overview on water electrolysis for hydrogen production and storage
Transcription
overview on water electrolysis for hydrogen production and storage
OVERVIEW ON WATER ELECTROLYSIS FOR HYDROGEN PRODUCTION AND STORAGE Results of the NOW study » Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von H2 aus regenerativen Energien“ Tom Smolinka1, Jürgen Garche2 , Christopher Hebling1, Oliver Ehret3 1Fraunhofer-Institut für Solare Energiesysteme ISE 2FCBAT - Fuel Cell and Battery Consulting 3NOW GmbH SYMPOSIUM - Water electrolysis and hydrogen as part of the future Renewable Energy System Copenhagen/Denmark, May 10, 2012 © Fraunhofer ISE FCBAT Agenda Introduction to water electrolysis Technology (stack and system) Alkaline electrolysis - AEL PEM electrolysis - PEMEL High temperature electrolysis - HTEL Large water electrolysis plants of the last century Today’s commercial systems Manufactures of electrolysers Technology outlook and R&D demand 2 © Fraunhofer ISE FCBAT Electrolytical Water Splitting – for more than 200 years! Invention of voltaic pile (1799) enabled investigations of electrolytic approaches Main principle demonstrated around 1800 by J. W. Ritter, William Nicholson and Anthony Carlise Today 3 technologies demonstrated: Alkaline electrolysis (AEL) Test set-up of Ritter Electrolysis in acid environment (PEM electrolysis - PEMEL) (SPE water electrolysis) Steam electrolysis (High temperature electrolysis HTEL or SOEL) 2 H2O 2 H2 + O2 Alkaline electrolyser around 1900 3 © Fraunhofer ISE Johann Wilhelm Ritter (1776-1810) Picture credits: all www.wikipedia.org FCBAT 1890s: Hydrogen Production by Wind Power! Danish inventor, wind mill pioneer and teacher at Askov folk high school Poul la Cour (1846 - 1908) First wind mill in 1891 for rural electrification Hydrogen storage system Alkaline tubular electrolysis cells H2 / O2 tanks Gas lamps for school building (1895-1902) (autogenous gas welding) 4 © Fraunhofer ISE Source and picture credits: en.wikipedia.org/wiki/Poul_la_Cou http://www.poullacour.dk/engelsk/menu.htm FCBAT The Self-sufficient Solar House in Freiburg … … begin of R&D activities in PEM electrolysis at Fraunhofer ISE First developments in the Eighties Field test: 1992-1995 Complete hydrogen storage system consisting of: 5 © Fraunhofer ISE PEM electrolyser (30 bar / 2 kWel) H2 and O2 pressure tanks PEM fuel cell FCBAT The Self-sufficient Solar House in Freiburg … PEM electrolysis unit PV panel Electrolyser Battery Fuel Cell DC Load Inverte AC load r (30 bar / 2 kWel) H2/O2 storage tanks PEM fuel cell Electrical usage Regenerative fuel cell: No mech. compressor! Electricity Storage Gas tanks Heat Cooking Heating 6 © Fraunhofer ISE FCBAT Thermal usage Warm water Electrolytical Water Splitting: Partial Reactions Technology Temperature range Cathodic Reaction (HER) Charge Carrier AEL 40 - 90 °C 2H2O 2e H2 2OH OH- 2OH PEMEL 20 - 100 °C 2H 2e H2 H+ H2O 12 O2 2H 2e HTEL (SOEL) 700 1000 °C H2O 2e H2 O 2 O2- O 2 Anodic Reaction (OER) 1 2 1 2 O2 H2O 2e O2 2e Ni/PSU compound Raynel Nickel Vermeiren et al. 2009 Martinez et al. 2010 7 © Fraunhofer ISE ~10 m Fraunhofer ISE ~180 m Zahid, WHEC 2010 ~10 m FCBAT Stack Design Alkaline Water Electrolyser Today bipolar filter press design (several 100 cells) Atmospheric - 30 bar Active cell area < 4.0 m² 0.2 - 0.45 A/cm² @ < 2.4 V IHT NEL Hydrogen Hydrogenics Hydrotechnik Diaphragm Wire gauze electrode Bipolar goffered plate Schematic of a Lurgi electrolysis cell 8 © Fraunhofer ISE FCBAT Accagen System Design Alkaline Water Electrolyser Lye loop (KOH) Gas-lye seperator and scrubber Power electronics Compression und fine purification 9 © Fraunhofer ISE Picture credits: NEL Hydrogen/Norsk Hydro FCBAT Stack Design PEM Water Electrolyser Only filter press design Pressure tightness: up to 207 bar Active cell area: 10 - 750 cm² Proton Giner Kurchatov Siemens Current density: up to 2.5 A/cm² @ 2.2 V Cells/stack: < 120 H2 production rate/stack: 2 Nl/h - 10 Nm³/h CETH2 Helion ITM Power Fraunhofer ISE 10 © Fraunhofer ISE Hydrogenics h-tec FCBAT Hamilton System Design PEM Water Electrolyser Comparable to AEL Simpler system design Pressure-tight construction 11 © Fraunhofer ISE FCBAT Stack Design High Temperature Electrolyser No commercial products Kyushu University (25 cells) Idaho NL (720 Cell / 5.7 Nm3/hr / 17.5k W) Bipolar construction No pressurised stacks Cell area: ~ 100 cm² Current density: 0.3 - 3.0 A/cm² Picture credits: O‘Brien, RelHy-Workshop 2009 12 © Fraunhofer ISE Picture credits : Zahid, WHEC 2010 FCBAT General System Layout for HTEL Only Concept Coupling with HT source (nuclear reactor) Electricity generation with steam turbine Picture credits: Zahid, WHEC 2010 13 © Fraunhofer ISE FCBAT Realised (Alkaline) Water Electrolysis Plants Location Capacity Power [Nm³/h] [MWel] Zimbabwe / Kwe-Kwe 21.000 Norway / Glomfjord 27.100 Norway / Rjukan 27.900 Egypt / Aswan 32.400 160 BBC/DEMAG 132 1965 - 70 Peru / Cuzco 5.200 22 Lurgi 7 1965 Canada / Trail 21.000 ? Trail ? ? 30.000 ~ 142 De Nora ? - 1961 India / Nangal 14 © Fraunhofer ISE Type Modules Construction time ~ 95 Lurgi 28 1971 - 73 ~ 142 Norsk Hydro ca. 150 - 1949 (decommissioned 1980) ~ 142 Norsk Hydro ca. 150 - 1929 (decommissioned 1980) FCBAT Realised (Alkaline) Water Electrolysis Plants Picture credits: Barisic - ELT, 2008, NOW-Workshop 15 © Fraunhofer ISE Picture credits: Fell - StatoilHydro, 2008, NOW-Workshop FCBAT Commercial Available Electrolysis Systems AEL 1 - 760 Nm³/h 5 kWel - 3.4 MWel PEMEL 0.01 - 30 Nm³/h 0.5 - 160 kWel Wasserelekrolyse Hydrotechnik Hydrognics SAGIM NEL Hydrogen PEMEL grows! In 3 - 5 years: Up to 250 Nm³/h (?) Up to 1.0 MWel (?) Schmidlin 16 © Fraunhofer ISE ITM Power h-tec Proton ES FCBAT Treadwell Main Players in Water Electrolysis Mature Advanced R&D © Fraunhofer ISE (2011-11) Alkaline Electrolysis PEM Electrolysis No claim to be complete! 17 © Fraunhofer ISE FCBAT Typical Today‘s Applications Apllication H2 Generator for jewellery, laboratory and medical engineering Typical size electrolyser 5 - 500 Nl/h Generator cooling in power plants 5 - 10 Nm³/h Hydrogen filling station 5 - 60 Nm³/h Feed Water Inertisation (BWR water chemistry) 50 Nm³/h Float glas production (protective atmosphere) 50 - 150 Nm³/h Electronics industry 100 - 400 Nm³/h Metallurgy 200 - 750 Nm³/h Food industry (fat hardening) 100 - 900 Nm³/h Military und aerospace 18 © Fraunhofer ISE < 15 Nm³/h FCBAT Manufacturer's data No standardised data Differernt pressure and H2 purity Specifications for steady state operation Spez. Energieverbrauch [kWh/Nm³ H2] Spec. Energy Demand[kWh el / Nm³ H2] Specific Energy Consumption – Efficiency of Electrolysers 10,0 9,0 AEL(atmospheric) (atmosphärisch) AEL (pressurised) (Druck) PEMEL Stack PEMEL System 8,0 7,0 6,0 5,0 4,0 3,0 Thermodynamik @ STP © Fraunhofer ISE 2,0 0,010 0,100 1,000 10,000 100,000 Wasserstoffproduktionsrate Hydrogen Production Rate [Nm³/h] [Nm³/h] 19 © Fraunhofer ISE FCBAT 1000,000 Energy consumption will not be reduced significantly in the future Higher operating pressure High power densities due to cost pressure Dynamic operation (start/stop, standby) Spez. Energieverbrauch [kWh/Nm³ H2] Spec. Energy Demand[kWh el / Nm³ H2] Specific Energy Consumption – Efficiency of Electrolysers 10,0 9,0 AEL(atmospheric) (atmosphärisch) AEL (pressurised) (Druck) PEMEL Stack PEMEL System 8,0 7,0 6,0 PEMEL AEL 5,0 4,0 3,0 Thermodynamik @@ STPNTP Thermodynamics © Fraunhofer ISE 2,0 0,010 0,100 1,000 10,000 100,000 Wasserstoffproduktionsrate Hydrogen Production Rate [Nm³/h] [Nm³/h] 20 © Fraunhofer ISE FCBAT 1000,000 Where Do We Have R&D Demand in the Next Years? AEL PEMEL Increasing current density Increasing life time of materials/ stack (Increasing pressure tightness) Scale up concepts for stack and system Faster dynamics of the complete system (BOP) Decreasing costs by substitution or reduction of expensive materials Higher part load range Decreasing production costs through economies of scale 21 © Fraunhofer ISE HTEL Development of adapted electrodes/ electrolyte for SOEL Cell and stack design Proof of life time Pressure tightness Cycling stability (Decreasing production costs through economies of scale) FCBAT Back to the Future! 75 MW AEL module, concept EdF (30 bar, 160 °C) (LeRoy 1983, Int. J. Hydrogen Energy) HT electrolysis plant, draft Brookhaven NL (Source: Zahid 2010, WHEC) AEL plant - concept 578 MW, 248 module Draft Norsk Hydro (Source: Fell/SHT 2011 NOW-Workshop) 58 MW PEMEL plant, concept GE (Nuttall 1977, Int. J. Hydrogen Energy) 22 © Fraunhofer ISE FCBAT Thanks a lot for your kind attention! Dr. Tom Smolinka Fraunhofer ISE Heidenhofstr. 2 / 79110 Freiburg / Germany Tel: +49 761 4588 5212 tom.smolinka@ise.fraunhofer.de www.ise.fraunhofer.de Questions? Executive summary (only in German): http://www.now-gmbh.de/fileadmin/user_upload/RE-Mediathek/RE_Publikationen_NOW/ NOW-Studie-Wasserelektrolyse-2011.pdf 23 © Fraunhofer ISE FCBAT