Course Notebook - The University of Tulsa
Transcription
Course Notebook - The University of Tulsa
ME 3212: Mechanisms Course Notebook Instructor: Jeremy S. Daily, Ph.D., P.E. Fall 2012 Contents 1. Syllabus 1.1. Course Bulletin Description . . . . . . . . . 1.2. Objectives . . . . . . . . . . . . . . . . . . . 1.3. Course Outline . . . . . . . . . . . . . . . . 1.4. Course Policies . . . . . . . . . . . . . . . . 1.4.1. Text Books . . . . . . . . . . . . . . 1.4.2. Grading Procedures . . . . . . . . . . 1.4.3. Exam Policy . . . . . . . . . . . . . 1.4.4. Computer Usage . . . . . . . . . . . 1.4.5. Late Submission and Absences . . . . 1.4.6. Class Conduct . . . . . . . . . . . . 1.4.7. Academic Misconduct . . . . . . . . 1.4.8. Center for Student Academic Support 2. Introduction To Mechanisms 2.1. Mechanisms Vocabulary . . . . . . . . 2.2. Common Mechanisms . . . . . . . . . 2.3. Kinematic Pairs (a.k.a. Joints) . . . . . 2.3.1. Low Order Pairs . . . . . . . . 2.3.2. High Order Pairs . . . . . . . . 2.4. Degrees of Freedom . . . . . . . . . . . 2.4.1. Mobility . . . . . . . . . . . . 2.4.2. Kutzbach Criteria . . . . . . . . 2.5. Grashof’s Law for Four-bar Mechanisms 2.5.1. Special Cases . . . . . . . . . . 2.5.2. Inversions . . . . . . . . . . . . 2.6. Homework Problem Set 1 . . . . . . . . . . . . . . . . . . . . 3. Position Analysis 3.1. Loop Closure Equations . . . . . . . . . 3.1.1. Derivation of the Law of Cosines 3.1.2. Derivation of the Law of Sines . . 3.1.3. Inverted Slider Crank . . . . . . . 3.1.4. Offset Slider Crank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 6 7 7 7 7 8 8 8 8 9 9 . . . . . . . . . . . . 10 10 11 12 12 13 14 14 14 16 16 17 18 . . . . . 20 20 21 22 23 28 Contents 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3 3.1.5. Four Bar Mechanism . . . . . . . . . . 3.1.5.1. Open Closure . . . . . . . . 3.1.5.2. Cross Closure . . . . . . . . Coupler Curves . . . . . . . . . . . . . . . . . 3.2.1. Matlab Implementation . . . . . . . . . 3.2.2. Excel Implementation . . . . . . . . . 3.2.2.1. Standard Algebraic Solution . 3.2.2.2. Use Excel Solver . . . . . . 3.2.2.3. SolidWorks Implementation . Homework Problem Set 2 . . . . . . . . . . . . Newton-Raphson Method . . . . . . . . . . . . 3.4.1. Rocking Slider Crank . . . . . . . . . . Homework Problem Set 3 . . . . . . . . . . . . Multi Loop Mechanisms . . . . . . . . . . . . Toggle and Limit Positions . . . . . . . . . . . Transmission Angle . . . . . . . . . . . . . . . Homework Problem Set 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 30 31 32 33 35 36 37 43 44 46 46 51 55 56 57 58 4. Mechanism Synthesis 59 4.1. Geometric Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2. Homework Problem Set 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5. Velocity Analysis 5.1. Vector Operations . . . . . . . . . . . . . 5.1.1. Dot Product . . . . . . . . . . . . 5.1.2. Cross Product . . . . . . . . . . . 5.1.3. Derivatives of Vector Products . . 5.2. Velocity with a Rotating Reference Frame 5.3. Graphical Analysis . . . . . . . . . . . . 5.3.1. Inverted Slider Crank . . . . . . . 5.3.2. Four-Bar Mechanism . . . . . . . 5.4. Analytical Analysis . . . . . . . . . . . . 5.4.1. Inverted Slider Crank . . . . . . . 5.4.2. Four Bar Mechanism . . . . . . . 5.5. Homework Problem Set 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 75 75 75 75 76 78 78 79 82 83 87 90 6. Acceleration Analysis 93 6.1. Accelerations in Four-bar Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 93 6.2. Inverted Slider Crank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.3. Homework Problem Set 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Contents 7. Cams 7.1. Types of Cam Followers . . . . . . . . . . 7.1.1. Flat Faced Radial . . . . . . . . . . 7.1.2. Offset Roller Follower . . . . . . . 7.1.3. Barrel Cam with Roller Follower . . 7.1.4. Heavy Truck Brake Cams (S-Cams) 7.2. Cam Follower Motion . . . . . . . . . . . . 7.2.1. Displacement . . . . . . . . . . . . 7.2.2. Velocity . . . . . . . . . . . . . . . 7.2.3. Acceleration . . . . . . . . . . . . 7.2.4. Jerk . . . . . . . . . . . . . . . . . 7.3. Cam Follower Profiles . . . . . . . . . . . 7.3.1. Constant Acceleration (Parabolic) . 7.3.2. Harmonic Motion . . . . . . . . . . 7.3.3. Cycloidal Motion . . . . . . . . . . 7.4. Cam Design . . . . . . . . . . . . . . . . . 7.5. Homework Problem Set 8 . . . . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8. Gears 8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1. Cog and Lantern Gears . . . . . . . . . . . . . . . 8.1.2. Common Types of Gears . . . . . . . . . . . . . . 8.2. Fundamental Law of Gearing . . . . . . . . . . . . . . . . 8.3. Conjugate Profiles and Involutometry . . . . . . . . . . . 8.3.1. The Involute Curve . . . . . . . . . . . . . . . . . 8.3.2. Cycloidal Profiles . . . . . . . . . . . . . . . . . . 8.3.3. Gear Sizing and Terminology . . . . . . . . . . . 8.4. Homework Problem Set 9 . . . . . . . . . . . . . . . . . . 8.5. Gear Train Analysis . . . . . . . . . . . . . . . . . . . . . 8.5.1. Taxonomy of gear trains: . . . . . . . . . . . . . . 8.5.2. Gear Train Ratio . . . . . . . . . . . . . . . . . . 8.5.3. Idler Gears . . . . . . . . . . . . . . . . . . . . . 8.5.4. Compound Gear Trains . . . . . . . . . . . . . . . 8.6. Homework Problem Set 10 . . . . . . . . . . . . . . . . . 8.7. Reverted Gear Train Design . . . . . . . . . . . . . . . . 8.7.1. Design Considerations . . . . . . . . . . . . . . . 8.8. Planetary Gear Trains . . . . . . . . . . . . . . . . . . . . 8.8.1. Advantages . . . . . . . . . . . . . . . . . . . . . 8.8.2. Vector Approach to Planetary Gear Train Analysis 8.8.3. Tabular Planetary Gear Train Analysis . . . . . . . 8.8.4. Compound Planetary Gear Trains . . . . . . . . . 8.8.5. Plotting Planetary Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 100 100 101 101 102 102 102 102 102 102 103 103 106 109 112 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 . 124 . 124 . 125 . 126 . 126 . 127 . 127 . 127 . 129 . 130 . 130 . 131 . 131 . 131 . 132 . 133 . 133 . 134 . 134 . 134 . 136 . 138 . 140 Contents 5 8.9. Differential Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.9.1. Ackerman Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 A. Mechanisms Design Project A.1. Project Proposal . . . . . . . . . . . A.2. Hand Sketches . . . . . . . . . . . A.3. Geometric Constraint Programming A.4. SolidWorks Parts and Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 . 145 . 145 . 146 . 146 1. Syllabus Instructor: Dr. Jeremy S. Daily • E-mail: jeremy-daily@utulsa.edu Phone: 918-631-3056 Office: 2080 Stephenson Office Hours: Tuesday and Thursday 9:30 - 12:00. Otherwise, drop in or schedule an appointment. Classroom: U4 Days: Tuesday and Thursday Time: 12:30 - 1:20 PM This course notebook is required for the course and costs $20. It includes a 3-ring binder. While the pages in here are designed to help you take notes, additional writing space will be required. Therefore, loose-leaf paper is recommended to augment the notebook. This notebook can also be accessed (but not printed) in electronic format at http://personal.utulsa.edu/~jeremy-daily/ME3212/MechanismsCourseNotebook. pdf 1.1. Course Bulletin Description Displacement, velocity and acceleration analysis of linkages, cams, and gear trains. An introduction to synthesis. Computer simulation and design of planar mechanisms using modern engineering software culminating in a design project. Prerequisites: ES 2023 (Dynamics). This required two-credit hour course is offered once a year, typically at the beginning (fall semester) of the junior year. 1.2. Objectives This section of the syllabus is designed to give the student a larger picture of the purpose of this class. This course is designed to provide the students the analytical skill necessary for 1.3. Course Outline analyzing mechanism motion analysis. In addition to analysis, student will learn mechanism synthesis using geometric constraint programming techniques. It is important for the student to learn to use modern computer tools to aid in mechanism design and analysis. The familiarity with rigid body analysis in modern computer analysis programs will give students a competitive advantage in the current marketplace. The course covers position, velocity, and acceleration analysis of planar linkages and slider crank mechanisms. Grashof’s laws, Kutzbach criterion, and the Newton-Raphson method. Cam profiles and cam follower motion is studied along with gears and gearing including epicyclic gear trains. 1.3. Course Outline The following is a dynamically updated schedule for the class. It is a shared Google calendar http://www.google.com/calendar (Search for ME 3212) and can be integrated into your own personal calendaring system. While the calendar can be updated and changed as the course goes on, the schedule will remain fairly rigid during the semester. All changes and details concerning specific events and items on the schedule will be updated through the Google calendar for this course. The calendar ID is ge5k33qntvmv453ct92ti5c0c4@group.calendar.google.com 1.4. Course Policies 1.4.1. Text Books In addition to this course notebook the following books are useful. Required: Mechanics of Machines by W. L. Cleghorn, Oxford University Press, 2005, ISBN 0195154525 Reference: Theory of Machines and Mechanisms, 3rd Edition by J.J. Uicker, G.R. Pennock, and J.E. Shigley, Oxford University Press, ISBN 019515598 Other Resources: http://kmoddl.library.cornell.edu/index.php 1.4.2. Grading Procedures The following table gives the weights of the different aspects of the graded material for this class: Homework: 10% Design Project: 30% 7 1.4. Course Policies Exam 1: 20% Exam 2: 20% Final Exam: 30% 90-100 = A, 80-89 = B, 70-79 = C, 60-69 = D, < 60 = F The instructor reserves the right to lower the minimum requirements for each letter grade. Grades will be kept on WebCT and will be updated on a regular basis. 1.4.3. Exam Policy Exams are open book and open notes; closed computer. 1.4.4. Computer Usage Matlab and other specialty software will be used for labs and homework for data analysis and plotting. These programs are available in the undergraduate computer lab. SolidWorks and Ansys should be available in the computer labs as well. SolidWorks is available to all ME students for installation on there personal computer. The media is available under the TU shared space at S:\ENS\Mechanical Engineering\SolidWorks. 1.4.5. Late Submission and Absences Late submission of homework will receive no score. Late computer projects will receive no score. Exams have mandatory attendance. Make-up exams will be offered only under very exceptional circumstances provided prior permission from the instructor is obtained. Neatness and clarity of presentation will be given due consideration while grading homework, computer projects, and exams. 1.4.6. Class Conduct Please do whatever necessary to maintain a friendly, pleasant and business-like environment so that it will be a positive learning experience for everyone. Please turn off all cell phone ringers or any other device that could spontaneously make noise. 8 1.4. Course Policies 1.4.7. Academic Misconduct All students are expected to practice and display a high level of personal and professional integrity. During examinations each student should conduct himself in a way that avoids even the appearance of cheating. Any homework or computer problem must be entirely the student’s own work. Consultation with other students is acceptable; however, copying homework from one another will be considered academic misconduct. Any academic misconduct will be dealt with under the policies of the College of Engineering and Natural Sciences. This could mean a failing grade and/or dismissal. The policy of the University regarding withdrawals and incompletes will be strictly adhered to. 1.4.8. Center for Student Academic Support Students with disabilities should contact the Center for Student Academic Support to self-identify their needs in order to facilitate their rights under the Americans with Disabilities Act. The center for Student Academic Support is located in Lorton Hall, Room 210. All students are encouraged to familiarize themselves with and take advantage of services provided by the Center for Student Academic Support such as tutoring, academic counseling, and developing study skills. The Center for Student Academic Support provides confidential consultations to any student with academic concerns as well as to students with disabilities. 9 M E 3 2 1 2 : M e c h a n i s m s, US Holidays Tue Aug 21, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Aug 23, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Tue Aug 28, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Aug 30, 2012 All day HW 1 Due Thu Aug 30, 2012 - Fri Aug 31, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Mon Sep 3, 2012 All day Labor Day Mon Sep 3, 2012 - Tue Sep 4, 2012 C a l e n d a r : US Holidays Tue Sep 4, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Sep 6, 2012 All day HW 2 Due Thu Sep 6, 2012 - Fri Sep 7, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Computer Lecture W h e r e : KEP L1 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com M E 3 2 1 2 : M e c h a n i s m s, US Holidays Tue Sep 11, 2012 All day Patriot Day Tue Sep 11, 2012 - Wed Sep 12, 2012 C a l e n d a r : US Holidays 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Sep 13, 2012 All day HW 3 Due Thu Sep 13, 2012 - Fri Sep 14, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Tue Sep 18, 2012 All day Project Proposal Due Tue Sep 18, 2012 - Wed Sep 19, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Sep 20, 2012 All day HW 4 Due Thu Sep 20, 2012 - Fri Sep 21, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Computer Lecture W h e r e : KEP L1 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Tue Sep 25, 2012 12:30pm - 1:20pm Mechanisms Computer Lecture W h e r e : KEP L1 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com M E 3 2 1 2 : M e c h a n i s m s, US Holidays Thu Sep 27, 2012 12:30pm - 1:20pm Mechanis m s E x a m 1 W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Tue Oct 2, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Oct 4, 2012 All day HW 5 Due Thu Oct 4, 2012 - Fri Oct 5, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Mon Oct 8, 2012 All day Columbus Day Mon Oct 8, 2012 - Tue Oct 9, 2012 C a l e n d a r : US Holidays Tue Oct 9, 2012 All day Project Hand Sketches Due Tue Oct 9, 2012 - Wed Oct 10, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Oct 11, 2012 All day HW 6 due Thu Oct 11, 2012 - Fri Oct 12, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com M E 3 2 1 2 : M e c h a n i s m s, US Holidays Tue Oct 16, 2012 All day No Class Tue Oct 16, 2012 - Wed Oct 17, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Project Time W h e r e : KEP L1 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Oct 18, 2012 All day No Class Thu Oct 18, 2012 - Fri Oct 19, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Project Time W h e r e : KEP L1 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Tue Oct 23, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Oct 25, 2012 All day HW 7 Due Thu Oct 25, 2012 - Fri Oct 26, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Tue Oct 30, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Wed Oct 31, 2012 All day Halloween Wed Oct 31, 2012 - Thu Nov 1, 2012 C a l e n d a r : US Holidays M E 3 2 1 2 : M e c h a n i s m s, US Holidays Thu Nov 1, 2012 12:30pm - 1:20pm Mechanis m s E x a m 2 W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Sun Nov 4, 2012 All day Daylight Saving Time Ends Sun Nov 4, 2012 - Mon Nov 5, 2012 C a l e n d a r : US Holidays Tue Nov 6, 2012 All day Election Day Tue Nov 6, 2012 - Wed Nov 7, 2012 C a l e n d a r : US Holidays 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Nov 8, 2012 All day HW 8 Due Thu Nov 8, 2012 - Fri Nov 9, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Sun Nov 11, 2012 All day Veterans Day Sun Nov 11, 2012 - Mon Nov 12, 2012 C a l e n d a r : US Holidays Tue Nov 13, 2012 All day Geometric Constraint Program Due Tue Nov 13, 2012 - Wed Nov 14, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com M E 3 2 1 2 : M e c h a n i s m s, US Holidays Thu Nov 15, 2012 All day HW 9 Due Thu Nov 15, 2012 - Fri Nov 16, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Nov 22, 2012 All day Thanksgiving Thu Nov 22, 2012 - Fri Nov 23, 2012 C a l e n d a r : US Holidays Tue Nov 27, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Thu Nov 29, 2012 12:30pm - 1:20pm Mechanisms Lecture W h e r e : KEP U4 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Fri Nov 30, 2012 All day HW 10 Due Fri Nov 30, 2012 - Sat Dec 1, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Mon Dec 3, 2012 All day Mechanisms Final Design Project Due Mon Dec 3, 2012 - Tue Dec 4, 2012 C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Mon Dec 10, 2012 1pm - 3:25pm Mechanisms Final C a l e n d a r : ME 3212: Mechanisms C r e a t e d b y : jeremydaily@gmail.com Mon Dec 24, 2012 All day Christmas Eve Mon Dec 24, 2012 - Tue Dec 25, 2012 C a l e n d a r : US Holidays 2. Introduction To Mechanisms Mechanisms is a the study of rigid body motion. The concepts in this course are restricted to analyzing the motion and does not consider the cause of motion. In the field of dynamics, there are a few broad categories as shown in Fig. 2.1. Figure 2.1.: Hierarchy of Mechanics 2.1. Mechanisms Vocabulary Fill in the appropriate definitions for the following terms. Kinematics: 2.2. Common Mechanisms Kinetics: Mechanism: Machine: Linkage: Link: Joint: Skeleton Diagram: 2.2. Common Mechanisms • Slider Crank – Example: Air compressor • Four-Bar 11 2.3. Kinematic Pairs (a.k.a. Joints) 12 – Example: Washing Machine Rocker • Belts and Gears – Example: Transmission • Cams – Example: Internal combustion engine valve train 2.3. Kinematic Pairs (a.k.a. Joints) 2.3.1. Low Order Pairs • Spherical (G) – – – – – • Revolute (R) – – – – – • Cylindrical (C) – – • Prismatic (P) – – – See Cleghorn’s Section 1.4 2.3. Kinematic Pairs (a.k.a. Joints) • Helical or Screw (S) – – – • Planar or Flat (F) – – – • Revolute 2 – – 2.3.2. High Order Pairs • Rolling-no slip – – – • Rolling/rotating with slip – Cams, Link against plane ∗ ∗ – Pin-In-Slot ∗ ∗ • Rotating Pairs – Gears, Friction Drives – – 13 2.4. Degrees of Freedom 14 • Wrapping Pairs – Example: Belt on Pulley (sheave) – – 2.4. Degrees of Freedom • The number of inputs needed to get an output. • • For planar links there are: • For spatial links there are: 2.4.1. Mobility Calculating the number of degrees of freedom for a mechanism is determining its mobility. 2.4.2. Kutzbach Criteria The formula to calculate mobility is m = 3(n − 1) − 2 j1 − j2 where n. . . j1 . . . j2 . . . if m ≥ 1, then if m = 0, then if m ≤ −1, then Remember, rolling pairs count as a 2 d.o.f. joint. Example: Consider the planar slider crank mechanism shown in Fig. 2.2a. Determine the mobility using the Kutzbach Criteria. Determine the number of links, the number of single degree of freedom joints, and the number of 2 d.o.f. joints. See Cleghorn’s Section 1.5 2.4. Degrees of Freedom y 15 A θ2 θ3 O2 % B (a) Planar Slider Crank Mechanism % (b) Four-bar slider % % (c) Four-bar linkage Figure 2.2.: Determine the mobility of the mechanisms shown above. x 2.5. Grashof’s Law for Four-bar Mechanisms 16 2.5. Grashof’s Law for Four-bar Mechanisms Grashof’s law is a method to categorize four-bar mechanisms based on the ability for a link to make a complete rotation compared to the other links. In a four-bar mechanism there are four possible link lengths: • s. . . • l. . . • p. . . • q. . . s+l < p+q (2.1) If Eq. 2.1 is satisfied, then If s is the input link, then If s is the frame (base) link, then If s is the coupling link, then Example: Can the shortest link make a full revolution in a four-bar mechanism where s = 4, l = 9, p = 6, and q = 6? 2.5.1. Special Cases Change point mechanism Parallelogram four-bar mechanisms 2.5. Grashof’s Law for Four-bar Mechanisms 17 2.5.2. Inversions • Every mechanism has a “ground” or “base” or “frame” link that is fixed. • • Let’s do an example to find the inversions for a four-bar mechanism where s = 1, l = 8, p = 6, and q = 6 using the grids shown in Fig. 2.3. Check Grashof’s Criteria: 6 6 5 5 4 4 3 3 2 2 1 1 0 0 (a) Crank Rocker (b) Crank Rocker 6 6 5 5 4 4 3 3 2 2 1 1 0 0 (c) Double Crank (d) Double Rocker Figure 2.3.: Inversions of a four-bar mechanism. See Cleghorn’s Section 1.7 2.6. Homework Problem Set 1 2.6. Homework Problem Set 1 1. The link lengths of a planar four-bar linkage are 1, 3, 5, and 5 inches. a) Assemble the links in all possible combinations and sketch (with a ruler and compass on engineering graph paper) the four inversions of each. b) Describe each inversion by name (e.g., crank-rocker, drag-link, rocker-rocker, changepoint) c) Do these linkages follow Grashof’s Law? 2. Book Problem P1.1. 3. Book Problem P1.5. 4. Complete the “Introduction to SolidWorks” Tutorial. The tutorial can be found by accessing the SolidWorks Help Menu. Under the Getting Started Tutorial Category, perform the Introduction to SolidWorks Tutorial. Turn in a print of the drawing you create. 18 2.6. Homework Problem Set 1 Due on: _____________________________ 19 3. Position Analysis The goal of a position analysis is to describe any position of any point in any mechanism configuration. The mechanical engineering skill from learning how to do a position analysis is to learn the following concepts: • Vector analysis • Computer programming and mathematical modeling • Numerical methods for root finding • Develop the skill of abstracting physical objects using mathematics A locus is defined as 3.1. Loop Closure Equations The loop closure equations are fundamental to modeling mechanisms. The vectors that describe the components must add to zero when the links form a loop: n ∑ ~Ri = 0 i=1 where n. . . Consider a loop of three fixed lengths: A, B, and C with angles α , β , and γ . β A C γ α B See Cleghorn Section 4.2 3.1. Loop Closure Equations 21 Let’s define the x-axis to be along length B and the vectors defining the loop to go in a clockwise direction. β A C y γ x α B Breaking these vectors into components gives the following six expressions. Keep in mind all angles are defined from the positive x-axis and are positive when measure in a counterclockwise direction. Ax : Ay : Bx : By : Cx : Cy : Now all the components in the x direction can be summed to zero and all the y components can be summed to zero: x: y: Ax + Bx +Cx = 0 Ay + By +Cy = 0 or x: y: 3.1.1. Derivation of the Law of Cosines In Section 3.1 the concept of the loop closure equations was presented. If two sides, say C and B, are known and the angle between them α is known, then the loop closure equations can be solved for the length of A. The following procedures demonstrate solution techniques for the loop closure equations. 3.1. Loop Closure Equations 22 1. Rewrite each component equation to move the unknown and unneeded angle as a single term on one side: x: y: 2. Square each component equation and add them together. Invoking the relationship sin2 θ + cos2 θ = 1 x: y: Sum: 3. Now the unknown angle γ has been eliminated and only the remaining length A is unknown. Expand the binomial terms: 4. Simplify and solve for A A= p C2 + B2 − 2BC cos α C= q B= q Similarly and A2 + B2 − 2AB cos γ A2 +C2 − 2AC cos β 3.1.2. Derivation of the Law of Sines If only one length is known and two angles are known, then the solution technique of the loop closure equations requires a slightly different approach. This time, an unknown length needs to be eliminated from the loop closure equations. The following procedure will derive the Law of Sines from the loop closure equations. Let’s say we know α , γ and B. If two angles are known in a triangle, then the other is also known because the sum of all the angles must be π radians (180 degrees). 1. Start by arranging the loop closure equations to eliminate C by moving all terms with C on the left hand side. x: y: 3.1. Loop Closure Equations 23 2. Divide the x equation into the y equation: y : x 3. Eliminate the unknown length and cross multiply: 4. Arrange so B sin α is the only term on the left hand side: 5. Recall that β = π − α − γ . Take the sine of both angles and recall a trigonometric identity: sin β sin β sin β sin β = = = = sin(π − α − γ ) sin(π ) cos(α + γ ) − cos(π ) sin(α + γ ) 0 − (−1) sin(α + γ ) sin(α ) cos(γ ) + cos(α ) sin(γ ) 6. Notice the right hand side of the equation matches the term from the loop closure equations. Make the appropriate substitution: B sin α = A sin β This is the law of sines. A similar formulation will give the familiar ratios: sin β sin γ sin α = = A B C (3.1) 3.1.3. Inverted Slider Crank An Inverted Slider-Crank is a mechanism that most used as an actuator. For example, a hydraulic or pneumatic cylinder can be modeled as an Inverted Slider Crank. Fig. shows a photo of an electric linear actuator and how it is modeled as an inverted Slider-Crank. This section describes a simple mechanism to understand the concepts of position analysis. Many texts will label the axis as real and imaginary instead of x and y. Either is valid. See Cleghorn’s Section 4.3.2 3.1. Loop Closure Equations 24 (a) Retracted (b) Extended Figure 3.1.: A pneumatic cylinder is an example of an inverted slider-crank where the stroke and angle can change. D A y r θ3 θ2 %C d %B x Figure 3.2.: Inverted slider crank. Let a be the fixed length from A to C (the crank length). 3.1. Loop Closure Equations What is the mobility of the inverted slider crank in Fig. 3.2? Another way to set up the loop closure equations is to find two different paths to the same point in the mechanism. This formulation may be a little easier depending on how the angles are defined. Consider two different loop closure formulations shown in Fig. 3.3 on the next page. Both formulations describe the same physical system, so they should ultimately produce the same solution. 25 3.1. Loop Closure Equations 26 y ~a ~r θ3 θ2 x d~ (a) ~a +~r + d~ = 0 y ~a ~r θ3 θ2 x d~ (b) ~a = d~ +~r Figure 3.3.: Loop closure formulations for the inverted slider crank shown in Fig. 3.2. 3.1. Loop Closure Equations For the inverted slider crank shown in Fig. 3.2, the following variables are known: a = 0.15 m, d = 0.20 m and θ2 = 35◦ . The goal of the position analysis is to find r and θ3 . 1. Break the vectors into components a) For the loop closure equation from Fig. 3.3a on the preceding page x: y: b) For the loop closure equation from Fig. 3.3b on the previous page x: y: 2. Rearrange the loop closure equations to have all terms of θ3 on one side. Notice that either formulation will give the same results. x: y: 3. Square each equation and add them together to eliminate θ3 : 4. Expand the squared terms: 5. Solve for r: 6. Divide the equations in Step 2 to eliminate r: 7. Compute the arctangent and adjust for the correct quadrant. Use the atan2 function. The above example is also implemented in Mathematica and the Mathematica notebook can be downloaded from http://personal.utulsa.edu/~jeremy-daily/ME3212/InvertedSliderCrank. nb 27 3.1. Loop Closure Equations 3.1.4. Offset Slider Crank Given: r2 = r3 = e= θ2 = Find: θ3 and xB 1. Write the Loop equations: 2. Break into components a) x : b) y : 3. Rearrange y equation to solve for θ3 4. Substitute into x expression and solve for xB Note: For a standard slider crank. . . 28 3.1. Loop Closure Equations 29 3.1.5. Four Bar Mechanism The four bar mechanism is a very versatile device and is the building block for many other mechanisms. A four bar linkage in conjunction with a slider crank is frequently employed in lifting mechanisms and construction equipment. Consider the crank rocker in Fig. 3.4 where r1 = 10 cm, r2 = 4 cm, r3 = 12 cm, r4 = 8 cm, and θ2 = 120◦ . The goal is to find θ3 , θ4 , and the transmission angle. B r3 θ3 r4 A y r2 θ2 %O 2 r1 %O θ4 x 4 Figure 3.4.: Crank rocker four-bar mechanism. 1. Consider the triangles formed by drawing a line from A to O4 and label it s. 2. Use the Law of Cosines (LOC) to determine s 3. Determine β : 4. Solve for ψ using LOC 5. Solve for λ using LOC See Cleghorn’s Section 4.3.3 3.1. Loop Closure Equations 6. Solve for θ3 7. Solve for θ4 8. Determine the transmission angle, γ using LOC. 3.1.5.1. Open Closure 30 3.1. Loop Closure Equations 3.1.5.2. Cross Closure See course website for a Mathematica notebook with the solutions to this example. http://personal.utulsa.edu/~jeremy-daily/ME3212/4barPositions.nb 31 3.2. Coupler Curves 32 3.2. Coupler Curves The goal of a coupler curve analysis is to determine the locus of some arbitrary point P on a mechanism. Physically a mechanism can have many different shapes for a single skeleton diagram. Let’s add onto the example of Section 3.1.4: Point P is. . . Analysis Steps: 1. Write down loop closure equations and solve for θ3 . 2. Write the equations for the vector describing point P. See Cleghorn’s Section 4.2 3.2. Coupler Curves 3.2.1. Matlab Implementation A computer is useful to plot the curves with θ2 as the independent variable. Make sure both axis have the same scale to get the true shape of the coupler curve. Below is some example Matlab code to generate the coupler curve. 1 %ME 3 2 1 2 : Mechanisms %In −c l a s s Example 3 %O f f s e t s l i d e r cr a n k −d i r e c t s o l u t i o n 5 c l c %c l e a r s c r e e n c l e a r a l l %c l e a r memory 7 c l o s e a l l %c l o s e a l l f i g u r e windows 9 %i n p u t known v a l u e s r2 =0.5 11 r 3 = 1 . 2 r4 =1.3 13 e = 0 . 3 15 %d e f i n e t h e t a 2 f r o m 0 t o 360 i n 5 d e g r e e i n c r e m e n t s u s i n g r a d i a n s t h e t a 2 =[0: pi / 3 6 : 2 ∗ pi ] ; 17 %s o l v e f o r t h e t a 3 19 t h e t a 3 = a s i n ( ( e+ r 2 ∗ s i n ( t h e t a 2 ) ) / r 3 ) ; 21 %s o l v e f o r xB xB= r 2 ∗ c o s ( t h e t a 2 )+ r 3 ∗ c o s ( t h e t a 3 ) ; 23 yB= z e r o s ( s i z e ( xB ) ) ; %T h i s i s n e e d e d f o r t h e c o u p l e r c u r v e 25 %D e t e r m i n e C o u p l e r c u r v e xp = r2 ∗ cos ( t h e t a 2 ) − r4 ∗ cos ( t h e t a 3 ) ; 27 yp = e + r 2 ∗ s i n ( t h e t a 2 ) + r 4 ∗ s i n ( t h e t a 3 ) ; 29 f o r n = 1 : l e n g t h ( t h e t a 2 ) %I t e r a t e t h r o u g h t h e v a l u e s o f t h e t a 2 31 33 %d e f i n e k e y p o i n t s on mechanism i n a %f a s h i o n t o p l o t t h e c o n f i g u r a t i o n p t s x = [ 0 , r 2 ∗ c o s ( t h e t a 2 ( n ) ) , xB ( n ) , xp ( n ) ] ; p t s y =[ e , e+ r 2 ∗ s i n ( t h e t a 2 ( n ) ) , 0 , yp ( n ) ] ; 35 %p l o t t h e c o u p l e r c u r v e p o i n t s and one mechanism o r i e n t i a t i o n 33 3.2. Coupler Curves 37 F= f i g u r e ( 1 ) ; %open new f i g u r e window 1 39 p l o t ( xp , yp , ’ . ’ , p t s x , p t s y , ’−o ’ , xB , yB , ’ y ’ ) 41 %m o d i f y t h e p l o t axis equal x l a b e l ( ’ x−p o s i t i o n (m) ’ ) y l a b e l ( ’ y−p o s i t i o n (m) ’ ) t i t l e ( [ ’ C o u p l e r Curve : S l i d e r c r a n k shown w i t h ’ . . . num2str ( t h e t a 2 ( n ) ∗ 1 8 0 / p i ) ’ d e g r e e i n p u t ’ ] ) i f t h e t a 2 ( n )== p i / 3 %f i n d t h e p o s i t i o n when t h e t a 2 i s 60 d e g r e e s s a v e a s ( F , [ ’ C o u p l e r C u r v e _ ’ num2str ( t h e t a 2 ( n ) ∗ 1 8 0 / p i ) ’ . p d f ’ ] ) end 43 45 47 49 51 53 %C a p t u r e t h e c u r r e n t p l o t t o make an a n i m a t i o n s e t ( gca , ’ P l o t B o x A s p e c t R a t i o ’ , [ 5 1 2 384 7 2 0 ] ) M( n )= g e t f r a m e ( F , [ 0 0 512 3 8 4 ] ) ; end 55 %C r e a t e a m o vi e f i l e : m o v i e 2 a v i (M, ’ O f f s e t S l i d e r C r a n k . a v i ’ ) 57 F= f i g u r e %open new f i g u r e window 59 p l o t ( t h e t a 2 ∗ 1 8 0 / pi , xB , ’− ’ ) x l a b e l ( ’ Crank Angle , \ t h e t a _ 2 ( deg ) ’ ) 61 y l a b e l ( ’ S l i d e D i s t a n c e , x_B (m) ’ ) t i t l e ( ’ S l i d e p o s i t i o n as a f u n c t i o n of i n p u t angle ’ ) 63 g r i d on axis tight 65 s a v e a s ( F , ’ S l i d e P o s i t i o n . p d f ’ ) The output generated by the above code is shown in Fig. 3.5 on the following page. 34 3.2. Coupler Curves 35 Slide position as a function of input angle Coupler Curve: Slider crank shown with 60 degree input 1.6 1.5 1.5 1.4 1.3 B Slide Distance, x (m) y−position (m) 1 0.5 0 1.2 1.1 1 0.9 0.8 −0.5 0.7 −1.5 −1 −0.5 0 x−position (m) 0.5 1 1.5 0 50 100 150 200 Crank Angle, θ (deg) 250 300 350 2 (a) (b) Figure 3.5.: Output graph from Matlab code for the coupler curves of an Offset slider crank mechanism. 3.2.2. Excel Implementation Consider the following four-bar mechanism where r1 = ,r2 = , r3 = Coupler Curve Equations: xp = yp = Trigonometric Identities: , r4 = , r5 = , r31 = , θ2 = . 3.2. Coupler Curves 3.2.2.1. Standard Algebraic Solution 36 3.2. Coupler Curves 37 3.2.2.2. Use Excel Solver Open Closure A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 B C ME!3212:!Mechanisms Four Bar!Linkage!Analysis Parameter Value Units r1 10 in r2 3 in 12 in r3 r4 8 in theta2 theta3 theta4 D E F Plot!Coordinates Upper!Leg Vertex X 1 0 2 1.5000 3 4.98362767 Radians Degrees 2.094 120.000 1.000 57.296 2.000 114.592 Vertex 3* 4 Difference residual Lower!Leg X 6.6708 10.0000 G Y 0 2.5981 12.6957 Y 7.2744 0.0000 1.6872E+00 5.4213E+00 5.6778E+00 14 12 10 8 Upper!Leg 6 Lower!Leg 4 2 0 4 2 0 2 4 6 8 10 12 3.2. Coupler Curves 38 3.2. Coupler Curves 39 A B C ME!3212:!Mechanisms Four Bar!Linkage!Analysis Parameter Value Units 10 in r1 r2 3 in r3 12 in r4 8 in 1 2 3 4 5 6 7 8 9 10 theta2 11 theta3 12 theta4 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 4 33 34 D E F Plot!Coordinates Upper!Leg Vertex X 1 0 2 1.5000 3 9.233836209 Radians Degrees 2.094 120.000 0.464 26.557 1.667 95.496 Vertex 3* 4 Difference residual Lower!Leg X 9.2338 10.0000 3.7786E 06 8.7571E 06 G Y 0 2.5981 7.9632 Y 7.9632 0.0000 7.8999E 06 9 8 7 6 5 Upper!Leg 4 Lower!Leg 3 2 1 0 2 0 2 4 6 8 10 12 3.2. Coupler Curves 40 A B C ME!3212:!Mechanisms Four Bar!Linkage!Analysis Parameter Value Units r1 10 in r2 3 in 12 in r3 r4 8 in 1 2 3 4 5 6 7 8 9 10 theta2 11 theta3 12 theta4 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 4 33 34 Cross Closure D E F Plot!Coordinates Upper!Leg X Vertex Radians Degrees =2*PI()/3 =DEGREES(B10) 0.4635153062=DEGREES(B11) 1.6667142836=DEGREES(B12) G 1 2 3 0 =B5*COS(B10) =F5+B6*COS(B11) Y 0 =B5*SIN(B10) =G5+B6*SIN(B11) 3* 4 Lower!Leg X =F11+B7*COS(B12) =B4 Y =B7*SIN(B12) 0 Vertex Difference =F6 F10 =G6 G10 residual =SQRT(F13^2+G13^2) 9 8 7 6 5 Upper!Leg 4 Lower!Leg 3 2 1 0 2 0 2 4 6 8 10 12 3.2. Coupler Curves 41 A B C ME!3212:!Mechanisms Four Bar!Linkage!Analysis Parameter Value Units 10 in r1 r2 3 in r3 12 in r4 8 in 1 2 3 4 5 6 7 8 9 10 theta2 11 theta3 12 theta4 13 14 15 16 17 18 19 20 21 22 5 23 24 25 26 27 28 29 30 31 32 33 34 D Radians Degrees 2.094 120.000 0.500 28.648 1.000 57.296 E F Plot!Coordinates Upper!Leg Vertex X 1 0 2 1.5000 3 9.030990743 Vertex 3* 4 Difference residual Lower!Leg X 14.3224 10.0000 G Y 0 2.5981 3.1550 Y 6.7318 0.0000 5.2914E+00 3.5767E+00 6.3869E+00 4 2 0 0 5 10 15 20 Upper!Leg 2 Lower!Leg 4 6 8 3.2. Coupler Curves 42 A B C ME!3212:!Mechanisms Four Bar!Linkage!Analysis Parameter Value Units 10 in r1 r2 3 in r3 12 in r4 8 in 1 2 3 4 5 6 7 8 9 10 theta2 11 theta3 12 theta4 13 14 15 16 17 18 19 20 21 22 4 23 24 25 26 27 28 29 30 31 32 33 34 D E F Plot!Coordinates Upper!Leg Vertex X 1 0 2 1.5000 3 5.884873205 Radians Degrees 2.094 120.000 0.908 52.019 2.111 120.957 Vertex 3* 4 Difference residual Lower!Leg X 5.8849 10.0000 1.8606E 06 1.9300E 06 G Y 0 2.5981 6.8604 Y 6.8604 0.0000 5.1288E 07 4 2 0 2 0 2 4 6 8 10 12 Upper!Leg 2 Lower!Leg 4 6 8 3.2. Coupler Curves 3.2.2.3. SolidWorks Implementation 43 3.3. Homework Problem Set 2 3.3. Homework Problem Set 2 1. An offset slider crank mechanism is driven by rotating the crank. The axis of the slider is 1 inch below the x-axis, the crank is 2.5 inches, and the connecting rod is 7 inches. Solve for the position of the slider as a function of the crank angle θ2 . Write a Matlab program that plots the position of the slider for a complete revolution of the crank. Turn in your hand analysis, Matlab program (the .m file) and a properly labeled plot. http://personal.utulsa.edu/~jeremy-daily/ME3212/HW2Prob1.avi 2. Using the figure of book problem P4.10, plot the locus of Point C for a complete revolution of link 2. Also, plot on the same graph the configuration of the mechanism when θ2 = 10◦ . For now, ignore the questions regarding velocity and acceleration. Be sure to use the command axis equal to plot the configuration of the mechanisms to scale. http://personal.utulsa.edu/~jeremy-daily/ME3212/HW2Prob2.avi 3. In book problem P4.18a, plot the locus of point C for a complete revolution of link 2 for the open closure configuration. Also, plot on the same graph the configuration of the mechanism when θ2 = 30◦ . Draw the coupler as a triangle (△BCD). For now, ignore the questions regarding velocity and acceleration. A movie showing the positions of the mechanism is available at: http://personal.utulsa.edu/~jeremy-daily/ME3212/HW2Prob3.avi 4. Perform the “Assembly Mates” SolidWorks Tutorial under the Building Models Tutorial. Turn in a print of your completed part. 44 3.3. Homework Problem Set 2 Due on: __________________________ 45 3.4. Newton-Raphson Method 3.4. Newton-Raphson Method What if you can’t solve for the positions by trigonometry and algebra? 3.4.1. Rocking Slider Crank Consider the following example: Given: r2 , xo , R, θ2 Find: r and θ3 Write down the Loop closure equations: x: y: Rearrange to eliminate r: This equation has just 1 unknown θ3 but no analytical solution. Therefore, we’ll solve using the Newton-Raphson method. 46 3.4. Newton-Raphson Method 47 The Newton-Raphson method • • • If we can rewrite an expression such that f (x) = 0, then the NR method can be used to find x. It is an iterative scheme such that (n+1) x (n) =x f (x(n) ) − ′ (n) f (x ) where n is For this example, f= f′ = The algorithm is as follows: 1. Initialize the criteria: let ∆θ3 = 1 (1) 2. Guess a value for θ3 3. Do while |∆θ3 | > 0.000175 (n) (n) 4. Calculate f (θ3 ) and f ′ (θ3 ) 5. ∆θ3 = − f / f ′ (n+1) 6. θ3 (n) = θ 3 + ∆θ 3 7. Increment n by 1 and loop back to step 3. 8. Continue to complete the solution by solving for a) r = or r= b) x = 9. Increment θ2 and repeat. 3.4. Newton-Raphson Method In Matlab, the algorithm for the example looks like the following: 1 %ME 3 2 1 2 : Mechanisms %Newton−Rahpson Method f o r s o l v i n g l o o p c l o s u r e e q u a t i o n s 3 %Dr . Jer em y D a i l y % 5 clc ; clear all ; close al l 7 %knowns : r 2 = 1 . 2 %m e t e r s 9 x0 = 1 . 8 R= . 4 11 t h e t a 2 = [ 0 : p i / 1 0 1 : 4 . ∗ p i ] ; %Two c y c l e s o f t h e c r a n k 13 t h e t a 3 = 0 ; %g u e s s a s o l u t i o n f o r f i r s t i t e r a t i o n 15 f o r n = 1 : l e n g t h ( t h e t a 2 ) d e l t a t h e t a 3 = 1 ; %s e t t h e l o o p c o n d i t i o n a l 17 %g u e s s t h e same s o l u t i o n a s t h e t i m e b e f o r e 19 w h i l e norm ( d e l t a t h e t a 3 ) > 0 . 0 0 0 1 7 5 %0 . 0 1 d e g r e e s f = ta n ( t h e t a 3 ( n ) ) . ∗ ( x0+R∗ t h e t a 3 ( n)− r 2 ∗ c o s ( t h e t a 2 ( n ) ) ) . . . −r 2 ∗ s i n ( t h e t a 2 ( n ) ) ; d f d t h e t a 3 = ( 1 . / ( c o s ( t h e t a 3 ( n ) ) . ^ 2 ) ) . ∗ ( x0+R∗ t h e t a 3 ( n ) . . . −r 2 ∗ c o s ( t h e t a 2 ( n ) ) ) + R∗ c o s ( t h e t a 3 ( n ) ) ; d e l t a t h e t a 3 =−f / d f d t h e t a 3 ; %u p d a t e t h e s o l u t i o n u n t i l i t i s w i t h i n t o l e r a n c e t h e t a 3 ( n )= t h e t a 3 ( n )+ d e l t a t h e t a 3 ; end t h e t a 3 ( n +1)= t h e t a 3 ( n ) ; 21 23 25 27 29 end 31 %S i n c e t h e l a s t command i n t h e l o o p c r e a t e d an e x t r a t h e t a 3 e n t r y 33 %we m u s t remove i t by a s s i g n i n g i t t o t h e em p t y s e t theta3 (n +1)=[]; 35 %S o l v e f o r t h e r e m a i n i n g unkowns 37 r _ s i n e s = r 2 ∗ s i n ( t h e t a 2 ) . / s i n ( t h e t a 3 ) ; %law o f s i n e s r _ c o s i n e s = s q r t ( r 2 . ^ 2 + ( x0+R∗ t h e t a 3 ) . ^ 2 . . . 39 − 2∗ r 2 . ∗ ( x0+R . ∗ t h e t a 3 ) . ∗ c o s ( t h e t a 2 ) ) ; %law o f c o s i n e s x=R∗ t h e t a 3 ; 48 3.4. Newton-Raphson Method 49 41 p l o t ( t h e t a 2 , t h e t a 3 , ’ : ’ , t h e t a 2 , r _ s i n e s , ’− ’ , t h e t a 2 , r _ c o s i n e s , . . . ’−− ’ , t h e t a 2 , x , ’ −. ’ ) 43 x l a b e l ( ’ \ t h e t a _ 2 ( r a d i a n s ) ’ ) ylabel ( ’ Position variables ’ ) 45 l e g e n d ( ’ \ t h e t a _ 3 ( r a d ) ’ , ’ r : s i n e s (m) ’ , ’ r : c o s i n e s (m) ’ , ’ x (m) ’ ) The graph generated by the code is shown in Fig. 3.6. 3.5 θ3 (rad) r:sines (m) r:cosines (m) x (m) 3 2.5 Position variables 2 1.5 1 0.5 0 −0.5 −1 −1.5 0 2 4 6 θ2 (radians) 8 10 Figure 3.6.: Output of Newton-Raphson example. What are the spikes from? 12 14 3.4. Newton-Raphson Method How does Newton-Raphson work? The N-R method requires a good first guess or: • • How to make a good initial guess: • • 50 3.5. Homework Problem Set 3 3.5. Homework Problem Set 3 1. Use the Newton-Raphson method to solve for θ3 by hand for the four-bar linkage shown in Fig. 3.4 on page 29. Compare the result from the N-R method to the analytical solution for θ2 = 2π /3 radians (120 degrees). Then, create a Matlab program that implements the N-R method and plots θ3 against θ2 for every 5 degrees of a complete revolution of the crank. Plot the solution from the N-R method with a dot and the solution from the analytical method with a square. Generate two plots: one for the open closure configuration and one for the cross closure configuration. The graphs you generate should look like the ones in Fig. 3.7 on page 54. The Matlab code used to plot the results is as follows: 1 F= f i g u r e ( 1 ) ; p l o t ( t h e t a 2 ∗ 1 8 0 / pi , t h e t a 3 ∗ 1 8 0 / pi , ’ . ’ , . . . 3 t h e t a 2 ∗ 1 8 0 / pi , t h e t a 3 _ o p e n ∗ 1 8 0 / pi , ’ s ’ ) %No t e : t h e t a 3 _ o p e n m u s t be d e f i n e d i n o r d e r f o r t h i s t o work 5 l e g e n d ( ’ Newton−Raphson ’ , ’ A n a l y t i c a l ’ , ’ L o c a t i o n ’ , ’ N o rt h Wes t ’ ) x l a b e l ( ’ I n p u t Crank Angle , \ t h e t a _ 2 [ deg ] ’ ) 7 y l a b e l ( ’ C o u p l e r Angle , \ t h e t a _ 3 [ deg ] ’ ) axis tight 9 s e t ( gca , ’ XTick ’ , [ 0 : 3 0 : 3 6 0 ] ) g r i d on 11 t i t l e ( ’ C o u p l e r a n g l e i n t h e open c l o s u r e c o n f i g u r a t i o n ’ ) 51 3.5. Homework Problem Set 3 52 2. Eccentric Cam Analysis (See figure below): a) Plot the locus of point P for a complete turn of the cam when r1 = 100 mm, r2 = 150 mm. e = 20 mm, and R = 40 mm. Hint: use N-R to determine θ2 . b) Plot the y position of point P as a function of θ3 . c) Determine the maximum and minimum of θ2 by hand. An animation of the motion of this mechanism is available at http://personal.utulsa.edu/~jeremy-daily/ME3212/HW3Prob2.avi Hints: r and R form a right angle. R and e do not form a right angle (the angle changes). Due on:___________________ P r2 R r y e % O2 O3 θ2 % θ3 x r1 3. Perform the “Advanced Design” SolidWorks Tutorial. Turn in a print of your completed part. 3.5. Homework Problem Set 3 53 3.5. Homework Problem Set 3 54 Coupler angle in the open closure configuration 65 Newton−Raphson Analytical 60 55 3 Coupler Angle, θ [deg] 50 45 40 35 30 25 20 0 30 60 90 120 150 180 210 240 Input Crank Angle, θ2 [deg] 270 300 330 360 (a) Open Closure Configuration Coupler angle in the cross closure configuration Newton−Raphson Analytical −20 −25 Coupler Angle, θ3 [deg] −30 −35 −40 −45 −50 −55 −60 −65 0 30 60 90 120 150 180 210 240 Input Crank Angle, θ [deg] 270 300 330 360 2 (b) Cross Closure Configuration Figure 3.7.: Graphs for the Newton-Raphson and analytical solution for θ3 3.6. Multi Loop Mechanisms 55 3.6. Multi Loop Mechanisms Multi loop mechanisms are analyzed by constructing the loop closure equations for all the elementary loops. Open chains can also be considered. Consider the following example: Calculate the mobility using the Kutzbach Criteria: Determine the known and unknown variables: There are four equations after breaking up the loop closure equations: x1 : y1 : x2 : y2 : See Cleghorn’s Section 4.2 3.7. Toggle and Limit Positions 56 3.7. Toggle and Limit Positions Mechanical Advantage Consider an offset slider crank in the “dead” center positions. Top center: Bottom center: The criteria to find a toggle position are: Loop Closure Equations: x: y: Substitute θ2 = θ3 into the y equation: See Cleghorn’s Section 2.6 3.8. Transmission Angle 57 Substitute θ2 = θ3 + π into the y equation: 3.8. Transmission Angle For a slider crank, the transmission angle is γ . γ= Goal: find the maximum and minimum γ and corresponding θ2 . Rewrite Loop equations: x: y: but, and, so x: y: To find extrema, find values of θ2 when x′ : y′ : Consider only the numerator: θ2 = So the transmission angles are: dγ d θ2 = 0. Use implicit differentiation: See Cleghorn’s Section 2.7 3.9. Homework Problem Set 4 3.9. Homework Problem Set 4 1. Using the offset slider-crank mechanism shown in Fig. 4.4 of Cleghorn’s text, determine the extreme values of the transmission angle, γ . Hint: Write an expression for γ in terms of θ2 , differentiate with respect to θ2 , and let d γ /d θ2 = 0 for extremes. 2. For a four bar mechanism where r1 = 400 mm, r2 = 200 mm, r3 = 500 mm, and r4 = 400 mm, a) Determine θ2 , θ3 , θ4 , and γ for both limit positions. b) Draw the mechanisms in each limit position to scale. c) Determine the total rocking angle (∆θ4 ). Ans: 78◦ 3. Perform the “Animation” SolidWorks Tutorial. Turn in a print of your completed part. Due on: ________________ 58 4. Mechanism Synthesis The design or creation of a mechanism to achieve the desired motion. Type Synthesis: Number Synthesis: Dimensional Synthesis: Classical Analysis: 4.1. Geometric Constraint Programming Everyone should download their own copy of: Kinzel et al., “Kinematic synthesis for finitely separated positions using geometric constraint programming.” Journal of Mechanical Design (2006) Meet in the Computer Lab (L1) to see the following demonstration: Goal: pick up an object with a scoop and dump it at a point 3” higher and 4” over. Approach: design a four bar mechanism that has a coupler that will follow 5 precision points and directions. 4.1. Geometric Constraint Programming To synthesize a mechanism that satisfies these constraints, follow these instructions: 1. Create a new Part in SolidWorks. 2. Change the document properties to the IPS system. This is found under the Tools, Options, Document Properties menu. 3. Under the System Options tab (Tools ⊲ Options), click on the Relations/Snaps branch and make sure the Automatic Relations box is unchecked. 60 4.1. Geometric Constraint Programming 4. Create a new sketch on any plane. 61 4.1. Geometric Constraint Programming 5. Create 5 3-point arcs. They do not have to be the same size yet and placement is arbitrary at this time. These arcs will represent the scoop. 62 4.1. Geometric Constraint Programming 6. Make all the arcs equal by selecting them while holding the Shift key. Then click on the Equal button under the Add Relations Pane. 63 4.1. Geometric Constraint Programming 7. Create centerlines an connect each end of the arc. 8. Make the center of the arc coincident with the line. 64 4.1. Geometric Constraint Programming 9. Position and dimension the arcs in appropriate locations. The position will describe locations along the path of travel. Therefore, the arc must be facing up at the bottom location and tilted at the drop off location. The other points are used to guide the path of travel. Start by making the right edge of one of the arcs coincident with the origin and fixing its location. 65 4.1. Geometric Constraint Programming 10. Draw congruent triangles from each of the arc endpoints. To ensure congruency, make all corresponding legs of the triangle equal. The tip of the triangle will represent the connection to one of the links. 66 4.1. Geometric Constraint Programming 11. Draw a perimeter circle through three of the five tips of the triangles. 12. Make the points coincident with the circle. 67 4.1. Geometric Constraint Programming 13. Drag the other two points close to the circle and make them coincident. All five points should be coincident with the circle. 68 4.1. Geometric Constraint Programming 14. Create another set of congruent triangles to represent the other connecting point for the coupler. 69 4.1. Geometric Constraint Programming 15. Draw the other circle and maneuver the locations of the arc and the triangles to get a compact package. This may be difficult and you may have to delete some fixed constraints. 70 4.1. Geometric Constraint Programming 16. Once the position is where you like, Select All and make a Block (Tools ⊲ Make Block). 71 4.1. Geometric Constraint Programming 17. Draw the frame (link 1) by connecting the two circle centers. Fix the ends. The draw moving links 2 and 4. Trace the coupler. Add dimensions to keep the lengths fixed. 72 4.1. Geometric Constraint Programming 18. Drag the mechanism to check its motion. All dimensions should be determined and the mechanism synthesis is completed. The mechanism can be actuated by a motor for continuous rotation or by a cylinder or cam to rock back and forth. 73 4.2. Homework Problem Set 5 4.2. Homework Problem Set 5 Construct the headlight cover in Example 11.3 of Cleghorn’s book using SolidWorks. Demonstrate that it works by turning in three prints from SolidWorks: the open position, an intermediate position, and the closed position. Clearly identify all relevant details of this design. These details include: link lengths, rotation positions, and coupler angles. 74 5. Velocity Analysis 5.1. Vector Operations 5.1.1. Dot Product 5.1.2. Cross Product 5.1.3. Derivatives of Vector Products 5.2. Velocity with a Rotating Reference Frame 5.2. Velocity with a Rotating Reference Frame Draw two vectors. The first vector, ~r1 , describes the position of a point at time t1 . The second vector,~r2 , describes the position at time t2 . Draw tangent and normal unit vectors at each position. ~ Also, draw ∆r. To determine velocity, take the limit: Relate inertial unit vectors to rotating unit vectors: Determine the velocity based on the product rule: But~r can also be written in terms of a tangent-normal system: 76 5.2. Velocity with a Rotating Reference Frame Take the derivative with respect to time to get the velocity: 77 5.3. Graphical Analysis 78 5.3. Graphical Analysis Start with a scale drawing of the mechanism. 5.3.1. Inverted Slider Crank 8 See Cleghorn’s Example 3.2 Example of an Inverted Slider Crank. 7 6 5 4 3 2 1 0 Relative velocity equivalence equations: ~vP =~vP/A +~vA =~vP/B +~vB ~vP/B = with numbers: ~vP/A = with numbers: Break into components: ~vP = Draw the velocity polygon: 1. Draw Construction Lines 2. Scale Known Velocity 3. Draw Perpendiculars See Cleghorn’s Section 2.2 5.3. Graphical Analysis 79 4. Measure Magnitudes x 0v reference Goal: Determine the angular velocity of link 4. 5.3.2. Four-Bar Mechanism Example of a four-bar mechanism: Determine the angular velocities of link 3, link 4, and the velocity of point C. where r1 = 600 mm, r2 = O2 A = 140 mm, r3 = 690 mm, r4 = 400 mm, r5 = 200 mm, r6 = 200 mm, θ2 = 240◦ , θ3 = 44◦ , θ4 = 116◦ , θ̇2 = ω2 = 50 rad/sec (constant). See Cleghorn’s Section 3.3 5.3. Graphical Analysis 80 B C y r5 r6 r4 r3 θ4 θ2 O2% r1 θ̇2 O4% x θ3 A Figure 5.1.: Four-Bar Mechanism Example Use the space allocated in Fig. 5.2 to construct the velocity polygon for this example. Recall velocity equivalence: ~vB =~vA +~vB/A =~vO4 +~vB/O4 1. Determine the angles for the lines of action. 2. Draw v~A 3. Draw a construction line at the angle of vB through Ov . 4. Construct a line through vA perpendicular to r3 to show the line of action of vB/A 5. Find the intersection of the vB construction line and the vB/A construction line. Draw the vector representing ~vB/A and measure its length. 5.3. Graphical Analysis 6. Determine angular velocities 7. Velocity of C: 8. Draw construction line for ~vC/B perpendicular to BC and going through vB 9. Draw construction line for ~vC/A 10. Check magnitudes 11. Measure to determine ~vC 81 5.4. Analytical Analysis 82 x 0v reference Figure 5.2.: Workspace for graphical velocity determination for the four-bar mechanism in Fig. 5.1. Notes on velocity images: • The velocity image has a triangle... • The ratio... • If no angular velocity, then... • The point 0v ... • Determining absolute velocity ... 5.4. Analytical Analysis Once the position vectors are known, then they can be differentiated with time to get the velocity equations. A couple examples show this technique. 5.4. Analytical Analysis 83 5.4.1. Inverted Slider Crank Determine θ˙4 and ṙ in the following inverted slider crank mechanism: C A r y θ̇2 %O θ4 4 O2 % r1 r1 = r2 = r= θ2 = θ4 = θ̇2 = where 1. Loop Equations: a) x : b) y : 2. Differentiate with respect to time: a) b) r2 θ2 x 5.4. Analytical Analysis 3. Arrange in matrix form: 4. Solve the linear equation. a) On TI-89: b) In Matlab: c) By Hand: Compare graphical solution to analytical solution: Variable Graphical Analytical We can write a computer program to solve the above system for various angles of θ2 and a constant angular velocity. An example in Matlab is as follows: 1 %ME 3 2 1 2 : Mechanisms %I n v e r t e d S l i d e r Crank 3 %F i n d i n g t h e v e l o c i t i e s o f l i n k s %Dr . Jer em y D a i l y 5 %c l o s e an i n i t i a l i z e s y s t e m 7 clc 84 5.4. Analytical Analysis clear all 9 close all 11 %I n v e r t e d s l i d e r c r a n k mechanism %knowns : 13 r 1 =45 r 2 =25 15 omega2 =20 17 t h e t a 2 = l i n s p a c e ( 0 , 2 ∗ pi , 1 5 0 ) ; 19 %p o s i t i o n s o l u t i o n : r = s q r t ( r 1 ^2+ r 2 ^2−2∗ r 1 ∗ r 2 ∗ c o s ( pi −t h e t a 2 ) ) ; 21 t h e t a 4 = a c o s ( ( r . ^ 2 + r 1 . ^ 2 − r 2 . ^ 2 ) . / ( 2 ∗ r ∗ r 1 ) ) ; t h e t a 4 = a ta n2 ( r 2 ∗ s i n ( t h e t a 2 ) , r 1 + r 2 ∗ c o s ( t h e t a 2 ) ) ; 23 %v e l o c i t y a n a l y s i s 25 f o r i = 1 : l e n g t h ( t h e t a 2 ) A=[ c o s ( t h e t a 4 ( i ) ) −r ∗ s i n ( t h e t a 4 ( i ) ) ; 27 sin ( theta4 ( i )) r ∗ cos ( t h e t a 4 ( i ) ) ] ; C=[ −r 2 ∗ omega2 ∗ s i n ( t h e t a 2 ( i ) ) r 2 ∗ omega2 ∗ c o s ( t h e t a 2 ( i ) ) ] ’ ; 29 v=A \ C ; r d o t ( i )= v ( 1 ) ; 31 omega4 ( i )= v ( 2 ) ; end 33 %P l o t t h e r e s u l t s 35 F= f i g u r e ( 1 ) subplot (2 ,2 ,1) 37 p l o t ( t h e t a 2 ∗ 1 8 0 / pi , t h e t a 4 ) x l a b e l ( ’ \ t h e t a _ 2 ( deg ) ’ ) 39 y l a b e l ( ’ \ t h e t a _ 4 ( r a d ) ’ ) g r i d on 41 a x i s t i g h t %s e t s t h e c u r r e n t a x i s t o h a ve t i c k s e v e r y 45 deg 43 s e t ( gca , ’ X t i c k ’ , [ 0 : 4 5 : 3 6 0 ] ) 45 s u b p l o t ( 2 , 2 , 2 ) p l o t ( t h e t a 2 ∗ 1 8 0 / pi , r ) 47 x l a b e l ( ’ \ t h e t a _ 2 ( deg ) ’ ) y l a b e l ( ’ s l i d e r p o s i t i o n (mm) ’ ) 49 g r i d on 85 5.4. Analytical Analysis axis tight 51 s e t s t h e c u r r e n t a x i s t o h av e t i c k s e v e r y 45 deg s e t ( gca , ’ X t i c k ’ , [ 0 : 4 5 : 3 6 0 ] ) 53 subplot (2 ,2 ,3) 55 p l o t ( t h e t a 2 ∗ 1 8 0 / pi , omega4 ) x l a b e l ( ’ \ t h e t a _ 2 ( deg ) ’ ) 57 y l a b e l ( ’ \ omega_4 ( r a d / s ) ’ ) g r i d on 59 a x i s t i g h t s e t ( gca , ’ X t i c k ’ , [ 0 : 4 5 : 3 6 0 ] ) 61 subplot (2 ,2 ,4) 63 p l o t ( t h e t a 2 ∗ 1 8 0 / pi , r d o t ) x l a b e l ( ’ \ t h e t a _ 2 ( deg ) ’ ) 65 y l a b e l ( ’ s l i d e r v e l o c i t y (mm/ s ) ’ ) g r i d on 67 a x i s t i g h t s e t ( gca , ’ X t i c k ’ , [ 0 : 4 5 : 3 6 0 ] ) 69 saveas (F , ’ In v ert ed Sl i d erCran k V el o c i t y . pdf ’ ) 86 5.4. Analytical Analysis 87 70 slider position (mm) θ (rad) 0.5 4 0 60 50 40 30 −0.5 0 45 90 135 180 225 270 315 360 θ (deg) 0 45 90 2 2 6 slider velocity (mm/s) 400 4 2 0 4 ω (rad/s) 135 180 225 270 315 360 θ (deg) −2 −4 200 0 −200 −400 −6 0 45 90 135 180 225 270 315 360 θ2 (deg) 0 45 90 135 180 225 270 315 360 θ2 (deg) Figure 5.3.: Output of the velocity analysis program of an inverted slider crank. 5.4.2. Four Bar Mechanism Recall the four-bar mechanism from Section 5.3.2 on page 79. 1. To find θ˙3 and θ̇4 by starting with the loop closure equations: a) x : b) y : 2. Differentiate each equation with respect to time: a) ẋ : b) ẏ 5.4. Analytical Analysis 3. Arrange in matrix form: 4. Solve the linear equation. a) On TI-89: b) In Matlab: c) By Hand: For the velocity of point C: 5. Write a vector equation from O2 to C: 6. Break in to x and y components. a) x : b) y : 7. Differentiate with respect to time. vc,x = vc,y = 8. Substitute the appropriate values. 88 5.4. Analytical Analysis 89 5.5. Homework Problem Set 6 90 5.5. Homework Problem Set 6 This is a long homework problem set and should be started early. 1. For the slider-crank drawn below, solve for the angular velocity of the slider and the velocity of B when r1 = 125 mm, r2 = 75 mm, r3 = AB = 400 mm, θ2 = 30◦ , θ̇2 = −60 rad/sec. Solve analytically and graphically by hand. y A r r2 x θ̇2 θ2 r3 θ3 O2 O4 r1 Ans: ṙ = 1452.4 mm/s and θ˙3 = −22 rad/s 2. For the four-bar linkage below, solve for the angular velocities of links 3 and 4. Also determine the magnitude and direction of the velocity of point C. Solve this problem analytically and check your answer using a CAD program. Given: r1 = 100 mm, r2 = 150 mm, r3 = AB = 250 mm, r4 = 250 mm, r5 = BC = 150 mm, r6 = AC = 300, θ2 = 105◦ , and θ˙2 = 56 rad/s (ccw). Note: you will have to do a position analysis first. B 5.5. Homework Problem Set 6 91 B r3 r5 θ3 φ A r6 r2 C r4 y θ̇2 θ2 O4 O2% % θ4 x r1 Ans: θ̇4 = 45.51 rad/s, |vc | = 9.025 m/s and ∠vc = 137.9◦ 3. Determine the velocities of points B, C, and D along with the angular velocity of the connecting rod (△ABC) in a double slider crank where r2 = 2 in., r3 = 10 in, CA = 4 in, CD = 8 in., θ2 = −120◦ , θ˙2 = ω2 = 42 rad/s cw, and O2 is at (−3, 0). 5.5. Homework Problem Set 6 10 9 8 7 6 5 4 3 2 1 0 Ans: |vc | = 67.9 in/s and ∠vc = 154◦ 92 6. Acceleration Analysis Graphical techniques are discussed in Cleghorn’s Chapter 3. This section is focused on analytical techniques. Simply put, the acceleration is the time derivative of the velocity equations. ~ = m~a Accelerations are needed to determine forces: F 6.1. Accelerations in Four-bar Mechanisms Start with velocity equations from the example in Section 5.4.2 on page 87. x: y: Differentiate with respect to time to get accelerations: x: y: Arrange in matrix form: θ̈2 = Substitute numbers: See Cleghorn’s Section 4.4.2 6.2. Inverted Slider Crank Solve for θ̈3 and θ̈4 on a TI-85: For the acceleration of point C: Write down the velocity equations. vc,x = vc,y = Differentiate for acceleration: ac,x = ac,y = Substitute in the numbers: 6.2. Inverted Slider Crank Continue with the example from Section 5.4.1 on page 83. The velocity loop equations: vx : vy : Differentiate with respect to time to determine acceleration: 94 6.2. Inverted Slider Crank Arrange in matrix form: Substitute the numbers with θ̈2 = Coriolis acceleration: 95 6.3. Homework Problem Set 7 96 6.3. Homework Problem Set 7 1. For the inverted slider crank shown below, a) Differentiate the velocity equations to get the acceleration equations and put into matrix form. b) Solve for r̈ and θ̈3 . c) Setup and differentiate the position equations to get the velocity of point B. d) Finally, solve for the acceleration magnitude and direction of point B. y A r θ2 a2 θ̇2 a3 O4 O2 x θ3 d where a2 = 75 mm, a3 = 400 mm, d = 125 mm, r = 193.6 mm, θ2 = 150◦ , θ3 = 11.17◦ , and θ̇2 = 60rad/sec (constant). The position equations are as follows: a2 cos θ2 + r cos θ3 =d a2 sin θ2 − r sin θ3 =0 and the velocity equations are: −a2 θ̇2 sin θ2 + ṙ cos θ3 − rθ̇3 sin θ3 =0 a2 θ̇2 cos θ2 − ṙ sin θ3 − rθ̇3 cos θ3 =0 Ans: θ̈3 = −120 rad/s/s and r̈ = −161.87 m/s/s B 6.3. Homework Problem Set 7 97 2. For the 4-bar linkage shown below, a) Differentiate the velocity equations to get the acceleration equations and put into matrix form. b) Solve for θ̈3 and θ̈4 . c) Setup and differentiate the position equations to get the velocity of point C. d) Finally, setup the equations for the velocity of point C and solve for the acceleration of point C. B a3 a5 θ3 A φ a6 a2 C a4 y θ̇2 θ2 O4 O2% % θ4 x d where a2 = 150 mm, a3 = 250 mm, a4 = 250 mm, d = 100 mm, a5 = 150 mm, a6 = 300 mm, θ2 = 105◦ , θ3 = 20.13◦, θ4 = 67.47◦, φ = 29.93◦, θ̇2 = ω2 = 56 rad/sec (constant), θ̇3 = 27.84 rad/s, and θ˙4 = 45.51 rad/s. The position equations are as follows: a2 cos θ2 + a3 cos θ3 − a4 cos θ4 =d a2 sin θ2 + a3 sin θ3 − a4 sin θ4 =0 and the velocity equations are: −a2 θ̇2 sin θ2 − a3 θ̇3 sin θ3 + a4 θ̇4 sin θ4 =0 a2 θ̇2 cos θ2 + a3 θ̇3 cos θ3 − a4 θ̇4 cos θ4 =0 Ans: θ̈3 = −73.02 rad/s/s and θ̈4 = −625.8 rad/s/s 6.3. Homework Problem Set 7 3. Perform the “SolidWorks Motion” tutorial. Turn in a print of the time history of the contact force. 98 7. Cams A cam transmits rotary motion to another link by direct contact. Vocabulary: • Cam: • Follower: • Cam Profile: • Trace Point: • Pitch Curve: • Base Circle: • Prime Circle: • Pressure Angle: • Rise: • Dwell: • Fall: Cam systems are: • • • See Cleghorn’s Figure 7.1 for cam types. 7.1. Types of Cam Followers • • • 7.1. Types of Cam Followers 7.1.1. Flat Faced Radial 8 7 6 5 4 3 2 1 0 100 7.1. Types of Cam Followers 7.1.2. Offset Roller Follower 8 7 6 5 4 3 2 1 0 7.1.3. Barrel Cam with Roller Follower 8 7 6 5 4 3 2 1 0 101 7.2. Cam Follower Motion 7.1.4. Heavy Truck Brake Cams (S-Cams) 8 7 6 5 4 3 2 1 0 7.2. Cam Follower Motion 7.2.1. Displacement y = f (θ ) 7.2.2. Velocity v = ẏ = 7.2.3. Acceleration a = ÿ = 7.2.4. Jerk ... jerk = y = 102 7.3. Cam Follower Profiles 103 7.3. Cam Follower Profiles Determine the geometric properties of the cam follower motion. Kinematic properties require knowing ______________________. 7.3.1. Constant Acceleration (Parabolic) A follower is to have the following motion: Interval Initial Angle Fundamental Equations: Final Angle Type of Motion Initial Displacement Final Displacement Parabolic 0 A Const. Velocity A B Parabolic B C Dwell C C Parabolic C D Parabolic D 0 See Cleghorn’s Section 7.5.2 and 7.5.3 7.3. Cam Follower Profiles 104 f (θ ) 60 40 20 θ 30 60 90 120 150 180 210 240 270 300 330 360 f ′ (θ ) θ 30 60 90 120 150 180 210 240 270 300 330 360 f ′′ (θ ) θ 30 60 90 120 150 180 210 240 270 300 330 360 7.3. Cam Follower Profiles Parabolic Equation Derivations: 105 7.3. Cam Follower Profiles 106 7.3.2. Harmonic Motion A follower is to have the following motion: Interval Initial Angle Fundamental Equations: Final Angle Type of Motion Initial Displacement Final Displacement Harmonic 0 A Const. Velocity A B Harmonic B C Dwell C C Harmonic C 0 See Cleghorn’s Section 7.5.4 7.3. Cam Follower Profiles 107 f (θ ) 60 40 20 θ 30 60 90 120 150 180 210 240 270 300 330 360 f ′ (θ ) θ 30 60 90 120 150 180 210 240 270 300 330 360 f ′′ (θ ) θ 30 60 90 120 150 180 210 240 270 300 330 360 7.3. Cam Follower Profiles Harmonic Equation Derivations: 108 7.3. Cam Follower Profiles 109 7.3.3. Cycloidal Motion A follower is to have the following motion: Interval Initial Angle Fundamental Equations: Final Angle Type of Motion Initial Displacement Final Displacement Cycloidal 0 A Dwell A A Cycloidal A B Dwell B B Cycloidal B 0 See Cleghorn’s Section 7.5.5 7.3. Cam Follower Profiles 110 f (θ ) 60 40 20 θ 30 60 90 120 150 180 210 240 270 300 330 360 f ′ (θ ) θ 30 60 90 120 150 180 210 240 270 300 330 360 f ′′ (θ ) θ 30 60 90 120 150 180 210 240 270 300 330 360 7.3. Cam Follower Profiles Cycloidal Equation Derivations: 111 7.4. Cam Design 112 7.4. Cam Design Given the following table for the cam follower function specification: Interval Initial Angle Final Angle Type of Motion Initial Output Final Output 1 2 3 4 0 90 210 300 90 210 300 360 Harmonic Dwell Cycloidal Parabolic 0 0.4 rad 0.4 rad 0.1 rad 0.4 rad 0.4 rad 0.1 rad 0 The mechanism is a disk cam with a flat face pivoting follower. From Cleghorn’s Figure 7-19 (top of pg 279): 6 X = 130 cm, Y = 100 cm, e = 50 cm, rb = 70 cm See Cleghorn’s Example 7.1 5 4 3 2 1 0 f (θ ), rad The follower motion profile is as follows: 0.30 0.20 0.10 θ 30 60 90 120 150 180 210 240 270 300 330 360 7.4. Cam Design Derivation of polar profile of the disk cam. 1. Determine αo 6 5 4 3 2 1 0 2. Write the Loop closure equations: a) xc : b) yc : 3. Take the derivative w.r.t. θ a) x′c : b) y′c : 4. Substitute and solve for δc : 113 7.4. Cam Design 5. Determine the point of contact a) xc = b) yc = 6. Determine the radial length and orientation a) rc = b) γc = 7. Determine the angle with respect to the disk cam: 114 7.4. Cam Design 115 8. Plot the cam profile in polar coordinates: Cam profile in polar form 90 150 120 60 100 150 30 50 180 0 210 330 240 300 270 Figure 7.1.: Cam profile in polar coordinates. The inner circle shows the base radius and the outer circle shows the maximum dimensions. 7.4. Cam Design 9. The following program implements this example: %Mechanisms : ME3212 2 %Dr . Jer em y D a i l y %D i s k Cam P r o f i l e D e s i g n 4 %T h i s Program t a k e s t h e d e s i r e d cam f o l l o w e r m o t i o n and d e s i g n s 6 %a d i s k cam p r o f i l e f o r a r o t a t i n g f l a t f o l l o w e r . T h i s i s %s i m i l a r t o e x a m p l e 7 . 1 i n Cl eg h o r n ’ s t e x t . I t i s f o r 8 %a r o t a t i n g f l a t f o l l o w e r cam ( t o p o f pg 2 7 9 ) . 10 c l c %c l e a r s t h e command window c l e a r a l l %c l e a r s memory 12 c l o s e a l l %c l o s e s a l l f i g u r e windows 14 %C o n s t r u c t cam f o l l o w e r p r o f i l e 16 %Harmonic r i s e f r o m 0 t o 100 d e g r e e s ( e v e r y d e g r e e ) L=.4 18 b e t a =100∗ p i / 1 8 0 t h e t a = [ 0 : p i / 1 8 0 : b e t a ] ; %m u s t be i n r a d i a n s 20 f =L∗(1 − c o s ( p i ∗ t h e t a / b e t a ) ) / 2 ; %f o l l o w e r d i s p l a c e m e n t f p r i m e = p i ∗L∗ s i n ( p i ∗ t h e t a / b e t a ) / ( 2 ∗ b e t a ) ; %f o l l o w e r m o t i o n s l o p e 22 f d o u b l e p r i m e = p i ^2∗L∗ c o s ( p i ∗ t h e t a / b e t a ) / 2 / b e t a ^ 2 ; %f o l l o w e r a c c e l 24 %d w e l l f r o m 100 t o 160 deg t h e t a s t a r = [ 0 : 1 : 6 0 ] ∗ pi / 1 8 0 ; 26 s s t a r =L∗ o n e s ( s i z e ( t h e t a s t a r ) ) ; f p r i m e s t a r =zeros ( si z e ( t h e t a s t a r ) ) ; 28 t h e t a =[ t h e t a t h e t a s t a r + t h e t a ( end ) ] ; 30 %b u i l d t h e f o l l o w e r m o t i o n p r o f i l e s by c o n c a t e n a t i n g f u n c t i o n s f =[ f s s t a r ] ; 32 f p r i m e =[ f p r i m e f p r i m e s t a r ] ; f d o u b l e p r i m e =[ f d o u b l e p r i m e z e r o s ( s i z e ( s s t a r ) ) ] ; 34 %C y c l o i d a l F a l l f r o m 160 t o 300 d e g r e e s 36 L2 = . 1 L=L−L2 38 b e t a =140∗ p i / 1 8 0 t h e t a s t a r = [ 0 : p i / 1 8 0 : b e t a ] ; %m u s t be i n r a d i a n s 40 s s t a r =L2+L∗(1 − t h e t a s t a r / b e t a + s i n ( 2 ∗ p i ∗ t h e t a s t a r / b e t a ) / ( 2 ∗ p i ) ) ; 116 7.4. Cam Design f p r i m e s t a r = −L / b e t a ∗(1 − c o s ( 2 ∗ p i ∗ t h e t a s t a r / b e t a ) ) ; 42 f d o u b l e p r i m e s t a r =−2∗ p i ∗L∗ s i n ( 2 ∗ p i ∗ t h e t a s t a r / b e t a ) / b e t a ^ 2 ; t h e t a =[ t h e t a t h e t a ( end )+ t h e t a s t a r ] ; 44 %b u i l d t h e f o l l o w e r m o t i o n p r o f i l e s by c o n c a t e n a t i n g f u n c t i o n s 46 f =[ f s s t a r ] ; f p r i m e =[ f p r i m e f p r i m e s t a r ] ; 48 f d o u b l e p r i m e =[ f d o u b l e p r i m e f d o u b l e p r i m e s t a r ] ; 50 %P a r o b o l i c f a l l f r o m 300 t o 360 d e g r e e s L=L2 52 b e t a =60∗ p i / 1 8 0 54 %p a r t 1 t h e t a s t a r = [ 0 : p i / 1 8 0 : b e t a / 2 ] ; %m u s t be i n r a d i a n s 56 s s t a r = L∗(1 −2∗( t h e t a s t a r / b e t a ) . ^ 2 ) ; f p r i m e s t a r =−4∗L∗ t h e t a s t a r / b e t a ^ 2 ; 58 f d o u b l e p r i m e s t a r =−4∗L / b e t a ^2∗ o n e s ( s i z e ( t h e t a s t a r ) ) ; 60 %b u i l d t h e f o l l o w e r m o t i o n p r o f i l e s by c o n c a t e n a t i n g f u n c t i o n s f =[ f s s t a r ] ; 62 f p r i m e =[ f p r i m e f p r i m e s t a r ] ; f d o u b l e p r i m e =[ f d o u b l e p r i m e f d o u b l e p r i m e s t a r ] ; 64 %p a r t 2 66 t h e t a s t a r =[ b e t a / 2 : p i / 1 8 0 : b e t a ] ; %m u s t be i n r a d i a n s s s t a r = L∗(2 −4∗( t h e t a s t a r / b e t a ) + 2 ∗ ( t h e t a s t a r / b e t a ) . ^ 2 ) ; 68 f p r i m e s t a r =−4∗L / b e t a + 4∗L∗ t h e t a s t a r / b e t a ^ 2 ; f d o u b l e p r i m e s t a r =4∗L / b e t a ^2∗ o n e s ( s i z e ( t h e t a s t a r ) ) ; 70 %remove r e p e a t e d e l e m e n t t o e n s u r e t h e a r r a y s a r e t h e same s i z e 72 s s t a r ( 1 ) = [ ] ; fprimestar (1)=[]; 74 f d o u b l e p r i m e s t a r ( 1 ) = [ ] ; 76 %b u i l d t h e f o l l o w e r m o t i o n p r o f i l e s by c o n c a t e n a t i n g f u n c t i o n s f =[ f s s t a r ] ; 78 f p r i m e =[ f p r i m e f p r i m e s t a r ] ; f d o u b l e p r i m e =[ f d o u b l e p r i m e f d o u b l e p r i m e s t a r ] ; 80 t h e t a s t a r = [ 0 : pi / 1 8 0 : beta ] ; 82 t h e t a =[ t h e t a t h e t a s t a r + t h e t a ( end ) ] ; 117 7.4. Cam Design 84 %P l o t t h e cam f o l l o w e r p r o f i l e F= f i g u r e ( 1 ) 86 s u b p l o t ( 3 , 1 , 1 ) p l o t ( t h e t a ∗ 1 8 0 / pi , f ) 88 a x i s t i g h t g r i d on 90 x l a b e l ( ’Cam a n g l e \ t h e t a , deg ’ ) ylabel ( ’ f ( t h e t a ) , rad ’ ) 92 t i t l e ( ’ K i n e m a t i c c o e f f i c i e n t s f o r Cam F o l l o w e r R o t a t i o n ’ ) subplot (3 ,1 ,2) 94 p l o t ( t h e t a ∗ 1 8 0 / pi , f p r i m e ) axis tight 96 g r i d on x l a b e l ( ’Cam a n g l e \ t h e t a , deg ’ ) 98 y l a b e l ( ’ f ^ \ p r i m e ( \ t h e t a ) ’ ) subplot (3 ,1 ,3) 100 p l o t ( t h e t a ∗ 1 8 0 / pi , f d o u b l e p r i m e ) axis tight 102 g r i d on x l a b e l ( ’Cam a n g l e \ t h e t a , deg ’ ) 104 y l a b e l ( ’ f ^ { \ p r i m e \ p r i m e } ( \ t h e t a ) ’ ) s a v e a s ( F , ’ Cam Fo l l o w erM o t i o n . e p s ’ ) 106 %Now t h a t t h e cam f o l l o w e r k i n e m a t i c p r o f i l e s a r e known , 108 %we can d e s i g n t h e d i s k p r o f i l e t h a t g e n e r a t e s t h a t m o t i o n . 110 %G i ven cam s y s t e m v a l u e s : r b =70 %cm 112 X=130 %cm Y=100 %cm 114 d =200 %cm ( t h i s i s t h e l e n g t h o f t h e f o l l o w e r e =50 %cm 116 %Compute k e y p a r a m e t e r s f o r cam s y s t e m 118 a l p h a 0 = p i /2 − a ta n2 (Y , X)− a c o s ( ( r b +e ) / s q r t (X^2+Y^ 2 ) ) a l p h a = a l p h a 0 + f ; %c o n v e r t f t o r a d i a n s 120 d e l t a c =(X∗ c o s ( a l p h a )−Y∗ s i n ( a l p h a ) ) . / ( 1 + f p r i m e ) ; 122 %d e t e r m i n e t h e p o i n t o f c o n t a c t b e t w e e n t h e cam and t h e f o l l o w e r xc=X−d e l t a c . ∗ c o s ( a l p h a )− e ∗ s i n ( a l p h a ) ; 124 yc=Y+ d e l t a c . ∗ s i n ( a l p h a )− e ∗ c o s ( a l p h a ) ; 118 7.4. Cam Design 126 r c = s q r t ( xc . ^ 2 + yc . ^ 2 ) ; gammac= a ta n2 ( yc , xc ) ; 128 %d e t e r m i n e t h e l o c a t i o n o f t h e r a d i a l i n r e l a t i o n t o a 130 %r e f e r e n c e on t h e r o t a t i n g cam : b e t a =gammac−t h e t a ; 132 134 b i g R a d i u s =max ( r c ) 136 F= f i g u r e ( 2 ) p o l a r ( beta , r c ) 138 ho l d on p o l a r ( beta , o n e s ( s i z e ( b e t a ) ) ∗ rb , ’ g ’ ) 140 p o l a r ( beta , o n e s ( s i z e ( b e t a ) ) ∗ b i g R a d i u s , ’ r ’ ) ho l d o f f 142 t i t l e ( ’Cam p r o f i l e i n p o l a r form ’ ) saveas (F , ’ CamProfile_polar . eps ’ ) 144 F= f i g u r e ( 3 ) 146 p l o t ( [ 0 r c . ∗ c o s ( b e t a ) ] , . . . [ 0 r c . ∗ s i n ( b e t a ) ] , r b ∗ c o s ( b e t a ) , r b ∗ s i n ( b e t a ) , ’−− ’ , . . . 148 bigRadius ∗ cos ( beta ) , bigRadius ∗ s i n ( beta ) , ’ : ’ ) ho l d on 150 i =1 p l o t ( [ X X−e ∗ s i n ( a l p h a ( i ) ) xc ( i ) . . . 152 X−e ∗ s i n ( a l p h a ( i )) − d∗ c o s ( a l p h a ( i ) ) ] , [Y Y−e ∗ c o s ( a l p h a ( i ) ) yc ( i ) . . . 154 Y−e ∗ c o s ( a l p h a ( i ) ) + d∗ s i n ( a l p h a ( i ) ) ] , ’−ok ’ ) axis equal 156 ho l d o f f x l a b e l ( ’ x ( cm ) ’ ) 158 y l a b e l ( ’ y ( cm ) ’ ) saveas (F , ’ CamSystemConfiguration . eps ’ ) 160 F= f i g u r e ( 4 ) 162 a x i s ([ −100 160 −120 1 8 0 ] ) axis equal 164 v= a x i s %P l o t t h e m o t i o n o f t h e cam 166 f o r i = 1 : l e n g t h ( t h e t a ) 119 7.4. Cam Design 168 170 172 174 176 p l o t ( [ 0 r c . ∗ cos ( beta + t h e t a ( i ) ) ] , . . . [0 r c . ∗ s i n ( beta + t h e t a ( i ) ) ] , . . . [X X−e ∗ s i n ( a l p h a ( i ) ) xc ( i ) . . . X−e ∗ s i n ( a l p h a ( i )) − d ∗ c o s ( a l p h a ( i ) ) ] , . . . [Y Y−e ∗ c o s ( a l p h a ( i ) ) yc ( i ) . . . Y−e ∗ c o s ( a l p h a ( i ) ) + d ∗ s i n ( a l p h a ( i ) ) ] , ’−ok ’ ) axis (v) t i t l e ( ’ S i m u l a t e d Cam Motion ’ ) x l a b e l ( ’ x ( cm ) ’ ) y l a b e l ( ’ y ( cm ) ’ ) M( i )= g e t f r a m e ( ) ; 178 end %make a m o vi e 180 m o v i e 2 a v i (M, ’ CamMotion . a v i ’ ) The graphs generated with this program are shown in Figs. 7.2-7.3 A movie of this cam system can be seen at: http://personal.utulsa.edu/~jeremy-daily/ME3212/CamMotion.avi 120 7.4. Cam Design 121 Kinematic coefficients for Cam Follower Rotation f(theta), rad 0.4 0.3 0.2 0.1 0 0 50 100 150 200 Cam angle θ, deg 250 300 350 0 50 100 150 200 Cam angle θ, deg 250 300 350 0 50 100 150 200 Cam angle θ, deg 250 300 350 f′(θ) 0.2 0 −0.2 f′′(θ) 0.5 0 −0.5 Figure 7.2.: Cam Follower Motion Profiles for the example. 7.4. Cam Design 122 100 80 60 40 y (cm) 20 0 −20 −40 −60 −80 −100 −100 −50 0 50 100 x (cm) Figure 7.3.: Cam Follower Motion Profiles for the example. The dashed line represents the base circle. The cam rotates counterclockwise. 7.5. Homework Problem Set 8 123 7.5. Homework Problem Set 8 1. Plot the acceleration profile from the displacement diagram in figure 7.21 of Cleghorn’s text. Also, indicate the values of the jerk function at key points on the graph. 2. Given a base circle diameter of 4 cm, and angular velocity of 20 rad/s, an offset of 1.5 cm, and the follower motion described in the table below: Interval Initial Angle Final Angle Type of Motion Rise or Return 1 2 3 4 0 120 240 330 120 240 330 360 Cycloidal Dwell Harmonic Dwell 1.2 cm 0 -1.2 cm 0 a) Plot the displacement, velocity, acceleration, and jerk profiles for a complete turn of the cam. b) Determine the disk cam profile. Plot this profile in rectangular (x, y) coordinates using Matlab. Show the center of rotation. c) Determine the minimum width of the cam follower face. d) Determine the profile if the base diameter was 0.5 inches. Are there any issues with this cam? 8. Gears 8.1. Introduction 8.1.1. Cog and Lantern Gears 8.1. Introduction 8.1.2. Common Types of Gears • Spur Gears • Helical Gears • Miter Gears • Herringbone Gears • Plain Bevel Gears • Spiral Bevel Gears • Hypoid Gears • Worm and Wheel Gears 125 8.2. Fundamental Law of Gearing 8.2. Fundamental Law of Gearing 8.3. Conjugate Profiles and Involutometry 126 8.3. Conjugate Profiles and Involutometry 127 8.3.1. The Involute Curve b For two gears in a mesh: See Cleghorn’s Section 5.5 b b 8.3.2. Cycloidal Profiles 8.3.3. Gear Sizing and Terminology Know what the following terms mean and understand how to calculate them 8.3. Conjugate Profiles and Involutometry • Center to Center Distance • Addendum • Dedendum • Clearance • Circular Pitch • Diametrical Pitch • Module • Pressure angle • Contact Ratio • Backlash • Interference • Undercutting 128 8.4. Homework Problem Set 9 8.4. Homework Problem Set 9 1. (Book Problem 5.5) Two spur gears have a diametrical pitch of 5 /in, a magnitude of the speed ratio of 0.20, and a center-to-center distance of 12 in. How many teeth do the gears have? 2. (Book Problem 5.8) A gear with a diametrical pitch of 3 /in and 20◦ full depth involute form has 35 teeth and meshes with a 70-tooth gear. The larger gear rotates at 300 rpm CW. Both gears have external teeth. Determine a) the pitch circle diameters b) the base circle radius of the smaller gear c) the circular pitch d) the center-to-center distance e) the rotational speed of the smaller gear f) the contact ratio 129 8.5. Gear Train Analysis 8.5. Gear Train Analysis 8.5.1. Taxonomy of gear trains: 1. Ordinary a) Simple b) Compound 2. Planetary (Epicyclic) a) Single Stage b) Multiple Stage 130 8.5. Gear Train Analysis 131 8.5.2. Gear Train Ratio 8.5.3. Idler Gears 8.5.4. Compound Gear Trains Example: Transmission See Cleghorn’s Example 6.1 8.6. Homework Problem Set 10 8.6. Homework Problem Set 10 1. Book Problem P6.1 2. Book Problem P6.7 3. Book Problem P6.10 4. Book Problem P6.12 5. Book Problem P6.15 132 8.7. Reverted Gear Train Design 8.7. Reverted Gear Train Design A reverted gear train is an in-line gear train. 8.7.1. Design Considerations • Don’t go too small • Keep a “hunting” condition 133 8.8. Planetary Gear Trains 134 8.8. Planetary Gear Trains Example: Rescue Winch Gears, Automatic Transmissions 8.8.1. Advantages 1. 2. 3. 4. 5. 8.8.2. Vector Approach to Planetary Gear Train Analysis b b b b Define some Vectors: ~rA : 8.8. Planetary Gear Trains ~rP : ~rA/P : ~rB : ~rB/P : 135 8.8. Planetary Gear Trains 136 8.8.3. Tabular Planetary Gear Train Analysis b b b b 1. 2. 3. See Cleghorn’s Section 4.4.2 8.8. Planetary Gear Trains 137 Example: Ns = 34, NR = 78, N p = 22, the sun gear is the input, the ring gear is fixed, and the planet carrier is the output. Build and analysis table: Component Gear 1 (Sun) ω1 Crank (Carrier) ωarm Gear 3 (Planet) ω3 Gear 4 (ring) ω4 All Turn at x rpm Crank is Fixed, Sun turns at y Absolute Speeds Example: Ns = 34, NR = 78, N p = 22, the sun gear is fixed, the ring gear is the output, and the planet carrier is the input. Use the same analysis table as before. 8.8. Planetary Gear Trains 138 8.8.4. Compound Planetary Gear Trains 6 5 4 3 2 1 0 -1 -2 -3 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 Example: an electric winch gear train where NS1 = 34, NP1 = 22, NS2 = 26, NP2 = 30, and NR = 78. See Cleghorn’s Section 6.5 Table 1: First Stage Component Gear 1 (Sun) ω1 All Turn at x rpm Crank is Fixed, Sun turns at y Absolute Speeds Table2: Second Stage Crank (Carrier) ωarm Gear 3 (Planet) ω3 Gear 4 (ring) ω4 8.8. Planetary Gear Trains Component All Turn at x rpm Crank is Fixed, Sun turns at y Absolute Speeds Gear 1 (Sun) ω1 139 Crank (Carrier) ωarm Gear 3 (Planet) ω3 Gear 4 (ring) ω4 8.8. Planetary Gear Trains 140 8.8.5. Plotting Planetary Gears The following program will draw the layout of a three-gear planetary gear train: 2 4 6 8 10 12 14 16 18 r 1 =3 r 2 =2 r 3 = r 1 +2∗ r 2 X1 = 3 ; Y1 = 7 ; X2 = 9 ; Y2 = 7 ; X3=X1 ; Y3=Y1 ; t h e t a 1 =.5 t h e t a 2 =.6 t h e t a 3 =.7 t h e t a = l i ns pa ce (0 ,2∗ pi ) ; x1 =[X1 X1+ r 1 ∗ c o s ( t h e t a 1 + t h e t a y1 =[Y1 Y1+ r 1 ∗ s i n ( t h e t a 1 + t h e t a x2 =[X2 X2+ r 2 ∗ c o s ( t h e t a 2 + t h e t a y2 =[Y2 Y2+ r 2 ∗ s i n ( t h e t a 2 + t h e t a x3 =[X3 X3+ r 3 ∗ c o s ( t h e t a 3 + t h e t a y3 =[Y3 Y3+ r 3 ∗ s i n ( t h e t a 3 + t h e t a p l o t ( x1 , y1 , x2 , y2 , x3 , y3 ) axis equal )]; )]; )]; )]; )]; )]; 8.8. Planetary Gear Trains 141 14 12 10 8 6 4 2 0 -4 -2 0 2 4 6 8 10 Figure 8.1.: Output from the code listing to plot the configuration of a planetary gear train. 8.9. Differential Gear Trains 142 8.9. Differential Gear Trains 8.9.1. Ackerman Steering b See Cleghorn’s Section 6.5 8.9. Differential Gear Trains 143 Example:When a vehicle is in a turn, determine a) the speed of each wheel and b) the angular velocity of the planet carrier, c) the driveshaft speed. b 8.9. Differential Gear Trains 144 A. Mechanisms Design Project A computer mechanism design project will be given in class. You will have the choice of desiging one of the following: • Moving batters tee • Runner friendly stroller • Air-bag module near-deployment mechanism • Remote motorcycle braking system • Scissor lift safety mechanism A.1. Project Proposal A 1 page design proposal in a formal memo format is required from each student that clearly identifies the following: • Definition of the project • Customer requirements • Design constraints • Project schedule • Linkage concepts (i.e. 4-bar, slider-crank, or some combination of linkages) A.2. Hand Sketches The hand sketch will have the skeleton diagram all parts of the mechanism sketched out with appropriate labels. The lengths of the links are not known yet and should be represented as variables. The assembly will need to be sketched with key locations. Finally, the loop closure vectors and position vectors will need to be defined. All sketches must be made with quad ruled graph paper, a straightedge and a compass. The sketches must be neat and well labeled. Only one or two parts should be sketched on an 8.5x11 inch page. A.3. Geometric Constraint Programming Neatness will be 25% of the grade for these sketches. Hand Sketches are due on: ______________ A.3. Geometric Constraint Programming Use geometric constraint programming techniques to determine critical dimensions of the mechanism. Use a single rigid triangle to represent the couplers. Use the Tools -> Options dialog to change units and turn off automatic constraints. The print out of the geometric constraint programming analysis and a list of all critical dimensions corresponding to the variables in the hand sketch are to be turned in. Also, the hand sketches are to be corrected (if necessary) and resubmitted. Be sure to include the location of the link attachments to the frame. The geometric constraint programming analysis is due on:________________________ A.4. SolidWorks Parts and Assembly Create SolidWorks parts for all components of the mechanism to include bearings, pins, bolts and the frame. The product will work in only 2 dimensions but will be constructed in three dimensions. All joints must be in double shear to maintain strength and reduce out of plane twisting. An example of building a joint would be to use flange bearings and a shoulder bolts as seen in Figs. A.1 on the next page and A.2 on page 148Another option is to use regular hex bolts and rod ends as seen in Fig. .The following components can be obtained from an industrial supply company, the ones shown herein are available at http://www.mcmaster.com. Also, CAD drawings for some parts are available from some vendors. All parts must be compatible so you should pick thicknesses to match the bearings and shoulder bolts. A hydraulic cylinder is available for your design model in two parts: the cylinder and the ram. Both parts must be assembled to make the system work. A clevis pin should be used to attach the cylinder base to the frame and a female thread rod end should be used to attach the ram to the lifting plates. An example of a rod end is shown in Fig. A.3 on page 149. The technical diagram of the rod end is shown in Fig. A.4 on page 150. Connect the rod end to the lifting link using a shaft held in place with retaining rings. The retaining rings are shown in Fig. A.5 on page 151. An example of the technical drawing for the shoulder screw is available at www.mcmaster.com and is seen in Fig. A.6 on page 152. 146 A.4. SolidWorks Parts and Assembly 147 Figure A.1.: Flanged Sleeve Bearing description from http://www.mcmaster.com. This is an oil impregnated bronze bearing that does not need lubrication. Produce a Bill of Materials that includes the following entries: Quantity, Description, Source, Part number, Price. If something is not available from a vendor, then mark it as “in-house.” The part numbers should correspond to the labels in your original hand drawings. For example Qty Description Source Part Number Price Total 8 2 .. . 1”x1-1/2” Shoulder Bolts Rear Guide Links .. . McMaster-Carr In-house .. . 91259A132 r2 .. . $16.82 TBD .. . $134.56 .. . Grand Total Produce full page engineering drawings to manufacture each part. Include all pertinent dimensions. Drawings are not required for items available from a vendor, only items in the bill of materials whose source is in-house need to be drawn. Create a SolidWorks assembly to demonstrate the functionality of the mechanism. No parts should bind or interfere. Apply a linear motor to the hydraulic cylinder and produce an animation of the assembly. Technical drawings of each part, an image of the assembly in the low position, an image of the assembly in the up position, and a bill of materials are due on the last day of classes. A.4. SolidWorks Parts and Assembly Figure A.2.: Shoulder Screw description from http://www.mcmaster.com. There are also metric equivalent sizes that can be specified. 148 A.4. SolidWorks Parts and Assembly Figure A.3.: Rod end description from http://www.mcmaster.com. These can be found in both right hand thread and left hand thread configurations. A jam nut should always be used to secure the rod end. 149 A.4. SolidWorks Parts and Assembly Figure A.4.: Rod End drawing to interface with the hydraulic cylinder. 150 A.4. SolidWorks Parts and Assembly Figure A.5.: External retaining ring description and drawing from www.mcmaster.com. These are also known as snap rings. 151 A.4. SolidWorks Parts and Assembly Figure A.6.: Technical Drawing of a Shoulder Screw from www.mcmaster.com. 152