MEKANIKA BAHAN
Transcription
MEKANIKA BAHAN
09/02/2014 MEKANIKA BAHAN (Mechanics of Materials) 3 CREDITS Prerequisite : Statically Determinate Mechanics 1 Lecturers: Until ETS Endah Wahyuni, Wahyuni, ST (ITS), MSc (UMIST), PhD (UoM (UoM)) endahwahyuni@gmail.com @end222 ETS - EAS Prof. Ir. Priyo Suprobo, MS, PhD 2 Dr. Endah Wahyuni 1 09/02/2014 BILINGUAL CLASS Module in English, Class in Indonesian; or vice i versa. Delivery of contents in 2 languages (Indonesian & English). Technical terms in English Students??? 3 Materials 1. 2 2. 3. 4. 5 5. Books: E.P. Popov, 1978, Mechanics of Materials Gere & Timoshenko Timoshenko,, 1997, 1997 Mechanics of Materials R.C. Hibbeler, 1997, Mechanics of Materials Any related books, with topic: Mechanics of Material Online http://personal.its.ac.id/dataPersonal.php?userid= ewahyuni http://www.structuralconcepts.org 4 Dr. Endah Wahyuni 2 09/02/2014 E.P. Popov, 1978, Mechanics of Materials, 2nd edition 5 Gere & Timoshenko, Timoshenko, 2008, Mechanics of Materials, 7th edition 6 Dr. Endah Wahyuni 3 09/02/2014 R.C. Hibbeler, 2010 2010,, Mechanics of Materials,, 8th edition Materials 7 Other books: Mechanics of Material 8 Dr. Endah Wahyuni 4 09/02/2014 Learning Methods Class Students are required to read the course material to be provided in the existing class schedule Responsiveness Exercises in class with guidance Quiz In-class l exam att any given i ti time Home work Students do the work to be done at home with the responsibility, not only collects the duty. duty. 9 Evaluations UTS (30%) UAS (30%) Quiz1 (10%) Quiz2 (10%) PR1 (10%) PR2 (10%) *Prosentase bisa diubah sesuai yang menguntungkan mahasiswa 10 Dr. Endah Wahyuni 5 09/02/2014 Notes: 20 minutes late, late, not permitted to enter the class. class. Disturbing class go out Home work is collected before the class starting Keep the spirit on! 11 Contents 1 1 Dapat menjelaskan tentang tegangan, regangan, modulus elastisitas serta modulus g geser Ketepatan penjelaskan tentang tegangan, rergangan, modulus geser elastisitas serta modulus g a. pendahuluan b. pengertian tegangan, regangan c. p pengertian g modulus elastisitas d. static test Kuliah lihat UTS 2 2&3 Dapat menghitung tegangan yang terjadi pada sebuah balok akibat beban lentur murni baik pada balok dengan bahan tunggal maupun pada balok dengan dua bahan, baik semasih pada kondisi elastis maupun sesudah mencapai kondisi non elastis Ketepatan perhitungan tegangan pada balok yang menerima beban lentur murni a. lentur muni pada balok elastis b. lentur muni pada balok dengan dua bahan c. lentur murni pada balok non elastis Kuliah Responsi PR 1 lihat UTS Dapat menghitung tegangan geser pada balok Ketepatan perhitungan tegangan geser yang disebabkan oleh beban lentur, pada balok akibat beban lentur pada balok-balok dengan berbagai bentuk penampang. a. hubungan momen dan gaya Kuliah lintang Responsi b. tegangan geser akibat beban PR 2 lentur c. shear center d. geser pada profil berdinding tipis lihat UTS Dapat menghitung tegangan dan regangan d poros akibat kib t b beban b ttorsii pada a. pengertian torsi b ttegangan geser ttorsii b. c. regangan oleh torsi d. tegangan oleh torsi pada poros non elastis Kuliah R Responsi i PR 3 lihat UTS a. kombinasi tegangan pada balok tidak simetris b. kombinasi tegangan pada penampang kolom c. kern Kuliah Responsi PR 4 lihat UTS UTS Test 4 5 6 4&5 6 7&8 9 Dapat mengkombinasikan tegangan-tegangan sejenis pada penampang balok atau kolom dan dapat menggambar bentuk kern dari berbagai bentuk penampang Indikator Kompetensi Ketepatan perhitungan tegangan dan regangan pada d poros akibat kib t b beban b ttorsii Ketepatan perhitungan kombinasi tegangan dan ketepatan penggambaran bentuk kern Materi Pembelajaran Bobot Nilai % Minggu ke 3 Kompetensi Metode Pembelajaran dan Evaluasi No 2 2 2 2 40 12 Dr. Endah Wahyuni 6 09/02/2014 Contents 1. Introduction 2. Slicing g Method 3. Understanding of Stress 4. Normal Stress 5. Average Shear Stress 6. Determine of and 7. STATIC TEST 8. Allowed Stress 9. Strain 13 10. Diagram, Normal Stress - Strain - HOOKE law - Yield Point - Deformation of bars from Axial loads - Poisson’s Ratio - Relationship of Stress, Strain and Poisson’s Ratio 11 Shear Stress and Strain 11. - Shear Stress - Shear Strain 14 Dr. Endah Wahyuni 7 09/02/2014 12. Pure Bending on beams 13. Moment of Inertia 14. Calculating Stress on beams 15 Beams with two materials 15. 16. Pure bending on non-elastic beams 17. Shear-bending Stress 18. Torsion 19. Multiple p Stresses 20. Combination of stresses on Columns 21. KERN 22. …………..etc ETS 15 After midsemester evaluation: 1. Plane stress analysis Maximum and minimum stress Mohr Circle 2. Bar design based on stress Based on axial stress stress,, flexure and shear for prismatic bar and definite static 3. Definite Static Beam’s deformation Equation of elastic line deformation method. Unit Load method Area moment method 4. Stability of Compression Bar Centric Load and Shear Force. 16 Dr. Endah Wahyuni 8 09/02/2014 Reviews:: Reviews Statically Determinate Mechanics Determinate Structure : If? Static Equation ?? 1 2 3 17 rol Dr. Endah Wahyuni rol sendi rol send i sendi 18 9 09/02/2014 rol sendi sendi rol rol sendi 19 Reactions Simply supported beams Cantilever beams Trusses 20 Dr. Endah Wahyuni 10 09/02/2014 Loadings - Point Load At midspan, midspan, Within certain location - Distribution Loads Full distributed loads Partially distributed loads - Moment Loads At the end of cantilever Midspan Within certain location 21 Modul 1 Tegangan dan Regangan Stress & Strain 22 Dr. Endah Wahyuni 11 09/02/2014 Introduction At a structure, each elements of a structure should be having a dimension. The elements have to be calculated to resist the loading on them or maybe applied to them. To calculate the dimension of the elements, we should know the methods to analyses, which are: strength ( kekuatan kekuatan), ), stiffness ( kekakuan) kekakuan), stability ( kestabilan ), ) The methods will be discussed in this Mechanic of Materials. 23 Mechanics of materials is a subject of a very old age, which generally begins with Galileo in the early 17th century. The first one describes the behavior of the structure of load rationally. 24 Dr. Endah Wahyuni 12 09/02/2014 The behavior of the structure to obtain the force depends not only on the fundamental laws of Newtonian mechanics that govern force equilibrium but also to the physical characteristics of the structural parts, which can be obtained from the laboratory, where they are given the h fforce off action i is i kknown accurately. l Mechanics of Material is a mixed knowledge from the experiment and the Newtonian principals on elastic mechanics. O off the One th main i problems bl iin mechanics h i off materials t i l iis tto investigate the resistance of an object, that is the essence of the internal forces for balancing the external forces. 25 APPLICATIONS Planning of a Structure STRUCTURAL ANALYSES MATERIALS PLANNING OF THE DIMENSIONS STRUCTURES: STABLE Dr. Endah Wahyuni CONTROL STRENGTH / STRESS 26 13 09/02/2014 EXAMPLE TUBE TRUSSES 27 EXAMPLE BUILDING FRAME 70/70 50/50 28 Dr. Endah Wahyuni 14 09/02/2014 EXAMPLE P2 P1 H2 H1 B1 B2 Because of P2 > P1, thus from stress analysis, dimension will be obtained where B2 > B1, H2 > H1 29 Metode Irisan GAYA DALAM P1 P1 P2 P2 S2 S1 S1 S3 S3 S2 P4 P3 GAYA DALAM P4 P3 30 Dr. Endah Wahyuni 15 09/02/2014 Tegangan (Stress) TEGANGAN NORMAL Tegak Lurus Bidang Potongan TEGANGAN GESER Sejajar Bidang Potongan DEFINISI : TEGANGAN ADALAH GAYA DALAM YANG BEKERJA PADA SUATU LUASAN KECIL TAK BERHINGGA DARI SUATU POTONGAN 31 Stress (Tegangan) MATHEMATICS EQUATIONS = A Lim = A Lim 0 F A NORMAL STRESS 0 V A SHEAR STRESS = Normal Stress = Shear Stress A = Cross-section area F = Forces on perpendicular of cross-section V = Forces on parralel of cross-section Dr. Endah Wahyuni 32 16 09/02/2014 Stress (Tegangan) Stress symbols on elements related with coordinates : z z zx xz x zy yz y xy yx y x 33 Normal Stresses NORMAL STRESS NORMAL STRESS Tension Compression p P P Dr. Endah Wahyuni = P/A P P = P/A 34 17 09/02/2014 Average Shear Stresses FORCES ACTING PARRALEL SECTION P CREATING SHEAR STRESS = P Cos/ A Normal AShear ANormal = P / A AShear Shear 35 Average Shear Stress P P ½P AShear = P / Total AShear Total Ashear = 2 x Sectional Area of Bolts 36 Dr. Endah Wahyuni 18 09/02/2014 Determine and Calculation of NEED TO UNDERSTAND STRESS THE PURPOSE AND THE GOAL CHOOSE THE EQUATION CALCULATION DETERMINATION OF FORCE AND CROSS SECTIONAL AREA or WILL BE PROBLEM IF DON’T UNDERSTAND STATICALLY DETERMINATED ENGINEERING MECHANIC CALCULATION RESULT 37 DETERMINE FORCE VALUE USE STATIC EQUATION: FX = 0 MX = 0 FY = 0 MY = 0 FZ = 0 MZ = 0 Define Cross Sectional Area To get Choose the smallest Area The Maximum Stress 38 Dr. Endah Wahyuni 19 09/02/2014 Determine Cross Sectional Area example : The smallest cross sectional area that was choosen to get the maximum stress value 39 Example 1 1:: A concrete wall as shown in the figure, received distributed loads of 20 kN/m2. Calculate the stress on 1 m above the based. The gravitation load of the concrete is 25 kN/m3 40 Dr. Endah Wahyuni 20 09/02/2014 Answer: Self weight of concrete wall: wall: W = [(0,5 + 1,5)/2] (0,5) (2) (25) = 25 kN , ) (0,5) ( , ) = 5 kN Total load: load: P = 20 ((0,5) From Fy = 0, the reaction R = W + P = 30 kN using upper part of the wall as a free thing, thus the weight of the wall upper the cross cross--section is W1 = (0,5 + 1) (0,5) (25/2) = 9,4 kN From Fy = 0, the Load on section : Fa = P + W1 = 14,4 kN Normal stress on a-a is a = Pa/A = 14,4/(0,5x1) = 28,8 KN/m2 The stress is a compression normal stress that worked as Fa on the section. 41 Stress TASK : D 1. B A If W = 10 Ton, a = 30o and cross sectional area of steel cable ABC = 4 cm2, cable BD = 7 cm2, so calculate stress that happened in ABC and BD cables. C W P 2. b P d1 d2 Dr. Endah Wahyuni If bolt diameter = 30 mm, b = 200 mm, d1 = 8 mm, d2 = 12 mm, P = 2000 kg, g, so calculate the maximum stress of each frame and shear stress of the bolt. 42 21 09/02/2014 Static Test P LOAD INCREASE CONTINUOUSLY P FRACTURE TEST ING MATERIAL TESTING MATERIAL P P PUlt A ULTIMATE LOAD ULTIMATE STRESS 43 Universal Test Machine (UTM) 44 Dr. Endah Wahyuni 22 09/02/2014 FLEXURE TEST 45 STRAIN TESTING MATERIAL P STATIC TEST LOAD STRAIN L -. Pload increase continuously P - Every Pload increasing, list deformation of testing material that shows in dial gauge. 46 Dr. Endah Wahyuni 23 09/02/2014 Strain = L P (Load) = Strain Change as every Loading changes P – Diagram (Deformation) 47 Stress – Strain Diagram Physical properties of every material can be shown from their stress – strain diagram relationship. P (load) pict. A P – Diagram Dr. Endah Wahyuni (Stress) pict. B = Strain – Diagram 48 24 09/02/2014 STRESS – STRAIN DIAGRAM - MATERIAL – 1 AND MATERIAL - 2, BOTH ARE IDENTICAL MATERIAL - THE CROSS SECTIONAL AREA OF MATERIAL - 2 < MATERIAL - 1 - THE P – RELATIONSHIP OF MATERIAL - 1 ARE DIFFERENT WITH MATERIAL - 2 - THE – RELATIONSHIP OF MATERIAL - 1 ARE SIMILAR WITH MATERIAL - 2, ALTHOUGH THEY HAVE DIFFERENT CROSS SECTIONAL AREA THEREFORE, MORE SUITABLE USING PICTURE B TO KNOW PHYSICAL PROPERTIES OF SOME MATERIAL 49 Stress – Strain Diagram (Stress) (Stress) Proportional Limit Strain STEEL MATERIAL Strain CONCRETE MATERIAL 50 Dr. Endah Wahyuni 25 09/02/2014 HOOKE LAW = EX E= ELASTIC CONDITION DETERMINATION OF YIELD POINT OFF-SET METHOD (Stress) Proportional P ti l Limit = STRESS = STRAIN E = ELASTICITY MODULUS Strain 51 HOOKE’s LAW problem : P L P Dr. Endah Wahyuni In some frame with L =100 cm in length, Static Test was done. If Pload that that’s s given to this frame is 4000 kg, this frame is still in elastic condition, and goes on 2 mm in length, so calculate of stress and strain value of that frame. If modulus elasticity value is 2 x 106 kg/cm2 and then calculate the cross sectional area of that frame. 52 26 09/02/2014 Bar Deformation due to Axial Load P3 P2 P4 P1 Px Px dx dx+ d= Px force to dx elemen and cause d deformation dx dx E d dx = P x Ax E 53 Bar Deformation due to Axial Load example : B B = P = Px Px A dx L A Px Px . dx / Ax . E = Px / Ax . E dx 0 = P . X / Ax . E Ax = A , P P Deformation due to P load, selfweight was ignored Dr. Endah Wahyuni L L 0 Px = P =P.L/E.A 54 27 09/02/2014 Bar Deformation due to Axial Load DEFORMATION DUE TO SELFWEIGHT IS : = B L Px . dx / Ax . E = 1 / A . E w . X . dx A = ½ . W.x2 / A . E 0 L = w . L2 / 2 . A . E = WT . L / 2 . A . E 0 DEFORMATION DUE TO P LOAD AND SELFWEIGHT IS : = P.L / A.E + WT.L / 2.A.E = = L (P + ½.WT) / A.E 55 Contoh 22-1: Tentukan pergeseran relatif dari titiktitik-titik A dan D pada batang baja yang luas penampangnya bervariasi seperti terlihat pada gambar di bawah bila diberikan empat gaya terpusat P1, P2, P3 d dan P4. Ambillah A bill h E = 200 x 106 kN/m kN/ 2. 56 Dr. Endah Wahyuni 28 09/02/2014 Gaya dalam batang adalah : Antara titik A dan B, Px = +100 kN Antara titik B dan C, Px = -150 kN Antara titik C dan D, Px = +50 kN Dengan menggunakan persamaan: Dengan memasukkan hargaharga-harga numeric dari contoh, maka diperoleh: p 57 BAR DEFORMATION DUE TO AXIAL LOAD Problem : 1. A 100 cm 100 cm B 1000 kg 2. P1 Dr. Endah Wahyuni P2 If the bar diameter of AB and BC is 20 mm, = 30o and Elasticity Elasticit Modulus Mod l s is 2x106 kg/cm2, calculate deformation of point B. E D b2 b1 C b3 ½ P2 h1 h2 Calculate P1/P2, then after P1 and P2 working, the length of both bar still be similar, if b1 = 50 mm, b2 = 50 mm, b3 = 25 mm, h1 = 500 mm, h2 = 500 mm and thickness of both bar = 20 58 mm. 29 09/02/2014 Poisson’s Ratio STRAIN AXIAL STRAIN LATERAL STRAIN The shape is being LONGER and SMALLER POISSON’S RATIO ( )= Lateral Axial Concrete = 0.1 – 0.2 Rubber = 0.5 – 0.6 59 The Relationship of Poisson’s Ratio, Stress and Strain z zx xz x zy yz y y xy yx x 60 Dr. Endah Wahyuni 30 09/02/2014 The Relationship of Poisson’s Ratio, Stress and Strain z y y z 61 The Relationship of Poisson’s Ratio, Stress and Strain x = + y = - z = - x E x E x E y - E + - y E z - E y E z - E + z E 62 Dr. Endah Wahyuni 31 09/02/2014 Shear Stress and Shear Strain SHEAR STRESS zy y z B zy yz O A A yz zy C B /2 C /2 O = SHEAR STRAIN zy(dy.dx).dz - yz (dx.dz.).dy = 0 zy = yz yz left = yz right MO = 0 Fz = 0 63 Shear Stress and Shear Strain SHEAR STRAIN: SHAPE TRANSFORMATION THAT IS EXPRESSED WITH ANGLE TRANSFORMATION ‘ ‘ ARE CALLED “SHEAR STRAIN” HOOKE LAW for Shear stress and shear strain: = . G E G= 2 (1+ = Shear Stress ) = Shear Strain G = Shear Modulus = Poisson’s Ratio The relationship between Normal Modulus Elasticity and 64 Shear Modulus Dr. Endah Wahyuni 32 09/02/2014 Modul 2 beam flexure (pure bending) 65 Pure Bending in Beam Flexure due to MOMEN only 66 Dr. Endah Wahyuni 33 09/02/2014 Pure Bending in Beam Ya Yb = C max max /2 /2 Initial Length Force Equilibrium: FX = 0 ( Y/C . max ) dA = 0 A C Y . dA = 0 A 67 Pure Bending in Beam MOMENT : M= A ( Y/C . A max ) dA . Y = max Y 2 . dA A Y2 . dA = I = Inertia Moment M=( max / C ) . I TOP FIBER STRESS max = M . Ya / I max = M . C / I BOTTOM FIBER STRESS max = M . Yb / I 68 Dr. Endah Wahyuni 34 09/02/2014 Pure Bending in Beam GENERALLY: max = M.Y/I I/Y = W (Resistance Moment) I / Ya = Wa I / Yb = Wb I = Y 2 . dA A INERTIA MOMENT 69 INERTIA MOMENT EXAMPLE : y 3 b y h/2 Y 2 . b . dy Ix = y 2 . dA = A -h/2 h/2 h/2 = 1/3 . y3. b = 1/3 . (1/8 + 1/8) . h3. b x -h/2 h/2 = 1/ . 1/ . h3. b = 1/ . b. h3 1/ -11/2 2 Ix = 2 x 11 2 3 Dr. Endah Wahyuni 4 12 11/2 y 3.y y 2 . dy y + 2 y 2 . dy -2 -11/2 2 + 3.y 2 . dy 11/2 70 35 09/02/2014 INERTIA MOMENT EXAMPLE : -11/2 11/2 2 3 3 1 3 3 3 = /3 . y + 2 . /3 . y + /3 . y -2 -11/2 11/2 = (-11/2)3 – (-2)3 + 2/3 . (11/2)3 - 2/3 . (-11/2)3 + 23 - (11/2)3 = 13,75 CARA LAIN : = 1/12 . 3 . 43 – 1/12 . 1 . 33 = 16 – 2,25 = 13,75 SHORTER CALCULATION 71 STRESS CALCULATION OF THE BEAM 10 cm 10.000 kg 10 cm 30 cm 400 cm 10 cm 30 cm CROSS SECTIONAL AREA : A = ( 2 . 30 . 10 ) + (10 . 30 ) = 900 cm2 INERTIA MOMENT: I = 1/12 . 30 . 503 – 2 . 1/12 . 10 . 303 = 267.500 cm4 72 Dr. Endah Wahyuni 36 09/02/2014 STRESS CALCULATION OF THE BEAM RESISTANCE MOMENT: Wa = Wb = I/y = 267.500 / 25 = 10.700 cm3 WORKING MOMENT (Beban Hidup Diabaikan) : MMax = ¼ . 10.000 . 400 = 1.000.000 kgcm. MAXIMUM STRESS OCCURED: Max = MMax / W = 1.000.000 / 10.700 = 93,46 kg/cm2 73 Stress Calculation of Beam Max 1 - y1 = 20 cm yMax + Max 1 = M / W1 = 1.000.000 . 20 / 267.500 = 74.77 kg/cm2 W1 = I / y1 Dr. Endah Wahyuni 74 37 09/02/2014 EXERCISE – MOMENT INERTIA Sb Y 30 cm 1 10 cm 40 cm Sb X Calculate Inertia Moment of its strong axis( Ix ) and weak axis ( Iy ) 10 cm 2 Sb Y 10 cm 8 cm 20 cm 8 cm 10 cm Sb X Calculate Inertia Moment of its strong axis( Ix ) and weak axis ( Iy ) 10 10 10 75 EXERCISE – PURE BENDING 1 A 400 cm 100 kg/m (include its selfweight) 80 cm 200 cm 2 B 200 cm C 1500 kg 30 cm - Draw its momen diagram 10 cm 30 cm 8 cm 10 cm 8 cm 10 cm Dr. Endah Wahyuni - Calculate Inertia Moment of Beam Section - Calculate edge fiber stresses of section - 1 and 2, then draw its stress diagram - Calculate its maximum stress 76 38 09/02/2014 ASSYMETRIC FLEXURE q qSin L qCos Moment occurs of X-axis (MX) and Y-axis (MY) q 2 MX = 1/8 . qCos C . L 2 MY = 1/8 . qSin Si . L Moment that its flexure round ‘X’-axis Moment that its flexure round ‘Y’-axis 77 Stress of the Section due to q Assymetric Flexure c L d a o qSin b a qCos q MX = 1/8 . qCos . L2 MY = 1/8 . qSin . L2 Dr. Endah Wahyuni MX . h/2 Ix MX . h/2 b = + Ix MX . h/2 c = Ix MX . h/2 d = Ix = + Ix = 1/12 . b . h3 My . b/2 Iy My . b/2 Iy My . b/2 Iy My . b/2 + Iy + Iy = 1/12 . h . b783 39 09/02/2014 Exercise - Stress of the Section due to Assymetric Flexure L = 300 cm, q = 100 kg/m, P q = 200 kg, h = 20 cm, b = 10 cm, = 30o P A B L Calculate stress that occurs in the midspan a, b, c, d, e and f. Where point e is 5 cm of distance from x-axis and 3 cm from yaxis. c d f o e b a Point - f is 6 cm of distance from x-axis and 4 cm from 79 y-axis assume W = 8 Ton, = 90o and cross section area of the steel cable ABC = 4 cm2, eaxh of BD frame = 6 x 3 cm2, so calculate stress that occurs in ABC cable and maximum stress of BD frame. Problem - I 1. D 50 cm A P is i in i 150 cm off di distance t from B B B C W W Calculate the deflection of point - b and shear stress of As.B As B bolt. bolt Bolt diameter of As.B = 20 mm. Modulus Elasticity of BD frame = 2x106 kg/cm2. 80 Dr. Endah Wahyuni 40 09/02/2014 2. 80 cm 1 A 2000 kg/m (include its selfweight) 80 cm 200 cm 2 B 400 cm C 200 cm 1000 kg 1000 kg 30 cm - Dram its moment diagram 10 cm - Calculate Inertia Moment of Beam 25 cm - Calculate edge fiber stresses of 20 cm section – 1 and 2, then draw its stress diagram. 8 cm 10 cm 8 cm - Calculate Maximum stress that occurs in ABC beam. 81 3. q f c d e a P A b B L L = 300 cm, q = 1000 kg/m, P = 2000 kg, = 30o, P is 100 cm from B. Calculate stress that occurs in the midspan of point a, b, c, d, e and f. 82 Dr. Endah Wahyuni 41 09/02/2014 Composite Beam (2 Material) dx x dy 1 a y 2 h e 1 b1 b2 DISTRIBUTION OF ELASTIC STRESS xE1 a e eE2 eE1 DISTRIBUTION OF SINGLE MATERIAL STRESS 83 Composite Beam (2 Material) b2 n2 b2.n b2 b2/n1 b1.n1 b1 b1/n2 Cross Section of Frame with 1st Material Cross Sestion of Frame with 2nd Material E1 > E2, n1 = E1 / E2, n2 = E2 / E1 Dr. Endah Wahyuni 84 42 09/02/2014 Exercise -Composite Beam (2 Material) Concrete Steel 1 a 12 cm b 1000 kg A 1 1200 cm 36 cm 2 c 12 10 12 E concrete = 200.000 kg / cm2 ; 1 400 cm B 1st Material = Concrete 2nd Material = Steel E stel = 2.000.000 kg /cm2 Calculate stress that occured in the section 1 – 1 and in fiber ‘a’, concrete fiber ‘b’, steel fiber ‘b’ and fiber ‘c’. Draw its stress diagram. (Selfweight of the beam is ignored) 85 Pure Bending of Non-Elastic Beam ELASTIC NON - ELASTIC STRESS-STRAIN DIAGRAM 86 Dr. Endah Wahyuni 43 09/02/2014 Pure Bending of Non-Elastic Beam Strain Elastic Strain distribution distribution c a o If effect of D aob and cod are small Non Elastic Strain distribution b d 87 Rectangular Beam that have Full Plastic Condition C h T h/ 4 h/ 4 Plastic moment that can be held = C . ½ . h = T . ½ . h C = T = yp ( bh/2) Plastic momen of a rectangular beam is: Mp = yp . bh/2 . h/2 = yp . bh /24 88 Dr. Endah Wahyuni 44 09/02/2014 Rectangular Beam that have Full Plastic Condition Generally can be written as: h/ Mp = . y dA = 2 ( 2 yp ) . y . b . dy 0 h/ 2 yp . y . b 2 = yp . bh /4 2 0 If calculate l l t with ith elastic l ti equation ti : h Myp = yp . I / ( /2) = 2 = yp . b . h / 6 1 3 yp . /12 b h / ( h/2 ) 89 Rectangular Beam that have Full Plastic Condition yp . b . h2 / 4 Mp / Myp = = 1,5 15 yp . b . h2 / 6 SHAPE FACTOR Section that have Elastic – Plastic condition yo Minor Yield (Elastic-Plastic) Dr. Endah Wahyuni h/2 Major Yield (Elastic-Plastic) All Yield (Plastic) 90 45 09/02/2014 Section that have Elastic – Plastic condition Elastic-Plastic moment that can be held with stress distibution which have partial yield is: yo M = . y dA = 2 ( yp ) . y/yo . b . y. dy + 2 ( 0 yo 3/ = 2/3 yp . y /yo . b 2 yp) . b . y. dy yo 2 + yp . b . y2 o 2 = 2/3 yp . yo . b + h/ h/ yo 2 2 yp . bh / 4 - yp . b . yo 2 2 1 1 = yp . bh / 4 – /3 yp . b . yo = Mp – /3 2 yp . b . yo 91 Modul 3 Shear Stress of Beam 92 Dr. Endah Wahyuni 46 09/02/2014 Shear Stress - Flexure q (x) V+dV V dx x M M+dM S MA = 0 dx (M + dM) – M – (V + dV) . dx + q . dx . dx/2 =0 M + dM – M – V . dx + dV . dx + ½ . q . dx2 = 0 small small dM – V . dx = 0 dM / dX = V OR dM = V . dx 93 Shear Stress - Flexure This equation is giving explanation that : IF THERE IS FLEXURE MOMENT DIFFERENCE AT SIDE BY SIDE SECTION, THERE WILL BE A SHEAR. dM / dx = V Example : L/3 L/3 L/3 NO SHEAR Bid M Bid. Bid. D M M M+dM M SHEAR Dr. Endah Wahyuni 94 47 09/02/2014 Shear Stress - Flexure Shear Stress due to Flexure Load a e b j d f FA FB = - MB . Y I Afghj = dA = - MB I - MB . Q R FB Y . dA Afghj Q= I h g Y . dA = Afghj . Y Afghj 95 Shear Stress - Flexure Shear Stress due to Flexure Load FA = - MA I Y . dA = Aabde FB – FA = R = = - MA . Q I Held up by shear connector - MB . Q - - MA . Q I I ( MA + dM ) . Q – MA . Q Troughout dx = dF dM . Q = I dF/dx = q = SHEAR FLOW q = dM . Q / dx . I = V . Q / I Dr. Endah Wahyuni I 96 48 09/02/2014 Shear Stress due to Flexure Load Example : 200 mm 50 . 200 . 25 + 50 . 200 . 150 50 . 200 + 50 . 200 = 87,5 cm V = 30.000 30 000 kg, kg nail strength = 7000 kg Yc = 50 mm Yc I = 200 . 503 / 12 + 50 . 200 . 62,52 = 50 . 2003 / 12 + 50 . 200 . 62,52 200 mm = 113.500.000 mm4 = 11.350 cm4 Q = 50 . 200 ( 87,5 – 25 ) = 625.000 mm3 = 625 cm3 or, Y1 50 mm Q = 50 . 200 . 62,5 = 625.000 mm3 = 625 cm3 Y1 = 200 – Yc - 200 / 2 = 62,5 mm q = V . Q / I = 30.000 x 625 / 11.350 = 1.651 kg / cm Nail spacing = 7000 / 1651 = 4,24 cm Problem : 200 mm 50 mm 50 mm 200 mm 30 mm 97 Assume that top nails capacity is 7000 kg and bottom nails is 5000 kg. Then calculate spacing of top and bottom nail, from A until B, so the section strength enough to carried on q load. Spacing of top and bottom nails was made in 3 different type of spacing. 150 mm 100 100 200 A 100 100 q = 3000 kg/m B 600 cm 98 Dr. Endah Wahyuni 49 09/02/2014 Shear Stress Diagram Longitudinal Direction: = dF / t.dx = ( dM / dx ) . ( A . Y / I . t ) = V . A . Y / I . t = V.Q I.t q = t 1/8 . V. h2 I Example : t=b j h f g = dy y y1 h q V.Q = I.t t V = Y . dA I.t A 99 Shear Stress Diagram = = V I.b V 2.I h/ 2 V b . y . dy = I y1 Y2 x 2 h/ 2 y1 ( b/2 ) 2 – y12 If y1 = 0, so = = h2 V = 1/8 x 2.I 4 3.V 2 . b. h = V . h2 1/ 12 . b .h3 3.V 2.A 100 Dr. Endah Wahyuni 50 09/02/2014 Problem : 20 cm P = 1500 kg 1 200 cm q = 3000 kg/m a 5 cm 5 cm b c 20 cm A B 600 cm d 3 cm e 15 cm Draw shear stress diagram of the section in support – A and of the section - 1 that is 100 cm of distance from point B. 101 Working steps: 1. Calculate the Neutral Axis Yc = 20 . 5 . 2,5 , + 20 . 5 . 15 + 15 . 3 . 26,5 , 20 . 5 + 20 . 5 + 15 . 3 12,01 01 cm = 12 From TOP 2. Calculate Inertia Moment 1 3 2 1 3 I = /12 . 20 . 5 + 20 . 5 . 9,51 + /12 . 5 . 20 + 20 . 5 . 2,952 + 1/12 . 15 . 33 + 15 . 3 . 14,492 = 208,33 + 9044,01 + 3333,33 + 870,25 + 33,75 + 9448,20 = 22937,88 cm4 102 Dr. Endah Wahyuni 51 09/02/2014 3. Calculatie shear forces Ra = 3000 . 6/2 + 2/3 . 1500 = 10.000 kg Rb = 3000 . 6 + 1500 - 10.000 kg = 9.500 kg Va = 10.000 kg ; V1 = - 9.500 + 3000 . 1= - 6.500 kg In section ‘A’ with 10.000 kg of shear force Position a b1 b2 c d1 d2 e A 0 100 100 100 35.05 45 45 0 y Q 12.01 0 951 9,51 951 9,51 9 51 9,51 1073,85 3.505 14.49 652.05 14.49 652.05 0 15.99 q = V.Q / I t =q/t 0 414,6 414,6 20 20 5 0 20,73 82,92 468,16 5 93,63 284,27 284,27 0 5 15 15 56,854 18,951 0 103 In Section ‘1’ with 6.500 kg of shear force Posisi a b1 b2 c d1 d2 e A 0 100 100 100 35.05 45 45 0 y Q 12.01 0 951 9,51 951 9,51 9,51 1073,85 3.505 14.49 652.05 14.49 652.05 0 15.99 q = V.Q / I t =q/t 0 269,49 269,49 20 20 5 0 13,474 53,89 304,30 5 60,86 184,774 184,774 , 0 5 15 15 36,955 12,318 , 0 104 Dr. Endah Wahyuni 52 09/02/2014 Shear Stress Diagram: 20 cm a 0 0 5 cm b 82,92 c 5 cm 93,63 20 cm d 3 cm e 53,89 13,474 20,73 18,951 56,854 0 60,68 12,318 36,955 0 15 cm Shear Force 10.000 kg Shear Force 6.500 kg 105 Shear Flow Variation Shear flow variation is used to determine the SHEAR CENTER, so that vertical loading that works will not induce torsion to the section, if works in its SHEAR CENTER 106 Dr. Endah Wahyuni 53 09/02/2014 Shear Center F1 P V=P V P h e F1 e = F1 . h / P = = ½. .b.t.h = P b. t. h . V . Q 2.P.I.t .b.t.h V.½.h.b.t b2 . h2 . t x = 2.P I.t 4 . I 107 Problem : F1 F2 10 cm P V=P e 50 cm Determine the SHEAR CENTER of this section section. 10 cm 10 15 30 Equation that is used: e . P + F1 . 60 = F2 . 60 e = ( F2 . 60 – F1 . 60 ) / P F1 = ½ . . 17,5 . 10 Dr. Endah Wahyuni F2 = ½ . . 37,5 . 10 108 54 09/02/2014 Calculation : I = 1/12 . 55 . 703 - 1/12 . 40 . 503 = 1.155.416,67 cm4 = V.Q P . 17,5 . 10 . ½ . 60 = I.t 1.155.416,67 . 10 = 0,00045 . P kg/cm2 = V.Q P . 37,5 . 10 . ½ . 60 = I.t 1.155.416,67 . 10 = 0,00097 . P kg/cm2 F1 = ½ . 0,00045 . P . 17,5 . 10 = 0,0394 . P F2 = ½ . 0,00097 . P . 37,5 . 10 = 0,1820 . P : = 8,556 cm P In order to make frame didn’t induce torsion , so the Pload must be placed in e = 8,556 cm ( see Picture) e= 0,182 . P . 60 - 0,0394 . P . 60 109 KERN / GALIH / INTI Variety of KERN : Limited with 4 p point Limited with 6 point Li it d with Limited ith 4 point i t Unlimited 110 Dr. Endah Wahyuni 55 09/02/2014 KERN / GALIH / INTI Determine Inertia moment of sloping axis: Y x Y x = x Cos + y Sin df X y = y Cos - x Sin 2 Ix = Ix = 2 y df X 2 2 2 y Cos + x Sin - 2xy Sin Cos df 2 2 = Ix Cos + Iy Sin -2 Sxy Sin Cos 111 KERN / GALIH / INTI Determine Inertia Moment of Sloping axis: 2 Iy = = x df 2 2 2 2 x Cos + y Sin + 2xy Sin Cos df 2 2 = Ix Sin + Iy Cos + 2 Sxy Sin Cos 112 Dr. Endah Wahyuni 56 09/02/2014 KERN / GALIH / INTI Example of determining KERN limits : y Determine the Neutral axis : 2 cm x= 16 x A = 2.20 + 8.2.2 Ix = 2 1/ 3 12.2.20 = 3,2 cm = 72 cm + 1/12.8.23.2 + 8.2.92.2 2 10 2.20.1 + 8.2.6.2 2.20 + 8.2.2 = 3936 cm4 3936 = 393,6 cm3 10 3936 = 393,6 cm3 = 10 Wax = 3,2 Wbx 113 KERN / GALIH / INTI Contoh Menentukan batas – batas KERN : Iy = 1/ 3 12.20.2 + 1/12.2.83.2 + 20 20.2.(2,2) 2 (2 2)2 + 2.2.8.(2,8) 2 2 8 (2 8)2 = 628,48 628 48 cm4 628,48 = 196,4 cm3 3,2 628,48 = = 92,42 cm3 6,8 Wkr y = Wkn y Dr. Endah Wahyuni Ka x = Wbx A Kb x = Wax A 393,6 , 72 5,46 cm = 393,6 = 72 = 5,46 cm = Kkr y = Kkny = Wkn y A Wkr y A 92,42 , 72 = 1,28 cm 196,4 = 72 = 2,72 cm = 114 57 09/02/2014 KERN / GALIH / INTI Picture of KERN limits : 1,28 cm 2,72 cm y 2 cm 16 5,46 cm x 2 5,46 cm 2 10 3,2 115 Modul 4 Torsion Torsi on 116 Dr. Endah Wahyuni 58 09/02/2014 TORSION (Puntiran ) 30 N-m Section Plane 30 N-m 10 N-m 10 N-m 20 N-m INNER TORSION MOMENT equal with OUTTER TORSION MOMENT Torsion that is learned in this Mechanics of Material’s subject was limited in rounded section only. 117 TORSION (Puntiran ) M Torsion Moment at both end of the bar M M M M(x) Torsion Moment g the distributed along bar 118 Dr. Endah Wahyuni 59 09/02/2014 TORSION (Puntiran ) C max max AC max . dA . = T St Stress C Area Forces Distance Torsion Moment Or can be written as: max C . dA = T 2 A . dA = IP = Polar Inertia Moment 2 119 A Example of Polar Inertia Moment for CIRCLE C 2 . . d = 2 . . dA = 3 2 0 A 4 4 C 4 = 0 C 2 = d 4 32 Torsion of the CIRCLE can be determined with this equation: T= max max C = . IP T.C IP TORSION MOMENT TORSION STRESS 120 Dr. Endah Wahyuni 60 09/02/2014 For Circle – Hollow Section: Section: 121 TWIST ANGLE OF CIRCULAR BAR With determine small angle of DAB in this following picture. The maximum stress of its geometry is: 122 Dr. Endah Wahyuni 61 09/02/2014 If : Then: So general statement of the twist angle of a section from the bar with linier elastic material is: 123 PROBLEM EXERCISE - 1 See a tiered bar that shown in this following picture, it’s outboard in the wall (point E), determine rotain of point A if torsion moment in B and D was given. Assume that the shear modulus (G) is 80 x 109 N/m2. 124 Dr. Endah Wahyuni 62 09/02/2014 Polar Inertia Moment: Moment: Bar AB = BC Bar CD = DE Considering its left section, torsion moment in every part will be: TAB = 0, TBD = TBC = TCD = 150 N.m N.m,, TDE = 1150 N.m 125 To get rotation of edge A, can be done with add up every integration limit: Value of T and Ip are constant, so the equation will be be:: 126 Dr. Endah Wahyuni 63 09/02/2014 EXERCISE -1 Calculate maximum torsion shear stress of AC – bar (as seen in AC bar – exercise 1) 1).. Assume that bar diameter from A – C is 10 mm. Answer:: Answer 127 Exercises Soal 4.1 S b h poros b Sebuah berongga mempunyaii diameter luar 100 mm dan diameter dalam 80 mm. Bila tegangan geser ijin adalah 55 MPa, berapakah besar momen puntir yang bisa diteruskan ? Berapakah tegangan pada mukaan poros sebelah dalam bila diberikan momen puntir ijin? 128 Dr. Endah Wahyuni 64 09/02/2014 129 Sebuah poros inti berongga berdiameter 200 mm di diperoleh l hd dengan melubangi l b i poros melingkar padat berdiameter 300 mm hingga membentuk lubang aksial berdiameter 100 mm. Berapakah persentase kekuatan puntiran yang hilang oleh operasi ini ? 130 Dr. Endah Wahyuni 65 09/02/2014 131 Poros padat berbentuk silinder dengan ukuran yang bervariasi yang terlihat dalam gambar digerakkan oleh momen--momen puntir seperti ditunjukkan dalam momen gambar tersebut. Berapakah tegangan puntir maksimum dalam poros tersebut, dan diantara kedua katrol yang ada ? 132 Dr. Endah Wahyuni 66 09/02/2014 133 a. b. Tentukanlah tegangan geser maksimum dalam poros yang dihadapkan pada momen momen--momen puntir, yang diperlihatkan dalam gambar. b. Hitunglah dalam derajat sudut pelintir antara kedua ujungnya. Ambillah G = 84.000 MN/m². 134 Dr. Endah Wahyuni 67 09/02/2014 135 Modul 5 STRESS COMBINATION 136 Dr. Endah Wahyuni 68 09/02/2014 Equation that have learned before about linier elastic material, can be simplified as: Normal Stress Stress:: a. Due D tto axial i l lload d P A b. Due to flexure My I 137 Shear Stress Stress:: a. Due to torsion T Ip b. Due to shear force of beam VQ It Superposition of the stress, only considered in elastic problem when deformation that happened is small. 138 Dr. Endah Wahyuni 69 09/02/2014 EXERCISE: A bar 50x75 mm that is 1.5 meter of length, selfweight is not considered, was loaded as seen in this following picture. (a). Determine maximum tension and compression p stress that work p pependicularly p y of beam section, assume that it is an elastic material. material. 139 ANSWER Using superposition method, so it can be solved in two steps.. In Picture (b) steps (b),, it shows that the bar only take axial load only. Then In Picture (c), it shows that the bar only take transversal load only Axial Load, Load, normal stress that the bar have along its length is: 140 Dr. Endah Wahyuni 70 09/02/2014 Normal stress due to tranversal load depends on flexure moment value and the maximum flexure moment is in force that use: Stress superposition woks perpendicularly of beam section and linearly decreased to the neutral axis as seen in picture (g) 141 142 Dr. Endah Wahyuni 71 09/02/2014 STRESS COMBINATION ON COLUMN Similar equation can be done to assymetric section: x P M zz y M yy z A I zz I yy When: When: Flexure Moment Myy = +P z0 that works of yy-axis Flexure Moment Mzz = -P y0 that works of zz-axis A is cross section area of frame Izz and Iyy is inertia moment of the section to each their principal axis Positive symbol (+) is tension stress, and Negati Negative ve symbol (-) is compression stress. 143 Example Determine stress distribution of ABCD section of the beam as seen on this following picture. if P = 64 kN. Beam’s weight is not considered. 144 Dr. Endah Wahyuni 72 09/02/2014 Answer: Answer: Forces that work in ABCD section, section, on the picture (c), is P = -64 kN, kN, Myy = -640 (0.15) (0 15) = -9,6 9 6 kN.m kN m, and kN.m, Mzz = -64 (0.075 + 0.075) = -9,6 kN.m. kN.m. Cross section area of the beam A = (0.15)(0.3) = 0,045 m², And its Inertia moment is: is: 145 Jadi dengan menggunakan hubungan yang setara dapat diperoleh tegangan normal majemuk untuk elemen elemen-elemen sudut : Bila tanda huruf tegangan menandakan letaknya letaknya,, maka tegangan normal sudut adalah : 146 Dr. Endah Wahyuni 73 09/02/2014 147 THE END 148 Dr. Endah Wahyuni 74