Ecología del Tejón europeo en paisajes áridos Mediterráneos
Transcription
Ecología del Tejón europeo en paisajes áridos Mediterráneos
Centro Andaluz para la Evaluación y Seguimiento del Cambio Global Universidad de Almería Ecología del Tejón europeo (Meles meles) en paisajes áridos Mediterráneos Avanzando en el conocimiento de su distribución espacial, hábitos alimenticios y predicción de su distribución futura frente al cambio climático Ecology of the European badger (Meles meles) in Mediterranean arid landscapes Advancing knowledge of its spatial distribution, feeding habits, and forecasting future climate driven distributions Memoria presentada por D. Juan Miguel Requena Mullor para optar al Grado de Doctor en Ciencias Biológicas por la Universidad de Almería Esta tesis ha sido dirigida por el Dr. Enrique López Carrique, Profesor Contratado Doctor del Departamento de Educación de la Universidad de Almería y codirigida por el Dr. Hermelindo Castro Nogueira, Profesor Titular del Departamento de Biología y Geología de la Universidad de Almería, y por el Dr. Antonio J. Castro Martínez, investigador en el Oklahoma Biological Survey y Profesor Asociado en la Universidad de Oklahoma (EEUU). Vº Bº Director Tesis Enrique López Carrique Vº Bº Co-Director Tesis Hermelindo Castro Nogueira Febrero 2015 Vº Bº Co-Director Tesis Antonio J. Castro Martínez A mis padres Juan y Juani, mi esposa Alicia e hijas Lola y Macarena. Quién lo diría, los débiles de veras nunca se rinden. (Rincón de Haikus, 1999). Mario Benedetti, (1920-2009). AGRADECIMIENTOS Probablemente ésta será la sección más leída con diferencia de toda la tesis doctoral, por lo que intentaré que algo de ella se os quede en la memoria. Empecemos... La cualidad más valiosa que debe poseer una persona es la imaginación. A partir de este dogma nace el concepto del número imaginario i (notación empleada para referirse a la raíz cuadrada de -1). En el pasado, científicos y sabios interpretaban la aparición del número i en la resolución de una ecuación como un síntoma de que dicha ecuación no tenía solución. Sin embargo, lejos de desalentarse en su resolución continuaron tratando al número i como al resto de números. De esta forma, con un poquito de paciencia y saber hacer al final el número i desaparecía y la ecuación se resolvía. Tras los números imaginarios hay un mensaje muy importante. Ninguna dificultad es insalvable. Si no puedes derribar un muro, sáltalo, rodéalo pero no te pares y des media vuelta. Porque detrás de él existen soluciones. De hecho, la raíz cuadrada de -1 no tiene solución real pero aún así la puedes llevar como compañera de viaje que al final del camino todo se arregla. A lo largo del desarrollo de esta tesis doctoral han aparecido problemas de todo tipo, algunos de ellos siguen sin solución aún hoy, pero aquí la tienes entre tus manos (menos probablemente) o en la pantalla de tu ordenador (más probablemente). Durante este proceso de formación han pasado por mi vida numerosas personas con los bolsillos repletos de números i, pero seguían incansablemente hacia adelante a pesar de todo. Y yo... impregnado de ese ímpetu aprendí a convivir con la raíz cuadra de -1. Durante este tiempo he aprendido tantas cosas que puedo decir sin temor a errar que antes de comenzar la tesis no sabía absolutamente nada. La oportunidad de ser doctor me cogió ya con unos años y una familia a mi lado, y por este motivo, el objetivo de conseguirlo se convirtió desde el principio en una necesidad obsesiva, pero a la vez, en una oportunidad irrepetible. 1 Todo comenzó con Emilio González Miras, amigo y compañero en aquellos locos años universitarios de Granada en los que mi prioridad en la vida era bien distinta a la que es hoy. Él fue quien me abrió la puerta a esta aventura. El siguiente escalón lo subí de la mano de Enrique López (director de esta tesis), responsable de dar el sí quiero a mi entrada en esta profesión. Ha sabido siempre comprender y ceder el espacio que yo necesitaba para mi desarrollo como doctor. Siguiendo el orden cronológico de las personas que han formado parte de esta tesis llegamos a Antonio Castro (Codirector). El azar juguetón del destino corrió de mi lado e hizo que entrara en escena una de las personas más honestas y buenas que he conocido jamás. Desde el primer minuto que compartimos despacho en el fondo de la segunda planta del edificio CITE-IIB se ofreció a estar a mi lado. Ha sido un apoyo imprescindible para mí, guía en todos los acontecimientos y fases por las que he ido pasando y amigo incondicional y sincero. Nunca tendré tiempo suficiente para agradecerte lo que me has ayudado. Eje clave en todos estos años ha sido y es Hermelindo Castro (Codirector). Su papel es claro y determinante: “es el chamán de la tribu”. Sin su “magia” nada de esto sería posible. Además, posee un sentido común y calidad humana de las que dejan huella. Emilio Virgós, la quinta pata de la tesis. Su humanidad y criterio científico son apabullantes. Todo un lujo trabajar con él, Emilio es al Tejón lo que Manolo Caracol al flamenco: un creador. Javier Cabello, un inmejorable compañero para discutir de ciencia, un enamorado de su trabajo, gran clarificador de ideas y estimulador de pensamiento, gracias por estar ahí. Cecilio Oyonarte, pa' comérselo... sin duda una de las personas con las que más conecto profesional e intelectualmente, gracias por confiar en mí. Domingo Alcaraz, el apoyo en la sombra, un referente, gracias por creer en mí. 2 Mis queridas/os compañeras/os de batalla; María López (jamón jamón, acojonante persona, la mejor), Patricia (siempre dispuesta a ayudar y a escuchar), Ricardo (Don Antonio, chapó, el compañero que todos soñamos tener), Emilio Rodríguez (otra bestia de persona, el pankiteras mejor persona de la escena alternativa), Andrew Reyes (rockero de corazón noble y más cerca de los satélites que del planeta tierra), Cristina Quintas (la eterna sonrisa), Mar Molina (esa chispa que cualquier lugar de trabajo que se precie necesita), las chicas y chicos del “tupper revolution” (muy buenos postres, confesiones y risas que nunca olvidaré): Josema (un crack), Eva (…), José Luis (donador desinteresado), Ismael (muy buen tío), Sonia (mmm), Olga (pedazo de hembra), Ángela (mi alma gemela). María Jacoba, Yolanda Cantón y Paco Domingo son de esas personas que basta con que pasen cerca de tu vida para que quieras que se metan de lleno. Mis compañerAs de Nexa (Enemies and eXpectations for Agroecology), Jordi, Estefanía, Marta, Mónica y Eva. Formar parte de este equipo es como tocar en el sexteto de Paco de Lucía, un privilegio que la vida me ha dado. Reyes Tirado está también entre estas páginas. Mi gran amiga y la primera persona que me dio la oportunidad de inmiscuirme en el mundo de la ecología. ¡Qué vueltas da la vida Amparito!. ¡Y llegamos al final!. Si a alguien debo agradecer que yo haya sido capaz es a Alicia, mi mujer. Ella lo es todo, sin ella no hay rumbo, no hay un por qué, es mi gran maestra en ser feliz. (Me pediste un beso y yo… te di toda una vida). A mis hijas Lola y Macarena, cuando leáis esto dentro de unos años solo espero que el tiempo que os he robado haya merecido la pena y que hayamos desplazado al destino un poquito a nuestro favor. Mis hermanas Carmen y Taté, siempre estaréis ahí. 3 A mis padres Juan y Juani porque sé que esto significa mucho para vosotros; esta tesis comenzó con vuestro sacrificio, entrega y afán de superación. ¡Gracias eternas!. …….. Es un libro que habla de lo que hablan casi todos los libros —continuó el viejo—. De la incapacidad que las personas tienen para escoger su propio destino. Y termina haciendo que todo el mundo crea la mayor mentira del mundo. —¿Cuál es la mayor mentira del mundo? —indagó, sorprendido, el muchacho. —Es ésta: en un determinado momento de nuestra existencia, perdemos el control de nuestras vidas, y éstas pasan a ser gobernadas por el destino. Ésta es la mayor mentira del mundo. Fragmento extraído de “El Alquimista”. Paulo Coelho. 4 RESUMEN El Tejón europeo es un carnívoro mustélido de mediano tamaño con una amplia distribución en la Península Ibérica. Sin embargo, los ambientes áridos Mediterráneos se encuentran lejos de su óptimo centro europeo. Por ello, la supervivencia de la especie puede verse amenazada en el futuro como consecuencia de los efectos derivados del Cambio Global. Esta tesis doctoral supone un avance sobre tres rasgos clave de la ecología del Tejón europeo en paisajes áridos Mediterráneos: (1) ¿qué factores ambientales impulsan su distribución espacial?, (2) ¿cuál es la variabilidad de los hábitos alimenticios de la especie en un contexto árido Mediterráneo?, y (3) ¿qué cambios potenciales en su distribución espacial pueden derivarse ante escenarios climáticos futuros?. Los resultados obtenidos identifican la dinámica espacio-temporal de la producción primaria como uno de los factores que impulsa la distribución espacial de la especie. Los modelos de distribución obtenidos muestran que los paisajes con mayor idoneidad de hábitat para el Tejón son aquellos que poseen una producción vegetal elevada, espacialmente heterogénea y poco variable a lo largo del año. En este sentido, las variables derivadas de la teledetección y relacionadas con el funcionamiento ecosistémico describen muy bien estos paisajes, mejorando considerablemente la fiabilidad de la distribución predicha por los modelos. Aunque el comportamiento alimenticio del Tejón en paisajes Mediterráneos ha sido descrito principalmente como frugívoro, los recursos tróficos clave explotados por la especie varían significativamente entre paisajes con diferente cobertura vegetal y uso 5 del suelo. Así, insectos, algarrobas y micromamíferos fueron relevantes en el paisaje de maquia; higos y naranjas en el matorral xérico y lombrices e insectos en la media montaña arbolaba. Debido a que los principales ítems consumidos por el Tejón dependen del clima y del uso que el hombre hace del suelo, sus hábitos alimenticios podrían modificarse como consecuencia de la aridificación, intensificación de los cultivos y/o el abandono rural. De forma particular, la calidad del hábitat para el Tejón podría verse significativamente reducida en algunos paisajes agrícolas a finales del siglo XXI como consecuencia de una homogeneización espacial en la producción primaria. Por consiguiente, es necesario el seguimiento y conservación de su calidad de hábitat mediante iniciativas encaminadas al mantenimiento del paisaje rural Mediterráneo. Para tal fin, las políticas diseñadas con el objetivo de prevenir el abandono rural y preservar la heterogeneidad de los paisajes agrícolas tradicionales resultan de gran importancia. Así mismo, el seguimiento de la dinámica espacio-temporal de la producción primaria a través de herramientas derivadas de la teledetección puede ayudar a identificar zonas susceptibles de disminuir su idoneidad de hábitat y a optimizar así programas de seguimiento de la especie. Una síntesis de los principales resultados de la Tesis doctoral y otros recursos gráficos pueden ser consultados a través del siguiente enlace web: http://european-badger-mediterranean-landscapes.site40.net/index.html 6 SUMMARY The European badger (Meles meles, family Mustelidae) is a medium-sized carnivore that is widely distributed in Europe. Arid Mediterranean environments at the western extent of its range, however, differ greatly from the optimal habitat conditions of Central Europe. For this reason, Global Change may adversely affect the survival of badgers in the Iberian Peninsula. This PhD thesis addresses this concern using spatial distribution models. The analyses considered three key aspects of the ecology of the badger in Mediterranean arid landscapes: (1) environmental factors meditating its spatial distribution, (2) the variability of badger feeding habits, and (3) potential changes in distribution under future climate scenarios. The analysis of environmental factors indicates that spatio-temporal dynamics of primary production is a leading factor affecting the spatial distribution of badgers. High quality habitats tended to occur in landscapes with high primary production and spatial heterogeneity throughout the year. The remote sensing-derived variables and related with the ecosystem functioning depict very well these landscapes and their incorporation in the models improves the performance of the predicted distribution. Although the badger is considered a frugivore in much of its Mediterranean range, the results of this thesis demonstrate that its feeding behavior is more complex in the arid Iberian Peninsula. Specifically, feeding behavior differs with land cover and land use. In this region, insects, carobs and small mammals were important in the 7 maquia; figs and oranges in the xeric shrubland and earthworms and insects in mid-elevation forests. This PhD thesis discusses that the availability and abundance of food items for the badger, which are dependent on climate and land use, may be altered by aridification, intensification of crop production, and/or rural abandonment. In particular, the habitat quality for the badger may decrease significantly in some agricultural landscapes due to a spatial homogenization of primary production, as predicted for the end of this century. Therefore, monitoring and conservation of habitat quality are necessary in the Mediterranean rural landscapes to insure the persistence of this species. To achieve this objective, policies designed to prevent rural emigration and promote the preservation of the heterogeneity of traditional agricultural landscapes are crucial. Likewise, the monitoring of spatio-temporal dynamics of primary production by remote sensing could identify areas of decreasing habitat suitability. A synthesis of the main results of this PhD Thesis and some graphic resources can be accessed by the following web link: http://european-badger-mediterranean-landscapes.site40.net/index.html 8 ÍNDICE AGRADECIMIENTOS .......................................................................................... 1 RESUMEN ......................................................................................................... 5 SUMMARY ........................................................................................................ 7 ÍNDICE............................................................................................................... 9 ÍNDICE DE TABLAS ........................................................................................... 12 ÍNDICE DE FIGURAS ......................................................................................... 14 1. INTRODUCCIÓN........................................................................................... 18 1.1 EL TEJÓN EUROPEO: RASGOS DE SU ECOLOGÍA EN UN CONTEXTO ÁRIDO MEDITERRÁNEO ................................................................................................................... 19 1.2 JUSTIFICACIÓN ........................................................................................... 24 1.3 OBJETIVO GENERAL E HIPÓTESIS DE TRABAJO ..................................................... 25 2. ÁREA DE ESTUDIO ....................................................................................... 28 3. MATERIAL Y MÉTODOS ............................................................................... 35 3.1 BLOQUE I: TRABAJO DE CAMPO Y LABORATORIO ............................................... 36 3.2 BLOQUE II: INFORMACIÓN SATELITAL Y FUNCIONAMIENTO ECOSISTÉMICO ............... 37 3.3 BLOQUE III: ANÁLISIS ESTADÍSTICO ............................................................... 38 3.3.1 Técnicas paramétricas .................................................................... 39 3.3.2 Técnicas no paramétricas ............................................................... 40 4. RESULTADOS ............................................................................................... 42 RESULTADO 4.1: MODELING SPATIAL DISTRIBUTION OF EUROPEAN BADGER IN ARID LANDSCAPES: AN ECOSYSTEM FUNCTIONING APPROACH .................... 42 ABSTRACT ...................................................................................................... 44 4.1.1 INTRODUCTION ....................................................................................... 45 4.1.2 MATERIAL AND METHODS .......................................................................... 48 4.1.2.1 Study area ................................................................................... 48 4.1.2.2 Field survey data.......................................................................... 48 4.1.2.3 Environmental data ..................................................................... 49 4.1.2.4 Model building............................................................................. 52 4.1.2.5 Model evaluation ......................................................................... 53 4.1.3 RESULTS ................................................................................................ 56 4.1.3.1 Occurrence of European badger ................................................... 56 4.1.3.2 Threshold-independent test ......................................................... 57 4.1.3.3 Information criteria...................................................................... 58 9 4.1.3.4 Relevant variables and their effects .............................................. 59 4.1.4 DISCUSSION ........................................................................................... 61 4.1.4.1 Did the EVI-derived variables improve ecological niche modeling of the European badger in arid landscapes?................................................. 61 4.1.4.2 Was the predicted spatial distribution across arid lands consistent with the ecological preferences of the European badger? ........................ 63 4.1.4.3 Ecosystem functional dimension in species ecological modeling and conservation ........................................................................................... 65 RESULTADO 4.2: FEEDING HABITS OF EUROPEAN BADGER (MELES MELES) IN MEDITERRANEAN ARID LANDSCAPES ........................................................... 68 ABSTRACT ...................................................................................................... 70 4.2.1 INTRODUCTION ....................................................................................... 71 4.2.2 MATERIALS AND METHODS ........................................................................ 74 4.2.2.1 Localization and description of landscapes ................................... 74 4.2.2.2 Diet analysis ................................................................................ 78 4.2.2.3 Data analyses .............................................................................. 79 4.2.3 RESULTS ................................................................................................ 80 4.2.3.1 Diet composition .......................................................................... 80 4.2.3.2 Effects of landscape and season on diet ....................................... 83 4.2.3.3 Earthworm consumption.............................................................. 86 4.2.3.4 Diet diversity and food consumption ............................................ 87 4.2.3.5 Nonparametric multidimensional scaling ..................................... 87 4.2.4 DISCUSSION ........................................................................................... 89 4.2.4.1 Spatial and temporal variation of badger diet .............................. 89 4.2.4.2 Potential implications of climatic change and land use change on feeding habits ......................................................................................... 92 RESULTADO 4.3: MODELING AND MONITORING HABITAT QUALITY FROM SPACE: THE EUROPEAN BADGER .................................................................. 95 ABSTRACT ...................................................................................................... 97 4.3.1 INTRODUCTION ....................................................................................... 99 4.3.2 MATERIALS AND METHODS ...................................................................... 102 4.3.2.1 Species, study area and presence records ................................... 102 4.3.2.2 Environmental variables............................................................. 103 4.3.2.3 Modeling approach.................................................................... 104 4.3.2.4 Spatial distribution modeling ..................................................... 105 4.3.2.5 Model evaluation and variable relative importance .................... 106 4.3.2.6 Future forecasting ..................................................................... 107 4.3.2.7 Comparing current and future spatial distributions: identification of sensitive areas to loss habitat suitability ................................................ 108 4.3.2.8 Limiting factors of habitat suitability .......................................... 109 10 4.3.3 RESULTS .............................................................................................. 110 4.3.3.1 Model performance and current projected distribution ............... 110 4.3.3.2 Forecasted future distributions................................................... 112 4.3.3.3 Potential areas to lose habitat suitability and involved environmental drivers ........................................................................... 114 4.3.4 DISCUSSION ......................................................................................... 117 4.3.4.1 EVI descriptors of ecosystem functioning to forecast species distributions .......................................................................................... 117 4.3.4.2 Global and local implications for wildlife monitoring and management ........................................................................................ 120 5. DISCUSIÓN ................................................................................................ 122 6. CONCLUSIONES ......................................................................................... 131 REFERENCIAS ................................................................................................ 132 ANEXOS ........................................................................................................ 158 RESULTADO 4.1: MODELING SPATIAL DISTRIBUTION OF EUROPEAN BADGER IN ARID LANDSCAPES: AN ECOSYSTEM FUNCTIONING APPROACH ......................................... 158 Appendix A............................................................................................ 158 Appendix B ............................................................................................ 159 Appendix C ............................................................................................ 160 Appendix D............................................................................................ 161 Appendix E ............................................................................................ 162 RESULTADO 4.2: FEEDING HABITS OF EUROPEAN BADGER (MELES MELES) IN MEDITERRANEAN ARID LANDSCAPES .................................................................. 163 Appendix F ............................................................................................ 163 Appendix G ........................................................................................... 168 Appendix H ........................................................................................... 171 RESULTADO 4.3: MODELING AND MONITORING HABITAT QUALITY FROM SPACE: THE EUROPEAN BADGER........................................................................................ 172 Appendix I ............................................................................................. 172 Appendix J............................................................................................. 174 11 ÍNDICE DE TABLAS 4. RESULTADOS RESULTADO 4.1: MODELING SPATIAL DISTRIBUTION OF EUROPEAN BADGER IN ARID LANDSCAPES: AN ECOSYSTEM FUNCTIONING APPROACH Table 4.1.1. Groups of variables used for constructing models. Group 1: topography and climate, group 2: Land cover and Land uses, group 3: EVI variables, group 4: EVI of land cover. Each model contained group 1, the ALL model all four groups, LC & LU model groups 1 and 2, the EVI model groups 1 and 3, and the EVI LC model groups 1 and 4. Thus, three models included the ecosystem functional variables: EVI, EVI LC and ALL, and only LC & LU model did not include these variables. .................................... 55 Table 4.1.2. Comparison of threshold-independent receiver operating characteristic (ROC) results for European badger using LC & LU, EVI, EVI LC and ALL models. For each random partition of occurrence records, the maximum AUCPO is marked in bold, the minimum underlined, and if the observed difference between the maximum AUC PO and the rest is statistically significant (under a null hypothesis that true AUC POs are equal), it is marked with an asterisk ............................................................ 57 Table 4.1.3. Number of estimated parameters (K), AICc differences (∆AICc) and Akaike weights (Wi). The maximum Wi for each random partition of occurrence records is marked in bold. ...................................... 58 RESULTADO 4.2: FEEDING HABITS OF EUROPEAN BADGER (MELES MELES) IN MEDITERRANEAN ARID LANDSCAPES Table 4.2.1. Mean relative volume (%) and frequency of occurrence (in parentheses, %) values for the different wide categories considered in 12 each landscape and season. We reported values of frequency of occurrence for comparative purposes with other studies using these categories ................................................................................................... 81 Table 4.2.2. Results of the two-way ANOVA with season and landscape type as fixed factors and the relative volume of the wide categories as the response variable. No effect varied its signification by applying the bootstrap resampling (see Table F.1 Appendix F) ........................................ 83 RESULTADO 4.3: MODELING AND MONITORING HABITAT QUALITY FROM SPACE: THE EUROPEAN BADGER Table 4.3.1. MaxEnt models performance for the European badger in SE Spain under current climate conditions. For each model, the training data (80% of the total) used were different. The table shows maximised loglikelihood function (log(L)), number of estimated parameters (K), corrected Akaike Information Criterion values (AICc), AICc differences from M9 (∆AICc) and Akaike weights (Wi); *most parsimonious model ..... 110 Table 4.3.2. Most important environmental variables (*) in the MaxEnt model for habitat suitability of the European badger in SE arid Spain under current climate conditions (1971-2000). Relative importance of variables was evaluated by a jackknife test on the training and test gains. The gains obtained using all variables were 0.227 for training data and 0.397 for test data, so these were the reference values. (see “Environmental variables” subsection for variables abbreviations) ........... 111 Table 4.3.3. Pearson coefficient correlation (rho) between habitat suitability predicted in the presence records under current climate conditions (1971-2000), and each environmental variable. (*P < 0.05; **P < 0.001). (see “Environmental variables” subsection for variables abbreviations)........................................................................................... 112 13 ÍNDICE DE FIGURAS 1. INTRODUCCIÓN Figura 1.1. Esquena general de la tesis. La tesis persigue dar respuesta a tres objetivos específicos relacionados con aspectos relevantes de la ecología del Tejón: distribución espacial, hábitos alimenticios y previsión de su distribución bajo escenarios de cambio climático. Para abordar dichos objetivos, se han llevado a cabo diferentes metodologías, aunando el trabajo de campo y laboratorio, la obtención y procesamiento de información satelital, y por último, el análisis estadístico. ................................................................................................. 27 2. ÁREA DE ESTUDIO Figura 2.1. Localización del área de estudio y principales usos del suelo y tipos de vegetación. Los límites han sido definidos en base al Índice de aridez de Martonne (Martonne, 1926). ....................................................... 29 Figura 2.2. Selección de algunos paisajes habitados por el Tejón dentro del área de estudio. La diversidad de tipos de vegetación, así como de usos del suelo, definen un territorio donde la riqueza y singularidad de sus paisajes hacen de él un laboratorio natural para el estudio de la ecología de esta especie. (a) Paisaje rural de huertas tradicionales embebidas dentro de un entorno xérico. Algunas terrazas se encuentran en evidente estado de abandono. (b) Ambiente de marisma con grandes charcones salinos rodeados de dunas y matorrales de porte elevado. (c) Estepa árida de relieve llano cercano a la costa, interrumpido solo por serpenteantes ramblas sujetas a la estacionalidad de las precipitaciones. (d) Garriga Mediterránea de perfil irregular y de vegetación frondosa, donde se entremezclan frutales silvestres y asilvestrados. (e) Masas de encinas relictas y pinares de repoblación dominan desde las alturas uno de los pocos subdesiertos naturales de Europa. (f) Grandes extensiones 14 de cultivo del Almendro en las altiplanicies del norte del área de estudio, se entremezclan con pequeños parches de Encinas..................................... 33 3. MATERIAL Y MÉTODOS Figura 3.1. Esquema gráfico de la metodología empleada en la tesis doctoral. EVI: Índice de Vegetación Mejorado; MaxEnt: Máxima Entropía; GLMs: Modelos Lineales Generalizados; GAMs: Modelos Aditivos Generalizados; NMDS: Escalamiento Multidimensional No Paramétrico; R: software R .............................................................................................. 35 Figura 3.2. Atributos funcionales derivados del Índice de Vegetación Mejorado (EVI) y relacionados con el funcionamiento del ecosistema. Figura modificada de G. Baldi (http://lechusa.unsl.edu.ar) y AlcarazSegura (2005).............................................................................................. 38 4. RESULTADOS RESULTADO 4.1: MODELING SPATIAL DISTRIBUTION OF EUROPEAN BADGER IN ARID LANDSCAPES: AN ECOSYSTEM FUNCTIONING APPROACH Figure 4.1.1. Study area location. ................................................................ 47 Figure 4.1.2. Jackknife test of variable importance for European badger in the ALL model with maximum AUCPO. (a) Bars show the AUCPO with each variable modeled separately. Ratios above the bars show the AUC PO percentage of the reference value (0.831); (b) Bars show the AUC PO, when each variable is extracted from the model. The ratios above the bars show the ratio decreased by the AUCPO with respect to the reference value (0.831). .............................................................................................. 60 15 RESULTADO 4.2: FEEDING HABITS OF EUROPEAN BADGER (MELES MELES) IN MEDITERRANEAN ARID LANDSCAPES Figure 4.2.1. Location of landscapes within the study area in Almería province, Spain. In each landscape, we identified a zone with latrines frequently used by European badger (Meles meles). Then, we drew a 3 km-radius buffer zone using the latrines as centroid. .................................. 76 Figure 4.2.2. Estimated relative volume (%) for each main category considered in the different seasons and landscapes. Whiskers represent the standard error of the mean values of categories. .................................. 85 Figure 4.2.3. Interaction between landscape and season for earthworm relative volume (%) in the diet. Whiskers represent the standard error of the mean values of categories..................................................................... 86 Figure 4.2.4. Nonparametric multidimensional scaling (NMDS). The axis NMDS1 and NMDS2, show the range of the distances reached between seasons in the three landscapes. Seasons are arranged so that the distances between them are as close to the real differences between the mean relative volume (%) of fruits, vertebrates and invertebrates consumed in each landscape. A lower distance between seasons means greater similarity between them and vice versa. Isoplets are based on the Shannon´s diversity index. .......................................................................... 88 RESULTADO 4.3: MODELING AND MONITORING HABITAT QUALITY FROM SPACE: THE EUROPEAN BADGER Figure 4.3.1. (a) MaxEnt-modeled decrease in habitat suitability of the European badger in SE arid Spain from current climate conditions (19712000) to two future climate scenarios (IPCC A2 and B1 for 2071-2099). Habitat suitability maps with mean suitability computed by rows and columns (cell size 100 x 100 m) in the margins. X and Y axes show UTM coordinates (Zone 30, Datum ED1950). Cells in grey contain greenhouses, 16 so they were removed before computing the predictions (see “Environmental variables” subsection). Histograms (Y axis: number of cells/number total of cells) of the habitat suitability values. (b) Study area (7051km2) and location of the 179 badger presence records used in this study. The area only includes arid climate; based on Martonne aridity index. (c) MaxEnt-modeled maps of significant differences in habitat suitability between current and predicted climate conditions under the A2 and B1scenarios for the European badger in SE arid Spain. In pale red, areas where the variables are expected to significantly decrease (SD > 0.975); in blue, areas where the variables are expected to significantly increase (SD < 0.025); and in grey, areas where there was no significant difference. ................................................................................................ 113 Figure 4.3.2. MaxEnt-modeled maps of the limiting factors of habitat suitability for the European badger in SE arid Spain under current climate conditions (1971-2000) and two future climate scenarios (IPCC A2 and B1 for 2071-2099). The limiting factor is the environmental variable whose value at one cell most influences the model suitability prediction. (see “Environmental variables” subsection for variables abbreviations) ........... 115 Figure 4.3.3. Maps of the significant differences in the EVI descriptors of ecosystem functioning and in the climate variables between current climate conditions (1971-2000) and two future climate scenarios (IPCC A2 and B1 for 2071-2099) in SE Spain. In pale red, areas where the variables are expected to significantly decrease (SD > 0.975); in blue, areas where the variables are expected to significantly increase (SD < 0.025); and in grey, areas where there was no significant difference. (see “Environmental variables” subsection for variables abbreviations) ........... 117 17 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo 1. INTRODUCCIÓN (Fotografía: letrina de Tejón en el inferior de la imagen dominando los rebosantes desiertos del sureste europeo. Paraje Natural del Desierto de Tabernas, Almería). 18 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo 1.1 El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo El Tejón europeo (Meles meles L., 1758) es un carnívoro de mediano tamaño perteneciente a la familia Mustelidae. Su cuerpo es robusto y alargado, con cabeza pequeña y cuello muy corto. Posee fuertes patas acabadas en largas y poderosas uñas que le sirven para excavar. Su diseño facial es muy característico y consiste en un fondo blanco surcado por dos bandas negras que cubren la zona de los ojos (Virgós, 2005). La especie está presente en casi toda Eurasia, aunque su abundancia y/o presencia no es homogénea a lo largo de su rango de distribución (Virgós & Casanovas, 1999). Así, en paisajes humanizados del Reino Unido, se han registrado densidades de más de 40 tejones/km2 (Macdonald & Newman, 2002) mientras que en algunas zonas del sur de la Península Ibérica, las densidades no superan 1 tejón/km2 (Revilla et al., 2001a). Esta variabilidad en su abundancia pone de manifiesto su gran versatilidad ecológica, pudiendo sobrevivir en una amplia variedad de paisajes, aunque no con el mismo éxito reproductivo. En Europa centrooccidental, países escandinavos y Reino Unido, los tejones viven generalmente en bosques de hoja caduca con alternancia de pastizales (Kruuk, 1989; Feroe & Montgomery, 1999). En zonas del suroeste de la Península Ibérica, el matorral mediterráneo representa su hábitat preferido (Revilla et al., 2000), mientras que en el sureste, donde aumentan las condiciones de aridez, los tejones seleccionan paisajes mosaico constituidos por cultivos extensivos mezclados con parches de vegetación natural (Lara-Romero et al., 2012). Esta capacidad para adaptarse y sobrevivir en distintos paisajes viene determinada por la amplitud de estrategias tróficas que es capaz de adoptar. El Tejón es 19 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo considerado un especialista en el consumo de lombrices (Lumbricus spp.) en Gran Bretaña y otras zonas del noroeste de Europa (Kruuk & Parish, 1981). En la región Mediterránea, la disponibilidad de lombrices es menor debido principalmente a una menor precipitación y a un manejo del suelo distinto al de otras zonas del norte de Europa (Virgós et al., 2005a). En estos ambientes, la especie se comporta como un generalista trófico (Roper, 1994), y consume frutos, insectos y vertebrados en las zonas más áridas (Piggozi, 1991; Rodríguez & Delibes, 1992; Barea-Azcón et al., 2010). No obstante, puede mostrar especialización en el consumo de lombrices en zonas montañosas más húmedas, comportándose por tanto, como un especialista facultativo bajo circunstancias específicas (Virgós et al., 2004). El Tejón europeo ha sido ampliamente estudiado, y sus tendencias poblacionales y distribución seguidas con interés en el área templada del continente europeo, especialmente en las Islas Británicas. Gran parte de este interés se debe a que en dichas zonas la especie representa un reservorio de Mycobacterium bovis, una micobacteria causante de la Tuberculosis bovina en el ganado vacuno (Muirhead et al., 1974). Las investigaciones han mostrado una asociación entre las infecciones de los rebaños y la presencia de tejones afectados en la misma zona (Muirhead et al., 1974; Wilesmith, 1983). Por el contrario, en la región Mediterránea, los estudios sobre la ecología y conservación del Tejón fueron muy escasos hasta comienzos del siglo XXI, llegando incluso a catalogarse como “especie insuficientemente conocida” en el Libro Rojo de los Vertebrados de España (Blanco & González, 1992). En el caso particular de la Península Ibérica, es a partir del año 2000 cuando aumenta considerablemente el conocimiento de la especie gracias a los 20 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo estudios científicos realizados por diferentes equipos de investigación y a la labor del Grupo de Carnívoros Terrestres de la SECEM (Sociedad Española para la Conservación y Estudio de los Mamíferos) (Virgós et al., 2005b). La información acumulada durante los últimos 20 años ha permitido su catalogación actual como especie en Riesgo menor (LC) (Palomo et al., 2007). En el sur de la Península Ibérica, los trabajos sobre la ecología del Tejón se han centrado en el Parque Nacional de Doñana y algunas zonas puntuales en el sureste de Andalucía (Rodríguez & Delibes, 1992; BareaAzcón et al., 2010; Lara-Romero et al., 2012). Los paisajes áridos Mediterráneos, particularmente los situados en el sureste ibérico, suponen un reto para la supervivencia del Tejón. Estos ambientes representan el límite de su rango de distribución (Del Cerro et al., 2010), situándose muy por debajo de la idoneidad de hábitat de los paisajes centroeuropeos (Lara-Romero et al., 2012). Dicha idoneidad puede incluso verse disminuida en el futuro, dado que la región Mediterránea es una de las zonas más susceptibles a sufrir los efectos derivados de algunos impulsores directos de Cambio Global (ej., cambio climático y cambios en la cobertura vegetal y de uso del suelo) (Sala et al., 2000; Giorgi & Lionello, 2008). En el sureste de la Península Ibérica se espera un incremento considerable de las condiciones de aridez debido a un aumento de la temperatura y disminución de la precipitación (Giorgi & Lionello, 2008), pudiendo crear condiciones particularmente difíciles durante el periodo estival (De Luís et al., 2001). Sin embargo, a pesar de las consecuencias que los cambios en el clima y en los usos del suelo pueden suponer para la supervivencia del Tejón (Virgós et al., 2005c), no existe mucho conocimiento sobre la repercusión que estos impulsores 21 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo pueden tener para la especie en ambientes áridos Mediterráneos. Esto enfatiza la necesidad de avanzar en la comprensión de aspectos clave de su ecología como son: (1) qué factores ambientales impulsan su distribución espacial, (2) variabilidad de los hábitos alimenticios de la especie en un contexto árido Mediterráneo, y (3) cambios potenciales en su distribución espacial derivados de la proyección a condiciones climáticas futuras. Los modelos de distribución espacial tratan de estimar la idoneidad relativa de hábitat requerida por una especie en un área geográfica determinada (Warren & Seifert, 2011; Menke et al., 2009). Estas técnicas representan una herramienta muy útil en la biología de la conservación, por lo que su uso se está viendo incrementado considerablemente en los últimos años (Austin, 2007). Actualmente, los modelos de distribución desarrollados para el Tejón, integran observaciones de presencia de la especie junto con variables ambientales de tipo topográfico, climático y de cobertura y uso del suelo, implementados en Sistemas de Información Geográfica (SIGs) (Virgós & Casanovas, 1999; Jepsen et al., 2005; Newton-Cross et al., 2007). Estos modelos han mejorado nuestra comprensión de su distribución y abundancia (Newton-Cross et al., 2007), reduciendo muchas de las limitaciones asociadas al muestreo de campo (ej., alto coste económico, limitación en la extensión del área geográfica estudiada). Sin embargo, la información derivada de cartografía SIG también posee limitaciones de representatividad ecológica, tales como, no representar características del paisaje relevantes para la especie objeto de estudio, o mostrar una resolución espacial inadecuada a la escala de trabajo seleccionada (Pearce et al., 2001). Con el fin de avanzar sobre estos problemas, algunos autores 22 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo proponen utilizar información satelital para estimar variables que describan atributos relacionados con el funcionamiento del ecosistema a través de la producción vegetal (Pettorelli et al., 2005; Cabello et al., 2012a). Estos atributos describen la variabilidad espacio - temporal de la producción primaria (Alcaraz-Segura et al., 2013; Requena-Mullor et al., 2014), por lo que podrían resultar útiles en la modelización de la distribución espacial del Tejón. Además, gracias a su respuesta rápida ante los cambios ambientales (Pettorelli et al., 2011), pueden ayudar a detectar zonas susceptibles de disminuir su calidad de hábitat bajo condiciones climáticas futuras. Otro aspecto clave de la ecología del Tejón en paisajes áridos, es su alimentación. Se ha demostrado que la diversidad de paisajes y de condiciones ambientales propician distintas estrategias alimenticias en los tejones, lo que puede condicionar a su vez diferentes organizaciones sociales, densidades, y afectar a otros aspectos socio-ecológicos (Virgós et al., 2005a). Por tanto, conocer los hábitos alimenticios de la especie en paisajes áridos Mediterráneos, es fundamental para comprender de qué manera pueden variar en respuesta a los principales impulsores de Cambio Global, y afectar a rasgos importantes de su ecología. Los estudios sobre la dieta del Tejón en ambientes áridos de la Península Ibérica son muy escasos. Rodríguez & Delibes (1992) describieron la dieta únicamente durante la estación de verano en un paisaje con vegetación xerofítica y cultivos. Barea-Azcón et al. (2010), estudiaron la dieta anual del Tejón en una zona con clima continental pero en un año especialmente seco, y un paisaje dominado por Olivos (Olea europea), pinares (Pinus halepensis) y encinas (Quercus rotundifolia). En este sentido, no existen estudios que hayan realizado un seguimiento anual 23 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo de la dieta en ambientes con aridez constante en el tiempo y analizando además la influencia de diferentes coberturas vegetales y usos del suelo. Por último, profundizar en cómo la distribución del Tejón puede variar ante futuros escenarios climáticos resulta fundamental para entender los procesos relacionados con la pérdida de su calidad de hábitat. De forma general, Levinsky et al. (2007) prevén una reducción drástica de la riqueza potencial de mamíferos en la región Mediterránea, y particularmente, Maiorano et al. (2014) predicen una disminución de hasta un 50% en la distribución de las especies de la familia Mustelidae en la cuenca Mediterránea. Dado que el Tejón es escaso o está ausente en ambientes áridos Mediterráneos (Virgós et al., 2005c), sería de esperar que su distribución se viera modificada en respuesta a cambios ambientales. Estas previsiones ofrecen una excelente oportunidad para mejorar nuestro conocimiento acerca de los impactos potenciales que el cambio climático pudiera tener sobre la especie y analizar posibles respuestas frente a ellos. A su vez, arrojaría información útil para el desarrollo de planes de conservación, tanto para el Tejón, como para otros meso carnívoros Mediterráneos. 1.2 Justificación El Tejón europeo posee una amplia distribución en la Península Ibérica (Revilla et al., 2002). Sin embargo, a una menor escala, la especie presenta claras tendencias en sus preferencias de hábitat (Virgós & Casanovas, 1999; Revilla et al., 2000), y puede llegar a ser localmente raro o incluso estar ausente, como ocurre en algunas zonas del sureste árido (Virgós, 1994; Virgós et al., 2005a). El sureste de la Península Ibérica representa uno de los límites de su distribución, y por tanto, las 24 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo condiciones ambientales se encuentran lejos de su óptimo Centroeuropeo (Virgós & Casanovas, 1999). Por ello, sería razonable pensar que la supervivencia de la especie en esta región pueda verse amenazada en un contexto de Cambio Global, por lo que mejorar nuestra comprensión sobre la ecología de la especie en estos ambientes resulta determinante. Aunque existe un amplio conocimiento en otras zonas de su rango de distribución (ej., Europa central e Islas Británicas), en la región Mediterránea es aún insuficiente, particularmente en ambientes áridos. A pesar de que en los últimos años se ha avanzado en esta dirección (Barea-Azcón et al., 2010; Lara-Romero et al., 2012), aún quedan aspectos importantes por comprender como cuáles son los factores ambientales que impulsan su distribución espacial, la variabilidad de sus hábitos alimenticios dentro de un contexto árido o los patrones futuros de dicha distribución frente a escenarios de cambio climático. 1.3 Objetivo general e hipótesis de trabajo El objetivo general de la tesis es avanzar en el conocimiento sobre la ecología del Tejón europeo en paisajes áridos Mediterráneos (Fig. 1.1). Para lograr dicho objetivo se proponen tres objetivos específicos: 1. Desarrollar modelos de distribución espacial incorporando información satelital relacionada con el funcionamiento del ecosistema, para testar si mejora la fiabilidad de los mismos. 2. Describir y comparar la dieta del Tejón a través de paisajes áridos con diferente cobertura vegetal y uso del suelo. 25 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo 3. Proyectar la distribución espacial del Tejón utilizando escenarios de cambio climático futuros propuestos por el Intergovernmental Panel on Climate Change (IPCC). Para ello, se plantean las siguientes hipótesis de trabajo: 1) Dado que los recursos tróficos del tejón están relacionados directa y/o indirectamente con la producción primaria del ecosistema, cabría esperar que información derivada de sensores remotos, relacionada a través de la producción vegetal con el funcionamiento del ecosistema, resultara útil en la modelización de la distribución espacial del Tejón. 2) Debido al carácter generalista descrito para el Tejón en ambientes Mediterráneos (Roper, 1994), el comportamiento trófico de la especie podría variar entre paisajes áridos con diferente cobertura vegetal y uso del suelo, y explotar distintos recursos alimenticios. 3) Los cambios en los patrones de precipitación y temperatura previstos por los modelos de circulación general de la atmósfera (IPCC, 2013) podrían reducir hasta en un 50% el rango de distribución de las especies de la familia Mustelidae en la cuenca Mediterránea (Maiorano et al., 2014). Por tanto, cabe esperar una reducción general de la calidad del hábitat para el Tejón en el sureste árido de la Península Ibérica. 26 INTRODUCCIÓN El Tejón europeo: rasgos de su ecología en un contexto árido Mediterráneo. Justificación. Objetivo general e hipótesis de trabajo 27 Figura 1.1. Esquena general de la tesis. La tesis persigue dar respuesta a tres objetivos específicos relacionados con aspectos relevantes de la ecología del Tejón: distribución espacial, hábitos alimenticios y previsión de su distribución bajo escenarios de cambio climático. Para abordar dichos objetivos, se han llevado a cabo diferentes metodologías, aunando el trabajo de campo y laboratorio, la obtención y procesamiento de información satelital, y por último, el análisis estadístico. ÁREA DE ESTUDIO 2. ÁREA DE ESTUDIO La tesis ha sido llevada a cabo en el sureste de la Península Ibérica (3606’N, 217’E) (Fig. 2.1). Esta región ocupa una posición biogeográfica singular en el contexto del Mediterráneo occidental. Situada en una zona de "sombra de lluvias" al abrigo del macizo montañoso de Sierra Nevada, se encuentra protegida de las borrascas atlánticas que entran por el oeste, y expuesta a las particularidades climáticas del Mar de Alborán, con perturbaciones estacionales que dejan intensas lluvias de carácter torrencial. Así, el rango de precipitación media oscila entre 165-419 mm/año. Dicha personalidad pluviométrica, unida a la rigurosidad térmica de los veranos mediterráneos y a unas temperaturas suaves el resto del año (temperatura media de las mínimas: -1.6–15 °C, temperatura media de las máximas 17-24.5 °C), dibujan uno de los entornos de aridez más intensos de Europa, con una evapotranspiración potencial media de 343-1038 mm/año. Junto a todo esto, la región de estudio ofrece gradientes altitudinales que van desde el nivel del mar hasta los 1500 m, así como una variedad de litologías que derivan en una variedad paisajística notable y por tanto, en una oferta de nichos ecológicos muy diversa. La región acoge tres pisos termoclimáticos: termo, meso y supramediterráneo dentro de los sectores biogeográficos almeriense, alpujarreño-gadorense, nevadense y guadiciano-bacense. Su litología está caracterizada por la presencia de materiales metamórficos paleozoicos y paleozoico-triásicos, representados mayoritariamente por micaesquistos, además de materiales sedimentarios con calizas, margas, yesos, y arenas terciarias, junto a conglomerados y arcillas cuaternarias. 28 ÁREA DE ESTUDIO 29 Figura 2.1. Localización del área de estudio y principales usos del suelo y tipos de vegetación. Los límites han sido definidos en base al Índice de aridez de Martonne (Martonne, 1926). ÁREA DE ESTUDIO La vegetación más extendida se corresponde con las series termomediterránea semiárida del Arto (Maytenus senegalensis subsp. europaeus) y termo- y meso-termo-mediterránea del Lentisco, representadas por Lentiscares con Pistacia lentiscus, Chamaerops humilis y Rhamnus spp., junto con extensas zonas de matorral de Albaida (Anthyllis spp.), Esparto (Macrochloa tenacissima) y Tomillos (Thymus spp.). Puntualmente importantes son los complejos politeselares de vegetación edafoxerófila sobre yesos con matorrales de pequeño porte. La vegetación arbórea se asienta en las zonas más elevadas, con encinares basófilos y silíceos junto a extensas plantaciones de pino (P. halepensis, P. nigra y P. silvestris). Cabe destacar, por la relevancia ecológica para el Tejón (Corbacho et al., 2003), las ramblas y cauces ocupados por geoseries edafohigrófilas donde destacan: Aneas (Typha spp.), Carrizo (Phragmites autralis), Tarays (Tamarix spp.), Adelfa (Nerium oleander) y frutales como la Higuera (Ficus carica) y el Algarrobo (Ceratonia siliqua). Pero sin duda, uno de los rasgos del área de estudio más destacados y de mayor trascendencia sobre la ecología del Tejón europeo, son los usos agrícolas del suelo derivados de la actividad humana (Lara-Romero et al., 2012). El paisaje rural Mediterráneo ha sido definido como un mosaico cambiante constituido por cultivos extensivos mezclados con parches de vegetación natural, favorecedor de la diversidad y abundancia de carnívoros (Pita et al., 2009). Dichos paisajes mantienen una alta heterogeneidad paisajística con gran variedad de cultivos, pero manteniendo a su vez ribazos y linderos. Aunque en retroceso por abandono, aún se conservan "vegas" asociadas a los cursos de agua, especialmente en los tramos medios, donde el cultivo de olivos y cítricos 30 ÁREA DE ESTUDIO son los más destacados. En contraposición, existen extensas áreas de cultivo intensivo en regadío de olivos, así como de especies herbáceas (ej., lechuga) y en secano (almendro y cereal), éstos últimos especialmente importantes hacia el norte. De igual forma, por debajo de la mitad sur y cercanos al litoral, aparecen tres importantes núcleos de cultivo hortícola intensivo bajo plástico. El grado de antropización urbanística, y por tanto, de ocupación humana, es máximo hacia la costa, disminuyendo en el interior. El éxodo de la población rural desde las zonas del interior hacia el litoral, especialmente en el sur, representa el motivo principal de la disminución y deterioro del paisaje rural tradicional sufrido en las últimas décadas en la región de estudio (Castro et al., 2011). Tanto el desarrollo urbanístico como la actividad agrícola intensiva, ejercen importantes presiones, y por tanto amenazas, sobre la conservación de los hábitats ocupados por el Tejón, plasmadas por ejemplo, en la pérdida y fragmentación del hábitat (Virgós et al., 2005c). En relación a este aspecto, el área de estudio y zonas aledañas, cuentan con diferentes figuras de protección fruto de las políticas de conservación del territorio en las últimas décadas. Así, las zonas montañosas gozan en general de un buen estatus de protección, ej., Parque Nacional y Natural de Sierra Nevada, Parque Natural de Sierra María-Los Vélez y Paraje Natural de Sierra Alhamilla. Los ambientes de humedal poseen un moderado nivel de protección hacia el sur (ej., Paraje Natural de Punta Entinas-Sabinar) y casi inexistente en zonas del noreste. El paisaje estepario, muy extendido a lo largo del área, presenta diferentes grados de protección. Así, el Parque Natural de Cabo de GataNíjar, Paraje Natural del Desierto de Tabernas y Karst en Yesos de Sorbas, 31 ÁREA DE ESTUDIO y varios LICs (Lugares de Interés Comunitario) repartidos por el centro y sur de la región, conforman un gradiente decreciente de conservación de dicho paisaje. Los ecosistemas esteparios han sido poco valorados tradicionalmente por el ser humano, sin embargo, son también explotados por el Tejón aunque en menor proporción. Por último, cabe destacar la ausencia en la mayoría de los casos, de figuras de protección que recaigan directamente sobre agroecosistemas tales como las vegas fluviales tradicionales comentadas antes, o los paisajes cerealistas del altiplano en la zona norte aledaña al área de estudio. Ambos representan paisajes humanizados pero de gran valor ecológico, muy importantes para el Tejón a escala regional (Virgós et al., 2002; Lara-Romero et al., 2012). A modo de ejemplo representativo de la diversidad de paisajes presentes en el área de estudio, la Fig. 2.2 muestra una selección de localidades en las cuales se ha detectado la presencia de la especie a lo largo de la realización de la tesis doctoral. (a) Paisaje rural de huertas tradicionales. (b) Ambiente de marisma. 32 ÁREA DE ESTUDIO (c) Estepa árida de relieve llano cercano a la costa. (d) Garriga Mediterránea de perfil irregular. (e) Masas de encinas relictas y pinares de repoblación. (f) Grandes extensiones de cultivo del Almendro entremezclados con pequeños parches de Encinas. Figura 2.2. Selección de algunos paisajes habitados por el Tejón dentro del área de estudio. La diversidad de tipos de vegetación, así como de usos del suelo, definen un territorio donde la riqueza y singularidad de sus paisajes hacen de él un laboratorio natural para el estudio de la ecología de esta especie. (a) Paisaje rural de huertas tradicionales embebidas dentro de un entorno xérico. Algunas terrazas se encuentran en evidente estado de abandono. (b) Ambiente de marisma con grandes charcones salinos rodeados de dunas y matorrales de porte elevado. (c) Estepa árida de relieve llano cercano a la costa, interrumpido solo por serpenteantes ramblas sujetas a la estacionalidad de las precipitaciones. (d) Garriga Mediterránea de perfil irregular y de vegetación frondosa, donde se entremezclan frutales silvestres y asilvestrados. (e) Masas de encinas relictas y pinares de repoblación dominan desde las alturas uno de los pocos subdesiertos naturales de Europa. (f) Grandes extensiones de cultivo del Almendro en las altiplanicies del norte del área de estudio, se entremezclan con pequeños parches de Encinas. 33 ÁREA DE ESTUDIO De forma particular, y con el fin de testar cada una de las hipótesis planteadas en la tesis doctoral, se han definido con posterioridad distintas zonas dentro del área de estudio. Su definición se ha realizado atendiendo a los requerimientos derivados del planteamiento conceptual y metodológico de cada hipótesis, y son expuestos detalladamente en el apartado de resultados. 34 MATERIAL Y MÉTODOS Trabajo de campo y laboratorio, información satelital - funcionamiento ecosistémico y análisis estadístico 3. MATERIAL Y MÉTODOS La metodología desarrollada en esta memoria de tesis doctoral integra tres bloques de trabajo principales (Fig. 3.1). BLOQUE I: técnicas de muestreo en campo y trabajo de laboratorio; BLOQUE II: descarga y procesamiento de información satelital para la estima de atributos funcionales del ecosistema empleados como subrogados de la dinámica espacio - temporal de la producción primaria; y por último, BLOQUE III: análisis estadístico paramétrico y no paramétrico empleando el software libre R (R Core Team, 2014) para, a partir de la información obtenida en los dos bloques anteriores, testar las hipótesis planteadas. Figura 3.1. Esquema gráfico de la metodología empleada en la tesis doctoral. EVI: Índice de Vegetación Mejorado; MaxEnt: Máxima Entropía; GLMs: Modelos Lineales Generalizados; GAMs: Modelos Aditivos Generalizados; NMDS: Escalamiento Multidimensional No Paramétrico; R: software R. 35 MATERIAL Y MÉTODOS Trabajo de campo y laboratorio, información satelital - funcionamiento ecosistémico y análisis estadístico 3.1 BLOQUE I: Trabajo de campo y laboratorio El trabajo de campo ha consistido en la búsqueda activa de indicios de presencia de Tejón y la recolección de excrementos. Existen numerosas técnicas de campo aplicables al muestreo de la presencia de Tejón (ver Virgós & Revilla, 2005 para una revisión y resumen). Sin embargo, no todas son válidas en zonas con baja densidad de la especie como ocurre en el sureste árido de la Península Ibérica (Lara-Romero et al., 2012). En este contexto, un método fiable, rápido y barato para cubrir grandes extensiones, es la búsqueda activa de indicios de presencia (huellas principalmente) en cuadrículas de igual área y durante un tiempo determinado (Revilla et al., 2001b). No obstante, dado que la impresión de huellas es muy dependiente del tipo y estado del sustrato, es recomendable no limitar la búsqueda únicamente a huellas y ampliarla también a letrinas y tejoneras (Virgós & Revilla, 2005). La información levantada en campo, ofrece no solo una serie de localizaciones con presencia de la especie (coordenadas UTM) imprescindibles para la modelización de su distribución espacial, sino que posibilita además el conocimiento de zonas de marcaje con letrinas para la recolecta de excrementos y su posterior análisis en laboratorio. El trabajo de laboratorio se ha basado en el análisis visual de excrementos. Existen diversos protocolos estandarizados para el reconocimiento y conteo de restos de alimento en heces animales (Kruuk & Parish, 1981; Pigozzi, 1991). La disgregación de las muestras se realiza en medio acuoso, para posteriormente, tamizarlas y separar los componentes. Para el reconocimiento y determinación de los restos de presas consumidas, se utiliza la lupa binocular, en caso de ítems macroscópicos (ej., semillas, huesos, restos quitinosos de invertebrados, 36 MATERIAL Y MÉTODOS Trabajo de campo y laboratorio, información satelital - funcionamiento ecosistémico y análisis estadístico etc.), o el microscopio óptico para la detección de restos más diminutos como las quetas de las lombrices de tierra. 3.2 BLOQUE II: Información satelital y funcionamiento ecosistémico La información espectral emitida por la vegetación y obtenida a partir de sensores remotos representa un nuevo paradigma para el estudio y seguimiento de la fauna y su conservación (Pettorelli et al., 2011; Cabello et al., 2012a). La respuesta espectral de la cobertura vegetal en longitudes de onda en el rango del rojo e infrarrojo permite estimar diferentes atributos funcionales sobre grandes extensiones del territorio (Running et al., 2000; Paruelo et al., 2005), posibilitando a su vez el estudio del funcionamiento de la vegetación a escala de ecosistema (Lloyd, 1990). Un ejemplo de ello lo constituye el Índice de Vegetación Mejorado (EVI), el cual ha sido ampliamente usado como un subrogado de la Producción Primaria (PP) y su dinámica estacional (Pettorelli et al., 2005; Alcaraz-Segura et al., 2013) (Fig. 3.2). La ecuación utilizada para su obtención se indica a continuación: (1) donde G es un factor de ganancia; RIRC, RR y RA son respectivamente los valores de reflectancia bidireccional de la superficie de la tierra para las bandas del infrarrojo cercano, del rojo y del azul con una corrección de los efectos de la atmósfera (Absorción de ozono y Rayleigh); C1 y C2 son los coeficientes de resistencia de aerosoles, que usan la banda azul para corregir la influencia del aerosol en la banda roja y L es un ajuste del fondo del dosel que toma en cuenta la transferencia radiante diferencial del infrarrojo cercano y el rojo a través del dosel. Los coeficientes 37 MATERIAL Y MÉTODOS Trabajo de campo y laboratorio, información satelital - funcionamiento ecosistémico y análisis estadístico adoptados en el algoritmo del cálculo del EVI son L = 1, C1 = 6, C2 = 7.5 y G = 2.5. (Fuente: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf). Este índice es un estimador lineal de la fracción de la radiación fotosintéticamente activa absorbida por la vegetación (fAPAR) (Ruimy et al., 1994; Huete et al., 2002), el principal control de las ganancias de carbono (Monteith, 1981), y está siendo cada vez más utilizado en ecología animal para describir atributos del funcionamiento de los ecosistemas (Wang et al., 2010; Meynard et al., 2012; Bardsen & Tveraa, 2012; Requena-Mullor et al., 2014). Figura 3.2. Atributos funcionales derivados del Índice de Vegetación Mejorado (EVI) y relacionados con el funcionamiento del ecosistema. Figura modificada de G. Baldi (http://lechusa.unsl.edu.ar) y Alcaraz-Segura (2005). 3.3 BLOQUE III: Análisis estadístico Con el fin de testar las hipótesis planteadas, la información obtenida en los bloques I y II ha sido analizada con diversas técnicas estadísticas utilizando el software libre R. 38 MATERIAL Y MÉTODOS Trabajo de campo y laboratorio, información satelital - funcionamiento ecosistémico y análisis estadístico 3.3.1 Técnicas paramétricas La modelización de la distribución espacial del Tejón, se ha basado en el principio de máxima entropía implementado en el software libre MaxEnt por Phillips et al. (2006). MaxEnt utiliza datos de presencia de la especie junto a un grupo de pseudo-ausencias escogidas al azar del área de estudio donde la ausencia y presencia es posible. El objetivo es encontrar la función de probabilidad que posea la máxima entropía, esto es, la más cercana a la uniformidad. MaxEnt tiene en cuenta una serie de restricciones expresadas como funciones simples de las variables ambientales utilizadas, de tal forma que, el algoritmo aplicado por MaxEnt obliga a que el promedio de valores obtenidos a partir de las funciones para cada variable esté próximo a la media empírica conocida en las localidades con presencia de la especie (Phillips et al., 2004). Finalmente, el algoritmo otorga un valor de probabilidad de presencia (asumiendo por defecto que la prevalencia es 0.5) para cada una de las unidades espaciales en las que haya sido dividida el área de estudio. Para testar potenciales diferencias entre las estrategias tróficas desarrolladas por el Tejón en los paisajes estudiados, se realizó un análisis de varianzas mediante Modelos Lineales Generalizados (GLMs). Los GLMs son una extensión de los modelos lineales que permiten utilizar distribuciones de probabilidad no normales para la variable respuesta. Un GLM consiste en tres componentes: 1.- La distribución de probabilidad de la variable respuesta. Si la variable respuesta es continua, puede asumirse que su distribución será normal, con media μ y varianza σ2. 39 MATERIAL Y MÉTODOS Trabajo de campo y laboratorio, información satelital - funcionamiento ecosistémico y análisis estadístico 2.- Componente sistemático. Es una combinación lineal de variables predictoras continuas y/o categóricas. Cuando estas variables son únicamente categóricas, el GLM es equivalente al análisis de varianzas empleado en estadística aplicada (Sokal & Rohlf, 1995; Underwood, 1997). 3.- Función de enlace. Define la relación entre la media de la variable respuesta y el componente sistemático. Cuando se asume que la relación entre ambos es lineal, se emplea la función identidad, donde g(μ) = μ. En los GLMs la estimación de los parámetros se realiza mediante el método de máxima verosimilitud. El principio en el cual se basa la estimación por máxima verosimilitud es simple: dada una muestra de observaciones, el valor estimado para un parámetro es aquél que maximiza la probabilidad de dichas observaciones. Los GLMs son considerados modelos paramétricos porque debe especificarse una distribución de probabilidad para la variable respuesta, y por tanto, para el término de error del modelo. Así mismo, se consideran lineales porque la variable respuesta es descrita como una combinación lineal de variables predictoras. Más información sobre estos modelos puede encontrase en Agresti (1996) y Myers & Montgomery, (1997). 3.3.2 Técnicas no paramétricas Los Modelos Aditivos Generalizados (GAMs) son modificaciones no paramétricas de los GLMs donde cada variable predictora es incluida en el modelo como una función no paramétrica de "suavizado" (del inglés smoothing) (Hastie & Tibshirani, 1990). Estas funciones suelen ser LOESS smoothing (local regression smoother) o cubic splines (para una 40 MATERIAL Y MÉTODOS Trabajo de campo y laboratorio, información satelital - funcionamiento ecosistémico y análisis estadístico explicación en detalle ver respectivamente Keele, 2008; Wood, 2006; entre otros). De forma breve, LOESS smoothing, consiste en un ajuste de modelos de regresión lineal de forma local a través de pequeñas "ventanas" de tamaño ajustable a lo largo del eje de abscisas, donde los puntos dentro de cada ventana son utilizados en un modelo de regresión para predecir el valor de la variable respuesta correspondiente al valor medio o a la mediana de la variable predictora dentro de la correspondiente ventana. En cubic splines, el eje de abscisas es dividido en varios segmentos, y en cada uno de ellos, una función polinómica de grado 3 es ajustada. Los GAMs permiten relaciones no lineales entre la variable respuesta y las variables predictoras, por lo que resultan muy útiles en situaciones donde las relaciones lineales no son esperables. Este puede ser el caso de la relación entre el EVI medio anual y la precipitación media anual (ver Figura J.1 en Appendix J). Por último, la búsqueda de similaridad-disimilaridad entre paisajes y estaciones del año en relación a los alimentos consumidos por el Tejón requiere de técnicas multivariantes que no asuman normalidad entre las variables predictoras. El Escalamiento Multidimensional No Paramétrico (NMDS) es una técnica multivariante de interdependencia que trata de representar en un espacio geométrico de pocas dimensiones (normalmente dos) las similaridades existentes entre un conjunto de objetos (ej., las estaciones del año). De esta manera, una menor distancia entre los objetos indica mayor semejanza entre las variables predictoras utilizadas (ej., alimentos consumidos). 41 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach 4. RESULTADOS RESULTADO 4.1: MODELING SPATIAL DISTRIBUTION OF EUROPEAN BADGER IN ARID LANDSCAPES: AN ECOSYSTEM FUNCTIONING APPROACH Tejón inspeccionando madrigueras de conejo en busca de presas. Escena capturada con fototrampeo en la Rambla de las Amoladeras. Mayo 2011. Parque Natural de Cabo de Gata-Níjar. Basado en: Juan M. Requena-Mullor, Enrique López, Antonio J. Castro, Javier Cabello, Emilio Virgós, Emilio González-Miras, Hermelindo Castro. (2014). Landscape Ecology, 29:843-855. 42 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach Objetivo 1: “Desarrollar modelos de distribución espacial incorporando información satelital relacionada con el funcionamiento del ecosistema, para testar si mejora la fiabilidad de los mismos.” Hipótesis 1: “Dado que los recursos tróficos del tejón están relacionados directa y/o indirectamente con la producción primaria, cabría esperar que la información satelital relacionada con el funcionamiento del ecosistema a través de la producción vegetal, resultara útil en la modelización de la distribución espacial del Tejón.” Tengo mis resultados hace tiempo, pero no sé cómo llegar a ellos. C. F. Gauss 43 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach Abstract Understanding the factors determining the spatial distribution of species is a major challenge in ecology and conservation. This study tests the use of ecosystem functioning variables, derived from satellite imagery data, to explore their potential use in modeling the distribution of the European badger in Mediterranean arid environments. We found that the performance of distribution models was enhanced by the inclusion of variables derived from the Enhanced Vegetation Index (EVI), such as mean EVI (a proxy for primary production), the coefficient of variation of mean EVI (an indicator of seasonality), and the standard deviation of mean EVI (representing spatial heterogeneity of primary production). We also found that distributions predicted by remote sensing data were consistent with the ecological preferences of badger in those environments, which may be explained by the link between EVI-derived variables and the spatial and temporal variability of food resource availability. In conclusion, we suggest the incorporation of variables associated with ecosystem function into species modeling exercises as a useful tool for improving decision-making related to wildlife conservation and management. Keywords: Ecological niche modeling, MaxEnt, remote sensing, EVI, land use-land cover, Mediterranean ecosystems, Spain, Meles meles 44 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach 4.1.1 Introduction Understanding the factors determining the spatial distribution of species is a major challenge in ecology and conservation biology (Brown et al., 1995). The European badger (Meles meles) is medium-sized carnivore widely distributed across Europe. In Mediterranean arid landscapes the species is not abundant or is absent due to extreme aridity (Virgós et al., 2005). Current spatial distribution models for the European badger use occurrence data in conjunction with environmental variables derived from GIS data sources, such as topographic, climatic, and land cover/use (Virgós & Casanovas, 1999a; Jepsen et al., 2005; Newton-Cross et al., 2007). These models have improved our understanding of badger distribution and abundance (Newton-Cross et al., 2007) by reducing limitations associated with field sampling (e.g., high economic cost and limited geographic range). However, data derived by GIS cartography could include limitations of ecological representativeness such as not representing relevant landscape features for the target species or inadequate spatial resolution (Pearce et al., 2001). The use of ecosystem functioning variables could improve spatial distribution modeling due to their capacity to reflect spatial variability of landscape features and faster response to environment changes (Pettorelli et al., 2011). Ecosystem functioning variables can be extracted from remote sensing imagery, available continuously, both spatially and temporally. This allows the employment of standardized spectral indexes for monitoring species on different spatiotemporal scales (Nilsen et al., 2005) reducing extrapolations. An example of potentially useful ecosystem functioning variables are the functional attributes derived by the Enhanced Vegetation Index (EVI). The EVI has been used in mammal 45 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach ecology by Wang et al. (2010), Meynard et al. (2012), and Bardsen & Tveraa (2012). The EVI is linearly related to ecosystem carbon gains, and therefore, to net primary productivity (NPP) (Monteith, 1981), which is used as a surrogate of ecosystem functioning (Alcaraz et al., 2006; Cabello et al., 2012a). Thus, measures derived from EVI can describe ecosystem functional attributes (Pettorelli et al., 2005). These attributes include the mean annual EVI (i.e., surrogate of primary production) (Huete et al., 1997; Sims et al., 2006) and the coefficient of variation of mean annual EVI (i.e., indicator of seasonality) (Alcaraz-Segura et al., 2013). The Resource dispersion hypothesis posits that the size of badger territories is mainly linked to the dispersion of food resources (Macdonald, 1983; Kruuk, 1989; Macdonald & Carr, 1999). This hypothesis emphasizes the key role of patchiness of food quality in determining how large badger territories are. For example, habitat production tends to drive body condition, ultimately influencing fitness (Woodroffe, 1995). As a consequence, reproductive success of females is largely dependent on food conditions, which in badgers are mainly linked to climate factors mediating food abundance (e.g., production of habitats) (Woodroffe & Macdonald, 1995). Therefore, badger demography, abundance and social life is mainly shaped by food availability and predictability (seasonality), which can be assessed by ecosystem functional attributes derived of spectral vegetation indices (e.g., Nilsen et al., 2005; Pettorelli et al., 2005; Pettorelli et al., 2006). The purpose of this study is to test the use of ecosystem functional variables derived from EVI (e.g., mean annual EVI, coefficient of variation of mean annual EVI, and spatial deviation of mean annual EVI) to 46 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach improve spatial distribution modeling of the European badger. With this aim, we first sampled badger occurrence in a representative arid landscape located in the southeastern Iberian Peninsula (Fig. 4.1.1). Secondly, we designed a variety of spatial distribution models based on environmental variables, with and without including EVI-derived variables. We also explored their performance based on a subset of previously sampled presence data and the habitat preferences of badger as described by other authors. Finally, we discuss the role of ecosystem functional dimension in species ecological modeling and conservation. Figure 4.1.1. Study area location. 47 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach 4.1.2 Material and methods 4.1.2.1 Study area We selected a representative area of arid landscapes in the southeastern Iberian Peninsula based on the Martonne aridity index (Martonne, 1926) (Fig. 4.1.1), as it is easily calculated and mapped with GIS layers. Inside this area defined as Arid steppic by the Martonne index (range: 5-15), we drew a 3.5 km-radius buffer zone on both sides of the two major rivers basins in the region, and then joined the two buffers (Fig. 4.1.1). In this form, we ensure inclusion of the potential home range estimated for European badgers in these environments (i.e., 9 km2) (Lara-Romero et al., 2012). The study area comprised 835 km2, with a temperature gradient (range of minimum mean temperatures: 7-12 °C, range of maximum mean temperatures: 23-28 °C) and an annual precipitation gradient (200600 mm/year) associated with a wide altitudinal gradient (0-1400 m). Evapotranspiration ranges from 93 to 945 mm/year. Another important feature of the area is the diversity of land cover/use: xerophytic scrubs represent 48% of the area, where Stipa tenacissima is the most abundant. Forested habitat is very scarce, corresponding mostly to scattered pine forests (Pinus halepensis). Crops occupy 27% of the study area and include fruit orchards (especially abundant near the rivers), arable crops and greenhouses, in similar proportions. 4.1.2.2 Field survey data A field survey was conducted from September 2010 to February 2011. The study area was divided into 5 x 5 km UTM (Universal Transverse Mercator) plots (out of total 66 plots) to organize the field surveys and not as the sampling unit. A survey to identify signs of badgers (i.e., 48 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach footprints, latrines and setts) was carried out for 6 hours in each plot. To maximize the detection of the species with the least effort, we selected places for survey such as paths and catchments for footprints, hills for latrines and easy to dig sloping areas for setts. These places are known to be usually used by badgers. The GPS (UTM) coordinates of each sign were noted with a measurement error of up to 10 m using a GPSmap® 60CSx-Garmin. To avoid spatial autocorrelation of environmental variables (see below), no signs within 100 m from each other were considered (see Appendix A). 4.1.2.3 Environmental data The study area was characterized based on twenty predictor variables (Table 4.1.1 and Appendix B). Nine of these variables are commonly used in European badger ecology studies (e.g., Virgós and Casanovas 1999a; Revilla et al 2000; Jepsen et al., 2005; Macdonald & Newman, 2002; Rosalino et al., 2008; Lara-Romero et al., 2012), and were comprised by two climate variables, one topographic variable and six variables related to habitat structure represented by different land cover/use. The eleven remaining variables were derived from remote sensing data. Final resolution of environmental data sets was adjusted to 100 x 100 m pixel size (i.e., sample unit), to agree with the predominant smallest spatial resolution of data (Ferrier & Watson, 1997; Elith & Leathwick, 2009). Some variables (i.e., land cover/use variables) were scaled to the relevant scale for badgers (i.e., their home range). Topographic and climate variables Topographic and climate variables were derived from spatial data layers of the Environmental Information 49 Network of Andalusia RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach (http://www.juntadeandalucia.es/medioambiente/site/web/rediam). ESRI ArcMapTM 9.3 was used for their handling and processing. The topographic variable was mean slope, which has been described as a factor relevant for sett digging (Jepsen et al., 2005). It was estimated from the digital elevation model of Andalusia with a spatial and elevation pixel resolution of 20 x 20 m. This layer was resampled to 100 x 100 m. Climate variables (Virgós & Casanovas, 1999a; Johnson et al., 2002; Macdonald & Newman, 2002) were mean annual rainfall and the mean maximum temperature, acquired with a resolution of 100 x 100 m, so no transformation was made. Land cover and land use variables The land cover and land use variables (Virgós & Casanovas, 1999a; Revilla et al., 2000; Rosalino et al., 2008; Lara-Romero et al., 2012) were derived from Andalusian Land use/Land cover map (scale 1:25000 from 2007), in vector format. This layer included the following classes: scattered scrub, dense scrub, woody crops, arable crops, mixed crops (woody and arable) and mosaic crops (crops and natural vegetation). The study area was first divided into 3 x 3 km plots. We estimated the area (km2) of each class and then we rasterized to 100 x 100 m pixel size. These variables were scaled because the percent cover is relevant for badgers (Lara-Romero et al., 2012), instead of using the class of land cover/use as categorical variable. We considered a 9 km2 area as the probable home range of the European badger in areas of low habitat suitability (Lara-Romero et al., 2012). 50 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach EVI variables The eleven variables derived from remote sensing data were estimated based on the MOD13Q1 EVI product, generated from images captured by the MODIS sensor aboard the NASA’s TERRA satellite (www.modis.gsfc.nasa.gov) for a period of seven years. These images have the advantages of its high temporal resolution of 16 days (23 images/year) and spatial resolution appropriate to the scale of the study (231 x 231 m). The images were subjected to pixel quality filtering, in which those affected by heavy content of aerosols, clouds, shadows, snow or water were eliminated. The EVI is the index least affected by atmospheric conditions and presents fewer saturation problems for high levels of biomass (Huete et al., 2002). The mean annual EVI is linearly related to total carbon gain (Running et al., 2000), and has been used as a surrogate of vegetation production (Alcaraz-Segura et al., 2013). The standard deviation of mean annual EVI is an indirect measure of spatial heterogeneity, so that a high standard deviation may indicate mixed patches, while a low standard deviation is common in homogeneous landscapes. This variable was estimated by calculating the standard deviation of mean annual EVI in the 3 x 3 km plots used to estimate the land cover/use variables. The coefficient of variation of mean annual EVI is a seasonal carbon gain descriptor (Alcaraz et al., 2006) that has been used as an indicator of ecosystem seasonality (Alcaraz-Segura et al., 2013). Furthermore, seasonality, although described by other variables, has proven decisive in modeling the habitat of several other species (Boyce, 1978; Ferguson & McLoughlin, 2000; Wiegand et al., 2008). In addition to these, the EVI autumn mean (September-November) and EVI spring mean (March-May) were also 51 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach included as variables, because they represent the two growing seasons in Mediterranean arid landscapes (Cabello et al., 2012b). EVI variables were resampled to 100 x 100 m by a bilinear resampling technique. It determines the new value of a cell based on a weighted distance average of the four nearest input cell centers. This is likely more realistic than using nearest-neighbor interpolation method (Phillips et al., 2006). EVI of land cover and land uses variables Five variables were created by calculating mean EVI for each class of land cover/use referred to above. These variables were also resampled to 100 x 100 m by a bilinear resampling technique. 4.1.2.4 Model building MaxEnt We used MaxEnt v. 3.3.3k (Phillips et al., 2006) to model the spatial distribution of the European badger. The MaxEnt algorithm uses presence-only data. This is an advantage when working with a very low density of target species at large scales, as we expected in the study area based on Lara-Romero et al. (2012), due to the uncertainty in absences. Although MaxEnt has been criticized on several occasions (see recently Veloz, 2009; Yackulic et al., 2012), it is widely used for modeling the spatial distribution of species for various purposes, e.g., testing model performance against other methods (Elith et al., 2006) and using several types of variables (Buermann et al., 2008), predicting species richness or diversity (Graham & Hijmans, 2006), or forecasting distributions to estimate variations with climate change/land transformation (Yates et 52 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach al., 2010). Finally, given that 1) the main goal of this study is to test the performance of models using ecosystem functional variables, and 2) prediction maps generated by MaxEnt are of interest as assessment tools, but are not the goal itself, we considered MaxEnt a valid tool for achieving our objectives. Models To test the utility of environmental functional variables in modeling the spatial distribution of the badger, we combined the twenty variables into four groups, with and without including ecosystem functional variables (Table 4.1.1). We defined these four groups because they were the most ecologically reasonable and of interest for comparison in keeping with the objectives of this study. These groups of variables, along with the badger presence data, were input to compute models. We used 10-fold cross-validation of the occurrence locations. Each partition was made by randomly selecting 75% of the occurrence locations as training data, and the remaining 25% as test data. Then, each one of the partitions, along with each of the four combinations of variables, was run in MaxEnt to compute the models. We made 10 random partitions rather than a single one in order to assess the average model behavior, and to allow for statistical testing of observed differences in performance (Phillips et al., 2006). 4.1.2.5 Model evaluation Threshold-independent evaluation We evaluated the performance of models created from different combinations of variables using all discriminating thresholds within the predicted area as suitable or unsuitable for badgers. We used (threshold53 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach independent) receiver operating characteristic (ROC) analysis for this, as it uses a single measure, the area under the curve (AUC), to show model performance. With presence-only data, the AUCPO (i.e., AUC estimated with presence-only data) maximum was less than 1 (Wiley et al., 2003), so we do not know how close to optimal a given AUC PO was. Nevertheless, we were able to determine the statistical significance of the AUCPO and compare the performance of different models (Phillips et al., 2006). We employed a DeLong test (DeLong et al., 1998) to compare AUCPO values for each combination of variables. The DeLong test is designed to nonparametrically compare the difference between two AUCs from two correlated ROC curves. The Z score is defined as the difference of AUC divided by its standard error. Under the null hypothesis (the difference in AUC is zero) Z has a standard normal distribution (Chen et al., 2013). This test was computed in R (R Development Core Team, 2011). 54 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach Table 4.1.1. Groups of variables used for constructing models. Group 1: topography and climate, group 2: Land cover and Land uses, group 3: EVI variables, group 4: EVI of land cover. Each model contained group 1, the ALL model all four groups, LC & LU model groups 1 and 2, the EVI model groups 1 and 3, and the EVI LC model groups 1 and 4. Thus, three models included the ecosystem functional variables: EVI, EVI LC and ALL, and only LC & LU model did not include these variables. Variable Short name Groups of variables Group 1 X X X Group 2 Mean slope Annual Mean Rainfall Mean value of the maximum temperatures Area of scattered scrub SLO MRAIN MMT SSCRUB Area of dense scrub SDCRUB X Area of woody crop Area of arable crop Area of mixed crop Area of mosaic crop EVI annual mean Standard deviation of EVI annual mean Coefficient of variation of EVI annual mean EVI autumn mean EVI spring mean EVI annual mean of scattered scrub EVI annual mean of dense scrub EVI annual mean of woody crop EVI annual mean of arable crop EVI annual mean of mixed crop EVI annual mean of mosaic crop SWCROP SACROP SMICROP SMOCROP EVIMEAN EVISTD EVICV AEVI SEVI SSCEVI DSCEVI WCEVI ACEVI MICEVI MOCEVI X X X X 55 Group 3 Group 4 X X X X X X X X X X X X Group 1: topography and climate, group 2: Land cover and Land use, group 3: EVI variables, group 4: EVI of land cover. Each model contained group 1, the ALL model all four groups, LC & LU model groups 1 and 2, the EVI model groups 1 and 3, and the EVI LC model groups 1 and 4. Thus, three models included the ecosystem functional variables: EVI, EVI LC and ALL, and only LC & LU model did not include these variables. RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach Information criteria Following Warren & Seifert (2011), we implemented an Akaike information criterion corrected for small sample size (AICc) (Burnham & Anderson, 2002) in the MaxEnt models. We standardized raw scores for each model, so that all scores within the study area added up to 1. Then we calculated the likelihood of the data in each model by taking the product of the suitability scores for each pixel showing presence. Both training and test data were used in calculating likelihood. The number of parameters was measured by counting all parameters with a nonzero weight in the .lambda file produced by MaxEnt. All AICcs were computed using ENMTools software (Warren et al., 2010). Variable relative importance and response curves We evaluated the relative importance of the variables using a jackknife test on the AUCPO found from test data. Thus AUCPO was estimated by 1) removing the corresponding variable, and then creating a model with the remaining variables, 2) creating a model using each variable alone, and 3) using all variables. Furthermore, we plotted the response curves for the variables which caused the widest variations in the AUC PO. Curves were estimated by generating a model using only the corresponding variable and disregarding those remaining (Phillips et al., 2006). 4.1.3 Results 4.1.3.1 Occurrence of European badger The field survey yielded 94 presence locations, mainly associated with the two main rivers in the study area (see Appendix C). Landscapes near the rivers had a larger supply of food resources for the European badger, 56 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach because crops are abundant there (Fig. 4.1.1). These presence records are enough for this study since MaxEnt algorithm has been proved to works well at different sample size (Hernández et al., 2006). 51 of the records were footprints, 26 latrines, 15 setts and 2 road casualties. 4.1.3.2 Threshold-independent test In 6 of the 10 partitions, combinations with all variables (ALL) yielded the models with the highest AUCPO (Table 4.1.2). In 8 of the 10 partitions, the AUCPO was higher for EVI and EVI LC than for the Land cover & Land uses models, which were the lowest in most of the partitions. Table 4.1.2. Comparison of threshold-independent receiver operating characteristic (ROC) results for European badger using LC & LU, EVI, EVI LC and ALL models. For each random partition of occurrence records, the maximum AUCPO is marked in bold, the minimum underlined, and if the observed difference between the maximum AUCPO and the rest is statistically significant (under a null hypothesis that true AUCPOs are equal), it is marked with an asterisk. Data partition 1 2 3 4 5 6 7 8 9 10 Average Standard deviation Maximum Minimum LC & LU EVI EVI LC ALL AUCPO 0.722 0.63 0.644* 0.753* 0.625* 0.742* 0.734 0.673* 0.772 0.718* 0.701 AUCPO 0.669 0.701 0.705 0.756* 0.785 0.793* 0.726 0.711 0.788 0.758* 0.739 AUCPO 0.725 0.634 0.745 0.761 0.69 0.746* 0.707 0.682 0.753 0.77 0.721 AUCPO 0.722 0.674 0.658 0.816 0.69* 0.808 0.741 0.735 0.831 0.82 0.749 0.053 0.042 0.042 0.065 0.772 0.625 0.793 0.669 0.770 0.634 0.831 0.658 57 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach LC & LU: Land cover and Land uses. AUCPO: AUC estimated with presence-only data. 4.1.3.3 Information criteria Table 4.1.3 shows Akaike weights found by models. It is accepted that models with AICc differences (∆AICc) < 2 are plausible while models with ∆AICc values > 10 are rejectable (Burnham & Anderson, 2002). Thus, 6 of the 10 data partitions accepted EVI and LC & LU as the most parsimonious models, while one of the partitions accepted the EVI LC model. ALL models were not plausible in any of the partitions. Table 4.1.3. Number of estimated parameters (K), AICc differences (∆AICc) and Akaike weights (Wi). The maximum Wi for each random partition of occurrence records is marked in bold. Partition data LC & LU K ΔAICc Wi EVI K EVI LC ∆AICc Wi K ALL ∆AICc Wi K ∆AICc Wi 1 24 0.00 0.73 30 1.98 0.27 33 29.28 0.0 46 40.63 0.0 2 26 17.72 0.00 27 0.00 1.00 28 35.18 0.0 49 91.35 0.0 3 27 29.05 0.00 28 0.00 1.00 37 58.81 0.0 51 107.23 0.0 4 28 0.00 0.55 33 0.41 0.45 37 44.61 0.0 47 34.45 0.0 5 25 0.00 1.00 34 15.58 0.00 29 11.82 0.0 47 53.23 0.0 6 29 13.74 0.00 30 0.00 1.00 34 38.57 0.0 54 108.75 0.0 7 27 15.15 0.00 26 0.00 1.00 31 39.43 0.0 43 27.42 0.0 8 30 0.00 0.94 33 5.39 0.06 35 25.30 0.0 47 34.13 0.0 9 25 0.00 0.69 34 14.69 0.00 27 1.61 0.3 53 94.24 0.0 10 25 0.00 1.00 34 19.93 0.00 28 12.72 0.0 50 66.34 LC & LU: Land cover and Land uses. 0.0 58 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach 4.1.3.4 Relevant variables and their effects We only analyzed the relative importance of variables from the ALL model, with the maximum AUCPO value. Area of mosaic crop (SMOCROP) caused a 2% reduction in AUCPO (Fig. 4.1.2b). Therefore, this variable, along with others that caused a reduction of over 1% (Area of scattered scrub (SSCRUB), EVI of mosaic crop (MOCEVI), mean maximum temperature (MMT) and coefficient of variation of mean EVI (EVICV)), provided the most useful information not present in the other variables. We considered reductions about 2% and 1% as relevant, because these percentages were above the third quartile (0.84%) of reduction values percentage. EVIMEAN alone had the highest AUCPO (87.4% AUCPO with all variables) (Fig. 4.1.2a) and therefore, this variable provided the most useful information by itself. Apart from this, others like EVI spring, EVI autumn, EVI scattered scrub and standard deviation of mean EVI, were over 79%. 59 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach Figure 4.1.2. Jackknife test of variable importance for European badger in the ALL model with maximum AUCPO. (a) Bars show the AUCPO with each variable modeled separately. Ratios above the bars show the AUCPO percentage of the reference value (0.831); (b) Bars show the AUCPO, when each variable is extracted from the model. The ratios above the bars show the ratio decreased by the AUCPO with respect to the reference value (0.831). Variables such as scattered scrub area, mean maximum temperature, standard deviation of mean EVI and EVI of scattered scrub exerted a nonlinear effect on European badger habitat suitability, as predicted by MaxEnt (Appendix D). On the contrary, mosaic crop area and mean annual EVI, exerted a positive linear effect, while EVI crop mosaic and coefficient of variation of mean EVI had a negative linear effect. 60 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach 4.1.4 Discussion 4.1.4.1 Did the EVI-derived variables improve ecological niche modeling of the European badger in arid landscapes? EVI variables provided useful information that improved the ecological niche modeling of European badger in arid Mediterranean landscapes. Based on the AUCPO and AICc criteria, models built with EVI variables, performed well in predicting the spatial distribution, while models without them were inferior (based on AUCPO). We suggest that the variables included in the EVI models underlie the spatiotemporal dynamic of badger food resources by describing vegetation production (EVIMEAN), seasonality (EVICV) and spatial heterogeneity (EVISTD). Thus, areas with high EVI mean and EVI spatial heterogeneity represented more suitable habitats for the European badger, while they rejected areas with high EVI seasonality. Our study showed that despite the fact that rainfall (expressed here as mean annual rainfall, MRAIN) is considered the main driver of vegetation growth in Mediterranean environments (Nemani et al., 2003), it did not prove to be as good a predictor as the mean EVI (as proxy of primary production) for European badger distribution. The higher performance of EVI mean can be explained by the findings of Cabello et al. (2012b), in which production derived from EVI in drylands reflects the variation of the water use efficiency and its availability due to the features of vegetation and lithology. In addition, EVI mean also reflected the NPP for irrigated crops, which do not depend directly on rainfall (33% of crops in the study area are irrigated). 61 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach Additionally, more seasonal environments in the study area (i.e., with high EVICV values) represented zones with low habitat quality for European badger. Johnson et al. (2002) suggested that badger densities across Europe are associated with seasonal constraints, or some other constraint(s) that covary with seasonality. EVI models predicted as suitable, landscapes with little annual variation in EVI values, corresponding with sites where the availability of food may be assured even in summer, the season experiencing the most extreme shortages in food. Similarly, Virgós & Casanovas (1999a) showed that a decrease in summer rainfall reduces badger occurrence in Mediterranean mountains. We also found that badgers selected areas with high EVI spatial heterogeneity. Pita et al. (2009) described the Mediterranean rural landscape as a shifting mosaic that benefits diversity and presence of species as the European badger. The different types of traditional crops, along with patches of semi-natural vegetation, especially scrub and/or forest, yield a wide variety of food resources. We argue that the EVISTD variable might detect these mosaic landscapes. However, although this variable contributed positively to European badger habitat suitability, its effect was nonlinear, suggesting that badgers would not need such heterogeneity to survive in certain landscapes. Both EVICV and EVISTD might depict variability of resources availability. EVICV represents temporal variability in the availability of resources because it is the dispersion of mean EVI throughout the year. In this sense, if EVI in summer and winter are significantly different, the annual temporal variability of EVI will be large. On the other hand, EVISTD represents spatial variability because it is the standard deviation of mean 62 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach EVI into the potential territories of badgers. In consequence, high values indicate that a landscape will be more heterogeneous. 4.1.4.2 Was the predicted spatial distribution across arid lands consistent with the ecological preferences of the European badger? The distribution predicted by the EVI models was coherent with the habitat preferences described for the European badger (see Appendix E for further details of predicted distributions by models). Our results reveal that badger´s presence in the study area was mainly associated with sites near rivers where there were several different types of crops and patches of natural vegetation. According to Lara-Romero et al. (2012), in Mediterranean drylands the European badger prefers mosaic landscapes consisting of fruit orchards and natural vegetation, which provide shelter and food resources. In these environments, the diet is diversified, with consumption of fruit increasing in some seasons (BareaAzcón et al., 2010). Fruits, insects and vertebrates have also been described as relevant food resources for European badger in Mediterranean environments (Rodríguez & Delibes, 1992; Revilla & Palomares, 2002). Likewise, other authors have related the occurrence or abundance of these items with satellite-derived vegetation indices, such as EVI or Normalized Difference Vegetation Index (NDVI) (see Willems et al., 2009; Lafage et al., 2013; Tapia et al., 2013). EVI and EVI for Land cover models discriminated better between suitable (i.e., mosaic landscapes with crops) and unsuitable areas (homogeneous patches of dense xerophytic scrubs) than the LC & LU models (see Table 4.1.2 and Appendix E). EVI variables provided information for discriminating between two patches with the same type of land use and 63 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach cover, but with different primary production, seasonality and spatial heterogeneity. The EVI for Land cover models exhibited an intermediate performance (Table 4.1.2). These models also used variables related to primary production. However, such variables were averaged based on the spatial classification derived by GIS cartography. These maps may not represent relevant landscape features for the target species or inadequate spatial resolution (Pearce et al., 2001). Sites with high EVIMEAN and SMOCROP (area of mosaic crops) values represented the most suitable habitats for the European badger. However, the variable EVI mean of mosaic crops (MOCEVI) showed a negative effect on badger presence, which could be explained by the fact that 1- mosaic crop variable, in turn, encompasses different types of crops, and 2- badger presence records with high EVI values, are associated with non-irrigated almond crop, which would not favor badger presence in those areas. This suggests that in particular landscapes, the type of land use would be more decisive for badger than its associated production. Removal of variables such as SWCROP (area of woody crop) and AEVI (EVI autumn), did increase performance, meaning that such variables reduced the generality of the model. This is, models made with these variables appear to be less transferable to other geographic areas or to projected future distributions by applying future conditions (Phillips, 2006). Regarding the potential bias of the selected study area on results, we consider that the study area contained enough variability to ensure that its effect was minimized. Probably, a larger buffer would provide similar results because the area between both rivers has not crops. In 64 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach Mediterranean arid landscapes, the major landscape variability is generally associated with areas near rivers (Corbacho et al., 2003) and along altitudinal gradients, just what we defined with our study area. 4.1.4.3 Ecosystem functional dimension ecological modeling and conservation in species The incorporation of remotely sensed characterization of the ecosystem functional dimension in management and monitoring of species and populations is gaining attention in conservation biology (Cabello et al., 2012a). Ecosystem functional dimension provides proxies showing biodiversity patterns and new tools and criteria that can assist in designing conservation planning and actions. Some examples are shown by Bardsen & Tveraa (2012), who used vegetation production estimated by EVI to advance knowledge of the reproductive biology of reindeer (Rangifer tarandus) in Norway; Oindo (2002), who predicted mammal species richness and abundance using multi-temporal NDVI data; or Wiegand et al. (2008), who studied the relationship between brown bear (Ursus arctos) habitat quality and the seasonal course of NDVI as a proxy for ecosystem functioning in the northern Iberian Peninsula. Ecological modeling of the European badger in the Iberian Peninsula has to date been addressed mainly using landscape structural variables estimated from visual field observation (transect scale) (Virgós & Casanovas, 1999b) and by GIS information (regional scale) (Rosalino et al., 2004). Even though these variables that reflect landscape structure are essential to modeling the species distribution (Rosalino et al., 2008), they do not reflect the role of ecosystem functioning indicators or their bidirectional relationship with the conservation of biodiversity and ecosystem processes (Cabello et al., 2012a). However, Pettorelli et al. 65 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach (2005) and García-Rangel & Pettorelli (2013) point out some constrains of remote sensing data to wildlife studies such as select the most suitable processing to eliminate noise in the data, insufficient temporal resolution to precisely date phenological phenomena, and economic disadvantages due to many satellites still produce data that are not free. Our study is the first to show that incorporation of ecosystem functional variables (EVI-derived) improves the prediction of spatial distribution modeling of the European badger in arid landscapes, considered especially sensitive to Global Change (Lavorel et al., 1998). In this sense, Pettorelli et al. (2005) suggested that satellite-derived indexes, such NDVI or EVI, could be used to predict the ecological effects of environmental change on ecosystems functioning and animal population dynamics and distributions, due to their correlation with vegetation biomass and relationship with climate variables. Finally, we found that EVI variables represented relevant ecological parameters for the description of the distribution of the European badger as they can indicate 1) a high NPP associated with orchards or fruit crops, very important for its survival in Mediterranean arid landscapes (Rodríguez & Delibes, 1992; Lara-Romero et al., 2012), 2) seasonality in the primary production, which can be seen as a surrogate of habitat quality (Johnson et al., 2002), and 3) spatially heterogeneous landscapes which provide different food resources (Pita et al., 2009). However, these variables should be tested in other areas of its distribution range. Models including EVI variables perform better (based on AUCPO) than models not including these variables. Additionally, continuous availability, both spatially and temporally, of remote sensing 66 RESULTADO 4.1 Modeling spatial distribution of European badger in arid landscapes: an ecosystem functioning approach data can improve the accuracy of monitoring and modeling wildlife for conservation purposes in arid ecosystems throughout the world. 67 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes RESULTADO 4.2: FEEDING HABITS OF EUROPEAN BADGER (Meles meles) IN MEDITERRANEAN ARID LANDSCAPES Tejón en busca de alimento en la quietud de la noche entre la densidad de la vegetación de ribera. Escena capturada con fototrampeo en la Rambla de los Molinos. Abril 2013. Paraje Natural del Desierto de Tabernas. Basado en: J. M. Requena-Mullor, E. López, A. J. Castro, E. Virgós, H. Castro. Hábitos alimenticios del Tejón europeo en un paisaje árido Mediterráneo. Galemys, aceptado con revisión menor. J. M. Requena-Mullor, E. López, A. J. Castro, E. Virgós, H. Castro. Landscape influence in feeding habits of European badger (Meles meles) in arid Spain. Mammal Research, en revisión. 68 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes Objetivo 2: “Describir y comparar la dieta del Tejón a través de paisajes áridos con diferente cobertura vegetal y uso del suelo.” Hipótesis 2: “Debido al carácter generalista descrito para el Tejón en ambientes Mediterráneos (Roper, 1994), el comportamiento trófico de la especie podría variar entre paisajes áridos con diferente cobertura vegetal y uso del suelo, y explotar en cada caso distintos recursos alimenticios.” Somos lo que comemos. Ludwig Feuerbach. 69 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes Abstract This study evaluates the influence of landscape on feeding behavior of European badger (Meles meles) in southern Iberian Peninsula. We particularly explore whether different vegetation types and land uses affect its feeding habits across three arid landscapes; maquia, xeric shrubland, and forestry. Although diet of badger has been described as frugivory in Mediterranean environments, with cultivated and wild fruits as key items (e.g., olives or figs), its feeding strategy may vary in response to the composition of landscape consuming different key items in an arid Mediterranean context. Based on 252 scats monthly collected from June 2011 to May 2012, we found that diet significantly varied among landscapes studied: insects, carob, and small mammals were the key items in the maquia, figs and oranges in the xeric shrubland, and earthworms and insects in the forestry. This shows that within an arid context, badger adapt its feeding behavior to particular landscape conditions, and specifically, the diet of badgers shift from an animalbased to another where cultivated fruits reaches the high importance. Our results support the key role of human activities in shaping badger behavior and diet and illuminating the contrasting dietary differences of badger living on more pristine habitats versus those inhabiting humanmade habitats. Based on the proved effect of precipitation and land management practices on items here identified, we also discuss implications of Global Change drivers in badgers feeding habits for the arid Mediterranean region. Keywords: Meles meles, European badger, mustelids, diet, frugivory, Iberian Peninsula, drylands, land use-land cover 70 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes 4.2.1 Introduction Feeding habits of the European badger Meles meles Linnaeus, 1758 have been extensively studied and are one of its best-known ecological features (Goszcynski et al., 2000; Virgós et al., 2005a). Their diet is very diverse throughout their distribution range, with a wide assortment of trophic strategies (Melis et al., 2002). The European badger is considered a specialist forager for earthworms in Britain and others areas of northwest Europe (Kruuk & Parish, 1981; Kruuk, 1989; but see Roper, 1994). In the Mediterranean region, earthworm availability is lower than in north Europe due to a low precipitation and different landscape composition (Virgós et al., 2004). In these environments, the species is a trophic generalist (Roper et al., 1994) consuming fruits, insects, and vertebrates (Piggozi, 1991; Rodríguez & Delibes, 1992; Barea-Azcón et al., 2010). However, badgers can also specialize in earthworm consumption in rainy mountainous Mediterranean areas, so it can be considered as a facultative specialist at local scale, taking the most profitable resource depending on supply and availability (Martín et al., 1995; Virgós et al., 2004). Despite the discussion about the feeding specialization of badgers, it has been suggested an important effect of consumption of earthworms as compared to other trophic resources on life-history traits of the species such as population density and reproductive success (da Silva et al., 1993; Woodroffe & Macdonald, 1993; Virgós et al., 2005a). However, badgers can survive at low densities in extreme arid landscapes (LaraRomero et al., 2012; Requena-Mullor et al., 2014), where earthworms are absent or very scarce. Despite the interest of these regions to a wide interpretation of feeding strategies of badgers, only two studies dealing 71 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes with badger diet in arid environments (Rodríguez & Delibes, 1992; BareaAzcón et al., 2010). Rodríguez & Delibes (1992) described the diet only during summer in a landscape with xerophitic vegetation and crops. Barea-Azcón et al. (2010) analyzed the annual diet in a region with continental climate (14 °C/year and 620 mm/year) but during an especially dry year (250 mm), and in a landscape dominated by olive tree plantations (Olea europea), dense pine forest reforestations (Pinus halepensis) and some holm oak patches (Quercus rotundifolia) and both studies emphasized the importance of cultivated fruits and rabbits (Oryctolagus cuniculus) in the diet of badgers living at these environments. Fruits are largely consumed for badgers in some regions, Rosalino & Santos-Reis (2009) detected an increase in fruit consumption along a west to east Mediterranean gradient in a diverse guild of frugivory mammals including the European badger. These authors argued that fruit consumption depends on several factors such as fruit characteristics (e.g., pulp content), availability of wild and cultivated fruits, and abundance of other food resources (see also Herrera, 1989), which vary throughout the Mediterranean basin. In fact, some authors have highlighted cultivated fruits as a key food resource for badgers in Mediterranean arid environments (Pigozzi, 1991; Rodríguez & Delibes, 1992; Barea-Azcón et al., 2010) which encourage the importance of the orchards as a key habitat for the species in these environments (LaraRomero et al., 2012; Requena-Mullor et al., 2014). Thus, in arid habitats, cultivated fruits could replace earthworms as the key food in badger lifehistory traits, allowing increase its abundance and performance. 72 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes Feeding strategies of badgers are very flexible and current tactics can be modified if environmental conditions change. The Mediterranean region is especially vulnerable to Global Change drivers (Sala et al., 2000; Giorgi & Lionello, 2008). Aridity is expected to increase in the Iberian Peninsula, especially in arid zones (Giorgi & Lionello, 2008) due to increasing temperatures and decreasing rainfall, particularly during summer months (De Luis et al., 2001). Additionally, agricultural lands represent more than half of the Mediterranean region by area (Olesen & Bindi, 2002). The reform of the Common Agricultural Policy (PAC) for 2014-2020 outlines steps to promote crop diversification, establish and maintain permanent pastures, and leave some land fallow to restore natural ecological processes (Martínez & Palacios, 2012). These measures would benefit the conservation of badger populations in Mediterranean environments (Virgós et al., 2005b). Nevertheless, aging of the rural population and young peoples’ exodus to the cities, is leading to widespread land abandonment in last decades (Castro et al., 2011). This demographic change is causing a deterioration of the rural Mediterranean landscape which is very important for the conservation of some species that depend on agricultural areas (Zamora et al., 2007; Pita et al., 2009). This is true for badgers, which are very linked to traditional human activities and agricultural practices, especially in arid environments (Kruuk, 1989; Virgos et al., 2005b; Lara-Romero et al., 2012). Consequently, in the next future two main changes can modify Mediterranean regions, first most areas of the Mediterranean can be transformed to arid habitat; second, most agricultural areas will be abandoned. Under these new scenarios, food resources for badgers can change dramatically, and this can affect other life-history traits such as population density, social organization or population growth (Macdonald & Newman, 2002; Macdonald et al., 73 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes 2010). Therefore, the diet of badgers in arid regions of the Mediterranean can offer an opportunity to forecast what resources can be essentials for badgers in the new scenario of increasing aridity for most of the Mediterranean region, and elucidate how changes in agricultural practices can impact on badger diet and then other important traits of the species. This study uses three landscapes (maquia, xeric shrubland, forestry) in environments of southern Iberia Peninsula which represents the extreme ecological and geographical range of the species to explore whether different vegetation types and land uses affect the feeding behavior of badger. Based on previous findings regarding the effect of precipitation and land management practices on food resources for badgers, potential implications of Global Change drivers in badgers feeding habits are discussed for arid Mediterranean areas. 4.2.2 Materials and methods 4.2.2.1 Localization and description of landscapes This study was conducted in the southeastern Iberian Peninsula (36°06’N, 2°17’E) (Fig. 4.2.1). This region is the most arid in Europe (Armas et al., 2011), represents some of the most extreme arid conditions inhabited by badgers, and contains a wide variety of mixed arid environments with Mediterranean rural landscapes. The aridity of target landscapes was characterized based on the Martonne aridity index (Martonne, 1926) (Ia), considering arid climate a Ia between 5 and 15 (Requena-Mullor et al., 2014). On a local scale, diet composition of the European badger depends primarily on the management and soil use by humans (Kruuk, 1989; 74 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes Fischer et al., 2005). Therefore, to compare the diet among landscapes, we selected three landscapes with different land cover and use (maquia, xeric shrubland and forestry). In each landscape, first we identified a zone with latrines frequently used by the species. Then, we drew a 3 kmradius buffer zone using the latrines as the centroid (Fig. 4.2.1). This method ensures the inclusion of the potential home range size estimated for European badgers living at these poor environments (i.e., 9 km 2) (Lara-Romero et al., 2012). Finally, we characterized the type of land cover and use within the buffers based on GIS cartography from Andalusia Land use/Land cover map (scale 1:25.000, 2007). 75 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes Figure 4.2.1. Location of landscapes within the study area in Almería province, Spain. In each landscape, we identified a zone with latrines frequently used by European badger (Meles meles). Then, we drew a 3 km-radius buffer zone using the latrines as centroid. Landscape 1: Maquia (37°08’N, 1°55’E) Maquia has the lowest altitude (102 m) and an Ia of 11.72 (0.004). The mean annual rainfall is 340 mm/year and mean annual temperature is 76 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes 19°C. The area is mainly dominated by non-forested natural vegetation (65% of the total area) including dense shrubland (e.g., Macrochola tenacissima, Pistacia lentiscus) and sparse shrubland (Rhamnus lycioides, Anthyllis cytisoides). Agricultural uses comprise the 22% of the area, where homogeneous herbaceous crops (i.e., without natural vegetation) are predominant, with irrigated and rainfed crops in similar proportions. It is important to highlight the abundance of wild vegetation with fleshy fruits (e.g., Ceratonia siliqua, Ficus carica, Chamaerops humilis, Vitis sp., O. europea var. silvestris) in the watercourses. Landscape 2: Xeric shrubland (36°58’N, 2°29’E) Xeric shrubland is located at 228 m altitude, and has an Ia of 6.98 (0.012). The mean annual rainfall is 200 mm/year and the mean annual temperature is 18 °C. 70% of the area is covered by sparse xeric shrubland (M. tenacissima, Salsola genistoides, Anthyllis terniflora). Crops occupy only the 12% of the landscape, where the 44% of them are woody irrigated crops (e.g., Citrus sp.) and the rest are greenhouses. The remaining 18% of the area is occupied by minority uses. Landscape 3: Forestry (37°06’N, 2°46’E) Forestry is located at 1320 m altitude, and has an Ia of 12.54 (0.028). Mean annual rainfall is 310 mm/year and mean annual temperature is 12°C. Natural vegetation covers the 84% of the area, with forestry (e.g., Pinus spp.) and shrublands (e.g., Genista spp., Adenocarpus decorticans) in similar proportions. Agricultural uses represent the 16% of the total area, in which mosaics of natural vegetation with rainfed crops (O. europea and Prunus dulcis) are predominant. 77 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes 4.2.2.2 Diet analysis The analysis of the diet consisted in collecting scats in badger latrines and examining composition in the laboratory. Faeces were collected once a month from the latrines across the three target landscapes. Sampling was conducted from June 2011 to May 2012. In each visit, we recorded the number of latrines and scats contained. Prior to the collection period, all scats were removed from latrines at the end of May 2011. Faeces were classified based on their water content, shape and colour. If this was impossible, the entire latrine content was taken as a single faeces (Pigozzi, 1991). Washing and sieving was carried out according to the Kruuk & Parish (1981) protocol. For each scat, the total number of items were counted or extrapolated from the remains, following the Kruuk & Parish (1981) and Pigozzi (1991) methods. Items were gathered in three broad categories: fruits, vertebrates, invertebrates. Nevertheless, in order to identify what food resources were dominant within each landscape, we carried out a finer grouping, classifying each remainder to the lowest taxonomic level in each case (i.e., species). The food remains were compared with reference collections to ensure a correct taxonomic determination. Lastly, data collected was grouped by annual seasons, i.e., summer (June, July, August), autumn (September, October, November), winter (December, January, February), spring (March, April, May). For all categories (both in the wide and fine classification), we estimated the frequency of occurrence FO (%) and the relative volume RV (%), the latter was assessed visually based on the Kruuk & Parish (1981) method. In addition, we calculated the Shannon´s diversity index for each landscape and season (Shannon, 1948): - ∑i lo (1) 78 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes where Pi= proportion of each food category. The diversity is minimum when H = 0 and it is maximum when H = log n (n = number of categories). We considered three wide categories, so H maximum = 0.47. 4.2.2.3 Data analyses Landscape type and seasonal differences in the relative volume of wide categories (i.e., fruits, vertebrates and invertebrates) were analyzed by a two-way ANOVA with the relative volume of each category as a response variable and the landscape type and season as fixed factors (Virgós et al., 2004). When the effects of landscape or season were significant, we employed a Duncan´s test to reveal which landscapes or seasons showed large differences in relative volume for each item considered. All residuals were checked for normality (Shapiro-Wilk Normality test) (Shapiro & Wilk 1965), and homogeneity of variances (Bartlett test) (Snedecor & Cochran, 1989). In general, the residuals showed nonormality and heterocedasticity, so we resampled the data by bootstrapping (10000 replicates) for estimate the F´s distribution and recalculated the critical value for signification (i.e., 0.05) (Appendix F). Due to the importance of earthworms for badgers in others areas of its distribution (Kruuk, 1989; Virgós et al., 2004), we also analyzed separately the consumption of this item so that our data can be compared to previous studies. Correlations between diet diversity (measured by the Shannon index) and the relative volume of wide categories, between diet diversity and main consumed fine categories, and among all wide categories, were analyzed using the Spearman´s rho statistic (Best & Roberts, 1975). 79 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes Finally, we used a nonparametric multidimensional scaling (NMDS) to explore similarities in the diet based on both spatial (landscapes) and temporal (seasonal) variations. With this aim, we arranged the seasons for each landscape in a Cartesian axis based on the grouping consumption of fruits, vertebrates and invertebrates (in RV). Regarding this, a shorter distance between seasons means greater similarity and vice versa. We used the Bray-Curtis distance (djk) to compute the NMDS. ∑i – ∑i (2) where x is the RV (%) of food category i (i.e., fruits, vertebrates, invertebrates) in the j and k seasons. To check the goodness of NMDS we measured the concordance in the rank order of the observed interseason distances and those predicted from the similarities. One measure of fit is the Kruskal´s stress (Kruskal, 1964). Clarke (1993) provided some guidelines for stress values, so stress values greater than 0.3 indicate the achieved configuration is no better than random. All statistical analyses were carried out using R software version 2.14.2 (R Development Core Team, 2012) 4.2.3 Results 4.2.3.1 Diet composition A total of 252 faeces were collected, 54 in maquia, 140 in xeric shrubland, and 58 in forestry (Table 4.2.1). In maquia, fruits were consumed throughout the year (annual FO = 81%), although the mean relative volume was greatly reduced in summer (VR = 29.3% ±4.73 SE). Carobs were the most frequent fruit in excrements (annual FO = 46.29%) (see Table G.1 in Appendix G). Grapes (47.5% ±12.5 SE) (summer), carobs (82% ±8.98 SE and 96.4% ±2.82 SE) (autumn and winter) and oranges 80 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes (63% ±27.5 SE) (spring) were the fruits with the highest mean relative volume. Vertebrates were more frequent in spring (FO = 72.7%) (Table 4.2.1), with small-mammals (e.g., rodentia) as key prey and obtaining a relevant mean volume (RV = 70% ±17.75 SE spring and RV = 82.5% ±8.63 SE winter) (Table G.1). Invertebrates were very frequent in summer (FO = 100%) (Table 4.2.1) (mainly Coleoptera) but in a low mean volume (25.3% ±5.63 SE) (Table G.1). Table 4.2.1. Mean relative volume (%) and frequency of occurrence (in parentheses, %) values for the different wide categories considered in each landscape and season. We reported values of frequency of occurrence for comparative purposes with other studies using these categories. Landscape and prey item Summer Autumn Winter Spring Fruits 29.3 (100) 51.2 (100) 68.0 (72.0) 42.5 (72.7) Vertebrates 20.3 (16.7) 45.8 (16.7) 76.5 (40.0) 64.1 (72.7) Invertebrates 15.0 (100) 8.5 (58.3) 34.8 (24.0) 21.1 (36.4) N 6 12 25 11 Fruits 61.8 (96.2) 88.6 (100) 75.2 (95.5) 74.7 (92.7) Vertebrates 73.8 (15.4) 20.0 (13.3) 39.5 (22.7) 23.3 (21.8) Invertebrates 6.8 (42.3) 6.0 (40.0) 18.7 (54.5) 30.3 (70.9) N 26 15 44 55 Fruits 54.6 (41.7) 66.1 (70.0) 68.5 (40.0) 50.1 (9.5) Vertebrates 30.0 (8.3) 27.6 (30.0) 61.3 (26.7) 53.4 (57.1) Invertebrates 34.2 (100) 40.0 (80.0) 39.5 (86.7) 35.8 (81.0) N 12 10 15 21 Maquia Xeric shrubland Forestry 81 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes In xeric shrubland, fruits appear to be the key food resource for badger based on both the frequency of occurrence (annual FO = 95%) and relative volume (mean annual RV = 73.41% ±2.49 SE). Two types of fruits were mainly consumed, figs (FO = 73% and 93.3%; mean RV = 78.4% ±6.27 SE and 94% ±2.91 SE) (from summer to autumn) and oranges (FO = 84% and 67.2%; mean RV = 80% ±4.52 SE and 83.6% ±4.42 SE) (from winter to spring) (Table G.2). Vertebrates had low relevance throughout the year, appearing only with a considerable volume in summer (mean RV = 73.8% ±18.18 SE) (Table 4.2.1), with anura (mean VR= 100%) and rabbits (VR= 87.5% ±2.5 SE) being the predominant taxonomic groups (Table G.2). Invertebrates were more frequent in spring (FO = 70.9%) and winter (FO = 54.5%) (Table 4.2.1), although their volume was not important in any season (mean annual RV = 17.62% ±2 SE). Orthoptera was the most frequent along the year (annual FO = 34%) (Table G.2). In forestry there was a high consumption of invertebrates throughout the year (annual FO = 86%), although with a low relative volume (mean annual RV = 36% ±3 SE). Scorpions (FO = 50%; mean RV = 35.8% ±5.78 SE) (summer), Hymenoptera (FO = 60%; mean RV = 54% ±11.57 SE) (autumn), earthworms (FO = 53.3%; mean RV = 81.8% ±4.99 SE) (winter), and caterpillars (FO = 66.6%; mean RV = 44.1% ±8.35 SE) (spring) were the most relevant invertebrates (Table G.3). Fruits were consumed mainly in autumn (FO = 70%) (Table 4.2.1), with figs (mean RV = 60% ±5.77 SE), wild blackberries (mean RV = 90% ±10 SE) and almonds (mean RV = 50% ±) (pericarp fleshly) most abundant (Table G.3). The relative volume of fruits was considerable throughout the year (mean annual RV = 62% ±6.64 SE). Vertebrates were consumed more frequently in spring (FO = 57.1%) (Table 4.2.1). Spring and winter were the seasons with the 82 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes highest volume of vertebrates in the faeces (mean RV = 53.4% ±11.08 SE and mean RV = 61.3% ±12.31 SE respectively), mainly due to reptiles and rabbits (Table G.3). 4.2.3.2 Effects of landscape and season on diet Consumption of fruits showed statistically significant difference for landscape and season when the two factors were separately considered, however, the interaction between both factors was not significant (Table 4.2.2). Relative volume was higher in xeric shrubland than in maquia (Duncan´s test, p < 0.01) (see Fig. 4.2.2). Moreover, fruit consumption was higher in winter than in summer (Duncan´s test, p < 0.01) (Fig. 4.2.2). Table 4.2.2. Results of the two-way ANOVA with season and landscape type as fixed factors and the relative volume of the wide categories as the response variable. No effect varied its signification by applying the bootstrap resampling (see Table F.1 Appendix F). Relative volume Effect df F p Fruits Season 3 4.04 <0.01 Landscape 2 13.3 <0.001 Season x Landscape 6 1.22 0.29 Season 3 2.07 0.11 Landscape 2 5.56 <0.01 Season x Landscape 6 1.36 0.24 Season 3 2.85 <0.05 Landscape 2 11.61 <0.001 Season x Landscape 6 1.96 0.07 Vertebrates Invertebrates We also observe significant differences in the consumption of vertebrates between landscapes, but not between seasons (Table 4.2.2). 83 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes Vertebrates showed significantly higher relative volume in maquia than in xeric shrubland (Duncan´s test, p < 0.01). For invertebrate consumption, we observed differences among landscape and season even though the interaction was marginally not significant (Table 4.2.2). More invertebrates were consumed by badgers in forestry than those in maquia and xeric shrubland (Duncan´s test, p < 0.01). Invertebrates were higher consumed in spring than in autumn (Duncan´s test, p < 0.05). 84 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes Figure 4.2.2. Estimated relative volume (%) for each main category considered in the different seasons and landscapes. Whiskers represent the standard error of the mean values of categories. 85 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes 4.2.3.3 Earthworm consumption Earthworms were consumed in the three landscapes but always with a low frequency of occurrence (mean annual FO = 3.7%, 2.8% and 17.2% for maquia, xeric shrubland and forestry respectively) (Tables G.1, G.2 and G.3). However, a high relative volume was found (mean annual RV = 90% ±10 SE, 50% ±12.24 SE and 77.7% ±4.82 SE for maquia, xeric shrubland and forestry). For the relative volume, there was only difference between seasons (ANOVA, F = 59.2, p < 0.0001) and it was higher in winter than in spring (Duncan´s test, p < 0.0001) (Fig. 4.2.3). Figure 4.2.3. Interaction between landscape and season for earthworm relative volume (%) in the diet. Whiskers represent the standard error of the mean values of categories. 86 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes 4.2.3.4 Diet diversity and food consumption Diet diversity was similar in the three landscapes, but the more diverse annual diet was obtained in maquia (H = 0.39), followed by forestry (H = 0.37) and xeric shrubland (H = 0.30). Diet diversity was positively correlated with fruit and vertebrate consumption (rho = 0.44, p = <0.001, n = 36; rho = 0.58, p < 0.001, n = 36). Conversely, the diversity was negatively, but not significantly, correlated with the invertebrate consumption (rho = -0.17, p = 0.30, n = 36). Food resources with a high consumption (e.g., carobs, figs, oranges, coleopteran and earthworms, see Tables G.1, G.2 and G.3) showed a no significant correlation with the diet diversity, except rodentia which showed positive correlation (rho = 0.41, p < 0.05, n = 36). Between wide categories, relative volume of fruits and invertebrates showed negative correlation (rho = -0.41, p < 0.05, n = 36), indicating higher consumption of fruits in landscapes or seasons where invertebrates are not very important in the diet of badgers. Fruits with vertebrates and vertebrates with invertebrates, showed a low non significant correlation (rho = -0.03, p = 0.84, n = 36; rho = -0.10, p = 0.53, n = 36). 4.2.3.5 Nonparametric multidimensional scaling The spatial configuration reached by the NMDS (Fig. 4.2.4) was better than random (Kruskal´s stress < 0.2). By seasons, the summer in the maquia (mean djk = 0.37) and the autumn in the xeric shrubland (mean djk = 0.31) had the greatest distance (Fig. 4.2.4 and Appendix H). The diet in the maquia had the greatest distance between seasons (mean djk = 0.34), while in the xeric shrubland the distances were intermediate (mean djk = 0.26), and in the forestry, the seasons were the closest (mean 87 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes djk = 0.15) (Appendix H). The summer in the maquia and the autumn in the xeric shrubland showed the lowest Shannon´s diversity index (0.26 and 0.27 respectively) (Fig. 4.2.4). Figure 4.2.4. Nonparametric multidimensional scaling (NMDS). The axis NMDS1 and NMDS2, show the range of the distances reached between seasons in the three landscapes. Seasons are arranged so that the distances between them are as close to the real differences between the mean relative volume (%) of fruits, vertebrates and invertebrates consumed in each landscape. A lower distance 88 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes between seasons means greater similarity between them and vice versa. Isoplets are based on the Shannon´s diversity index. 4.2.4 Discussion 4.2.4.1 Spatial and temporal variation of badger diet Despite of the common arid environmental features across all locations, badger diet varied significantly across the three landscapes. One or two dominants food resources in each of the cases studies were identified. This supports Virgós et al. (2004), in other Mediterranean areas where feeding behaviour of badgers can vary among close locations but with different habitat type, rainfall regimen or human land use. We found that in maquia, badgers were mainly frugivores although vertebrates were also important in winter and spring. This feeding strategy has been also described in other Mediterranean areas (Piggozi, 1991; Rosalino et al., 2004). Carobs were the most consumed fruit throughout the year. This is the first time that this food resource is described in this type of landscape. Carobs were available and abundant along the year (personal observation), highlighting the generalistopportunist character of the European badger (Pigozzi, 1991). The fruit consumption was however lower than in xeric shrubland, besides this, the fruits consumed were mainly wild, so the direct dependence of badgers for orchards would be less decisive. Small-mammals were the second most important item, probably providing the necessary proteins in a vegetarian diet (Ciampalini & Lovari, 1985). In xeric shrubland, fruits, especially cultivated, were the most important food resource. Oranges from winter to spring and figs from summer to autumn as the most consumed items. While figs have been described in 89 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes dry Mediterranean landscapes as an usual food resource for badgers (Barea-Azcón et al., 2010), this is the first time that oranges are described across these environments. This landscape is the most arid of the cases studies; therefore, the importance of orchards for the survival of badgers in these environments is reinforced (Lara-Romero et al., 2012). In forestry, badger diet mainly consisted in insects when frequency of occurrence was considered, but fruits prevailed again when relative volume was taken into account. A large consumption of insects supports findings by Virgós et al. (2004) in some of the habitats sampled in the mountain areas of central Spain. However, the relevance of fruits also in this habitat highlights the key importance of this food resource for badger in all the arid landscapes. When badgers preferentially consume the same type of food resource along the year, such as fruits in xeric shrubland or invertebrates in forestry, the diet similarity between seasons is higher. On the other hand, the highest distances between seasons (e.g., summer vs. winter in maquia, summer in xeric shrubland vs. summer in maquia) were mainly due to the differences in the vertebrates and invertebrates consumption. In Mediterranean arid landscapes, the availability of earthworms is scarce (Virgós et al., 2005a). Our results show that badgers consumed this item across maquia and xeric shrubland, supporting results obtained by Barea-Azcón et al. (2010), for other Mediterranean area. In forestry, the consumption of earthworms was even larger than in the other landscapes. This increase may be due to a greater availability of earthworms in mid-mountain areas because of the altitude effect, which causes that rainfall is larger (Virgós et al., 2005a). However, the 90 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes consumption of earthworms was not uniform across the year, appearing only in winter and spring, because of this prey item is mainly available in the rainy and mild conditions of spring and autumn-winter (Edwards & Lofty, 1977; Kruuk & Parish, 1981). All these results combined reinforce the usefulness of this trophic resource for badgers when available, and its large importance even in the extreme arid conditions of the south edge of its distribution range, contradicting the original ideas about the unimportance of earthworms in most of the southern badger range (Ciampalini & Lovari, 1985; Pigozzi, 1991; Roper, 1994; Martín et al., 1995; but see Virgós et al., 2004). Olives were not relevant in any of the three landscapes. This disagrees with findings in other Mediterranean areas (Kruuk & de Kock, 1981; Rosalino et al., 2004; Barea-Azcón et al., 2010). This may be due to their low availability in the sampled localities (personal observation), as expected of a generalist (or facultative specialist) species such as European badger (Pigozzi, 1991). Badgers shifted their preferences for different fruits when availability changes. Our results showed that the diet diversity did not decrease with the consumption of specific items. This supports the generalist character of badger in the arid Mediterranean environments described by Rodríguez & Delibes (1992) and Barea-Azcón et al. (2010). Despite the large importance of fruits, this cannot be viewed as of similar importance of earthworms or rabbits in other areas, where diversity is strongly associated to the consumption of these resources (Kruuk, 1989; Martín et al., 1995). On the other hand, fruits and invertebrates showed a negative correlation. An explanation for this could be badgers replace the shortage of fruits per invertebrates (mainly insects which are predictable 91 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes and abundant). This supports similar strategy of badgers from the central Spain mountains when earthworms are scarce (Virgós et al., 2004). Our results reinforce the feeding behavior described for the European badger in Mediterranean landscapes by Rodríguez & Delibes (1992) and Barea-Azcón et al. (2010). We also found that two food resources (i.e., oranges and carob trees) have a high presence in the diet, being described for first time as key food resource in badger survival across Mediterranean arid landscapes. These items have a clumped distribution, showing a high seasonal abundance and a high energetic value (Agencia Andaluza del Agua, 2010). The same features have been cited for other key resources of the species (Kruuk, 1989; Martín et al., 2005; Rosalino et al., 2005). 4.2.4.2 Potential implications of climatic change and land use change on feeding habits Climate change and land use change have been described as two of the main direct drivers of Global Change in Mediterranean environments (Vitousek, 1994; Giorgi & Lionello, 2008). On one hand, it has been proved that the abundance of European badger is related with climatic characteristics (Virgós & Casanovas, 1999) and their seasonality (Johnson et al., 2002). Many of the items consumed by badgers across the three landscapes depend directly (e.g., carobs, figs, blackberries, fan palm fruits, earthworms) or indirectly (e.g., insects, small-mammals, rabbits) on precipitation. Theoretical models about species coexistence predict that a larger temporal variation of resources reduces probability of specialization in feeding habits (Wilson and Yoshimura 1994). Regarding this, badgers would have a facultative specialist behaviour in more variable environments (Virgós et al., 2004), modifying their feeding 92 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes strategy and/or the choice of food, in order to maximize the intake in accordance with their availability (Pigozzi, 1991). Accordingly, the species would prefer landscapes with a high spatial-temporal predictability in food resources (Mellgren & Roper, 1986; Kruuk, 1989). These landscapes could be associated with orchards presence, representing a predictable, clumped and profitable habitat to provide food for badgers. This has been recently described by Requena-Mullor et al. (2014), showing that the presence of agricultural humanized landscapes increases the opportunity of use different food resources over time and space. Traditional agricultural practices provide badgers with other food resources such as figs, loquats, apples, and apricots that also indirectly depend on irrigation. In addition, because of lower use of pesticides, traditional agricultural practices also offer a great diversity and abundance of arthropods (Bengtsson et al., 2005). In the Mediterranean region, the species selects mosaic landscapes consisting of fruit crops and orchards, mixed with patches of natural vegetation that provide food and shelter (Lara-Romero et al., 2012). We found that in xeric shrubland, badger showed a large preference for oranges, which directly depends on the irrigation (Agencia Andaluza del Agua, 2010) and for figs, which depends more directly on the precipitation. Therefore, a reduction of these food resources by crop abandonment and less precipitation can affect regional occurrence and abundance, including local extinction where habitats can be extremely arid. On the other hand, land cover and use changes influence the feeding habits of European badger by modifying its feeding strategy and/or the choice of preys (Kruuk, 1989). On a local scale, the composition of badger diet depends on the land management and use (Fischer et al., 2005), 93 RESULTADO 4.2 Feeding habits of European badger (Meles meles) in Mediterranean arid landscapes particularly in agricultural areas (Rosalino et al., 2004; Barea-Azcón et al., 2010). Kruuk & Parish (1985) described how the feeding of badger varied with changes in agricultural production in north Scotland. These authors found that earthworm’s availability decreased during eight years and badgers offset this reduction eating cereals in the later months. Despite this, as a consequence they found a body weight reduction in males (i.e., 14%) and females (17%). This finding suggests that due to extreme conditions and low badger abundance in Mediterranean arid environments, a reduction of key food resources may strongly affect badger fitness (Virgós et al., 2005b). In conclusion, food resources consumed by badgers depend on both precipitation and land use-land cover. Therefore, variations predicted on these factors under future climate change and land use scenarios (IPCC, 2013) may affect badger feeding habits across Mediterranean arid environments, and be probably translated to changes in regional distribution, abundance and other life-history traits. 94 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger RESULTADO 4.3: MODELING AND MONITORING HABITAT QUALITY FROM SPACE: THE EUROPEAN BADGER Tejón aseándose y desparasitándose en las cercanías de su tejonera. Escena captada con fototrampeo en el paraje Venta de los Yesos. Marzo 2013. Tabernas. Basado en: Juan M. Requena-Mullor, Enrique López, Antonio J. Castro, Domingo Alcaraz-Segura, Hermelindo Castro, Andrés Reyes, Javier Cabello. Modeling and monitoring habitat quality from space: the European badger. Journal of Applied Ecology, en revisión. 95 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger Objetivo 3: “Proyectar la distribución espacial del Tejón utilizando escenarios de cambio climático futuros propuestos por el IPCC.” Hipótesis 3: “Los cambios en los patrones de precipitación y temperatura previstos por los modelos de circulación general de la atmósfera (IPCC, 2013), reducirán hasta en un 50% el rango de distribución de las especies de la familia Mustelidae en la cuenca Mediterránea (Maiorano et al., 2014). Por tanto, cabría esperar una reducción general de la calidad del hábitat para el Tejón en el sureste árido de la Península Ibérica.” Una característica básica de la ciencia experimental es la necesidad de obtener conclusiones a partir de información incompleta. M. Anthony Schork y Richard D. Remington. 96 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger Abstract 1. As climate change is expected to have a significant impact on species distributions, there is an urgent need to enhance the efficiency of biodiversity monitoring programs and provide managers with valuable information to guide and adapt their actions. 2. For the European badger, a species not abundant and at risk of local extinction due to climate change in the arid environments of southeastern Spain, we identify which areas are prone to loss or gain of habitat suitability as a result of climate change. Using MaxEnt, we designed spatial distribution models for the badger using presence-only data and climate and EVI-derived variables, and forecast the badger potential spatial distribution for the 2071- 2099 period based on the IPCC scenarios. 3. Including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that high suitability areas for European badgers may decrease in response to future climate scenarios. Primary production and ecosystem functional heterogeneity seem to be these main drivers of change. 4. Synthesis and applications. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses. Because conservation resources are limited, the monitoring efforts for biodiversity should focus on areas which are more likely to experience local extinctions or occurrence shifts and on the involved environmental drivers of change. We suggest that our approach 97 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger can be applied in a variety of ecosystems worldwide and under diverse climatic change scenarios, thereby supporting the design of optimized/cost-efficient monitoring schemes and improving the everincreasing need for monitoring of biodiversity across space and time in a rapidly changing planet. Keywords: remote sensing, IPCC, biodiversity, drylands, mammals, Enhanced Vegetation Index, ecosystem functioning, MaxEnt, future forecasted niche 98 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger 4.3.1 Introduction As climate change is expected to have a significant impact on species distributions, there is an urgent need to enhance the efficiency of biodiversity monitoring programs and provide managers with valuable information to guide and adapt their actions (Mawdsley et al., 2009). In particular, mammalian species richness will be dramatically reduced throughout the Mediterranean basin. However, the trend will not be uniform for all taxa. For instance, Mustelidae (e.g., badger, weasel) will decrease while Canidae (e.g., wolf), Hyaenidae (e.g., hyena) and some families of Chiroptera (bats) will increase (Maiorano et al., 2011). These findings highlight the complexity of species response to climate change and the necessity of focusing monitoring efforts on areas where species are likely to gain or lose suitable habitat to detect potential range shifts driven by climate change (Amorim et al., 2014). An optimal tool for this purpose is correlative models exploring the relationship between species occurrences and environmental predictors (Araújo & Peterson, 2012). Species distribution models (SDMs) aim to capture relationships between a species (occurrence) and its environment. SDMs are often used to forecast future distributions under environmental change scenarios. For instance, bioclimate envelope models in their purest form only consider climatic variables as predictors of species distribution. However, many other environmental factors play an important role in determining species distribution patterns and their dynamics over time. Such factors may include from land cover, land use and management, soil types (Pearson & Dawson, 2003) or ecosystem functioning descriptors such as ecosystem production and seasonality (Requena-Mullor et al., 2014). As a result, remotely sensed indicators of ecosystem functioning are 99 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger increasingly being used in animal research. In particular, spectral Vegetation Indices (VIs) have been used to great success in mammal ecology (Cabello et al., 2012a). VIs are conceptually and empirically linked with primary production (Paruelo et al., 1999), which determines the amount of green biomass available for herbivores and is referred as the main descriptor of ecosystem functioning (Alcaraz-Segura et al., 2006). Functional attributes derived from VIs are usually expressed as average temporal summaries, such as the annual mean (i.e., surrogate of mean annual primary production) or the seasonal coefficient of variation (i.e., indicator of seasonality or temporal variation within the year) (AlcarazSegura et al., 2013). Of particular note are spectral Vegetation Indices (VIs), such as the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). Both of these VIs are directly related with the fraction of photosynthetically active radiation (fAPAR) intercepted by green vegetation (Ruimy et al., 1994). This relationship allows the derivation of regional maps of primary production from radiation use efficiency values (Castro et al., 2013). Landscape functional heterogeneity has also been suggested as a significant driver of species (Davidowitz & Rosenzweig, 1998) and ecosystem diversity (AlcarazSegura et al., 2013), particularly in the Mediterranean Region. Many animal species have proved to be especially sensitive to spatial heterogeneity (Fryxell et al., 2005). Recent findings suggest that this sensitivity is related more to functional heterogeneity than to structural heterogeneity (Zaccarelli et al., 2013). For instance, Requena-Mullor et al. (2014) found modeled spatial distribution of the European badger (Meles meles) in SE Spain was significantly improved when augmenting 100 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger climate variables with EVI-derived functional attributes, (esp. the spatial variability of EVI) rather than land-cover and land-use variables. The purpose of this study is to explore the benefits of including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models for suitability monitoring of terrestrial mammal habitat. We used the European badger in an arid region of southeastern Spain as a case study. In this region the species is not abundant and at risk of local extinction due to climate change (Virgós et al., 2005c). Our objective was to guide the species monitoring by identifying which areas are prone to loss or gain of habitat suitability as a result of climate change to inform managers about the primary direct environmental drivers of change. To begin the modeling process, we designed spatial distribution models for the badger using presence-only data and climate and EVI-derived variables. Next, we forecast the badger potential spatial distribution for the 2071- 2099 period based on the IPCC scenarios (IPCC, 2007), and identified sensible areas that may lose habitat suitability based on the forecast. Finally, we discuss how the findings of this study inform both the local monitoring of this single species and are broadly applicable to global conservation efforts for species monitoring and management. 101 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger 4.3.2 Materials and methods 4.3.2.1 Species, study area and presence records The European badger is a medium-sized carnivore widely distributed across Europe. In the arid southeastern most limits of its range (i.e., the Mediterranean drylands of Iberian Peninsula) the European badger prefers mosaic landscapes consisting of fruit orchards and natural vegetation, which provide shelter and food resources (Lara-Romero et al., 2012). The potential effects that climate change on life-history traits such as population density, social organization or population growth has also been highlighted for this species (Macdonald et al., 2010). For these reasons, European badger is an ideal study organism for the purpose of this paper. The study was conducted in the southeastern Iberian Peninsula (36°06’N, 2°17’E) (Fig. 4.3.1b). This region is the most arid in all of Europe and presents the most extreme arid conditions in the specie range. We defined “arid” using the Martonne aridity index (I a), including values between 5 and 15 (Martonne, 1926). The presence records for the badgers were obtained from published data (Requena-Mullor et al., 2014) and personal databases from the authors. We reduced locally dense sampling by thinning the records to one per 100x100 m grid cell. A total of 179 presence records were used in the modeling (Fig. 4.3.1b). The samples were distributed across a wide gradient of altitude (0-1500 m), temperature (minimum mean temperatures: -1.6–15 °C, maximum mean temperatures 17-24.5 °C), precipitation (165-419 mm/year), and evapotranspiration (343-1038 mm/year). 102 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger 4.3.2.2 Environmental variables We selected six variables connected to ecological requirements of the European badger and which have high predictive power in terms of habitat suitability (Virgós & Casanovas, 1999; Requena-Mullor et al., 2014). Variables were related to climate (mean annual precipitation (PREC) and mean value of monthly maximum temperatures (TMEDMAX)), relief (mean slope (SLOPE)), and spatio-temporal patterns of primary production (EVI annual mean (EVIMEAN), intra-annual coefficient of variation of EVI (EVIC), and spatial standard deviation of EVI annual mean (EVISTD)). To avoid collinearity between predictors, we checked that pairwise Pearson correlations were less than 0.85 (Booth, Niccolucci & Schuster, 1994). The maximum Pearson correlation value was 0.36, corresponding to EVICV and TMEDMAX. PREC, TMEDMAX (for the 1971 to 2000 period) and SLOPE were derived from spatial data layers of the Environmental Information Network of Andalusia (http://www.juntadeandalucia.es/medioambiente/site/web/rediam). PREC and TMEDMAX had an intermediate cell size (100 x 100 m), so all remaining variables were adjusted to this spatial resolution in QGIS 2.0 to fit that grid following Elith & Leathwick (2009). SLOPE was calculated from a 20 x 20 m pixel digital elevation model of Andalusia. We resampled to the 100 x 100 m grid using bilinear resampling, which is more realistic than nearest-neighbor interpolation (Phillips et al., 2006). Our three functional descriptors of the spatiotemporal patterns of primary production were derived from satellite images captured by the MODIS sensor onboard the 103 NASA TERRA satellite RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger (www.modis.gsfc.nasa.gov/). We used the MOD13Q1 EVI product, which consists of 16-day maximum value composite images (23 per year) of the EVI at a 231x231 m pixel size. This product has atmospheric, radiometric and geometric corrections. We used EVI instead of NDVI because it is less influenced by soil background and saturation problems at high biomass levels (Huete et al., 2002). We first used the Quality Assessment (QA band) information of this product to filter out those values affected by high content of aerosols, clouds, shadows, snow or water. Next, we calculated the mean seasonal EVI profile (average year) for the 20012013 period and derived the EVI annual mean (EVIMEAN) as the mean of the 23 images of the average year and the intra-annual coefficient of variation of EVI (EVICV) as the intra-annual standard deviation divided by EVIMEAN. The spatial standard deviation of EVIMEAN (EVISTD) was calculated in windows of 3x3 km (13x13 MOD13Q1 pixels) throughout the study area. The size of this window was determined based on the suggested 9 km2 home range of the European badger for low suitability habitats (Lara-Romero et al., 2012). The three EVI variables were resampled to the 100 x 100 m grid by the bilinear resampling technique. Horticultural greenhouses are intensively used in this area (QuintasSoriano et al., 2014), and because the EVI values of greenhouses cannot be interpreted as vegetation greenness (Huete et al., 2002), we removed all grid cells containing greenhouses (5% of the study area) to avoid their influence of species distribution modeling. 4.3.2.3 Modeling approach We designed SDMs for the badger based on the current environmental conditions and evaluated these models and the relative importance of the variables. Using the most parsimonious model to forecast the spatial 104 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger distribution under future scenarios we compared the current and forecasted distributions and identified potential areas that may lose habitat suitability and explored potential limiting factors of habitat suitability. 4.3.2.4 Spatial distribution modeling We used MaxEnt, v. 3.3.3k to build our models (Phillips et al., 2006). Using the principle of maximum entropy on presence-only data, MaxEnt estimates a set of functions that relate environmental variables and habitat suitability and approximates the species niche and potential spatial distribution. The MaxEnt algorithm has been frequently used in recent years to forecast species spatial distributions and estimate shifts in distribution due to climate change (Bateman et al., 2012). While MaxEnt performs well both for spatial and temporal projections, recent studies have demonstrated the sensitivity of SDM performance to model specification (Muscarella et al., 2014). Thus, it is important to implement species-specific tuning of settings and to use different training and testing datasets for model evaluation. In this sense, to obtain response curves more ecologically realistic and more general predictions, we parameterized MaxEnt removing threshold and hinge features (see Elith et al. (2011) for explanation of MaxEnt features), and increased the regularization parameter β from 1 to10 (Hill et al., 2014). β parameter regulates the smoothness and regularity of the models. Therefore, by increasing the β parameter, such models are less likely to overfit, because they have fewer parameters (Phillips et al., 2006). Additionally, Warren & Seifert (2011) have highlighted that inappropriately complex or inappropriately simple models show reduced 105 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger transferability to other time periods. Consequently, we used corrected Akaike information criterion (AICc) (Burnham & Anderson, 2002) to examine effects of changes in β as implemented in the software ENMTools (Warren et al., 2010). This measure evaluates the information loss, when a given model should describe reality and it can be interpreted as a trade-off between model performance and complexity. The model built with the value of β equal to 5 gained the lowest score for the AICc, therefore it has been set to build the final model used to forecast the spatial distribution (see “Model evaluation” subsection). Likewise, in cases where a model is transferred to a new time period which holds conditions more extreme than those available in model training, the species response curve is said to be truncated. Accordingly, current distributions were forecasted into the future scenarios by “campling” the species response at that of the most-similar conditions in the study area. In this way, if a variable projected to future conditions reaches values greater than the maximum of the corresponding variable used during training, those values are reduced to the maximum, and similarly for values below the corresponding minimum (Phillips et al., 2006). To deal with the sample bias (i.e., some sites are more likely to be surveyed than others), we upweighted records with few neighbors in geographic space using a bias grid in MaxEnt (Elith et al., 2010) (see Appendix I). 4.3.2.5 Model evaluation and variable relative importance To select the most parsimonious model to forecast into future scenarios we choose the lowest AICc and checked the relative importance of 106 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger variables. Models were run across 10 cross-validation replicates and their AICc values were estimated. In each replicate, we partitioned presence data by randomly selecting 80% of occurrence localities as training data and the remaining 20% as test data. Models selected by AICc more accurately estimated the habitat suitability when such models are transferred to a different time period (Warren & Seifert, 2011). We used a jackknife test to evaluate the relative importance of each variable on both the regularized training gain (using training data) and regularized test gain (using test data) of the models. It is important to highlight that this gain is referred to likelihood of the models and not to the increase of habitat suitability. We then estimated the regularized model gain by (1) creating a model using each variable alone, (2) removing the corresponding variable, and then creating a model with the remaining variables, and (3) using all variables (Phillips et al., 2006). 4.3.2.6 Future forecasting We forecast the badger spatial distribution for future climate scenarios by using the best model based on AICc developed for the current climate conditions. Two scenarios proposed by the Inter-governmental Panel of Climate Change were considered: A2 and B1 (IPCC, 2007). The A2 scenario assumes a continuously increasing global population, economic development that is primarily regionally oriented and focused on economic growth and technological changes that are more fragmented and slower than in other storylines. The B1 scenario assumes that economic structures rapidly change towards a service and information economy, and that resource-efficient technologies are introduced. The projected PREC and TMEDMAX variables were obtained from the spatial 107 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger downscaling of these IPCC scenarios available at the Environmental Information Network of Andalusia (see “Environmental variables” subsection; Government of Andalusia, 2014). The SLOPE variable was assumed to remain constant. The three projected functional descriptors derived from EVI (i.e., EVIMEAN, EVICV and EVISTD) were predicted by generalized additive models (GAMs). Precipitation and temperature are the two major climate factors that govern the primary production of the biosphere, although the response of primary production to these climate drivers can vary both spatially and temporality (Cabello et al., 2012a). At the regional scale, precipitation is the main climatic constrain of vegetal growth in the Mediterranean climate (Nemani et al., 2003). However, the seasonality of primary production remains modulated by both precipitation and temperature (Schloss et al., 1999). Therefore, projected EVIMEAN was predicted by a GAM that used the projected PREC variable of the corresponding scenario as an explanatory variable. The EVICV variable was predicted in the same manner but used projected PREC and TMEDMAX as explanatory variables. Finally, the projected EVISTD variable was obtained by using a 3x3 km moving window on the projected EVIMEAN variable (as explained in “Environmental variables” subsection) (see Appendix J). 4.3.2.7 Comparing current and future spatial distributions: identification of sensitive areas to loss habitat suitability To identify sensitive areas prone to losing habitat suitability for badgers, we identified areas that showed a significant decrease of habitat suitability between current and projected future conditions by applying the methodology of Januchowski et al. (2010), using the SigDiff function in the R package SDMTools. SigDiff is a “local” metric that identifies 108 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger where spatial distributions significantly differed. This metric represents the significance of the pairwise differences relative to the mean and variance of all differences between the two predicted spatial distributions. The probability values predicted by this function represent the area under the curve of a Gaussian distribution defined by the mean and variance across all cells. These probability values were reclassified to indicate areas where habitat suitability significantly decreased (SD ≥ 0.975), where habitat suitability significantly increased (SD ≤ 0.025) and where there was no significant difference between distributions (Bateman et al., 2012). In addition, we also computed a “global” metric, the I similarity statistic (Warren et al., 2008). This metric sums the pairwise differences between two predicted distributions to create a single value representing the similarity of the two distributions. The I similarity statistic ranges from a value of 0, where two distributions have no overlap, to 1, where they are identical. It was computed with the Istat function in the R package SDMTools. 4.3.2.8 Limiting factors of habitat suitability We calculated the most limiting factor in each cell of the study area, the value of each variable was changed to the mean value of that variable over the species occurrences, and then, the resulting suitability value was recorded. Thus, the limiting factor at that cell was the variable for which the change results in the largest suitability value (Elith et al., 2010). 109 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger 4.3.3 Results 4.3.3.1 Model distribution performance and current projected Comparing the ten MaxEnt models, model 9 (hereafter M9) was the most plausible (i.e., ∆AICc < 2) (Burnham & Anderson, 2002) (Table 4.3.1) and was selected to forecast the badger spatial distribution into future scenarios. Table 4.3.1. MaxEnt models performance for the European badger in SE Spain under current climate conditions. For each model, the training data (80% of the total) used were different. The table shows maximised log-likelihood function (log(L)), number of estimated parameters (K), corrected Akaike Information Criterion values (AICc), AICc differences from M9 (∆AICc) and Akaike weights (Wi); *most parsimonious model. Model Log (L) K AICc ∆AICc Wi 1 -2312.33 15 4657.63 8.62 0.01 2 -2312.80 13 4653.81 4.81 0.04 3 -2310.58 14 4651.73 2.72 0.13 4 -2311.42 13 4651.06 2.05 0.18 5 -2312.92 13 4654.07 5.06 0.04 6 -2313.00 14 4656.57 7.56 0.01 7 -2314.75 13 4657.73 8.72 0.01 8 -2312.15 13 4652.52 3.51 0.08 9* -2311.56 12 4649.01 0.00 0.49 10 -2314.81 12 4655.51 6.50 0.02 Current spatial distribution of European badger predicted for the M9 model is shown in Fig. 4.3.1a. Habitat suitability in the region ranged from 0.008 to 0.96, with an average of 0.401 ± 0.135 SD. EVISTD was the 110 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger most important variable based on the jackknife test using the regularized training gain; EVISTD caused the highest gain when used alone in the model, and the greatest decrease in gain when removed from the model (Table 4.3.2). However, using the regularized test gain, EVISTD also achieved the highest gain when used alone, but PREC caused the greatest decrease in gain when removed from the model. Table 4.3.2. Most important environmental variables (*) in the MaxEnt model for habitat suitability of the European badger in SE arid Spain under current climate conditions (1971-2000). Relative importance of variables was evaluated by a jackknife test on the training and test gains. The gains obtained using all variables were 0.227 for training data and 0.397 for test data, so these were the reference values. (see “Environmental variables” subsection for variables abbreviations). Training gain Test gain Variable With only Without With only Without PREC 0.042 0.193 0.007 0.276* TMEDMAX 0.075 0.211 -0.051 0.435 SLOPE 0.028 0.192 0.001 0.334 EVIMEAN 0.038 0.206 0.161 0.285 EVICV 0.006 0.205 0.057 0.348 EVISTD 0.111* 0.170* 0.204* 0.30 The correlations between habitat suitability in the presence records and each environmental variable under current conditions suggest which environmental factors influence the presence of European badger. Thus, EVISTD and TMEDMAX had the two highest positive values (Table 4.3.3), while PREC and EVICV reached the two highest negative values. 111 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger Table 4.3.3. Pearson coefficient correlation (rho) between habitat suitability predicted in the presence records under current climate conditions (1971-2000), and each environmental variable. (*P < 0.05; **P < 0.001). (see “Environmental variables” subsection for variables abbreviations). Variable rho PREC -0.49** TMEDMAX 0.56** SLOPE -0.18* EVIMEAN 0.15* EVICV -0.25** EVISTD 0.73** 4.3.3.2 Forecasted future distributions MaxEnt model M9 forecasted a decrease in high habitat suitability sites for the European badger in the arid region of SE Spain under both A2 and B1 future climate scenarios (Fig. 4.3.1a). The sites with high habitat suitability (> 0.67) completely disappeared under both scenarios (suitability ranged from 0.009 to 0.67 (A2) and 0.62 (B1)), changing the skewness of the habitat suitability values from 0.40 (current) to -0.64 (A2) and -0.54 (B1) (skewness was estimated using the type 3 method in Joanes & Gill, 1998). However, the average of habitat suitability for the study area were similar (current conditions: 0.40 ± 0.13 SD; A2: 0.43 ± 0.11 SD and B1: 0.39 ± 0.11 SD). Therefore, the I similarity statistic showed a low difference between current and forecasted future distributions (0.93 and 0.92 for A2 and B1 respectively), which means a high similitude between spatial distributions at regional scale. 112 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger Figure 4.3.1. (a) MaxEnt-modeled decrease in habitat suitability of the European badger in SE arid Spain from current climate conditions (1971-2000) to two future climate scenarios (IPCC A2 and B1 for 2071-2099). Habitat suitability maps with mean suitability computed by rows and columns (cell size 100 x 100 m) in the margins. X and Y axes show UTM coordinates (Zone 30, Datum ED1950). Cells in grey contain greenhouses, so they were removed before computing the predictions (see “Environmental variables” subsection). Histograms (Y axis: number of cells/number total of cells) of the habitat suitability values. (b) Study area (7051km2) and location of the 179 badger 113 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger presence records used in this study. The area only includes arid climate; based on Martonne aridity index. (c) MaxEnt-modeled maps of significant differences in habitat suitability between current and predicted climate conditions under the A2 and B1scenarios for the European badger in SE arid Spain. In pale red, areas where the variables are expected to significantly decrease (SD > 0.975); in blue, areas where the variables are expected to significantly increase (SD < 0.025); and in grey, areas where there was no significant difference. 4.3.3.3 Potential areas to lose habitat suitability and involved environmental drivers The MaxEnt model M9 revealed more loss than gain of suitable habitats for the European badger in SE Spain under both A2 and B1 climate change scenarios. Habitat suitability is expected to significantly decrease in both scenarios: A2 by 3.85% and B1 by 4.04 % of the study area. In both scenarios, significant decreases occurred along the two main river valleys and along the eastern coastline (Fig. 4.3.1c). In contrast, some areas are also expected to significantly gain habitat suitability in both scenarios (though with lower extension than losses): A2 by 1.32% and B1 by 1.15%. In both scenarios, significant gains occurred in the central and northwestern parts of the study area. According to MaxEnt model M9 under current climate conditions, the main limiting factor of habitat suitability for the European badger in SE Spain strongly varied across the region (Fig. 4.3.2) Slope was important in mountains, as well as precipitation (PREC) and temperature (TMEDMAX), particularly in inner mountains. The EVI descriptors of temporal and spatial patterns of ecosystem functioning (i.e., EVIMEAN, EVICV and EVISTD) were more limiting at low-altitude foothills, plains and valleys. Conversely, under both future climate scenarios, the spatial standard deviation of EVIMEAN (EVISTD) was the main limiting factor throughout 114 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger the region (Fig. 4.3.2). In addition, slope was important in the highest altitudes, EVIMEAN and EVICV in the northwestern foothills and plateaus (particularly in A2), and precipitation (PREC) in the northern and central western foothills (only in B1). Figure 4.3.2. MaxEnt-modeled maps of the limiting factors of habitat suitability for the European badger in SE arid Spain under current climate conditions (19712000) and two future climate scenarios (IPCC A2 and B1 for 2071-2099). The limiting factor is the environmental variable whose value at one cell most influences the model suitability prediction. (see “Environmental variables” subsection for variables abbreviations). The areas that are expected to experience significant changes in habitat suitability (Fig. 4.3.1c) tended to occur more in areas that experience significant changes in the EVI descriptors of temporal and spatial patterns of ecosystem functioning than in areas that only experience changes in the climate variables (Fig. 4.3.3). Areas where EVIMEAN and EVISTD significantly decreased (main river valleys, Fig. 4.3.3) were also those where habitat suitability significantly decreased (Fig. 4.3.1c), which agrees with their positive correlation (Table 4.3.3) and areas where EVICV significantly decreased (inner plateaus, Fig. 4.3.3) were mainly those where habitat suitability significantly increased (Fig. 4.3.1c), which agrees with their negative correlation (Table 4.3.3). 115 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger 116 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger Figure 4.3.3. Maps of the significant differences in the EVI descriptors of ecosystem functioning and in the climate variables between current climate conditions (1971-2000) and two future climate scenarios (IPCC A2 and B1 for 2071-2099) in SE Spain. In pale red, areas where the variables are expected to significantly decrease (SD > 0.975); in blue, areas where the variables are expected to significantly increase (SD < 0.025); and in grey, areas where there was no significant difference. (see “Environmental variables” subsection for variables abbreviations). 4.3.4 Discussion 4.3.4.1 EVI descriptors of ecosystem functioning to forecast species distributions Our results suggest that high suitability areas for European badgers may decrease in response to future climate scenarios. Because conservation resources are limited, the monitoring efforts for badgers should focus on areas which are more likely to experience local extinctions or occurrence shifts and on the involved environmental drivers of change. Primary production (EVIMEAN) and ecosystem functional heterogeneity (EVISTD) seem to be these main drivers of change. Macdonald et al. (2010) found that badger life history parameters (such as survival, fecundity or bodyweight) are correlated with annual variability of both temperature and rainfall mediated by food supply. Therefore, climate trends might influence badgers population growth directly and through interactions with food availability (Nouvellet et al., 2013). The results also show that the local loss of the best suitable habitats for badgers occurs in the same sites where primary production (represented by EVIMEAN) is expected to significantly decrease (mainly along river valleys). This green biomass is at the base of food webs, and therefore a decrease would translate into lower food availability for the rest of levels. The forecasted local loss of the best suitable habitats may be 117 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger driven by lower food availability under a new scenario of increasing aridity. This will likely translate to changes in regional distribution, abundance and life-history traits (such as fitness or body-weight). In addition, the local loss of the best suitable habitats for badgers occurs in the same sites where the spatial heterogeneity of primary production (represented by EVISTD) is expected to significantly decrease under future climate scenarios. At the regional scale, they also display that EVISTD is expected to become the main limiting factor of habitat suitability throughout the study area. In the arid Mediterranean climate, badgers prefer to live in rural landscapes consisting in a mosaic of fruit crops and orchards mixed with patches of semi-natural vegetation, where the heterogeneity provides diverse food resources and shelters (Lara-Romero et al. 2012). Several authors have suggested that this preference is a response to food shortage (Lara-Romero et al., 2012; Requena-Mullor et al., 2014). Mosaic landscapes represent a predictable, clumped and profitable habitat to maximize the regional stability of food supply such as fruits, insects or vertebrates in an arid region. In this way, badgers would offset the lower availability of key prey items (i.e., earthworms) in arid regions compared to more rainy regions within its distribution range (Kruuk, 1978). The forecasted landscape homogenization in terms of ecosystem functioning would imply a decrease in habitat suitability. Conversely, our study also revealed some new spots that would reach moderately high habitat suitability (from 0.5 to 0.7) under future climate change scenarios. In such areas, the intra-annual variability of primary production (seasonal coefficient of variation of EVI; EVICV) is expected to significantly decrease. EVICV has been used as an indicator of carbon 118 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger gains seasonality that describes the variability of green biomass production across seasons (Alcaraz-Segura et al., 2009). At the European scale, badger densities are known to be limited by seasonal temperature, or some other constraint(s) that covary with seasonality (Johnson et al., 2002). At the local scale, it is also known that badger survival is especially sensitive to seasonal weather extremes, such as extended summer droughts and winter frosts (Macdonald & Newman 2002). For instance, Woodroffe & Macdonald (2000) found that summer rainfall is a significant predictor of cub survivorship. In SE Spain, seasonality is expected to increase due to increasing temperatures and decreasing rainfall, particularly during summer months (De Luis et al., 2001). Greater seasonality would lead to lower habitat quality for badgers, monitoring and management actions should pay special attention to such critical periods that increase seasonality of primary production. However, for monitoring purposes, it is important to bear in mind that changes in primary production may be time-lagged with regard to changes in precipitation or temperature (Cabello et al., 2012b). For example, in the study area, Cabello et al. (2012b) observed from 2000 to 2010 that slight precipitation increases during late summer led to relatively much higher EVI increases in late autumn, which persisted throughout the winter (critical periods in badger population dynamics, Macdonald et al., 2010). Our results highlight seasonality of primary production, but not seasonality of precipitation or temperatures, to better determine habitat suitability for badgers, so focusing solely on weather extremes is not enough for an effective monitoring of badgers populations in the study area. 119 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger 4.3.4.2 Global and local implications for wildlife monitoring and management One of the strategies suggested to adapt species monitoring and management to climate change is evaluating and enhancing monitoring programs for wildlife on a global scale (Mawdsley et al., 2009). However, the costs to adapt existing monitoring systems are likely to be high. Therefore new tools and approaches are required. Here we show that cost-efficient monitoring schemes using globally available data sets (i.e., variables related to ecosystem functional attributes derived from remote sensing) are sensitive to both long-term and rapid environmental changes affecting the distribution range of a species (Crabtree et al., 2009). At the local scale of our study, the arid Mediterranean rural landscape is a shifting mosaic that benefits carnivore diversity and abundance (Pita et al., 2009). In this challenging environment, monitoring of future landscape trajectories is vital for biodiversity conservation and maintaining connectivity between suitable habitat areas (PiquerRodríguez et al., 2012). Our results suggest to local managers that EVIderived functional attributes are useful to detect priority areas for monitoring based on their loss or gain habitat suitability for badgers. For instance, the areas where EVIMEAN significantly decreased were also those where habitat suitability significantly decreased, which suggest monitoring the spatial and temporal variability of EVI functional attributes detects changes in habitat suitability. Likewise, seasonal dynamic of primary production (represented by EVICV) could allow to identify critical periods where focus the monitoring actions. These results enhance previous findings by Requena-Mullor et al. (2014), which 120 RESULTADO 4.3 Modeling and monitoring habitat quality from space: the European badger showed that the distribution of European badgers in this region was predicted by functional attributes such as high primary production (EVIMEAN), seasonality in the primary production (EVICV) and spatially heterogeneous landscapes (EVISTD). However, advances in the knowledge of the relationship between these functional attributes and food resources availability are still necessary for effective monitoring of the European badger. In conclusion, the incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses. We believe that our approach can be applied in a variety of ecosystems worldwide and under diverse climatic change scenarios, thereby supporting the design of optimized/cost-efficient monitoring schemes. The use of predictive models, such as ours, can address and improve the ever-increasing need for monitoring of biodiversity across space and time in a rapidly changing planet. 121 DISCUSIÓN 5. DISCUSIÓN El Tejón europeo se enfrenta a una serie de amenazas que pueden poner en jaque la viabilidad de sus poblaciones, o en última instancia, su presencia en los ecosistemas Mediterráneos a finales del siglo XXI. Esta situación se agrava en algunos paisajes áridos Mediterráneos, donde la especie es poco abundante y con distribución parcheada, lo cual hace su supervivencia aún más complicada. Entre las amenazas más destacadas se encuentran el cambio climático, consecuencia del calentamiento atmosférico global, y la pérdida-fragmentación de su hábitat, ocasionada por los cambios en el uso y la cobertura del suelo (Virgós et al., 2005c). Varios trabajos han destacado los efectos potenciales que las variaciones en los ciclos de precipitación y temperatura tienen sobre la dinámica poblacional del Tejón (Macdonald et al., 2010; Nouvellet et al., 2013). Sin embargo, la respuesta de la especie puede variar de unas regiones a otras, por lo que se requieren estudios en diferentes áreas de su rango de distribución (Virgós et al., 2005c). Por otro lado, el ser humano está modificando la composición del paisaje y sustituyendo las prácticas agrícolas tradicionales por otras más intensivas y menos respetuosas con el entorno (Pita et al., 2009). Por este motivo, y dado que los paisajes rurales Mediterráneos son el hábitat preferido del Tejón en ambientes áridos, la calidad de su hábitat, y por tanto, la abundancia de la especie, podría verse significativamente reducida (Lara-Romero et al., 2012). En relación a esto, el último informe del Panel Intergubernamental contra el Cambio Climático es claro: sin una gestión eficaz, derivada de políticas de conservación que tengan en cuenta los efectos potenciales del Cambio Global, algunas especies en riesgo menor en la actualidad, pueden llegar a ser mucho más raras, e incluso desaparecer localmente 122 DISCUSIÓN durante el siglo XXI (IPCC, 2013; Inger et al., 2015). La pérdida de especies puede llevar a su vez a una reducción local de la biodiversidad y a una modificación de la estructura y funcionamiento del ecosistema (National Research Council, 1999). De forma particular, los mesocarnívoros como el Tejón, juegan un papel relevante en los sistemas naturales como predadores, competidores y especies “paragua”. De este modo, variaciones en su abundancia o en la diversidad de sus comunidades pueden inducir cambios a nivel ecosistema (Roemer et al., 2009). Todo ello pone de manifiesto la necesidad de mejorar el conocimiento sobre el rango actual de distribución del Tejón y los efectos potenciales que sobre el mismo pudiera tener el Cambio Global. De esta forma, los gestores pueden optimizar las medidas de conservación y diseñar programas de seguimiento más eficientes, no solo de cara a la conservación de la especie, sino también de los paisajes que habita (Proyecto GLOCHARID, 2014). Esta tesis doctoral supone un avance en esta línea de trabajo, y propone algunas recomendaciones para el seguimiento de su distribución y conservación del hábitat en un contexto Mediterráneo árido. Uno de los principales impulsores de la distribución espacial del Tejón en paisajes áridos Mediterráneos es la dinámica espacio-temporal de la producción primaria (Requena-Mullor et al., 2014) (ver RESULTADO 4.1). La producción primaria está situada en la base de la cadena trófica y sintetiza aspectos funcionales clave de los ecosistemas, por lo que es considerada un atributo integrador del funcionamiento ecosistémico (McNaughton et al., 1989; Virginia & Wall, 2001). En un planeta que cambia rápidamente, disponer de herramientas que informen casi a tiempo real de la dinámica de la producción vegetal resulta de vital 123 DISCUSIÓN importancia en tareas de seguimiento ecológico. En la era de los satélites, la traslación de la información espectral a variables relacionadas con el funcionamiento ecosistémico está ampliando el uso tradicional de las imágenes de satélite en la biología de la conservación, ofreciendo descriptores de procesos clave del funcionamiento de los ecosistemas (ej., dinámica de la producción primaria, evapotranspiración, eficiencia en el uso del agua por la vegetación, etc.) (Cabello et al., 2012). Estos descriptores están resultando muy valiosos a la hora de modelizar rasgos de la ecología de las especies y su respuesta frente a los cambios ambientales (Cabello et al., 2012a). Un ejemplo de ello son los atributos funcionales derivados de índices de vegetación, tales como el EVI. Estos atributos son sensibles a factores que afectan al rango de distribución de las especies (Crabtree et al., 2009), y han resultado de gran utilidad en la modelización de la distribución espacial del Tejón europeo (RequenaMullor et al., 2014). De cara al reto de monitorear los efectos que el Cambio Global pueda tener sobre la distribución de la especie es indudable que resulta determinante el uso de información satelital relacionada con la producción primaria. Bajo la asunción de que la producción vegetal de un área influencia la red trófica completa (McNaughton et al., 1989), los atributos funcionales pueden ayudar a comprender (de abajo a arriba) las alteraciones en la dinámica de las comunidades como respuesta a los cambios ambientales. Frente al cambio climático, esta visión puede resultar particularmente útil en ambientes Mediterráneos, debido a que la precipitación es el principal factor limitante del crecimiento vegetal (Nemani et al., 2003) (ver RESULTADO 4.3). La respuesta rápida de estos atributos frente a cambios ambientales, su disponibilidad en continuo, 124 DISCUSIÓN espacial y temporal a resoluciones óptimas regionales, hacen de ellos una herramienta muy eficaz en el estudio y seguimiento de la distribución de las especies. Es importante resaltar que el uso de imágenes satelitales para derivar atributos funcionales requiere de un filtrado previo de calidad de las mismas (Reyes et al., 2015) y de una normalización-estandarización de los algoritmos empleados en la estima de los mismos. Todo ello pone de manifiesto la necesidad de protocolos internacionales consensuados que permitan extender su uso a escalas más amplias y poder comparar los resultados entre distintas áreas del planeta. De esta forma, avances en distintos ámbitos de conocimiento y ecosistemas del planeta pueden integrarse y servir de apoyo en la búsqueda de criterios generales sobre los que apoyar Normas y Directrices internacionales en la lucha contra el Cambio Global y la pérdida de biodiversidad. Si analizamos el caso concreto del Tejón en el contexto árido Mediterráneo, la dinámica espacio-temporal de la producción primaria condiciona en gran medida su distribución espacial. Este resultado (RESULTADO 4.1) hace pensar que existe algún tipo de correlación entre los atributos funcionales que describen dicha distribución y la dinámica espacio-temporal de los recursos alimenticios explotados por la especie. El Tejón selecciona áreas con altos valores de producción vegetal y heterogeneidad espacial, mientras que rechaza zonas con alta variabilidad temporal en dicha producción. Estas condiciones suelen ser representativas de paisajes rurales tradicionales bien conservados que ofrecen al Tejón una oferta de recursos alimenticios variada espacialmente y estable a lo largo del año (Requena-Mullor et al., 2014). 125 DISCUSIÓN Sin embargo, poco se sabe de la relación entre la dinámica espaciotemporal de los atributos funcionales del EVI y los recursos alimenticios explotados por el Tejón. De entre los ítems consumidos por la especie en ambientes Mediterráneos, son especialmente importantes los frutos, insectos y vertebrados (Rodríguez & Delibes, 1992; Revilla & Palomares, 2002; Barea-Azcón et al., 2010, Requena-Mullor et al., 2015). Algunas de las cuestiones a responder en relación a esto son: ¿hay una relación directa positiva entre la producción primaria y la disponibilidad de frutos?, ¿existe desfase temporal entre la fenología de la producción vegetal y la disponibilidad de alimento?, y en caso afirmativo, ¿cuál es su magnitud?, y ¿un paisaje heterogéneo, ofrece realmente una oferta más variada de alimento?. En esta dirección, algunos autores han relacionado la ocurrencia o abundancia de estos ítems con índices de vegetación tales como el EVI o el Índice de Vegetación de Diferencia Normalizada (del inglés, NDVI) (Willems et al., 2009; Lafage et al., 2013; Tapia et al., 2013), pero poco más se sabe. Para seguir avanzando en esta línea es imprescindible identificar primero qué recursos alimenticios explota el Tejón, y si existe variabilidad en las estrategias tróficas adoptadas entre paisajes dentro de un contexto árido Mediterráneo. En este sentido, los resultados encontrados muestran cómo los hábitos alimenticios del Tejón varían de unos paisajes a otros dentro del contexto árido (ver RESULTADO 4.2). Aunque la frugivoría sigue apareciendo como la principal estrategia adoptada por la especie (Pigozzi, 1991; Rodríguez & Delibes, 1992; Barea-Azcón et al., 2010), en zonas montañosas, donde la repoblación con pinos es el rasgo dominante del paisaje, los invertebrados (ej., insectos y lombrices) adquieren una importancia significativa. Este aumento en el consumo de 126 DISCUSIÓN invertebrados compensaría la escasez de frutos cultivados y/o silvestres de mayor contenido energético (ej., naranjas, aceitunas, higos, algarrobas, etc.), los cuales son más abundantes en las vegas fluviales y matorrales de la maquia mediterránea situados a menor altitud. La dependencia directa y/o indirecta del Tejón hacia el manejo que el ser humano hace del territorio se pone de manifiesto cuando se analizan sus hábitos alimenticios. De esta forma, las prácticas agrícolas tradicionales aportan a la especie no solo frutos cultivados (ej., naranjas), sino otros como higos, nísperos, manzanas, albaricoques, etc., cultivados secundariamente o en muchos casos naturalizados, pero dependientes en cierto grado del regadío (Requena-Mullor et al., 2015). Además, debido al escaso uso de pesticidas y maquinaria agrícola, esto ambientes pueden ofrecer una gran diversidad y abundancia de artrópodos (Bengtsson et al., 2005). Por todo ello, es importante tener en cuenta el efecto potencial de las políticas agrarias sobre una especie como el Tejón, en cuanto que pueden ser impulsoras de cambios en el uso del suelo (Virgós et al., 2005c). En este sentido, la reforma de la Política Agraria Común (PAC) para el período 2014-2020, contempla un paquete de medidas que promueven la diversificación de cultivos, mantenimiento de pastos permanentes y el destino de parte de la propiedad como superficie de interés ecológico (Martínez & Palacios, 2012). Estas prácticas, favorecerían a priori la conservación de las poblaciones de Tejón en ambientes Mediterráneos (Virgós et al., 2005c), sin embargo, el envejecimiento de la población rural y el éxodo de los más jóvenes a las ciudades está propiciando un abandono generalizado de tierras en las últimas décadas (Castro et al., 2011). Esto trae consigo un deterioro del 127 DISCUSIÓN paisaje rural Mediterráneo, y por tanto, una amenaza para el futuro de la especie. Por otro lado, algunos ítems consumidos por el Tejón dependen directamente de la precipitación, (ej., algarrobas, palmitos, moras, lombrices), o indirectamente de la producción primaria (ej., insectos, roedores, conejos). Ante un escenario de cambio climático futuro, la disponibilidad de estos recursos, o la modificación de su fenología, podría tener consecuencia en sus hábitos alimenticios, adaptándolos a la nueva situación (Virgós et al., 2004). En casos de periodos extremos de aridez, podría verse obligado a abandonar el territorio y buscar nuevas zonas, lo que en condiciones de distribución parcheada, puede incrementar el riesgo de desaparición local (Virgós et al., 2005c). En relación a esto último, la calidad del hábitat para el Tejón en paisajes áridos Mediterráneos podría verse significativamente reducida de aquí a finales de siglo (ver RESULTADO 4.3). No obstante, esta reducción no sería uniforme en el espacio, pudiendo incluso aumentar en algunas zonas. Aquellas que ofrecen en la actualidad las mejores condiciones para la supervivencia del Tejón (esto es, los paisajes agrícolas tradicionales (Lara-Romero et al., 2012)), verían reducida su idoneidad de hábitat debido principalmente a una homogeneización del paisaje desde el punto de vista de la producción primaria. Por el contrario, algunas áreas del centro y norte del área de estudio, aunque de menor extensión, aumentarían su idoneidad gracias a una disminución en la estacionalidad de la producción primaria. A pesar de que estos resultados hay que tomarlos con precaución, debido a que no se tienen en cuenta de manera directa los cambios en el uso del suelo (Pearson & Dawson, 2003) y la incertidumbre asociada a los modelos climáticos (Deser et al., 128 DISCUSIÓN 2012), otros autores predicen igualmente una homogeneización del paisaje derivada de la intensificación de los cultivos, y a un abandono del uso agrícola tradicional ocasionado por el éxodo humano a áreas urbanas (Silvestre, 2002; De Stefano, 2004; Piquer-Rodríguez et al., 2012). Por tanto, estas previsiones dibujarían igualmente un escenario poco alentador para la especie. De hecho, Maiorano et al. (2014) predicen, en base a los mismos escenarios de cambio y período de tiempo que los empleados en esta tesis doctoral, una disminución de hasta un 50% en la distribución de las especies de la familia Mustelidae en la cuenca Mediterránea. En un contexto global cambiante, el último informe del IPCC para la conservación de los mamíferos predice que el 25% de las especies de mamíferos del mundo, aproximadamente unas 1,125 especies, están en riesgo de extinción global (IPCC, 2013). Paralelamente, Inger et al. (2015) alertan de que las especies que en la actualidad no están amenazas corren serio peligro de estarlo en el futuro debido a que toda la atención se centra en aquellas que sí lo están. Desde esta perspectiva, resulta de vital importancia para la conservación del Tejón en ambientes áridos Mediterráneos el seguimiento y preservación de la calidad de su hábitat de cara a prever un potencial deterioro y por tanto, un retroceso en su rango de distribución. Por ello, son claves las iniciativas encaminadas al mantenimiento del paisaje rural Mediterráneo. Las nuevas políticas en materia de conservación a nivel nacional e internacional en los países Mediterráneos donde el Tejón está presente deberían centrar esfuerzos en la protección y conservación de dichos paisajes, e incluir los atributos funcionales derivados de sensores remotos como herramienta para la caracterización y seguimiento del estado de conservación (Proyecto GLOCHARID, 2014). Dichas políticas 129 DISCUSIÓN deben contemplar acciones a llevar a cabo tanto dentro como fuera de las áreas naturales protegidas debido a que una gran proporción de estos paisajes se encuentran fuera de dichos límites (Cox & Underwood, 2011). Una de las estrategias propuestas es el desarrollo de medidas específicamente diseñadas para prevenir el abandono rural y preservar las tierras agrícolas (Falcucci et al., 2007). Por un lado, el éxodo humano de los entornos rurales a la ciudad debe de frenarse con programas que estimulen las oportunidades de futuro, y por otro lado, medidas orientadas a mantener la heterogeneidad paisajística y las prácticas agrícolas tradicionales, ayudarían a preservar la biodiversidad asociada a los agro-ecosistemas Mediterráneos. Por último, es imprescindible aplicar de manera eficaz y rigurosa la normativa que rige la ordenación del territorio y regula los cambios en el uso del suelo para evitar la intensificación de los cultivos y la homogeneización del paisaje. 130 CONCLUSIONES 6. CONCLUSIONES 1. Los descriptores del funcionamiento ecosistémico, obtenidos a partir de información satelital, representan una herramienta útil e innovadora en la modelización de la distribución espacial de meso-carnívoros como el Tejón europeo. Esto reafirma la necesidad de poner a disposición de gestores y tomadores de decisiones herramientas que incorporen esta información para elaborar e implementar programas de seguimiento como parte de estrategias orientadas a la conservación de la biodiversidad. 2. Los resultados obtenidos identifican las huertas tradicionales como uno de los paisajes clave para la supervivencia del Tejón europeo en paisajes áridos Mediterráneos. Dentro de un termoclima árido, esta tesis sugiere que los cambios en la dinámica de la precipitación y/o la modificación del paisaje pueden ejercer efectos sobre los hábitos alimenticios del Tejón europeo, pudiendo en última estancia poner en jaque la viabilidad de sus poblaciones a finales del siglo XXI. 3. El debate abierto asociado a que especies no amenazadas en la actualidad podrían estarlo en el futuro pone de manifiesto la necesidad de políticas de conservación que incorporen una visión de la biodiversidad más general, sin particularizar tanto en especies “emblemáticas”. 4. Finalmente, esta tesis representa un ejemplo de la aplicabilidad de las técnicas de muestreo tradicional de mamíferos combinado con el uso de información satelital en el estudio de procesos claves en la biología de la especies. 131 REFERENCIAS REFERENCIAS Agencia Andaluza del Agua. (2010). Río Andarax. Agencia Andaluza del Agua. Consejería de Medio Ambiente (Editores). Junta de Andalucía. Sevilla. Agresti, A. (1996). An Introduction to Categorical Data Analysis. Wiley, New York. Alcaraz-Segura, D. (2005). Caracterización mediante teledetección del funcionamiento de los ecosistemas ibéricos. Bases para la conservación de la biodiversidad en un escenario de cambio global. (Tesis doctoral inédita). Universidad de Almería. Almería. Alcaraz-Segura, D., Paruelo, J.M. & Cabello J. (2006). Identification of current distribution of Ecosystem Functional Types in the Iberian Peninsula. Global Ecology and Biogeography, 15(2):200–210. Alcaraz-Segura, D., Cabello, J. & Paruelo, J. (2009). Baseline characterization of major Iberian vegetation types based on the NDVI dynamics. Plant Ecology, 202:13-29. Alcaraz-Segura, D., Paruelo, J.M., Epstein, H.E. & Cabello, J. (2013). Environmental and Human Controls of Ecosystem functional Diversity in Temperate South America. Remote sensing, 5(1):127-154. Amorin, F., Carvalho, S.B., Honrado, J. & Rebelo H. (2014). Designing Optimized Multi-Species Monitoring Networks to Detect Range Shifts Driven by Climate Change: A Case Study with Bats in the North of Portugal. PLOS ONE, 9, e87291. doi:10.1371/journal.pone.0087291. 132 REFERENCIAS Andalusia Land use/Land cover map (scale 1:25.000). (2007). Disponible en http://www.juntadeandalucia.es/medioambiente/site/rediam. Araújo, M.B. & Peterson, A.T. (2012). Uses and misuses of bioclimatic envelope modeling. Concepts & Synthesis, 93:1527-1539. Armas, C., Miranda, J. D., Padilla, F. M. & Pugnaire, F. I. (Editores). (2011). Special issue: The Iberian Southeast. Journal of Arid Environments, 75:1241-1243. Austin, M. (2007). Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200:1-19. Bardsen, B.J. & Tveraa, T. (2012). Density-dependence vs. densityindependence - linking reproductive allocation to population abundance and vegetation greenness. Journal of Animal Ecology, 81:364-376. Barea-Azcón, J.M., Ballesteros-Duperón, E., Gil-Sánchez, J.M. & Virgós, E. (2010). Badger Meles meles feeding ecology in dry Mediterranean environments of the southwest edge of its distribution range. ActaTheriologica. 55(1):45-52. Bateman, B.L., VanDerWal, J., Williams, S.E. & Johnson, C.N. (2012). Biotic interactions influence the projected distribution of a specialist mammal under climate change. Diversity and Distributions, 18:861-872. Bengtsson, J., Ahnström, J. & Weibull, A. (2005). The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology, 42(2):261-269. 133 REFERENCIAS Best, D. J. & Roberts, D. E. (1975). The Upper Tail Probabilities of Spearman's rho. Journal of the Royal Statistical Society. Series C (Applied Statistic), 24:377–379. Blanco, J. C. & González, J. L. (1992). Libro Rojo de los Vertebrados de España. ICONA, Ministerio de Agricultura, Pesca y Alimentación, Madrid, España, 714 p. Booth, G.D., Niccolucci, M.J. & Schuster, E.G. (1994). Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation. Intermountain Research Station, USDA Forest Service, Ogden, Utah, USA. Boyce, M.S. (1978). Climatic variability and body size variation in the muskrast (Ondatra zibethicus) of North America. Oecologia, 36:1-19. Brown, J.H., Mehlman, D.W. & Steven, G.C. (1995). Spatial variance in abundance. Ecology, 76:2028-2043. Buermann, W., Saatchi, S., Smith, T.B., Zutta, B.R., Chaves, J.A., Milá, B. & Graham, C.H. (2008). Prediction species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography 35(7):1160-1176. Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference. A practical information-theoretic approach. Springer-Verlag. New York. Cabello, J., Fernández, N., Alcaraz-Segura, D., Oyonarte, C., Piñeiro, G., Altesor, A., Delibes, M. & Paruelo, J.M. (2012a). The ecosystem functioning dimension in conservation: insights from remote sensing. Biodiversity and Conservation, 21:3287-3305. 134 REFERENCIAS Cabello, J., Alcaraz-Segura, D., Ferrero, R., Castro, A.J. & Liras, E. (2012b). The role of vegetation and lithology in the spatial and inter-annual response of EVI to climate in drylands of Southeastern Spain. Journal of Arid Environment, 79:76-83. Castro, A.J., Martín-López, B., García-Llorente, M., Aguilera, P.A., López, E. & Cabello, J. (2011). Social preferences regarding the delivery of ecosystem services in a semiarid Mediterranean region. Journal of Arid Environment, 75(11):1201-1208. Castro, A.J., Paruelo, J.M., Alcaraz-Segura, D., Cabello, J., Oyarzabal, M. & López-Carrique, E. (2013). Missing gaps in the estimation of the carbon gains service from Light Use Efficiency models. En: Alcaraz-Segura, D. & Di Bella, C. (Editores). Earth Observation of Ecosystem Services, 105-124 p. Chen, W., Samuelson, F.W., Gallas, B.D., Kang, L., Sahiner, B. & Petrick, N. (2013). On the assessment of the added value of new predictive biomarkers. BMC Medical Research Methodology, 13:98. Ciampalini, B. & Lovari, S. (1985). Food habits and trophic niche overlap of the badger (Meles meles L.) and the red fox (Vulpes vulpes L.) in a Mediterranean coastal area. Z. Säugetier-Kunde, 50:226-234. Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Austustralian Journal of Ecology, 18:117-143. Corbacho, C., Sánchez, J.M. & Costillo, E. (2003). Patterns of structural complexity and human disturbance of riparian vegetation in agricultural landscapes of a Mediterranean area. Agriculture, Ecosystems and Environment, 95:495-507. 135 REFERENCIAS Cox, R.L. & Underwood, E.C. (2011). The importance of Conservation Biodiversity Outside of Protected Areas in Mediterranean Ecosystems. PLOS ONE, 6(1):e14508. Crabtree, R., Potter, C., Mullen, R., Sheldon, J., Huang, S., Harmsen, J., Rodman, A. & Jean, C. (2009). A modeling and spatio-temporal analysis framework for monitoring environmental change using NPP as an ecosystem indicator. Remote Sensing of Environment: 113:1486-1496. Da Silva, J., Woodroffe, R. & Macdonald, D. W. (1993). Habitat, food availability and group territoriality in the European badger, Meles meles. Oecologia, 95:558-564. Davidowitz, G. & Rosenzweig, M.L. (1998). The latitudinal gradient of species diversity among North American grasshoppers within a single habitat: a test of the spatial heterogeneity hypothesis. Journal of Biogeography, 25:553-560. De Stefano, D. (2004). Freshwater and tourism in the Mediterranean. Rome, Italy: WWF Mediterranean Programme. De Luis, M., García-Cano, M.F., Cortina, J., Raventós, J., González-Hidalgo, J. C. & Sánchez, J.R. (2001). Climatic trends, disturbances and short-term vegetation dynamics in a Mediterranean shrubland. Forest Ecology and Management, 147(1):25-37. Del Cerro, I., Marmi, A., Ferrando, P. & Chashchin P. (2010). Nuclear and mitochondrial phylogenies provide evidence for four species of Eurasian badgers (Carnivora). Zoologica Scripta, 39:415-425. 136 REFERENCIAS DeLong, E.R., DeLong, D.M. & Clarke-Pearson, D.L. (1998). Comparing the areas under two or more correlated receiver operating characteristic curves: a non-parametric approach. Biometrics, 44:837-845. Deser, C., Phillips, A., Bourdette, V. & Teng, H. (2012) Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 38(3-4):527-546. Edwards, C. A. & Lofty, J. R. (1977). Biology of earthworms. Chapman and Hall, London, U.K. Elith, J., Graham, C.H., Anderson, R.P. Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y. & Overton, J.M., Townsend, A., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. & Zimmermann N.E. (2006). Novel methods improve prediction of species´ distributions from occurrence data. Ecography, 29:129-151. Elith, J. & Leathwick, J.R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40:677-697. Elith, J., Kearney, M. & Phillips, S. (2010). The art of modelling rangeshifting species. Methods in Ecology and Evolution, 1:330-342. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17:43-57. 137 REFERENCIAS Falcucci, F., Maiorano, L. & Boitani, L. (2007). Changes in land-use/landcover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22:617-631. Ferguson, S.H. & McLoughlin, P.D. (2000). Effect of energy availability, seasonality and geographic range on brown bear life history. Ecography, 23:193-200. Feroe, S. & Montgomery, W.I. (1999). Habitat effects on the spatial ecology of the European badger (Meles meles). Journal of Zoology, 247:537-549. Ferrier, S. & Watson, G. (1997). An Evaluation of the effectiveness of environmental surrogates and modeling techniques in predicting the distribution of biological diversity. Environment Australia, Canberra Australia. Disponible en: http://www.environment.gov.au/archive/biodiversity/publications/techn ical/surrogates/ . Fischer, C., Ferrari, N. & Weber, J. M. (2005). Exploitation of food resources by badgers (Meles meles) in the Swiss Jura Mountains. Journal of Zoology of London, 266(2):121-131. Fryxell, J.M., Wilmshurst, J.F., Sinclair, A.R.E., Haydon, D.T., Holt, R.D. & Abrams, P.A. (2005). Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecology Letters, 8:328-335. García-Rangel, S. & Pettorelli, N. (2013). Thinking spatially: The importance of geospatial techniques of carnivore conservation. Ecological Informatics, 14:84-89. 138 REFERENCIAS Giorgi, F. & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global Planet Change. 63(2-3):90-104. Goszczynski, B., Jedrzejewska, B. & Jedrzejewski, W. (2000). Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations. Journal of Zoology of London, 250(4):495-505. Graham, C.H. & Hijmans, R.J. (2006). A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15:578. Hastie, T. & Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall, London. Hernández, P.A., Graham, C.H., Master, L.L. & Albert D.L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29:773-785. Herrera, C.M. (1989). Frugivory and seed dispersal by carnivorous mammals and associated fruit characteristics, in undisturbed Mediterranean habitats. Oikos, 55:250-262. Hill, M.P, Axford, J.K. & Hoffmann, A.A. (2014). Predicting the spread of Aedes albopictus in Australia under current and future climates: Multiple approaches and datasets to incorporate potential evolutionary divergence. Austral Ecology, 39:469-478. Huete, A.R., Liu, H.Q., Batchil. K. & van Leeuwen, W. (1997). A comparison of vegetation indices global set of TM images for EOSMODIS. Remote Sensing of Environment, 59:440-451. 139 REFERENCIAS Huete, A.R., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. & Ferreira, L.G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83:195-213. Inger, R., Gregory, R., Duffy, J.P., Stott, Vorïsek, P. & Gaston, K.J. (2015). Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecology Letters, 18:28-36. Intergovernmental Panel on Climate Change (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri, R.K & Reisinger, A. (Editores). IPCC, Geneva, Switzerland, 104 p. IPCC, (2007): Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo de redacción principal: Pachauri, R.K. & Reisinger, A. (directores de la publicación)]. IPCC, Ginebra, Suiza, 104 p. IPCC, (2013): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T.F., Qin G.K. Plattner M., Tignor S.K., Allen J., Boschung A., Nauels Y., Xia V., Bex P.M. (Editores). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 p. IPCC, (2013): Summary for Policymakers. En: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 140 REFERENCIAS Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (Editotes). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 33 p. Januchowski, S., Pressey, B., Vanderwal, J. & Edwards, A. (2010). Characterizing errors in topographic models and estimating the financial costs of accuracy. International Journal of Geographical Information Science, 24:1327-1347. Jepsen J.U., Madsen A.B., Karlsson M. & Groth D. (2005). Predicting distribution and density of badger (Meles meles) setts in Denmark. Biodiversity and Conservation, 14:3235-3253. Joanes, D.N. & Gill, C.A. (1998). Comparing measures of sample skewness and kurtosis. The Statistician, 47:183-189. Johnson, D.D., Jetz, W. & Macdonald, D.W. 2002. Environmental correlates of badger social spacing across Europe. Journal of Biogeography, 29(3):411-425. Junta de Andalucía. (2014). El clima de Andalucía en el siglo XXI. Consejería de Medio Ambiente y Ordenación del Territorio de la Junta de Andalucía. (Editores). Sevilla. Kruskal, J.B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypotheses. Psychometrika, 29(1):1-27. Kruuk, H. (1978). Spatial organisation and territorial behavior of the European badger, Meles meles. Journal of Zoology, 184:1-19. 141 REFERENCIAS Kruuk H. (1989). The social badger: ecology and behaviour of a groupliving carnivore (Meles meles). Oxford University Press. Kruuk, H. & de Kock, L. (1981). Food and habits of badgers (Meles meles) on Monte Baldo, northern Italy. Z. Säugetierkunde, 46:295-301. Kruuk H. & Parish T. (1981). Feeding specialization of the European badger Meles meles in Scotland. Journal of Animal Ecology, 50:773-788. Kruuk, H. & Parish, T. (1985). Food, food availability and weight of badgers (Meles meles) in relation to agricultural changes. Journal of Applied Ecology, 22:705-715. Lafage, D., Secondi, J., Georges, A., Bouzillé, J.B. & Pétillon, J. (2013). Satellite-derived vegetation indices as surrogate of species richness and abundance of ground beetles in temperate floodplains. Insect Conservation and Diversity, doi: 10.1111/icad.12056. Lara-Romero, C., Virgós, E., Escribano-Ávila, G., Mangas, J.G., Barja, I. & Pardavila, X. (2012). Habitat selection by European badgers in Mediterranean semi-arid ecosystems. Journal of Arid Environment, 76:43-48. Lavorel, S., Canadell, J., Rambal, S. & Terradas, J. (1998). Mediterranean terrestrial ecosystems: research priorities on global change effects. Global Ecology and Biogeography Letters, 7:157-166. Levinsky, I., Skov, F., Svenning J.C. & Rahbek C. (2007). Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodiversity and Conservation, 16:3803-3816. 142 REFERENCIAS Lloyd, D. (1990). A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing, 11:2269-2279. Macdonald, D.W. (1983). The ecology of carnivore social behaviour. Nature, 301:379-384. Macdonald, D.W. & Carr, G.M. (1999). Food security and the rewards of tolerance. En: Comparative socioecology: the behavioural ecology of humans and animals, vol 8. Standen, V. & Foley, R. (Editores). Blackwell Scientific, 75-79 p. Macdonald, D.W. & Newman, C. (2002) Population dynamics of badgers (Meles meles) in Oxford shires, U.K.: numbers, density and cohort life histories, and a possible role of climate change in population growth. Journal of Zoology of London, 256(1):121-138. Macdonald, D.W., Newman, C., Buesching, C.D. & Nouvellet, A. (2010). Are badgers ‘Under The Weather’? Direct and indirect impacts of climate variation on European badger (Meles meles) population dynamics. Global Change Biology, 16:2913-2922. Maiorano, L., Falcucci, A., Zimmermann, N.E., Psomas, A., Pottier, J., Baisero, D., Rondinini, C., Guisan, A. & Boitani, L. (2011). The future of terrestrial mammals in the Mediterranean basin under climate change. Philosophical Transactions of The Royal Society, 366:2681-2692. McNaughton, S.J., Oesterheld, M., Frank, D.A. & Williams, K.J. (1989). Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature, 341:142-144. 143 REFERENCIAS Martín, R., Rodríguez, A. & Delibes, M. (1995). Local feeding specialization by badgers (Meles meles) in a Mediterranean environment. Oecologia, 101:45-50. Martínez, F., & Palacios, A.M. (2012). Guía práctica de la nueva PAC. Editorial Agrícola Española, S.A., Madrid. Martonne, E. (1926). Areisme et indice d’aridité. Geographical Review, 17:397-414. Mawdsley, J.R., O’Malley, R. & Ojima, D.S. (2009). A Review of ClimateChange Adaptation Strategies for Wildlife Management and Biodiversity Conservation. Conservation Biology, 23:1080-1089. Melis, C., Cagnacci, F. & Bargagli, L. (2002). Il tasso. Habitat, 122:44-52 Mellgren, R.L., & Roper, T.J. (1986). Spatial learning and discrimination of food patches in the European badger (Meles meles L.). Animal Behaviour, 34(4):1129-1134. Menke S.B., Holway R.N., Fisher R.N. & Jetz W. (2009). Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder. Global Ecology and Biogeography, 18:50-63. Meynard, C.N., Pillay, N., Perrigault, M., Caminade, P. & Ganem, G. (2012). Evidence of environmental niche differentiation in the striped mouse (Rhabdomys spp.): inference from its current distribution in southern Africa. Ecology and Evolution, 2(5):1008-1023. Monteith J.L. (1981). Evaporation and surface temperature. Royal Meteorological Society, 107:1-27. 144 REFERENCIAS Morueta-Holme, N., Flojgaard, C. & Svenning, J.C. (2010). Climate Change Risks and Conservation Implications for a Threatened Small-Range Mammal Species. PLOS ONE, 5(4):e10360. Muirhead, R.H., Gallagher, J. & Burn, K.J. (1974). Tuberculosis in wild badgers in Gloucestershire: Epidemiology. Veterinary Record, 95:552555. Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A. Kass, J.M., Uriarte, M. & Anderson, R.P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods in Ecology and Evolution, doi: 10.1111/2041-210X.12261. Myers, R.H. & Montgomery, D.C. (1997). A tutorial on generalized linear models. Journal of Quality Technology, 29:274-291. National Research Council. (1991). Policy Implications of Greenhouse Warming. Report of the Committee on Science, Engineering and Public Policy, National Research Council/National Academy of Sciences (NRC/NAS), National Academy Press, Washington, DC, USA, 127 p. Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B. & Running, S.W. (2003). Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 300:1560. Newton-Cross, G., White, P.C. & Harris, S. (2007). Modelling the distribution of badgers Meles meles: comparing predictions from fieldbased and remotely derived habitat data. Mammal Review, 37(1):54-70. 145 REFERENCIAS Nilsen, E.B., Herfindal, I. & Linnell, J.D. (2005). Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity?. Ecoscience, 12(1):68-75. Nouvellet, P., Newman, C., Buesching, C.D. & Macdonald, D.W. (2013). A Multi-Metric Approach to Investigate the Effects of Weather Conditions on the Demographic of a Terrestrial Mammal, the European Badger (Meles meles). PLOS ONE, 8:e68116. Oindo, B.O. (2002). Predicting Mammal Species Richness and Abundance Using Multi-Temporal NDVI. Photogrammetric Engineering and Remote Sensing, 68(6):623-629. Olesen, J.E. & Bindi, M. (2002). Consequences of climatic change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16(4):239-262. Palomo, L.J., Gisbert, J. & Blanco, J.C. (2007). Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección General para la Biodiversidad-SECEM-SECEMU, Madrid, 588 p. Paruelo, J.M., Lauenroth, W.K., Burke, I.C. & Sala, O.E. (1999). Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems, 2:64-68. Paruelo, J.M., Piñeiro, G., Oyonarte, C., Alcaraz, D., Cabello, J. & Escribano, P. (2005). Temporal and spatial patterns of ecosystem functioning in protected arid areas of Southeastern Spain. Applied Vegetation Science, 8:93-102. Pearce, J.L., Cherry, K., Drielsma, M., Ferrier, S. & Whish, G. (2001). Incorporating expert opinion and fine-scale vegetation mapping into 146 REFERENCIAS statistical models of faunal distribution. Journal of Applied Ecology, 38:412-424. Pearson, R. & Dawson, T. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology & Biogeography, 12:361-371. Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.M., Tucker, C.J. & Stensethet, N.C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 20(9):503-510. Pettorelli, N., Gaillard, J.M., Mysterud, A., Duncan, P., Stenseth, N.C., Delorme, D., Van Laere, G., Toïgo, C. & Klein, F. (2006). Using a proxy of plant productivity (NDVI) to track animal performance: the case of roe deer. Oikos, 112:565-572. Pettorelli N., Ryan S., Mueller T., Bunnefeld, N., Jedrzejewsk, B. & Lima, M. (2011). The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research, 46:15-27. Phillips, S.J., Dudík, M. & Schapire R.E. (2004). A Maximun Entropy Approach to Species Distribution Modeling. Twenty-First International Conference on Machine Learning, 655-662 p. Phillips, S.J. (2006) A brief tutorial on MaxEnt. AT & T Research. Disponible en: http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc. Phillips S.J., Anderson, R.P. & Schapire, R.E. (2006). Maximum entropy modeling of species geographic distribution. Ecological Modeling, 190:231-259. 147 REFERENCIAS Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, J.L. & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19(1):181-197. Pigozzi, G. (1991). The diet of the European badger in a Mediterranean coastal area. Acta Theriologica, 36(3-4):293-306. Piquer-Rodríguez, M., Kuemmerle, T., Alcaraz-Segura, D., Zurita-Milla, R. & Cabello, J. (2012). Future land use effects on the connectivity of protected area networks in southeastern Spain. Journal of Nature Conservation, 20:326-336. Pita, R., Mira, A., Moreira, F., Morgado, R. & Beja, P. (2009). Influence of landscape characteristics on carnivore diversity and abundance in Mediterranean farmland. Agriculture, Ecosystems and Environment, 132(1-2):57-65. Proyecto GLOCHARID (2014). Centro Andaluz para el Estudio y Seguimiento del Cambio Global. Informes I, II, III & IV. Disponible en: http://caescg.org. QGIS Development Team, (2014). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Disponible en: http://qgis.osgeo.org. Quintas-Soriano, C., Castro, A.J., García-Llorente, M., Cabello, J. & Castro, H. (2014). From supply to social demand: a landscape-scale analysis of the water regulation service, Landscape Ecology, 29:1069-1082. 148 REFERENCIAS R Core Team, (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en: http://www.R-project.org/. Requena-Mullor, J.M., López, E., Castro, A.J., Cabello, J., Virgós, E., González-Miras, E., Castro, H. (2014). Predicting spatial distribution of European badger in arid landscapes: an ecosystem functioning approach. Landscape Ecology, 29(5):843-855. Requena-Mullor, J.M., López, E., Castro, A.J., Virgós, E., Castro, H. (2015). Hábitos alimenticios del Tejón europeo en un paisaje árido Mediterráneo. Galemys, aceptado con revisión menor. Revilla, E., Palomares, F. & Delibes, M. (2000). Defining key habitats for low density populations of Eurasian badgers in Mediterranean environments. Biological Conservation, 95:269-277. Revilla, E., Palomares, F. & Delibes, M. (2001b). Edge-core effects and the effectiveness of traditional reserves in conservation: Eurasian badgers in Doñana National Park. Conservation Biology, 15:148-158. Revilla, E., Palomares, F. & Fernández, N. (2001a). Characteristics, location and selection of diurnal resting dens by Eurasian badger (Meles meles) in a low density area. Journal of Zoology of London, 255:291-299. Revilla, E. & Palomares, F. (2002). Spatial organization, group living and ecological correlates in low-density populations of Eurasian badgers, Meles meles. Journal of Animal Ecology, 71:497-512. Revilla, E., Casanovas, J.G. & Virgós E. (2002). Meles meles Linnaeus, 1758. Tejón. En: L. J. Palomo y J. Gisbert. (Editores.) Atlas de los 149 REFERENCIAS mamíferos terrestres de España. Dirección General de Conservación de la Naturaleza, SECEM-SECEMU, Madrid, 274-277 p. Reyes, A., Cabello, J. & Alcaraz-Segura, D. (2015). Implicaciones del filtrado de calidad del índice de vegetación EVI para el seguimiento funcional de ecosistemas. Revista de teledetección, en prensa. Rodríguez, A. & Delibes, M. (1992) Food habits of badgers (Meles meles) in an arid habitat. Journal of Zoology, 227:347-350. Rodríguez, J.P., Brotons, L., Bustamante, J. & Seoane, J. (2007). The application of predictive modelling of species distribution to biodiversity. Diversity and Distributions, 13:243-251. Roemer, G.W., Gompper, M.E. & Valkenburgh, B.V. (2009). The ecological role of the mammalian mesocarnivore. BioScience, 59:165-173. Roper, T.J. (1994). The European badger Meles meles: food specialist or generalist?. Journal of Zoology of London, 234(3):437-452. Rosalino, L.M., Macdonald, D.W. & Santos-Reis, M. (2004). Spatial structure and land cover use in a low density Mediterranean population of Eurasian badgers. Canadian Journal of Zoology, 82(9):1493-1502. Rosalino, L.M., Loureiro, F., Macdonald, D.W. & Santos-Reis, M. (2005). Dietary shifts of the badger (Meles meles) in Mediterranean woodlands: an opportunistic forager with seasonal specialisms. Mammal Biology, 70(1):12-23. Rosalino, L.M., Santos, M.J., Beiber, P. & Santos-Reis, M. (2008) Eurasian badger habitat selection in Mediterranean environments: Does scale really matter?. Mammal Biology, 73:189-198. 150 REFERENCIAS Rosalino, L.M., & Santos-Reis, M. (2009). Fruit consumption by carnivores in Mediterranean Europe. Mammal Review, 39(1): 67-78. Ruimy, A., Saugier, B. & Dedieu, G. (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 99:5263-5283. Running, S.W., Thornton, P.E., Nemani, R. & Glassy, J.M. (2000) Global terrestrial gross and net primary productivity from the earth observing system. En: Sala, O., Jackson, R., Mooney, H. (Editores) Methods in Ecosystem Science, New York. Springer-Verlag, 44-57 p. Sala, O.E., Stuart, F., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M. & Wall, D.H. (2000). Global Biodiversity Scenarios for the Year 2100. Science, 287(5459):1770-1774. Schloss, A.L., Kickligther, D.W., Kaduk, J. & the participants of the Postdam NPP Model Intercomparison. (1999). Comparing global models of terrestrial net primary productivity (NPP): comparison of NPP to climate and the Normalized Difference Vegetation Index. Global Change Biology, 5(Suppl. 1):25-34. Shannon, C.E. (1948). A mathematical theory of communications. The Bell System Technical Journal, 27:379-423. Shapiro, S.S. & Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4):591-611. Silvestre, J. (2002). Las emigraciones interiores en España durante los siglos XIX y XX: una revisión bilbliográfica. Ager, 2:227-248. 151 REFERENCIAS Sims, D.A., Rahman, A.F., Cordova, V.D., Bassil, B.Z., Baldocchi, D.D., Flanagan, L.B., Goldstein, A.H., Hollinger, D.Y., Misson, L., Monson, R.K., Oechel, W.C., Schmid, H.P., Wofsy, S.C., & Xu, L. (2006). On the use of MODIS EVI to asses gross primary productivity of North American ecosystem. Journal of Geophysical Research: Biogeosciences, 111:G04015. Singh, N.J., Yoccoz, N.G., Bhatnagar, Y.V. & Fox, J.L. (2009). Using habitat suitability models to sample rare species in high-altitude ecosystems: a case study with Tibetan argali. Biodiversity and Conservation, 18(11):2893-2908. Snedecor, G.W. & Cochran, W.G. (1989). Statistical Methods, Eighth Edition, Iowa State University Press. Sokal, R.R. & Rohlf, F.J. (1995). Biometry. 3rd edition. W.H. Freeman, New York. Tapia, L., Domínguez, J., Regos, A. & Vidal, M. (2013). Using remote sensing data to model European wild rabbit (Oryctolagus cuniculus) occurrence in a highly fragmented landscape in northwestern Spain. Acta Theriologica, doi: 10.1007/s13364-013-0169-2. Underwood, A.J. (1997). Experiments in Ecology. Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge. Veloz, S.D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36:2290-2299. 152 REFERENCIAS Virginia, R.A. & Wall, D.H. (2001). Ecosystem function, principles of. Encyclopedia of Biodiversity (ed. by S.A.Levin), Academic Press, San Diego, 345-352 p. Virgós, E. (1994). Consideraciones sobre la situación del tejón (Meles meles) en algunas áreas del centro de la Península Ibérica. Aegypius, 12:37-40. Virgós, E. & Casanovas, J.G. (1999a). Environmental constraints at the edge of a species distribution, the Eurasian badger (Meles meles L.): a biogeographic approach. Journal of Biogeography, 6:559-564. Virgós, E., Casanovas, J.G. (1999b). Badger Meles meles sett site selection in low density Mediterranean areas of Central Spain. Acta Theriologica, 44(2):173-182. Virgós, E., Tellería, J.L. & Santos, T. (2002). Effects of geographic location, vegetation type, isolation and fragment features on the richness and occurrence of medium-sized mammals in forest fragments of central Spain. Biosiversity and Conservation, 11:1063-1079. Virgós, E., Mangas, J.G., Blanco-Aguilar, J.A., Garrote, G., Almagro, N. & Pérez-Viso, R. (2004). Food habits of the European badger (Meles meles) along an altitudinal gradient of Mediterranean environments: a field test of the earthworm specialization hypothesis. Canadian Journal of Zoology, 82:41-51. Virgós, E. (2005). Tejón – Meles meles. En: Enciclopedia Virtual de los Vertebrados Españoles. Carrascal, L. M., Salvador, A. (Editores). Museo Nacional de Ciencias Naturales, http://www.vertebradosibericos.org/. 153 Madrid. Disponible en: REFERENCIAS Virgós, E., Revilla, E., Domingo-Roura, X. & Mangas, J. G. (2005c). Conservación del tejón en España: síntesis de resultados y principales conclusiones. En: Virgós, E., Revilla, E., Mangas, J.G. & Domingo-Roura X. (Editores). Ecología y conservación del tejón en ecosistemas mediterráneos. Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM), Málaga., 283-294 p. Virgós, E., Revilla, E., Mangas, J.G., Barea-Azcón, J.M., Rosalino, L.M. & De Marinis, A.M. (2005a). Revisión de la dieta del Tejón (Meles meles) en la Península Ibérica: comparación con otras localidades de su área de distribución natural. En: Virgós, E., Revilla, E., Mangas, J.G. & DomingoRoura X. (Editores). Ecología y conservación del tejón en ecosistemas mediterráneos. Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM), Málaga, 67-80 p. Virgós, E., Revilla, E., Mangas, J.G., Domingo-Roura, X. (Editores). (2005b). Introducción. Ecología y conservación del tejón en ecosistemas mediterráneos. Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM), Málaga, 9-12 p. Virgós, E. & Revilla, E. (2005). Métodos de estudio de la abundancia del Tejón (Meles meles). En: Virgós, E., Revilla, E., Mangas, J.G. & DomingoRoura X. (Editores). Ecología y conservación del tejón en ecosistemas mediterráneos. Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM), Málaga, 51-65 p. Vitousek, P.M. (1994). Beyond Global warming: Ecology and Global Change. Ecology, 75:1861-1876. 154 REFERENCIAS Wang, T., Ye, X., Skidmore, A.K. & Toxopeus, A.G. (2010). Characterizing the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscape. Journal of Biogeography 37:865-878. Warren, D.L., Glor, R.E. & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62:2868-2883. Warren, D.L., Glor, R.E. & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33:607611. Warren, D.L. & Seifert, S.N. (2011). Ecological niche modeling with Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2):335-342. Wiegand, T., Naves, J., Garbulsky, M.F. & Fernández, N. (2008). Animal habitat quality and ecosystem functioning: exploring seasonal patterns using NDVI. Ecological Monographs, 78(1):87-103. Wilesmith, J.W. (1983). Epidemiological features of bovine tuberculosis in cattle herds in Great Britain. Journal of Hygiene, 90:159-176. Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, C.R. & Stewart, A.M. (2003). Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography, 16(3):120-127. Willems, E.P., Barton, R.A. & Hill, R.A. (2009). Remotely sensed productivity, regional home range selection, and local range use by an omnivorous primate. Behavioral Ecology, 20:985-992. 155 REFERENCIAS Wilson, D.S. & Yoshimura, J. (1994). On the coexistence of specialist and generalist. The American Naturalist, 144(4):692-707. Wood, S.N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1):3-36. Woodroffe, R. & Macdonald, D.W. (1993). Badger sociality: models of spatial grouping. Symposium of the Zoological Society of London, 65:145169. Woodroffe, R. (1995). Body condition affects implantation date in the European badger, Meles meles. Journal of Zoology, 236:183-188. Woodroffe, R. & Macdonald, D.W. (1995). Female/female competition in European badgers Meles meles: effects on breeding success. Journal of Animal Ecology, 64:12-20. Woodroffe, R. & Macdonald, D.W. (2000). Helpers provide no detectable benefits in the European badger (Meles meles). Journal of Zoology, 250:113-119. Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Grant, E.C. & Veranet, S. (2012). Presence-only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 4(3):236-243. Yates, C.J., McNeill, A., Elith, J. & Midgley, G. (2010). Assessing the impacts of climate change and land transformation on Banksia in the South West Australian Floristic Region. Diversity and Distribution, 16:187201. 156 REFERENCIAS Zaccarelli, N., Li, B.L., Petrosillo, I. & Zurlini, G. (2013). Order and disorder in ecological time-series: Introducing normalized spectral entropy. Ecological Indicators, 28:22-30. Zamora, J., Verdú, J.R. & Galante, E. (2007). Species richness in Mediterranean agroecosystems: spatial and temporal analysis for biodiversity conservation. Biological Conservation, 134(1):113-121. 157 ANEXOS Resultado 4.1: Modeling Spatial Distribution of European Badger in Arid Landscapes: an Ecosystem Functioning Approach ANEXOS Resultado 4.1: Modeling Spatial Distribution of European Badger in Arid Landscapes: an Ecosystem Functioning Approach Appendix A Table A.1. Moran´s Index for the environmental variables. Variable Short name Moran´s I Z score p-value Mean slope SLO 0.015 2.268 0.02 Annual Mean Rainfall MRAIN 0.103 10.059 0 temperatures MMT 0.227 21.103 0 Area of scattered scrub SSCRUB 0.065 6.807 0 Area of dense scrub SDCRUB 0.004 1.711 0.086 Area of woody crop SWCROP -0.02 -0.958 0.337 Area of arable crop SACROP -0.004 1.404 0.16 Area of mixed crop SMICROP 0.013 2.756 0.005 Area of mosaic crop SMOCROP -0.006 0.371 0.709 EVI annual mean EVIMEAN 0.024 3.165 0.001 Standard deviation of EVI annual mean EVISTD 0.279 25.706 0 mean EVICV 0.161 15.386 0 EVI autumn mean AEVI 0.059 6.285 0 EVI spring mean SEVI 0.031 3.731 0 EVI annual mean of scattered scrub SSCEVI -0.022 -1.283 0.199 EVI annual mean of dense scrub DSCEVI -0.014 -0.635 0.525 EVI annual mean of woody crop WCEVI -0.018 -0.715 0.474 EVI annual mean of arable crop ACEVI -0.005 0.499 0.617 EVI annual mean of mixed crop MICEVI 0.027 3.53 0 EVI annual mean of mosaic crop MOCEVI -0.015 -0.509 0.61 Mean value of the maximum Coefficient of variation of EVI annual 158 ANEXOS Resultado 4.1: Modeling Spatial Distribution of European Badger in Arid Landscapes: an Ecosystem Functioning Approach Appendix B Table B.1. Environmental variables used for spatial distribution modeling. Spatial Variable Layer type resolution (m) Mean slopea Annual Mean Rainfall a Mean value of the maximum temperatures EVI annual mean b EVI autumn mean EVI spring mean a Raster 20 Raster 100 Raster 100 Temporal resolution 2005 1961-1990 Raster b Raster b Raster Coefficient of variation of EVI annual mean Standard deviation of EVI annual mean b EVI annual mean of scattered scruba,b b Raster Raster Raster a,b Raster EVI annual mean of woody cropa,b Raster a,b Raster EVI annual mean of mixed cropa,b Raster EVI annual mean of dense scrub EVI annual mean of arable crop EVI annual mean of mosaic crop Area of scattered scrub a,b Vector Vector a Vector Area of mixed cropa Vector Area of mosaic crop 250 Vector a Area of arable crop 16-days Raster a Area of dense scruba Area of woody crop 250 a 250 2007 Vector a Source data: Environmental Infomation Network of Andalusia; bMODIS sensor 159 ANEXOS Resultado 4.1: Modeling Spatial Distribution of European Badger in Arid Landscapes: an Ecosystem Functioning Approach Appendix C Figure C.1. Occurrence of the European badger in the study area. We emphasize that badger presence is mainly associated with cultivated landscapes. 160 ANEXOS Resultado 4.1: Modeling Spatial Distribution of European Badger in Arid Landscapes: an Ecosystem Functioning Approach Appendix D Figure D.1. The response curves show the contribution of each environmental variable separately in the ALL model to the MaxEnt raw prediction. The MaxEnt prediction may be seen as the suitable habitat predicted by each pixel cell (Elith et al., 2011), so maximum values correspond to the highest predicted suitability for European badger. 161 ANEXOS Resultado 4.1: Modeling Spatial Distribution of European Badger in Arid Landscapes: an Ecosystem Functioning Approach Appendix E 162 Figure E.1. Spatial distribution for European badger predicted by the best models from each combination of variables. It is important to note here that suitability represented in the figures below was estimated under the assumption that the probability of presence under average conditions was 0.5. ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes Appendix F R code to estimate the F´s distribution from ANOVA analysis by bootstrap resampling technique. #NOTE: This script is modified from the William B. King´s script in R #tutorials (http://ww2.coastal.edu/kingw/statistics/Rtutorials/resample.html) to carry out #a two-way ANOVA model with interactions. #This example estimates the F´s distribution for the effects of #landscape and season factors on the fruit relative volume. ################################################# ##################### #we estimate the mean values in each level meanblocks = with(scatsVRcomplet, tapply(fruits_v,fruits_season:fruits_landsca,mean ,na.rm=T)) #we center all the groups on the same mean (zero), but we leave the variance and shape of the individual group distributions undisturbed grpA = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="autumn"&scatsVRcomplet$fr uits_landsca=="Forestry"] - meanblocks[1])) grpB = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="autumn"&scatsVRcomplet$fr uits_landsca=="Maquia"] - meanblocks[2])) grpC = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="autumn"&scatsVRcomplet$fr uits_landsca=="Xeric_shrubland"] meanblocks[3])) 163 ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes grpD = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="spring"&scatsVRcomplet$fr uits_landsca=="Forestry"] - meanblocks[4])) grpE = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="spring"&scatsVRcomplet$fr uits_landsca=="Maquia"] - meanblocks[5])) grpF = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="spring"&scatsVRcomplet$fr uits_landsca=="Xeric_shrubland"] meanblocks[6])) grpG = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="summer"&scatsVRcomplet$fr uits_landsca=="Forestry"] - meanblocks[7])) grpH = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="summer"&scatsVRcomplet$fr uits_landsca=="Maquia"] - meanblocks[8])) grpI = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="summer"&scatsVRcomplet$fr uits_landsca=="Xeric_shrubland"] meanblocks[9])) grpJ = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="winter"&scatsVRcomplet$fr uits_landsca=="Forestry"] - meanblocks[10])) grpK = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="winter"&scatsVRcomplet$fr uits_landsca=="Maquia"] - meanblocks[11])) grpL = as.vector(na.omit(scatsVRcomplet$fruits_v[scatsVR complet$fruits_season=="winter"&scatsVRcomplet$fr uits_landsca=="Xeric_shrubland"] meanblocks[12])) season = scatsVRcomplet[!is.na(scatsVRcomplet$fruits_v),2] 164 ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes landscape= scatsVRcomplet[!is.na(scatsVRcomplet$fruits_v),3] #number of replicates for bootstrap R = 10000 Fstar = numeric(R) Fstar1 = numeric(R) Fstar2 = numeric(R) for (i in 1:R) {#loop for the replicates groupA = sample(grpA, size=length(grpA), replace=T) groupB = sample(grpB, size=length(grpB), replace=T) groupC = sample(grpC, size=length(grpC), replace=T) groupD = sample(grpD, size=length(grpD), replace=T) groupE = sample(grpE, size=length(grpE), replace=T) groupF = sample(grpF, size=length(grpF), replace=T) groupG = sample(grpF, size=length(grpG), replace=T) groupH = sample(grpF, size=length(grpH), replace=T) groupI = sample(grpF, size=length(grpI), replace=T) groupJ = sample(grpF, size=length(grpJ), replace=T) groupK = sample(grpF, size=length(grpK), replace=T) groupL = sample(grpF, size=length(grpL), replace=T) 165 ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes simfacto = c(groupA,groupB,groupC,groupD,groupE,groupF,group G,groupH,groupI,groupJ,groupK,groupL) simdata = data.frame(simfacto,season,landscape) Fstar[i] <summary(aov(simfacto~season*landscape, data=simdata))[[1]]$F[1] Fstar1[i]<summary(aov(simfacto~season*landscape, data=simdata))[[1]]$F[2] Fstar2[i]<summary(aov(simfacto~season*landscape, data=simdata))[[1]]$F[3] } #Fstar: F´s distribution for the season effect #Fstar1: F´s distribution for the landscape effect #Fstar2: F´s distribution for the interaction effect resampling<matrix(c(Fstar,Fstar1,Fstar2),nrow=10000,ncol=3) #critical value for the probability 0.95, with corresponding freedom #degrees but assuming normality. qf(.95,df1,df2)#df1: freedom degrees of the factor; df2: freedom #degrees of the residuals #critical value for the probability 0.95, with corresponding freedom #degrees but no assuming normality. quantile(Fstar,.95) #this script must be run for the relative volume of vertebrates and invertebrates. 166 ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes The results are shown in the Table F.1. For the two-way ANOVA analysis with season and landscape as fixed factors and the relative volume of the wide categories as the response variable, no effect varied its signification by applying the bootstrap resampling. Table F.1. Critical values for 0.95 probabilities. With * no assuming normality, without * assuming normality. Relative volume Effect F Critical value *Critical value Fruits Season 4.04 2.646 2.62 Landscape 13.3 3.037 2.901 Season x Landscape 1.22 2.14 2.059 Season 2.07 2.76 2.26 Landscape 5.56 3.153 3.05 Season x Landscape 1.36 2.256 1.819 Season 2.85 2.53 2.645 Landscape 11.61 3.036 3.058 2.091 2.139 Vertebrates Invertebrates Season x Landscape 1.96 167 ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes Appendix G Food consumption by fine categories. Table G.1. Seasonal composition of the diet considering frequency of occurrence (FO) and mean relative volume (RV) for each fine category in maquia. Maquia Summer n=6 Autumn n=12 Winter n=25 Spring n=11 Fruits Fruits Fruits Fruits FO Olea europaea 50.0 Chamaerops humilis RV FO 18.3 Chamaerops humilis 33.3 33.3 5.0 Ceratonia siliqua Ceratonia siliqua 66.6 30.0 Vitis sp. 33.3 Ficus carica 33.3 RV FO FO RV 52.8 Olea europaea 18.1 58.0 16.0 47.5 Ceratonia siliqua 63.6 32.0 Ceratonia siliqua 28.0 96.4 Citrus sp. 18.1 63.0 Citrus sp. 8.0 60.0 FO RV 35.0 Chamaerops humilis 28.0 58.3 82.0 Olea europaea Ficus carica 33.3 52.0 47.5 Olea europaea 25.0 10.0 35.0 Vitis sp. 16.6 38.0 Vertebrates Vertebrates FO RV Birds 16.6 20.0 Eggs 33.0 15.0 Invertebrates Rodentia Vertebrates FO RV 16.6 45.0 Invertebrates FO RV Orthoptera 33.3 4.0 Coleoptera 100.0 Buthus occitanus Isopoda RV Vertebrates FO RV Rodentia 40.0 82.5 Rodentia 54.5 70.0 Rabbits 8.0 42.5 Sauria 18.1 45.0 FO RV Invertebrates FO RV Orthoptera 16.6 19.0 25.3 Gastropoda 16.6 16.6 10.0 Coleoptera 50.0 4.3 Invertebrates FO RV Coleoptera 12.0 11.6 Orthoptera 18.1 13.0 4.0 Buthus occitanus 4.0 10.0 Gastropoda 27.2 6.0 25.0 10.0 Lumbricus sp. 8.0 90.0 Others 9.0 84.0 Isopoda 25.0 7.0 Orthoptera 4.0 10.0 Buthus occitanus 16.6 5.5 168 ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes Table G.2. Seasonal composition of the diet considering frequency of occurrence (FO) and mean relative volume (RV) for each fine category in xeric shrubland. Xeric shrubland Summer n=26 Autumn n=15 Winter n=44 Spring n=55 Fruits Fruits Fruits Fruits FO RV FO RV FO RV Opuntia sp. 15.4 45.0 Olea europaea 6.6 2.0 Malus domestica 26.9 51.4 Ceratonia siliqua 6.6 Ficus carica 73.0 78.4 Ficus carica 93.3 Vitis sp. 11.5 Ceratonia siliqua Other vegetals Ceratonia siliqua 4.5 98.0 96.0 Citrus sp. 84.0 94.0 Others 46.6 7.6 5.0 15.3 27.2 Vertebrates Vertebrates FO RV Citrus sp. 67.2 83.6 80.0 Others 3.6 95.0 11.3 57.0 Prunus armeniaca 21.8 44.3 Phoenix dactylifera 2.2 15.0 Eriobotrya japonica 1.8 5.0 Annona cherimola 2.2 5.0 Vertebrates Vertebrates FO RV FO RV FO RV FO RV Rodentia 3.8 20.0 Birds 6.6 10.0 Rodentia 15.9 49.0 Rodentia 9.0 22.0 Anura 3.8 100.0 Rodentia 6.6 30.0 Sauria 2.2 10.0 Rabbits 1.8 35.0 Rabbits 7.6 87.5 Birds 4.5 20.0 Birds 5.4 31.6 Sauria 5.4 13.3 FO RV Invertebrates Invertebrates FO RV Orthoptera 15.4 6.2 Buthus occitanus 7.6 Isopoda Invertebrates FO RV Gastropoda 6.6 2.0 7.5 Coleoptera 20.0 3.8 5.0 Orthoptera 20.0 Coleoptera 15.4 Hymenoptera Arachnida Invertebrates FO RV Orthoptera 25.0 18.0 Orthoptera 54.5 38.0 5.0 Hymenoptera 4.5 30.0 Coleoptera 32.7 19.4 8.3 Lumbricus sp. 6.8 30.0 Lumbricus sp. 1.8 60.0 8.0 Coleoptera 18.1 8.1 Hymenoptera 3.6 7.5 7.6 4.0 Others 4.5 10.0 Others 1.8 10.0 3.8 10.0 Odonata 1.8 15.0 Gastropoda 1.8 30.0 169 ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes Table G.3. Seasonal composition of the diet considering frequency of occurrence (FO) and mean relative volume (RV) for each fine category in forestry. (c) Forestry Summer n=12 Autumn n=10 Winter n=15 Spring n=21 Fruits Fruits Fruits Fruits FO VR Juglans regia 8.3 70.0 Morus sp. 33.3 50.0 Vertebrates FO VR Morus sp. 20.0 90.0 Ficus carica 30.0 60.0 Prunus dulcis 20.0 50.0 Other vegetals 30.0 20.0 Vertebrates FO VR Rodentia 8.3 30.0 Eggs 8.0 30.0 Invertebrates VR Orthoptera 25.0 28.3 Isopoda 16.6 Hymenoptera VR Others 33.3 80.0 Castanea sativa 6.6 5.0 Vertebrates FO VR Rodentia 20.0 30.0 Sauria 10.0 20.0 Invertebrates FO FO VR Orthoptera 10.0 10.0 5.0 Hymenoptera 60.0 41.6 27.8 Caterpillars Buthus occitanus 50.0 35.8 Diptera 25.0 11.6 Coleoptera 58.3 52.8 VR 4.7 50.0 FO VR Vertebrates FO VR Rodentia 20.0 53.3 Rabbits 9.5 100.0 Sauria 6.6 85.0 Rodentia 14.2 46.6 Birds 4.7 10.0 Sauria 28.5 46.6 FO VR Invertebrates FO Prunus dulcis FO Invertebrates FO VR Orthoptera 53.3 11.8 Hymenoptera 57.1 33.3 54.0 Hymenoptera 20.0 16.6 Buthus occitanus 4.7 5.0 10.0 10.0 Lumbricus sp 53.3 81.8 Coleoptera 28.5 25.8 Buthus occitanus 10.0 50.0 Coleoptera 13.3 17.5 Caterpillars 66.6 44.1 Coleoptera 10.0 5.0 Others 6.6 15.0 Lumbricus sp 9.5 61.0 170 ANEXOS Resultado 4.2: Feeding Habits of European Badger (Meles meles) in Mediterranean Arid Landscapes Appendix H Table H.1. Dissimilarity matrix based on the Bray-Curtis distance (dij). Sum MQ Aut MQ Aut Win Spr Sum XS Aut Win Spr Sum F Aut Win 0.321 Win 0.471 0.262 Spr 0.330 0.177 0.167 XS Sum 0.459 0.165 0.111 0.162 Aut 0.384 0.296 0.358 0.437 0.317 Win 0.351 0.170 0.190 0.231 0.216 0.184 Spr 0.334 0.291 0.206 0.324 0.321 0.171 0.108 F Sum 0.297 0.198 0.203 0.241 0.303 0.312 0.183 0.126 Aut 0.350 0.274 0.183 0.308 0.306 0.257 0.162 0.085 0.084 Win 0.448 0.235 0.058 0.159 0.165 0.335 0.163 0.179 0.175 0.123 Spr 0.366 0.149 0.133 0.125 0.217 0.398 0.203 0.222 0.109 0.173 0.098 MQ: maquia; XS: xeric shrubland; F: forestry; Sum: summer; Aut: autumn, Win: winter; Spr: spring. 171 ANEXOS Resultado 4.3: Modeling and monitoring habitat quality from space: the European badger Resultado 4.3: Modeling and Monitoring Habitat Quality from Space: the European Badger Appendix I Weighting the species records to deal with the sample selection bias. Due to the species records used in the study derived from different datasets, some sites may be more poorly sampled than other. Phillips et al. (2009) named this bias as sample selection bias and highlighted that it can severely impact model quality. To consider this problem, we followed the strategy used in Elith et al. (2010). These authors noted that without records on survey effort we cannot distinguish between areas that are environmentally unsuitable and those that are under-sampled. Thus, we upweighted records with few neighbours in geographic space, to give them prominence. In this form, we projected the species records into World Geodetic System (revision WGS 84) and calculated the number of records in each 3 x 3 km grid divided by the area of grid cell (i.e., 9 km 2) (to avoid edge effects at study area borders and coast). Then, we added one to all values to avoid zero weights and therefore all pixels can be chosen as background in MaxEnt algorithm. The result was a grid file with high weights in densely sampled plots and low in sparsely sampled plots (Fig. I.1), and it was used as bias grid in MaxEnt (see online help in MaxEnt software). 172 ANEXOS Resultado 4.3: Modeling and monitoring habitat quality from space: the European badger Figure I.1. Bias map used to run MaxEnt. 173 ANEXOS Resultado 4.3: Modeling and monitoring habitat quality from space: the European badger Appendix J Methods to predict the EVI variables into future conditions using the climate variables. To predict the EVIMEAN (surrogate of primary production) and EVICV (indicator of seasonality) variables onto future scenarios (i.e., A2 and B1), we estimated a first Generalized Additive Model (GAM) (Hastie & Tibshirani, 1990) using EVIMEAN as response variable and only PREC as explanatory variable, and then, a second GAM where we used EVICV as response and PREC and TMEDMAX as explanatory variables. All these variables were incorporated for current conditions. Finally, we used the projected values of PREC and TMEDMAX variables onto future scenarios to run the models and predict future values of both EVI variables. GAM models were run in R, v. 3.0.3 (R Development Core Team, 2014) using the “mgcv” library, v. 1.7-27 (Wood, 2011). In GAMs each predictor is included in the model as a non-parametric smoothing function allowing to fit nonlinear relationships between response and predictors. We specified the error distribution of the response as Gaussian and the link function as identity. We trained the models on all cells from the study region. The optimal amount of smoothing was automatically determined by a cross-validation process (Wood, 2011). Parameters and predictor effects of the GAMs for EVIMEAN and EVICV variables are shown in the Table J.1 and Fig. J.1 respectively. 174 ANEXOS Resultado 4.3: Modeling and monitoring habitat quality from space: the European badger Table J.1. Summary of the GAMs for EVIMEAN and EVICV variables. EVIMEAN generalized additive model Predictor edf F s(PREC) 8.99 9579 p-value Deviance explained < 0.0001 12.1% EVICV generalized additive model Predictor edf F p-value s(PREC) 8.99 753.2 < 0.0001 s(TMEDMAX) 8.99 12213.2 < 0.0001 Deviance explained 17.6% s(): smoothing function; edf: effective degrees of freedom (see the manual of “mgcv” R package for explanation). Figure J.1. Estimated smoothing curves of the GAMs for EVIMEAN and EVICV variables in the study region. The x-axes show the values of the predictors (i.e., (a) precipitation; (b) precipitation and temperature) and the y-axes the contribution of the smoother to the fitted values. The solid lines are the smoother and the dotted lines 95% confidence bands. 175