modélisation mathématique du pressage à chaud des panneaux mdf
Transcription
modélisation mathématique du pressage à chaud des panneaux mdf
ZANIN KAVAZOVIĆ MODÉLISATION MATHÉMATIQUE DU PRESSAGE À CHAUD DES PANNEAUX MDF Couplage du modèle mécanique avec le modèle couplé de transfert de chaleur et de masse Thèse présentée à la Faculté des études supérieures de l’Université Laval dans le cadre du programme de doctorat en mathématiques pour l’obtention du grade de Philosophiae Doctor (Ph.D.) DÉPARTEMENT DE MATHÉMATIQUES ET DE STATISTIQUE FACULTÉ DES SCIENCES ET DE GÉNIE UNIVERSITÉ LAVAL QUÉBEC 2011 © Zanin Kavazović, 2011 ii Résumé Dans la présente thèse, nous nous intéressons aux phénomènes physiques se déroulant durant le processus de pressage à chaud des panneaux de fibres de bois (MDF). La nonlinéarité et la forte interdépendance des phénomènes instationnaires de transfert de chaleur et de masse et du pressage mécanique de l’ébauche de fibres rendent leur modélisation et analyse non triviales. Dans un premier temps, nous avons effectué une étude de sensibilité portant sur le modèle de transfert de chaleur et de masse proposé par Thömen et Humphrey en 2006. Dans cette étude de sensibilité, nous avons déterminé l’impact de la variabilité des propriétés matérielles, des modèles de sorption, des conditions aux limites et de la teneur en humidité initiale sur les variables d’état et les résultats numériques du modèle mathématique. Afin de mieux tenir compte des interactions complexes entre les différents processus physiques, nous avons ensuite proposé un modèle mathématique global tridimensionnel couplé modélisant le processus de pressage à chaud en lot (batch pressing). Le modèle global est constitué de deux entités distinctes, soient le modèle mécanique et le modèle couplé de transfert de chaleur et de masse. Dans cette première phase de développement, la compression de l’ébauche est représentée par un modèle élastique vieillissant que nous avons exprimé en formulation quasi-statique incrémentale. Les variables d’état pour ce modèle sont l’incrément de déplacement et l’incrément de contrainte. Tous les calculs se font sur une géométrie mobile dont la déformation (compression) est une conséquence de la fermeture de la presse. Le développement du profil de densité est ainsi calculé dynamiquement à chaque pas de temps. Quant aux phénomènes de transfert de chaleur et de masse, ils sont modélisés par un système couplé constitué de trois équations de conservation, notamment la conservation de la masse de l’air et de la vapeur ainsi que la conservation de l’énergie. Les équations sont exprimées en fonction de trois variables d’état, soient la température et les pressions partielles de l’air et de la vapeur. Le modèle global est discrétisé par la méthode des éléments finis et les systèmes résultant ont été résolus grâce au logiciel MEF++ développé au GIREF (Groupe interdisciplinaire de recherche en éléments finis, Université Laval). Les simulations numériques ont été menées aussi bien en deux qu’en trois dimensions. Les résultats numériques de température et de pression gazeuse ont été comparés aux mesures prises au laboratoire du CRB (Centre de recherche sur le bois, Université Laval) lors d’un procédé de pressage en lot. Une bonne concordance entre les résultats numériques et expérimentaux a été constatée. Afin d’enrichir le modèle proposé, les futurs développements devraient traiter de la nature viscoélastique et plastique de l’ébauche soumise au pressage à chaud. Il demeure néanmoins clair que la qualité des prédictions produites par des modèles numériques dépendra toujours en grande partie de la disponibilité et de la qualité des valeurs caractérisant les propriétés physiques et matérielles du produit à l’étude. Afin de combler de nombreuses lacunes à ce chapitre, nous ne pouvons qu’encourager les recherches menant à une meilleure connaissance de ces propriétés. iii Abstract In this thesis, we study the physical phenomena involved during hot pressing process of medium density fiberboard mats (MDF). Non linear nature and strong interdependency of unsteady phenomena of heat and mass transfer and mechanical pressing of fiber mats make the modeling and analysis of these processes difficult. Firstly, we have conducted a sensitivity study on the heat and mass transfer model proposed by Thömen and Humphrey in 2006. That sensitivity study helped to determine the impact of variable mat material properties, sorption models, boundary conditions, and initial moisture content on the state variables and on the numerical results of the mathematical model. To better take into account complex interactions between different physical processes, we have further developed a global coupled three-dimensional mathematical model aimed to simulate the hot pressing process in a batch press. Our global model is made of two distinct entities: a mechanical model and a coupled heat and mass transfer model. This thesis represents the first phase of development where the compression of the mat is described by an aging elastic model which was expressed in a quasi-static incremental formulation. The state variables for this model are displacement and stress increments. All calculations were performed on a dynamically changing geometry and deformation (compression) of the geometry is a consequence of press closing dynamics. Hence, development of the density profile is calculated at each time step. The heat and mass transfer phenomena are modeled by a coupled system of three conservation equations: conservation of mass of the air and the water vapor, and conservation of energy. The system is expressed as a function of three state variables: temperature, partial air pressure and partial vapor pressure. The global model is discretized in space by means of the finite element method and solved by the MEF++ software developed by GIREF (Groupe interdisciplinaire de recherche en éléments finis, Laval University). Numerical simulations were conducted in 2D and 3D. Numerically predicted temperature and gas pressure were compared to experimental data obtained during batch pressing experiments in the CRB (Centre de recherche sur le bois) laboratory. A good overall agreement was found between numerical and experimental results. To improve the proposed model, future developments should include viscoelastic and plastic nature of the mat undergoing hot pressing process. It is however clear that the quality of predictions delivered by numerical models will largely be dependent upon availability and precision of parameters characterizing physical and material properties of the mat under hot pressing conditions. Further research in that area is strongly recommended. Avant-Propos J’exprime ma gratitude aux membres du jury, professeurs Patrick Perré, Robert Guénette, José Urquiza, Alain Cloutier et André Fortin, qui ont accepté d’examiner cette thèse malgré un emploi de temps très chargé. Messieurs, vos commentaires constructifs et suggestions ont grandement contribué à la qualité du document final. Je vous remercie pour vos efforts, votre professionnalisme et le temps que vous avez consacré à la correction de la thèse. Cette thèse de doctorat fait partie d’un projet stratégique du CRSNG portant sur la modélisation numérique en sciences du bois. Le présent travail est le fruit de la collaboration scientifique entre deux centres de recherche de l’Université Laval, soient le Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF) et le Centre de Recherche sur le Bois (CRB). Nous soulignons l’important appui financier des partenaires gouvernementaux et industriels, soient le Conseil de Recherche en Sciences Naturelles et Génie (CRSNG) du Canada, FPInnovations Québec, Uniboard Canada et Boa-Franc. La thèse a été réalisée sous la direction d’André Fortin, professeur titulaire au Département de mathématiques et de statistique de l’Université Laval et directeur du GIREF, et sous la co-direction d’Alain Cloutier, professeur titulaire au Département des sciences du bois et de la forêt de l’Université Laval et directeur du CRB. Un apport scientifique considérable, constant et essentiel à la réalisation des travaux de la thèse a été assuré par Jean Deteix, professionnel de recherche au GIREF. Les différentes parties de cette thèse ont été présentées dans plusieurs congrès et conférences, que ce soit sous forme de présentation orale ou d’affiche. Présentations orales: 14th European Conference on Composite Materials, 7-10 Juin 2010, Budapest, Hongrie 4th European Conference on Computational Mechanics, 16-21 Mai 2010, Paris, France 4th International Conference on Advanced Engineered Wood and Hybrid Composites, 6-10 Juillet 2008, Bar Harbor, Maine, USA v 76-ième Congrès de l’ACFAS, 5-9 Mai 2008, Québec, Québec, Canada 9-ième Colloque Panquébécois des étudiants (ISM), 11-13 Mai 2007, Université Concordia, Montréal, Québec, Canada 8-ième Colloque Panquébécois des étudiants (ISM), 23-25 Mai 2006, Université Laval, Québec, Québec, Canada Présentations par affiche : 6-ièmes Journées Montréalaises de Calcul Scientifique, 4-6 Mai 2009, CRM, Université de Montréal, Montréal, Canada 51st Annual Convention of the Society of Wood Science and Technology, 10-12 Novembre 2008, Concepción, Chile Prix: 3-ième prix à Student Poster Competition Awards, SWST à Concepción, Chile 4-ièmes Journées Montréalaises de Calcul Scientifique, 16-17 Avril 2007, CRM, Université de Montréal, Montréal, Canada vi Remerciements Mes premiers remerciements vont à ma famille scientifique du GIREF. Dans la dernière décénie, le GIREF était ma maison, mon milieu de vie, mon univers. Le GIREF, ce sont des gens pationnés, pleins d’humour, de joie de vivre et en même temps des gens sérieux, rigoureux et exigeants sur le plan scientifique. La rigueur et les standards de qualité y sont très élevés. On y apprend vite qu’une chose qui mérite d’être faite mérite d’être bien faite. On y enseigne la rigueur et l’honnêteté scientifiques, le travail acharné et le jugement critique. L’ambiance familiale et fraternelle qui y règne fait du GIREF un milieu de travail agréable, paisible et rassurant. La diversité de cultures et d’opinions nous enrichit et donne une nouvelle dimension à notre vision du monde et de la vie. Tous ces gens uniques et cette ambiance merveilleuse font en sorte qu’une fois qu’on les a connus, on a du mal à partir du GIREF. Tous ceux qui sont passés par le GIREF savent qu’ils en sont sortis de meilleurs être humains qu’ils ne l’étaient le jour où ils sont arrivés. Des connaissances, l’homme en acquiert et en perd en cours de route, mais les qualités humaines qu’il gagne au gré des rencontres demeurent ancrées en lui à jamais. J’adresse mes remerciements et mes respects à mes deux directeurs de thèse, professeur André Fortin (directeur) et professeur Alain Cloutier (co-directeur), qui ont travaillé dur pour que ce magnifique projet voit le jour et m’en ont confié une partie. Je les remercie pour leur confiance, l’appui et le soutien inconditionnels et constants durant toutes ces années. Messieurs, j’ai appris beaucoup avec vous et, surout, j’ai appris beaucoup de vous : l’honnêteté scientifique, la transparence, le dévouement au travail et l’ouverture d’esprit. Votre expertise, rigueur et vos encouragements m’ont aidé à persévérer et à mener ce travail à bien. Votre contribution à mon développement tant sur le plan scientifique que personnel est très importante. Il y a de ces moments dans la vie où le cœur et la raison s’affrontent et vous m’avez aidé à voir plus clairement à travers l’écran de fumée qui se dressait sur le champ de bataille. En réalité, durant cette thèse, j’avais trois directeurs. Le troisième directeur, celui qui officiellement était inexistant mais qui, dans les faits, était omniprésent, est Jean Deteix. Jean était le pilier de ce projet. Jean, ton soutien scientifique et moral au quotidien m’ont été d’une aide inestimable. C’est simple, je pense que sans toi, je n’y serais pas arrivé. Je vii me rappelle encore de ces moments difficiles, ardus, frustrants et durs pour le moral, surtout au début du projet. Grâce à ta présence quotidienne, ton soutien et ton humour (ah, ton humour dans les moments noirs d’une longue journée), je m’en suis sorti. Comme je l’ai répété souvent, durant cette thèse, deux saints veillaient sur moi : saint Jean (Deteix) et saint Georges (Djoumna). Les gars, vous étiez une source inépuisable de soutien et d’encouragement. Est-ce qu’un jour je pourrai vous remercier assez ? Je témoigne également ma reconnaissance aux messieurs Pierre Blanchet et Gilles Brunette de FPInnovations Québec pour l’appui indéfectible qu’ils ont apporté au projet, et ce dès les premiers instants. Cristian Tibirna. Tu as pris soin de moi dès mon premier jour au GIREF. Tu m’as enseigné à coder de manière propre et structurée et ça m’a forcé à avoir une pensée structurée. Tu n’hésites pas à me critiquer quand je fais ou dis des niaiseries, et Dieu sait que j’en suis capable, et tu es toujours là pour me donner une tape sur l’épaule quand je fais les choses suivant les standards du GIREF. Tu es une inspiration, un exemple vivant de curiosité, de passion d’apprendre et de découvrir. Quand j’ai besoin de conseils ou que je veux savoir si je suis sur la bonne piste, je viens te voir et tu as toujours des paroles sages et justes. Il y a un peu de toi dans chacun de nous et dans chacune des thèses qui se sont faites au GIREF. Mais tu ne sais pas combien il me ferait plaisir si tu prenais enfin le temps de finir la tienne. Voilà, je promets de ne plus t’embêter avec mes ennuis de programmation. Il me semble que c’est une occasion à saisir. Mes profonds remerciements vont à Sylvie Lambert que j’appelle affectueusement la reine du GIREF. En plus de nous garder à l’abri d’innombrables tracasseries administratives, et elle est d’une efficacité redoutable dans ce domaine, Sylvie veille sur nous et notre bienêtre au quotidien. Sa présence rassure, son sourire, sa gaieté et bonne humeur rendent ces lieux agréables et paisibles. Un mot d’encouragement de sa part, un conseil, une discussion sur mille sujets nous donnent de l’énergie et nous propulsent vers de nouvelles réalisations. C’est à Sylvie qu’on doit beaucoup pour cette harmonie et ambiance familiale qui règnent au GIREF. viii Je me remémore de beaux moments, une ambiance hilarante au labo et de longues discussions avec Carl Robitaille. Carl et Cristian sont des philosophes dans l’âme et de redoutables débateurs. Je salue également la contribution d’Éric Chamberland dans mon développement professionnel. Son point de vue pratique et ses questions en apparence simples forcent souvent à une réflexion profonde. Ce fut un plaisir de grandir à vos côtés messieurs. Vous avez réussi à reformater mes méninges à quelques reprises. Je souligne l’attention, la patience sans borne et une aide soutenue de la part des muses du Département de mathématiques et de statistique, Sylvie Drolet et Suzanne Talbot. Depuis que je suis arrivé au Département, et je n’ose même plus compter les années, j’ai été témoin de leur passion et dévouement au travail. S’il y a une façon de vous éviter des complications adminstratives et d’accélérer le traitement de vos demandes, vous pouvez être assuré que ces deux anges vont tout faire pour y arriver. Mes dames, je vous admire et je vous avoue que, sans vous, le Département n’aurait pas le même charme. Je ne peux passer sous silence l’aide, support et les conseils reçus de la part du professeur Roger Pierre. Dans certains moments de doute, que ce soit sur le plan mathématique ou personnel, sa porte était toujours ouverte. Il prenait le temps de m’écouter, de discuter avec moi et il était généreux de conseils judicieux. En sortant de son bureau, les doutes s’étaient dissipés, mes idées étaient plus claires et ma confiance rétablie. Je lui suis également reconnaissant de m’avoir donné deux occasions d’enseigner. C’étaient des expériences très enrichissantes qui avaient un effet étonnamment relaxant sur moi. Lors de mes nombreuses visites au CRB, j’ai toujours été accueilli chaudement et avec un grand sourire des dames Guylaine Bélanger et Colette Bourcier. L’expertise et l’aide de David Lagueux ont été précieuses lors de la séance de pressage de panneaux MDF au laboratoire de pressage du CRB. Un immense merci à mon frère du destin André Guy Tranquille Temgoua et sa famille pour leur amour, soutien et encouragements, pour ces pauses-escapades de la monotonie de la vie d’étudiant et ses tracas, pour ces instants où le temps suspend son vol pour nous permettre de faire des crêpes avec les enfants et les voir grandir. ix Je remercie mes nombreux amis et collègues avec qui j’ai partagé ces belles années de découvertes, de joies, d’amitié, de déceptions (et oui, il y en avait), d’angoisse à l’approche d’un futur incertain et d’espoir que tout ça va passer et qu’un jour tout sera pour le mieux pour nous tous. Nous étions venus d’un peu partout et la vie nous a réunis au GIREF où, pendant des années, ceux qui étaient plus vieux prenaient soin des plus jeunes. À la mémoire de la belle gang : Fabien Youbissi, Georges Djoumna, Rym Jedidi, Mériem Saïd, Étienne Non, Abdoulaye Kane, Bocar Wane, Ngueye et Ndeye Thiam, Khalid Benmoussa, Aberrahman Elmaliki, Youssef Belhamadia, Benoît Pouliot, Emmanuelle Reny-Nolin, Mahmood Shabankhah, Babacar Toumbou, Michel Diémé, Yahya Ould Denna, Bassirou Toumbou. J’adresse des remerciements particuliers à Richard Bois pour ses nombreuses missions de sauvetage de mes présentations qui, sans lui, seraient beaucoup moins animées. Un clin d’œil à un ami de longue date, Rabah Hammoud, qui est une incarnation de la persévérance et du dur labeur jumelés à un esprit scientifique bouillant. À mon cher ami Nacer Mézouari, une anthologie des mathématiques appliquées : si seulement j’avais le quart de tes connaissances et de ta passion, je pense que je serais vraiment bon. Merci pour ces innombrables discussions et conseils fraternels qui ont grandement contribué à soulever le voile devant mes yeux. Comment exprimer ma reconnaissance et ma gratitude envers mes parents et ma sœur pour leur amour et leur soutien inconditionnels, pour leurs sacrifices, la patience et la tolérance? A-t-on vraiment à féliciter une colombe parce qu’elle sait voler ? Car, après tout, voler, c’est dans sa nature. Je ne le sais pas, mais on peut certainement l’admirer et prendre exemple sur elle, sur ses rêves de paix et de liberté. À vous qui avez su attendre patiemment et en silence, qui avez mis vos espoirs entre les mains de la foi inébranlable qu’un homme devrait toujours terminer le travail entamé, puisse cette thèse apporter la juste récompense à vos attentes et ainsi écourter la liste des rêves trahis. Aux amis perdus dans le brouillard des années de ce long périple, À ceux qu’on ne reverra plus mais dont le souvenir demeurera à jamais présent car eux aussi font partie de notre présent tout comme ils ont fait partie de notre passé. Au nom de tous ces moments de joie intense que le temps ne saurait effacer. Qu’est-ce que le temps devant l’éternité d’un instant de joie de l’âme ? Aux plaisirs de la compréhension, à l’euphorie de la découverte, À cet instant unique où l’intelligence prend conscience qu’entre ses mains respire l’essence même du phénomène physique qui la hante depuis. Puisse cette drogue être l’éternelle source de notre persévérance et endurance; Puisse elle nous amener à nous surpasser. Sinon, à quoi bon continuer ? xi Table des matières Résumé................................................................................................................................... ii Abstract................................................................................................................................. iii Avant-Propos .........................................................................................................................iv Remerciements.......................................................................................................................vi Table des matières ............................................................................................................... xii Liste des figures .................................................................................................................. xiii Introduction.............................................................................................................................1 Chapitre 1................................................................................................................................9 Étude de sensibilité d’un modèle numérique de transfert de chaleur et de masse durant le pressage à chaud des panneaux MDF .....................................................................................9 Chapitre 2..............................................................................................................................50 Modélisation numérique du processus de pressage à chaud des panneaux MDF ................50 Modèle couplé de transfert de chaleur et de masse ..............................................................50 Chapitre 3..............................................................................................................................88 Modélisation numérique du processus de pressage à chaud des panneaux MDF ................88 Couplage du modèle mécanique avec le modèle de transfert de chaleur et de masse ..........88 Conclusion ..........................................................................................................................129 Bibliographie ......................................................................................................................132 Liste des figures Chapitre 1 Figure 1.1. Géométrie 2D Figure 1.2. Résultats numériques et expérimentaux pour T et P Figure 1.3. Solutions pour P et M obtenues avec différents modèles de sorption Figure 1.4. Effets des modèles de sorption sur T, M et P Figure 1.5. Solutions pour P et M obtenues avec différentes valeurs de Minit Figure 1.6. Effets de Minit sur T, M et P Figure 1.7. Effets de KT sur T, M et P Figure 1.8. Effets de Kp sur T, M et P Figure 1.9. Effets de hT sur T, M et P Figure 1.10. Effets de hp sur T, M et P Figure 1.11. Évolution spatio-temporelle du profil vertical de densité anhydre p.16 p. 23-24 p. 25-26 p. 27-28 p. 29-30 p. 31-32 p. 33-34 p. 35-36 p. 37-38 p. 39-40 p. 41 Chapitre 2 Figure 2.1. Évolution de l’épaisseur de l’ébauche p. 56 Figure 2.2. Évolution spatio-temporelle du profil vertical de densité anhydre p. 57-58 Figure 2.3. Géométrie 2D p. 68 Figure 2.4. Résultats numériques et expérimentaux pour T et P p. 76 Figure 2.5. Résultats numériques pour M et h p. 77 Figure 2.6. Résultats numériques pour Pa et Pv p. 78 Figure 2.7. Résultats numériques pour le degré de polymérisation de la résine et le taux de polymérisation de la résine p. 79 Chapitre 3 Figure 3.1. Géométrie 3D Figure 3.2. Évolution de l’épaisseur de l’ébauche Figure 3.3. Prédiction numérique du profil vertical de densité Figure 3.4. Résultats numériques pour la contrainte verticale Figure 3.5. Résultats numériques et expérimentaux pour T et P Figure 3.6. Résultats numériques pour M et h Figure 3.7. Résultats numériques pour Pa et Pv Figure 3.8. Résultats numériques 2D versus 3D Figure 3.9. Résultats maillages raffinés Figure 3.10. Maillage concentré Figure 3.11. Résultats maillages concentrés Figure 3.12. Différentes procédures de fermeture Figure 3.13. Résultats numériques pour différentes procédures de fermeture Figure 3.14. Résultats numériques coupes 2D T, M et Pv p. 98-99 p. 101 p. 105-106 p. 107 p. 108 p. 109 p. 111 p. 112-113 p. 114 p. 115 p. 116 p. 118 p. 119 p. 121-122 xiv Introduction Au Canada et tout particulièrement au Québec, l’exploitation des ressources forestières est l’un des principaux moteurs de l’économie. La demande pour les panneaux MDF (Medium Density Fiberboard ou panneaux de fibres de densité moyenne) n’a cessé d’augmenter au cours de la dernière décennie. On s’en sert dans la fabrication de meubles, de portes d’armoires, de comptoirs de cuisine. Une version à plus haute densité (HDF, high density fiberboard) entre également dans la composition de planchers stratifiés (planchers d’ingénierie). Les panneaux MDF sont constitués de fibres de bois légèrement humides mélangées avec un adhésif thermodurcissable et une faible quantité de cire. Le tout est pressé jusqu’à une densité moyenne variant entre 500 et 850 kg / m3 à haute température (environ 200 C ) dans une presse en lot (batch press) ou une presse en continu durant une période variant entre 3 et 5 minutes. Puisque le temps de pressage affecte la productivité de la presse, tous les efforts pouvant contribuer à le diminuer sont bienvenus. La durée du pressage ainsi que le programme de fermeture de la presse sont ajustés en fonction des propriétés désirées du produit fini. En effet, l’opération de pressage constitue une étape cruciale dans le processus de fabrication des panneaux composites à base de bois. Les propriétés mécaniques et physiques du produit fini sont déterminées à sa sortie de la presse, en particulier le profil de densité, et dépendent grandement des conditions de pressage. Les expériences menées à l’usine peuvent s’avérer très coûteuses aussi bien en termes de matériel que de ressources humaines, sans compter la mise hors production d’une presse à des fins expérimentales. C’est ainsi que le développement de modèles mathématiques constitue une avenue prometteuse permettant de simuler virtuellement le processus de pressage. En effet, cela permet de faire des études sur l’ordinateur simulant avec aise différentes configurations initiales (teneur en humidité, proportion de résine, masse de fibres) et conditions de pressage (température de la presse, programme de pressage, durée du pressage). On obtient ainsi une assez bonne idée de l’influence de ces différents paramètres sur l’évolution et la distribution, entre autres, de la température, de la pression du gaz, du profil de densité et de la teneur en humidité dans le panneau. De plus, de nombreux phénomènes physiques, mécaniques et chimiques ont lieu simultanément lors du pressage de l’ébauche. Leur étendue varie dans le temps et suivant la localisation dans l’ébauche. La complexité et l’interdépendance de ces processus requièrent une étude théorique approfondie basée sur les principes fondamentaux de la physique. La compréhension fondamentale du processus de pressage est donc essentielle pour optimiser la vitesse de production, les coûts de production, la consommation d’énergie, l’optimisation et manipulation des propriétés de panneaux finis ainsi que le développement de nouveaux produits et technologies de production. Depuis des années, de nombreux chercheurs ont tenté de développer des modèles de plus en plus complets et complexes afin de représenter le plus fidèlement possible les phénomènes physiques qui interviennent lors du pressage à chaud des panneaux à base de bois. Ainsi, les chercheurs ont porté un intérêt tout particulier aux mécanismes de transfert de chaleur et de masse d’eau liée aux fibres de bois. De plus, des lois de comportement d’une complexité toujours croissante ont été développées afin de représenter au mieux la rhéologie d’un panneau lors de la compression. De nombreuses études portant sur les facteurs pouvant influencer ces mécanismes ont été menées dans les dernières six décennies. 2 Une série d’articles a été publiée par Bolton, Humphrey et Kavvouras en 1988 et 1989 (Bolton et Humphrey 1988; Bolton et al 1989b; Humphrey et Bolton 1989; Kavvouras 1977) faisant le point sur l’état de l’art à l’époque. Une revue de littérature exhaustive y a été faite et plusieurs facteurs influençant le pressage ont été abordés. Depuis lors, plusieurs études ont suivi menant à de nouvelles connaissances des phénomènes complexes qui se produisent durant le pressage. On sait ainsi que la température de la presse, la teneur en humidité de l’ébauche, la vitesse de fermeture de la presse et le temps de pressage sont des facteurs très importants. En effet, ils sont à l’origine des phénomènes de transfert de masse et de chaleur dans l’ébauche et influencent grandement ses propriétés mécaniques et, ultimement, le développement du profil de densité du panneau (Thömen et Ruf 2008). Une attention toute particulière doit donc être accordée au processus de transfert de chaleur et de masse et à son interaction avec les propriétés mécaniques de l’ébauche durant le pressage. Lors du pressage, la principale source de chaleur est celle fournie par les plaques chauffantes de la presse. La réaction exothermique de polymérisation de la résine fournit également de la chaleur mais en quantité nettement inférieure. Il en va de même pour la chaleur latente libérée lors de la condensation de la vapeur d’eau. Le principal transfert de chaleur des plaques chauffantes à l’ébauche se fait par contact direct, i.e. la conduction. La chaleur transférée à l’ébauche par le gaz chaud qui circule dans les espaces vides de l’ébauche est d’une importance moindre compte tenu de la faible masse de la vapeur d’eau dans l’ébauche et de sa capacité thermique (deux fois inférieure à celle des fibres). La cohésion des panneaux composites à base de bois dépend grandement de la force des liens entre les éléments de bois (fibres, particules, lamelles) créés par la polymérisation de la résine. La vitesse et l’étendue de la polymérisation de la résine sont donc des éléments fondamentaux dans la fabrication de panneaux. Les deux types de colle les plus fréquemment employés dans l’industrie de la fabrication de panneaux sont l’uréeformaldéhyde (UF) et le phénol-formaldéhyde (PF). Le coût plus faible de l’UF fait en sorte qu’elle est souvent privilégiée dans la pratique. Les deux colles sont des résines thermodurcissables et leur degré de polymérisation dépend directement de la température à l’intérieur de l’ébauche. Ainsi, des thermocouples ont communément été employés dès 1959 (Maku et al 1959 ; Strickler 1959) afin de surveiller la montée de la température dans l’ébauche. Une bonne polymérisation de la colle est nécessaire afin d’éviter la délamination du panneau. En effet, des zones de haute pression gazeuse se développent au centre du panneau et, au moment de l’ouverture de la presse, peuvent provoquer la délamination causant ainsi des pertes indésirables aux fabricants. Les fibres de bois ne sont jamais parfaitement sèches et ont une teneur en humidité qui avoisine habituellement 2%. L’adhésif qui est ajouté aux fibres est en solution aqueuse à pH légèrement basique afin d’empêcher sa polymérisation hâtive. L’ajout de cette eau augmente la teneur en humidité de l’ébauche de fibres. La teneur en humidité de l’ébauche se situe typiquement entre 6 et 12% au début du pressage et sa répartition est supposée uniforme dans l’ébauche. L’énergie fournie par les plateaux de la presse sert également à évaporer l’eau liée. Ainsi, plus la teneur en humidité de l’ébauche est élevée, plus la montée en température est retardée dans les zones éloignées de la surface du panneau. La teneur en humidité influence donc indirectement le processus de polymérisation de la résine. Les effets de la température et de la teneur en humidité sur l’évolution de la polymérisation ont 3 été étudiés par Humphrey et Ren (1989) et Humphrey (1996) alors qu’Ellis (1995) a fait une étude sur l’influence du temps de pressage sur la force des liens adhésifs. Ainsi, l’optimisation du temps de pressage et la qualité de la polymérisation passent par une meilleure compréhension des phénomènes de transfert de chaleur et de masse d’eau liée et leur distribution dans l’ébauche durant le processus de pressage (Pizzi 1994; García 2002). La chaleur fournie par les plateaux de la presse fait en sorte que les couches de surface atteignent rapidement une température élevée. L’eau liée présente dans ces couches s’évapore (changement de phase) et la vapeur d’eau est créée. Cela a pour conséquence une diminution de la teneur en humidité des couches de surface et une augmentation de la pression de vapeur. Le volume des espaces vides dans l’ébauche au début du pressage est d’environ 90% et se situe en moyenne aux alentours de 50% à la fin du processus de pressage. Cette grande proportion de vides facilite le transfert de la vapeur d’eau aussi bien vers les bords que vers le centre de l’ébauche. En effet, l’évaporation de l’eau liée au niveau de la surface en contact avec les plaques chauffantes crée une augmentation rapide de la pression partielle de la vapeur dans cette zone. Il en résulte un gradient de pression partielle de vapeur entre la surface et le centre de l’ébauche. Cela génère un flux de vapeur se déplaçant par diffusion moléculaire dans la phase gazeuse (espaces vides dans l’ébauche). Au début du pressage, ce mouvement se fait principalement vers le plan central, donc dans la direction perpendiculaire à la surface de l’ébauche. Dans son déplacement, la vapeur atteint les couches internes dont la température est plus basse ce qui favorise le processus de condensation. De telle sorte, la teneur en humidité locale près de la surface diminue et celle des régions plus proches du plan central de l’ébauche s’en trouve augmentée. Lorsque le front de hautes températures atteindra ces zones, l’eau liée qui y est présente va s’évaporer progressivement et par le même processus se déplacer vers le plan central de l’ébauche. Ce déplacement en cascades de l’eau liée se poursuit à travers l’épaisseur de l’ébauche jusqu’au plan central. C’est ainsi qu’à la fin du pressage on retrouve les plus grandes concentrations d’humidité dans le plan central du panneau. Une fois la température de la zone centrale suffisamment élevée, le processus d’évaporation reprendra et s’accompagnera d’une augmentation substantielle de la pression de gaz dans l’ébauche et d’une température plateau au centre de l’ébauche. Il en résultera alors un fort gradient de pression entre le plan central et les bords de l’ébauche provoquant un flux de gaz qui forcera l’air et la vapeur d’eau à s’échapper par les bords du panneau vers le milieu ambiant. Cela contribue à la diminution de la teneur en humidité du centre de l’ébauche, à l’augmentation de la température locale et finalement à la polymérisation de la résine dans la zone centrale. Une pression excessive, surtout en fin de pressage, peut causer la délamination du panneau. Afin de surveiller le développement de la pression dans l’ébauche, des sondes de mesure de pression ont été introduites dès les années 1967 (Denisov et Sosnin 1967 ; Kavvouras 1977, Kamke et Casey 1988 ; Steffen et al 1999). La précision, l’efficacité et le degré de sophistication des sondes et des thermocouples ont grandement évolué avec le temps. Le point culminant a été atteint lors de l’introduction du système de suivi de pressage PressMAN (Alberta Research Council 2003). Chaque sonde de ce système de pressage peut faire des mesures simultanées de la température et de la pression du gaz à l’intérieur de l’ébauche au cours du pressage. Le comportement de l’ébauche (constituée des fibres humides encollées et des espaces vides) en compression est assez complexe. En effet, en quelques instants, l’ébauche passe 4 d’un amas de fibres sans cohésion et de très faible densité (environ 50 kg / m3 ) à une ébauche compactée de densité moyenne de 700 kg / m3 (Wang et Winistorfer 2000a, b). La porosité (la proportion volumique des espaces vides) est très élevée (90%) au début du pressage et l’ébauche n’offre pratiquement aucune résistance mécanique à la compression. À mesure que le pressage avance, les espaces vides sont progressivement éliminés et la porosité diminue pour se stabiliser autour de 50% en moyenne (Bolton et Humphrey 1994). La répartition de la porosité n’est pas uniforme à travers l’épaisseur. Elle a un comportement opposé à celui de la densité. Ainsi, dans les couches près des surfaces en contact avec les plaques de la presse, la densité est très élevée alors que la porosité est faible. À l’opposé, la zone centrale a la densité la plus faible et la plus grande proportion d’espaces vides (Bolton et Humphrey 1994). Ces particularités de l’ébauche et les températures élevées développées durant le pressage posent des défis considérables lorsque vient le temps de déterminer expérimentalement les paramètres physiques et rhéologiques de l’ébauche en cours de pressage. Ainsi, dans les simulations numériques, on est souvent contraint d’utiliser des paramètres obtenus pour le bois ou pour d’autres types de panneaux (pas nécessairement des panneaux de fibres) à des températures inférieures à celles rencontrées lors du pressage. Tous ces facteurs combinés influent sur la qualité des résultats numériques. Au début, l’ébauche manque de consistance et répond instantanément à la sollicitation extérieure (la fermeture de la presse). Ce comportement s’apparente à une déformation élastique. Lorsque l’ébauche est assez compressée et qu’elle a atteint une certaine consistance, les parois cellulaires des fibres offrent une certaine résistance à la compression et créent un délai dans la progression de la déformation. La paroi cellulaire est composée de polymères naturels (lignine, cellulose, hémicellulose) qui sont à l’origine de ce comportement viscoélastique. La température et la teneur en humidité influencent les propriétés viscoélastiques de ces polymères (Wolcott et al 1990). Lorsque les contraintes deviennent trop importantes, les parois cellulaires cèdent. Le comportement non linéaire en compression des composites à base de bois est attribué à l’effondrement des parois cellulaires (Wolcott et al 1994). Même si les sollicitations extérieures étaient enlevées à ce moment, une partie des déformations demeureraient irréversibles (plasticité) à cause de l’effondrement des parois. Ces phases élastique, viscoélastique et plastique de l’ébauche sont grandement influencées par la température, la teneur en humidité et le degré de polymérisation de la résine. Une augmentation de la température et/ou de la teneur en humidité rend l’ébauche plus souple et donc davantage déformable. À l’opposé, une diminution aurait un effet durcissant ce qui la rendrait moins sujette à la déformation. Les variations internes de la température et de la teneur en humidité influencent donc les propriétés rhéologiques de l’ébauche et le développement du profil vertical de densité qui poursuit d’ailleurs sa formation même lorsque l’ébauche a atteint son épaisseur finale. La température élevée, l’humidité et la pression mécanique peuvent orchestrer des changements dans la structure des polymères de la paroi cellulaire. Ces changements font en sorte qu’une partie de la déformation visqueuse de la paroi devient irréversible (déformation plastique) même après le relèvement des contraintes extérieures. En plus de contribuer aux comportements élastique et viscoélastique, la polymérisation de la résine est en grande partie à l’origine de la plasticité de l’ébauche en ce sens qu’elle s’oppose à la récupération de la déformation initiale suite à l’ouverture de la presse. C’est la force des 5 liens mécaniques ou chimiques avec le bois créés lors de la polymérisation de l’adhésif qui empêche la délamination du panneau. La formation des liens adhésifs et la distribution de la température et de l’humidité à travers l’ébauche influencent de manière décisive les propriétés rhéologiques et le comportement de l’ébauche en compression. Cela a un grand impact sur la densification de différentes zones de l’ébauche et le développement du profil de densité du panneau. Ces variations locales de densité ont à leur tour une influence prépondérante sur la porosité locale, la perméabilité au gaz et la conductivité thermique dans ces régions. C’est ainsi que tous ces phénomènes physiques sont intimement liés les uns aux autres et s’influencent mutuellement. Le couplage entre les équations décrivant ces phénomènes est donc inévitable. De plus, le profil de densité joue un rôle capital dans la détermination des propriétés mécaniques du produit fini (García 2002). Wang et Winistorfer (2000a, b) et Wang et al (2001a, b) ont d’ailleurs publié une série d’études où, grâce aux rayons gamma et trois traceurs placés à des endroits stratégiques dans l’épaisseur de l’ébauche, ils ont pu observer le développement du profil de densité dans différentes conditions de pressage. L’appareillage sophistiqué et son coût prohibitif font en sorte que le développement des modèles mathématiques et des simulations numériques sont des outils incontournables dans la compréhension des phénomènes physiques qui se déroulent lors du pressage et peuvent contribuer à améliorer la qualité du produit fini. Les interactions entre les différents processus physiques qui surviennent pendant le pressage sont très complexes. Leur modélisation a commencé dans les années 1950 (Kull 1954) et se poursuit aujourd’hui. Les premiers modèles étaient simples et ne tenaient compte que de certains aspects de nombreux phénomènes physiques impliqués. Le premier modèle de transfert de chaleur et de masse basé sur les lois de conservation a été présenté par Humphrey en 1982 dans sa thèse de doctorat (Humphrey 1982). On y tenait compte du changement de phase, de la convection de vapeur et du transfert de chaleur par conduction et convection. Le modèle a été développé dans le système de coordonnées cylindriques et appliqué dans le contexte d’une ébauche circulaire. La discrétisation a été faite par la méthode des différences finies et les propriétés matérielles ont été mises à jour après chaque pas de temps. Le développement du profil de densité n’a pas été calculé par le modèle. On a cependant considéré une fermeture instantanée de la presse et un profil de densité final prédéfini. Une hypothèse voulant que la phase gazeuse soit uniquement constituée de la vapeur d’eau a été postulée. Or, cette hypothèse n’est vérifiée que dans la seconde partie du pressage. Les comparaisons entre les résultats du modèle et les mesures expérimentales ont été présentées par Bolton et al (1989a). Haselein (1998) a enrichi le modèle circulaire de Humphrey en y ajoutant une importante composante rhéologique tenant compte de la compression de l’ébauche et de la relaxation des contraintes. Hubert et Dai (1998) ont présenté un modèle unidimensionnel pour le pressage de l’OSB (oriented strandboards, i.e. panneaux de lamelles orientées) qui prenait en compte le transfert de chaleur par conduction et convection, le changement de phase, la convection de la vapeur, la polymérisation de la résine et la densification de l’ébauche. Les données empiriques ont servi au calcul du degré de polymérisation de la résine en fonction de la température et du temps. Les effets viscoélastiques ont été ignorés alors que l’hypothèse difficilement réalisable de gradients de pression de vapeur constants dans le plan horizontal a été utilisée pour estimer la sortie de la vapeur par les bords de l’ébauche. 6 L’importance d’une approche intégrée a été mise en lumière par les travaux des chercheurs comme Kavvouras (1977) et Bolton et Humphrey (1988). Cette approche suggère de considérer toutes les variables et leurs interactions simultanément afin de mieux quantifier l’impact des variations dans les conditions de pressage sur le processus et les propriétés du produit fini. Une avancée considérable a été réalisée par Thömen (2000) et Thömen et Humphrey (2003, 2006) qui ont proposé un système d’équations différentielles modélisant le pressage tridimensionnel aussi bien dans une presse en lot qu’une presse continue. Il s’agit de l’un des premiers modèles pour le pressage en continu. Le modèle en question incluait le transfert de chaleur et de masse, les processus de sorption et de changement de phase ainsi que la densification de l’ébauche et la relaxation des contraintes. Les effets de la polymérisation de la résine n’ont pas été pris en compte. La discrétisation des équations a été faite par la méthode des différences finies couplée à un schéma explicite en temps qui requiert de très petits pas de temps pour assurer la stabilité de la méthode. Les résultats présentés par Thömen et Humphrey (2006) montrent une bonne ressemblance qualitative avec les mesures du laboratoire. Du point de vue quantitatif, de la flexibilité et de la précision des résultats numériques, il reste encore de la place à l’amélioration. Dans sa thèse de doctorat, Vidal (2006) présente une revue bibliographique assez complète concernant les modèles de transfert de chaleur et de masse. Pour le processus de pressage en lot (batch pressing), les travaux de Dai et Yu (2004), Thömen (2000), Thömen et Humphrey (2003; 2006), Thömen et al (2006), Zombori (2001), Zombori et al (2003; 2004) constituent le point de départ du travail actuel. Dans le modèle mathématique, l’ébauche de MDF est considérée comme un mélange homogène de fibres humides, d’air, de résine et de cire. Notre étude des mécanismes de compression et de transfert de chaleur et de masse lors du pressage se situe donc au niveau macroscopique. Les spécificités locales microscopiques telles que la taille des fibres et les dimensions et la forme des espaces vides dans l’ébauche n’ont pas été considérées. Les propriétés matérielles telles que la conductivité thermique, la perméabilité aux gaz ou encore la porosité de l’ébauche ont été exprimées en fonction des valeurs locales de la densité, de la température, de l’humidité et des pressions du gaz, de l’air et de la vapeur. Dans cette thèse, nous présentons un modèle tridimensionnel basé sur les principes fondamentaux de conservation afin de simuler le transfert de chaleur et de masse ainsi que la densification de panneaux composites à base de bois durant le pressage à chaud. Les mécanismes considérés sont le transfert d’air et de vapeur dans la phase gazeuse par convection et diffusion moléculaire, le transfert de chaleur par conduction et convection, les effets sorptifs ainsi que la polymérisation de la résine, la densification du matériel et le développement des contraintes internes. Notre modèle de transfert de masse et de chaleur est composé de trois équations non linéaires fortement couplées. Pour sa part, le modèle mécanique considère un comportement élastique de l’ébauche en compression et s’exprime en formulation incrémentale quasi-statique. Pour la discrétisation spatiale du système d’équations de conservations décrivant les phénomènes physiques durant le pressage, nous avons employé la méthode des éléments finis. Le code a été implémenté dans le logiciel MEF++ développé depuis 1995 au GIREF (Groupe Interdisciplinaire de Recherche en 7 Éléments Finis) à l’Université Laval. La polyvalence et la très grande flexibilité du MEF++ ont permis et grandement facilité la stratégie de résolution couplée que nous croyons la seule à même de représenter fidèlement les interactions intimes entre les mécanismes rhéologiques et ceux de transfert de masse et de chaleur. À notre avis, cela constitue un pas de plus vers une meilleure modélisation et compréhension des phénomènes physiques qui se déroulent dans l’ébauche lors du pressage. Nous avons d’ailleurs comparé nos résultats numériques aux mesures de température et de pression du gaz prises à l’aide du système PressMAN lors du pressage en lot de panneaux au laboratoire de pressage du Département de sciences du bois et de la forêt au Pavillon Gene-H.-Kruger de l’Université Laval. Ces comparaisons ont montré une concordance très satisfaisante et encourageante entre les résultats numériques et expérimentaux. Le modèle implémenté permet, en plus de prédire la température et la pression du gaz, de simuler l’évolution locale de la teneur en humidité, des pressions partielles de l’air et de la vapeur, de la densité et des contraintes internes. Cela permet d’observer les mécanismes de transfert de masse et de chaleur ainsi que leur évolution dans le temps, les changements qui surviennent dans la composition de la phase gazeuse et le développement du profil de densité. Les objectifs de cette thèse sont : 1. Développer et tester un modèle de transfert de chaleur et de masse dans le contexte du pressage à chaud de panneaux MDF. La réalisation de cet objectif requiert de poser clairement les équations régissant les phénomènes en jeu en se basant sur les principes physiques de conservation. 2. Coupler le modèle de transfert de chaleur et de masse à un modèle mécanique de compression de l’ébauche afin de prédire le développement dynamique du profil de densité. 3. Mieux comprendre l’influence de différents paramètres matériels sur les phénomènes de transfert de chaleur et de masse. Une étude de sensibilité a été réalisée en ce sens (Kavazović et al 2010) en se basant sur le modèle présenté par Thömen et Humphrey 2006. Ce document est présenté sous forme d’une thèse de publication composée de trois articles écrits en anglais et répartis dans trois chapitres. Une étude de sensibilité portant sur le modèle de transfert de chaleur et de masse proposé par Thömen et Humphrey (2006) est présentée au Chapitre 1. Dans cette étude de sensibilité, nous avons déterminé l’impact de la variabilité des propriétés matérielles, des modèles de sorption, des conditions aux limites et de la teneur en humidité initiale sur les variables d’état et les résultats numériques du modèle mathématique. Le travail a été présenté dans l’article intitulé “SENSITIVITY STUDY OF A NUMERICAL MODEL OF HEAT AND MASS TRANSFER INVOLVED DURING THE MEDIUM-DENSITY FIBERBOARD HOT PRESSING PROCESS” et publié dans Wood and Fiber Science 42(2), 2010, pp.130-149. Cet article a remporté 2nd place George Marra Award for Excellence in Writing pour l’année 2010 (Wood and Fiber Science). Dans le Chapitre 2, nous présentons le développement détaillé d’un modèle mathématique décrivant le transfert de chaleur et de masse durant le pressage à chaud de panneaux MDF. 8 Il s’agit d’un modèle tridimensionnel couplé et instationnaire qui est basé sur les principes de conservation de l’énergie, de la masse de l’air et de la masse de la vapeur d’eau. La validation expérimentale des résultats numériques est également présentée. Ce modèle est le sujet de l’article intitulé “NUMERICAL MODELING OF THE MEDIUM-DENSITY FIBERBOARD HOT PRESSING PROCESS. PART 1. COUPLED HEAT AND MASS TRANSFER MODEL” lequel sera soumis à Wood and Fiber Science. Le Chapitre 3 contient l’article intitulé “NUMERICAL MODELING OF THE MEDIUMDENSITY FIBERBOARD HOT PRESSING PROCESS. PART 2. COUPLED MECHANICAL AND HEAT AND MASS TRANSFER MODELS” lequel sera soumis à Wood and Fiber Science. Nous y présentons le couplage d’un modèle mécanique pour un matériau élastique vieillissant avec le modèle de transfert de chaleur et de masse développé au Chapitre 2. Ce modèle global décrit les changements se produisant à l’intérieur du panneau durant le pressage à chaud. Notamment, le développement du profil de densité qui est calculé dynamiquement sur une géométrie en mouvement dont la déformation (compression) est une conséquence de la fermeture de la presse. Chapitre 1 Étude de sensibilité d’un modèle numérique de transfert de chaleur et de masse durant le pressage à chaud des panneaux MDF Ce chapitre est constitué de l’article intitulé “SENSITIVITY STUDY OF A NUMERICAL MODEL OF HEAT AND MASS TRANSFER INVOLVED DURING THE MEDIUM-DENSITY FIBERBOARD HOT PRESSING PROCESS” publié en 2010 dans la revue Wood and Fiber Science (Society of Wood Science and Technology), 42(2), 2010, pp.130-149. Les auteurs de l’article sont Zanin Kavazović, Jean Deteix, Alain Cloutier et André Fortin. Cet article a remporté 2nd place George Marra Award for Excellence in Writing pour l’année 2010 (Wood and Fiber Science). 10 Résumé L’objectif de ce travail était d’estimer l’impact de la variabilité des propriétés de transfert de masse et de chaleur de panneaux de fibres de densité moyenne sur les résultats prédits par un modèle numérique de pressage à chaud. Les trois variables d’état du modèle, soient la température, la pression de l’air et la pression de la vapeur, dépendent des paramètres qui caractérisent les propriétés matérielles du panneau qui sont connues avec une précision limitée. De plus, les différents modèles de sorption et la teneur en humidité initiale ont également un impact sur les résultats numériques. Dans cette étude de sensibilité, nous avons déterminé l’impact des variations des propriétés matérielles, des modèles de sorption, des conditions aux limites et de la teneur initiale en humidité sur les variables d’état. Notre étude montre d'une part que la conductivité thermique du panneau, le coefficient de transfert convectif de masse associé à la paroi extérieure ainsi que la perméabilité aux gaz du panneau ont le plus grand impact sur la température, la pression du gaz et la teneur en humidité dans le panneau. D'autre part, le coefficient de transfert convectif de chaleur associé à la paroi extérieure n’a aucun effet sur les variables d’état. Le choix du modèle de sorption affecte significativement seulement les prédictions de la teneur en humidité dans le panneau. La teneur en humidité initiale a une très forte influence sur la pression du gaz à l’intérieur du panneau. Mots clefs: Étude de sensibilité, pressage à chaud, transfert de masse et de chaleur, méthode des éléments finis, modèles de sorption, teneur en humidité initiale, propriétés matériels. 11 Abstract The objective of this work was to estimate the impact of the variability of the medium density fiberboard mat heat and moisture transfer properties on the results predicted by a numerical model of hot pressing. The three state variables of the model, temperature, air pressure, and vapor pressure, depend on parameters describing the material properties of the mat known with a limited degree of precision. Moreover, different moisture sorption models and initial moisture contents also have an impact on the numerically predicted results. In this sensitivity study, we determined the impact of variations of the mat properties, sorption models, boundary conditions, and initial MC on the state variables. Our study shows that mat thermal conductivity, convective mass transfer coefficient of the external boundary, and gas permeability have the most significant impact on temperature, gas pressure, and MC within the mat. On the other hand, the convective heat transfer coefficient of the external boundary has no impact on the state variables. The sorption model affects significantly mat MC predictions only. The initial MC of the mat has a strong influence on the internal gas pressure. Keywords: Sensitivity study, hot pressing, heat and mass transfer, finite element method, sorption models, initial moisture content, material properties. 12 INTRODUCTION The hot pressing of medium-density fiberboard (MDF) is a complex process involving several heat and mass transfer properties of the fiber mat. It has captured the attention of many researchers over the last few years. A comprehensive literature review can be found in Bolton and Humphrey (1988). Among the first researchers proposing an integrated approach were Kavvouras (1977), Humphrey (1982), and Humphrey and Bolton (1989a). The first multidimensional heat and moisture transfer model was probably proposed and developed by Humphrey (1982). A series of papers describing the physics involved in the hot pressing of particleboard and presenting typical predictive results followed (Bolton et al 1989a, 1989b, 1989c; Humphrey and Bolton 1989a). That work is the foundation on which the comprehensive model proposed by Thömen and Humphrey (2006) was developed. Different heat and mass transfer models describing the hot pressing process of wood-based composite panels such as MDF, oriented strandboard, and particleboard have been proposed (Bolton et al 1989a, 1989b; Humphrey and Bolton 1989a; Carvalho and Costa 1998; Zombori et al 2003; Dai and Yu 2004; Nigro and Storti 2006; Thömen and Humphrey 2006). Ultimately, all the heat and mass transfer models are based on the mass conservation of air and water vapor and conservation of heat (Zombori et al 2003; Dai and Yu 2004; Thömen and Humphrey 2006). To these conservation laws, one can add the cure kinetics equation of the adhesive system to predict the evolution of resin cure (Loxton et al 2003; Zombori et al 2003). An appropriate model of moisture sorption is also required (Malmquist 1958; Nelson 1983; Wu 1999; Dai and Yu 2004; Vidal Bastías and Cloutier 2005). The numerically predicted solutions depend on several heat and mass transfer properties of the fiber mat. Most of these properties are known to a limited degree of precision, especially under conditions prevailing during the hot pressing process. Moreover, most of the material properties are obtained from measurements made on wood or on manufactured panels (von Haas et al 1998). Furthermore, mats made from fibers of different morphology will most likely have different properties. We understand that these specifics have an impact on the precision of the numerical results. To improve the reliability of a mathematical model as a predictive tool in the development of wood-based composite products, a better understanding of the influence of the material properties on the mathematical model results is needed. Therefore, the model sensitivity to the parameters characterizing heat and mass transfer in the fiber mat must be examined (Zombori et al 2004). Another important component of every mathematical model of heat and mass transfer within a composite mat is the moisture sorption model. Several are available in the literature (Malmquist 1958; Nelson 1983; Wu 1999; Dai and Yu 2004; Vidal Bastías and Cloutier 2005). Because of their complexity and nonlinearity, it is quite difficult to predict the impact of the sorption model used on the solution. The initial MC (Minit) of the fiber mat is also expected to have an influence on the hygrothermal conditions within the mat during the hot pressing process. Thus, a closer look at those two important components should also be taken. 13 The objective of this work was to quantify the impact of variations of the fiber mat heat and mass transfer properties, initial MC, and moisture sorption model on the numerical solution of the heat and mass transfer model in terms of temperature, gas pressure, and MC. To achieve this objective, we performed a sensitivity study of the mathematical model to the mat physical properties and assumed boundary conditions. In this way, we account for the variability and uncertainty of the material properties and estimate their impact on the precision of the numerically predicted results. The most influential parameters will thus be identified. By presenting a deeper and broader insight into the influence of some of the material properties on the evolution of the internal environment of the fiber mat during the hot pressing process, this work can be seen as complementary to that of Zombori et al (2004). MATERIAL AND METHODS Material Refined softwood MDF fibers were obtained from the Uniboard MDF La-Baie plant in Ville de La-Baie, Quebec, Canada. The fibers were a blend of about 90% black spruce (Picea mariana) and 10% balsam fir (Abies balsamea). The fibers at 6.5% initial MC were blended with 12% (fiber oven-dry weight basis) urea–formaldehyde resin and 1% wax in a laboratory rotary drum blender. The initial MC of the furnish was 12%. A series of six MDF panels of size 560 mm x 460 mm x 13 mm and target density of 750 kg/m3 at 8% MC were produced in a Dieffenbacher laboratory batch press equipped with a PressMAN measurement and control system. The press platens were at 203C. The pressing schedule of 335 s was divided into five steps. The initial mat thickness of about 182 mm was reduced to 140% of the final thickness in the first 35 s (Step 1). The press remained in this position for the next 15 s (Step 2) followed by the second compression lasting 110 s at the end of which the mat reached its final thickness of 13 mm (Step 3). The hot platens remained in this position for the next 110 s (Step 4). The final step (Step 5) was the degassing period (65 s) during which the press was slowly opened and reached 107% of the final panel thickness at 335s. Methods Overall Approach and Assumptions It was reported by Humphrey and Bolton (1989b) that the size of the board has an effect on the temperature and gas pressure within the hot pressed mat. In the current study, a single panel geometry was considered. Therefore, the effect of panel size was not studied. All the mats were formed using the same raw materials and hot pressed using the same pressing schedule. Bound water was assumed to be in equilibrium with water vapor in the lumens and in the mat voids. Local thermodynamic equilibrium was assumed at every point of the fiber mat and the relationship among local MC, RH, and temperature was described by the sorption isotherms considered in this study. Hence, the three state variables of the model are temperature, air pressure, and vapor pressure. For the numerical study by the finite element 14 method, the physical model used is that proposed by Thömen and Humphrey (2006), and all of the material properties of the fiber mat were taken from the available literature. None of the fiber mat material properties was obtained from the panels produced in the laboratory. The current study is focused on the heat and moisture transfer phenomena involved in the hot pressing of the MDF wood fiber mat. The rheology of mat consolidation was not explicitly considered in this study. Therefore, a predefined time- and space-dependent oven-dry vertical density profile based on the work of Wang and Winistorfer (2000) (see APPENDIX 1) was used in the simulations to update the local heat and moisture transfer properties and porosity of the mat. Consequently, the complex dynamic interactions between heat and moisture and rheological parameters involved during hot pressing process were not taken into account. We are aware that this simplification may have an influence on the model results presented in the current study. A numerical coupling between the mechanical and the heat and mass transfer models will be presented in future work. The results presented here should therefore be seen from the perspective of the numerical methods used and regarded as a numerical study by the finite element method of the sensitivity of a numerical heat and mass transfer model to some of the key mat properties and model parameters. In the present work, we focused on the impact of thermal conductivity, gas permeability, and convective heat and mass transfer coefficients associated to the boundary conditions on the solution. Moreover, we examined the impact of the sorption model and the initial MC of the fiber mat on the results. It is assumed that the initial mat MC is uniform throughout the thickness. The contribution of resin cure to heat and mass transfer is not taken into account. All the results were obtained by finite element numerical simulations. Model of Heat and Mass Transfer in the Fiber Mat We retained the mathematical model proposed by Thömen and Humphrey (2006). The model is based on the mass conservation of air and water vapor and conservation of energy. We restate the original version of this model as follows in terms of the three state variables: partial air pressure (Pa), partial water vapor pressure (Pv) and temperature (T): Mass conservation of air ( a ) M a K p a Deff Pa a K p Pv 0 t RT (1) Mass conservation of water vapor ( v ) M M v K p Pa v K p v Deff Pv OD t t RT (2) 15 Energy conservation Mat CMat T M H fg OD K T T 0 t t (3) (see “Nomenclature” and Appendices 1 and 2 for definitions of variables and expressions). Using the Malmquist’s sorption model (Malmquist 1958; Vidal Bastías and Cloutier 2005), we can also predict and monitor the evolution of the mat MC with time at any position. As the moisture content M depends on temperature (T) and partial vapor pressure (Pv), the M M M Pv M T chain rule is applied and the term is developed as . This t t Pv t T t expression is then substituted into Eqs 2 and 3. The model is thus expressed in terms of the three state variables: Pa, Pv, and T. Finite Element Solution Strategy For each of the three conservation equations (Eqs 1, 2, and 3), a finite element method discretization is performed in space and the time derivatives are calculated using the Euler implicit scheme. Each state variable is discretized by Q1 (linear quadrangular) finite element. Taking advantage of the symmetry, our computational domain represents a quarter of the full 2D geometry (see Fig 1.1). Therefore, for the numerical simulation runs, we consider a rectangular domain in the x–z plane of the following dimensions: 280 mm (half length) by 6.5 mm (half thickness). Figure 1.1 shows details of the 2D geometry and our working domain. The domain considered for calculation was meshed with a 16 by 16 grid having 256 rectangular elements. The nonlinear Eqs 1, 2, and 3 are strongly coupled and form a coherent system, which can be written in the following general form: a11 0 0 0 a 22 a32 Pa B1 B2 a13 t Pv a23 C1 C2 t 0 0 a33 T t 0 Pa Fa 0 Pv Fv K T FT (4) An integrated approach simultaneously considering all important variables during hot pressing was proposed by Kavvouras (1977), Humphrey (1982), and Bolton and Humphrey (1988). In the case of a heat and mass transfer model, we achieved it in the following way. At each time step and for each nonlinear iteration, the three equations forming this system are solved simultaneously preserving the full coupling between them. At each time step, the nonlinear system (Eqs 1, 2, and 3) is solved by a fixed point method allowing to predict the 16 evolution of the state variables in space. During each time step, several iterations of a fixed point method are performed to reach convergence to 10-6 in the residual norm. From one nonlinear iteration to another, all the local conditions and mat material properties are updated. This is somewhat different from the approach adopted by Thömen and Humphrey (2006). Indeed, these authors kept the local conditions and properties constant during a given time step (Thömen 2000). In our case, we updated values of all parameters for each nonlinear iteration within each time step. Given that we use Euler implicit time scheme combined with the finite element method, we have no constraint on the time step length. However, a too large time step could cause convergence and precision problems. The results presented in this paper were obtained using a 0.1-s time step. a) b) Hot platen Air Air Hot platen 6.5 mm 13 mm Air Hot platen z 560 mm Symmetry axes 280 mm x Figure 1.1: a) Full 2D geometry of a fiber mat; b) computational domain in 2D (onequarter of the full geometry). Boundary Conditions Appropriate boundary conditions are needed to properly solve Eqs 1, 2, and 3. The temperature evolution of the surface in contact with the hot platen (Fig 1.1a) was imposed by a Dirichlet boundary condition based on the data obtained during in situ laboratory experiments. The surface in contact with the hot platen includes the two end vertices illustrated by black dots in Fig 1.1b. Moreover, the following fluxes are considered at the boundaries: Heat flux : q T = K T T (5) M Air flux : q Pa = a K p P a Deff Pa RT (6) 17 M Vapor flux : q Pv = v K p P v Deff Pv RT (7) The hot platen is assumed impervious to gas and therefore q Pa 0 and q Pv 0 . Symmetry conditions are imposed ( q T 0 , q Pa 0 , q Pv 0 ) on the two symmetry axis illustrated by dashed lines in Fig 1.1b. On the external edge in contact with the ambient air, the following convection boundary conditions are imposed for the three state variables: temperature, air pressure, and vapor pressure, respectively: q T · n = h T · ( T Tamb ) q Pa · n = h p · a · ( P Pamb ) 105 a · ( Pa Pa amb ) Pa q Pv · n = h p · v · ( P Pamb ) 105 v · ( Pv Pv amb ) Pv (8) (9) (10) where n is the outward unit normal vector, and hT and hp are, respectively, the convective heat and mass transfer coefficients at the edge. In Fig 1.1, the external edge is the righthand side edge of the rectangular domain and is represented by a continuous black line including the black square (Fig 1.1b). The main mode of mass transfer between the mat and the environment is the gas bulk flow (Zombori et al 2004) generated by the difference of total gas pressure within and outside the mat. Diffusion generated by the difference of partial pressures within and outside the mat plays a secondary role (Zombori et al 2004). Sensitivity Study The state variables (Pa, Pv, T) of the heat and mass transfer model depend on many parameters describing the physical properties of the mat. In our sensitivity study, we perform “what if” scenarios with regard to variations in the material properties. The intuitive and simple approach adopted consists of perturbing one parameter, whereas all the others remain at their reference value. Therefore, the influence of one parameter at a time on the solution is examined. The results obtained using reference values of the material properties proposed in the literature are compared with results obtained with perturbed values of the material properties. To some extent, the perturbation factors can be seen as uncertainty or measurement errors on the material property of interest. Hence, a perturbed value of a material property of interest is obtained by multiplying the reference expression by a given factor. In this work, the results are presented for the following multiplying factors: 0.5, 0.8, and 0.9 for a decrease of 50, 20, and 10%, respectively; and 1.1, 1.2, and 1.5 for an increase of 10, 20, and 50%, respectively. Note that the perturbation coefficients are chosen within a reasonable range given that the variability of the material parameters and the uncertainty of the experimental measurements are quite large. Moreover, in their sensitivity study, Zombori et al (2004) considered constant reference values for parameters of interest. 18 Furthermore, they presented a sensitivity study based on a single perturbation factor: 50% increase in the parameter reference value. Comparison of results. The solution obtained with the perturbed value of a parameter is compared with that obtained using the reference value of the same parameter. The resulting discrepancy between those solutions can be quantified in different ways. We express it as a percentage of the maximum relative difference (MaxRelDiff). Therefore, we will monitor the evolution in time of the maximum relative deviation from the reference solutions. For instance, Tref refers to the temperature field calculated using the reference values and Tper is the temperature calculated using a perturbed value of a parameter of interest. Therefore, at each time step, the following variable is calculated: MaxRelDiff = 100 sign Tper Tref max Tper Tref Tref (11) where MaxRelDiff is the maximum relative difference in percentage depicting the impact of the variation of a given parameter on the temperature field. After each time step, the T Tref is calculated over the simulation domain and its maximum expression per Tref value retained. It represents the largest relative discrepancy between the two solutions. However, it gives no indication on the location of the maximum deviation. The expression (Tper Tref) is evaluated at the point corresponding to the largest relative discrepancy between the two solutions and its sign is taken. The sign of the expression (Tper Tref) indicates if the perturbed value of a parameter caused an increase in temperature (when the sign is positive) or a decrease (when the sign is negative). This generic approach is systematically used to quantify discrepancies for other variables of interest as well. Sorption Models Several sorption models of solid wood are proposed in the literature. We chose some of the most frequently used sorption models and performed numerical simulations to characterize the impact of the sorption model on the solution. The following sorption models were considered. Malmquist. Vidal Bastías and Cloutier (2005) compared several sorption models and their study showed that the Malmquist’s sorption model gives the best overall fit to experimental equilibrium moisture content (EMC) data. Therefore, our reference is Malmquist’s sorption model (Malmquist 1958; Vidal Bastías and Cloutier 2005) expressing dimensionless moisture content M as a function of absolute temperature T and dimensionless relative humidity h: M Malmquist MS I 1 3 1 N 1 h (12) 19 where MS, N and I are second-order polynomials of the absolute temperature, T, defined as follows (Vidal Bastías and Cloutier 2005): MS 0.40221 9.736 105 T 5.8964 107 T 2 N 2.6939 0.018552 T 2.1825 106 T 2 I 2.2885 0.0016742 T 2.0637 106 T 2 (13) (14) (15) Hailwood-Horrobin (HH2). The Hailwood and Horrobin model (Vidal Bastías and Cloutier 2005) was also considered. We used the two hydrates version of that model expressing dimensionless moisture content M as a function of absolute temperature T and dimensionless relative humidity h: M HH 2 K1 K h 2 K1 K 2 K 2 h 2 18 K h M p 1 K h 1 K1 K h K1 K 2 K 2 h 2 (16) where the molecular weight of water is 18 g/mol and Mp is the molecular weight of a polymer unit forming a hydrate expressed in units of g/mol. Polynomial expressions for Mp, K, K1 and K2 are given as functions of absolute temperature T (Vidal Bastías and Cloutier 2005): K 0.68405 4.7238 104 T 3.3289 108 T 2 K1 19.641 0.0587818 T 4.05 105 T 2 (17) (18) K 2 2.6172 1.6795 103 T 6.414 106 T 2 (19) 4 M p 330.03 2.3468 T 2.8368 10 T 2 (20) García. García (2002) proposed the following sorption model expressing dimensionless moisture content M as a function of absolute temperature T and dimensionless relative humidity h: M Garcia 1 B D C 1 h (21) where B = 1.09603 , C = 2.36069 , D = 1.84447 and A T A2 4 A1 exp A3 with A1 = 0.186575 , A2 = 751.85 , A3 = 1163.31 and A4 = 12.7441. (22) 20 Nelson. Nelson (1983) proposed a sorption model used later by Wu (1999) and by Dai and Yu (2004). Dimensionless moisture content M is expressed as a function of absolute temperature T, dimensionless relative humidity h and two material related parameters denoted by A and B: 1 R T M Nelson B 1 ln 2.38846 104 ln h Mv A (23) where Mv is the molar mass of water (0.018015 kg/mol) and R is the universal gas constant (8.3143 J/mol K). Wu (1999) fitted EMC-RH data for different wood-based products to Nelson’s sorption model to estimate the two material related parameters, A [dimensionless] and B [dimensionless]. For MDF, Wu (1999) found that during sorption, B=0.1913 and A = 4.68, whereas during desorption, B=0.2494 and A =4.94. A difficulty arising in using Eq 23 is the appropriate choice of parameters A and B. Indeed, during hot pressing, we can be in sorption at a given location within the mat and in desorption at another location. Therefore, based on values proposed by Wu (1999), we performed simulation runs with Nelson’s model using mean values for B and A, hence, we used B=0.22035 and A = 4.81. Initial Moisture Content of the Mat Because the initial moisture content of the fiber mat (Minit) is expected to have an influence on the internal conditions of the mat, its impact on the results was studied. We have chosen several values for Minit to reflect conditions normally encountered in practice. Indeed, tests were made for the following dimensionless values of Minit: 0.08, 0.10, 0.12, and 0.14. We selected 0.12 as a reference value for the initial moisture content. Thermal Conductivity of the Mat (KT) We used the expression suggested by Thömen and Humphrey (2006) as a reference value for the thermal conductivity of the fiber mat: KTxy = 1.5·KTz where and KTz KT 030 KT (24) KT 030 4.38 10-2 4.63 10-5 OD 4.86 10-8 2OD (25) KT 0.49 ·M 1.1·104 4.3·103 ·M · T 303.15 (26) The variables KTz and KTxy represent, respectively, the thermal conductivity in the thickness and horizontal directions. KT030 is the thermal conductivity measured at 0% M and 30C and KT is the correction term accounting for moisture content and temperature effects on thermal conductivity. The tensor of thermal conductivity KT is therefore given in 2D by K KT Txy 0 0 KTz (27) 21 To characterize the impact of variations in thermal conductivity, simulations were performed with KT where the perturbation factor took the values of 0.5, 0.8, 0.9, 1.1, 1.2, and 1.5. Specific Gas Permeability of the Mat (Kp) Analytical expressions for the specific gas permeability of MDF mats based on the curve fitting of experimental data can be found in García and Cloutier (2005) and also in von Haas et al (1998). The expression proposed by García and Cloutier (2005) is valid for MDF mats having a density of 400 to 1150 kg/ m3, whereas in von Haas et al (1998), the permeability of fiber, particle, and strand mats with densities varying from 200 to 1200 kg/ m3 was determined. The samples used by von Haas et al (1998) were prepared from consolidated panels with an adhesive content of 11%. In our study, the reference expression and the input data for the specific gas permeability of the MDF mats will be based on expressions proposed by von Haas et al (1998). Hence, the in-plane permeability (Kpxy) and the cross-sectional permeability (Kpz) of MDF fiber mats are both described by the following expression: 1 exp A (28) where A = a + b Mat + c ln( Mat ) (29) and the coefficients to determine Kpxy are a = 0.041, b = 9.5110-6 , c = 0.015 and those for Kpz are a = 0.037, b = 1.1 10-5 , c = 0.037. The tensor Kp of the specific gas permeability of the MDF fiber mat is therefore given in 2D by K pxy Kp 0 0 K pz (30) To examine the influence of variations in specific gas permeability, simulations were run with K p where the perturbation factor took the values previously listed. Convective Heat Transfer Coefficient on the External Boundary (hT) The sensitivity of the system’s solution to variations of the convective heat transfer coefficient associated with the external boundary was also examined. The reference value for this parameter is hT = 0.35 and is taken from Zombori (2001) and Vidal Bastías (2006). When simulations are run with a perturbed value of hT, the heat flux at the edge in contact with the surroundings becomes: 22 q T n = h T · ( T Tamb ) (31) where the perturbation factor is taking the same values as previously. Convective Mass Transfer Coefficient on the External Boundary (hp) The convective mass transfer coefficient associated with the external boundary represents the fiber mat boundary gas transport properties and depicts the resistance to gas flow out of the mat. We examine the impact of this external bulk flow coefficient associated with the boundary condition imposed on the edge in contact with the ambient air. A reference value for this coefficient is hp = 10-11, which is somewhat different from that used by Zombori et al (2004) for flakeboards. Given that the contribution of diffusion to mass transport out of the mat is not significant (Zombori et al 2004), variations in hp will affect the air and vapor fluxes at the edge in contact with the surroundings. Therefore, the simulations were run with the following conditions at the external edge: q Pa n = h p · a ·(P Pamb ) 105 a ·(Pa Pa amb ) Pa (32) q Pv n = h p · v ·(P Pamb ) 105 v ·(Pv Pv amb ) Pv (33) where a perturbation factor is taking the same values as previously. 23 RESULTS AND DISCUSSION Temperature and gas pressure were measured during the pressing process at the center of the panel plane at three points across mat thickness: the core, one-quarter of the thickness, and the surface. The temperature measurements are presented, together with numerically predicted results, in Fig 1.2a. The total gas pressure curves are shown in Fig 1.2b. The model captures major trends and gives results of comparable quality to those of Zombori et al (2004) and Thömen and Humphrey (2006). It should be kept in mind that the numerical model used here is based solely on heat and mass transfer mechanisms and that the influence of the changing moisture content and temperature on rheological mechanisms was not considered. Moreover, the fiber mat material properties, including thermal conductivity, gas permeability, and porosity, were taken from the literature and not determined from the specific material used to make the panels in the laboratory. This can explain the discrepancies between the model and experimental results shown in Fig 1.2. a) 200 Temperature ( C ) 175 150 125 100 CoreLab QuarterLab CoreModel QuarterModel SurfaceLab 75 50 25 0 0 50 100 150 200 Time (s) 250 300 24 b) 190 180 CoreModel 170 CoreLab P (kPa ) 160 QuarterLab 150 140 130 120 110 100 0 50 100 150 200 250 300 Time (s) Figure 1.2: a) Temperature evolution in time: measured and numerically predicted results. Curve labelled SurfaceLab is the temperature measured in laboratory at the surface in contact with the hot platen and was imposed as a Dirichlet boundary condition for T at the surface. On the other hand, curves labelled CoreModel and QuarterModel are obtained by numerical simulation and represent the temperature at the center and at one quarter of the thickness, respectively. b) Total gas pressure evolution in time: measured and numerical results. Curve labelled CoreModel is obtained by numerical simulation and the other two are measured in laboratory. 1 Effect of Sorption Models Figure 1.3 presents the comparison of the results for P at the core, M at the core, and M at one-quarter of the mat thickness obtained using each one of the four sorption models considered. Figure 1.4 shows the evolution in time of MaxRelDiff for T, M, and P. As can be seen in Fig 1.4, the Hailwood-Horrobin two-hydrate sorption model produces closer results to the reference sorption model (Malmquist). On the other hand, the Nelson (1983) model with averaged coefficients for MDF (Wu 1999) gives the results that are the 1 Nota: In all figures presented in this document, special symbols like □ , ○,* , ◊, , etc are used in order to distinguish different curves from each other and they do not represent experimental data, unless the contrary is explicitly indicated. 25 most different from those obtained using Malmquist’s model. It should not be forgotten that the MaxRelDiff corresponds to the largest discrepancy in the domain considered (Eq 11). Temperature and internal gas pressure do not seem to be significantly influenced by the sorption model used (Figs 1.3 and 1.4). The effect of the sorption model on the moisture content evolution is more significant. This was expected because different sorption models describe differently the EMC–RH–T relationship. a) 191 90 181 80 Total Pressure (kPa) 171 70 161 60 Malmquist HH2 Garcia NelsonMean 50 40 141 30 131 20 121 10 111 0 Est Ouest Nord 151 101 0 1er 2e trim.3e trim.4e trim. 50 100 150 200 250 trim. Time (s) 300 350 26 b) Moisture Content (%) 18 90 80 70 16 60 50 14 40 30 20 12 10 0 Est Ouest Nord Malmquist HH2 Garcia NelsonMean 10 0 1er 2e trim.3e trim.4e trim. 50 100 150 200 250 trim. 300 350 Time (s) c) Moisture Content (%) 18 90 16 80 70 14 60 12 50 40 10 30 8 20 10 6 0 4 0 Est Ouest Nord Malmquist HH2 Garcia NelsonMean 1er 2e trim.3e trim.4e trim. 100 150 200 250 trim.50 Time (s) 300 350 Figure 1.3 : Solutions obtained with different sorption models for: a) total gas pressure P at the core; b) moisture content M at the core; c) moisture content M at a quarter of the mat thickness. 27 MaxRelDiff (%) a) 1 90 0.8 80 0.6 70 0.4 60 0.2 50 0 40 -0.2 300 20 -0.4 -0.6 10 -0.80 -1 50 HH2 100 Garcia 150 200 250 Est 300Ouest 350 Nord NelsonMean 1er 2e trim.3e trim.4e trim. Time (s) trim. MaxRelDiff (%) b) 30 90 20 80 10 700 0 -10 60 -20 50 -30 40 -40 -50 30 -60 20 -70 10 -80 -90 0 -100 -110 50 100 150 200 250 300 350 Est Ouest Nord HH2 Garcia 1er 2e trim.3e trim.4e trim. trim. Time (s) NelsonMean 28 c) MaxRelDiff (%) 4 90 380 70 2 60 50 1 40 030 0 20 -1 10 -2 0 -3 HH2 50 100 150 200 Garcia 250 NelsonMean Est Ouest 300 Nord350 1er 2e trim.3e trim.4e trim. trim. Time (s) Figure 1.4 : Effect of sorption models on: a) temperature T; b) moisture content M; c) total gas pressure P. Graphs present the maximum relative deviation of results obtained for each sorption model when compared to the reference solutions obtained with the Malmquist’s sorption model. Effect of the Initial Moisture Content on the Predicted Results Figure 1.5 summarizes the results obtained for P and M using each one of the four values of Minit. Figure 1.6 shows the evolution in time of the MaxRelDiff (Eq 11) for T, M, and P. From Fig 1.6a, one could conclude that Minit does not seem to have a large impact on the evolution of temperature within the fiber mat. However, the evolution of moisture content within the mat is strongly dependent on Minit of the fiber mat (Fig 1.6b), which was expected and observed experimentally by Zombori et al (2004). Given that the evolution of the temperature field is very similar for different values of the initial moisture content considered, the amount of bound water desorbed should therefore be higher for higher values of Minit. Hence, the internal gas pressure consequently increases within the mat, as illustrated in Fig 1.5a. This is in agreement with observations made by Zombori et al (2004) claiming that the total pressure increases with increasing moisture content. Therefore, these results confirm that lowering the initial moisture content of the mat results in lower gas pressure within the mat during the hot pressing process. 29 a) Total Pressure (kPa) 191 90 181 80 171 70 161 60 50 151 40 141 30 131 20 121 10 111 0 Minit=8% Minit=10% Minit=12% Minit=14% 101 0 Est Ouest Nord 1er 2e trim.3e trim.4e trim. 100 150 200 250 trim.50 Time (s) 300 350 b) 22 90 80 18 70 16 60 14 50 12 40 10 30 8 20 6 10 4 0 2 Moisture Content (%) 20 0 0 Est Ouest Nord Minit=8% Minit=10% Minit=12% Minit=14% 1er 2e trim.3e trim.4e trim. 50 100 150 200 250 trim. Time (s) 300 350 30 c) 22 90 80 18 70 16 60 14 50 12 40 10 30 8 20 6 10 4 0 2 Moisture Content (%) 20 0 0 Minit=8% Minit=10% Minit=12% Minit=14% Est Ouest Nord 1er 2e trim.3e trim.4e trim. trim. 50 100 150 200 250 300 350 Time (s) Figure 1.5 : Solutions obtained with different values on initial moisture content Minit of the fiber mat for: a) total gas pressure P at the core; b) moisture content M at the core; c) moisture content M at a quarter of the mat thickness. 31 a) MaxRelDiff (%) 2.5 90 80 2 70 1.5 60 1 50 40 0.5 30 0 200 -0.5 10 -1 0 -1.5 Minit=8% Minit=10% Minit=14% Est Ouest Nord 50 100 150 200 250 300 350 1er 2e trim.3e trim.4e trim. trim. Time (s) MaxRelDiff (%) b) 90 30 80 20 70 10 60 0 50 0 40 -10 30 -20 20 -30 10 -400 -50 Minit=8% 50 100 150 Minit=10% 200 250 1er 2e trim.3e trim.4e trim. trim. Time (s) Minit=14% 300 Est 350 Ouest Nord 32 MaxRelDiff (%) c) 906 804 702 600 0 -2 50 -4 40 -6 30 -8 20 -10 10 -12 0 -14 -16 50 100 150 200 250 300 350 Est Ouest Nord Minit=8% Minit=10% Minit=14% 1er 2e trim.3e trim.4e trim. trim. Time (s) Figure 1.6 : Effect of initial moisture content Minit of the mat on: a) temperature T; b) moisture content M; c) total gas pressure P. Graphs present the maximum relative deviation of results obtained for different values of Minit from the reference solutions obtained with Minit = 12%. Effect of Thermal Conductivity (KT) Figure 1.7 presents the impact of variations in thermal conductivity (KT) on temperature, moisture content, and total pressure. When the thermal conductivity (KT) of the mat is decreased, heat is conducted more slowly through the mat and its internal temperature remains lower (Fig 1.7a). Hence, less bound water is desorbed resulting in a lower internal gas pressure. Of course, local moisture content will decrease more slowly as well. Conversely, if KT is increased, heat is conducted more quickly through the mat and the local temperature increases (Fig 1.7a) causing the desorption of more bound water. This lowers local moisture content and more water vapor is produced, increasing internal gas pressure. As can be seen in Figs 1.7b and 1.7c, KT has a very significant impact on mass transfer in the mat during the hot pressing process. Indeed, on average, variations in KT have an effect on gas pressure in the mat almost five times greater than on temperature (Fig 1.7c). A similar effect can be observed on moisture content (Fig 1.7b). Moreover, variations in moisture content seem to be more or less linearly related to variations in thermal conductivity in the sense that, for instance, a perturbation of 10 or 20% in KT of the mat will, respectively, induce a 10 or 20% variation in moisture content. Indeed, variations in 33 thermal conductivity seem to affect mainly moisture content and total gas pressure. Zombori et al (2004) also concluded that variations in KT have the most significant effect on the system. a) 6 MaxRelDiff (%) 90 4 80 70 2 60 50 0 0 40 -2 30 20 -4 10 0 -6 -8 50 100 150 200 250 0.5*KT 1er 2e trim.3e trim.4e1.5*KT trim. trim. Time (s) 300 Est 350 Ouest Nord 0.8*KT 1.2*KT 0.9*KT 1.1*KT b) MaxRelDiff (%) 100 90 80 80 70 60 60 40 50 20 40 30 0 020 -20 10 0 -40 -60 0.5*KT 0.8*KT 1.2*KT 1.5*KT 0.9*KT 1.1*KT Est Ouest Nord 50 100 150 200 250 1er 2e trim.3e trim.4e trim. trim. Time (s) 300 350 34 c) MaxRelDiff (%) 30 90 80 20 70 10 60 50 0 400 -10 30 20 -20 10 -30 0 -40 50 100 0.5*KT 0.8*KT 1.2*KT 1.5*KT 150 200 250 300 Est 350 Ouest Nord 0.9*KT 2e 1.1*KT 1er trim.3e trim.4e trim. trim. Time (s) Figure 1.7 : Effect of thermal conductivity KT on: a) temperature T; b) moisture content M; c) total gas pressure P. Graphs present the maximum relative deviation of results obtained for different values of KT from the reference solutions obtained with the reference value of KT. Effect of the Specific Gas Permeability of the Mat (Kp) Numerical simulations were run with perturbed values of Kp. The results are summarized in Fig 1.8 as a percentage of the maximum relative difference (Eq 11). As expected, Fig 1.8 suggests that gas permeability is a significant factor affecting mostly mass transfer within the mat. The sensitivity of the system to Kp and its influence on bulk flow within the mat was recognized by Zombori et al (2004). Indeed, moisture content and internal gas pressure seem to be about 10 times more sensitive than temperature to variations of Kp. It can also be noticed that a decrease in Kp appears to have a more pronounced effect on the solution than the proportional increase of Kp. The higher the gas permeability, the easier the gas escapes the mat lowering total internal gas pressure. Thus, high gas permeability creates conditions that facilitate bound water desorption, which decreases mat moisture content. Bound water desorption and evaporation require a certain amount of energy (heat of sorption and latent heat of vaporization) that will cause a decrease in local temperature. On the other hand, when gas permeability decreases, the local gas pressure increases. This can result in water vapor condensation and an increase of the local moisture content. Water vapor condensation and adsorption are 35 exothermic processes that release the latent heat of vaporization and the heat of sorption. This input of thermal energy increases the local temperature within the mat. a) MaxRelDiff (%) 0.6 90 0.580 70 0.4 60 0.3 50 0.240 30 0.1 20 0 10 0 -0.1 0 -0.2 0.5*Kp 0.8*Kp 1.2*Kp 1.5*Kp 0.9*Kp 1.1*Kp Est Ouest Nord 50 100 150 200 250 300 350 1er 2e trim.3e trim.4e trim. trim. Time (s) b) MaxRelDiff (%) 6 90 5 80 70 4 60 3 50 2 40 30 1 20 0 10 0 0 -1 -2 0.5*Kp 0.8*Kp 1.2*Kp 1.5*Kp 0.9*Kp 1.1*Kp Est Ouest Nord 50 100 150 200 250 1er 2e trim.3e trim.4e trim. trim. Time (s) 300 350 36 c) MaxRelDiff (%) 8 90 7 80 6 70 5 60 4 50 3 40 2 30 1 20 0 10 0 -1 0 -2 -3 0.5*Kp 0.8*Kp 1.2*Kp 1.5*Kp 0.9*Kp 1.1*Kp Est Ouest Nord 50 100 150 200 250 300 350 1er 2e trim.3e trim.4e trim. trim. Time (s) Figure 1.8 : Influence of gas permeability Kp on: a) temperature T; b) moisture content M; c) total gas pressure P. Graphs present the maximum relative deviation of results obtained for different values of Kp from the reference solutions obtained with the reference value of Kp. 37 Effect of the Convective Heat Transfer Coefficient on the External Boundary (hT) Figure 1.9 depicts the sensitivity of the system’s solution to variations of hT. We concur with Zombori et al (2004) who found that hT does not have a significant influence on heat and mass transfer phenomena within the mat. Indeed, the results presented in Fig 1.9 suggest that the convective energy transfer through the interface between the mat and the ambient air is not a significant factor. a) 0.3 90 MaxRelDiff (%) 0.25 80 70 0.2 60 0.15 50 0.1 40 0.05 30 0 20 100 -0.05 0 -0.1 -0.15 0.5*hT 0.8*hT 1.2*hT 2*hT Est Ouest Nord 50 100 150 200 250 1er 2e trim.3e trim.4e trim. trim. Time (s) 300 350 38 b) 1.5 MaxRelDiff (%) 90 1 80 70 0.5 60 50 0 40 0 -0.5 30 20 -1 10 -1.5 0 -2 50 100 0.5*hT 0.8*hT 1.2*hT 1er trim. 2e trim. 2*hT 150 200 250 Est 300 350 Ouest Nord 3e 4e trim. trim. Time (s) c) M axR elD iff (% ) 0.05 90 0.04 80 70 0.03 60 0.02 50 40 0.01 30 0.00 200 -0.01 10 -0.020 -0.03 0.5*hT 0.8*hT 1.2*hT 2*hT Est Ouest Nord 50 100 150 200 250 300 350 1er 2e trim.3e trim.4e trim. trim. Time (s) Figure 1.9 : Influence of external heat transfer coefficient hT on: a) temperature T; b) moisture content M; c) total gas pressure P. Graphs present the maximum relative deviation of results obtained for different values of hT from the reference solutions obtained with the reference value hT = 0.35. 39 Effect of the Convective Mass Transfer Coefficient on the External Boundary (hp) The convective mass transfer coefficient associated with the external boundary depicts the resistance to gas flow out of the mat. Figure 1.10 summarizes the impact of hp on T, M, and P. One observes that this coefficient has a very significant impact, especially on mass transfer within the mat. This is expressed by the significant impact of hp on M and P. Indeed, these two variables seem to be 10 times more sensitive than temperature to variations of hp. When the external mass transfer coefficient hp decreases, the resistance to gas flow out of the mat increases. Hence, the gas remains trapped within the mat, increasing the internal gas pressure. Water vapor can condense, increasing mat moisture content. Water vapor condensation and adsorption in the wood fibers releases thermal energy (latent heat of vaporization and heat of sorption), slightly increasing the local temperature. If hp increases, the opposite happens. The gas can leave the mat more easily, decreasing the internal gas pressure and temperature. A lower gas pressure eases the bound water desorption process that eventually decreases local moisture content. The system seems to react more strongly to variations of hp than to variations of Kp. Among the parameters we studied, hp is the second most influential after KT. It should be noticed that in their study on the influence of external bulk flow coefficient for flakeboard, Zombori et al (2004) concluded that this parameter does not noticeably influence the results. This difference may be explained by the higher porosity and gas permeability of MDF compared with flakeboard. It is therefore plausible that variations in hp have a larger impact for MDF. a) MaxRelDiff (%) 2 90 80 1.5 70 60 1 50 0.540 30 020 0 10 -0.5 0 -1 0.5*hp 0.8*hp 1.2*hp 1.5*hp 0.9*hp 1.1*hp Est Ouest Nord 50 100 150 200 250 1er 2e trim.3e trim.4e trim. trim. Time (s) 300 350 40 b) MaxRelDiff (%) 20 90 80 15 70 60 10 50 405 30 0 20 0 10 -5 0 0.5*hp 0.8*hp 1.2*hp 1.5*hp 0.9*hp 1.1*hp Est Ouest Nord 50 100 150 200 250 300 350 1er 2e trim.3e trim.4e trim. trim. -10 Time (s) MaxRelDiff (%) c) 25 90 80 20 70 15 60 50 10 40 305 200 10 -5 0 -10 0.5*hp 0.8*hp 1.2*hp 1.5*hp 0.9*hp 1.1*hp Est Ouest Nord 0 100 200 300 1er 2e trim.3e trim.4e trim. trim. Time (s) Figure 1.10 : Influence of external convective mass transfer coefficient hp on: a) temperature T; b) moisture content M; c) total gas pressure P. Graphs present the maximum relative deviation of results obtained for different values of hp from the reference solutions obtained with the reference value of hp = 10-11. 41 90 80 70 60 50 40 30 20 10 0 Est Ouest Nord 1er 2e trim.3e trim.4e trim. trim. Figure 1.11 : Evolution of a space and time dependent predefined oven-dry density profile used in calculations: density profile in thickness direction at different moments in time. 42 CONCLUSIONS The coupled nature, complexity, and high nonlinearity of the equations constituting the model studied here make it difficult to predict the impact of uncertainties of the input variables on numerical solutions of the model. To gain insight of the influence of different parameters on the system’s behavior, a sensitivity study of a numerical model of heat and mass transfer in the MDF mat during hot pressing was performed. Our study suggests that among the tested material properties, those having the most pronounced effect on heat and mass transfer within the mat during the hot pressing process are the thermal conductivity of the mat and the convective mass transfer coefficient associated with the edge in contact with the ambient air. Given that the latter coefficient plays a very important role in the quality of the results produced by the model, significant efforts should be made to get accurate measurements of this coefficient. Indeed, a variation of 20% of the reference value of hp produces relative discrepancies up to 5% in moisture content and gas pressure results. The same variation of the reference value of gas permeability creates discrepancies in moisture content and total gas pressure that are lower than 2%. A variation of 50% of hp leads to a relative difference of up to 15% in moisture content and up to 22% in gas pressure relative deviation. A similar perturbation of gas permeability induces variations in moisture content and gas pressure no greater than 5 and 7%, respectively. Given that the convective heat transfer coefficient does not seem to be an influential factor, accurate measurements of thermal conductivity, gas permeability, and convective mass transfer coefficient associated with the edge in contact with the ambient air are needed to improve the quality and reliability of model predictions. Also, the choice of an appropriate sorption model should be addressed with caution because of its impact on the numerically predicted values of moisture content. Finally, lowering the initial moisture content of fiber mats contributes to lower internal gas pressure and helps achieve drier conditions within the mat. 43 NOMENCLATURE t : time [s] x : length [m] y : width [m] z : thickness [m] T : temperature field [K] ; a state variable calculated by the model Pa : partial air pressure [Pa] ; a state variable calculated by the model Pv : partial vapor pressure [Pa] ; a state variable calculated by the model P : total gas pressure [Pa] M : moisture content [dimensionless] h : relative humidity [dimensionless] PvSAT : saturated vapor pressure [Pa] Ma : molar mass of air [kg/mol] Mv : molar mass of water vapor [kg/mol] R : universal gas constant [J/(mol·K)] a : density of air [kg/m3] v : density of water vapor [kg/m3] OD : oven-dry density of the mat [kg/m3] (see APPENDIX 1) Φ : porosity of the mat [dimensionless] Mat : wet density of the mat [kg/m3] KT : thermal conductivity tensor [J/(m· s·K)] Kp : tensor of specific (effective) gas permeability of the mat [m3/m] Deff : tensor of effective diffusion coefficient [m2/s] Dva : binary molecular diffusion coefficient of the air-vapor gas mixture [m2/s] kd : obstruction factor [dimensionless] Hfg : latent heat of vaporization (desorption + evaporation) of bound water [J/kg] CMat : mass specific heat capacity of the mat at current moisture content [J/(kg·K)] : dynamic viscosity of the air-vapor mixture [Pa·s] a : dynamic viscosity of the air [Pa·s] v : dynamic viscosity of the water vapor [Pa·s] hT : convective heat transfer coefficient associated to the external boundary [J/(m2 · s· K)] hp : convective mass transfer coefficient associated to the external boundary [m] q T : heat flux [J/(m2· s)] q Pa : air flux [kg/(m2· s)] q Pv : water vapor flux [kg/(m2· s)] EMC : equilibrium moisture content RH : relative humidity Minit : initial moisture content of the mat [dimensionless] Tinit : initial temperature of the mat [K] hinit : initial value of relative humidity [dimensionless] 44 PvSAT init: initial value of saturated vapor pressure [Pa] Pv init : initial value of partial vapor pressure [Pa] Pa init : initial value of partial air pressure [Pa] Tsurface : temperature at the surface in contact with the hot platen [K] hamb : relative humidity of ambient gas [dimensionless] Tamb : temperature of the ambient gas [K] PvSAT amb: saturated vapor pressure in ambient gas [Pa] Pamb : ambient gas pressure [Pa] Pv amb : ambient vapor pressure [Pa] Pa amb : ambient air pressure [Pa] 45 APPENDIX 1 A predefined mat oven-dry vertical density profile ( OD [kg/m3]) was used for calculations. This profile is space and time dependent and is based on the results presented by Wang and Winistorfer (2000). The mathematic representation of the density profile is given by the expression presented subsequently. For the sake of clarity, this expression is graphically presented in Fig 1.11 to illustrate the density profile as a function of time and space (position in the thickness direction). Because the symmetry of the vertical density profile is assumed, its evolution is only presented for half of the mat thickness. In the mathematical expression of the profile, “t” represents time and “z” represents position in the thickness direction. Furthermore, in the thickness (“z”) direction, the density profile is divided into four sections. In each section, the density profile is expressed by a different function. Of course, the overall continuity of the density profile is ensured by the way the four functions are constructed. These functions are defined as follows: LD = Low-Density Section, MD = Medium-Density Section, HD1 = First Part of the High-Density Section, HD2 = Second Part of the High-Density Section. OD LD 0 z 0.00455 0.00455 < z 0.00585 MD HD1 0.00585 z 0.006175 HD 2 0.006175 < z 0.0065 where 5.736968 t+99.206112 0 t 35 300 35 < t 50 LD 300+(t-50) (0.909091+99.9001 z ) 50 < t 160 400.00001+10989.011 z 160 < t BPHD TPLD MD TPLD z 0.00455 0.00585 0.00455 0 t 0 t 35 5.736968 t+99.206112 300 35 < t 50 TPLD 231.8181772+1.363636455 t 50 < t 160 450.00001 160 < t 46 5.736968 t+99.206112 0 t 35 300 35 < t 50 BPHD 100+4 t 50 < t 160 740 160 < t 5.736968 t+99.206112 0 t 35 300 35 < t 50 HD1 300+(t-50) (-12.36363636+2797.202797 z ) 50 < t 160 -1060+3.076923077 105 z 160 < t 5.736968 t+99.206112 0 t 35 300 35 < t 50 HD 2 300+(t-50) (22.18181827-2797.202797 z ) 50 < t 160 2740.00001- 3.076923077 105 z 160 < t 47 APPENDIX 2 Expressions of some parameters used in the calculations. P = Pa + Pv : Dalton’s law M : defined at every point in the mat by a sorption model, we use Malmquist’s sorption model as a reference MS M Malmquist I 1 1 N 1 3 h where MS, N and I are second order polynomials of absolute temperature T [K] given by MS 0.40221 9.736 105 T 5.8964 107 T 2 N 2.6939 0.018552 T 2.1825 106 T 2 I 2.2885 0.0016742 T 2.0637 106 T 2 h Pv PvSAT 6516.3 PvSAT exp 53.421 4.125 ln T (Kirchoff’s formula) T Ma = 28.951·10-3 Mv = 18.015·10-3 R = 8.314147 M a Pa (ideal gas law) RT M P v = v v (ideal gas law) RT a = =1– OD (Siau 1984) 1530 Mat = OD (1+M) D Deff va I , where I is identity tensor kd 1.75 101325 T Dva 2.6 105 P 298.2 k 0.334 e A , A 5.08 103 d Mat H fg 2.511 10 2.48 10 T 273.15 1.172 106 e 0.15M 100 6 CMat 3 1131 4.19 T 273.15 4190 M 1 M 48 Pa P a v v P P 1.37 106 T 1.5 a T 85.75 1.12 105 T 1.5 v T 2937.85 hT = 0.35 hp = 10-11 Minit = 0.12 Tinit = 298.15 hinit calculated by Malmquist’s formula 3 1 MSinit 1 1 1 hinit N init M init I init where MSinit 0.40221 9.736 105 Tinit 5.8964 107 Tinit 2 N init 2.6939 0.018552 Tinit 2.1825 106 Tinit 2 I init 2.2885 0.0016742 Tinit 2.0637 106 Tinit 2 6516.3 PvSAT init exp 53.421 4.125 ln Tinit Tinit Pvinit hinit PvSAT init Painit 101325 Pvinit Tsurface : temperature at the surface in contact with the hot platen; its evolution in time is imposed by the Dirichlet boundary condition and the values are prescribed by measured experimental data (see Figure 1.1) hamb = 0.3 Tamb = 298.15 6516.3 PvSAT abm exp 53.421 4.125 ln Tamb Tamb Pamb = 101325 Pv amb = hamb PvSAT amb Pa amb = Pamb Pv amb 49 ACKNOWLEDGMENTS The authors wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), FPInnovations – Forintek Division, Uniboard Canada and Boa-Franc for funding of this project under the NSERC Strategic Grants program. Chapitre 2 Modélisation numérique du processus de pressage à chaud des panneaux MDF Modèle couplé de transfert de chaleur et de masse Ce chapitre est constitué de l’article intitulé “NUMERICAL MODELING OF THE MEDIUM-DENSITY FIBERBOARD HOT PRESSING PROCESS PART 1. COUPLED HEAT AND MASS TRANSFER MODEL” Cet article sera soumis à la revue Wood and Fiber Science (Society of Wood Science and Technology). Les auteurs de l’article sont Zanin Kavazović, Jean Deteix, Alain Cloutier et André Fortin. 51 Résumé Nous présentons ici un modèle mathématique décrivant les phénomènes complexes de transfert de chaleur et de masse qui surviennent durant le pressage à chaud de panneaux de fibres de densité moyenne. Notre modèle est basé sur trois principes de conservation : conservation de l’énergie, de la masse de l’air et de la masse de la vapeur d’eau, qui résultent en un problème instationnaire tridimensionnel dans lequel les variables d’état et les propriétés matérielles du panneau varient dans le temps et l’espace. Les équations de conservation sont exprimées comme fonctions des trois variables d’état du modèle, soient la température, la pression de l’air et la pression de vapeur. Le modèle comprend le transfert conductif et convectif de chaleur, le changement de phase de l’eau, le transfert convectif et diffusif de masse. On tient également compte de la polymérisation de la résine ainsi que de la chaleur latente associée au changement de phase de l’eau. On suppose l’existence de l’équilibre thermodynamique au niveau local et on emploie le modèle de sorption de Malmquist pour décrire la dépendance de la teneur en humidité de la température et de l’humidité relative du panneau. On présente le développement des équations de conservation ainsi que les relations constitutives caractérisant les propriétés matérielles du panneau. Le modèle a une formulation mathématique générale en trois dimensions mais, dans cet article, nous présentons uniquement les résultats bidimensionnels. La fermeture de la presse et le développement du profil non homogène de densité sont pris en compte en imposant un profil de densité prédéfini (mais réaliste) qui varie dans le temps et l’espace. Les calculs sont faits sur une géométrie de référence et les détails mathématiques décrivant le transfert des équations d’une géométrie réelle à la géométrie de référence sont également présentés. Les trois équations de conservation hautement non linéaires sont résolues par la méthode de Newton en tant qu’un système d’équations couplées. La discrétisation spatiale du système en question est faite par la méthode des éléments finis et la méthode d’Euler implicite a été utilisée pour la discrétisation temporelle. Les résultats obtenus par le modèle montrent en général une bonne concordance avec les mesures expérimentales. Le modèle fournit également de l’information utile sur les variables d’intérêt telles que la pression du gaz, la température, la teneur en humidité, l’humidité relative et l’étendue de la polymérisation de la résine. Mots clefs: Modèle mathématique, pressage à chaud, transfert couplé de chaleur et de masse, méthode des éléments finis, dynamique de la polymérisation de la résine, domaine de référence. 52 Abstract A mathematical model describing complex phenomena of heat and moisture transfer occurring during the hot pressing of medium-density fiberboard (MDF) mats is presented. Our model is based on three conservation principles: conservation of energy, air mass and water vapor mass, resulting in a three-dimensional unsteady-state problem in which the fiber mat’s properties and state variables vary in time and space. The conservation equations are expressed as functions of three state variables of the model, namely temperature, air pressure, and vapor pressure. The model includes conductive and convective heat transfer, phase change of water, and convective and diffusive mass transfer. Resin curing kinetics and latent heat associated to phase change of water are also taken into account. Local thermodynamic equilibrium is assumed and Malmquist’s sorption isotherm model is used to describe dependence of moisture content of the mat on temperature and relative humidity. Developments of conservation equations are presented as well as all constitutive relations describing the material properties of the mat. The model has a general 3D mathematical formulation but, in this paper, only two-dimensional results are presented. Press closing and development of non homogeneous density profile are taken into account by imposing a realistic predefined time- and space-dependent density profile. Calculations are carried out on a reference geometry and mathematical details relevant to the transfer of equations from real world geometry to reference geometry are presented. The three nonlinear conservation equations are solved together as a fully coupled system by means of Newton’s method. Spatial discretization of the system is achieved by finite element method and the Euler implicit scheme is employed for the time discretization. The model results exibit very good overall agreement with experimental measurements. The model produces valuable information on variables of interest such as total gas pressure, temperature, moisture content, relative humidity, and degree of resin cure in the case of batch pressing. Keywords: Mathematical model, hot pressing, coupled heat and mass transfer, finite element method, resin cure dynamics, reference domain. 53 INTRODUCTION The hot pressing of medium-density fiberboard (MDF) is a complex process involving several mechanical and heat and mass transfer phenomena in the fiber mat. There is evidence of numerous efforts that have been deployed by researchers in order to better understand the heat and mass transfer phenomena occurring in wood-based panel mats during the hot pressing process. A comprehensive literature review can be found in Bolton and Humphrey (1988). Among the first researchers proposing an integrated approach were Kavvouras (1977), Humphrey (1982), and Humphrey and Bolton (1989a). The first multidimensional heat and moisture transfer model was probably developed and proposed by Humphrey (1982). A series of papers describing the physics involved in the hot pressing of particleboard and presenting typical predictive results followed (Bolton et al 1989a, 1989b, 1989c; Humphrey and Bolton 1989a). That work is the foundation on which the comprehensive model proposed by Thömen and Humphrey (2006) was developed. Different heat and mass transfer models describing the hot pressing process of wood-based composite panels such as MDF, oriented strandboards (OSB) and particleboards have been proposed by Carvalho and Costa (1998), Thömen (2000), Nigro and Storti (2001), Zombori (2001), García (2002), Zombori et al (2003), Dai and Yu (2004), Pereira et al (2006), Thömen and Humphrey (2006), Vidal Bastías (2006), just to mention a few of them. Ultimately, all heat and mass transfer models are based on the mass conservation of air and water vapor and conservation of energy (Zombori et al 2003; Dai and Yu 2004; Thömen and Humphrey 2006). To these conservation laws, one can add the cure kinetics equation of the adhesive system to predict the evolution of resin cure (Loxton et al 2003; Zombori et al 2003). Local thermodynamic equilibrium between mat moisture content and water vapor is assumed and the relationship between the equilibrium moisture content, relative humidity and temperature (EMC-RH-T) needs to be described. An appropriate moisture sorption model is required since it is an important component of every mathematical model of heat and mass transfer within a composite mat. Several of them are available in the literature (Malmquist 1958; Nelson 1983; Wu 1999; Dai and Yu 2004; Vidal Bastías and Cloutier 2005). It is expected that the choice of a sorption model might have an influence on the predictions of hygrothermal conditions within the mat when simulating the hot pressing process. Several complex and nonlinear sorption models were studied by Vidal Bastías and Cloutier (2005). Their study showed that the Malmquist (1958) sorption model gives the best overall fit to experimental EMC. The largest amount of heat is supplied to the mat by the heated press platens. The heat released by the exothermic reaction of resin polymerization is also taken into account as well as the energy associated to the phase change of water. The moisture content of the mat is usually below the fiber saturation point. Thus, only bound water is considered in the models (Dai and Yu 2004). Hence, in the energy balance equation, the heat of phase change involves latent heat of desorption and evaporation (bound water to vapor), and latent heat of condensation and adsorption (water vapor to bound water) (Nigro and Storti 2001; Zombori et al 2003; Dai and Yu 2004; Thömen and Humphrey 2006). Heat in the fiber mat is transferred both by conductive heat flux (modeled by Fourier’s law) and convective heat flux (heat transported by gas flow through the mat). 54 The gas present in the mat is regarded as an ideal gas and assumed to be a mixture of air and water vapor (Thömen and Humphrey 2006). Gas flow is assumed to be laminar and the total gas pressure gradient generates a convective gas flow which is modeled by Darcy’s law. Diffusive fluxes of air and water vapor are both driven by their partial pressure gradients and are described by Fick’s law. Furthermore, the complexity and strong coupled nature of the physical processes involved during heat and mass transfer are widely recognized in the literature (Bolton and Humphrey 1988, Humphrey and Bolton 1989a; Carvalho and Costa 1998; Nigro and Storti 2001; Zombori et al 2003; Dai and Yu 2004; Thömen and Humphrey 2006). However, a clear description of how the coupling procedure is incorporated in the numerical resolution strategy is most often omitted. The use of a finite element method and an implicit time scheme is not frequent in the literature. The only work using that approach we found is by Nigro and Storti (2001). Most authors use finite difference discretizations with explicit and conditionally stable time integration schemes. That approach implies the use of smaller time steps in order to satisfy stability conditions (e.g. time step of 0.005 s used by Yu et al 2007). Despite the literature already available, it is often difficult to reproduce the numerical results presented. From the finite element simulation point of view, it is important to be specific about the partial differential equations (PDE) that constitute the model, the assumed boundary conditions, the material properties and the numerical methods used to solve the problem. The aim of this work is to present and solve such a model based on a set of mathematical equations modeling the complex phenomena of heat and moisture transfer during the hot pressing of the medium-density fiberboard mat. Particular attention is devoted to the development of the mathematical formulation of conservation equations. At each time step, the system of coupled equations is solved on a reference domain. The mathematical details of the transformation from the real world geometry to the reference one are explained. We also describe in details how the full coupling of conservation equations is achieved from the modeling and numerical simulation stand points. We use a flexible and efficient finite element code developed at the GIREF (Laval University, Quebec) allowing easy-to-incorporate changes of the input data such as: reference geometry, material properties, predefined density profiles, different time schemes, linear or quadratic finite element approximation of the state variables, time step, and mesh adaptation. MATERIAL AND METHODS When developing a mathematical model aimed to simulate physical phenomena, it is important to compare the results produced by the model with laboratory measurements. Therefore, experimental data were obtained in order to validate our numerical model. Material Medium-density fiberboards were produced in the laboratory for model validation purposes. Temperature and gas pressure were measured in the fiber mat during the pressing 55 process at the center of the vertical panel plane. Temperature was measured at three points across mat thickness: at the core, at one-quarter of the thickness and at the surface, whereas total gas pressure was measured at the core and at the surface. Refined softwood MDF fibers were obtained from the Uniboard MDF La-Baie plant in Ville de La-Baie, Quebec, Canada. Methods The proposed model is based on conservation principles leading to three governing conservation equations: conservation of energy, air mass and water vapor mass (Zombori et al 2003; Dai and Yu 2004; Thömen and Humphrey 2006). This results in a threedimensional unsteady-state mathematical-physical model in which the fiber mat’s properties and state variables vary in time and space. The three state variables of the model are temperature, air pressure, and vapor pressure. The conservation equations are expressed as functions of these three main variables. Furthermore, resin cure is predicted by considering cure kinetics equation of the adhesive system as part of the energy balance equation (Zombori et al 2003; Loxton et al 2003; Dai and Yu 2004; Yu et al 2007). Moreover, Malmquist’s sorption isotherm model is used to describe dependence of moisture content of the mat on temperature and relative humidity. Useful information related to complex expressions and equations describing material properties, sorption model and resin cure kinetics are taken from available literature (see APPENDIX 1). At this stage, press closing and development of non homogeneous density profile are taken into account by imposing a realistic predefined time- and space-dependent density profile (see APPENDICES 2 and 3). Calculations were carried out on a reference geometry and effects of evolving domain geometry were accounted for by transferring of equations and material properties from evolving real world geometry to reference geometry. Panel manufacturing The fibers were a blend of about 90% black spruce (Picea mariana) and 10% balsam fir (Abies balsamea). The fibers at 6.5 % initial moisture content were blended with 12 % (fiber oven-dry weight basis) urea-formaldehyde resin and 1 % wax in a laboratory rotary drum blender. The initial moisture content of the furnish was 12%. A series of six MDF panels of size 560 mm x 460 mm x 13 mm and target density of 750 kg/m3 at 8% MC were produced in a Dieffenbacher laboratory batch press equipped with a PressMAN measurement and control system. The press platens were at 203C. The pressing schedule of 335 s was divided in five steps. The initial mat thickness of about 182 mm was reduced to 140% of the final thickness in the first 35 s (Step 1). The press remained in this position for the next 15 s (Step 2) followed by the second compression lasting 110 s at the end of which the mat reached its final thickness of 13 mm (Step 3). The hot platens remained in this position for the next 110 s (Step 4). The final step (Step 5) was the degassing period (65 s) during which the press was slowly opened and reached 107% of the final panel thickness at 335 s. The curve presenting the evolution of mat thickness with time can be seen in Figure 2.1a. 56 a) b) Figure 2.1 : Evolution of : a) mat thickness; b) normalized percentage of mat target thickness (PTT(t)). Model development Overall Approach and Assumptions It was reported by Humphrey and Bolton (1989b) that the size of the board has an effect on the temperature and gas pressure within the hot pressed mat. In the current study, a single panel geometry was considered. Therefore, the effect of panel size was not studied. All the mats were formed using the same raw materials and pressed using the same pressing schedule. Bound water was assumed to be in equilibrium with water vapor in the lumens and in the mat voids. Local thermodynamic equilibrium was assumed at every point of the fiber mat and the relationship between local moisture content, relative humidity and temperature was described by the sorption isotherm. Hence, the three state variables of the model are temperature, air pressure, and vapor pressure. All of the material properties of the fiber mat were taken from the available literature (see below and APPENDIX 1). None of the fiber mat material properties was obtained from the panels produced in the laboratory. The current study is focused on the heat and moisture transfer phenomena involved in the hot pressing of the MDF wood fiber mat. The rheology of mat consolidation was not explicitly considered in this study. Therefore, a predefined time- and space-dependent oven-dry vertical density profile based on the work of Wang and Winistorfer (2000) (see APPENDIX 2 and Figure 2.2) was used in the simulations to update the local heat and moisture transfer properties and porosity of the mat. Consequently, the complex dynamical interactions between heat and moisture and rheological parameters involved during the hot pressing process were not taken into account. We are aware that this simplification may have an influence on the results presented here. A numerical coupling between the mechanical and the heat and mass transfer models will be presented in Part 2 of this paper. 57 It is assumed that the initial mat moisture content is uniform throughout the thickness. The contribution of resin cure to heat and mass transfer is also taken into account. All the results for the coupled three dimensional mathematical model of heat and moisture transfer were obtained by finite element numerical simulations. It is also assumed that the mass of oven-dry fiber material in each control region is constant and a control region of constant volume is considered (Thömen 2000; Thömen and Humphrey 2006). Our model presents similarities with the models published by Dai and Yu (2004) and Thömen and Humphrey (2006). However, in our approach, we also take into account the effect of compression on the global mat geometry. Press closing (Figure 2.1) is considered and the effect of changing mat thickness on the material properties (thermal conductivity, gas permeability, and porosity) is also accounted for as will be described below. a) 58 b) c) Figure 2.2 : a) Evolution of a space- and time-dependent predefined oven-dry density profile used in calculations: vertical density profile in the center line at different moments in time. Evolution of: b) predefined oven-dry density profile, values at 4 points in the vertical center line (BSQ=Middle Point Between Surface and Quarter); c) wet density profile at 4 points in the vertical center line calculated by Mat = OD (1+M). Total Derivative The notion of total derivative will frequently appear in the development of conservation equations. Therefore, a brief reminder will be useful. Suppose that G is a function of an independent variable t and of three real-valued functions f, g, and h which also depend on t. Thus, one can write G G (t , f (t ), g (t ), h(t )) . In this case, the partial derivative of G with G respect to t ( ) does not give the true rate of change of G with respect to t, because it t does not take into account the dependency of f, g and h on t. However, the total derivative dG ) is taking such dependencies into account. Hence, the true rate of change of G with ( dt respect to t is given by dG G G df G dg G dh dt t f dt g dt h dt (34) dG ) should be dt considered. Hence, all the indirect dependencies (dependencies of other variables on t) are G ). When developing conservation equations, one should added to the partial derivative ( t account for the overall rate of change and the total derivative should be used. Therefore, to find the overall dependency of G on t, the total derivative ( 59 Generic Formulation of a Conservation Principle When considering a constant arbitrary control volume , the principle of conservation of a quantity G contained within the control volume states that the total variation in time of the quantity G is basically caused by the combined action of internal and external factors: an internal source producing G, an internal sink consuming G and the net flux of G through the boundary of the control volume. The net flux represents the result of interactions of G contained within the control volume with the surroundings. We suppose that the quantity G is variable in time and space ( G G (t , x) ), differentiable and its total time derivative bounded over . This allows us to put the derivation sign inside of the integral on the left hand side of the Eq. (35). Hence, we have the following conservation principle for G d d Gd Gd S source d S sink d qG nd dt dt (35) where qG is the net flux of quantity G through the boundary of the constant control volume and n represents the outward unit normal vector on the boundary . Of course, the source term will create a positive variation (increase) of the quantity G contained within the control volume, whereas the sink term will cause a decrease of concentration of G (negative sign). When the net flux qG is in the same direction as the outward normal vector n ( qG n 0 ), then the quantity G is leaving the control volume resulting in a decrease of concentration of G (negative sign). On the opposite, if qG n 0 , then the net flux is entering the control volume resulting in an increase of concentration of G ( qG nd will then be positive). Moreover, the divergence theorem q G nd qG d (36) yields the following expression for the conservation of G d d Gd Gd S source d S sink d qG d dt dt (37) The previous expression being true for any constant control volume , we finally have d G qG S source S sink dt (38) 60 Mass Conservation of Air It is commonly agreed that air can be considered as an ideal gas and therefore obeys the ideal gas law. During the hot pressing process of MDF panels, no air is generated or consumed. It means that there is no source or sink term in the conservation equation. Therefore, variations of air mass within a control volume of the mat are solely depending on bulk flow of the gas phase (convection generated by the gradient of total gas pressure and modeled by Darcy’s law) and molecular diffusion of the air within the gas phase (diffusion created by the gradient of partial air pressure modeled by Fick’s law). Molecular diffusion translates the tendency to homogenize the gas phase. However, it is recognized by many authors (Thömen and Humphrey 2003; Dai and Yu 2004; Thömen and Humphrey 2006) that the bulk flow of the gas phase is the main process causing the air to leave the mat. The conservation principle applied to the air yields to the following equation expressing the conservation of the mass of air d ( a) M a K p P a Deff Pa 0 dt RT (39) Mass Conservation of Water Vapor Water vapor is also treated as an ideal gas as well as a mixture of air and vapor. Variations of water vapor mass within a control volume of the mat depend on bulk flow of the gas phase (modeled by Darcy’s law) and molecular diffusion of the vapor within the gas phase (modeled by Fick’s law). Given that the mat moisture content is significantly below the fiber saturation point, only bound water is present in the mat (Dai and Yu 2004). Hence, during the hot pressing process, bound water present in the MDF mat will partially evaporate in regions of high temperature and thus produce water vapor. On the other hand, in cooler regions, condensation of water vapor may occur and increase the bound water content. This means that the evaporation of bound water can be seen as a source term of vapor and condensation of water vapor is interpreted as a sink. Bound water evaporation is equivalent to the loss of bound water due to the moisture content decrease in time (García 2002), and the condensation of vapor is equivalent to the gain of bound water due to the moisture content increase in time. Hence, the source and the sink terms of water vapor are dM dM both modeled by the following expression: OD and the sign of determines if dt dt dM dM evaporation ( 0 ) or condensation ( 0 ) is taking place (García 2002; Thömen dt dt and Humphrey 2006). Therefore, the equation expressing the conservation of the mass of the water vapor is d ( v) dM M v K p P v Deff Pv OD dt dt RT (40) 61 Conservation of Energy The fiber mat is composed of a solid phase (oven-dry fibers, resin and bound water) and a gaseous phase (air and water vapor). Within a control volume of the mat having a constant volume and constant mass of oven-dry fiber material and resin, the variation of energy of a solid phase is represented by d d ODCMatT OD CMatT dt dt (41) d C a T a Cv T v dt (42) and that of a gaseous phase by It is assumed that, inside the control volume, the solid phase and the surrounding gaseous phase have the same temperature. We also assume that the heat generated by friction during the compression of the mat is negligible. Within the mat, the heat is transferred by conduction (conductive heat flux) in the solid phase and by convection in the gaseous phase (bulk flow and molecular diffusion). The energy associated to the phase change (evaporation and condensation) must also be taken into account. The bound water evaporation process requires energy (latent heat of desorption and vaporization) and acts as an energy sink, whereas water vapor condensation is an exothermic process which releases the same amount of energy (latent heat of condensation and adsorption) and acts as an energy source. Latent heat associated to phase change depends on local temperature and moisture content. Therefore, it varies in space and time (Thömen and Humphrey 2003; Dai and Yu 2004). We use the same expressions for the latent heat as Thömen and Humphrey (2003) and Dai and Yu (2004), which are based on Humphrey and Bolton (1989a) results. The impact of the phase change on the energy of the control volume is modeled by the dM expression: H fg Cbw Cv T OD (Thömen and Humphrey 2006). The sign of dt dM dM dM determines if evaporation ( 0 ) or condensation ( 0 ) is taking place. The dt dt dt heat generated by the exothermic reaction of resin polymerization is also taken into account and it acts as an energy source in the control volume. The energy source term Qr related to the cure kinetics of resin polymerization is considered and a model for the resin curing process is discussed in the next section. 62 Hence, the conservation of energy of the system is expressed by d d CMatT CaT a CvT v KT T dt dt C M T a Ca v Cv K p P a a Deff Pa R OD (43) C M dM v v Deff Pv Qr H fg Cbw Cv T OD dt R Resin Cure Kinetics It is a common belief that the performance of composite panels is strongly related to the uniformity of resin distribution in the mat and that at a given resin content, a uniform resin distribution will lead to the best panel properties (Kamke et al 1996; Loxton et al 2003). Loxton et al (2003) found that “resin distributions changed upon pressing of resinated fiber, implying that resin was being redistributed during pressing” (Loxton et al 2003). Despite that observation and for modeling purposes, we still assume a uniform distribution of the resin throughout the fiber mat. In the laboratory experiments, we used urea-formaldehyde (UF) thermosetting resin as adhesive system. Naturally, for a thermosetting resin, a dominant factor controlling resin cure is the temperature: the higher the temperature, the faster the resin cures. However, moisture content influences resin cure as well. In regions where moisture content is high, the temperature rise is delayed by the evaporation process which in turn slows down resin curing. To model resin cure kinetics, a phenomenological approach is commonly used ignoring the chemical details of the reacting system by fitting a mathematical model to experimental data (Liang and Chandrashekhara 2006). As different resin systems exhibit different curing behavior, several models of cure kinetics are available in the literature (Harper et al 2001; Xing et al 2004; Liang and Chandrashekhara 2006). The simplest one is the nth-order kinetics model which “does not account for any autocatalytic effects and so it predicts maximum reaction rate at the beginning of the curing” (Liang and Chandrashekhara 2006). The curing reaction of UF resin is assumed to have a nth-order kinetics (Park et al 2008) and is therefore modeled by the following ordinary differential equation (ODE) d E n A exp a 1 dt R T (44) 0 0 where α is a dimensionless variable representing the extent of the resin cure which can be defined as the ratio of the mass of cured resin to the initial mass of uncured resin. Therefore, α has values between 0 (no resin has yet been polymerized) and 1 (all the available resin has been cured) (Liang and Chandrashekhara 2006). The above model states 63 d ) is higher. The function 1 n dt describes the decrease of the reaction rate as α increases and the reactants are consumed. that, at higher temperatures, the reaction rate ( The constant A is the Arrhenius collision frequency factor relating the amount of collisions that need to occur in a unit time to carry out the reaction (Harper et al 2001), Ea is the Arrhenius activation energy describing the amount of energy needed to propagate cure (Harper et al 2001), R is the universal gas constant, T is temperature field in Kelvin and n is the order of the reaction. Xing et al (2004) also considered the UF resin curing reaction as nth order reaction and conducted an experiment using differential scanning calorimetry to quantify the degree of resin pre-cure after blending. Among other things, they were able to come up with values for different parameters involved in the equation. We therefore use the following values from Xing (2003) and Xing et al (2004): A = exp(17) [1/s], Ea = 7* 104 J/mole, n = 1.2 and also the total heat released during the entire course of the reaction at 105 J/kg (Xing 2003, Table 4.3). When solving the ODE for α, the temperature field T is assumed to be known. Given the initial condition 0 0 , the analytical solution for the ODE describing the evolution of resin cure is: when n 1 Ea R T t 1 exp A t exp (45) and when n 1 1 1 n E t 1 1 exp a A n 1 t R T (46) The above expressions describe the evolution of the degree of resin cure and we use it in our heat and mass transfer model. As we consider that the order of reaction is n = 1.2 (Xing 2003; Xing et al 2004), the expression when n 1 is used to predict the evolution of the degree of resin cure. Heat Generation Rate The source term Qr in the energy conservation equation (Eq.(43)) represents the heat generated by the exothermic reaction of resin polymerization. Of course, it varies in space and time. The accumulated heat generated by the reaction up to a given moment during the reaction is given by the following relation Qr r H r d dt (47) 64 Replacing d by its expression given by Eq.(44), one gets dt E Qr r H r A exp a 1 n R T (48) where H r is the total heat released during the polymerization (latent heat of polymerization estimated at 105 J/kg by Xing 2003) and r is the resin density expressed as the ratio of solid resin mass to the total volume. As the UF resin content of the fiber mat is 12 % based on fiber oven-dry weight basis, the corresponding mass of solid resin is given by 0.12 times the mass of oven-dry fibers. We also have the following result: r 0.12 OD . Sorption Model Following Dai and Yu (2004), we assume that local isothermal sorptive equilibrium exists between mat moisture content, gas relative humidity, and temperature. It is also assumed that the initial mat moisture content is uniform throughout the thickness and its value is set to 0.12. Using an appropriate sorption model, the evolution of mat moisture content with time at any position can thus be predicted and monitored. It is still not possible to experimentally measure directly moisture content and relative humidity during the hot pressing process. Therefore, predicting space and time evolution of these variables gives useful information from the practical standpoint. Several sorption models are proposed in the literature: Malmquist (Malmquist 1958), Hailwood-Horrobin one and two hydrates (Vidal Bastías and Cloutier 2005), García (2002), Nelson (1983) and others. Vidal Bastías and Cloutier (2005) compared several of the most frequently used sorption models and their study showed that the Malmquist’s sorption model gives the best overall fit to experimental equilibrium moisture content (EMC) data, especially at high temperatures. This model was therefore used in our numerical simulations. It expresses dimensionless moisture content M as a function of absolute temperature T and dimensionless relative humidity h: M Malmquist MS I 1 3 1 N 1 h (49) where MS, N and I are second order polynomials of the absolute temperature T defined as follows (Vidal Bastías and Cloutier 2005): MS 0.40221 9.736 105 T 5.8964 107 T 2 N 2.6939 0.018552 T 2.1825 106 T 2 I 2.2885 0.0016742 T 2.0637 106 T 2 (50) (51) (52) 65 Numerical Model of Heat and Mass Transfer in the Fiber Mat Our mathematical model can be seen as a generalization of the model proposed by Thömen and Humphrey (2006). As the model is based on the mass conservation of air and water vapor and conservation of energy, it is expressed in terms of the three state variables: partial air pressure (Pa), partial water vapor pressure (Pv) and temperature (T). Therefore, in each one of the three conservation equations, the chain rule is applied to time derivatives. Hence, let B represent any of the functions for which the total derivative with respect to time is considered in the conservation equations. Then, we have dB B Pa B Pv B T B dt Pa t Pv t T t t (53) B is the partial time derivative which is different from zero if and only if B depends t explicitely on time, i.e. if the time appears explicitly in the expression of B. For instance, as the moisture content M depends on temperature (T) and partial vapor pressure (Pv) and does M M not explicitly depend on time nor on air pressure, then 0 and 0 . When the t Pa dM dM M Pv M T is thus developed as . A chain rule is applied, the term dt dt Pv t T t similar approach is used to perform other time derivatives in the model. Once this is done, the three conservation equations are written in terms of the three state variables (Pa, Pv, T) as follows: where Mass conservation of air ( a ) Pa ( a ) Pv ( a ) T P t P t T t a v M ( a ) a K p a Deff Pa a K p Pv RT t (54) Mass conservation of water vapor ( v ) M Pa ( v ) M Pv ( v ) M T P OD P t P OD P t T OD T t a a v v M ( v ) v K p Pa v K p v Deff Pv RT t (55) 66 Energy conservation CMatT CaT a CvT v M Pa H fg Cbw Cv T OD OD Pa Pa Pa t CMatT CaT a CvT v M Pv H fg Cbw Cv T OD OD P P P t v v v CMatT CaT a CvT v M T H fg Cbw Cv T OD OD T T T t T CM aCa vCv K p a a Deff Pa R (56) T CM aCa vCv K p v v Deff Pv R KT T Qr OD CMatT CaT a CvT v t t (see NOMENCLATURE and APPENDICES 1 and 2 for definitions of variables and expressions). The model is formed by these three highly nonlinear conservation equations which are strongly coupled and constitute a coherent system. Finite Element Solution Strategy An integrated approach considering simultaneously all important variables during hot pressing was proposed by Kavvouras (1977), Humphrey (1982), and Bolton and Humphrey (1988). Our solution strategy is quite different from what has traditionally been done. Indeed, for each of the three conservation equations, a finite element method discretization is performed in space while the time derivatives are calculated using the stable Euler implicit scheme. This allows for larger time steps and reduces the calculation burden. Each state variable is discretized by Q1 (bilinear quadrangles) finite element (Bathe 1982; Reddy 2006). Moreover, at each time step and for each nonlinear iteration, the three nonlinear equations forming the coupled heat and mass transfer system are solved simultaneously preserving the full coupling between them. To address the nonlinearity of this complex system of coupled equations, we proceeded similarly to Nigro and Storti (2001). Indeed, at each time step, the nonlinear system is solved by Newton’s method allowing to predict the evolution of the state variables in space. Unlike the later authors, we explicitly computed the derivatives rather than using a finite difference approximation of derivatives (Nigro and Storti 2001) to calculate the Jacobian 67 matrix. Unlike Nigro and Storti (2001), no stabilization technique was needed to solve the system. It has been a common practice to keep the local conditions and properties constant during a given time step (Thömen 2000; Thömen and Humphrey 2004). We however adopted a different approach. Indeed, in our case, within each time step, all the local conditions and mat material properties are updated from one nonlinear iteration to another. Although more complicated, we believe that this is a better numerical approach and our code is able to deal easily with this level of complexity. During each time step, on average 4 iterations of Newton’s method are performed in order to reach convergence to 10-5 in the residual norm. Since we are using an Euler implicit time scheme combined with the finite element method, we have no constraint on the time step length. However, a too large time step could cause convergence and accuracy problems. The results presented in this paper were obtained using a time step of 0.1 s. Computational Domain It is noteworthy that our mathematical model is three-dimensional (3D). However, at this stage, in order to reduce the calculation time, it will be applied on a two-dimensional (2D) geometry. Nevertheless, in Part 2 of this paper, numerical results obtained with a global model on 3D geometry will be presented. When studying the hot pressing of multi-layered wood strand composites, Lee et al (2007) pointed out that a daylight delay (the time necessary for the top platen to touch the mat) creates a temperature asymmetry which causes asymmetric distribution of internal mat conditions in the thickness direction. Despite that observation and for modeling reasons, we will rather follow a common path proposed in the literature and take advantage of the symmetry (Carvalho and Costa 1998; Carvalho et al 2001; Nigro and Storti 2001; Carvalho et al 2003; Thömen and Humphrey 2003; Dai and Yu 2004; Pereira et al 2006; Thömen and Humphrey 2006; Yu et al 2007). Hence, our computational domain represents a quarter of the full 2D geometry (see Figure 2.3) with the symmetry plans presented in Figure 2.3. Therefore, for the numerical simulation runs, we consider a rectangular domain in the x-z plane with the following dimensions: 280 mm (half length) by 6.5 mm (half final thickness). Figure 2.3 shows details of the 2D geometry and our working domain. The domain considered for calculation was meshed with a 16 by 16 grid having 256 rectangular elements. More refined grids were used by Zombori et al (2003) (19 by 19) and Nigro and Storti (2001) (20 by 20). We should also point out that the mesh used by Nigro and Storti (2001) had a high concentration of elements towards the edges in contact with hot platens and ambient air, whereas our mesh is made of homogeneous rectangular elements. Thorough discussion on size of the grids and examples of its influence on numerical results will be presented in Part 2 of this paper. In the current study, we worked on a reference domain: 280 mm (half length in the x direction) by 6.5 mm (half final thickness in the z direction). This thickness corresponds to the final half thickness of the fiber mat (symmetry is taken into account). It is clear that in 68 different stages of pressing process, the mat has different thickness values. Given that the total mass of fiber material does not change with the thickness of the mat being compressed, the material properties of the mat will change during compression. For instance, in thicker mats, thermal conductivity is lower, whereas gas permeability is higher. As we work on a reference domain, these changes in material properties must be accounted for as the pressing process evolves. Thus, the transfer of material properties and the equations from a real-world evolving domain to the reference domain must be done. In the next section, we explain the procedure to properly achieve this task. a) b) Hot platen Air Air Hot platen 6.5 mm 13 mm Air Hot platen z 560 mm Symmetry axes 280 mm x Figure 2.3 : a) Full 2D geometry of a fiber mat; b) computational domain in 2D (one quarter of the full geometry). Transfer to the Reference Domain Generic Approach We first present the basics and then apply them to a simple generic problem in order to illustrate the transfer of calculations on the reference domain. Let be a real-world domain where the coordinates of a given point are x, y , z , and let be a reference domain (where the calculations are carried out) where the coordinates of , G x , y , z x, y , z a given point are x , y , z . The invertible function G : transfers a point from the reference domain to a real-world domain. Its inverse , H x, y , z x , y , z transfers a point from the real-world function H G 1 : domain to the reference domain. If we express the real-world coordinates as a function of 69 the reference domain coordinates, one can write x g1 x , y , z ; y g 2 x , y , z ; z g 3 x , y , z and we have G x , y , z g1 x , y , z , g 2 x , y , z , g3 x , y, z x, y , z (57) Similarly, one can express the reference domain coordinates as a function of the real-world coordinates: x h1 x, y , z ; y h2 x, y , z ; z h3 x, y , z and get H x, y , z h1 x, y , z , h2 x, y , z , h3 x, y , z x , y , z (58) Let F F x, y , z be any scalar function expressed on the real-world domain and F x , y , z the same scalar function expressed on the reference domain . Then, the F following derivatives can be calculated and written in matrix notation F g 1 x x F g 1 y y F g1 z z g 2 x g 2 y g 2 z g3 F x x g3 F y y g3 F z z and F h1 x x F h1 y y F h1 z z h2 x h2 y h2 z h3 F x x h3 F y y h3 F z z (59) or written in a more compact way T F G F and T T F H T G F , Since F H 1 T T H G I i.e. H G . one T F F H comes to the (60) conclusion that We will now illustrate on a simple but generic equation the transfer of calculations from the real-world domain to the reference domain. The equation is dT K T f dt (61) We used the finite element method. From this approach, the variational formulation of Eq. (28) on the real-world domain is 70 dT dt d K T d h T T dS h dS f d , V (62) EXT R N SR SN where is a test function in a certain functional space V , S N is the part of the boundary of on which a flux is imposed (Neumann boundary condition) and S R is the part of the boundary of on which the exchange (Robin or Neumann nonlinear) boundary condition is imposed, hN and hS are coefficients, T EXT is the ambient temperature, f is the source term and d dxdydz . The equivalent expression on the reference domain is T T dT dt Jd K H T H Jd hR T T S R EXT J SR d SR S N hN J S N d SN f Jd V (63) which can also be written as T dT dt Jd H K H T Jd EXT hR T T J SR d SR S R S N hN J S N d SN f Jd (64) 1 G and J and J are the determinants (Jacobians) of where J det H det SN SR d xd yd z . We will be more specific about the transformation on the boundary, and d these expressions in the next subsection. It should be noticed that Eqs. (62) and (64) are equivalent and have the same structure. From the finite element point of view, it means that the transfer is not code invasive. Indeed, the coefficients in each integral were multiplied by an appropriate Jacobian and the material properties represented by the tensor K on the real-world domain are now H T on the reference domain. represented by the tensor H K This illustrates the transfer of calculations from the real-world domain to the reference domain. The same methodology is applied to each of the three conservation equations of our model (Eqs. (54), (55), (56)). 71 Mat Compression During the pressing process, the thickness of the mat decreases as a function of the press closing schedule. The mat target thickness (MTT) is known in advance (MTT = 13 mm in our case). Of course, when symmetry is assumed, one half of the MTT is used in the calculations (6.5 mm). The press closing schedule is only time dependent and can be expressed in terms of percentage of MTT and named PTT t . In our simulation runs, PTT t is known (APPENDIX 3 and Figure 2.1b). Therefore, one can express the evolution of the real mat thickness (RMT) in terms of MTT and PTT t as follows RMT t PTT t MTT 100 (65) , its Since the calculations are performed on an arbitrary but fixed reference domain thickness (RDT: reference domain thickness) is also known. Thus, the following useful expression can be defined t RMT t RDT (66) During the pressing process, the largest variations in mat dimensions occur in the thickness direction, whereas the variations in the x and y directions can be considered negligible. Thus, the following relations stand y y g x , y , z z t z g x , y , z and x x h1 x, y, z (67) 2 and y y h x, y , z 2 (68) 3 and 1 z z h3 x, y, z t (69) x x g1 x , y, z F x , y , z on Thus, for scalar fields F F x, y , z on the real-world domain and F , we have the reference domain F F x 1 0 x 0 F F 0 1 0 y y 0 0 t F F z z and F F x x 0 1 0 F F 0 1 0 y y 1 F 0 0 F t z z (70) 72 1 G t and if a tensor K is given Hence, J det H det k 13 k k 12 11 t k 11 k 12 k 13 k 23 H T k 21 22 k 21 k 22 k 23 , then H K . by K k t k 31 k 32 k 33 k 31 k 32 k 33 t 2 t t We can also have an explicit expression for J S associated with a surface element. As the treatment of the surface element is similar whether the Neumann or Robin boundary condition is dealt with, a generic approach is presented. From Eqs. (67), (68) and (69), one gets dx d x , dy d y and dz t d z . There are three cases to consider: y d S dS dxdy d xd and J S 1 dS dxdz d x t d z t d S and J S t dS dydz d y t d z t d S and J t S (71) (72) (73) This strategy was applied to several different reference domains to test the independency of the results on the reference geometry. All the numerical tests were successful and gave the same results. Density Profile Generally, the vertical density profile of compressed panel is not uniform. It mainly exhibits a common “M-shaped” profile with higher density close to the surface and lower density in the core (Carvalho et al 2001, 2003; Wang et al 2001). It is regularly observed that the transition region from low to high density is rather thin (Carvalho et al 2001, 2003; Wang et al 2001). This characteristic “M-shaped” density profile is attributed to the interactions between the heat and mass transfer phenomena and the mechanical compression of the mat (Dai and Yu 2004). In the present work, in order to reduce the complexity and calculation time, a realistic non homogeneous predefined oven-dry density profile of the mat ( OD [kg/m3]) was used during the simulation runs (see APPENDIX 2 and Figure 2.2; Kavazović et al 2010). This vertical density profile is time- and space-dependent and is in part inspired by the results presented by Wang and Winistorfer (2000), Winistorfer et al (2000), and Wang et al (2001, 2004). Some authors are not very specific about the density profile data when presenting results of their heat and mass transfer model. However, it is noteworthy that Carvalho and Costa 73 (1998) state explicitly that “it is assumed instantaneous closing of the press. The final thickness is attained instantaneously, there is no variation of density and the porosity remains unchanged”. In our case, the densification process (formation of the vertical density profile) is taken into account by the time- and space-dependent expression of the oven-dry density profile (see APPENDIX 2 and Figure 2.2a). Furthermore, the evolution of oven-dry density at four representative points placed in the vertical central plan of the mat is presented in Figure 2.2b. The porosity of the mat was calculated by the formula presented by Siau (1984) 1– OD 1530 and was thus time and space dependent. Boundary Conditions Appropriate boundary conditions are needed to properly solve the system constituted by Eqs. (54), (55) and (56). The temperature evolution of the surface in contact with the hot platen (Fig. 2.4a) was imposed by a Dirichlet boundary condition based on the data obtained during in-situ laboratory experiments. The surface in contact with the hot platen includes the two end vertices illustrated by black dots in Figure 2.3b. Moreover, the following fluxes were considered at the boundaries: M Air flux : q Pa = a K p P a Deff Pa RT M Vapor flux : q Pv = v K p P v Deff Pv RT T a Ca v Cv Heat flux : q T = KT • T K p P C M C M a a Deff Pa v v Deff Pv R R (74) (75) (76) The hot platen is assumed impervious to gas and therefore qPa = 0 and qPv = 0. Symmetry conditions are imposed (qT = 0, qPa = 0 , qPv = 0) on the two symmetry axis illustrated by dashed lines in Figure 2.3b. On the external edge in contact with the ambient air, the following convection boundary conditions are imposed for the three state variables: air pressure, vapor pressure and temperature, respectively: q Pa · n = h p a ( P Pamb ) 105 a ( Pa Pa amb ) Pa q Pv · n = h p v ( P Pamb ) 105 v ( Pv Pv amb ) Pv (77) (78) 74 T a Ca v Cv q T · n = h T ( T Tamb ) h p ( P Pamb ) CM CM 105 a a ( Pa Pa amb ) 105 v v ( Pv Pv amb ) R R (79) where n is the outward unit normal vector, hT and hp are respectively the convective heat and mass transfer coefficients associated to the external boundary (Zombori 2001; Vidal Bastías 2006). In Figure 2.3, the external edge is the right hand side edge of the rectangular domain and is represented by a continuous black line including the black square (Fig. 2.3b). The main mode of mass transfer between the mat and the environment is the gas bulk flow (Zombori et al 2004) generated by the difference in total gas pressure within and outside the mat. Diffusion generated by the difference in partial vapor pressure within and outside of the mat plays a secondary role (Zombori et al 2004). Thermal Conductivity of the Mat (KT) Thermal conductivity increases with the increase of density, temperature and moisture content of the fiber mat. We used the expression suggested by Thömen and Humphrey (2006) for the thermal conductivity of the fiber mat: KTxy = 1.5·KTz where KTz KT 030 KT KT 030 4.38 10 and -2 4.63 10 OD 4.86 10 -5 (80) -8 2 OD KT 0.49 M 1.1104 4.3 103 ·M · T 303.15 (81) (82) The variables KTz and KTxy represent respectively the thermal conductivity in the thickness and horizontal directions. KT030 is the thermal conductivity measured at 0% M and 30C and KT is the correction term accounting for moisture content and temperature effects on thermal conductivity. The tensor of thermal conductivity KT is therefore given by KTxy KT 0 0 0 KTxy 0 0 0 KTz (83) Specific Gas Permeability of the Mat (Kp) Analytical expressions for the specific gas permeability of MDF mats based on curve fitting of experimental data can be found in García and Cloutier (2005) and also in von Haas et al (1998). The expression proposed by García and Cloutier (2005) is valid for MDF mats having a density between 400 kg/m3 and 1150 kg/m3, whereas in von Hass et al (1998), the permeability of fiber, particle and strand mats with densities varying from 200 kg/m3 to 75 1200 kg/m3 was determined. The samples used by von Hass et al (1998) were prepared from consolidated panels with an adhesive content of 11%. In our study, the expression and the input data for the specific gas permeability of the MDF mats will be based on expressions proposed by von Haas et al (1998). Hence, the in-plane permeability (Kpxy) and the cross-sectional permeability (Kpz) of MDF fiber mats are both described by the following expression 1 exp A where A = a + b Mat + c ln( Mat ) (84) and the coefficients to determine Kpxy are a = 0.041, b = 9.5110-6 , c = 0.015 and those for Kpz are a = 0.037, b = 1.1 10-5 , c = 0.037. The tensor Kp of the specific gas permeability of the MDF fiber mat is therefore given by K pxy Kp 0 0 0 K pxy 0 0 0 K pz (85) RESULTS AND DISCUSSION It should be kept in mind that the numerical model used here is based solely on heat and mass transfer mechanisms and that the influence of the changing moisture content and temperature on rheological mechanisms was not considered. The numerically predicted solutions depend on several heat and mass transfer properties of the fiber mat and most of these properties are only known to a limited degree of precision, especially under the conditions prevailing during the hot pressing process. Moreover, the fiber mat material properties including thermal conductivity, gas permeability and porosity were taken from the literature and were not determined from the specific material used to make panels. This can explain some of the discrepancies between the model and the experimental results. The temperature measurements are presented together with numerically predicted results in Figure 2.4a where the vertical bars represent standard deviation from the mean value. In Figure 2.4a, curve labelled SurfaceLab is the temperature measured in the laboratory at the surface in contact with the hot platen and was imposed as a Dirichlet boundary condition for T at the surface. Moreover, curves labelled CoreModel and QuarterModel are obtained by numerical simulation and represent the temperature at the center and at one quarter of the thickness, respectively. Numerically predicted temperature at the core and at onequarter of thickness (Figure 2.4a) closely follow the evolution of in situ measurements. In particular, the plateau temperatures and the times when they are reached seem to be quite similar. The total gas pressure curves (predicted and measured) are shown in Figure 2.4b 76 with standard deviation bars. In the second half of the pressing period, experimental measurements of the total gas pressure exhibit more dispertion (large standard deviation bars) whose coefficient of variation (ratio of the standard deviation to the mean) is approximately 6% (Figure 2.4b). Numerically predicted total gas pressure seems to be constant through the mat thickness. Hence, the predicted values of gas pressure at the core and the surface of the mat are equal, and both curves are superimposed (curve labelled Surface&CoreModel) and are identified by the same symbol in Figure 2.4b. The model captures the major trends and gives results of good quality and somewhat closer to experimental results than those presented by Thömen and Humphrey (2006) and by Zombori et al (2004). When compared with experimental measurements, numerically predicted results for the temperature and the gas pressure exhibit satisfactory behavior. However, the absence of the total gas pressure gradient in the vertical center plan should be underlined. The same phenomenon is observed by most of the investigators presenting numerically predicted total gas pressure during the hot pressing of wood-based panels (Carvalho and Costa 1998; Thömen 2000; Carvalho et al 2003; Zombori et al 2003; Pereira et al 2006; Thömen and Humphrey 2006; Yu et al 2007). Nevertheless, we and all of the above authors observed the development of a significant horizontal total gas pressure gradient, especially in the core driving the gas out of the mat. a) b) Figure 2.4: a) Temperature evolution in time: measurements at the surface, the core and one quarter of the thickness, and numerically predicted results at the core and one quarter of the thickness. b) Total gas pressure evolution in time: measurements and numerical results at the surface and the core. Curve labelled Surface&CoreModel is obtained by numerical simulation and the other two are measured in the laboratory. In all figures, special symbols such as □, ○, *, ◊, , etc, are used to distinguish different curves and do not represent experimental data unless the contrary is explicitly indicated. 77 Figure 2.5 presents numerical predictions of the evolution of moisture content (M) (Fig. 2.5a) and relative humidity (RH) (Fig. 2.5b) in the mat during the hot pressing process. The results are presented for five equidistant points laying in the vertical center line of the mat: at the core, at one-quarter of the thickness, at the surface, and at the mid-points between the core and one-quarter of the thickness (BCQ) as well as between the surface and one-quarter of the thickness (BSQ). The sorption isotherm model relates moisture content to relative humidity and temperature. Therefore, it is not surprising to observe very similar behavior of the curves representing the M evolution and the RH evolution in the mat. Comparable observations were also made by Yu et al (2007). Furthermore, from the early stages of the hot pressing process, the temperature of the surface increases rapidly causing the evaporation of bound water and thus decreasing M and increasing gas pressure at the surface. This induces vapor flow towards the inner layers. Given that inner layers have lower temperature, water vapor condenses and thus increases the local moisture content (Yu et al 2007). A sequence of peaks of local moisture content presented in Figure 2.5a clearly shows the movement of M from the surface region towards the core layer. Because of that, the amount of bound water present in the core region of the mat increases with time. It takes large amount of energy and time to evaporate the accumulated bound water. That explains the long-lasting temperature plateau in the core (Fig. 2.4a). a) b) Figure 2.5 : Numerical predictions of moisture content and relative humidity at 5 equidistant points in the vertical center line (BSQ=Between Surface and Quarter; BCQ=Between Center and Quarter). Evolution of : a) moisture content; b) relative humidity. Wet mat density is a function of the oven-dry density and the moisture content of the mat. As can be seen in Figure 2.2, the time and space evolution of wet mat density is mostly influenced by predefined oven-dry density profile (Figure 2.2a). 78 Figure 2.6 summarizes the results obtained for partial air (Pa) and vapor (Pv) pressures at five representative locations in the vertical center plan. Figure 2.6a shows that, for the first 30 s of pressing process, the air pressure quickly drops at the surface while it remains almost stable in the inside layers. At the same time, due to evaporation process which is taking place close to the hot surface, the vapor pressure exhibits the opposite behavior: it increases at the surface and remains unchanged elsewhere (Figure 2.6b). This creates vertical partial air and vapor pressure gradients. However, as the hot pressing process continues, the air pressure is rapidly decreasing, which indicates that air is leaving the mat by the edges. As the heat penetrates deeper into the mat, the amount of bound water evaporated gradually increases causing a noticeable increase of vapor pressure. Hence, the vapor replaces the air and occupies a very large proportion of the gaseous phase. Higher temperature (more evaporation) and density (lower permeability) contribute to the gas pressure build-up, especially in the core. The difference in gas pressure between the core and the edges results in gas flow in the panel (horizontal) plane. This is in agreement with observations made by Yu et al (2007). a) b) Figure 2.6 : Numerical predictions of partial air and vapor pressure at 5 equidistant points in the vertical center line (BSQ=Between Surface and Quarter; BCQ=Between Center and Quarter). Evolution of : a) partial air pressure; b) partial vapor pressure. 79 Finally, Figure 2.7 summarizes numerical predictions at four representative locations of the degree of resin cure and the resin curing rate. As expected, at the beginning of the hot pressing process, the resin curing rate is the highest at the surface (Figure 2.7b) resulting in the fastest increase in the resin cure degree which rapidly reaches its highest value (Figure 2.7a). Because of the high temperature, all of the available resin at the surface quickly polymerized. Then, the curing rate in that region quickly vanishes. As the temperature of the layers closer to the core increases, so does the amount of cured resin. That increases the degree of resin cure towards its maximum value (Figure 2.7a). Of course, as the reactants are used up, the rate of resin cure consequently diminishes and tends to zero (Figure 2.7b). These results are in agreement with those presented by Yu et al (2007). a) b) Figure 2.7 : Numerical predictions of degree of resin cure and resin curing rate at 4 points in the vertical center line (BSQ=Middle Point Between Surface and Quarter). Evolution of : a) resin cure degree; b) resin curing rate. 80 CONCLUSIONS This paper presents a detailed 3D mathematical approach of the development of a physicalmathematical model for heat and mass transfer that occurs in the MDF mat during hot pressing process. The complex nature and interactions of different physical phenomena are described by means of three strongly coupled and nonlinear conservation equations. The conservation equations are expressed as functions of the three state variables of the model, namely temperature, air pressure, and vapor pressure, and form a coherent system. Those equations take also into account the curing kinetics of UF resin and Malmquist’s model describes the sorption isotherm. Physical and heat and mass transfer properties of the fiber mat are also considered time and position dependent. The fully coupled system of governing nonlinear equations, discretized by finite element method, is solved by Newton’s method on a reference domain and mathematical details of the transfer of those equations from a real-world domain to a reference domain are presented. The model produced good predictions of the evolution of several variables related to heat and mass transfer. Numerically predicted results for temperature and gas pressure exhibited a fair correspondence with experimental data. Predicted evolution of moisture content, relative humidity, partial air and vapor pressures, and the extent of the resin cure were all in agreement with previously published results. The model thus provides a good and reasonably reliable insight in the complex dynamics of heat and mass transfer phenomena. 81 NOMENCLATURE t : time [s] x : length [m] y : width [m] z : thickness [m] T : temperature field [K] ; a state variable calculated by the model Pa : partial air pressure [Pa] ; a state variable calculated by the model Pv : partial vapor pressure [Pa] ; a state variable calculated by the model P : total gas pressure [Pa] M : moisture content [dimensionless] h : relative humidity [dimensionless] PvSAT : saturated vapor pressure [Pa] Ma : molar mass of air [kg/mol] Mv : molar mass of water vapor [kg/mol] R : universal gas constant [J/(mol·K)] a : density of the air [kg/m3] v : density of the water vapor [kg/m3] OD : oven-dry density of the mat [kg/m3] (see APPENDIX 2) Φ : porosity of the mat [dimensionless] Mat : wet density of the mat [kg/m3] KT : thermal conductivity tensor [J/(m· s·K)] Kp : tensor of specific (effective) gas permeability of the mat [m3/m] Deff : tensor of effective diffusion coefficient [m2/s] Dva : binary molecular diffusion coefficient of the air-vapor gas mixture [m2/s] kd : obstruction factor [dimensionless] Hfg : latent heat of vaporization (desorption + evaporation of bound water; condensation + adsorption of water vapor) [J/kg] CMat : mass specific heat capacity of the mat at current moisture content [J/(kg·K)] Ca : mass specific heat capacity of air [J/(kg·K)] Cv : mass specific heat capacity of water vapor [J/(kg·K)] Cbw: mass specific heat capacity of the bound water [J/(kg·K)] : dynamic viscosity of the air-vapor mixture [Pa·s] a : dynamic viscosity of the air [Pa·s] v : dynamic viscosity of the water vapor [Pa·s] hT : convective heat transfer coefficient associated to the external boundary [J/(m2 · s· K)] hp : convective mass transfer coefficient associated to the external boundary [m] q T : heat flux [J/(m2· s)] q Pa : air flux [kg/(m2· s)] q Pv : water vapor flux [kg/(m2· s)] EMC : equilibrium moisture content [dimensionless] 82 RH : relative humidity [dimensionless] MTT : mat target thickness [m] Minit : initial moisture content of the mat [dimensionless] Tinit : initial temperature of the mat [K] hinit : initial value of relative humidity [dimensionless] PvSAT init: initial value of saturated vapor pressure [Pa] Pv init : initial value of partial vapor pressure [Pa] Pa init : initial value of partial air pressure [Pa] Tsurface : temperature at the surface in contact with the hot platen [K] hamb : relative humidity of ambient gas [dimensionless] Tamb : temperature of the ambient gas [K] PvSAT amb: saturated vapor pressure in ambient gas [Pa] Pamb : ambient gas pressure [Pa] Pv amb : ambient vapor pressure [Pa] Pa amb : ambient air pressure [Pa] 83 APPENDIX 1 Expressions of some parameters used in the calculations. P = Pa + Pv : Dalton’s law M : defined at every point in the mat by a sorption model, we use Malmquist’s sorption model as a reference MS M Malmquist I 1 1 N 1 3 h where MS, N and I are second order polynomials of absolute temperature T [K] given by MS 0.40221 9.736 105 T 5.8964 107 T 2 N 2.6939 0.018552 T 2.1825 106 T 2 I 2.2885 0.0016742 T 2.0637 106 T 2 h Pv PvSAT 6516.3 PvSAT exp 53.421 4.125 ln T (Kirchoff’s formula) T Ma = 28.951·10-3 Mv = 18.015·10-3 R = 8.314472 M a Pa (ideal gas law) RT M P v = v v (ideal gas law) RT a = =1– OD (Siau 1984) 1530 Mat = OD (1+M) D Deff va I , where I is identity tensor kd 1.75 101325 T Dva 2.6 10 P 298.2 k 0.334 e A , A 5.08 103 5 d Mat H fg 2.511 10 2.48 10 T 273.15 1.172 106 e 0.15M 100 6 CMat 3 1131 4.19 T 273.15 4190 M Ca = 1003.5 1 M 84 Cv = 1950 Cbw = Cwater = 4190: because of lack of data P P a a v v P P 1.37 106 T 1.5 a T 85.75 1.12 105 T 1.5 v T 2937.85 hT = 0.35 hp = 2*10-11 MTT = 0.013 m Minit = 0.12 Tinit = 298.15 hinit calculated by Malmquist’s formula 3 1 MSinit 1 1 1 hinit N init M init I init where MSinit 0.40221 9.736 105 Tinit 5.8964 107 Tinit 2 N init 2.6939 0.018552 Tinit 2.1825 106 Tinit 2 I init 2.2885 0.0016742 Tinit 2.0637 106 Tinit 2 6516.3 4.125 ln Tinit PvSAT init exp 53.421 Tinit Pvinit hinit PvSAT init Painit 101325 Pvinit Tsurface : temperature at the surface in contact with the hot platen; its evolution in time is imposed by the Dirichlet boundary condition and the values are prescribed by measured experimental data (see Figures 2.3 and 2.4a) hamb = 0.3 Tamb = Tsurface : because the size of the mat is much smaller than the platens of the press, the temperature of the air surrounding the mat under compression is much higher than 298.15 and is supposed to be equal to the temperature at the surface of the mat 6516.3 PvSAT amb exp 53.421 4.125 ln Tamb Tamb Pamb = 101325 Pv amb = hamb PvSAT amb Pa amb = Pamb Pv amb 85 APPENDIX 2 A predefined mat oven-dry vertical density profile ( OD [kg/m3]) was used for calculations. This profile is space and time dependent and is based on the results presented by Wang and Winistorfer (2000). A similar approach was adopted by Kavazović et al (2010). The mathematic representation of the density profile is given by the expression presented subsequently. For the sake of clarity, this expression is graphically presented in Figure 2.2 to illustrate the density profile as a function of time and space (position in the thickness direction). Because the symmetry of the vertical density profile is assumed, its evolution is only presented for half of the mat thickness. In the mathematical expression of the profile, “t” represents time and “z” represents position in the thickness direction. Furthermore, in the thickness (“z”) direction the density profile is divided into four sections. In each section, the density profile is expressed by a different function. Of course, the overall continuity of the density profile is ensured by the way the four functions are constructed. These functions are defined as follows: LD = Low-Density Section, MD = Medium-Density Section, HD1 = First Part of the High-Density Section, HD2 = Second Part of the High-Density Section. OD LD 0 z 0.00455 0.00455 < z 0.00585 MD HD1 0.00585 z 0.006175 HD 2 0.006175 < z 0.0065 where 36.60305611+13 exp(0.08596321714 t) 0 t 35 300 35 < t 50 LD 50 < t 160 300+(t-50) (0.909091+99.9001 z ) 400.00001+10989.011 z 160 < t BPHD TPLD MD TPLD z 0.00455 0.00585 0.00455 0 t 36.60305611+13 exp(0.08596321714 t) 0 t 35 300 35 < t 50 TPLD 231.8181772+1.363636455 t 50 < t 160 450.00001 160 < t 86 36.60305611+13 exp(0.08596321714 t) 0 t 35 300 35 < t 50 BPHD 100+4 t 50 < t 160 740 160 < t 0 t 35 36.60305611+13 exp(0.08596321714 t) 300 35 < t 50 HD1 300+(t-50) (-12.36363636+2797.202797 z ) 50 < t 160 -1060+3.076923077 105 z 160 < t 0 t 35 36.60305611+13 exp(0.08596321714 t) 300 35 < t 50 HD 2 300+(t-50) (22.18181827-2797.202797 z ) 50 < t 160 2740.00001- 3.076923077 105 z 160 < t 87 APPENDIX 3 The press closing schedule is a time dependent function. It can be expressed in terms of the mat target thickness (MTT) as a percentage of MTT and named PTT t . Figure 2.1 illustrates its evolution in time. For example, when the press is in the position corresponding to 140% of MTT, PTT=140%. Then, the actual thickness of the mat equals 140% * MTT/100% = 1.4 * MTT. The time evolution of PTT(t)/100% used for our simulations is given by the following expression: 0 t 35 14 - 0.36 t 1.4 35 < t 50 1 87 PTT (t ) 50 < t 160 t 55 275 100% 1 160 < t 270 7 461 650 6500 t 270 < t 335 ACKNOWLEDGMENTS The authors wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), FPInnovations – Forintek Division, Uniboard Canada and Boa-Franc for funding of this project under the NSERC Strategic Grants program. 88 Chapitre 3 Modélisation numérique du processus de pressage à chaud des panneaux MDF Couplage du modèle mécanique avec le modèle de transfert de chaleur et de masse Ce chapitre est constitué de l’article intitulé “NUMERICAL MODELING OF THE MEDIUM-DENSITY FIBERBOARD HOT PRESSING PROCESS PART 2. COUPLED MECHANICAL AND HEAT AND MASS TRANSFER MODELS” Cet article sera soumis à la revue Wood and Fiber Science (Society of Wood Science and Technology). Les auteurs de l’article sont Zanin Kavazović, Jean Deteix, André Fortin et Alain Cloutier. 89 Résumé Nous présentons le couplage d'un modèle mécanique avec le modèle de transfert de chaleur et de masse introduit dans la première partie afin de décrire les phénomènes complexes de compression du panneau et de transfert de masse et de chaleur qui surviennent durant le pressage à chaud des panneaux de fibres de densité moyenne. Ce modèle global décrivant les interactions entre les mécanismes rhéologiques et ceux de transfert de masse et de chaleur est basé sur des principes de conservation non linéaires et fortement couplés. Le modèle de transfert de chaleur et de masse est constitué des équations de conservation de l’énergie, de la masse de l’air et de la masse de la vapeur d’eau, résultant en un problème instationnaire tridimensionnel dans lequel les variables d’état et les propriétés matérielles du panneau varient dans le temps et l’espace. Ces équations de conservation sont exprimées comme fonctions des trois variables d’état du modèle (la température, la pression de l’air et la pression de la vapeur) et sont résolues par la méthode de Newton en tant qu’un système d’équations couplées. Le couplage entre le modèle mécanique et le modèle de transfert de masse et de chaleur est pris en compte et le profil non homogène de densité est calculé dynamiquement durant la simulation. Le comportement d’un matériau élastique vieillissant est décrit par le modèle mécanique dans un contexte tridimensionnel général. Le processus de vieillissement est pris en compte et on fait dépendre les propriétés rhéologiques du temps, de l’espace, de la température, de la teneur en humidité et de la polymérisation de la résine. De plus, on tient compte des phases de durcissement et d’assouplissement du matériau qui sont alors représentées par deux lois de comportement distinctes. Le modèle mécanique s’exprime en formulation incrémentale quasi-statique en termes de champ de déplacement. Le modèle mécanique ainsi que le modèle de transfert de masse et de chaleur sont tous les deux discrétisés en espace par la méthode des éléments finis. Le schéma de Gear (implicite arrière du second ordre) est utilisé pour la discrétisation en temps. Cela procure davantage de flexibilité dans le choix de la longueur du pas de temps et permet d’abaisser éventuellement le coût global des calculs. Le modèle comprend le transfert conductif et convectif de chaleur, le changement de phase de l’eau, le transfert convectif et diffusif de masse. Les équations du modèle tiennent également compte de la polymérisation de la résine urée-formaldéhyde ainsi que de la chaleur latente associée au changement de phase de l’eau. On suppose l’existence de l’équilibre thermodynamique au niveau local et on emploie le modèle de sorption de Malmquist pour décrire la dépendance de la teneur en humidité de la température et de l’humidité relative du panneau. La fermeture de la presse est prise en compte alors que le développement du profil non homogène de densité est prédit par le modèle mécanique qui est couplé au modèle de transfert de chaleur et de masse. Les calculs sont faits sur une géométrie en mouvement dont la déformation (compression) est une conséquence de la fermeture de la presse. Les résultats obtenus par le modèle montrent en général une bonne concordance avec les mesures expérimentales. Le modèle fournit également de l’information utile sur les variables d’intérêt telles que le profil de densité, la pression du gaz, la pression de l’air et de la vapeur, la température, la teneur en humidité, l’humidité relative et le degré de polymérisation de la résine. Mots clefs: Modèle mathématique, pressage à chaud, couplage du modèle mécanique avec le modèle de transfert de chaleur et de masse, domaine mobile, méthode des éléments finis, polymérisation de la résine. 90 Abstract Coupled mechanical and heat and mass transfer mathematical models describing complex phenomena of mat compression and heat and moisture transfer occurring during the hot pressing of medium-density fiberboard (MDF) mats are presented. This global model depicting intimate interactions between rheological and heat and mass transfer mechanisms is based on coupled and nonlinear conservation principles. The heat and mass transfer model consists of equations of conservation of energy, air mass and water vapor mass, resulting in a three-dimensional unsteady problem in which the fiber mat’s properties and state variables vary in time and space. These conservation equations are expressed as functions of three state variables (temperature, air pressure, and vapor pressure) and are solved together as a fully coupled system by means of Newton’s method. The coupling between mechanical and heat and mass transfer models is taken into account and the non homogeneous density profile is dynamically calculated during the simulation. Behavior of the ageing linear elastic material is described by a mechanical model in the general threedimensional context. Ageing process is taken into account and rheological properties of the mat depend on time, space, temperature, moisture content and resin cure. Moreover, the hardening and softening phases of the material behavior are accounted for and treated with separate constitutive laws. The mechanical model is expressed in a quasi-static incremental formulation as a function of displacement field. Both mechanical and heat and mass transfer models are discretized in space by the finite element method. The Gear (implicit second order backward) scheme is employed for time discretization providing more flexibility in the choice of the time step and eventually lowering the overall computational cost. Furthermore, the model includes conductive and convective heat transfer, phase change of water, convective and diffusive mass transfer. UF resin curing kinetics and latent heat associated to the phase change are also included in the governing equations. Local thermodynamic equilibrium is assumed and Malmquist’s sorption isotherm model is used to describe dependence of moisture content of the mat on temperature and relative humidity. Press closing is taken into account and the development of non homogeneous density profile is predicted by the mechanical model which is coupled to heat and mass transfer model. All calculations are carried out on a moving geometry whose deformation (compression) is a function of press closing schedule. Model results exibit good overall agreement with experimental measurements from laboratory batch press. Moreover, under various press closing schedules, the model is able to produce valuable information on variables of interest such as density profile, total gas pressure, air and vapor pressure, temperature, moisture content, relative humidity, and degree of resin cure. Keywords: Mathematical model, hot pressing, coupled mechanical and heat and mass transfer models, coupling, moving domain, finite element method, resin cure dynamics, non homogeneous density profile. 91 INTRODUCTION When a wood composite mat is hot pressed, mechanical deformation and heat and moisture transfer processes are intimately coupled and strongly interact with each other (Nigro and Storti 2001; Zombori et al 2003; Dai and Yu 2004; Thömen and Humphrey 2006; Thömen and Ruf 2008). Dynamical development of a density profile (outcome of a compression process and a complex viscoelastic stress-strain relationship) is enhanced by a softening effect of moisture content and heat (Bolton et al 1989; Thömen and Ruf 2008). On the other hand, changes in density profile influence the thermal conductivity, gas permeability and porosity of a composite mat, thus affecting heat and moisture transfer in the mat. The literature on combined mechanical and heat and mass transfer models of the hot pressing process rarely presents detailed information about coupling procedure. Among the first researchers proposing an integrated approach were Kavvouras (1977), Humphrey (1982), and Humphrey and Bolton (1989). Recently, models have been developed by Dai (2001), Carvalho et al (2003), Zombori et al (2003), Pereira et al (2006), and Thömen et al (2006). Meanwhile, Wang and Winistorfer (2000), Wang et al (2001, 2004), Winistorfer et al (1996, 2000) published a series of papers presenting gamma-ray in situ measurements to investigate the density profile development during hot pressing. Unfortunately, the apparatus needed to conduct those experiments is not commonly available. Therefore, to gain insight into dynamic development of the density profile, an approach based on numerical simulation appears as a promising avenue (Thömen et al 2006). The mechanical behavior of wood based composites is influenced by moisture content (M) and temperature (T) following changes in environmental conditions. This hygrothermal ageing (time dependence of the mechanical properties) induces dependence of the rheological parameters upon evolving M and T. Thus, the coupling of the mechanical model with the heat and mass transfer model becomes necessary and helps describing more accurately interactions between heat and mass transfer and rheological mechanisms. Hot pressing is a time dependent mechanical process (Dubois et al 2005). For the anisotropic case, the literature is mainly focussed on non ageing materials (Zocher et al 1997; Poon et al 1998 and 1999). For the ageing case, Dubois et al (2005) have developed a 1D viscoelastic model conforming to the thermodynamic principles based on a generalized Kelvin-Voigt model. The aim of this work was to develop a numerical model for the linear elastic mechanical behavior of an ageing MDF mat (whose rheologic properties depend on time, temperature, moisture content and resin cure) and to describe the methodology developed and solution strategy implemented to simulate MDF hot pressing. To describe the MDF hot pressing process, we propose a global coupled mechanical and heat and mass transfer numerical model based on the finite element method. In Part 1 of this paper, equations of conservation of energy, air mass and water vapor mass were proposed to model heat and mass transfer. This 3D unsteady mathematical model was expressed as function of three state variables: temperature, air pressure, and water vapor pressure. The assumed boundary conditions, the time- and space- dependent material properties of the mat, and the numerical solution methods and strategy were also presented. Since all relevant details regarding heat and 92 mass transfer model were provided in Part 1, we shall only discuss here the new features related to the mechanical model and the coupling of those two models. The robustness and flexibility of the global model were tested under various pressing conditions and the model was used to perform several tests and case studies. MATERIAL AND METHODS The results of our coupled numerical model were validated against the same experimental data as those presented in Part 1 of this paper. Relevant details regarding materials and panel manufacturing are also presented in Part 1 and shall not be repeated here. Methods We propose and describe an approach to couple mechanical and heat and mass transfer models describing complex phenomena resulting from interactions between rheological and heat and moisture transfer mechanisms during the hot pressing of MDF mats. Those interactions contribute to the development of non homogeneous density profile. Its timeand space-dependent development is predicted by a mechanical model which is combined with heat and mass transfer model. Since material and rheological properties of the mat depend on time, density, resin cure, temperature and moisture content (ageing material) (APPENDIX 1), the coupling of mechanical and heat and mass transfer models seems necessary. The proposed models have a general 3D mathematical formulation. Numerical procedure combines the finite element method with a quasi-static incremental formulation. Linear elastic model for an ageing material was applied and a composite constitutive law combining both Hooke’s and tangent laws is elaborated in order to meet thermodynamic principles. Press closing and effect of a changing mat thickness on the material and rheological properties of the mat are also taken into account. Moreover, the geometry of the working domain evolves during the pressing process. In Part 1 of this paper, material (Lagrangian) formulation was adopted and calculations were transferred to reference domain. In Part 2 however, updated Lagrangian formulation of all equations is used and calculations are carried out on a dynamically moving domain. The mesh grid moves as well and is updated after each time step. Updated Lagrangian formulation enables us to capture the movement of the domain in a natural way. Resolution strategy and coupled mechanical and heat and mass transfer models were integrated into the finite element code MEF++ developed by the Groupe interdisciplinaire de recherche en éléments finis (GIREF) at Laval University. Overall Approach and Assumptions Expressions and equations describing material properties, sorption model and resin cure kinetics were obtained from available literature and presented in APPENDIX 1 of Part 1 of this paper. None of the fiber mat material and rheological properties was obtained from the panels produced in the laboratory. Expressions of coefficients for the fourth order elasticity tensor are based on information presented by Thömen et al (2006) for the Burger’s model. Those coefficients were first obtained by von Haas (1998) (APPENDIX 1) using curve fitting of experimental data. We slightly modified those expressions to take into account the 93 contribution of resin cure to the change of elastic properties of the fiber mat (APPENDIX 1). Following the approach proposed by Dubois et al (2005), we imposed that our rheological model satisfies the second principle of thermodynamics (positive dissipation hypothesis). In our ageing linear elasticity model, two distinct constitutive laws are proposed to comply with the thermodynamic requirements: the Hooke’s law for the softening (moistening) and the tangent law (Bazant 1979) for the hardening (drying) behavior. During hot pressing, drying and moistening can occur at the same time in different regions of the mat. It is assumed that the mass of oven-dry fiber material in each grid element is constant (Thömen 2000; Thömen and Humphrey 2006). Actually, the volume of each element changes over time as a consequence of mat compression. Thus, the calculated oven-dry density profile changes over time. Wang and Winistorfer (2000), Winistorfer et al (2000), Wang et al (2001, 2004), and Thömen and Ruf (2008) demonstrated the influence of the choice of the pressing schedule on the development of the vertical density profile. In our numerical study, tests were conducted for different press closing schedules. However, since only one pressing schedule was used to perform our laboratory experiments, validation of numerical results was possible only for that pressing schedule. Press opening (venting period) was not modeled. The total pressing cycle considered in our numerical study had duration of 268 s. Moving Domain and Material Derivative Mathematical concepts introduced in this section are presented in more details in Garrigues (2007). Since the fiber mat is compressed and changes shape, it can be considered as a moving domain. Once material particles are within the mat, they always belong to the mat (no material particles are lost nor added). Therefore, the mass of the mat remains constant over time. However, since the volume of the mat is changing, its density also changes. To mimic the compression of the fiber mat and to follow the domain in its movement, all calculations were performed on a moving geometry. Calculations of the displacement field over the domain allow keeping track of the movement of each material particle. To each material particle, p, of a moving domain one can associate different physical quantities, G, such as scalar functions (temperature, moisture content, pressure, etc), vectors (displacement, velocity, etc) or tensors (thermal conductivity, strain, etc). Material (particular) derivative of G is defined as time derivative of G when following a particle p of the material domain in its movement. Suppose that G is a function of an independent variable t and of three real-valued functions f, g, h which are also associated to p and depend on t. Thus, one can write G ( p, t ) G ( p, t , f ( p, t ), g ( p, t ), h( p, t )) . The chain rule applies and the material derivative of G associated to an arbitrary but fixed material particle p is given by 94 DG G ( p, t ) G Df ( p, t ) G Dg ( p, t ) G Dh( p, t ) Dt Dt Dt Dt t f g h (86) Since the particle p is followed in its movement, suppose that it occupies a position P1 at time t1 and a position P2 at time t2 with t2 t1 t . Then, each time derivative on the right hand side is regarded as a limit (with fixed particle p); for instance, Df ( p, t ) f ( P2 , t1 t ) f ( P1 , t1 ) lim t 0 t Dt (87) From the numerical standpoint, a finite difference scheme is used to discretize and approximate the time derivatives such as the one presented in Eq.(87). Displacement of a particle p is calculated at each time step by the mechanical model and its position is updated. That is how both the shape and position of the working domain evolve in time. Since no material particle moves in or out of the material domain, the same conservation principles of physical quantities associated to material particles of a moving domain apply as those presented in Part 1 of this paper. Therefore, the conservation equations involved in the heat and mass transfer model presented in Part 1 remain the same and shall not be repeated here. However, we should make the following remarks regarding the conservation of mass of oven-dry fiber material in a moving domain. Following the development proposed by Duvaut (1998), the mass of dry solid media contained within any arbitrary time evolving subdomain (t ) of a moving mat (t ) is given by massOD ( (t )) OD d for all (t ) in (t ) (88) (t ) where OD is the oven-dry density. The mass of dry solid media does not change over time, thus the transport theorem (Duvaut 1998) applied to the mass conservation equation gives D D D massOD ( (t )) OD d OD OD div(v) d 0 , for all (t ) in (t ) Dt Dt ( t ) ( t ) Dt (89) where v( x, t ) is a velocity field. Since the last equality is true for any (t ) in (t ) , it means D OD that OD div(v) 0 . A consequence of this result (Hughes and Marsden 1976; Dt Duvaut 1998) is that, for any arbitrary regular function B( x, t ) , we have 95 D OD B D OD Bd OD B div(v) d Dt (t ) Dt (t ) DB DB D B OD OD div(v) d OD d OD d Dt Dt Dt (t ) (t ) (t ) for all (t ) in (t ) (90) 0 This result is used when expressing the energy conservation of the system in the heat and mass transfer model on the moving domain. Therefore, the energy conservation equation is the same as the one presented in Part 1. Mechanical Model The governing equation for the mechanical model is expressed in terms of time- and spacedependent displacement field U x, t . Compression of the mat obeys Newton’s second law MAT Dv div U 0 Dt in t (91) where MAT is the mat wet density, v the velocity field, and the second-order stress tensor (APPENDIX 1), and t represents the evolving computational domain (fiber mat). Dv ) is considered negligible during the hot pressing Dt process and will not be taken into account in further discussions. In Eq.(91), the inertial term ( MAT Constitutive Law To establish a constitutive law relating U to , the following considerations were taken into account. The phenomenon of material ageing is considered at the macro-level. Ageing is defined as the time dependency of the material properties and is expressed as a variation of mechanical properties as function of time. Following Dubois et al (2005) and based on Bazant (1979), we suppose that all the components of a rheological model must satisfy the second principle of thermodynamics (positive dissipation). Bazant (1979) have shown that two distinct constitutive laws are necessary. For softening material, the classical Hooke’s law satisfies the thermodynamic condition (Dubois et al 2005). For the hardening material however, the tangent law (Bazant 1979) is considered to comply with the positive dissipation condition. Since wood and wood-based composites are hygroscopic materials, ageing is induced by variable moisture content and temperature conditions. This is taken into account by making rheological properties depend upon evolving M and T (Dubois et al 2005); hence material properties vary in time. An increase in moisture content and temperature softens wooden material and its stiffness decreases. At the opposite, as moisture content and temperature 96 decrease, the material hardens and becomes stiffer. Therefore, variations in M and T are directly linked to softening and hardening of the material. An increase in M and T in solid wood generates swelling, whereas a decrease causes shrinkage (Hunt and Shelton 1988; Dubois et al 2005). In the current study, as a first approach, swelling and shrinkage were not taken into account. During hot pressing, heat and moisture move from the surface in contact with the hot platens towards the core. There are therefore two opposite phenomena that are simultaneously taking place within the mat undergoing hot pressing: desorption occurs in one region and sorption in another. Therefore, to satisfy thermodynamic principles, Hooke’s law and the tangent law must be simultaneously considered leading to a composite constitutive law for ageing linear elastic behavior: D E: D Dt D DE Dt : E: Dt Dt DE 0 (hardening, tangent law) Dt DE 0 (softening, Hooke's law) Dt E : ( E ) : (92) where is a second-order Cauchy stress tensor (APPENDIX 1, Eq.(104)), E is a fourthorder elasticity tensor (APPENDIX 1, Eq.(104)), and the second-order strain tensor 1 DE T U U U . For the time derivative of E , E , only the negative part of 2 Dt E E 0 . The reader should note that the time each component is retained: ( E ) 0 E 0 derivatives of the tensor E as well as the negativity conditions ( E ) are calculated component by component. The time dependency of the components of elasticity tensor E appears through their relation with mat density ( MAT ), local moisture content (M), temperature (T) and degree of resin cure (APPENDIX 1, Eq. (101)). They are thus implicitly time-dependent. 97 Incremental Formulation From Eq.(87), one can see that the time derivatives of and can be approximated (Ghazlan et al 1995; Dubois et al 2005; Beuth et al 2008) by D Dt t ; D t Dt (93) where and are instantaneous increment of strain and stress, respectively. With N 0,1, 2,... and t0 0 , we denote time increment t t N 1 t N , N t N , EN E t N , N t N with the time variation of E defined as E EN 1 EN . The composite constitutive law for ageing linear elastic material behavior (Eq. (92)) now reads EN 1 : E : N (94) E E 0 where (E ) . It is usually assumed that the inertial component is 0 E 0 Dv negligible (i.e. MAT 0 ) and the problem is regarded as quasi-static (Ghazlan et al Dt 1995; Beuth et al 2008): at each time step, static equilibrium is assumed (quasi-static assumption). The time evolution of mat geometry is simulated by imposing successive load increments upon the mat. The compression is regarded as a step-by-step process evolving by time increment t . Development of the strain and stresses is then regarded as an incremental process: N 1 N ; N 1 N (95) with N and N representing the actual accumulated strain and stress whereas N 1 and N 1 represent their values at the end of the next load increment. This allows retaining the accumulated strain and stress history within storage variables N and N . With these assumptions and Eq. (94), Eq. (91) is written in incremental formulation as follows div div(N ) UN1 UN U div EN1 : E : N div(N ) T 1 with U U U 2 i.e. in N (96) System (96) is thus written in terms of unknown displacement increment U and is discretized by the finite element method. Appropriate boundary conditions will be specified later on. 98 Computational Domain It is noteworthy that our mathematical model is written in a general three-dimensional form and that our code can perform simulations on 2D and 3D geometries (Figure 3.1a). The effect of a daylight delay (the time necessary for the top platen to touch the mat) (Lee et al 2007) was ignored and geometric symmetry was assumed (Carvalho and Costa 1998; Carvalho et al 2001; Carvalho et al 2003; Dai and Yu 2004; Nigro and Storti 2001; Thömen and Humphrey 2003; Thömen and Humphrey 2006; Pereira et al 2006; Yu et al 2007). In 3D, there are three planes of symmetry (Figure 3.1b): a horizontal mid-plane and two vertical mid-planes. Therefore, our computational domain represents one eighth of the full 3D geometry or a quarter of the full 2D geometry when calculations are performed in 2D. The domain considered for calculation was meshed with a non-uniform 24 by 24 by 20 grid whose hexahedral elements where concentrated towards external planes (surface and exterior edge). The displacement of elements was generated by a geometric progression with the common ratio of 0.9. We work on a moving domain (Figure 3.1b and 3.1c): 280 mm (half length in x direction) by 230 mm (half width in y direction) by half mat evolving thickness (half thickness in z direction starting at 91 mm at the beginning of the pressing and ending at 6.5 mm). Clearly, mat thickness evolves during the pressing process and Figure 3.1c shows deformation of computational domain at different moments in time as a result of press closing. The mat is also free to expand in the x- and y- directions. a) b) Figure 3.1 : a) Full 3D geometry of a fiber mat; b) computational domain in 3D (one eighth of the full geometry). 99 t=0s t=5s t=10s t=15s t=35s t=48s Figure 3.1 c : Evolving 3D computational domain at different moments in time (one eighth of the full geometry). 100 Density Profile and Mat Compression Despite the fact that the total mass of fiber material does not change during compression, material and rheological properties of the mat, such as local density, porosity, permeability and thermal conductivity change. For instance, in thicker mats, thermal conductivity is lower, whereas porosity and gas permeability are higher. When the mat is compressed, thermal conductivity increases whereas porosity and gas permeability decrease. These and other changes in material properties are accounted for as the pressing process evolves. Generally, the vertical density profile of compressed composite panels is not uniform. It mainly exhibits a characteristic “M-shaped” vertical profile with higher density in the surface layers and lower density in the core (Carvalho et al 2001, 2003; Wang et al 2001; Thömen and Ruf 2008). It is regularly observed that the transition region from low to high density is rather thin (Carvalho et al 2001, 2003; Wang et al 2001). This nonuniform densification is attributed to variations of T and M, and interactions between the heat and moisture transfer phenomena and the mechanical compression of the mat (Kamke and Wolcott 1991; Dai and Yu 2004; Thömen and Ruf 2008). In general, the higher temperature or moisture content, the softer and more compressive the mat gets (Kamke and Wolcott 1991; von Haas and Frühwald 2000). In the present work, the evolution of non homogeneous oven-dry vertical density profile of the mat ( OD [kg/m3]) during the pressing process was calculated by a mechanical model for an ageing elastic material. Mat thickness decreases as a function of press closing schedule (Figures 3.1c and 3.2a) of a Dieffenbacher laboratory batch press. The pressing schedule of 268 s was divided into five steps. The initial mat thickness of about 182 mm was reduced to 37 mm in the first 15 s (Step 1). The press remained in this position for the next 10 s (Step 2) followed by the second compression which reduced the mat thickenss to 19 mm at time of 42 s (Step 3). A slow compression phase lasting 120 s followed at the end of which the mat reached its final thickness of 13 mm (Step 4) at time of 162 s. The hot platens remained in this position (Step 5) until the time of 268 s. The curve presenting the evolution of mat thickness with time can be seen in Figure 3.2a. Venting period was not modeled and therefore is not presented. From the numerical simulation’s stand point, the densification process can be described as follows: at each time step, an increment of the platen displacement is imposed as a Dirichlet boundary condition at the surface in contact with the top platen. As a reaction to this solicitation, the mechanical model calculates the corresponding displacement of each mesh node and the mat geometry is updated accordingly. Since the oven-dry mass of the material remains constant within each element, the oven-dry density evolves because of the change in volume of each element. 101 a) b) Figure 3.2 : a) Evolution of mat thickness: reading of the distance between the two platens of Dieffenbacher laboratory batch press. Venting period is not modeled and therefore is not presented.; b) Evolution of Poisson’s coefficient. Porosity Heat and mass transfer properties of the fiber mat such as thermal conductivity and specific gas permeability were presented in Part 1. Mat porosity is calculated by the following equation 1.1 1 – OD 1530 (97) This is the equation proposed by Siau (1984) multiplied by a correction factor for MDF mats proposed by Belley (2009). Since mat porosity is a function of oven-dry density, it is thus time- and space-dependent. Initial and Boundary Conditions Appropriate initial and boundary conditions for the heat and mass transfer model are described in Part 1 of this paper. We shall now consider initial and boundary conditions for the mechanical model. At the beginning of the pressing process ( t t0 0 ), the mat is assumed at rest and stress free, and the displacement field is assumed null. This is expressed by the following initial conditions: U 0 U0 0 and 0 0 0 (98) To mimic press closing (Figure 3.2a), at each time step, an increment of displacement field ( U ) is imposed at the top surface in the z direction by a Dirichlet boundary condition 102 ( U Z is deduced from the evolution of the mat thickness, Figure 3.2a). No movement in the x-y plane is allowed at the top surface ( U X U Y 0 ). Since we take advantage of symmetry, the working domain represents one eighth of the mat (Figure 3.1a and 3.1b) and boundary conditions have to be imposed on the 3 symmetry planes. The symmetry plane z 0 is not allowed to move in z direction ( U Z 0 ). The symmetry plane x 0 does not move in the x direction ( U X 0 ) whereas y 0 does not move in the y direction ( U Y 0 ). However, they both compress in the z direction following the movement of the closing press platen. The exterior faces x 280 mm and y 230 mm follow the press closing movement in the z direction and are both free to expand in both the x and y directions (zero traction n 0 , n is outward unit normal). Numerical Coupling of Mechanical and Heat and Mass Transfer Models The complexity and strong coupled nature of the physical processes involved during heat and mass transfer are widely recognized in the literature (Bolton and Humphrey 1988, Humphrey and Bolton 1989; Carvalho and Costa 1998; Nigro and Storti 2001; Zombori et al 2003; Dai and Yu 2004; Thömen and Humphrey 2006). We now describe how coupling is dealt with in our numerical solution strategy. At each time step, the coupled heat and mass transfer model is solved first. The three nonlinear conservation equations for heat and mass transfer form a fully coupled system and are solved together. This system is discretized in space by the finite element method using Q1 finite elements (Bathe 1982; Reddy 2006) and is solved by means of Newton’s method (Kavazović et al 2010). All material properties are updated at each nonlinear iteration, except for the oven-dry density profile which remains unchanged at this stage. Once the convergence criterion is reached, the program provides new values for the three state variables Pa, Pv, and T from which we calculate M. Those updated variables are then used as input to the mechanical model. Indeed, as they appear in expressions of the ageing elasticity tensor coefficients, those new values will update the rheological parameters of the mat and be used in the calculations of mat compression. The increment of the press platen position is imposed (Dirichlet boundary condition) at the top surface of the mat. The displacement vector field is then obtained as a solution of the mechanical model which is discretized in space by the finite element method using Q2 finite element (Bathe 1982; Reddy 2006). The position of each grid point is then updated by the corresponding increment of displacement vector ( U ). As the grid points move, the volume of each element eventually changes. Consequently, the value of the oven-dry density of each element changes too. The new oven-dry density field is then used to update mat’s heat and mass transfer properties. Hence, we are ready to undertake the calculations with the heat and mass transfer model at the next time step. 103 Gear’s time discretization scheme After the finite element discretization in space is achieved for the heat and mass transfer problem, we end up with a very complicated version of a first order initial value differential equation. In our case, that equation is treated by the Gear’s scheme. Actually, one can apply numerous discretization formulas to solve the following first order differential equation having a prescribed initial value ( Y0 ) of the solution Y t dY F Y t , t dt with Y0 Y 0 given initial value (99) Implicit methods are in general more stable than explicit ones, and the precision of a method increases with its order. For instance, for the same length of a time step, a fourth order method is more accurate than a second order method which is more accurate than a first order method. The computational burden of a method increases as the order of a method is higher. Moreover, implicit methods require solution of a nonlinear system and are therefore more time consuming per time step than explicit methods. However, for the sake of stability and precision, we adopted Gear’s implicit second order two step backward differentiation formula. Since it is a two step formula, it requires solution estimates from two previous time steps in order to calculate the next approximation. Hence, at the very beginning of the calculation process, a one step second order formula is needed to calculate the first time step estimate. Usually, second order implicit Crank-Nicholson’s theta-scheme is used to produce the approximation at the first time step. Hence, the algorithm for the Gear’s scheme that we used reads as follows (where N is the total number of iterations) given the initial value Y0 and Y1 calculated by second order Crank-Nicholson scheme (100) Yn 1 2t 4 1 F Yn 1 , tn 1 Yn Yn 1 3 3 3 , n 1, 2,3,..., N We applied that algorithm as time discretization scheme for the heat and mass transfer problem. 104 RESULTS AND DISCUSSION To perform successful numerical simulations, coefficients and expressions for different material properties are needed. Some of those expressions have to account for interactions between several properties. For instance, increasing temperature stimulates resin cure and creation of bonds which ultimately solidifies the entire mat. Thus, adhesive cure influences rheological properties of the mat. We proposed a formula to account for effects of the extent of resin cure on modulus of elasticity (Eq. (105) in APPENDIX 1). The proposed expression is only the first step in characterization of this complex relationship and thorough investigation is required to gain a deeper insight. More research is also needed to better understand dynamics of development of Poisson’s ratio during early stages of compression. Indeed, at the beginning of pressing process, the mat is a loose material. It eventually gains more cohesion as the pressing progresses. To reflect this transition, an appropriate formula for Poisson’s coefficient is needed, especially in early stages of pressing process. We attempted to address that issue by proposing a sigmoid shape function allowing for a smooth transition from a loose stage to a more cohesive material (Figure 3.2b and APPENDIX 1, Eq.(103)). Experimental data is needed to validate our hypothesis and have a better understanding of this phenomenon. The density profile is one of the most critical properties for MDF (Thömen et al 2006). Coupling of mechanical and heat and mass transfer 3D models allowed for dynamically predicting its development as a function of pressing schedule. Figure 3.3a shows numerical predictions of development of a space- and time-dependent oven-dry vertical density profile in the panel’s center line (axis connecting upper and lower hot platen and passing through the core). At the early stage, overall density rapidly increases and the vertical density seems uniform throughout the thickness. About 15 s after the beginning of the compression, a steep density gradient develops close to the edges. As press closure progresses, the overall density of the mat increases whereas its thickness decreases. In Figure 3.3a, one can notice the development of a “U-shape” profile with a high-density region near the press platens, a significantly lower density in the core, and a transition region in between. Panels pressed in laboratory present an “M-shaped” profile mostly because of the resin pre-cure at the surfaces in contact with the hot platens. Since our mechanical model does not account for the plastic behavior of the mat (region with the precured resin exhibits plastic behavior), the model was not able to reproduce the “M-shaped” profile. Some specific locations in one eighth of 3D mat geometry are of particular interest, especially for validation of numerical results. Figure 3.3b shows a symmetry X-Z (widththickness) plane. Black dots represent locations where thermocouples (Surface, Quarter, and Core) and pressure probes (Surface, and Core) were installed to monitor temperature and gas pressure evolution, respectively. Points in the vertical center line named BSQ (Between Surface and Quarter) and BCQ (Between Core and Quarter) as well as locations identified by empty circles were used as numerical tracing points for all variables. Results obained at four representative locations (Figure 3.3b) in the symmetry widththickness midplane of a 3D geometry illustrate numerical predictions of the evolution of the oven-dry (Figure 3.3c) and wet densities (Figure 3.3d), respectively. As expected, density of the surface layer increases faster than elsewhere. During the Step 5 (Figure 3.2a), the press platens remain at the same position. Hence, a zero displacement increment is imposed 105 and the oven-dry density profile remained unchanged (Figure 3.3c). This was expected since we model a linear elastic behavior. There is a qualitative similarity between our results and those presented by Wang et al (2001; 2004) for a similar pressing schedule. Oven-dry Density (kg/m^3) a) 900 t=5s 800 t=10s 700 t=15s t=25s 600 t=30s 500 t=35s 400 t=40s t=50s 300 t=100s -20 -17 -14 -11 -8 -5 200 t=125s 100 t=150s 0 -2 t=268s 1 4 7 Mat Thickness (mm) b) 10 13 16 19 106 c) d) Figure 3.3 : a) Evolution of space- and time-dependent numerically predicted oven-dry vertical density profile; b) symmetry X-Z (width-thickness) plane with equidistant tracing points; c) predicted oven-dry density profile, values at 4 points in the vertical center line; d) bulk density profile at 4 points in the vertical center line calculated by Mat OD 1 M . In all figures, special symbols such as □, ○, *, ◊, , etc, are used to distinguish different curves and do not represent experimental data unless the contrary is explicitly indicated. Figure 3.4 presents the evolution with time of numerically predicted vertical stress component calculated by our 3D global model. Its development is monitored at five equidistant points in the vertical center line (Figure 3.3b) as the pressing process progresses. There is no stress gradient observed in the vertical center line. Vertical (ZZ) Stress Component (MPa) 107 -0.2 0 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6 -2.8 -3 50 100 150 200 250 CoreModel QuarterModel SurfaceModel BSQModel BCQModel Time (s) Figure 3.4 : Evolution in time of numerically predicted vertical stress component at 5 equidistant points in the vertical center line (BSQ=Between Surface and Quarter; BCQ=Between Center and Quarter). Numerical results obtained by the 3D coupled mechanical and heat and mass transfer models exibit good overall agreement with experimental measurements. Figures 3.5a and 3.5b present laboratory temperature and gas pressure measurements, respectively, together with numerically predicted results. Vertical bars represent standard deviation from the mean value. In Figure 3.5a, curve labelled SurfaceLab is the mean temperature measured in the laboratory at the surface in contact with the hot platen. That curve was imposed as a Dirichlet boundary condition for T at the surface. Moreover, curves labelled CoreModel and QuarterModel are obtained by numerical simulation and represent the temperature at the center and at one quarter of the thickness, respectively. As can be seen in Figures 3.5c and 3.5d, numerically predicted temperature at the core and at one quarter of the mat thickness in the vertical center plane closely follow the evolution of in situ measurements. In particular, the plateau temperatures and the time when they are reached are similar. Numerical results underestimate though mean value curves of temperature. The maximum discrepancy from the mean of measured core temperatures is approximately 4% (Figure 3.5c) and, at one quarter of the thickness, temperature is underestimated by up to 8% (Figure 3.5d). In Figure 3.5b, numerical predictions of the total gas pressure (P) at the core and surface locations are compared to experimental data. Large standard deviation bars, especially in the second half of the pressing process, reveal significant variations in the laboratory measurements of the gas pressure (Figure 3.5b). Maximum value of the coefficient of variation (ratio of the standard deviation to the mean of measured data) is approximately 6%. Numerical results do not exhibit any vertical gradient in total gas pressure predictions. 108 Thus, curves monitoring numerically predicted evolution of P at the surface and at the core superimpose (curve labelled Surface&CoreModel) and are identified by the same symbol in Figure 3.5b. From the qualitative stand point, the time evolution of gas pressure is well captured by the model. However, numerical results overestimate mean value of gas pressure experimental measurements by 10% in the case of the pressure at the surface and by 15% at the core (Figure 3.5b). Nevertheless, when compared to other numerical results in the literature (Thömen and Humphrey 2006; Zombori et al 2004; Pereira et al 2006), our results are of similar quality. a) b) c) d) Figure 3.5: a) Temperature evolution in time: measurements at the surface, the core and one quarter of the thickness, and numerically predicted results at the core and one quarter of the thickness. b) Total gas pressure evolution in time: measurements and numerical results at the surface and the core. Curve labelled Surface&CoreModel is obtained by numerical simulation and the other two are measured in the laboratory. c) Close-up on the evolution of the temperature field (measured and predicted) at the core. d) Close-up on the evolution of the temperature field (measured and predicted) at one quarter of the mat thickness. 109 When examining numerical results, the absence of total gas pressure gradient in the vertical center plane should be underlined. The same phenomenon is observed in most of the publications presenting the numerically predicted total gas pressure (Carvalho and Costa 1998; Carvalho et al 2003; Zombori et al 2003; Pereira et al 2006; Thömen and Humphrey 2006; Yu et al 2007). Measurements of cross-sectional gas pressure reported by Thömen (2000) for MDF mats validate these numerical results. Nevertheless, we and all of the above authors observed the development of a significant horizontal total gas pressure gradient, especially in the central plane, which drives the gas out of the mat. Figure 3.6 displays the evolution of predicted mat moisture content (M) (Figure 3.6a) and relative humidity (h) (Figure 3.6b) at five equally spaced representative locations across the thickness (Figure 3.3b): at the core, at one-quarter of the thickness, at the surface, and at the mid-points between the core and one-quarter of the thickness (BCQ) as well as between the surface and one-quarter of the thickness (BSQ). As expected, moisture content near the platen drops rapidly and remains low. The curves in Figure 3.6a (a sequence of peaks of local moisture content) clearly illustrate the movement of bound water from the hot surface towards the cooler core region. Accumulation of bound water in the central region of the mat is characterized by an increasing M at the core. Relative humidity presents similar patterns (Figure 3.6b) since h and M are linked by the isotherm sorption model. Our observations are in accordance with Yu et al (2007). a) b) Figure 3.6 : Numerical predictions of moisture content and relative humidity at 5 equidistant points in the vertical center line (BSQ=Between Surface and Quarter; BCQ=Between Center and Quarter). Evolution of : a) moisture content; b) relative humidity. 110 Figure 3.7 summarizes the results for partial air (Pa) and vapor (Pv) pressures at the same five locations mentioned previously. Figure 3.7a shows that, at the beginning of the pressing process, the air pressure rapidly drops in the surface layers while it remains almost stable in interior layers. At the same time, due to the evaporation process which is taking place close to the hot surface (indicated by moisture content decrease), the vapor pressure exhibits the opposite behavior: it increases at the surface and it remains low elsewhere (Figure 3.7b). This creates vertical (cross-sectional) partial air and vapor pressure gradients. Since the total gas pressure remains almost constant during the first half of the pressing period (Figure 3.5b), it can be concluded that the increase in Pv is proportional to the decrease of Pa. Hence, water vapor replaces air and becomes the main component of the gaseous phase. Development of vertical Pa and Pv gradients is clearly visible in Figure 3.7. Those gradients drive the molecular diffusion of air and water vapor within the gas phase. Furthermore, since the temperature of the surface increases rapidly, the evaporation process of bound water is intense in regions close to hot platens. As a result, M at the surface region decreases and the local vapor pressure increases. As seen in Figure 3.7b, a steep Pv gradient develops. This facilitates the molecular diffusion of the vapor within the gas phase and makes the vapor flow towards the inner layers. Given that the inner layers have lower temperature, water vapor condenses and thus increases the local moisture content (Yu et al 2007). Because of that, the amount of bound water present in the core region of the mat increases with time (Figure 3.6a). It takes large amounts of energy and time to evaporate the accumulated bound water. That explains the temperature increase slowdown and the long-lasting temperature plateau in the core (Figure 3.5a). At time t = 160 s, Figure 3.7 suggests that almost all the air was replaced by water vapor in the gas phase. One also notices that the vertical partial air and vapor pressure gradients vanish (Figure 3.7). Total gas pressure starts to increase significantly (Figure 3.5b) and the temperature plateau establishes at the core (Figure 3.5a). This suggests that intense evaporation process of bound water in the core layer has begun (Figure 3.6a). Moreover, as densification continues, the gas permeability of the mat decreases and contributes to the gas pressure build-up, especially in the core layer. That difference in gas pressure between the core and the edges results in gas flow in the panel’s horizontal plane which becomes the predominant direction of the mass transfer. This is in agreement with observations made by Yu et al (2007). 111 a) b) Figure 3.7 : Numerical predictions of partial air and vapor pressure at 5 equidistant points in the vertical center line (BSQ=Between Surface and Quarter; BCQ=Between Center and Quarter). Evolution of : a) partial air pressure; b) partial vapor pressure. Numerical explorations Our goal was to develop a robust numerical tool able to provide reliable numerical results under different pressing conditions. After the validations of numerical results presented above, the model was used to perform several tests and case studies. For each time step, it was observed that the work load was split as follows: one third of the time was spent to solve the heat and mass transfer problem (Newton’s method converged in 4 or 5 iterations) and two thirds of the time were spent solving mechanical model (conjugated gradient method preconditioned by SOR). In our case, 3D computations were 5 to 10 times more time consuming than 2D calculations. Since the number of tests to be performed was large, we decided to run them on 2D geometry. 2D versus 3D predictions When the calculations are performed on 2D instead of 3D geometry, one could expect some changes to occur in numerically predicted results. To examine the impact of the passage from 3D to 2D, calculations were performed on the 3D non-uniform 24 by 24 by 20 grid presented in Figure 3.1c and the 2D non-uniform mesh (elements concentrated in boundary regions) having 24 rectangular elements in the width and 20 elements in the thickness (Figure 3.10 presented later on). In both cases, compression dynamics followed laboratory closing schedule and 0.5 s time step was used. Comparisons of 2D and 3D numerical results at the core of the panel are illustrated in Figure 3.8 for several variables. The 2D and 3D results are very similar during the first half of the pressing period, but some differences can be observed in the second half, mainly in the plateau values of the variables. Those differences are mostly caused by small in-plane dimensions of our laboratory panels (0.56m by 0.46m) which enhanced boundary effects making it easy for the gas to escape by the edges (better venting). Indeed, while performing 112 2D numerical simulations, it is implicitly assumed that the panel has infinite length. Therefore, in 2D, there is only one boundary in contact with the ambient air which reduces venting. Hence, in the second half of pressing when the mat gas permeability has decreased, we observe that, at the core, total gas pressure in 2D is up to 20% higher than in 3D (Figure 3.8a). As a consequence, partial vapor pressure (Figure 3.8b), temperature (Figure 3.8c) and moisture content (Figure 3.8e) exhibit higher plateau values in 2D as well. Plateau value for M is increased by at most 3%, whereas the increase of T is about 5%. On the other hand, oven-dry density predictions (Figure 3.8f) do not seem to be affected by this transfer from 3D to 2D geometry. a) b) c) d) 113 e) f) Figure 3.8 : Comparison of evolution of 2D and 3D numerical results at the core location for the fields of: a) total gas pressure; b) partial vapor pressure; c) temperature; d) partial air pressure; e) moisture content; f) oven-dry density. Convergence with mesh We verified that the solutions stabilize when the 2D mesh is refined (convergence with the mesh). Numerical simulations were run under laboratory closing schedule with a time step of 0.1 s. Calculations were performed on series of uniform rectangular meshes with increasing number of elements and their solutions were compared. We worked on following 2D grids where the first number represents the amount of elements in width (x) direction and the second number is for the amount of elements in thickness (z): 16 by 16; 32 by 16; 64 by 32; 128 by 64; 256 by 128. Numerical results of time evolution of T and M are used to illustrate the phenomenon. Convergence with increasing mesh size was observed very quickly. This is illustrated by the results for T and M at the core (Figure 3.9a and 3.9c). However, the most important discrepancies were noticed close to the edges (surface boundary and border in contact with the ambient air) (Figure 3.9b and 3.9d). Those are regions where important variations occur and more elements are needed to adequately capture the evolution of different phenomena in those areas. Figures 3.9b and 3.9d illustrate very well that a 16 by 16 mesh for the computational domain (one quarter of the mat) is not sufficiently refined close to edges. For instance, Figure 3.9d depicts the evolution of M at the point laying at half width and ¾ of thickness of the computational domain (close to the surface in contact with the hot platen). We clearly see two groups of curves: the first one containing solutions on 16 by 16 and 32 by 16 grids, and the solutions obtained on three other meshes form the second group. Within the time period between 20s and 70s of pressing process, a clear difference between those two groups of curves can be noticed (Figure 3.9d). This supports a lack of precision, in that particular region, of uniform meshes having low number of elements in thickness. Nevertheless, in the zone close to the core, very small differences are observed among the solutions (Figure 3.9a and 3.9c) and convergence with mesh size appears clearly. 114 a) b) c) d) Figure 3.9 : Comparison of evolution of 2D numerical results of T and M at: a) the core location for T; b) at the boundary in contact with the ambient air for T; c) at the core location for M; d) at half width and ¾ of thickness for M. Solutions were calculated on meshes having increasing number of elements. 115 Concentrated mesh We have just seen that the largest variations appear close to boundaries (hot platen and exterior border). Non-uniform mesh with higher concentration of elements in those areas could help to recover the precision of solution in boundary regions. For that purpose, a nonuniform mesh having 24 rectangular elements in the width and 20 elements in the thickness was created (Figure 3.10). A geometric progression with the common ratio of 0.9 was used to concentrate the elements towards the hot platen surface and exterior edge in contact with the ambient air. Figure 3.10 : 2D mesh (24 by 20 ) : elements are concentrated in boundary regions. Results obtained on this grid (Figure 3.10) were compared to those obtained on richer regular grids: 64 by 32; 128 by 64; 256 by 128. Numerical simulations were run under laboratory closing schedule with a time step of 0.1 s. Figure 3.11 reveals that, in respective cases, curves for T and M obtained on those four different grids are extremely close to each other. For instance, when comparing time evolution of moisture content at the point located at half width and ¾ of thickness (Figure 3.9d and Figure 3.11c), it appears that the behavior of M close to the hot platen has been adequately captured by a concentrated 24 by 20 mesh (Figure 3.11c). On the other hand, at the boundary in contact with the ambient air, results obtained on concentrated 24 by 20 mesh exhibit very acceptable level of precision (Figure 3.11d). Thus, it seems that even a coarse grid (24 by 20) can capture well the complexity of physical phenomena under study (Figure 3.11) if the elements of the mesh are concentrated in appropriate areas of the mat. 116 a) b) c) d) Figure 3.11 : Comparison of evolution of 2D numerical results of T and M at: a) the core location for T; b) at the boundary in contact with the ambient air for T; c) at half width and ¾ of thickness for M; d) at the boundary in contact with the ambient air for M. Solutions were calculated on meshes having increasing number of elements. Influence of the time step length Impact on the results of the length of the time step was also examined under laboratory pressing schedule. Tests were performed on two 2D grids (32 by 16 and 64 by 32) with several lengths of a time step: 0.025 s; 0.05 s; 0.1 s; 0.2 s; 0.4 s; 0.5 s. We used Gear (implicit second order backward) scheme for the time discretization. Our study revealed that the solutions converge with decrease of the time step and that the time step has very little influence on the solutions. This suggests that the combination of finite element method and Gear scheme allows one to use larger time steps without losing precision. In our numerical simulations, time step of 0.5 s was often used in 3D, and time steps of 0.1 s and 0.5 s in 2D. 117 Cold pressing The test of cold pressing (platens at T=25C) was performed on 64 by 32 grid under different pressing schedules with a time step of 0.5 s. Since the temperature of the platens is equal to the ambient temperature, there is neither the heat nor the mass transfer. However, the closing press platens induce the mat densification over time. Numerical results for the cold pressing systematically produced flat density profiles through the thickness; that is, the mat density was increasing over time but, at each time step, it was homogeneous in space. That was the expected behavior in these conditions. Pressing schedules The robustness and flexibility of the global model were tested in different pressing situations. Numerical simulations were carried out for seven different pressing schedules on several grids. However, we will only present some of the results obtained on a 64 by 32 grid under a couple of pressing schedules with a time step of 0.1 s. Figure 3.12 shows 4 different pressing schedules. The press closing dynamics from our laboratory experiments was used as a reference for qualitative comparisons with three other pressing schedules: one, two and four step pressing schedules, respectively (Figure 3.12). All pressing schedules were simulated over a period of 268 s. One step closure simulates a rapid compression where the mat reaches the final thickness of 13 mm only 20 s after the beginning of pressing. The press platens remain at the final position until the end (Figure 3.12 curve identified as “1 Step”). For this one step closure, the time of first compaction was estimated to 18.6 s. We defined the time of first compaction as the moment in time when the mat reaches 1.9 times its final thickness. This parameter is used in our definition for time evolution of Poisson’s ratio (APPENDIX 1, Eqs. (102) and (103)). For the two step pressing schedule, the time of first compaction was estimated to 71 s and mat thickness evolved as follows: 20 s after the beginning of the pressing process, the mat reached 3 times its final thickness; that same thickness was maintained for the next 40 s; at time of 60 s, a new compression step started such that the final thickness of the mat was reached at time of 80 s after the beginning of pressing process; the platens maintained the final mat thickness until the end (Figure 3.12 curve identified as “2 Steps”). Four step pressing schedule is a slow compression program where the final thickness was reached 162 s after the beginning of compression. The pressing program combines a succession of four rest periods, each lasting for 28 s, and five equal compression efforts, each having duration of 10 s and the same slope (Figure 3.12 curve identified as “4 Steps”). In this case, the time of first compaction used in expression for Poisson’s ratio was estimated to 158.5 s (APPENDIX 1). 118 Figure 3.12 : Evolution of mat thickness as a function of four different pressing schedules. Typical tendencies at the core for oven-dry density, temperature, moisture content, and total gas pressure fields are presented in Figure 3.13. As expected, one step closure densifies the core region the most rapidly (Figure 3.13a), hence increasing thermal conductivity which results in somewhat faster increase of the core temperature (Figure 3.13b). The higher temperature stimulates moisture evaporation process in the core region to start earlier (Figure 3.13c). As a result, in early stages of the pressing, a slightly higher gas pressure is produced in the core region (Figure 3.13d). Figure 3.13c suggests that the end moisture content in the core region is lower when a rapid one step press closure is applied. Nevertheless, the final gas pressure does not seem to be higher than the one obtained when the laboratory pressing schedule was simulated (Figure 3.13d). Two step and laboratory press closing programs are the most alike and produce the most resembling results. Indeed, the evolution of temperature, moisture content and total gas pressure fields at the core is very similar for those two pressing schedules (Figure 3.13b, c, d). However, oven-dry densities (Figure 3.13a) exhibit predictably different behavior. Indeed, since a linear elastic mechanical model is used, the development of oven-dry is heavily influenced by the press closing dynamics. Four step closing schedule compresses the mat slowly causing moderate densification of the core (the lowest core density among all tested pressing scenarios) (Figure 3.13a). This adversely affects thermal conductivity increase. Therefore, noticeable delays are observed 119 in temperature evolution (Figure 3.13b) when the four steps closing is applied. This eventually slows down the mass transfer towards the core (delay in moisture content increase) (Figure 3.13c). As a result, evaporation process in triggered later than in other pressing scenarios. Moreover, a low core density also results in higher gas permeability. Thus, when combining all these factors, one observes significant delays in pressure buildup when slow four step schedule is simulated (Figure 3.13d). a) b) c) d) Figure 3.13 : Comparison of effects of four different pressing schedules on evolution of 2D numerical results at the core location for: a) oven-dry density; b) temperature; c) moisture content; d) total gas pressure. 120 2D results Figure 3.14 depicts evolution of 2D profiles of T, M, and Pv. Some explanations are needed to better understand the graphs in Figure 3.14. Results are presented on one half of a 2D geometry where full thickness and a half width were considered. Top and bottom hot platens are compressing the mat from the left and right hand sides, respectively. Therefore, thickness is represented by smaller sides of the rectangle. The small side closer to the viewer is the boundary where the exchange with the ambient air occurs. Hence, the symmetry (core) plane is represented by the small boundary located far back on the graph. All graphs in Figure 3.14 display computational domain meshed by a 256 by 128 element grid. Domain’s thickness decreases with time as press platens compress the mat following our laboratory closing schedule. Nevertheless, for the sake of clarity, the width of the displayed solution surfaces was kept fixed through time. Time step of 0.1 s was used in calculations and numerically predicted results are presented at time 30 s, 80 s, 125 s, 175 s, 220 s, and 260 s. When observing graphs of T, M, and Pv presented in Figure 3.14, one can notice development of vertical (in-thickness) gradients for the three variables. After 175 s, an interesting transition happens in the Pv field predictions (image was rotated by 90 degrees to the right hand side to better see the phenomenon). Indeed, the Pv in-thickness gradient seems to vanish and a horizontal Pv gradient starts to develop. At t = 220 s and 260 s, in-thickness gradient has completely disappeared and in-plane horizontal gradient is very well established pushing the gas phase (at this time mainly composed of water vapor) outside of the mat (higher pressure at the core than at the external border). At the same time, temperature field still shows main inthickness gradient whereas moisture content exhibits both a very pronounced in-thickness gradient and a weak in-plane horizontal concentration gradient (slightly higher M values at the core than close to the external border). 121 Time 30 s 80 s 125 s 175 s 220 s T M Pv 122 260 s Figure 3.14 : Evolution of 2D profiles for temperature, moisture content and partial vapor pressure. Composite constitutive law Our tests in regard with a composite constitutive law Eq. (92) involving tangent and Hooke’s laws revealed that the results are the same whether a composite law is used or only E 0.001 and often close to 106 . the Hooke’s law is applied. We found out that the ratio E This implies that, from one load increment to another, a relative variation of coefficients of the elasticity tensor is rather small. This furthermore suggests that the contribution of terms ( E ) : in Eq. (92) and respectively E : N in Eq. (94) is not very significant. Further investigation of this phenomenon would be desirable but is beyond the scope of this paper. 123 CONCLUSIONS The main purpose of this paper was to describe the methodology developed and solution strategy implemented to simulate MDF hot pressing on a moving domain. The proposed model combines the finite element method with an implicit time scheme providing more flexibility in the choice of the time step and potentially lowering the overall computational cost. A composite constitutive law (involving tangent and Hooke’s laws) was successfully applied respecting thermodynamic principles. Our preliminary test suggested that using Hooke’s law alone would lead to the same numerical predictions. Further investigation is needed to examine this affirmation. Results predicted by the global model for T and P exhibit good overall agreement with laboratory batch press experimental measurements. Temperature evolution and formation of characteristic temperature plateau are well captured. Gas pressure gradient develops in the horizontal plane whereas numerical results reveal the absence of the vertical gas pressure gradient in the center plane. Model also produces valuable predictions for variables of interest that are difficult to measure in laboratory such as evolution of density profile, partial air and vapor pressures, stress, moisture content, relative humidity, and degree of resin cure. During the first half of the pressing process, partial air and vapor pressure gradients are well developed in the cross-sectional direction. They vanish though in the second half of pressing and horizontal vapor pressure gradient develops. The cross-sectional density profile plays an important role in evolution of rheological properties and inner conditions of the mat. In situ measurements inside the mat are commonly made for temperature and gas pressure, but not for moisture content and adhesive cure, nor for the development of the density profile. Despite the fact that some researchers succeeded in measuring density development during hot pressing at three crosssectional positions, representation of the complete evolution of density profile is still a challenge. Even though the predictions in our study were based on a simplified mechanical model, they are in good agreement with the experimental results and can be used for understanding of the development of the vertical density profile during the compression of the mat. Development of density profile was reasonably well predicted by this simple mechanical model. Indeed, numerical results showed evolution of high density towards the surfaces and significantly lower density at the mat center. The improvement of the model requires a better knowledge of mat rheological properties and their characterization at low density values (beginning of pressing). Also, in order to include visco-plastic behavior and the venting phase of pressing cycle into the model, the corresponding rheological parameters are required. However, they are rare in the literature and are not easy to obtain experimentally. Characterization of rheological properties of the mat is of extreme importance for numerical simulations. The local rheological mat conditions change in space and over time and are functions of mat density, temperature, moisture content, and state of adhesive cure. Von Haas (1998) described the dependence of rheological properties on the first three variables. We proposed a formula to account for effects of adhesive cure on the rheological mat characteristics. This newly proposed expression is only the first step in characterization 124 of this complex relationship. More effort is needed to gain a deeper insight. Sensitivity study could be an avenue in investigating the relative importance and influence of resin cure on the rheological properties and numerical results. Furthermore, evolution of mat’s Poisson ratio during early stages of pressing definitely requires more investigation. We proposed an expression allowing for a smooth transition and increase of Poisson ratio as a function of mat thickness. However, it would be interesting to further explore the correlation between Poisson’s ratio and local density. This work is still to come. The present model provides a reasonably reliable insight in complex dynamics of rheologic and heat and mass transfer phenomena occurring during the hot pressing of the fiber mats. It was tested under various pressing scenarios and numerical results systematically showed good and reasonable tendencies. Our model and finite element code prove to be robust tools to conduct further case studies. 125 NOMENCLATURE Partial nomenclature is presented here, whereas complementary information can be found in NOMENCLATURE section in Part 1 of this paper. t : time [s] x : length [m] y : width [m] z : thickness [m] T : temperature field [K] ; a state variable calculated by the model Pa : partial air pressure [Pa] ; a state variable calculated by the model Pv : partial vapor pressure [Pa] ; a state variable calculated by the model U : displacement field [m] ; a state variable calculated by the model P : total gas pressure [Pa] M : moisture content [dimensionless] h : relative humidity [dimensionless] OD : oven-dry density of the mat [kg/m3] Φ : porosity of the mat [dimensionless] Mat : wet density of the mat [kg/m3] = resin cure degree [dimensionless] Eel = coefficient of modulus of elasticity [Pa] E X = modulus of elasticity in the x direction [Pa] EY = modulus of elasticity in the y direction [Pa] EZ = modulus of elasticity in the z direction [Pa] GXY = modulus of shear stress in the x-y plane [Pa] GYZ = modulus of shear stress in the y-z plane [Pa] GXZ = modulus of shear stress in the x-z plane [Pa] Poisson = Poisson’s coefficient of compression [dimensionless] 126 APPENDIX 1 Here are presented parameters describing mechanical properties of the mat (coefficients of the forth-order elasticity tensor). Constants a i ,bi ,ci (i 1, 2) and expressions A, B, and C can be found in Thömen et al (2006) and von Haas (1998). Parameters related to heat and mass transfer model are presented in Part 1 of this paper. a1 =4.22102 b1 = 2.74102 c1 = 3.25 a 2 = 1.86102 b 2 =3.24103 c2 = 5.10 A a1 M 100 b1 T 273.15 c1 ; B a 2 M 100 b 2 T 273.15 c 2 C exp A MAT exp B ln MAT 198.3 C106 E el 66 1 F1 2.13 1 b (101) (102) t a 27 1 1 t fc with t fc time of the first compaction where b 1 7exp a and We define the time of the first compaction t fc as the moment in time when the mat reaches 1.9 times its final thickness. That is the moment when we estimate that the mat gained sufficient cohesion level and set its Poisson’s ratio to a nominal value (which is in our case 0.25). 0.25 F1 F1 1 (103) Poisson F1 1 0.25 In the case of our laboratory pressing schedule, the time of the first compaction was estimated at 35 s. The evolution in time of the resulting Poisson’s coefficient can be seen in Figure 3.2b. The fourth order elasticity tensor E can be written as a 6 by 6 symmetric matrix and a relation between stress and strain can be expressed as follows 127 1 v23v32 EES 2 3 1 v21 v23v31 2 EES 2 3 3 v31 v21v32 23 E E S 2 3 13 12 with S v21 v23v31 E2 E3 S v31 v21v32 E2 E3 S 1 v31v13 E1 E3 S v23 v21v13 E1 E2 S v23 v21v13 E1 E2 S 1 v21v12 E1 E2 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G23 0 0 0 G13 0 0 1 0 2 0 3 23 0 13 0 12 G12 (104) 1 1 2v21v32v13 v13v31 v23v32 v12v21 . E1 E2 E3 Assuming MDF as plane isotropic material, and directions X and Y (1 and 2) to be the E1 plane of isotropy, we further have E1 E2 , G23 G13 , G12 , v12 v21 , 2 1 v12 v23 v32 v13 v31 (Ganev et al. 2005). In our case, we moreover assumed E1 E2 Eel 1 32 E3 Eel v12 v23 Poisson G12 E3 E1 ; G13 G23 21 Poisson 21 Poisson (105) (106) (107) ACKNOWLEDGMENTS The authors wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), FPInnovations – Forintek Division, Uniboard Canada and Boa-Franc for funding of this project under the NSERC Strategic Grants program. 128 Conclusion Un modèle couplé basé sur les lois de conservation et résultant en un système d’équations non linéaires et fortement couplées a été développé dans le but de modéliser et mieux comprendre les phénomènes physiques impliqués lors du pressage à chaud de panneaux MDF. Le développement des équations de conservation appuyé sur les principes physiques fondamentaux a été détaillé ainsi que l’interconnexion entre ces différentes relations de conservation. La complexité des couplages a ainsi été mise en évidence. Le couplage entre les modèles mécanique et celui de transfert de chaleur et de masse a été réalisé et décrit en détails. Le développement dynamique du profil de densité est ainsi prédit par le modèle et son influence sur les propriétés mécaniques et matérielles est prise en compte de manière dynamique. L’influence de la température et de la teneur en humidité sur les paramètres rhéologiques a été assurée par une mise à jour des paramètres rhéologiques à chaque pas de temps. De plus, l’étendue de la polymérisation de la résine est également calculée par le modèle et son influence sur les paramètres rhéologiques de l’ébauche est considérée. Nous avons aussi proposé une première façon de prendre en compte le développement dynamique du coefficient de compressibilité de Poisson dans une ébauche. Cela joue un rôle important surtout au début du pressage. Le système d’équations de conservation a été discrétisé par la méthode des éléments finis. La résolution du système d’équations complexes a été réalisée grâce au logiciel MEF++ développé au sein du GIREF à l’Université Laval. Le modèle de transfert de chaleur et de masse a été exprimé en termes de trois variables d’état, soient la température, les pressions partielles de l’air et de la vapeur, respectivement. Toutes les autres variables et les propriétés physiques de l’ébauche sont exprimées en fonction de ces trois variables d’état. Le système non linéaire a été résolu par la méthode de Newton. La discrétisation temporelle est faite par un schéma implicite d’ordre deux (Gear). Cela nous a permis d’employer des pas de temps de longueur de 0.5 s. Cette longueur est 100 fois plus élevée que celle communément rencontrée dans la littérature. La formulation incrémentale quasi-statique a été adoptée pour résoudre les équations du modèle mécanique et la variable d’état était l’incrément de déplacement tridimensionnel. Au début de la simulation, le maillage initial est homogène mais au fur et à mesure que le pressage progresse et l’ébauche se déforme sous l’action de la presse, la taille des éléments diminue et leur forme change. Ainsi, le maillage et la géométrie du panneau se déforment dynamiquement au cours du pressage. La validation des résultats numériques a été accomplie par la comparaison aux mesures expérimentales de température et de pression obtenues au laboratoire de pressage du Département de sciences du bois et de la forêt à l’Université Laval. Des panneaux MDF à base de fibres d’épinette noire et de sapin baumier ont été fabriqués et des mesures de température et de pression ont été prises lors du pressage dans le plan vertical au centre de l’ébauche. Ces mesures ont été effectuées grâce aux sondes PressMAN qui ont été installées à la surface et au centre de l’ébauche. Un thermocouple additionnel a été inséré à un quart d’épaisseur de l’ébauche afin de prendre d’autres mesures de température. Les résultats numériques obtenus montrent une bonne concordance avec les mesures expérimentales. Toutefois, les prédictions numériques de la pression du gaz surpassent 130 quelque peu les mesures du laboratoire. Une solution d’appoint serait d’augmenter le coefficient d’échange gazeux au bord de l’ébauche à la frontière avec le milieu ambiant. Cependant, une autre avenue pourrait être envisagée. En effet, dans notre modèle mécanique, nous avons fait appel à l’hypothèse de petites perturbations et petites déformations communément employée dans le domaine. Or, il serait intéressant d’explorer le cas des grandes déformations dans le cadre du pressage. Cela pourrait peut-être fournir une description plus adéquate dans l’évolution de la contrainte (stress) et éventuellement influencer les résultats numériques. Toutefois, cette étude reste à faire. Nonobstant les considérations physiques dans le développement du modèle mécanique, une meilleure connaissance des propriétés rhéologiques de l’ébauche lors du pressage, et tout particulièrement à de faibles valeurs de densité (ce qui correspond au début du processus de pressage), serait souhaitable. Pour obtenir de meilleurs résultats, une meilleure connaissance des valeurs des paramètres physiques en cause dans toute la gamme de densités, de températures et de teneurs en humidité est nécessaire. Au cours de nos travaux, nous avons noté des lacunes concernant ces valeurs qui sont fondamentales pour la simulation numérique des processus de pressage et de transfert de chaleur et de masse. En effet, nous avons démontré que ces propriétés influencent de manière déterminante les résultats numériques. Ainsi, la connaissance plus précise des paramètres est primordiale et les efforts supplémentaires consentis à leur détermination seront salutaires puisqu’ils se traduiront par une simulation plus précise du phénomène à l’étude. En attendant ces importantes avancées, nous avons utilisé les valeurs proposées dans la littérature. Elles ont rarement été déterminées pour les panneaux de fibres ce qui aurait possiblement une influence sur les résultats numériques. Les propriétés importantes de l’ébauche de faible densité telles que la conductivité thermique, la perméabilité au gaz ou encore les propriétés rhéologiques (module de Young, coefficient de Poisson) restent encore à être déterminées par des études futures. L’importance et l’influence du coefficient de transfert de masse aux bords (des conditions aux limites du système) sur les résultats ont été démontrées par notre étude de sensibilité. En effet, ce coefficient détermine l’aisance avec laquelle le gaz quitte l’ébauche vers le milieu ambiant. Il influence donc grandement les conditions de pression à l’intérieur de l’ébauche. En se fiant à notre étude de sensibilité, le développement d’un protocole expérimental permettant de le mesurer avec précision dans différents cas de figures serait un défi à relever dans le futur qui contribuerait à une meilleure simulation des phénomènes physiques lors du pressage. En ce qui nous concerne, pour la suite des travaux de modélisation, le modèle mécanique devrait être enrichi par l’ajout d’aspects viscoélastiques et plastiques (force des liens adhésifs) au comportement de l’ébauche. Cela permettra de considérer l’ouverture de la presse ainsi que des programmes de fermeture de la presse comportant des périodes de surcompression de l’ébauche où, pendant un laps de temps, l’épaisseur de l’ébauche est plus petite que l’épaisseur finale désirée. De nouveau, la qualité des prédictions numériques dépendra de la précision et de la pertinence des mesures des coefficients viscoélastiques et plastiques. Pour les variables qui représentent un grand intérêt telles que la densité, la teneur en humidité, les pressions partielles de vapeur et d’air, les mesures expérimentales sont difficiles sinon impossibles. Dans ces cas, la modélisation numérique demeure la seule 131 alternative permettant d’obtenir de l’information fiable quant à leur évolution durant le pressage. Le numérique aide également à mieux comprendre l’importance de certains processus. Ainsi, les prédictions numériques de la pression partielle de vapeur permettent de voir que le transfert par diffusion moléculaire de la vapeur d’eau dans la phase gazeuse joue un rôle déterminant dans le transfert de la masse d’eau dans l’ébauche de MDF. En effet, le gradient vertical de pression totale du gaz étant faible sinon nul, le transfert par diffusion moléculaire s’impose en tant que principal moyen de transfert de la masse d’eau dans la direction verticale (en épaisseur). D’autre part, le gradient horizontal de pression du gaz assure l’évacuation de la masse d’eau (sous forme de vapeur) à l’extérieur de l’ébauche et demeure présent tout au long du pressage. De plus, nous avons employé le modèle couplé afin de simuler différents programmes de fermeture de la presse. Les résultats numériques obtenus montrent les bonnes tendances et notre modèle pourrait désormais servir en tant qu’outil d’analyse de procédés. Il importe de souligner que les modèles mathématiques proposés dans ce travail sont basés sur les principes physiques fondamentaux et demeurent valides même si la précision de certains paramètres utilisés dans les simulations numériques reste à être améliorée. La stratégie couplée de résolution numérique combinée à la méthode des éléments finis est efficace et donne des résultats probants que l’enrichissement des modèles ne pourrait qu’améliorer. Enfin, il convient de rappeler que, peu importe le niveau de complexité d’un modèle donné, sa capacité à prédire adéquatement les phénomènes physiques sera tributaire de la connaissance et de l’exactitude des paramètres mécaniques et rhéologiques qui caractérisent le matériau à l’étude. La qualité des prédictions d’un modèle et son applicabilité dans le milieu industriel dépend donc grandement de la qualité des données fournies au modèle. Bibliographie Alberta Research Council. 2003. PressMAN Monitoring System, Forest Products Business Unit, Alberta Research Council, Edmonton, Alberta, Canada. http://www.arc.ab.ca/forpro/ForestProductsBU.asp Bathe, K.J., Finite element procedures in engineering analysis. Prentice-Hall, 1982. 735p. Bazant, Z.P., Thermodynamics of solidifying or melting viscoelastic material, J. Eng. Mech. Div., 1979. 105(EM6) : 933–955. Belley, D., Détermination des propriétés de transfert de chaleur et de masse des panneaux de fibres de bois MDF. M.Sc. Thesis, Univeristé Laval, Québec, Canada, 2009. 70p. Beuth, L., Benz, T., Vermeer, P.A., Wieckowski, Z., Large deformation analysis unsing a quasi-static material point method. Journal of Theoretical and Applied Mechanics, Sofia. 2008. vol. 38, Nos 1-2. 45-60. Bolton, A.J., Humphrey, P.E., The hotpressing of dry-formed wood-based composites. Part I. A review of the literature, identifying the primary physical process and the nature of their interaction. Holzforshung, 1988. 42(6):403–406. Bolton, A.J., Humphrey, P.E., Kavvouras, P.K., The hot pressing of dry-formed woodbased composites. Part III Predicted pressure and temperature variation with time, and compared with experimental data for laboratory board. Holzforschung, 1989a. 43(4):265– 274. Bolton, A.J., Humphrey, P.E., Kavvouras, P.K., The hot pressing of dry-formed woodbased composites. Part IV. Predicted variation of mattress moisture content with time. Holzforschung, 1989b. 43(5):345–349. Bolton, A.J., Humphrey, P.E., Kavvouras, P.K., The hot pressing of dry-formed woodbased composites. Part VI The importance of stresses in the pressed mattress and their relevance to the minimisation of pressing time, and the variability of board properties. Holzforschung, 1989c. 43(6):406–410. Carvalho, L.M., Costa, C.A.V., Modeling and simulation of the hot-pressing process in the production of medium density fiberboard (MDF). Chem Eng Comm, 1998. 170:1–21. Carvalho, L.M.H., Costa, M.R.N., Costa, C.A.V., Modeling rheology in the hot-pressing of MDF: Comparison of mechanical models. Wood and Fiber Science, 2001. 33(3):395-411. Carvalho, L.M.H., Costa, M.R.N., Costa, C.A.V., A global model for the hot-pressing of MDF. Wood Science and Technology, 2003. 37:241-258. 133 Dai, C., Viscoelasticity of wood composite mats during consolidation. Wood and Fiber Science, 2001. 33(3):353-363. Dai, C., Yu, C., Heat and mass transfer in wood composite panels during hot-pressing: Part 1 A physical-mathematical model. Wood and Fiber Science, 2004, 36(4):585-597. Denisov, O.B., Sosnin, M.S., Characterization of changing temperature and steam pressure inside a particleboard mat during pressing. Derev. Prom., 1967, 16(8):11 (Russe). Dubois, F., Randriambololona, H., Petit, C., Creep in wood under variable climate conditions: Numerical modelling and experiment validation. Mechanics of time-dependent materials, 2005. 9:173-202. Duvaut, G., Mécanique des milieux continus. Dunod. Paris, 1998. 290p. Ellis, S., Correlation of waferboard internal bond and wood failure as measured by image analysis. Wood and Fiber Science, 1995, 27(1) : 79-83. Ganev, S., Gendron, G., Cloutier, A., Beauregard, R., Mechanical properties of MDF as a function of density and moisture content. Wood and Fiber Science, 2005, 37(2) : 314–326. García, P., Three-dimensional heat and mass transfer during oriented stranboard hotpressing. PhD thesis. University of British Columbia, 2002. 254p. García, R.A., Cloutier, A., Characterization of heat and mass transfer in the mat during the hot pressing of MDF panels. Wood and Fiber Science, 2005. 37(1):23-41. Garrigues, J., Fondements de la mécanique des milieux continues. Hermès-Lavoisier, 2007. 250p. Ghazlan, G., Caperaa, S., Petit, C., An incremental formulation for the linear analysis of thin viscoelastic structures using generalized variables. Int. J. Numer. Meth. Engng., 1995. 38 : 3315–3333. Harper, D.P., Wolcott, M.P., Rials, T.G., Evaluation of the cure kinetics of the wood/pMDI bondline. International Journal of Adhesion & Adhesives, 2001. 21 (2001) 137-144 Haselein, C.R., Numerical simulation of pressing wood-fiber composites. PhD Thesis, Oregon State University, USA, 1998. 244p. Hubert, P., Dai, C., An object-oriented finite element processing model for oriented strand board wood composites. Proceedings of the 13th International Conference on Composite Materials, Paris, France, 1998. Hughes, T.J.R., Marsden, J.E., A short course in fluid mechanics. Publish or Perish, 1976. 162p. 134 Humphrey, P.E., Physical aspects of wood particleboard manufacture. Ph.D. Thesis, University of Wales, UK, 1982. in Bolton, A.J., Humphrey, P.E., The hotpressing of dryformed wood-based composites. Part I. A review of the literature, identifying the primary physical process and the nature of their interaction. Holzforshung, 1988. 42(6):403–406. Humphrey, P.E., Thermoplastic characteristics of partially cured thermosetting adhesive-to wood bonds: the significance for wood-based composite manufacture. 1996, 366-373p. in Kajita, H., Tsunuoda, K., editors. Toward the new generation of bio-based composite products: Proceedings from the Third Pacific Bio-based Composites Symposium, Kyoto. Humphrey, P.E., Bolton, A.J., The hot pressing of dry-formed wood-based composites. Part II A simulation model for heat and moisture transfer, and typical results. Holzforschung, 1989a. 43(3):199–206. Humphrey, P.E., Bolton, A.J., The hot pressing of dry-formed wood-based composites. Part V The effect of board size: Comparability of laboratory and industrial pressing. Holzforschung, 1989b. 43(6):401–405. Humphrey, P.E., Ren, S., Bonding kinetics of thermosetting adhesive systems used in woodbased composites : the combined effects of temperature and moisture content. Journal of Adhesion Science and Technology, 1989. 3: 276-293. Hunt, D.G., Shelton, F., Longitudinal moisture-shrinkage coefficients of softwood at the mechano-sorptive creep limit. Wood Science and Technology, 1988. 22: 199–210. Kamke, F.A., Casey, L.J., Fundamental of flakeboard manufacture: Internal mat conditions. Forest Prod. J., 1988. 38(6): 38-44. Kamke, F.A., Lenth, C.A., Saunders, H.G., Measurement of resin and wax distribution on wood flakes. Forest Products Journal, 1996. 46(6):63–68. Kamke, F.A., Wolcott, M.P., Fundamentals of flakeboard manufacture: wood-moisture relationships. Wood Science and Technology, 1991. 25: 57–71. Kavazović, Z., Deteix, J., Cloutier, A., Fortin, A., Sensitivity study of a numerical model of heat and mass transfer involved during the MDF hot pressing process. Wood and Fiber Science, 2010. 42(2): 1-20. Kavvouras, P.K., Fundamental process variables in particleboard manufacture. Ph.D. Thesis, University of Wales, UK., 1977. 156p. Kull, W., Die Erwärmung von parallelflächigen Stoffen zwischen Heizplatten und die Bestimmung der Heizzeit bei der Holzverleimung, insbesondere bei der Spanplattenherstellung. Holz als Roh- und Werkstoff, 1954. 12(11): 413-418. Lee, J.N., Kamke, F.A., Watson, L.T., Simulation of the hot-pressing of a multi-layered wood strand composite. Journal of Composite Materials, 2007. 41(7):879-904 135 Liang, G., Chandrashekhara, K., Cure Kinetics and Rheology Characterization of SoyBased Epoxy Resin System. Journal of Applied Polymer Science, Wiley Periodicals, Inc., 2006. Vol. 102, 3168–3180. Loxton, C., Thumm, A., Grigsby, W.J., Adams, T.A., Ede, R.M., Resin distribution in medium density fiberboard. Quantification of UF resin distribution on blow line and dryblended MDF fiber and panels. Wood and Fiber Science, 2003. 35(3):370-380. Maku, T., Hamada, R., Sasaki, H., Studies on the particleboard. Report 4: Temperature and moisture distribution in particleboard during hot-pressing. Wood Research Kyoto University, 1959. 21: 34-46. Malmquist, L., Sorption a deformation of space. Svenska Traforskningsinstitutet. Trateknik, 1958. Meddelande. 983, Stockholm. Nelson, R.M. Jr., A model for sorption of water by cellulosic materials. Wood and Fiber Science, 1983. 15(1):8-22 Nigro, N., Storti, M., Hot-pressing process modeling for medium density fiberboard (MDF). International Journal of Mathematics and Mathematical Sciences, 2001. 26(12):713-729 doi:10.1155/S0161171201020166 Park, B.D., Kang, E.C., Park, J.Y., Thermal Curing Behavior of Modified UreaFormaldehyde Resin Adhesives with Two Formaldehyde Scavengers and Their Influence on Adhesion Performance. Journal of Applied Polymer Science, Wiley Periodicals, Inc., 2008. Vol. 110, 1573–1580. Pereira, C., Carvalho, L.M.H., Costa, C.A.V., Modeling the continuous hot-pressing of MDF. Wood Science and Technology, 2006. 40:308-326. Pizzi, A., Advanced wood adhesives technology. Marcel Dekker, New York, 1994. Poon, H., Ahmad, M.F., A material point time integration procedure for anisotropic, thermo-rheological simple, viscoelastic solids. Comp. Mech., 1998. 21 : 236–242. Poon, H., Ahmad, M.F., A finite element constitutive update scheme for anisotropic, viscoelastic solids exhibiting non-linearity of the Schapery type. Int. J. Numer. Meth. Engng., 1999. 46:2027–2041. Reddy, J.N., An introduction to the finite element method. Third edition. McGraw Hill High Education., 2006. 766p. Siau, J., Transport processes in wood. Springer-Verlag, 1984. 245p. 136 Steffen, A., von Haas, G., Rapp, A., Humphrey, P., Thömen, H., Temperature and gas pressure in MDF-mats during industrial continuous hot pressing. Holz als Roh- und Werkstoff 57, 1999. 154-155 Copyright Springer-Verlag 1999 Strickler, M.D., The effect of press cycles and moisture content on properties of Douglas fir flakeboard. Forest Prod. J., 1959. 9(7): 203-207. Thömen, H., Modeling the physical process in natural fiber composites during batch and continuous pressing. Ph.D. thesis, Oregon State University, Corvallis, Oregon, 2000. 187p. Thömen, H., Humphrey, P.E., Modeling the continuous pressing process for wood-based composites. Wood and Fiber Science, 2003. 35(3):456-468. Thömen, H., Humphrey, P.E., Modeling the physical process relevant during hot pressing of wood-based composites. Part 1. Heat and mass transfer. Holz als Roh-und Werkstoff, 2006. 64: 1-10. Thömen, H., Haselein, C.R., Humphrey, P.E., Modeling the physical process relevant during hot pressing of wood-based composites. Part 2. Rheology. Holz als Roh-und Werkstoff, 2006. 64: 125-133. Thömen, H., Ruf, C., Measuring and simulating the effects of the pressing schedule on the density profile development in wood-based composites. Wood and Fiber Science, 2008. 40(3):325 – 338 Vidal Bastías, M., Modélisation du pressage à chaud des panneaux de fibres de bois (MDF) par la méthode des éléments finis. Ph.D. thesis, 2006. Univeristé Laval, Québec, Canada, 158p. Vidal Bastías, M., Cloutier, A., Evolution of wood sorption models for high temperatures. Maderas. Ciencia y tecnología, 2005. 7(2):145-158. von Haas, G., Untersuchungen zur Heißpressung von Holzwerkstoffmatten unter besonderer Berücksichtigung des Verdichtungsverhaltens, der Permeabilität, der Temperaturleitfähigkeit und der Sorptionsgeschwindigkeit. Ph.D. Thesis, Hamburg University, Germany, 1998. 264p. von Haas, G., Frühwald, A., Untersuchungen zur Verdichtungsverhalten von Faser-, Spanund OSB-Matten. Holz als Roh- und Werkstoff, 2000. 58:317-323. von Haas, G., Steffen, A., Fruhwald, A., Untersuchungen zur Permeabilitat von Faser-, Span- und OSB-Matten fur Gase. Holz als Roh-und Werkstoff, 1998. 56:386-392. Wang, S., Winistorfer, P.M., Fundamentals of vertical density profile formation in wood composites. Part 2. Methodology of vertical density formation under dynamic conditions. Wood and Fiber Science, 2000a. 32(2):220-238. 137 Wang, S., Winistorfer, P.M., Consolidation of flakeboard mats under theoretical laboratory pressing and simulated industrial pressing. Wood and Fiber Science, 2000b. 32(4):527-538. Wang, S., Winistorfer, P.M., Young, T.M., Helton, C., Step-closing pressing on medium density fiberboard. Part 1. Influences on the vertical density profile. Holz als Roh- und Werkstoff, 2001a. 59:19-26. Wang, S., Winistorfer, P.M., Young, T.M., Helton, C., Step-closing pressing on medium density fiberboard. Part 2. Influences on panel performance and layer characteristics. Holz als Roh- und Werkstoff, 2001b. 59:311-318. Wang, S., Winistorfer, P.M., Young, T.M., Fundamentals of vertical density profile formation in wood composites. Part 3. MDF density formation during hot-pressing. Wood and Fiber Science, 2004. 36(1):17-25. Winistorfer, P.M., Young, T.M., Walker, E., Modeling and comparing vertical density profiles. Wood and Fiber Science, 1996. 28(1):133-141. Winistorfer, P.M., Moschler, W.W.Jr., Wang, S., DePaula, E., Bledsoe, B.L., Fundamentals of vertical density profile formation in wood composites. Part 1. In-situ density measurement of the consolidation process. Wood and Fiber Science, 2000. 32(2):209-219. Wolcott, M.P., Kamke, F.A., Dillard, D.A., Fundamentals of flakeboard manufacture: viscoelastic behavior of the wood component. Wood and Fiber Science, 1990. 22(4): 345361. Wolcott, M.P., Kamke, F.A., Dillard, D.A., Fundamentals aspects of wood deformation pertaining to manufacture of wood-based composites. Wood and Fiber Science, 1994. 26(4): 496-511. Wu, Q., Application of Nelson’s sorption isotherm to wood composites and overlays. Wood and Fiber Science, 1999. 31(2):187-191. Xing, C., Characterization of Urea-formaldehyde Resin Efficiency Affected by Four Factors in the Manufacture of Medium Density Fiberboard. Ph.D. thesis, Université Laval, Québec, Canada, 2003. 198p. Xing, C., Riedl, B., Cloutier, A., He, G., The effect of urea-formaldehyde resin pre-cure on the internal bond of medium density fiberboard. Holz Roh Werkst, 2004. 62:439–444. Yu, C., Dai, C., Wang, B.J., Heat and mass transfer in wood composite panels during hot pressing: Part 3. Predicted variations and interactions of the pressing variables. Holzforschung, 2007. Vol. 61:74-82. 138 Zocher, M.A., Groves, S.E., Allen, D.H., A three-dimensional finite element formulation for thermoviscoelastic orthotropic media. Int. J. Numer. Meth. Engng., 1997. 40 : 2267– 2288. Zombori, B.G., Modeling the transient effects during the hot-pressing of wood-based composites. PhD thesis, 2001. Virginia Tech., Blacksburg, Virginia. 212p. Zombori, B.G., Kamke, F.A., Watson, L.T., Simulation of the internal conditions during the hot-pressing process. Wood and Fiber Science, 2003. 35(1):2–23. Zombori, B.G., Kamke, F.A., Watson, L.T., Sensitivity analysis of internal mat environment during hot pressing. Wood and Fiber Science, 2004. 36(2):195–209.