Photoionization Studies of HII Regions and Diffuse Ionized Gas in
Transcription
Photoionization Studies of HII Regions and Diffuse Ionized Gas in
Photoionization Studies of the Turbulent Interstellar Medium Kenny Wood University of St Andrews in collaboration with Alex Hill, Matt Haffner, Ron Reynolds, John Mathis, Bob Benjamin Rich Rand, Ryan Joung, Mordecai MacLow, Andrew Schechtman-Rook, Matt Bershady Galactic Star Formation Factories Warm Diffuse H II Courtesy of FIMS (Berkeley) WHAM n0 ~ 0.03 cm-3; ff ~ 0.2; H ~ 1 kpc How do photons get there? Perseus Arm Hα [N II]/Hα [S II]/Hα [S II]/[N II] 6000 K < T < 12000 K How is the gas heated? Haffner et al. (2009) 3D Photoionization Models of 1. Propagation of ionizing photons & 3D structure of the interstellar medium 2. Extra heating sources of diffuse ionized gas in Milky Way and NGC891 3. Structure of Galactic HII regions 4. Ionization of high velocity clouds Stromgren Volumes Uniform medium: Stromgren spheres Stratified medium: Stromgren volumes • Stratified density gives larger volume of ionized gas at large |z| • DIG is superposition of overlapping Stromgren volumes Franco, Tenorio-Tagle, & Bodenheimer (1989); Miller & Cox (1993); Dove & Shull (1994); Dove, Shull, & Ferrara (2000) Stromgren Volumes • Miller & Cox (1993) reproduce EM and DM – Stratified ISM density + clouds – Locations/luminosities of O stars in Galaxy • Significant Hα from cloud faces • BUT their H0 density lower than “standard” Dickey-Lockman disk • ISM must have low density paths to allow leakage of LyC to large |z| • Need 3D radiation transfer Monte Carlo Photoionization • • • • • • 3D density structure and radiation transfer Ions: H, He, C, N, O, Ne, S Stellar and diffuse photons in Cartesian grid Input: ionizing spectrum from source(s) Output: 3D temperature & ionization structure Emissivities, emission line maps, line ratios Wood, Mathis, & Ercolano (2003) Lexington H II Benchmarks • T*=40000K, Q(H)=4.26E49 s-1, n(H)=100 cm-3 + Monte Carlo CLOUDY Wood, Mathis, & Ercolano (2003) Ionizing a Smooth and Fractal ISM • • • • • Initial H0: Dickey-Lockman disk + Reynolds layer Fractal algorithm: Elmegreen (1997) Source: Q(H0) = 1e49, 3e49, 5.e49, 1.e50 Contours: slices showing edge of H+ volume Hα from smooth component and also cloud faces M51: O stars can’t ionize the gas? Seon (2009) • LyC propagation: FLyC (r) ~ e - τ(HI) / r 2 • Need N(HI) ~ 10-5 observed values • Two effects: – ionized gas has f (H0) < 10-3 – 3D ISM provides low density paths M51: Ionization of a 3D ISM log (EM) Wood & Seon (2011) • Fractal ISM allows LyC penetration 3D Models: NGC891 & M51 Schechtman-Rook, Wood, & Bershady (2011) Need 3D dynamical simulations of ISM… log n Ionize this…! De Avillez & Berry (2001) Supernovae Driven Turbulent ISM ρ T P vz ΝΗ 1 GSN 8 GSN 64 GSN 512 GSN GSN = 258 SNe Myr-1 kpc-3 Joung et al. (2009) Ionization Simulations • LyC can propagate to large heights • Ionize gas with Galactic LyC budget Wood et al. (2010) EM Distributions • Model distributions too broad • Need to smooth out density variations • Magnetic fields…? Hill et al. (2009) Wood et al. (2010) MHD Simulations • Smooth out large density contrasts, narrower EM? • Pressure support of gas at large heights? • First results… 7 µG too large, confines density, need very large QH to ionize grid Hill et al. (2011) Summary so far • 3D turbulent ISM allows for production of DIG, but EM distributions too broad • B-fields may help narrow EM distribution • What about temperatures and line ratios…? DIG Spectrum • Data: Hα, Hβ, He I, [S II], [N II], [O I], [O II], [O III], radio recombination lines • Models: mostly 1D spherical volume averaged line ratios (Mathis 1986; Domgoergen & Mathis 1994; Mathis 2000; Sembach et al. 2000; Hoopes & Walterbos 2003) I[NII] / IHα • More realistic models: rays piercing ionized volumes (Bland-Hawthorn, Freeman, & Quinn 1998, Elwert 2003, Wood & Mathis 2004) I[N II](ξ, ψ) / IHα(ξ, ψ) Extra Heating • [N II]/Hα rises with |z| in Milky Way and other edge-on galaxies (Rand 1997; Haffner et al. 1999; Otte et al. 2002) – H II regions: [N II]/Hα ~ 0.2 – DIG: [N II]/Hα ~ 0.5 - 1.7 • [N II]/Hα probes temperature structure • 1D spherically averaged models can produce large [N II]/Hα if include additional heating • ν3 frequency dependence of H0 and He0 opacity gives natural hardening of radiation field and increasing temperatures away from source: (BlandHawthorn, Freeman, & Quinn 1998; Elwert 2003, Wood & Mathis 2004) Density Bounded, Leaky H II Region Direct escape H-recombs He-recombs • Leaky H II regions may help [N II]/Hα, He+/H+ problems • Test with other diagnostic line ratios (Hoopes & Walterbos 2003) z (kpc) 2D Ionization & Temperature • Point source, Q = 6 1049 s-1, n(z) ~ exp(-|z|/H) • Slices through grid in x-z plane • Temperature rises away from source Wood & Mathis (2004) • [N II]/Hα, [S II]/Hα increase with height • Can get [N II]/Hα ~ 0.7, need extra heating for largest observed values • Extra heating dominates photoionization (n2) at large |z| => G1ne (Reynolds, Haffner, & Tufte 1999) • Required values: G1ne ~ 10-25 ergs/s/cm3 (Reynolds, Haffner, & Tufte 1999; Wood & Mathis 2004) z (kpc) 2D Models: Line Ratios Extra Heating Sources/Diagnosis • Ionization structure not changed, gas temperature increased • Dust photoelectric heating (Reynolds & Cox 1992) • Turbulent dissipation (Minter & Spangler 1998) • SNe, shocks, cosmic rays, … • [O II] / Hα very sensitive to extra heating (Mathis 2000, Elwert 2003, Otte et al. 2003) NGC891 Line Ratios • Spitzer spectrum: IR Ne lines, no extinction • Radiation hardening cannot give rising [NeIII]/[NeII] • Extra source of high energy photons: sdO stars? Rand, Wood, & Benjamin (2009, 2010) Hot ionizing sources • • • • “Cool” + “Hot” sdO stars, Teff = 50kK Scaleheight: z ~ 1kpc Ionizing luminosity ~7% Rand, Wood, & Benjamin (2009, 2010) Summary of temperature structure • Additional heating above photoionization • Hot stars with large scaleheight, other mechanical heating,…? • WIYN Grad-Queue observations of M51 Porosity of H II Regions ζ Oph H II Region Single star: 09.5V Wood et al. (2005) Porosity of H II Regions Fractal models: vary porosity to fit radial Hα intensity and line ratios Wood et al. (2005) Porosity of H II Regions Smooth models: Hα too steep at edge [N II] / Hα rapid increase at edge Wood et al. (2005) Clump volume filling factor ff = 35% Wood et al. (2005) Clump volume filling factor ff = 55% Wood et al. (2005) Clump volume filling factor ff = 80% Wood et al. (2005) Clump volume filling factor ff = 99% Wood et al. (2005) Porosity of ζ Oph H II Region • Hα intensity and line ratios: porosity ~ 50% • Lyman continuum leakage ~ 3% - 15% • DIG requires 15% of LyC from OB stars • DIG ionizing sources must reside in more porous regions of the ISM Wood et al. (2005) Survival of neutral clouds • Cloud at z = 1.5 kpc, rc = 50pc • n = 0.01, 0.05, 0.1, 0.5 cm-3 • Neutral for n > 0.1 cm-3 Wood et al. (2010) Smith Cloud Lockman et al. (2008) Hill et al. (2009) • Cloud colliding with Galaxy, v ~ 75 km/s • M(H0) ~ M(H+) ~ 106 Msun • N / H ~ 0.2 solar Ionization of Smith Cloud • n ~ 0.01 cm-3; ionized skin Wood & Hill et al. (2011) Summary • • • • 3D MHD allows DIG Extra heating to explain line ratios Porosity of ISM Ionization and metallicity of HVCs Next… • Diagnostics of extra heating sources • 3D MHD of HII regions • High resolution MCRT: interfaces Importance of Interfaces Planetary Nebula NGC6583: Hα, [O I] • [O I] emission from ionized/ neutral interface • Needs neutral gas and high T • Gas turning neutral and temperature increasing in narrow zone • PNe, ISM, AGN,… • Need adaptive mesh radiation transfer code…