Sciences (2009), 4(2): 239-246 Larval fish assemblage in a Tropical estuary in relation to tidal cycles, day/night and seasonal variations 243 Table I. Total number and percentage of contribution of family and species of fish larvae collected in flood and ebb tide, during day and night, along the study period in the Mucuri River estuary. Flood Ebb Taxa Day % Night % Day % Night % Elopidae Elops sp. Engraulidae Anchoa spinifer Achoviella lepidentostole Clupeidae Opisthonema oglinum Pristigasteridae Pellona harroweri Ariidae Mugilidae Mugil curema Atherinopsidae Atherinella brasiliensis Hemiramphidae Hyporhamphus unifasciatus Syngnathidae Microphis brachyurus lineatus Pseudophallus mindii Syngnathus pelagicus Scorpaenidae Carangidae Chloroscombrus chrysurus Oligoplites sp. Gerreidae Diapterus sp. Diapterus auratus Diapterus rhombeus Haemulidae Sciaenidae Cynoscion leiarchus Macrodon ancylodon Menticirrhus americanus Micropogonias furnieri Stellifer sp. Stellifer rastrifer Stellifer stellifer Ephippidae Chaetodipterus faber Blenniidae Parablennius pilicornis Gobiidae Eleotridae Dormitator maculatus Microdesmidae Microdesmus carri Achiridae Achirus declives Achirus lineatus Trinectes microphthalmus Trinectes paulistanus Cynoglossidae Symphurus plagusia Tetraodontidae Sphoeroides greeleyi 11 609 18 3 3 - 1.08 59.53 1.76 0.29 0.29 - 14 2492 225 21 - 0.24 42.84 3.87 0.36 - 43 1 1 22.40 0.52 0.52 3 53 1 3 1 1.49 26.37 0.50 1.49 0.50 1 0.10 63 3 1.09 0.05 2 2 1.04 1.04 1 - 0.50 - - - 4 0.07 - - 2 1.00 - - 2 0.03 - - - - 2 1 0.20 0.10 1 11 1 1 - 0.02 0.19 0.02 0.02 - 98 2 - 51.04 1.04 - 3 32 2 - 1.49 15.92 1.49 1.00 - 3 49 46 1 67 1 3 0.29 4.79 4.50 0.10 6.55 0.10 0.29 1 4 274 7 1 4 2 161 5 1 25 106 116 241 0.02 0.07 4.71 0.12 0.02 0.07 0.03 2.77 0.09 0.02 0.43 1.82 1.99 4.14 1 2 1 1 11 6 0.52 1.04 0.52 0.52 5.73 3.13 12 1 19 1 2 19 5.97 0.50 9.45 0.50 1.00 9.45 2 0.20 1 59 0.10 5.77 1 1 1537 0.02 0.02 26.42 1 1 17 0.52 0.52 8.85 7 31 3.48 15.42 - - 16 0.28 - - 1 0.50 - - 6 0.10 - - - - 90 51 8.80 4.99 6 241 222 0.10 4.14 3.82 1 0.52 3 - 1.49 - 1 1 0.10 0.10 1 - 0.02 - 1 0.52 1 - 0.50 - Pan-American Journal of Aquatic Sciences (2009), 4(2): 239-246 F. T. BONECKER ET AL. 244 Stress: 0,17 Figure 3. MDS ordination showing differences between ebb and flood assemblages. Each individual point represents a sample. Closed circles: flood; closed triangles: ebb. According to Mc Lusky (1981) estuaries are characterized by presence of few species that are very abundant and many species rare, normality originated from the adjacent coastal region. In this study marine-estuarine species were dominants (A. lepidentostole, P. harroweri, M. ancylodon, M. americanus, C. leiarchus, M. furnieri, Stellifer rastrifer, S. stellifer), but were also recorded amphidromous species (Dormitator maculatus) and freshwater-estuarine species (Microphis brachyurus lineatus, Pseudophallus mindii). Seasonality and day/night variations seem to play an important role on larval fish abundance and composition (Sanvicente-Añorve et al. 2000). Many larval fish studies showed a tendency of higher densities and taxa number to be recorded during the hottest months (Ramos et al. 2006b, Faria et al. 2006, Aceves-Medina et al. 2008). Generally, larval fish peaks are observed during nocturnal sampling in opposition to lower densities found in diurnal samples (Ramos et al. 2006b). This was also true for the Mucuri estuary where larval fish densities were significantly higher during the night comparing with daylight sampling. Although, seasonality is an important factor influencing larval fish, in the present study larval fish density and composition did not vary significantly between the rainy and dry seasons. Different results were obtained by BarlettaBergan et al (2002) in the Caeté River estuary, where the authors found significant differences in density of the most abundant species in relation to season. In Rio da Prata estuary was also observed strong association between larval fish assemblage distribution and salinity structure taken with seasonality (Berasategui et al. 2004). The significant difference observed in larval density and composition between assemblages collected in the flood and ebb tides along this study stresses the importance of tidal cycles in the maintenance of larval fish within the Mucuri estuary. Aben-Athar & Bonecker (1996) attested that tidal cycles with seasonal variations are the main factors influencing plankton distribution in the Mucuri River estuary. Previous studies developed in the Mucuri River estuary observed higher larval densities during flood tide (Castro & Bonecker 1996). In Australia the number of species collected in the flood tide was six times higher than found during the ebb (Neira & Potter 1992). On the other hand, a study conducted at the Guanabara Bay entrance showed that higher densities were obtained during the ebb tide (Castro et al. 2005). Low correlation between water temperature and larval assemblage observed in this study is probably associated with the tropical climate of this region. According to Camargo & Isaac (2003), water temperature in estuarine and coastal ecosystems located in the north Brazil (tropical climate) does not change greatly during the year, and is not the main factor influencing adult fish distribution. Otherwise, salinity changes along the year in tropical regions and in this study had the greatest correlation with larval fish assemblage. In Caeté estuary, situated in the Brazilian north region, seasonal salinity variations was the principal factor influencing the fish assemblage structure (Barletta et al. 2005). Changes in salinity probably also influenced the dominance of Engraulidae during the flood tide and of Syngnathidae in the ebb tide in the Mucuri River estuary. The results obtained in this study suggest that larval assemblage in Mucuri River estuary is mainly influenced by tidal variance. However, further works considering sampling stations distributed along the estuary and adjacent coast, as discussed earlier, would give more information on larval assemblage variability and confirm the importance of this estuary as a nursery area. Pan-American Journal of Aquatic Sciences (2009), 4(2): 239-246 Larval fish assemblage in a Tropical estuary in relation to tidal cycles, day/night and seasonal variations Acknowledgments The authors thank the team of Zooplankton and Ichthyoplankton Integrated Laboratory of Universidade Federal do Rio de Janeiro for sorting the samples. We also thank CEPEMAR for assistance in field surveys and for providing environmental data. Thanks to Bahia Sul Celulose for permission to publish these data. We thank M. Macedo for the artwork in the map. References Aben-Athar, V. R., Bonecker, S. L. C. 1996. Avaliação do zooplâncton no sistema estuarino do rio Mucuri, Bahia, em situação de seca e de cheia. Arquivos de Biologia e Tecnologia, 39: 765-781. Aceves-Medina, G.; Saldierna-Martínez, R.; Hinojosa-Medina, A.; Jiménez-Rosenberg, S. P. A.; Hernández-Rivas, M. E.; MoralesÁvila, R. 2008. Vertical structure of larval fish assemblages during diel cycles in summer and winter in the southern part of Bahía de La Paz, México. Estuarine, Coastal and Shelf Science, 76: 889-901. Barletta, M., Barletta-Bergan, A., Saint-Paul, U., Hubold, G. 2005. The role of salinity in structuring the fish assemblages in a tropical estuary. Journal of Fish Biology, 66: 45-72. Barletta-Bergan, A., Barletta, M., Saint-Paul. U. 2002. Structure and Seasonal Dynamics of Larval Fish in the Caeté River Estuary in North Brazil. Estuarine, Coastal and Shelf Science, 54: 193-206. Berasategui, A. D., Acha, E. M., Fernández Araoz, N. C. 2004. Spatial patterns of ichthyoplankton assemblages in the Río de la Plata Estuary (Argentina-Uruguay). Estuarine, Coastal and Shelf Science, 60: 599-610. Camargo, M., Isaac. V. J. 2003. Ictiofauna estuarina. In: M. E. B. Fernandes (Org.). Os Manguezais da costa norte brasileira. Fundação Rio Bacanga, Maranhão: 105-142. Castro, M. S., Bonecker, A. C. T. 1996. Ocorrência de larvas de peixe no sistema estuarino do Rio Mucuri. Arquivos de Biologia e Tecnologia, 39: 171-185. Castro, M. S., Bonecker, A. C. T., Valentin, J. L. 2005. Seasonal variation in fish larvae at the entrance of Guanabara Bay. Brazilian Archives of Biology and Technology, 48: 121-128. Clarke, K. R., Gorley, R. N. 2001. Primer: User Manual/Tutorial. Plymouth-E, Plymouth, 91 p. 245 Duffy-Anderson, J. T., Manderson, J. P., Able, K. W. 2003. A characterization of juvenile fish assemblages around man-made structures in the new York-New Jersey Harbor Estuary, U.S.A. Bulletin of Marine Science, 72: 877-889. Faria, A.; Morais, P.; Chícharo, M. A. 2006. Ichthyoplankton dynamics in the Guadiana estuary and adjacent coastal área, South-East Portugal. Estuarine, Coastal and Shelf Science, 70: 85-97. Franco-Gordo, C., Godínez-Domínguez, E., SuárezMorales, E., Vásquez-Yeomans, L. 2003. Diversity of ichthyoplankton in central Mexican Pacific: a seasonal survey. Estuarine, Coastal and Shelf Science, 57: 111-121. Grijalva-Chon, J. M., Castro-Longoria, R. & Bustamente-Monge, A. 1992. Distribucion, abundancia y diversidad de larvas de peces en la laguna costera Santa Rosa. Sonora. Mexico. Ciencias Marinas, 18: 153-169. Harris, S. A., Cyrus, D. P. 2000. Comparison of larval fish assemblages in three large estuarine systems. KwaZulu-Natal. South Africa. Marine Biology, 137: 527-541. Joyeux, J.-C., Pereira, B. B., Almeida, H. G. 2004. The Flood-tide Ichthyoplanktonic Community at the Entrance into a Brazilian Tropical Estuary. Journal of Plankton Research, 2: 1277-1287. Mc Lusky, D. S. 1981. The Estuarine Ecosystem. John Wiley and Sons. New York. Morais, T. A., Morais, T. L. 1994. The abundance and diversity of larval and juvenile fish in a tropical estuary. Estuarine, Coastal and Shelf Science, 17: 216-225. Neira, F. J., Potter, C. 1992. Movement of larval fishes through the entrance channel of a seasonally open estuary in Western Australia. Estuarine, Coastal and Shelf Science, 35: 213-224. Nelson, J. R. 2006. Fishes of the World. John Wiley & Sons, 601 p. Nimer, E., 1989. Climatologia do Brasil. IBGE. Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro, 422 pp. Ramos, S. Cowen, R. K., Paris, C., Ré, P., Bordalo, A. A., 2006a. Environmental forcing and larval fish assemblage dynamics in the Lima River estuary (northwest Portugal). Journal of Plankton Research, 28: 275286. Ramos, S., Cowen, R. K., Ré, P., Bordalo, A. A. 2006b. Temporal and spatial distributions of Pan-American Journal of Aquatic Sciences (2009), 4(2): 239-246 F. T. BONECKER ET AL. 246 larval fish assemblages in the Lima estuary (Portugal). Estuarine, Coastal and Shelf Science, 66: 303-314. Ré, P. 2005. Ecologia do Ictioplâncton. In: P. Ré; U. Azeiteiro & F. Morgado (Eds.). Ecologia do plâncton marinho e estuarino. Edições Afrontamento, Porto: 111-140. Sanvicente-Añorve, L., Flores-Coto, C., CiappaCarrara, X. 2000. Temporal and spatial scales of ichthyoplankton distribution in the southern Gulf of Mexico. Estuarine, Coastal and Shelf Science, 51: 463-475. Schwamborn, R., Bonecker, A. C. T. 1996. Seasonal changes in the transport and distribution of meroplankton into a Brazilian estuary with emphasis on the importance of floating mangrove leaves. Arquivos de Biologia e Tecnologia, 39: 451-462. Received December 2008 Accepted May 2009 Published online June 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 239-246 Gametogenesis in the mangrove mussel Mytella guyanensis from northern Brazil CLEIDSON PAIVA GOMES1, COLIN ROBERT BEASLEY1*, SUELLEN MARIA OLIVEIRA PEROTE1, ALINE SILVA FAVACHO2, CLAUDIA HELENA TAGLIARO3, MARIA AUXILIADORA PANTOJA FERREIRA2 & ROSSINEIDE MARTINS ROCHA2 1 Laboratório de Moluscos, Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro s/n, Bragança CEP 68.600-000, Pará, Brazil. *Email: beasley@ufpa.br 2 Laboratório de Ultraestrutura Celular, Departamento de Histologia e Embriologia, Centro de Ciências Biológicas, Universidade Federal do Pará, Campus do Guamá, Belém CEP 66.075-900, Pará, Brazil 3 Laboratório de Conservação e Biologia Evolutiva, Universidade Federal do Pará, Campus de Bragança, Alameda Leandro Ribeiro s/n, Bragança CEP 68.600-000, Pará, Brazil Abstract. Gametogenesis was investigated using histological methods, in Mytella guyanensis from the Caeté mangrove estuary, northern Brazil. The sexes could not be distinguished from macroscopic observations of color. Histology and cellular organization was similar to that previously described for this and other species. Keywords: Mytilidae, reproduction, histology, tropical estuary Resumo. Gametogênese no mexilhão do mangue Mytella guyanensis do norte do Brasil. Gametogênese foi investigado usando métodos histológicos, em Mytella guyanensis no mangue do estuário do rio Caeté, Norte do Brasil. Os sexos não podiam ser distinguidos pelas observações macroscópicas da cor. A histologia e organização celular foi similar às que foram descritas anteriormente para esta e outras espécies. Palavras-chave: Mytilidae, reprodução, histologia, estuário tropical Mytella guyanensis (Lamarck, 1819) is a mangrove mussel with a wide distribution in Brazil (Klappenbach 1965, Rios 1994) and has both economic and ecological importance (Nishida & Leonel 1995, Mora & Alpízar 1998, Pereira et al. 2003, Nishida et al. 2006, Pereira et al. 2007). M. guyanensis is generally dioecious with a sex ratio of 1:1 (Cruz & Villalobos 1993, Carpes-Paternoster 2003) although Sibaja (1986), using both squash preparations and macroscopic observations of gonad color, reported sex-ratios biased towards females. Hermaphrodites are rare, representing only 0.2% of the population (Carpes-Paternoster 2003). Information on reproductive activity in mussels is important for their management (Narchi 1976; Fernandes & Castro 1982) and culture (Marques 1987, Sibaja 1988, Rajagopal et al. 1998) and the present study aims to describe gametogenetic activity in Mytella guyanensis from northern Brazil. The study area, near the Furo do Meio tidal channel (00°52’14.6’’S, 46°38’57.7’’W), was located in the Caeté mangrove estuary, along the northeastern coast of the State of Pará. The mussel bed (120 m2) occurs in typical fine muddy mangrove sediment with aerial roots and is regularly flooded during high tide as it borders a secondary channel linked to the Furo do Meio. The mean density of the bed was 6 mussels m-2, somewhat lower than that of another bed in the same region (11.9 mussels m-2, Beasley et al. 2005) but similar to the mean density of M. guyanensis (5.2 mussels m-2) in Paraíba (Nishida & Leonel 1995). Between January 2004 and January 2005, mussels were collected at low tide during the new moon phase, to standardize the timing of sampling. In order to obtain sexually mature individuals, mussels with an anterior-posterior shell length of at least 20 mm were selected. Mussels were obtained at Pan-American Journal of Aquatic Sciences (2009), 4(2): 247-250 C. P. GOMES ET AL. 248 randomly chosen coordinates within the bed. An initial sample size of 20 individuals was used in the first two months of the study but from March 2004 onwards, the number of specimens collected was reduced to 10 to minimize any possible impact of sampling, such as trampling and/or a reduction in population size due to the removal of individuals. A pair of gonads occurs in the dorsal part of the visceral mass from which ventrally ramified tubules unite to eventually open into the mantle cavity to release gametes into the sea water (Cox 1969, Gosling 2003). The gonads in mytilids develop extensively into the mantle tissue and both visceral mass and mantle tissue were sampled. The color of both the gonad and mantle tissue was noted for each individual. Both visceral mass and mantle tissue were fixed in Davidson's solution for 24 h before being stored in 70% alcohol. The material was dehydrated using a series of alcohol concentrations, cleared using xylol and embedded in paraffin wax. Thin sections (5 μm) were obtained using a microtome, which were subsequently stained using Haematoxylin and Eosin and mounted on glass slides for microscopic examination. Qualitative evaluations of gametogenesis in both the visceral mass and mantle tissue were carried out using the criteria of Nascimento (1968) for reproductive development in the closely related Mytella falcata (M. charruana (d´Orbigny, 1842)). Up to 5 consecutive developmental stages were identified by Nascimento (1968): I (Immature), II (Maturing), III (Pre-spawning), IV (Total or partial spawning) and V (Recovery). From the 150 individuals collected, 72 were male and 77 female with a single hermaphrodite, with mostly male reproductive tissue, found in September. There was no significant difference in 2 the sex ratio during the study period ( χ =10.3, d.f.=12, n.s.). Male reproductive tissue in the mantle tended to be darker (light yellow to orange yellow) than that of females (ivory to light yellow). However, the degree of overlap in color precluded conclusive determination of sex in 50% of cases by macroscopic observation alone. All individuals examined were sexually mature and belonged to reproductive stages III to V; there were no individuals at stages I and II. Pre-spawning (Stage III) males were characterized by long tubules with some immature cells close to the tubule wall and greater numbers of darkly stained mature spermatozoa in the lumen forming dense groups of cells (Figure 1a). During spawning (Stage IV) males are characterized by a reduction in the number of spermatozoa and the presence of small numbers of immature cells around the tubule walls and residual spermatozoa in the lumen (Figure 1b). In males, tubules in mantle tissue were almost completely empty in contrast to tubules in the visceral mass where residual spermatozoa were common. During recovery (Stage V), the tubules were packed with immature cells but also contained lower numbers of spermatozoa (Figure 1c). Pre-spawning (Stage III) females showed well developed oval follicles containing a large quantity of mature oocytes (round in shape and free in the lumen). Some oocytes were still attached to the follicle wall by a stalk (Figure 1d). Spawning (Stage IV) females were characterized by poorly developed follicles without a definite shape and containing occasional mature oocytes. Some degenerating oocytes that had not been released during spawning were also present (Figure 1e). In females, follicles were completely empty in the visceral mass but not in the mantle tissue. Recovering (Stage V) females contained many immature oocytes close to the follicle wall (Figure 1f) but these did not have the oval shape characteristic of the pre-spawning stage. The sexes in Mytella guyanensis could not be accurately distinguished through macroscopic observation due to wide variation in the colour of the reproductive tissues, which were darker in males and lighter in females. This contrasts with other mytilids where the gonads are usually lighter in colour in males and darker in females (Nascimento 1968, Arrieche et al. 2002, Gosling 2003). However, our results agree with those of Cruz & Villalobos (1993) whose macroscopic description of gonad colour in M. guyanensis from Costa Rica varies from light to dark yellow in females and from light to dark brown in males. The histology and cellular organization of the reproductive tissues of Mytella guyanensis is similar to what has been previously reported for this species (Cruz & Villalobos 1993, Carpes-Paternoster 2003), for the closely related Mytella falcata (Nascimento 1968), and, for other bivalves in general (Gosling 2003). Mean oocyte size of M. guyanensis ranged from 26 to 42 µm (maximum individual observation was 62 µm) in northern Brazil, similar to the 30-45 µm range described for a population in Costa Rica (Sibaja 1986). By comparison, maximum oocyte size is 63.3 µm in M. falcata (Nascimento 1968) and 70 µm in Mytilus edulis (Gosling 2003). Pan-American Journal of Aquatic Sciences (2009), 4(2): 247-250 Gametogenesis in the mangrove mussel Mytella guyanensis from northern Brazil 249 Figure 1. Photo-microscopy of thin sections of reproductive tissue from male and female Mytella guyanensis. (a) Male, Stage III, pre-spawning, (b) male, Stage IV, spawning and (c) male, Stage V, recovery. (d) Female, Stage III, prespawning, (e) female, Stage IV, spawning and (f) female, Stage V, recovery. Sp Spermatozoa, Im Immature cells, F Follicle, Oc 1 primary oocytes, Oc 2 secondary oocytes. Bar is 100 µm. Acknowledgments CPG, SMOP were supported by scholarships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We also thank the Secretaria Executiva de Ciência, Tecnologia e Meio Ambiente, Pará State and Banco da Amazônia, S. A. for financial support. This study was carried out as part of the Mangrove Dynamics and Management (MADAM) Project, a joint German-Brazilian cooperative scientific program. References Arrieche, D., Licet, B., Garcia, N., Lodeiros, C. & Prieto, A. 2002. Condition index, gonadic index and yield of the brown mussel Perna perna (Bivalvia: Mytilidae) from the Morro de Guarapo, Venezuela. Interciencia, 27: 613-619. Beasley, C. R., Gomes, C. P., Fernandes, C. M., Brito, B. A., Santos, S. M. L. & Tagliaro, C. H. 2005. Molluscan diversity and abundance among coastal habitats of northern Brazil. Ecotropica, 11: 9-20. Carpes-Paternoster, S. 2003. Ciclo reprodutivo do marisco-do-mangue Mytella guyanensis (Lamarck, 1819) no manguezal do Rio Tavares-Ilha de Santa Catarina/SC. M.Sc. Dissertation. Universidade Federal de Santa Catarina, Florianópolis, Brazil, 30 p. Cox, L. R. 1969. General features of Bivalvia. Pp. 2129. In: Moore, R. C. (Eds.). Treatise on invertebrate paleontology. Part N Mollusca Pan-American Journal of Aquatic Sciences (2009), 4(2): 247-250 C. P. GOMES ET AL. 250 6 Bivalvia. Geological Society of America, University of Kansas, Lawrence, Kansas, 489 p. Cruz, R. A. & Villalobos, C. R. 1993. Shell length at sexual maturity and spawning cycle of Mytella guyanensis (Bivalvia: Mytilidae) from Costa Rica. Revista de Biologia Tropical, 41: 89-92. Fernandes, L. M. B. & Castro, A. C. 1982. Caracterização ambiental e prospecção pesqueira do estuário do rio Cururuca (MA). Estudos de moluscos, crustáceos e peixes. Atlântica, 5: 44. Gosling, E. 2003. Bivalve molluscs. Biology, ecology and culture. Blackwell Science, Oxford, 431 p. Klappenbach, M. A. 1965. Lista preliminar de los Mytilidae brasileños con claves para su determinación y notas sobre su distribución. Anais da Academia Brasileira de Ciências, 37: 327-352. Marques, H. L. A. 1987. Estudo preliminar sobre a época de captação de jovens de mexilhão Perna perna (Linnaeus, 1758) em coletores artificiais na região de Ubatuba, Estado de São Paulo, Brasil. Boletim do Instituto de Pesca, 14: 25-34. Mora, D. A. & Alpízar, B. M. 1998. Crecimiento de Mytella guyanensis (Bivalvia: Mytilidae) en balsas flotantes Revista de Biologia Tropical, 46: 21-26. Narchi, W. 1976. Importância do conhecimento dos ciclos gametogênicos de bivalves comestíveis. Anais da Academia Brasileira de Ciências, 47: 133-134. Nascimento, I. 1968. Estudo preliminar da maturidade do sururu (Mytella falcata, Orbigny, 1846). Boletim de Estudos de Pesca, 8: 17-33. Nishida, A. K. & Leonel, R. M. V. 1995. Occurrence, population dynamics and habitat characterization of Mytella guyanensis (Lamarck, 1819) (Mollusca, Bivalvia) in the Paraíba do Norte river estuary. Boletim do Instituto de Oceanografia, 43: 41-49. Nishida, A., Nordi, N. & da Nóbrega-Alves, R. 2006. Mollusc gathering in northeast Brazil: an ethnological approach. Human Ecology, 34: 133-144. Pereira, O., Hilberath, R., Ansarah, P. & Galvão, M. 2003. Estimativa da produção de Mytella falcata e de M. guyanensis em bancos naturais do estuário de Ilha Comprida, SP, Brasil. Boletim do Instituto de Pesca, São Paulo, 29: 139-149. Pereira, O. M., Galvão, M. S. N., Pimentel, C. M., Henriques, M. B. & Machado, I. C. 2007. Distribuição dos bancos naturais e estimativa de estoque do gênero Mytella no estuário de Cananéia, SP, Brasil. Brazilian Journal of Aquatic Science and Technology, 11: 2129. Rajagopal, S., Venugopalan, V. P., Nair, K. V. K., van de Velde, G., Jenner, H. A. & den Hartog, C. 1998. Reproduction, growth rate and culture potential of the green mussel, Perna viridis (L.) in Edaiyur backwaters, east coast of India. Aquaculture, 162: 187-202. Rios, E. 1994. Seashells of Brazil. Editora da Fundação Universidade do Rio Grande, Rio Grande, 368 p. Sibaja, W. 1986. Madurez sexual em el mejillón chora Mytella guyanensis Lamark, 1819 (Bivalvia: Mytilidae) del manglar en Jicaral, Puntarenas, Costa Rica. Revista de Biologia Tropical, 34: 151-155. Sibaja, W. G. 1988. Fijación larval y crecimiento del mejillón Mytella guyanensis L. (Bivalvia: Mytilidae) en Isla Chira, Costa Rica. Revista de Biologia Tropical, 36: 453-456. Received January 2009 Accepted May 2009 Published online June 2009 Pan-American Journal of Aquatic Sciences (2009), 4(2): 247-250 Diffusion material only – Do not cite Original Scientific Photographs BY PRANAV J.PANDYA & KAURESH D.VACHHRAJANI Division of Environment and Toxicology, Department of Zoology, The M. S. University of Baroda, Vadodara – 390002, Gujarat, India. Email: pranavpandya1@yahoo.com The Decapoda crab Matuta planipes (Fabricius, 1798) is usually found in marine reaches as well as mouth of estuaries. It belongs to family Calappidae. It is distributed from Southeast Asia to Australia and westward to India. This crab is known and reported as predator of flounder fishes. Mostly found in sandy zones and showed typical predatory behavior. On 27th July 2008 we observed adult M. planipes (Carapace width = 8 cm including lateral spines) predating on other crab Macrophthalmsus dilatatus (Lancheser, 1900), on the intertidal reach of Mahi river estuary (22º12’52.38” N 72º37’17.89” E), Gujarat, India. The crab partially buries itself under the sandy substrata and predates on the other inhabitant M. dilatatus abundant in sandy zone. Also, observation and sampling of the area from 2006 to 2008 illustrated that both the predator and prey species were specific in substratum preference and habitat utility (90 -94% sand and 6-10% silt-clay). Picture characteristics: Canon PowerShot S70; Resolution of 4 megapixels; autofocus; automatic regulation; Image cropped. References Ng, P. K. L., Guinot D. and Davie P. J. F., 2008. Systema Brachyurorum: Part 1: An annotated checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology., 17: 1-286. Hossain, M. A. R and Tanaka, M. 2002. Predator-prey interaction between hatchery-reared Japanese flounder juvenile, Paralichthys olivaceus and sandy shore crab, Matuta lunaris: daily rhythms, anti-predator conditioning and starvation. J. Exp. Mar. Biol. And Ecol. 26: 1-14. Fatima, M. 2003. Length weight study of two species of crabs Matuta planipes and Matuta lunaris from Karachi, Pakistan. Pakistan Journal of Biological Science, 6(4):397-398. This picture may be used for academic or personal purposes but always accompanied by the author's information (copyright). To obtain permission for commercial use or for any other non-personal, non-academic use, or to inquire about reprints, fees, and licensing, please contact the author via e-mail. Pan-American Journal of Aquatic Sciences (2009), 4(2): I Diffusion material only – Do not cite Original Scientific Photographs * BY SIMONE MARIA DE ALBUQUERQUE LIRA , FERNANDA MARIA DUARTE DO AMARAL & CRISTIANE MARIA ROCHA FARRAPEIRA Universidade Federal Rural de Pernambuco, Departamento de Biologia, 52.171-900. Recife - PE, Brasil. *Email: simonealira@gmail.com A B A numerous population of the white sea-urchin Tripneustes ventricosus (Lamarck, 1816) was recorded on long extensions of the Atalaia Beach, Fernando de Noronha Archipelago, Brazil (3º49’S e 32º24W). The area is home to a reef environment dominated by this sea-urchin, as shown in pictures A and B made in February 2009 at 3 p.m. local time. The species is distributed throughout the occidental and oriental Atlantic Ocean and was first recorded for the archipelago in 1962 (Brito 1962). It was later classified as rare by a study on reef zonation carried out in 1986 (Eston et al. 1986). Atalaia Beach is part of the Fernando de Noronha National Marine Park and its reef environments suffer from the impacts caused by the Echinodermata. Sea-urchins are commonly recorded competing for space and food in reef ecosystems (Hughes 1989, Done 1995). Such competition conspicuously impacts these environments, which includes the loss of special characteristics of the reef, such as decreasing zones of reefbuilding corals (scleractinians) in a process known as non-reefbuilding (Done 1995, Done et al. 1996). Considering the area's low insular diversity (Eston et al. 1986, Simberloff 2000), the increasing presence of these organisms may cause local biodiversity to diminish even more due to interspecific competition. Picture characteristics: Cyber-shot DSC-W90 digital camera; 8.1 megapixels (300 dpi); 2.8 diaphragm opening; 1/40 exposure. References Brito, I. M. 1962. Ensaio de catálogo dos equinodermas do Brasil. Faculdade Nacional de Filosofia, Centro de Estudos Zoológicos, Rio de Janeiro, 13:1-10. Done, T. J. 1995. Remediation of degraded coral reefs: the need for broad focus. Marine Pollution Bulletin 30: 686-688. Done, T. J., Ogden, J. C., Wiebe, W. J. & Rosen, B. R. 1996. Biodiversity and ecosystem function of coral reefs. pp. 393-429. In: Heywood, V. H. (ed) Global biodiversity assessment. Cambridge University Press for United Nations Environment Programme. 1152 p. Eston, V. R., Migotto, A. E., Oliveira Filho, E. C., Rodrigues, S. A. & Freitas, J. C. 1986. Vertical distribution of benthic marine organisms on rocky coasts of the Fernando de Noronha Archipelago (Brazil). Boletim do Instituto Oceanográfico 34: 37-53. Hughes, T. P. 1989. Community structure and diversity of coral reefs: the role of history. Ecology 70:275–279. Simberloff, D. 2000. Extinction-proneness of island species- causes and management implications. The Raffles Bulletin of Zoology, Singapore, 48 (1): 1-19. This picture may be used for academic or personal purposes but always accompanied by the author's information (copyright). To obtain permission for commercial use or for any other non-personal, non-academic use, or to inquire about reprints, fees, and licensing, please contact the author via e-mail. Pan-American Journal of Aquatic Sciences (2009), 4(2): II