overview on water electrolysis for hydrogen production and storage

Transcription

overview on water electrolysis for hydrogen production and storage
OVERVIEW ON WATER ELECTROLYSIS FOR HYDROGEN
PRODUCTION AND STORAGE
Results of the NOW study » Stand und Entwicklungspotenzial der Wasserelektrolyse
zur Herstellung von H2 aus regenerativen Energien“
Tom Smolinka1, Jürgen Garche2 , Christopher
Hebling1, Oliver Ehret3
1Fraunhofer-Institut
für Solare Energiesysteme ISE
2FCBAT - Fuel Cell and Battery Consulting
3NOW GmbH
SYMPOSIUM - Water electrolysis and hydrogen as
part of the future Renewable Energy System
Copenhagen/Denmark, May 10, 2012
© Fraunhofer ISE
FCBAT
Agenda
 Introduction to water electrolysis
 Technology (stack and system)
 Alkaline electrolysis - AEL
 PEM electrolysis - PEMEL
 High temperature electrolysis - HTEL
 Large water electrolysis plants of the last century
 Today’s commercial systems
 Manufactures of electrolysers
 Technology outlook and R&D demand
2
© Fraunhofer ISE
FCBAT
Electrolytical Water Splitting – for more than 200 years!
 Invention of voltaic pile (1799) enabled
investigations of electrolytic approaches
 Main principle demonstrated around 1800 by J. W.
Ritter, William Nicholson and Anthony Carlise
 Today 3 technologies demonstrated:
 Alkaline electrolysis (AEL)
Test set-up of Ritter
 Electrolysis in acid environment
(PEM electrolysis - PEMEL)
(SPE water electrolysis)
 Steam electrolysis
(High temperature electrolysis HTEL or SOEL)
2 H2O  2 H2 + O2
Alkaline electrolyser around 1900
3
© Fraunhofer ISE
Johann Wilhelm Ritter (1776-1810)
Picture credits: all www.wikipedia.org
FCBAT
1890s: Hydrogen Production by Wind Power!
 Danish inventor, wind
mill pioneer and teacher
at Askov folk high school
Poul la Cour (1846 - 1908)
 First wind mill in 1891
for rural electrification
 Hydrogen storage system
 Alkaline tubular
electrolysis cells
 H2 / O2 tanks
 Gas lamps for
school building
(1895-1902)
 (autogenous gas
welding)
4
© Fraunhofer ISE
Source and picture credits:
en.wikipedia.org/wiki/Poul_la_Cou
http://www.poullacour.dk/engelsk/menu.htm
FCBAT
The Self-sufficient Solar House in Freiburg …
 … begin of R&D activities in PEM
electrolysis at Fraunhofer ISE
 First developments in the Eighties
 Field test: 1992-1995
 Complete hydrogen storage
system consisting of:
5
© Fraunhofer ISE

PEM electrolyser

(30 bar / 2 kWel)

H2 and O2 pressure tanks

PEM fuel cell
FCBAT
The Self-sufficient Solar House in Freiburg …
 PEM electrolysis unit
PV
panel
Electrolyser
Battery
Fuel
Cell
DC Load
Inverte AC load
r
(30 bar / 2 kWel)
 H2/O2 storage tanks
 PEM fuel cell
Electrical usage
Regenerative fuel cell:
 No mech. compressor!
Electricity
Storage
Gas
tanks
Heat
Cooking
Heating
6
© Fraunhofer ISE
FCBAT
Thermal usage
Warm
water
Electrolytical Water Splitting: Partial Reactions
Technology
Temperature range
Cathodic Reaction
(HER)
Charge
Carrier
AEL
40 - 90 °C
2H2O  2e   H2  2OH 
OH-
2OH  
PEMEL
20 - 100 °C
2H   2e 
 H2
H+
H2O  12 O2  2H   2e 
HTEL
(SOEL)
700 1000 °C
H2O  2e   H2  O 2
O2-
O 2 
Anodic Reaction (OER)
1
2
1
2
O2  H2O  2e 
O2  2e 
Ni/PSU compound
Raynel Nickel
Vermeiren et al. 2009 Martinez et al. 2010
7
© Fraunhofer ISE
~10 m
Fraunhofer ISE
~180 m
Zahid, WHEC 2010
~10 m
FCBAT
Stack Design Alkaline Water Electrolyser
 Today bipolar filter press
design (several 100 cells)
 Atmospheric - 30 bar
 Active cell area < 4.0 m²
 0.2 - 0.45 A/cm² @ < 2.4 V
IHT
NEL Hydrogen
Hydrogenics
Hydrotechnik
Diaphragm
Wire gauze electrode
Bipolar goffered plate
Schematic of a Lurgi electrolysis cell
8
© Fraunhofer ISE
FCBAT
Accagen
System Design Alkaline Water Electrolyser
 Lye loop (KOH)
 Gas-lye seperator and scrubber
 Power electronics
 Compression und fine purification
9
© Fraunhofer ISE
Picture credits: NEL Hydrogen/Norsk Hydro
FCBAT
Stack Design PEM Water Electrolyser
 Only filter press design
 Pressure tightness:
up to 207 bar
 Active cell area:
10 - 750 cm²
Proton
Giner
Kurchatov
Siemens
 Current density:
up to 2.5 A/cm² @ 2.2 V
 Cells/stack: < 120
 H2 production rate/stack:
2 Nl/h - 10 Nm³/h
CETH2
Helion
ITM Power Fraunhofer ISE
10
© Fraunhofer ISE
Hydrogenics
h-tec
FCBAT
Hamilton
System Design PEM Water Electrolyser
 Comparable to AEL
 Simpler system design
 Pressure-tight construction
11
© Fraunhofer ISE
FCBAT
Stack Design High Temperature Electrolyser
 No commercial
products
Kyushu University (25 cells) Idaho NL (720 Cell / 5.7 Nm3/hr / 17.5k W)
 Bipolar construction
 No pressurised stacks
 Cell area: ~ 100 cm²
 Current density:
0.3 - 3.0 A/cm²
Picture credits: O‘Brien, RelHy-Workshop 2009
12
© Fraunhofer ISE
Picture credits : Zahid, WHEC 2010
FCBAT
General System Layout for HTEL
 Only Concept
 Coupling with
HT source
(nuclear reactor)
 Electricity
generation with
steam turbine
Picture credits: Zahid, WHEC 2010
13
© Fraunhofer ISE
FCBAT
Realised (Alkaline) Water Electrolysis Plants
Location
Capacity
Power
[Nm³/h]
[MWel]
Zimbabwe /
Kwe-Kwe
21.000
Norway /
Glomfjord
27.100
Norway /
Rjukan
27.900
Egypt /
Aswan
32.400
160
BBC/DEMAG
132
1965 - 70
Peru / Cuzco
5.200
22
Lurgi
7
1965
Canada / Trail
21.000
?
Trail
?
?
30.000
~ 142
De Nora
?
- 1961
India / Nangal
14
© Fraunhofer ISE
Type
Modules
Construction
time
~ 95
Lurgi
28
1971 - 73
~ 142
Norsk Hydro
ca. 150
- 1949
(decommissioned 1980)
~ 142
Norsk Hydro
ca. 150
- 1929
(decommissioned 1980)
FCBAT
Realised (Alkaline) Water Electrolysis Plants
Picture credits: Barisic - ELT, 2008, NOW-Workshop
15
© Fraunhofer ISE
Picture credits:
Fell - StatoilHydro, 2008, NOW-Workshop
FCBAT
Commercial Available Electrolysis Systems
 AEL
 1 - 760 Nm³/h
 5 kWel - 3.4 MWel
 PEMEL
 0.01 - 30 Nm³/h
 0.5 - 160 kWel
Wasserelekrolyse
Hydrotechnik
Hydrognics
SAGIM
NEL Hydrogen
 PEMEL grows!
 In 3 - 5 years:
 Up to 250 Nm³/h (?)
 Up to 1.0 MWel (?)
Schmidlin
16
© Fraunhofer ISE
ITM Power
h-tec
Proton ES
FCBAT
Treadwell
Main Players in Water Electrolysis
Mature
Advanced
R&D
© Fraunhofer ISE (2011-11)
Alkaline Electrolysis
PEM Electrolysis
No claim to be complete!
17
© Fraunhofer ISE
FCBAT
Typical Today‘s Applications
Apllication
H2 Generator for jewellery, laboratory and medical engineering
Typical size
electrolyser
5 - 500 Nl/h
Generator cooling in power plants
5 - 10 Nm³/h
Hydrogen filling station
5 - 60 Nm³/h
Feed Water Inertisation (BWR water chemistry)
50 Nm³/h
Float glas production (protective atmosphere)
50 - 150 Nm³/h
Electronics industry
100 - 400 Nm³/h
Metallurgy
200 - 750 Nm³/h
Food industry (fat hardening)
100 - 900 Nm³/h
Military und aerospace
18
© Fraunhofer ISE
< 15 Nm³/h
FCBAT
 Manufacturer's data
 No standardised
data
 Differernt pressure
and H2 purity
 Specifications for
steady state
operation
Spez.
Energieverbrauch
[kWh/Nm³
H2]
Spec.
Energy
Demand[kWh
el / Nm³ H2]
Specific Energy Consumption – Efficiency of Electrolysers
10,0
9,0
AEL(atmospheric)
(atmosphärisch)
AEL (pressurised)
(Druck)
PEMEL Stack
PEMEL System
8,0
7,0
6,0
5,0
4,0
3,0
Thermodynamik @ STP
© Fraunhofer ISE
2,0
0,010
0,100
1,000
10,000
100,000
Wasserstoffproduktionsrate
Hydrogen
Production Rate [Nm³/h]
[Nm³/h]
19
© Fraunhofer ISE
FCBAT
1000,000
 Energy consumption
will not be reduced
significantly in the
future
 Higher operating
pressure
 High power
densities due to
cost pressure
 Dynamic operation
(start/stop, standby)
Spez.
Energieverbrauch
[kWh/Nm³
H2]
Spec.
Energy
Demand[kWh
el / Nm³ H2]
Specific Energy Consumption – Efficiency of Electrolysers
10,0
9,0
AEL(atmospheric)
(atmosphärisch)
AEL (pressurised)
(Druck)
PEMEL Stack
PEMEL System
8,0
7,0
6,0
PEMEL
AEL
5,0
4,0
3,0
Thermodynamik
@@
STPNTP
Thermodynamics
© Fraunhofer ISE
2,0
0,010
0,100
1,000
10,000
100,000
Wasserstoffproduktionsrate
Hydrogen
Production Rate [Nm³/h]
[Nm³/h]
20
© Fraunhofer ISE
FCBAT
1000,000
Where Do We Have R&D Demand in the Next Years?
 AEL
 PEMEL
 Increasing current
density
 Increasing life time
of materials/ stack
 (Increasing pressure
tightness)
 Scale up concepts for
stack and system
 Faster dynamics of
the complete system
(BOP)
 Decreasing costs by
substitution or
reduction of
expensive materials
 Higher part load
range
 Decreasing
production costs
through economies
of scale
21
© Fraunhofer ISE
 HTEL
 Development of
adapted electrodes/
electrolyte for SOEL
 Cell and stack design
 Proof of life time
 Pressure tightness
 Cycling stability
 (Decreasing
production costs
through economies
of scale)
FCBAT
Back to the Future!
75 MW AEL module, concept EdF (30 bar, 160 °C)
(LeRoy 1983, Int. J. Hydrogen Energy)
HT electrolysis plant, draft Brookhaven NL
(Source: Zahid 2010, WHEC)
AEL plant - concept
578 MW, 248 module
Draft Norsk Hydro
(Source: Fell/SHT 2011
NOW-Workshop)
58 MW PEMEL plant, concept GE
(Nuttall 1977, Int. J. Hydrogen Energy)
22
© Fraunhofer ISE
FCBAT
Thanks a lot for your kind attention!
Dr. Tom Smolinka
Fraunhofer ISE
Heidenhofstr. 2 / 79110 Freiburg / Germany
Tel: +49 761 4588 5212
tom.smolinka@ise.fraunhofer.de
www.ise.fraunhofer.de
Questions?
Executive summary (only in German):
http://www.now-gmbh.de/fileadmin/user_upload/RE-Mediathek/RE_Publikationen_NOW/
NOW-Studie-Wasserelektrolyse-2011.pdf
23
© Fraunhofer ISE
FCBAT

Similar documents