Spintronics in hard drives 22
Transcription
Spintronics in hard drives 22
5-3 Periodical of S.V.A.T. Astatine Volume 5 | Number 3 | April 2011 Spintronics in hard drives 8 GPS 22 28 Genetically modified food 37 Arranging atoms Colofon VAN DEN BOSCH & FIKKERT DRUKKERS SINDS 1932 The “ATtentie” is the periodical of S.V.A.T. Astatine, which is issued four times a year. The ATtentie is distributed among members of Astatine and employees connected to Advanced Technology at the University of Twente. Volume: 5 Number: 3 Issue: 21 Copies: 415 Date of issue: April 2011 Editorial staff: Pim Muilwijk Geert Folkertsma Jeroen van den Berg Daan in den Berken Monique Parfitt Editor in chief, Layout Editor, Layout Editor Editor Board member Address: S.V.A.T. Astatine t.a.v. ATtentie Post office box 217 7500 AE Enschede Tel. 053-489 4450 Bank: 1475.73.769 (Rabobank) attentie@astatine.utwente.nl http://www.astatine.utwente.nl Printer Drukkerij Van den Bosch & Fikkert B.V. - http://www.druk-bosfik.nl With thanks: Brigitte Bruijns, Daan in den Berken, Geert Folkertsma, Jelmer Boter, Jeroen van den Berg, Marijke Stehouwer, Melvin van Melzen, Pim Muilwijk, Thomas Janssen, Jelle van der Veen. Copy can be delivered to the addresses mentioned above, in .doc(x) or .txt formats. Any figures or pictures can be bundled with the text in a .zip or .rar file. The deadline for the next ATtentie: 1 May 2011 © S.V.A.T. Astatine 2011, all rights reserved. Authors remain responsible for the contents of their works. The editors preserve the right to modify or reject received articles. 2 Editorial There it is. Finally! Some of you might even have thought that this edition would never see the light of day anymore. Well, even though it is quite majorly delayed (which you will notice whilst reading some of the pieces of the board and the boardroom), we’d rather have it late than never. Normally we would blame this on understaffing or some other plausible excuse, but this time we only have ourselves to blame. Writing this on a sunny day with clear blue skies we will therefore blame it on a severe winter depression. Inhoudelijk 8 Global Positioning Systems 14 Alledaagse chemie: E-nummers 22 Spintronics in hard drives 28 Genetically modified food 37 Arranging atoms in artificial structures of complex oxides The winter however has passed and gone away for a while and so has our depression, so we can now focus all our energy on the last remaining edition for this year. Well, maybe not all of our energy; we still have a study to complete (at least, most of us do) and we don’t want to pay that € 3000,- fine now do we? Yes, the government is going through with all the plans (what a surprise) and additionally the university thought it would be a good idea to cut the so-called “afstudeermaanden“ for people who don’t receive a “prestatiebeurs“. With thanks to the current government this means Master students, who have seen their basic awards disappear like snow before the sun. This is exactly the reason why I don’t like politics, in my view a democracy is still just a dictatorship by the majority. That’s enough ranting for now, I’m starting to sound like a bitter old man, even though I’ve enjoyed all the benefits that future students will come to miss. Instead, let’s just hope that the weather stays this nice, so you can read this edition outside. Furthermore, I wish upon you lots of ice cream and scarcely dressed women (or men in case you’re into that) in the remainder of the academic year. Carpe diem! Pim Muilwijk, editor in chief Astatine CultCo4 BuCom5 CSI: The Future 12 Grolsch excursie 31 Interview: Arie van Houselt 33 KIVI Niria: Mindmapping 36 Overig 2Colofon 6 From the chairman 7 From the AT boardroom 21Column 26Puzzle CultCo Jelle van der Veen Some talk about it had already been heard the three months before this academic year. Three Advanced Technology students (Kylie, Tom and me) had wild plans for a new committee. In the time before, occasionally some serious discussion had taken place concerning interesting movies, music, food and about everything else you can imagine. Some committee had to be found to provide an output for these creative feelings. Coincidentally, in the summer of 2010 Advanced Technology became an international study, bringing its fair share of radical changes and foreign students. All courses had to be translated; furthermore our Study Association Astatine changed its language on posters and the website to English. But the language barrier is not the only thing that had to be overcome, students from different countries bring different cultures, which seemed another reason to start a committee concerning culture. That is why the Culture Committee (CultCo) of S.V.A.T. Astatine was founded. The goal of this committee is the introduction and integration of the cultures amongst the students of Advanced Technology and to provide an output for creative feelings of all Advanced Technology students. Which student wouldn’t want to visit some fine concert, watch some good movies, or have a nice dinner? The CultCo will try to provide in all of these needs. Of course the ATAC could organssuch activities. But we have the feeling the CultCo has a different goal, rather than just amuse the students, which is valuable as well, we will try to develop the 3 C’s in Advanced Technology students: Criticism, Creativity and Contentment. Activities A way of reaching these goals is for instance the idea of a combined movie night and a subsequent discussion. We hope to develop people’s creativity by showing them the possibilities within movies, possibly even more using a movie directing workshop, criticism by encouraging people to participate in discussion. Finally the contentment will be provided by a good movie, some laughs, some tears, but a satisfied feeling at the end. (And for the people that don’t like the movie of course some fine drinks.) 4 At the time of writing the CultCo has just organised its first activity, the CultCo Tapas Night. On this night everyone could bring a homemade dish, share it with other people and try something new. This resulted in a table filled with all kinds of food, from quiche to wraps and from bread rolls to filled vegetables. Where the contentment came in here is pretty clear. Everyone had a great dinner with lots of good food. The criticism was in the discussion about which dish was best and why. To me personally, I liked the salmon quiche made by Monique best. Creativity was present in the creation of your own personal dish. So finally the first activity was a great success, we hope that at future activities a little more people will be present, though 12 people is acceptable and the presence of Astatine’s first chairman compensated for a lot. The Astatine Cultco Bring your own ideas Even though the CultCo has just started, we hope that we can be a contribution to Astatine in the coming time and that we can help foreign students to get used to studying in Enschede, and additionally bringing some other cultures to everyone’s attention. Should you feel like you have an important contribution to make to the introduction of your (or any other) culture within Astatine, please let us know, we will surely listen to any suggestions. If you don’t have the slightest clue who we are, I suggest you start examining our CultCo picture here or on the Astatine website! BuCom Daan in den Berken Each year, several Astatine members organise a 5-day study trip to a country in Europe. For the past 3 years the destinations have been England/France, Sweden/ Denmark and Switzerland. Since a few days I am not bound anymore to keep our destination a close kept secret: we are going to Berlin and Prague! And thus Germany and the Czech Republic can join the list of countries. When the day is finally over, at midnight the bus will take us all back to where we started from. On Sunday morning you will be back in Enschede. To make all this happen five of us started working on organising this trip in early November, brainstorming on destinations, searching for interesting companies to visit and setting up appointments with said companies. And to make all of this affordable for everyone, finding sponsors to make this happen. I make you braver than ever before, Golden power that all adore, My cousins keep you fed, But I keep your throat wet I start as a batter, Stuffed with sweet, Burned to a crisp, I am good to eat I run but cannot walk, sometimes sing but never talk, Lack arms, but have hands, lack a head but have a face. I hope you sign up and to see you on May 18th when we depart for our destinations! (St)one, translate to german Ein Stein, Einstein lived in Prague Once you arrive in this city, which has been the set of countless of movies, you will have the whole day to yourself to explore one of the most beautiful and unspoiled cities of Europe. You will be free to explore its beautiful bridges, its castles, churches and vistas from the surrounding hills, and to look at its Romanesque, Gothic, Renaissance, Baroque, and Rococo architectural styles. A word numbering letters five, Remove two One survives Beer, the Czech Republic has the highest per capita consumption We depart for our first excursion early in the morning on May 18th. After dinner, you will be able to explore Berlin and it’s nightlife to your heart’s content, though keeping in mind that you will have to be up early the next day. The next two days will be filled with 2 more excursions per day until we finally reach Prague on Friday. Before our destination was revealed a few weeks ago, I gave you a small series of riddles, each concerning our destination in a way. Perhaps you were able to figure out where we were going: Berlinerbol, a pastry named after Berlin But as the saying goes, “All work and no play makes Jack a dull boy”. So what kind of fun do we have on these trips? Well, after several hours of bus travel and one of the above mentioned excursions, we will be near a city with an active nightlife (fun fact: apparently our Prague hostel is situated above a nightclub) scene. And while we hope you will not be too hung-over the next day, there will be some time for fun. fltr: Peter Puttkammer, Loek Nijsten, Teun Bartelds, Mel Burger en Daan in den Berken Clock, the famous Orloj Clock is to be found in Prague As the words study trip imply, the journey will have educational value. While abroad, the group visits five institutions, companies or universities. Last year this list consisted of CERN, Ruag Space, ETH Zürich and Bayer. With topics ranging from particle physics, shielding for space rockets, robotics and chemistry, these excursions illustrate why we are all studying so hard, as well as what we could be working on in just a few short years. 5 From the chairman Jelmer Boter Last year, 2010, was one of the warmest years since the start of weather monitoring. The mean temperature over the first eight months was 14.7 ºC, the same as in the record year 1998. The expectation is that 1998 will retain its record, because of a chilly December. It’s December now and it is true: it is cold, it is snowing and it is not the first year with a cold and snowy winter. While bicycling to the campus I sometimes wonder if there actually is a climate change. Is the world really getting hotter? Yes, of course it is, but sometimes things like to contradict each other and the world does not seem to be the way it is. There is another contradiction you all might have heard of, which will affect us all. The Netherlands is a so-called “kenniseconomie”, which means that the major part of economic growth comes from (technical) knowledge and its implementation. This is because of the Dutch students being entrepreneurs. They develop themselves also outside their studies and become skilled persons in a broad domain. In Holland we are proud of our entrepreneurial students being student board members, doing committees, taking part in joint decision making and organising lots of activities. It is for this reason Dutch employees are wanted all over the world. They are not only skilled in their own area, but got so many other competences. Sounds nice, but here comes the contradiction. The new minority cabinet of Prime Minister Rutte, with CDA, VVD and the support of Wilders’ PVV, wants to encourage quick studying. They invented the C+1 rule, which means you will be fined if you take more than one extra year for your study. For each extra year you will have to pay €3.000 extra tuiton fee. While writing this article the first modification has already been made. You may take one more year for your bachelor and one for your master, so a total of two years extra. It is a step in the right direction, but we are not there yet. The objective the cabinet wants to accomplish with these plans, less unnecessary study delay, is not bad at all. The education part of “het regeerakkoord” starts with: the Netherlands have the ambition to belong to the top five knowledge economies. This asks for better quality of education and promotes better results. I agree with them that 10 years is far too long to study. The problem is they do not see the necessary expectations to remain a real knowledge economy, e.g. for student activism. 6 We are proud of our students, so please let us remain proud of them and make it possible and attractive for students to be active. There is more. The government wants to discard the student grant for Master students and replace it with a social feudal system. Each MSc. has to pay at least €6.000 after his graduation. They want each student to invest in their own future in exchange for higher qualilty education. But how do they want to improve education with less money? The plans are a disaster for Holland and have to change. The Student Union founded www.kenniscrisis.nl and the first actions are behind us. The van Heekplein was crowded with students on the 16th of December and on the 21st of January all students in the Netherlands will unite or were united (depending on the moment you are reading this) with each other in a great manifestation on the Malieveld in The Hague. Hopefully, the government receives this message and will think one more time about their plans. Let old times of student protests revive and show them what we can do! Recently we got lost of some pains in the ass of the cabinet and the number of AT graduates almost doubled. The Bachelor graduation on the 3rd of November was a memorable day for 24 former AT students who received the crystal with Leonarde Da Vinci’s helicopter. They spread out and are following all different kinds of Masters right now. I want to congratulate them all and wish them luck with the next part of their education, the Master. One of the things we may have to miss if there are no active students is very near for us. We celebrated the fifth birthday of Astatine on the 15th of December and in just a few weeks there will be a week full of activities and parties: the first Lustrum of S.V.A.T. Astatine. Visit www.astatinelustrum.nl and find out about the activities the lustrum committee has in mind for you. Let this week be a hell of a succes and something to remember. The first lustrum related activity was the symposium CSI: The Future, which has a nice link with the theme ”Small going big”. It was the most succesful symposium in the history of Astatine. I hope to see you all during the lustrum and again I will end this article with a beautiful Dutch sentence: “Op de Hoogste !” From the AT boardroom Marijke Stehouwer (study advisor) As I am writing this, it is the beginning of January, and everybody is still full of New Years’s resolutions. My personal resolutions are to exercise more, run the “Batavierenrace”, eat more cookies & chocolate and in general: to live life to the fullest! The staff of AT intends to keep up the good work, and improve where possible. We’ll help Astatine celebrate their fifth birthday in February (looks like it’s going to be a great party!), contribute to the development of the plans concerning the University College and film “AT, the movie” (a new promotional movie for our Bachelor site). 2011 promises to be a year of many changes. Due to budget cuts the structure of the UT is going to have to be altered. You may have heard of the plans of the UT’s executive board to narrow the number of Bachelors down from 23 to 10, it is likely that these plans will also affect AT. At this moment it’s ”wait and see”, we will keep you posted. Some of you might join the protest march against the government’s plans for budget cuts on higher education in The Hague on the 21st of January. At present a lot is still unclear and nothing is definite yet. We will make sure that students for whom the €3000,fine might become a problem are informed and hope that you’ll come to us with your questions. “AT, the movie” is at the time of writing not even finished but we already have 25 prospective AT-students who have registered through “Studielink”. This is about twice as much as last year at this time! An increasing number or foreign students are finding out about Advanced Technology and both Monique (our role-model) and me are receiving e-mails from “all over the place”. We are looking forward to meeting all our new students and we hope they will all fit into HT900 and the labs. We are also looking into housing for our international Bachelor students. At this moment, a room cannot be guaranteed for international Bachelor students, and this might become a problem. One of the reasons for this problem is that the people living in student flats are allowed to choose their new flatmate, and given the choice, they often prefer a Dutch student over an international one. So, in case one of your flatmates decides to leave before the next academic year: please consider an international flatmate. It will make your everyday life so much more interesting and multicultural! 7 Global Positioning Systems Geert Folkertsma The system At the boy scouts, I was taught how to find your (up to that moment unknown) position on a map: by finding the North Pole, identifying the type of terrain and looking for particular crossroads and the shape of roads and creeks. I liked it and, notwithstanding my path-finding inability, with a map I can always find my way. Nowadays however, it is a superfluous skill, as most cars, cell phones and tablet PCs come with builtin navigation. All these route-finding enhancements are based on one system: GPS. Although the “known points” from which distance measurements are done could also be transmitters located on the earth, they are satellites because this allows reception over the whole world. There are about 30 active GPS satellites to ensure good coverage. The GPS receiver is another part of the system, because this is where all the position calculations are done. It includes error correction and nowadays also uses other sources than the satellite signals to determine position. The principle To monitor the satellites and correct mistakes (such as a satellite being knocked off course by space debris, or errors in the clock of the satellites), there are also ground stations located mainly in the United States (GPS was first used by US military and still maintained by them). A position measurement with GPS (Global Positioning System) uses the finite speed of light to determine distances to known points in space with a Time-of-Flight measurement. The known points in space are satellites that send a radio signal with their current time, tsend. The receiver compares the received timestamps with the time of reception treceive and thus knows the travel time or ToF. The distance is then easy: d=c · (treceive - tsend). This defines a sphere around the satellite with radius d on which the receiver may be. Finding a second sphere from another satellite reduces the possible positions to the intersection of the two spheres: a circle. A third satellite further reduces the position to two points. For navigation systems this is sufficient: the point that is located on the Earth’s surface (a fourth sphere) is the actual position! GPS receivers for aerial or space vehicles require a fourth measurement. This method is shown graphically in figure 1 below. s1 The GPS satellites (see a picture in figure 2) have but one purpose: broadcast the time to Earth, from a known location in space. A lot of people think that GPS satellites are in a geostationairy orbit, but this is not necessary and not the case: it does not matter if the position with respect to earth is not constant, as long as the orbit (and thus position at any given time) is precisely known. As it is, GPS satellites have an altitude of about 20Mm, flying the same ground track every day. s2 s1 a s3 s1 8 Satellites c b s2 s3 s1 d Earth s2 Figure 1: Position determination using Time-of-Flight measurements. The first measurement from satellite 1 places the receiver on a sphere (a). A second satellite’s sphere intersects with the first’s to form a circle of possible locations (b). The third satellite reduces this to two points (c), one of which is also located on the earth (d). For airbound applications, the earth must be replaced with a fourth satellite measurement. GPS The first part of the message (1 “subframe”) is the exact satellite time, which is encoded as a week number and the seconds since the start of the week. GPS time does not correct for the earth’s rotation, so it ignores leap seconds and the like, resulting in an offset that occasionally increases and currently is about 20 seconds – this difference must therefore also be sent along. The second part of the message (subframe 2 and 3) is called the ephemeral and contains precise orbital information of the satellite, so the receiver knows exactly where the centre of the sphere should be. The entire ephemeral must be received to determine the position, which could take several messages if reception is not too good. The last part (subframe 4 and 5) is the almanac , which provides information on the approximate location of all satellites – which tells the receiver which satellites should be visible, so which satellites to listen for. Because the almanac is quite large, it takes 25 messages to send it completely. Therefore, newly bought GPS receivers need quite some time to get their first location fix. Encoding Figure 2: A GPS satellite (here without the solar panels attached) is rather small. The protrusions on the top are the antennas to broadcast the GPS message and to receive updates and corrections from ground stations. The most important parts of the satellite are the clock and the radio transmitter. Because the time has to be very precise (an error of 1µs leads to a distance deviation of 300m), the GPS satellite carries a couple of atomic clocks. They have to be corrected for relativistic effects to keep in pace with the clocks on earth! The satellite sends a specific message containing not only the time, but also additional data (see GPS message below). All the satellites’ radios transmit at the same two frequencies, around 1.22 and 1.58 GHz (new satellites also broadcast around 1.17 GHz). They use CDMA spread-spectrum modulation with an encoding specific for each satellite (see Encoding). GPS message Twice every minute, the satellite broadcasts a message with a very low bitrate: only 50 bits per second. This results in a total message length of 1.5KB, less than the textual information on this page. The message is sent on a frequency modulated signal around 1GHz, which is simple: modulation at the satellite and demodulation with the same frequency at the receiver. This is not enough though: all satellites broadcast at the same frequency, so it would be impossible to distinguish between them. So, before going to the transmitter, the message is modulated – not with a sine such as in the radio, but with a so-called Pseudo-Random Noise sequence, a technique called CDMA. This is a set of zeros and ones, unique for each satellite. Because the PRN is different for each satellite, the individual satellite messages can be received by “tuning in” to the right PRN (see figure 3 for a schematic overview). PRN 1 radio signal 1.5 GHz carrier signal CDMAencoded signal message 1 PRN 2 PRN 3 msg 2 msg 3 Figure 3: The message is modulated with a PRN and then with a normal carrier signal (this graph shows the receiving end’s demodulation setup). 9 GPS This PRN is also how we civilians only get an accuracy of a couple of metres, while the US army has receivers that go down to centimeters: there is a second, secret and encrypted code that contains more precise information. This code, called the P(Y) code, is only available to the US army. “Our” code is called C/A, Coarse Acquisition. Ground stations Errors are bound to creep into the satellites: the clock will eventually deviate, and because of collisions with space debris or gravitational pull of other objects, the satellites will not stay perfectly on course. Therefore, there are several ground stations that monitor the exact orbits of the GPS satellites. They send their information to a master control station, which updates the ephemeral in each satellite and adjusts their internal clocks so all GPS satellites have the same time. If a satellite is too far off course, it will be marked unhealthy, which means that GPS receivers don’t include that satellite’s data in their position determination. Then the satellite uses its built-in thrusters to get back on course, after which the ephermal is updated and the satellite marked healthy again. End-user devices The principle on which the position determination is based is fairly simple, as described at the beginning of this article. Of course, there’s more to it than calculating flight times and doing some geometric calculations. Firstly, the radio message must be decoded. The demodulation is simple, by mixing the radio signal with the 1.5GHz carrier signal (see figure 3 again). The decoding of the CDMA signal is a bit harder though: the modulation signal is no sine, but a seemingly random sequence of bits. This means that it matters at what point in time the PRN is mixed with the CDMA signal. This is done by trial-and-error: the PRN signal is shifted forward 1 bit until something else than gibberish comes out. Then, as soon as there is a signal on one PRN code, the almanac has to be downloaded so the receiver knows what other satellites (=PRNs) to look for. After its first use, the almanac is roughly known, so this information is already known – unless you’ve travelled a long distance with the receiver turned off. Finally, the ephemerals of all the satellites are downloaded and the position can be calculated. Because the ToF can be determined at the start of each subframe, a complete new position can be calculated each 6 seconds. 10 Figure 4: From top to bottom the GPS satellite, a (discontinued) ground station and an example of a GPS receiver, measuring only a couple of cm in height. GPS Receiver challenges Navigation paradox As was mentioned before, the clock needs to be very accurate to get a good position estimation. This is no big problem for the satellites, which are equipped with atomic clocks and are synchronised by ground stations. The receivers on the other hand are built into telephones and TomToms, where no such large and expensive clock can be used. The clock error then causes the fourth sphere (see figure 1) to not intersect with any of the two possible locations… Therefore, more satellites are monitored and, combining all the spheres into the best position estimation, the clock error is minimised. An interesting paradox was introduced in 1964 by Peter Reich for airplanes, but can be expanded to general navigation. The paradox states that increased navigational precision (smaller errors in position determination and path following) may result in more collisions. It can be explained as follows: if everyone (airplane, ship) tries to follow a certain optimal path, usually the shortest distance, then the risk of two vehicles actually being on that optimal route and thus crashing into eachother increases if the vehicles get better at sticking close to that path. A similar effect occurs when a lot of people use a (for example) TomTom to reach a destination, all of which calculate the same optimal route: resulting in increased traffic on that route and possibly queues. Another problem is that of reception: cheap GPS receivers (or expensive ones used indoors or between high buildings) take a long time to get a position fix – if they succeed at all. This is because the entire ephemeral of each satellite is required to get a location. If there is too much noise or the connection is interrupted during ephemeral reception, the device has to wait for the next message. Even in the best case, it takes at least 30s before the ephemeral is received. The ephemeral is valid up to 4 hours, so after the initial fix, a broken connection is not disastrous: the old one can be used and every 6s the ToF is measured. So, when we get better at navigating, we should care to either get worse at finding fast routes, or take this knowledge into account when finding an optimal path. Modern GPS receivers, especially the ones in smartphones, use so-called assisted GPS or a-GPS. This is a general term to indicate that the receiver uses more sources than just the satellite signals: it could determine its general position by finding out which GSM site it is connected to, or download the almanac and ephemerals through the cellular data network. Other systems Although this article focuses on GPS – which is used in all our smartphones, navigation systems and other location-aware gadgets – there are more systems. Rusland has their own system (GLONASS) which was introduced by the Soviet Union, fallen into disrepair and recently refurbished. Europe (the EU and ESA) is working on Galileo, an improved version of GPS. Modern GPS receivers should be compatible with this system, combining GPS and Galileo satellites to increase performance. Then there are some local systems in China and Japan, others are in development (India is working on one; China is expanding their local system to become global). 11 CSI: The Future Brigitte Bruijns CSI, Crime Scene Investigation: almost everybody knows the famous television series. Those series give a nice insight in the work of a forensic scientist. However, what you see on television is really the desired future perspective of every forensic investigator. CSI: The Series In forensic institutes, such as the Netherland Forensic Institue (NFI), the real world is very different from the television world. The tasks of a forensic scientist are a bit more (or just less?) complicated. Unfortunately it is not (yet) possible to obtain a DNA-profile on the crime scene within a few minutes. It is also not that easy to acquire a fingerprint from every arbitrary material possible on a crime scene. Also the interrogation of the suspect is for the police (tactische reserche) and the final conviction is up to the judge. In countries where they have the common law system (in the Netherlands we have the civil law system) the jury plays an important role in the conviction of the suspect. A forensic scientist can never tell you who the perpetrator was. They can only give a judgement of the evidence itself. In a forensic testimony you would never see the statement that the DNA-profile is from the suspect. What you can find is if there is a match between the profile found on the crime scene and the profile of the suspect. Next to that the rarity of the profile is given. But the expert has to watch out for the prosecuter’s fallacy[1]. CSI: The Future Now that a few pitfalls of forensic research have been discussed, the focus can be on the future again. To show the real future of crime scene investigation a symposium was organised, with as topic the use of labon-a-chip technology in forensics. Figure 1: Forensic research on a crime scene. The forensic scientists in series such as CSI (Las Vegas, Miami and New York) have four tasks: 1. Collection of the evidence, 2. Examination of the evidence, 3. Interrogation of the suspect and 4. Conviction of the perpetrator. Only one of these tasks is the real job of a forensic scientist. The crime scene is for the police (technische reserche); only in exceptional situations a forensic scientist will be present on a crime scene. After collection of the evidence the obtained “SVO’s” (stuk van overtuiging – piece of evidence) will be sent to a forensic laboratory. The forensic expert will examine the evidence and will write down 12 his or her findings in a forensic testimony. Figure 2: Lab-on-a-chip device for forensic investigations? The variety of forensic traces found at a crime scene is enormous. The term forensic science is therefore very broad and can be divided in several classes, such as DNA (deoxyribonucleic acid), blood, explosives and drugs. Analyses have to be simpler, faster, more robust, cheaper and also improved sensitivity and selectivity is wanted. Especially devices that can be used directly on the crime scene are wanted. Most ideal would be a mobile forensic lab for collecting, screening and analysis of the evidence. CSI: The Future Devices known as a ”lab-on-a-chip” (LOC) can speed up the analysis, are compact and can be easily integrated and used by people who are not technically trained. However, micro-devices for forensic research hardly exist. Experts in LOC technology and/or nanotechnology do not have a lot of experience and knowledge about forensic science. Otherwise forensic experts are in general not very familiar with LOC devices. The two disciplines are not yet combined in order to obtain a LOC device for forensic research. Severine Le Gac told us more about her PhD project in which she developed a chip for mass spectrometry. Also Medimate was present to give an insight in the possibilities of on chip analysis for point-of-care devices. CSI The Hague is the new project of the NFI and several partners (Thales, Philips and universities). The goal of the project is to visualise and virtualise the crime scene. With this technique it is possible to visit the crime scene digitally for the police, forensic investigators, but also for legal institutions [4]. CSI: The Symposium The first speaker of the symposium, Arian van Asten, is a forensic scientist himself. He is head of the department Physical and Chemical Technology of the NFI. In this department research takes place on explosives and explosions, weapons and all kinds of physical traces. During his talk he told a bit more about the NFI and he explained the work of a forensic scientist. There are five very basic questions that are the fundamentals of forensic evidence examination: where, what, who, when and how. Han Gardeniers, head of the Mesoscale Chemical Systems group, was the second speaker of the day and he gave the participants an insight in what is already possible regarding lab-on-a-chip technology. Ate Kloosterman is forensic DNA-expert at the NFI and the expert in the field of DNA-profiles. He told more about the MIDAS (millifluidic identification DNA analysis system) project[2]. Part of this system, the chip for the capillary electrophoresis, is made by Micronit. In their presentation they went a bit more into detail about the system, which is also shown in figure 3[3]. Figure 4: CSI: The Symposium was well attended. It was a very successful day with a broad range of speakers, talks and participants. Forensic research is defnitly multidisciplinary and still new developments are made! [1]http://en.wikipedia.org/wiki/Prosecutor%27s_fallacy [2]http://www.forensic.gov.uk/html/company/ partnership/ [3] A.J. Hopwood, C. Hurth, J. Yang, Z. Cai, N. Moran, J.G. Lee-Edghill, A. Nordquist, R. Lenigk, M.D. Estes, J.P. Haley, et al. Integrated Microuidic System for Rapid Forensic DNA Analysis: Sample Collection to DNA Profile. Analytical Chemistry, pages 184-189. Figure 3: The system of the MIDAS project. [4] http://www.technischweekblad.nl/50_ KKPHk6UU, page 3 13 Alledaagse chemie: E-nummers Thomas Janssen, herpublicatie uit G-mi E-nummers zijn chemische toevoegingen aan levensmiddelen, die veel voorkomen in kanten-klaar producten. De ‘E’ staat voor Europees goedgekeurde toevoeging voor levensmiddelen. De E-nummers zijn op te delen in zeven categorieën; kleurstoffen; conserveermiddelen; anti-oxidanten en voedingszuren; verdikkingsmiddelen, emulgatoren en stabilisatoren; zuurteregelaars en antiklontermiddelen; smaakversterkers en overig. Overig bestaat onder andere uit waxen, verpakkingsgassen en zoetstoffen. E 100-199: Kleuren Vroeger werd er nog wel eens loodchromaat gebruikt om melk en boter mooi geel bij te kleuren, of loodmenie om snoepjes een mooie rode kleur te geven; gelukkig is dat nu verboden. Er zijn 42 kleuren die een E-nummer hebben en veel van deze kleuren hebben een natuurlijke bron. Bijvoorbeeld E150, dat is karamel een heeft een bruine kleur. Het is een van de oudste kleurstoffen die voor eten gebruikt wordt en is precies hetzelfde als de karamel in snoepjes. Het zit in heel veel producten, van brood tot whisky en natuurlijk cola. Figuur 1: E160b, Anatto. Dit is de vet-oplosbare component bixine, C25H30O4 Er is veel discussie over E-nummers. Sommige mensen vinden dat ze überhaupt niet thuishoren in ons eten en over sommige E-nummers is discussie of ze misschien kankerverwekkend zijn of ADHD bevorderen bij kinderen. Veel mensen zijn een beetje bang voor E-nummers en proberen ze te vermijden. Dit artikel gaat verder niet in op die discussie, E-nummers zijn streng gereguleerd en de industrie springt meestal snel in op zorgen over bepaalde E-nummers. Waar we wel naar zullen kijken is waarom E-nummers in ons eten zitten, wat hun functie is en waar ze vandaan komen. De helft van de producten die we in de supermarkt kopen is niet mogelijk zonder E-nummers, niet alleen de kant-en-klare maaltijden en snoepjes, maar zelfs simpele dingen als brood, beleg, wijn en tandpasta. Veel van onze favoriete levensmiddelen zijn niet mogelijk zonder E-nummers. 14 E160b heeft een oranje kleur en heet Anatto. Dit wordt gemaakt van de zaden van de Orleaanboom. Anatto heeft een vet-oplosbare component, bixine (zie figuur 1) en een water-oplosbare component norbixine. Het wordt vooral gebruikt om kaas, boter en veel gebak waar banketbakkersroom in zit bij te kleuren. E100 is kurkuma, dit heeft een gele kleur en wordt gemaakt van de wortel van Curcuma longa, een plant die veel voorkomt in India. Kurkuma wordt daar al eeuwen gebruikt en geeft kerriepoeder zijn bekende gele kleur. Kurkuma bestaat voor 5 procent uit curcumine, dit komt voor in een keto- en een enolvorm (zie figuur 2 voor de eerstgenoemde). Het is een antioxidant en heeft een ontstekingsremmende werking. Figuur 2: E100 of Kurkuma bestaat voor 5% uit curcumine, hier getoond in ketovorm, C21H20O6 E-nummers E140 heet chlorofyl en zit in algen, cyanobacteriën en geeft planten hun groene kleur. Het wordt gewonnen uit de chorella-alg en gevriesdroogd om een stabiel poeder te verkrijgen. Er zijn zes structuren van chlorofyl; E140 wordt gebruikt om pasta’s en Absint te kleuren (figuur 3). E161g geeft flamingo’s hun roze kleur. Flamingo’s worden grijs geboren maar eten enorme hoeveelheden brak-watergarnalen. Deze bevatten een hoge concentratie canthaxantine (figuur 6), dat een roze kleur heeft. Dit hoopt zich op in de veren en geeft ze hun prachtige roze kleur. Het wordt industrieel gesynthetiseerd uit bèta-caroteen, de kleurstof in wortels. Het komt van nature voor in cantharellen en wordt bijgevoerd aan kweekzalm en flamingo’s in de dierentuin om ze een mooie roze keur te geven zoals hun wilde soortgenoten. Figuur 3: E140 is gewoon chorofyl, C35H30O5N4Mg De interessantste kleurstof is misschien wel E120, dit is een paarse kleur die Cochinille heet en dat is een soort schildluis. Deze luis komt voor in warme landen zoals Mexico, Chili en Peru, of iets dichter bij huis: Lanzarote. Boeren daar groeien een speciaal soort schijfcactus die ze infecteren met zwangere Cochinille-luizen, deze zijn grijs en slechts 5 mm groot (zie figuur 5). Ze hebben roodgekleurd karmijnzuur in hun bloed om vijanden te weren. Na een tijd worden ze met de hand geoogst, gedroogd en vermalen. Daarna wordt het karmijnzuur geëxtraheerd (figuur 4) en gestabiliseerd met aluminium- en calciumzouten. Op jaarbasis worden er 20 miljard luizen geoogst. De kleur wordt in zeer veel producten gebruikt zoals roze- en roodgekleurde toetjes, gebak en frisdranken. Figuur 5: De Cochinilleluis karmijnzuurproductie. Figuur 4: E120, cochinille, bestaat voor een groot deel uit karmijnzuur, C22H20O13 wordt gebruikt bij 15 Stel je voor: de magie en kracht van de elementen, beheersbaar gemaakt tot nut van de mens. Het is dichterbij dan je denkt. Want morgen is vandaag en dat vraagt om nieuwe toepassingen. Bijvoorbeeld door commerciële technologie aan te wenden voor geneeskundige doelen. Onze gascentrifugetechnologie is op verschillende manieren inzetbaar. Bijvoorbeeld om efficiënt uranium te verrijken waardoor verrijkingsfabrieken snel en veilig brandstof kunnen leveren voor de productie van kernenergie. Minder bekend is dat op dezelfde manier ook stabiele isotopen worden geproduceerd. Hiermee kan de medische wetenschap kanker onderzoeken en bestrijden. Alles draait om de behoeften van de moderne mens. Talenten met een passie voor complexe technologie die ons leven veraangenaamt kijken op the futurehasarrived.nl. Nu, niet morgen. E-nummers Figuur 6: E161g is de roze kleurstof canthaxantine, C40H52O2, die flamingo’s hun roze kleur geeft. Er zijn ook synthetische kleurstoffen die worden gemaakt uit petroleum, deze zijn meestal stabieler dan natuurlijke kleurstoffen. Zes van deze stoffen, zogenaamde azo-verf, worden nu verdacht van bijwerkingen zoals ADHD, vooral bij kinderen. Veel producenten zijn ze daarom aan het vervangen door natuurlijke alternatieven. Al deze kleurstoffen worden gebruikt omdat dat veel producten tijdens processen hun kleur verliezen. Mensen hebben een bepaalde perceptie van producten, en dus worden producten bijgekleurd om aan die perceptie te voldoen. En vreemd genoeg gaan ze daar ook beter van smaken. E200-299: Conserveermiddelen Conserveermiddelen zijn vooral belangrijk in voorverpakte vleeswaren. Vroeger gebruikten we zout voor het conserveren van vlees. Je hebt er echter veel van nodig en dat kan de smaak beïnvloeden, maar belangrijker is dat het een zeer gevaarlijke bacterie niet doodt: de Clostridium botulinum. Deze bacterie produceert het neurotoxine botuline, de veroorzaker van botulisme. Botuline is het meeste potente gif dat bekend is en is dodelijk binnen 24 uur. Een halve liter is genoeg om de wereldbevolking te doden. Figuur 7: E252 of kaliumnitraat, KNO3 E300-399: Antioxidanten Veel van onze voedingswaren worden slecht door de zuurstof in de lucht, het laat producten bruin worden en zet het rottingsproces in gang. Antioxidanten voorkomen oxidatie en vertragen de tyrosinaseenzymen die de rotting veroorzaken. Bier en groenten en fruit in blik blijven goed door E300, ascorbinezuur (figuur 8), ofwel vitamine C. Niet alleen fruit en groenten gaan rotten zonder vitamine C, wijzelf ook. Dat heet scheurbuik. In de achttiende eeuw was een groot deel van de oorlogsslachtoffers te wijten aan matrozen die stierven door scheurbuik. Daarom worden er aan vlees kleine hoeveelheden E252, kaliumnitraat (figuur 7) toegevoegd. Opgelost wordt het nitraat om gezet in nitriet en dit is in staat om de Clostridium botulinum te doden. Kaliumnitraat wordt in kleine hoeveelheden gebruikt in veel gedroogd vlees en salami, al wordt hier tegenwoordig meestal natriumnitraat voor gebruikt. Kaliumnitraat is vreemd genoeg ook een belangrijk ingrediënt voor buskruit. Figuur 8: E300 is vitamine C ofwel ascorbinezuur, C6H8O6 Na 4 tot 6 weken op zee en zonder verse groeten en fruit kregen matrozen last van rottend tandvlees en zweren op de huid, ze begonnen letterlijk te rotten. In 1747 kwam scheepsarts James 17 E-nummers Lind, na het proberen van allerlei producten erachter dat citrusvruchten bijzonder goed werkten tegen scheurbuik. Dat komt omdat citrusvruchten zeer veel ascorbinezuur bevatten; ze worden ook niet bruin wanneer ze blootgesteld worden aan de lucht. Alleen mensen, mensapen, vleermuizen en cavia’s moeten ascorbinezuur door hun dieet binnenkrijgen. Andere dieren maken dit zelf uit glucose in de lever, een mutatie bij onze voorouders heeft ervoor gezorgd dat we dit niet meer kunnen. E400-499: Stabilisatoren, verdikkingsmiddelen emulgatoren en Water en vet mengen niet, maar er zijn vele producten, zoals mayonaise, waarin water en vet toch gemengd worden en blijven. Om dit voor elkaar te krijgen zijn er emulgatoren. Een van de bekendste is lecithine ofwel E322 (figuur 9). Lecithine is een mengsel van glycolipiden, triglyceriden, en fosfolipiden. Bij E322 wordt er echter een specifieke verbinding mee bedoeld, fosfatidylcholine, een fosfolipide die heel veel voorkomt in eidooiers. Lecithine heeft een lipofiele kant en een polair uiteinde, waardoor het een zeer goede emulgator is. Daarvan wordt gebruik gemaakt in mayonaise, waaraan eidooiers worden toegevoegd om olie en water te laten mengen. Lecithine is een essentieel bestanddeel van iedere lichaamscel en vormt de celwand. Lecithine wordt veel gewonnen uit sojabonen maar ook steeds meer uit zonnebloempitten. In een wereld waarin mensen steeds minder vet in hun eten willen zijn de emulgatoren, stabilisatoren en verdikkingsmiddelen heel belangrijk. Zijn kunnen bij een lager vetgehalte of bij een minder verzadigd vet, nog steeds het ‘rijke’ mond gevoel geven van vette producten. Om mengsels van vet en water stabiel te houden en om ze de juiste dikte te geven zijn er de stabilisatoren en verdikkingsmiddelen. Een goed voorbeeld van de werking van een stabilisator is slasaus. De stabilisator zorgt er voor dat de kruiden netjes verdeeld blijven en niet naar de bodem zakken. Als je de saus schenkt wordt hij vloeibaarder zodat hij makkelijker te gebruiken is en als hij op de sla zit wordt hij weer viskeuzer zodat de saus niet naar de bodem van de schaal zakt. Nog een voorbeeld is roomijs met minder vet. Een probleem bij ijs is dat als het in en uit de vriezer gehaald wordt, het water ‘ontmengt’ uit het vet en de ijskristallen steeds groter worden zodat je eindigt met een hoop ijs en een hoop vet. 18 Figuur 9: E322, lecithine in de vorm van fosfatidylcholine, C42H82NO8P is een goede emulgator. E-nummers Figuur 10: E410, Johannesbroodpitmeel, wordt gemaakt van de zaden van de Johannesbroodboom. Een bekende stabilisator is Johannesbroodpitmeel, of E410 (figuur 10). Dit word gemaakt van de zaden van de Johannesbroodboom die veel in het mediterraan gebied groeit, bijvoorbeeld op Majorca. De peulen van de boom, ook wel Johannesbrood genoemd, bevatten zaden waarvan het meel wordt gemaakt. Ze worden simpelweg gescheiden van de peul, gewassen en gemalen. E 600-699: Smaakversterkers. De bekendste, en waarschijnlijk de beruchtste stof onder de smaakversterkers is E621, mononatriumglutamaat, ook wel bekend als MSG of ve-tsin. MSG is in 1907 geïsoleerd door Kikune Ikeda, een scheikundige uit Tokio. Hij vroeg zich af waarom de soep van zijn vrouw zo goed smaakte en vond uit dat het door de bouillon kwam die, zoals vaak in Japan, wordt gemaakt uit zeewier. Tegenwoordig wordt het gemaakt door fermentatie van melasse en suikerbieten. Ve-stin wordt vaak geassocieerd met chinees eten maar komt van nature in veel producten voor. Een hoge concentratie is te vinden in Parmezaanse kaas, maar ook in paddenstoelen, tomaten, broccoli en walnoten. Figuur 11: E621 is bekend of berucht als ve-tsin. Het is natriumglutamaat en smaakt naar “hartig”. Bij het eten van natriumglutamaat (figuur 11) splitst het zich in natriumionen en vrij glutamaat, de zuurrest van het aminozuur glutamine. Het wordt ook wel aangeduid als de vijfde smaak; ‘umami’ wat neerkomt op ‘hartig’. Het werkt alleen in combinatie met gewoon zout. Natriumglutamaat wordt verdacht van het Chineesrestaurant-syndroom dat gepaard gaat met allerlei klachten zoals rug- en nekpijn en buikkramp. Geproduceerde natriumglutamaat, die vaak wordt toegevoegd aan chinees eten, is identiek aan de natuurlijk voorkomende stof. Er is tot nu toe geen statistisch bewijs dat de klachten relateert aan gesynthetiseerd glutamaat. Er is een mogelijkheid dat sommige mensen allergisch zijn voor glutamaat, synthetisch of natuurlijk. Veel E-nummers hebben dus een natuurlijke oorsprong. Als je alleen biologisch en zelf bereid eten zou nuttigen, dan heb je nog steeds 90 E-nummers in je lichaam. Bijvoorbeeld propionzuur, ofwel E280, dat zit in je zweet, maar ook in brood tegen schimmels. In je haar zit cysteïne, E920, wat een meelverbeteraar is en E410, glycerol, wat glazuur op gebak zacht houdt en ook in je lichaamsvet zit. 19 E-nummers Overzicht E-nummers In de tabel hieronder vind je nog een overzicht van alle E-nummers, met de indeling in verschillende groepen op functie en origine. 100-199: kleuren Nummer 100-109 110-119 120-129 130-139 140-149 150-159 160-199 Beschrijving geel oranje rood blauw en violet groen bruin en zwart goud e.a. 200-299: conserveermiddelen Nummer 200-209 210-219 220-229 230-239 240-259 260-269 270-279 280-289 290-299 Beschrijving sorbaten benzoaten sulfieten fenolen en formaten nitraten acetaten lactaten propionaten overig 300-399: antioxidanten en zuurteregelaars Nummer 300-305 306-309 310-319 320-329 330-339 340-349 350-359 360-369 370-399 Beschrijving ascorbaten (vitamine C) tocopherol (vitamine E) gallaten en erytorbaten lactaten citraten en tartraten fosfaten malaten en adipaten succinaten en fumaraten overig 400-499: dikmakers, stabilisatoren en emulgatoren Nummer 400-409 410-419 420-429 20 Beschrijving alginaten gom andere natuurlijke stoffen 430-439 440-449 polyoxyetheenverbindingen natuurlijke emulgatoren 450-459 460-469 470-489 490-499 fosfaten celluloseverbindingen vetzuren en -verbindingen overig 500-599: pH-regelaars en antiklontermiddelen Nummer 500-509 510-519 520-529 530-549 550-559 570-579 Beschrijving minerale zuren en basen chloriden en sulfaten andere natuurlijke stoffen alkalimetaalverbindingen silicaten stearaten en gluconaten 580-599 overig 600-699: smaakverbeteraars Nummer 620-629 630-639 640-649 Beschrijving glutamaten inosinaten overig 700-799: antibiotica Nummer 700-720 Beschrijving diverse synthetische antibiotica 900-999: overig Nummer 900-909 910-919 920-929 930-949 950-969 990-999 Beschrijving was (als in bij) synthetische glansmiddelen algemene wereldverbeteraars gassen (drijfgas et cetera) zoetstoffen schuimmiddelen 1100-1599: andere chemicaliën Over het algemeen nieuwe chemicaliën die niet binnen de bovengenoemde categorieën vallen. Bron: BBC: E-numbers; An edible adventure Column Geert Folkertsma Waarom drinkt de halve wereld eigenlijk koffie? Die vraag kwam laatst ineens in me op, toen ik nadacht wat ik aan het doen was toen ik koffie ging zetten. Ik haalde een grote pot water. Lekker, fris, schoon water. Nou ja, het kwam uit een kraan in de Horst en daar valt de kwaliteit altijd een beetje tegen, maar een doorsnee woestijnbewoner zou er bij wijze van een moord voor doen. Goed, dat water dus. Ik giet het in het reservoir en zet het apparaat aan (meestal verdelen we de taken: iemand anders had reeds het filter geprepareerd). Dan, na exact 7 minuten, heb je een heerlijke pot zwarte koffie. Op de een of andere manier heeft iemand, ooit, een procedé bedacht waarmee koffiebonen zó worden behandeld dat ze in staat zijn die pot helder water zwart te maken. ZWART! Een “kleur” die vrijwel niet in de natuur voorkomt, behalve in verregaande staat van necrose of – ook niet fijn – derdegraads brandwonden. Koffiebonen zijn uit zichzelf mooi groen en worden verbrand (nee, niet gébrand, dat is gewoon een eufemisme), zodat ze zwart worden. Wat heeft ons bezield? We eten toch ook geen verkoolde drumsticks? Laat staan dat we er een soort Norit-bouillon van trekken. Kleine kinderen lusten meestal geen koffie. “Omdat ze het nog moeten leren drinken,” of “omdat kinderen alleen van zoet houden” wordt vaak gezegd. Dat is natuurlijk allemaal niet waar: het is vanwege een of andere natuurlijke afweer die mensen ervoor behoedt dit zwaar vergrafte water te drinken. Op de een of andere manier weten veel mensen deze afweer echter te ondermijnen, onder het mom van “koffie leren drinken.” Ik herinner me de eerste keer dat ik een kop koffie dronk nog goed. Het was aan het begin van een opkomst (scoutingprogramma) waarin we een dropping zouden lopen. Omdat het al 11 uur ‘s avonds was en we nog een hele nacht voor de boeg hadden, leek het me een goed idee om wat cafeïne tot me te nemen, noodgedwongen door middel van een flinke mok koffie. Ik heb elke slok kokhalzend naar binnen moeten forceren. Na die eerste kop is er eigenlijk geen weg meer terug. Het kan een tijd duren, maar op een gegeven moment dient zich weer een moment aan: je drinkt gezellig mee met koffietijd (groepsdruk), of je voelt je nog een paar keer genoodzaakt cafeïne tot je te nemen. Totdat het een gewoonte wordt. Ik ben inmiddels in het stadium waarin ik geloof dat er ook lekkere koffie is. In mijn tweede jaar heb ik een Nespresso-apparaat cadeau gekregen, en de espressoachtige koffie die je daarmee kunt zetten vind ik “prima binnen te houden”. Die uitdrukking gebruiken we thuis meestal als understatement om aan te geven dat het eten lekker is, maar misschien schuilt er in dit geval meer waarheid in? Er is in ieder geval ook veel minder lekkere koffie. Koffie, alhoewel het reeds ge- danwel verbrand is, kan nog steeds geoxideerd worden. Dat is de reden dat oude koffie, die al een tijd geleden gezet is, bruin, bitter en in het algemeen smerig wordt. Wat veel mensen vergeten is dat koffie ook oxideert in poedervorm. Dat betekent dat, ondanks dat koffiepoeder (m.i.) erg lekker ruikt, de zak of het blik goed gesloten moet blijven. Anders is de koffie al bruin, bitter en in het algemeen smerig voordat hij gezet is. Niet fijn. De smerige koffie die de kroon spant, is die bij mijn eigen studievereniging. Daar vergeet(?) namelijk het gros van de mensen het deksel op het blik te doen. Gecombineerd met de grote hoeveelheid koffie die er in het blik zit (waardoor het lang duurt voor het leeg is), is de kwaliteit van de koffie evenredig met de hoeveelheid resterend poeder in het blik. Niet fijn. Toch is koffie nuttig. Het houdt de gemiddelde vakgroep schat ik een half tot één uur van het werk, maar daarin wordt zonder (elektronische?) barrière gecommuniceerd tussen onderzoekers, docenten en studenten. Zelfs tijdens de bescheiden onderzoeksprojectjes die ik heb gedaan, merkte ik dat veel ingevingen tijdens die korte periode van ontspanning komen; en discussies aan de koffietafel leveren nieuwe inzichten. De koffieverslaving, of het nu een fysieke drang naar cafeïne is of een mentale zucht naar een bakkie troost, komt dus alles ten goede. Wij, koffiedrinkers, zijn eigenlijk helden, die onbaatzuchtig ook de nietkoffiedrinkers op sleeptouw nemen naar een betere wereld. 21 Spintronics in hard drives Pim Muilwijk In edition 3-5 I wrote about the history, workings and future of hard disk drives (HDDs). This article, however, was quite qualitative and although it mentioned some of the operating principles like giant magnetoresistance and the limit of data density due to superparamagnetism, I never really took the time to quantitatively explain these; nor possible alternatives. Therefore, I want to dedicate this article again to hard disk drives and the emerging technology of spintronics. is called the transition width and is a measure of data density, happens over the length of the Neel spikes. This problem can be overcome by using grains, which in theory form single magnetic domains which cannot grow or shrink to form spikes. Therefore the transition width will be in the order of the grain diameter, thus increasing the data density (Figure 2). In fact, much of the development in hard drives has been in reduction of the grain size. But let’s first recap how normal HDDs work. Please don’t think that I’m a cheapskate by using some of my previous work; I’ve made it more in-depth and added helpful pictures this time. A dive into the hard disk drive Figure 2: The transition width is reduced by using grains. When you look inside an HDD you will find a spindle with several hard circular disks called platters. These platters are made of non-magnetic materials like aluminium alloys or glass and are subsequently coated with a very thin polycrystalline layer (10-20 nm) of ferromagnetic material like CoCrPt and an outer layer of carbon for protection. When you look closely at this layer, it will look something like figure 1. Now that we have the platters covered, we need some mechanism of writing and reading bits. This is accomplished by spinning the platters past the readand-write heads that are positioned in the order of tens of nanometers to the surface. The speed at which these platters rotate is measured in rotations per minute (rpm) and generally varies from 5,400 rpm for laptop and so-called “green” or “eco” drives (because they consume less energy that way), up to 15,000 rpm for hard drives used in servers that have to process a lot of data. Generally, the faster the platters spin, the faster data can be read and written. When reading, these heads detect the sequential changes in the direction of magnetisation by electromagnetic induction and decode the data (Figure 3). Figure 1: A close-up of the magnetic layer on a platter. Here you can clearly see the magnetic regions that represent the bits. Such a region is typically 200 by 25 nm and consists of about 100 grains. It is very important to use grains rather than a continuous magnetic medium, because in the latter formations called Neel spikes tend to appear. These are spikes of opposite magnetisation and form for the same reason that bar magnets tend to align themselves in opposite direction, namely to increase the stability of the system. This is a problem because these spikes cancel out each other’s magnetic field, so that the transition 22 from one magnetisation to the other, which Figure 3: Reading data. Writing is then accomplished by performing the reverse operation: by running a current through the head a magnetic field is generated which can alter the magnetisation of the magnetic domains. The upper part of Figure 4 shows a ring-shaped element used to accomplish this, while the bottom part already hints to a new technique which is used today: perpendicular recording. Spintronics in hard drives Heads up Untill now the improvements discussed had primarily to do with the magnetic layer on the platters. However, much of the enhancements that are used today are focussed on the read-and-write heads. In fact, the thick underlayer used in the perpendicular arrangement that was mentioned earlier is often said to be part of the head. Figure 4: Writing data and perpendicular recording. Get perpendicular Maybe some of you can still remember a Flash video from Hitachi titled “Get Perpendicular” in which singing and dancing bits try to explain how perpendicular recording works. According to the video this is accomplished by the bits standing upright so there is more room to “bring their friends”, i.e. more bits and thus creating more storage capacity. While it is true that the bits are positioned perpendicularly rather than longitudinally in perpendicular recording, the real picture is somewhat more complicated and involves superparamagnetism and magnetic coercivity - this doesn’t make the video any less fun to watch though. Superparamagnetism is a form of magnetism that appears in small ferromagnetic nanoparticles like the earlier mentioned grains in hard disk drives. The smaller you make these particles, the larger becomes the risk that the magnetisation of these particles will randomly flip under the influence of temperature. This puts a limit on the size of the particles called the superparamagnetic limit. Nowadays, the main challenge in designing hard disk drives is to retain the magnetisation of the particles despite these thermal fluctuations. This can be accomplished by either increasing the particle size, which is not beneficial for the data density, or increasing the magnetic coercivity, which is the resistance of a ferromagnetic material to becoming magnetised. There is a catch in increasing the magnetic coercivity though, because you will also need to increase the field that is used to write the bits. This means that the head must be made more efficient and this is where perpendicular recording comes in. In a perpendicular arrangement, a magnetically soft and relatively thick underlayer is added underneath the hard magnetic film. This layer guides the magnetic flux, which can therefore be stronger. This allows for using materials with higher coercivity, which in turn allows for decreasing the grain size and increasing the data density. Also, since the magnetic field needs to be stronger in order to flip the bits, the data is less vulnerable to degradation. Traditionally, the heads were very similar to those used in VCR and tape recorders. They were made out of a tiny C-shaped piece of ferrite wrapped in a wire coil, just like what is shown in Figure 4. Ferrite is highly magnetisable, so when a current is run through the coil, a strong magnetic field is created in the gap of the C, capable of writing the bits. When reading, the ferrite core concentrates the field and a current is generated in the coil. The size of the gap determines the minimum size of a recorded area on the disk and since ferrite heads are quite large, the attainable capacity was quite small. This arrangement was improved upon by putting a piece of metal in the gap to concentrate the field and was appropiatly called a “Metal in Gap (MiG) head”. This allowed for smaller features to be read and written. Photolitography allowed even smaller features to be created. Using this process, so-called “thin film heads” were manufactured which were electronically similar to ferrite heads and used the same physics but were much smaller, thus allowing for a higher data density. Then came a crucial step in the optimisation of the heads; the separation of the read and write heads. This allowed for different physical phenomena to be used for reading and writing. Instead of electromagnetic induction, the read head now utilised magnetoresistance (MR) to read data. As the name suggests, this effect changes the electrical resistance of a material when an external magnetic field is applied. This was already discovered by Lord Kelvin in 1856, when he observed that the resistance has a maximum value when the current is in the same direction as the applied magnetic field. A little thing called spin Then, in 1988 Albert Fert and Peter Grünberg observed that the electrical resistance in thin film structures composed of alternating metallic ferromagnetic and thin non magnetic layers (few nm) was much more affected by an applied magnetic field than with normal MR, hence they dubbed it giant magnetoresistance (GMR). It was found that when no magnetic field is applied, the magnetic moments of the successive ferromagnetic layers, also known as spins, are antiparallel and the overall resistance is relatively high. When a magnetic field is applied however, the spins align and the resistance drops significantly. 23 Spintronics in hard drives This behaviour can be explained by using the Mott model which was originally introduced to explain the sudden increase in resistivity of ferromagnetic metals as they are heated above the Curie temperature. In this model Mott states that the electrical conductivity in metals can be described in terms of two largely independent conducting channels, corresponding to the spin up and spin down electrons. Furthermore, since the scattering rate is proportional to the density of states, which is not the same for spin up and spin down electrons at the Fermi energy because of the band structure being exchange-split, the scattering rates for spin up and spin down and therefore the resistitivities for electrons of different spin is different. From this line of reasoning GMR can be explained using Figure 5. Figure 6: A spin valve. AF, FM and NM stand for antiferromagnetic, non-magnetic and ferromagnetic respectively. magnetic field. It is not hard to translate this to a read head where the magnetised film on the platter alters the magnetisation of the free ferromagnetic layer and thus altering its resistivity. The data can now be read by measuring the electrical resistance through the multilayer. Deeper down the quantum well Figure 5: Different scattering rates and corresponding resistivities. Let’s assume that the scattering is strong for electrons with spins antiparallel to the magnetisation direction and weak for electrons with spins parallel to the magnetisation direction. Then in the parallel aligned multilayer spin up electrons will travel through the structure almost without scattering because their spin is parallel to the magnetisation direction, whereas the spin down electrons will scatter strongly because their spin is antiparallel to the magnetisation direction. Since the conduction occurs in parallel for the two spin channels, the total resistivity of the multilayer is determined mainly by the higly conductive spin up electrons and appears to be low. For the antiparallel aligned multilayer both spin up and spin down electrons are scattered strongly within one of the ferromagnetic layers, because within one of these layers the spin is antiparallel to the magnetisation direction. The resistivity of the multilayer in this case is therefore high. We can now exploit this phenomenon by constructing a so-called spin valve, which is shown in Figure 6. In a spin valve, the magnetisation of one ferromagnetic layer is pinned by the exchange coupling with an adjacent antiferromagnetic layer - whereas the magnetisation of the other ferromag24 netic layer is free to rotate with the applied Something very interesting happens when you replace the non magnetic spacer in a spin valve with an insulator. In the classical world one would expect that electrons would not be able to cross the spin valve anymore, therefore there would be no current. However, at these length scales quantum tunnelling events can take place, enabling the electrons to cross the insulator and therefore a current can be generated. This tunnel current can be manipulated by applying an external magnetic field. As with the spin valve, the current is large when the magnetic field is parallel to the magnetisation of the ferromagnetic layers (meaning that the resistivity is low) and small when the magnetic field is antiparallel to the magnetisation of the ferromagnetic layers (meaning that the resistivity is high). It was therefore called tunnel magnetoresistance (TMR). The reason that this effect is of interest, is because it is much stronger than GMR (about 10 times). Do not let the similar behaviour fool you however, because TMR is governed by entirely different physics than GMR. The difference lies mainly in the fact that the conductance as described in the Mott model depends on the scattering, while the conductance in TMR can be described using Julliere’s model, which is based on two assumptions. Firstly, it is assumed that the spin of the electrons is preserved during the tunnelling process. This means that the tunnelling of spin up and spin down electrons are two different processes, so the conduction occurs in two different spin channels. Therefore, electrons originating from one spin state of the first ferromagnetic film are accepted by unfilled states of the same spin of the second film (Figure 7). Spintronics in hard drives What the future holds Even if you only have a mild interest in storage media, you will probably have noticed that solid state drives (SSDs) are becoming increasingly popular. Compared to traditional HDDs they are quiet, fast and as good as indesctructable due to the lack of moving parts such as read- and write-heads. Instead, they use electrical charge to store information. This has some disadvantages as well, the foremost being that the drive has a limited amount of program-erase cycles. If only we could combine the best of both worlds… Figure 7: Tunneling rates are different for different spin states. So, when the two ferromagnetic layers are magnetised in parallel, the minority spins tunnel to the minority states and the majority spins tunnel to the majority states. Whereas if the ferromagnetic layers are magnetised antiparallel, the minority spins tunnel to the majority states and the majority spins tunnel to the minority states. Secondly, it is assumed that the conductance for a particular spin orientation is proportional to the product of the effective density of states of the two ferromagnetic layers. The combination of these two assumptions leads to a large current for parallel magnetised layers and a small current for antiparallel magnetised layers. Again, this phenomenon can be exploited by constructing a so-called magnetic tunnel junction (MJT), as shown in Figure 8. Figure 8: A magnetic tunnel junction (MTJ). Again, it should not take too much imagination to spot a read-head in this configuration and indeed this is the way most read-heads function in modern hard drives. Actually, we can, by using magnetoresistive random acces memory (MRAM) as shown in Figure 9, which stores its information magnetically in magnetic tunnel junctions. As you would expect, reading data is accomplished by measuring the electrical resistance of the cell and writing is accomplished by running a current through the corresponding “word” and “bit” line of the target cell, much like in normal flash memory. There are, however, still some issues with this technology. First of all, the writing procedure requires a significant amount of current, making it less suitable for lowpower use. Another problem arises when the device is scaled down: this causes the magnetic field to overlap adjacent cells, leading to false writes. Bit Line MJT Antiferromagnetic Write Word Line Vdd Read Word Line N P N Figure 9: Magnetoresistive random access memory (MRAM). These problems can be resolved by using a technique called spin transfer torque (STT), which replaces the word lines with a spin polarised current. In fact, you can visualise STT-MRAM by connecting the bit line, MJT and antiferromagnetic layer from Figure 9 directly to the drain of the transistor (right N). You can now write a bit by running a current through a thick magnetic layer, which polarises the current, and then through the magnetic element. The spin angular momentum will be transferred directly and the bit will be written. This solves all mentioned problems 25 and really is the hard drive of tomorrow. Puzzle Normally, the last pages of every ATtentie are dedicated to a puzzle with which our readers can enjoy winning a gift voucher for a movie theater. This time however, we put them in the middle. Winner of puzzle 5-1 The puzzle in edition 5-1 was a colouring picture. Unfortunately we only had one submission. This subission came from Monique, making her the default winner, congratulations Monique! Below is a picture of her receiving her prize. Solution to puzzle 5-2 The puzzle of edition 5-2 was a picture of a well known AT teacher in his youth; you had to guess which teacher it was. The correct answer was Leon Abelmann. We have received several submissions and will ancounce the winner in the next edition. 26 The new puzzle The puzzle for this editon will be a word search puzzle. On the next page you will find a field with 40 hidden words, all words have something to do with the articles in this edition. The words are hidden in horizontal, vertical or diagonal orientation and in normal or reversed order. After you have found all the words, 3 other words will remain. These words will form the solution. Send in the solution before the next edition is released and you might win that gift voucher! Puzzle I X R R C I R T C E L E O R R E F E L C C W P H S I B H P F E G A W I O C A O N P O L Y P L O I D Y E K E M V A D N I B S P I N T R O N I C S R O N R U V M I S G N I D O C N E E A K N O N E I A G O E Y O N A V I G A T I O N E F C T R T M K C L K V C E T E T C C R I T I C I S M C T O E T D S L A E V E N I V S P N C N R N C F W I L I S S I P O L Y M E R A S E E D T F I M I S V I N F U T U R E G Y A M S I T E N G A M A R A P R E P U S M T T T E M N E T W S A P A T E F E U E P I N J M E S A C R Y S T A L L I N E L O V E M K G B A S C I S N E R O F D Q G S I T U N N E L L I N G T N X K P I C P I T N R P I P M G P I N T E R F A C E S U Y O T C O N E M X G D S P R A G U E M M A C S S G N D C H L O R O P H Y L L A D N L U B E R L I N S I S Y L A T A C L C D F L L O L N D N R E V I E C E R T L P N Batavierenrace spintronics polarisation CSI coffee tunnelling interfaces feudal criticism Prague navigation genetics Berlin superparamagnetism polymerase DNA contentment Veni kenniseconomie forensic crystalline receiver perpendicular GPS catalysis symposium polyploidy encoding conviction vitamin Lewin future satellite plasmid chlorophyll tapas ferroelectric creativity lustrum gene 27 Genetically modified food Jeroen van den Berg Genetically modified food: is it the solution to our food shortage or will we (unintentionally) endanger our environment and our own health? With the increased knowledge of genetic engineering we are able to modify the genotype of plants and animals, for example by inserting genes of other organisms, so that they will grow larger/faster or produce more nutritious food. However genetically modified food has raised some controversy among the people, some argue that it may not help save our problems and that it is not worth the possible health risks and environmental damage. Since the beginning of the 1990s there have been several transgenic modified plant products on the market. Modified animal products have also been developed, but currently none of them are available on the market. Apart from usage in food products, genetically modified organisms have been used in biological and medical research as well as in the production of pharmaceutical drugs. Even a genetically modified fluorescent zebrafish has become publicly available as a pet, under the name of GloFish. Modifying organisms for food Before the advances in genetic engineering people had other means of modifying organisms for food production, the oldest of these methods is selective breeding. Selective breeding or artificial selection is the breeding of plants or animals with specific genetic traits. It’s opposed to natural selection, in which the environment or “nature” acts as the selector. The term artificial selection was first coined by Charles Darwin in his book “On the Origins of Species” to explain how the domestication of animals resulted in changes over time and to illustrate the wider process of natural selection. However, selective breeding predates Darwin by millennia, having been practiced since the domestication of grain by pre-Neolithic groups in Syriamore than 12,000 years ago. One of the most notable examples of selective breeding in crops is maize, also known as corn. Maize has been domesticated by the indigenous people of Mesoamerica, the Aztecs and the Mayans. They cultivated the grass teosinte, which has only a few kernels, into the modern day maize with a lot of external kernels, see Figure 1. 28 Figure 1: From left to right the evolution of the grass teosinte to maize due to artificial selection. Polyploidy In the breeding of crops, larger and better growing plants were selected for, resulting in better crop yields. One of the reasons that some plants grow better and become larger is because they have more than two of the same chromosomes inside their cells. This is called polyploidy. Most species are diploid, meaning each normal cell has two of each chromosome: one set from their mother and one set from their father. Polyploidy is fairly common among plants but very rare in animals, most often polyploid animals are sterile. Animals can, however, have polyploid cells in certain tissue, for example in muscle tissue and in the liver. This is called endopolyploidy. Wheat is an example of a plant that has become polyploid by selective breeding and crossbreeding with other plants by humans. Polyploidisation is also a mechanism for speciation because often polyploids are unable to reproduce with diploids. Genetically modified food Horizontal gene transfer As said above, the process of genetically modifying an organism involves incorporating genetic material of another organism in its genotype, without it being the offspring of the other organism. In fact, most of the time the genetic material is from an entirely different species. This process is known as horizontal gene transfer and occurs naturally among bacteria. It’s opposite to vertical gene transfer, in which an organism receives genetic material from its parent(s). A key ingredient for this reaction is a thermostable DNA polymerase. DNA polymerase is the enzyme that builds the DNA strands from the single deoxynucleotide triphosphates (i.e. the basic building blocks of DNA). Most enzymes are destroyed at temperatures above normal body temperature due to their complex structure; however a certain DNA polymerase called Taq polymerase is stable up to 70° C. This enzyme was isolated from a thermophilic bacterium named Thermus aquaticus and is well suited for this (relatively) high temperature reaction. Another important ingredient is the primer. Primers are short DNA segments which provide a binding site for DNA polymerase. To allow amplification of a specific DNA fragment, like the desired gene, the primer for Taq polymerase is hybridised to the DNA right in front of the gene (more on that later). After the DNA segment has been duplicated, the new strand acts as template for a new strand for the next duplication round, this method thus allows exponential amplification of the DNA. Figure 2: Bacteria demonstrating horizontal gene transfer. It is thought that horizontal gene transfer contributes significantly to the drug resistance of a bacteria population: a resistant bacterium quickly spreads the resistant gene to other bacteria. It also plays a part in some reproductive processes of viruses. There are a few documented cases of horizontal gene transfer between bacteria and eukaryotic organisms (eukaryotes are more complex, multicellular organisms containing a nucleus in their cells), such as fungi. Even people have bacterial and viral DNA in there genome, which play a part in our immune system. Through genetic engineering techniques we are capable of artificial horizontal gene transfer. Polymerase chain reaction Horizontal gene transfer is the most common type of genetic engineering. The process is involves a few steps. First, the desired gene has to be isolated from the other genetic material and reproduced. The targeting and reproduction of the gene is done with a polymerase chain reaction. This reaction relies on thermal cycling: the chemical concoction is repeatedly heated and cooled to control the forming of new DNA molecules. Figure 3: A more complex schematic representation of DNA duplication. Notice the orange blocks that represent the polymerase enzymes and the primer segment (in this case it’s a RNA primer). Recombinant DNA Once we have our gene(s) isolated and replicated, we need to find a method of inserting them into the host organism. This is done via gene splicing, resulting in recombinant DNA. The basic idea of gene splicing is fairly straightforward: we cut open the host’s DNA, insert the desired DNA material and glue it back together. The cutting of the DNA is again done via enzymes, so-called restriction enzymes. Just like DNA polymerase only binds to a primer, these restriction enzymes only bind to specific DNA fragments. Once cut, the ends of the DNA molecule has so-called “sticky ends”, these are the now unpaired nucleotides to which the new DNA can be bound by the enzyme ligase, see Figure 4. 29 Genetically modified food Controversy Genetically modification of foods has also raised much controversy among people. Some argue that genetically modified foods are the solution to the world hunger problem; others disagree saying it won’t be enough or that the problem lies with the distribution and politics, and that enough food is or can be produced. Some also argue that the real problem is the overpopulation and not the resulting food shortage. Figure 4: Gene splicing in a plasmid (i.e. small circular DNA found in bacteria). Advantages Recombinant DNA has been widely used in the pharmaceutical industry to make bacteria produce certain medicines. An example of this is the production of insulin for diabetes patients. In the food industry some crops are modified to become resistant to herbicides, pesticides or both. This way the plants can be better protected from insects and weeds which in turn would provide a potentially higher crop yield. Plants have also been altered to directly increase crops rates by, for example increasing their tolerance to cold and drought, or to produce more nutritious foods. There are even plants being developed that contain edible vaccines or drugs, called pharmaceutical crops. A positive side effect of these more resistant plants is that less fertiliser and pesticides are needed, resulting in a cleaner environment. Animals have mostly been modified with growth hormones to increase their size. Some pigs have been modified to digest plant phosphorus more efficiently because they produce the enzyme phytase, which helps with the digestion of the phosphorus. This would result in lower feeding costs for pigs and less phosphorus pollution; therefore these pigs have been named Enviropigs. 30 Many people are concerned with possible health issues due to for example allergic reactions or increased toxicity. Also environmental effects may be severe. Some people are concerned that the introduction of new genes to the gene pool of the species might have unforeseen effects on the environment. For example crops of transgenic maize which are more resistant to insect might also cause the deaths of harmless insects like the monarch butterfly, though there are contradicting reports about this case. Due to these concerns there are strict health and safety regulations regarding genetically modified foods. This is the reason why there aren’t any genetically modified animals on the market for consumption today. Animals can, however, be fed genetically modified plants. Although further research is required, current studies have not shown any traces of recombinant DNA in the tissues of animals that have been fed genetically modified foods. Grolsch excursie Melvin van Melzen When I was done fixing my bike I was already going to be late, nothing serious but a few minutes. The first snow had fallen and it was very cold out there. Luckily I only had to travel half the distance the group that had to come from the campus would have to. Against all odds I was the first to arrive! I must have been confused with the time because I thought someone would already be expecting me when I got there, but it was just me. Shortly after feeling less like an ice cube two others arrived which were followed closely by the main group. Apparently they missed a turn somewhere and ended up in Boekelo, whoops. With everyone together the tour could start. We started with a hot cup of coffee or tea which we took to the café. Here we watched a movie about how this brewery became such a glorious place. We split up in two groups and went into the production area. In the first hall we saw the top part of the massive stainless steel tanks, used for the brewing. Also there are huge tanks for fresh water rising all the way up to the ceiling. The smell in here is very distinctive. Somewhat like the day after you clean up after a party where beer was spilled voluminously, that kind of smell: hmmm… Now for the really spectacular part; the bottling and canning hall! This is where robots clean, fill, label and close the bottles, before they are put into crates or other packages, also by robots, naturally. The finished products are kept in the area right behind the packing area. Everything in there is already sold and is waiting to be picked up for transport. This massive repository is the last place our precious green friends are kept before being shipped to the stores, stores that make us pay dearly for this golden liquid. Now for the best part of our tour, back at the café we started in. We were getting a taste of a few of the best beers by Grolsch: Lemon 2.5 (exception in this list of bests), Premium Pilsner, Premium Weissen, Herfstbock and last but certainly not least Kanon. The bubble of bliss I was in was popped by the mention of the closing bar and the closing café shortly after that. Luckily there was a present for all of us: a unique glass only for us, close to the style of the new glasses used everywhere. Nice! A quick group photo under the big (like everything in the factory) portrait of the genius who made this beer and we are out in the cold again. The next place was the filter area; here all solids are removed from the beer. Everywhere are shiny pipes which are interwoven and spaghetti-like. After a short walk outside we got to hear a lot about how Grolsch was being promoted since the 2nd world war. Promotion used to be very informative, lots of text and only small images. We took a look at how this evolved to the fancy commercials of today. From here we went on to have a look in the lab. The lab is always busy checking the quality of the products, important but somewhat tedious. Next to the lab is the tasting room. In here those with the better tastebuds are drinking all the different kinds of beers and the same beers with minor adjustments, to discover better recipes. 31 Een uniek netwerk van fysici 100% WERKONDERNEMERSCHAP > LANGDURIGE ARBEIDSRELATIE > INDIVIDUELE WINSTDELING > 1-op-1 CARRIÈRE COACHING > WERKZAAM IN EEN GESPECIALISEERDE, ONDERNEMENDE BUSINESSCEL > ENTREPRENEURIAL LAB Carolien Lamers 100% TMC werkondernemer TMC Physics, het enige fysicahuis in Nederland, is gespecialiseerd in het inzetten van werkondernemers binnen de fysica competentie. Hiermee heeft TMC Physics een pionierspositie verworven in haar type dienstverlening met het inzetten van fysici op flexibele basis bij opdrachtgevers op locatie. Ruim twee jaar ben ik in dienst bij TMC Physics en werk ik voor Philips Applied Technologies. Het informele karakter en de persoonlijke omgang met directie en account managers zorgen voor een goed contact. Alle account managers bij TMC Physics hebben een achtergrond in fysica. Zij begrijpen de inhoud van mijn werk en denken met mij mee. TMC is een jong en dynamisch bedrijf dat open staat voor vernieuwende ideeën van Onze fysica werkondernemers zijn actief in research, development en engineering op onder andere de volgende gebieden: product & process modellering, vloeistof- en gasstroming, lasers & optica, materiaalkunde, dunne film technologie en nano technologie. Zij worden daarbij ondersteund door een team van account managers die zelf ook een opleiding in de natuurkunde hebben genoten. Onze klantenkring kenmerkt zich door diversiteit en varieert van (contracted) research tot systeemen productontwikkeling in verschillende sectoren waaronder: halfgeleiders, zonnecellen, medische systemen, defensie, olie & gas. TMC Physics heeft een bijzonder hoog opgeleid en internationaal karakter. Van onze werkondernemers is 90% academisch opgeleid, waarvan het merendeel een promotie succesvol heeft afgerond en ongeveer de helft van onze mensen heeft een buitenlandse nationaliteit. Een kleurrijke groep mensen verbonden door een gezamenlijke passie: fysica. haar werkondernemers. TMC Physics biedt bovendien een uniek netwerk van fysici en heeft goede contacten met veel verschillende technische bedrijven. Daarnaast combineert TMC haar professionele uitstraling met informele contacten tussen de werkondernemers. Zo kun je na een bijeenkomst nog even met je TMC collega’s, account manager of de directeur napraten over formele of informele zaken onder het genot van een biertje of kopje koffie in de bar van het kantoor. Wil je na je afstuderen aan de slag op de onderzoeks- of ontwikkelafdeling van een high-tech bedrijf, dan heeft TMC misschien wel een passende opdracht voor jou. Daarom kan ik je aanraden om eens bij TMC langs te komen. TMC Physics is een businesscel van TMC Technology, member company van TMC Group N.V.. Sinds november 2006 heeft TMC Group N.V. een notering aan Alternext Amsterdam. TMC Physics B.V. Flight Forum 107 – Postbus 700 – 5600 AS Eindhoven – Tel. 040 239 2260 – Fax 040 239 2270 – info@tmc.nl – www.tmc.nl Interview: Arie van Houselt Jeroen van den Berg & Geert Folkertsma Na een serie van interviews met docenten uit de natuurkundehoek (Harold Zandvliet, Alexander Brinkman, Herman Hemmes) vond de laatstegenoemde het tijd voor een nieuwe interviewlijn: scheikunde. Bij wie anders te beginnen dan bij een van de jongste AT-docenten, die een dikke 6 jaar geleden zelf nog in de collegebanken zat en vorig jaar een Veni wist binnen te halen? Uit wat voor gezin komt u zelf? Ik ben de oudste van vier: een iets jonger zusje (we hadden altijd “gezonde competitie”), een broertje van vier jaar jonger en nog een zusje na 12 jaar. Zij is nu bijna klaar met de middelbare school; ik kan haar mooi bijles geven in de exacte vakken, ze woont ook in Barneveld. U reist elke dag hierheen met de auto. Ooit gedacht aan verhuizen? Wel over gedacht, maar voorlopig slaat de balans nog door naar blijven wonen: daar zitten de jongens op school een halve straat verderop en woont de rest van mijn (schoon)familie. Waar doet u de boodschappen? Op zaterdagochtend breng ik mijn oudste naar het zwembad voor zwemles, dan heb ik drie kwartier de tijd om de boodschappen voor de week te doen. De supermarkt is een afstandsminimalisatie: de AH is het dichtste bij het zwembad. En af en toe haal ik croissantjes bij de Aldi, maar dat moet natuurlijk niet te vaak gebeuren. Hoe zag uw middelbareschooltijd eruit? Ik heb gymnasium gedaan in Amersfoort, met in mijn vakkenpakket natuurkunde, wiskunde en scheikunde. Ik heb ook nog even economie geprobeerd, maar dat werd geen succes: we kregen vanwege de klassieke talen in de onderbouw geen economie, maar werden later wel geacht daar al dan niet voor te kiezen. Ik koos het niet, maar heb het in de zesde toch gedaan. Het eindexamen wel gehaald, maar ik vond het niets: geef mij maar natuur- en scheikunde. Welke studie werd dat dan? Wie bent u en waar komt u vandaan? Mijn naam is Arie van Houselt, ik ben in 1980 geboren in Rotterdam. Daar heb ik de eerste paar jaar van mijn leven ook gewoond, daarna een tijd in het oosten van de Veluwe; later in het midden ervan, in Barneveld – en daar woon ik nu nog, samen met mijn vrouw Agatha, wat “lieflijke”betekent, maar ik weet niet meer in welke taal. En met mijn 3 zonen van 6 jaar, 4 jaar en 4 maanden. Op de middelbare school vond ik scheikunde altijd leuker dan natuurkunde. Natuurkunde was vooral formules invullen: ik vond het interessant dat je dingen kunt uitrekenen, maar bij scheikunde had ik echt het idee dat ik iets leerde van de dingen die om je heen gebeuren. Ik was dus van plan scheikunde te gaan studeren, maar ontdekte dat in Utrecht een combinatie natuurkundescheikunde mogelijk was: dat werd het. 33 Interview: Arie van Houselt En dat beviel goed? Ja, alhoewel mijn eerdere bevindingen tijdens de studietijd juist omdraaiden: daar kwam ik erachter dat scheikunde eigenlijk toegepaste natuurkunde is, terwijl natuurkunde echt dingen probeert te verklaren. Uiteindelijk ben ik in 5,5 jaar afgestudeerd: voor natuurkunde heb ik onderzoek naar rendementsverbetering bij zonnecellen gedaan, bij scheikunde hield ik me bezig met colloïdale halfgeleiders. Colloïden hebben een “jasje” van koolwaterstoffen; bij deze halfgeleiders hing het luminiscentiegedrag af van het type jasje. Uiteindelijk bleek bij de werktemperatuur net een faseovergang van het omhulsel plaats te vinden, waardoor dit werd veroorzaakt. Had u nog tijd voor dingen naaast de studie; werk of activisme? Beide: ik heb jarenlang als zaterdagbezorger bij PTT post gewerkt en was daarnaast actief lid bij Solidamentum, een reformatorische studentenvereniging. Ik ben daar meerdere jaren voorzitter geweest. En hobby’s? Ik speel orgel, heb wel eens als organist opgetreden. Tegenwoordig is het meer hobby’en: ik heb thuis een elektronisch orgel staan. Ik ben nu bezig om het opgenomen geluid van echte pijporgels in het elektronische orgel te stoppen. Verder besteed ik nu mijn vrije tijd aan de kinderen: die eisen ze gelukkig ook op als ik thuis kom. Tijdens mijn promotie had ik gelukkig ook genoeg tijd voor ze; ik had het geluk al vroeg resultaten te hebben en heb tijdens de rit al veel dingen opgeschreven. Ik moest er aan het eind wel iets harder aan trekken, maar dat deed ik door vroeger op te staan. Wringt de combinatie geloof-wetenschap wel eens? Moet u zich bij de ene partij voor de andere verantwoorden? Nee, het wringt helemaal niet. Het geloof geeft antwoorden op zingevings-vragen, zoals waarom we op de wereld zijn. De wetenschap probeert systematische oorzaken te zoeken en dingen te verklaren en verbanden te leggen. Er is een duidelijke scheiding: wetenschap beantwoordt de vraag “Hoe?” en religie de vraag “Waarom?”. 34 U heeft zelf bijna nominaal gestudeerd en was toch actief buiten de studie. Denkt u dat de op handen zijnde langstudeer-regeling voor minder activisme gaat zorgen? Nee, ik denk dat activisme prima gecombineerd kan worden met studeren. Bepaalde types activisme tenminste: het type “bier drinken” wordt misschien lastig… Het is een kwestie van keuzes maken. Ik denk dat studenten die echt die ervaring op willen doen, nog steeds wel voor bestuur of commissies kiezen. De maatregel is dus wel goed? Ik ben op zich niet tegen het bevorderen van snel studeren, maar zoals het nu gaat is het wel erg abrupt: wij kregen 5 jaar stufi, maar mochten 10 jaar over de studie doen voor we het hoefden terug te betalen. De manier waarop het gepresenteerd is, is ook niet helemaal juist: langstudeerders kosten eigenlijk niet zoveel geld, de fiscus krijgt alleen wat minder lang geld binnen. Die bezuiniging valt dus wel mee. En andere maatregelen, zoals het Bindend StudieAdvies? Dat draait nu al enige tijd bij ST. Daar zitten ook voordelen aan, maar aan de andere kant is het ook wat dwingend, er zijn studenten die echt even tijd nodig hebben om erin te komen; het is lastig te voorspellen welke studenten dat zijn, en welke het echt niet gaan halen. Je loopt het risico om veel koren met het kaf weg te gooien. Terug naar uw eigen studie: na het afstuderen bent u gaan promoveren. Ja, ik heb hier op de UT onderzoek gedaan dat in het verlengde lag van mijn afstuderen: daar deed ik nuldimensionale halfgeleiders, de bolletjes, mijn promotie ging over eendimensionale halfgeleiders: platina en gouden nanodraden op een germaniumoppervlak. Ik heb ze bestudeerd met een STM (scanning tunnelling microscope, red.) Wat heeft u na uw promotie gedaan? Ik heb twee maanden postdoc gedaan bij FOM plasmafysica in Rijnhuizen; onderzoek naar meerlaagse spiegels voor röntgenstraling. Daarna ben ik via mijn promotor hier aangetreden bij de vakgroep Catalytic Processes and Materials. Daar zit ik nu twee en een half jaar. Vorig jaar heeft u een Veni binnengehaald, voor onderzoek naar reacties aan metaaloppervlak onder water. Die beurs geeft me de kans onderzoek in een richting te doen die ik zelf leuk vind. Het ligt een beetje in de lijn van mijn promotieonderzoek: in dit onderzoek gebruiken we ook een STM. Toen in vacuüm, nu in water. Interview: Arie van Houselt Een STM heeft een terugkoppeling die de stroom constant houdt door de naald te bewegen en zo een afbeelding van het oppervlak te maken. Deze terugkoppeling beperkt de tijdsresolutie, waardoor bewegende structuren vaak als ruis zichtbaar zijn. Door zo’n gebiedje met ruis op te zoeken en de regellus uit te schakelen, kun je door de stroomvariaties te meten toch op hoge snelheid meten. Je kunt zo de dynamica van processen bestuderen. Deze truc is wel vaker toegepast, maar voor zover ik weet nog nooit onder water, en ook nog nooit voor chemische processen. Dat komt denk ik omdat natuurkundigen, die deze techniek toepassen, zich niet met reacties bezighouden; terwijl chemici het apparaat juist meer als biologen benaderen: druk op de knop en neem een meting. De gecombineerde opleiding die ik heb gevolgd, maakt dat ik me voor beide aspecten interesseer. Gezien uw brede interesse: zou u AT zijn gaan studeren, als het destijds al had bestaan? Met de ervaring die ik nu heb, zou ik een opleiding willen doen die meer natuurkunde bevat dan AT. Ik denk dat ik eerder voor puur natuurkunde zou kiezen dan voor Advanced Technology. Qua scheikunde zou ik wel wat meer katalyse gehad willen hebben: dat geef ik nu aan AT, maar heb ik eigenlijk zelf nooit geleerd… Die katalyse geeft u bij AT en ST beide, bij ons in het vak Interfaces and Catalysis. Merkt u verschil tussen de studenten bij AT en ST? Er zijn wel verschillen tussen de studenten, maar het is lastig te expliceren. Ik ben zelf natuurlijk geen doorsnee scheikundige, omdat ik ook veel met natuurkunde doe, dus misschien sluit dat beter aan bij AT-studenten. Er is denk ik ook een cultuurverschil tussen de opleidingen; Scheikundige Technologie is wat strakker georganiseerd. Ik vind het met beide groepen studenten plezierig werken. Ik vind het sowieso leuk om met studenten om te gaan. Ik leer ook van ze, als ze tijdens college goede vragen stellen of opmerkingen maken. Als u een nieuw vak zou mogen geven bij AT, waar zou dat dan over gaan? een inhoudelijke motivatie vanuit de opleiding helder te hebben. Dat is sowieso iets wat je jezelf continu moet afvragen: Waarom geven we AT? Waarvoor willen we opleiden? Het maakt bijvoorbeeld veel verschil of je aan het bedrijfsleven of onderzoek wilt leveren. Die visie mis ik bij AT, terwijl dat veel duidelijkheid zou scheppen. Ik denk ook dat het goed is voor het studierendement als nieuwe studenten beter weten waar ze aan beginnen. Je kunt beter 30 studenten krijgen die allemaal doorgaan, dan 50 waarvan de helft afhaakt. Helpt het idee van de nieuwe, modulaire bacheloropleidingen daar wel of juist niet aan mee? Er zijn denk ik voordelen van de clustering van opleidingen, als je het op de goede manier doet. In de opleidingen TN en ST zitten veel overeenkomsten, maar je moet wel de diepgang voor beide stromingen behouden; anders kun je het ook niet verkopen aan scholieren. Het vraagt ook veel van de docent: de verschijnselen die bij natuurkunde en scheikunde worden behandeld zijn vaak hetzelfde, maar de taal is heel anders. De docenten moeten geleerd worden bruggen te slaan. Neem als voorbeeld de wiskunde: differentiaalvergelijkingen komen bij beide vakgebieden voor, in het ene geval voor een slinger en in het andere geval bij stromingen. Je moet er voor zorgen dat scheikundigen geen slingers hoeven door te rekenen, en natuurkundigen geen stromingen. U staat er dus wel positief tegenover? In principe wel, maar het moet organisatorisch wel gaan lukken. “In het verleden behaalde resultaten bieden geen garanties voor de toekomst”, en in het verleden was het ook niet altijd zo rooskleurig. Ten slotte de laatste twee vragen: wie is uw “favoriete wetenschapper”? Dan heb ik twee voorbeelden, die ik bewonder vanwege hun didactische vaardigheden. De ene kennen jullie vast, Richard Feynman. Ik vind het erg leuk om zijn lectures te lezen, of te gebruiken bij mijn vakken. Ik denk over reactiviteit aan kristaloppervlakken, een soort vervolg op Interfaces and Catalysis. Of hebben jullie geen quantummechanica gehad? Dan zou ik de basis quantummechanica wel willen doceren. De andere is Walter Lewin, emeritus hoogleraar van MIT. Zoek zijn physics lectures maar eens op, bijvoorbeeld over klassieke mechanica. Hij is didactisch heel goed, ik heb het idee dat hij studenten weet te bereiken en de ideeën duidelijk over weet te brengen. U heeft geen duidelijk overzicht van wat ATstudenten leren? En wie gaan wij voor de volgende editie interviewen? Nee, vanuit de staf heb ik nooit een korte en duidelijke visie op AT gehad, over de inhoud en het doel. Ik ben destijds gewoon in I&C gerold… Het zou goed zijn om Hebben jullie Mireille Claessens al gehad? Het lijkt me leuk als jullie die doen. 35 KIVI NIRIA: Mind mapping Daan in den Berken A couple of weeks ago KIVI NIRIA organised a workshop on mind mapping. Intrigued by the poster, yet not expecting much, I attended the workshop and was pleasantly surprised. Mind mapping is a note making strategy that tries to utilise certain mnemonic strategies, allegedly being so effective because it attempts to utilise both hemispheres of your brain. By representing information in a graphic, non-linear manner the mind maps aid in recalling the information. It is not only used for making notes, but also for visualising problems, in studying or organising information or brain storming sessions. And that is exactly what mind mapping attempts. Instead of making a summary the old fashioned way, it suggests you should make it in a more visual way. Mind mapping works on the premise of lateralisation and trying to utilise the right hemisphere in tasks dominated by the left. The left part of the brain is said to dominate in linear reasoning, reading and making lists, while the right hemisphere is more specialised in spatial manipulation, creativity and processing pictures. Though critics say this is pseudoscience, when applied to mind mapping. The general idea is transforming a list of words into a more graphical representation of the content, so instead of only relying on verbal recall by the left hemisphere, you also stimulate the right with spatial and iconographical aspects. To make your own mind map, start with rotating your piece of paper (landscape, like the printer option) and write down your subject in the middle. Then surround it with sub-topics radially arranged around this word, with braches connecting it to the main subject. As a key to making effective mind maps, we were given a few guidelines to follow. The workshop started off with a list of 20 random objects and we were told to try to memorise them in order. After hearing the whole list the group started writing down the names of the objects. Ignoring the oddball in the group, the average result was the first 3 names, the last 3 names and the one in the middle; 7 out of 20. And then came an explanation for a trick. You have to create a story or some other connection between the objects. In this list every object had a relation to its position and so could be linked to the number. If you thought of the number it was not that hard to recall what object was connected to it. The second time the group wrote down the list of objects almost everyone had 19 or 20 correct. Even several months later, I still remember the whole list in order. If only I could use that for a course. 36 • Use keywords, not full sentences • Use multiple colours, different colour per branch • Always leave open some options To assist you in making mind maps there are several software packages available; some freeware, some not. There are even applications for the iPhone and other smartphones. If you are interested in mind mapping, sign up next time a workshop is announced. It even includes a little USB-stick with some free mind mapping software. Arranging atoms in artificial structures of complex oxides Gertjan Koster & Bouwe Kuiper Modern thin film techniques are capable of synthesising thin crystalline two-dimensional layers with a thickness of digital precision (i.e., n=1,2,3… where n is the number of unit cell layers of the material). One of the research topics within the Inorganic Materials Science group focuses on the question whether epitaxial structures of lower dimensions can be fabricated, such as wires (one-dimensional) or dots (zero-dimensional). An interesting class of materials for thin-film applications is the one of perovskites. These complex oxides provide a unique toolset of materials to the structure composition to property relationship in so-called correlated electronic systems. In essence, such materials do not follow the simple models based on the assumption that the electrons responsible for the bonding in the materials can be treated independently, but experience mutual interaction. Due to this interaction though, which strength depends on the constituent elements, many different properties can be found in these materials, such as colossal magnetoresistance in LaSrMnO3 or high Tc superconductivity in YBa2Cu3O7, making them interesting for all kinds of future applications. Structurally the perovskites consist of simple cubic units with 4 Å ribs, see Fig. 1. The corner positions are occupied by A-site ions. The faces contain oxygen and the center consists of a B-site ion. The oxygen octahedron connecting the oxygen atoms provides a strong backbone, which is present in all perovskites, independent of their cations and properties. This makes that within the perovskite family, the fabrication of heterostructures, i.e., stacks of different materials each with a different physical property, is relatively straightforward. Thin film growth The complex oxides thin films can be made by Pulsed Laser deposition (PLD). A high intensity KrF excimer (248 nm) laser is used to ablate material from a target. The ablated material, or plasma plume, expands in a vacuum chamber where it is deposited onto a heated substrate. Each laser pulse results in the deposition of a fraction of a monolayer of added material on top of the substrate. By controlling the number of laser pulses, the layer thickness can be precisely dialed in, down to the scale of single unit cell layers of the material. In this way, one essentially can build artificial crystal structures bottom up, for example by the deposition of superlattices and heterostructures, where either A, B or both cations are periodically varied. Examples of such experiments are the (Ba,Sr,Ca)TiO3 system, with enhanced ferroelectric polarisation [1], and the LaAlO3/ SrTiO3 system, where the interfaces between the two insulating perovskite blocks become conducting [2]. In both of these examples, the heterostructures consist of alternating sheets of material grown on a single terminated substrate template; typically TiO2 terminated SrTiO3, which can be obtained through well-established chemical etching procedures [3]. Figure 1: Schematically representation of a perovskite unit cell (a), a crystal surface showing ordered mixed surface terminations (b) and a resulting nanowire pattern. Lateral control As described above, PLD tends to give flat layers or a two-dimensional crystal structure. However, the deposition conditions and substrate surface morphology can be chosen in such a way that it is possible to fabricate more complicated and lower dimensional structures. Such structures are either made using masks to deposit only on some parts of the substrate [6] or by self-organisation [4,5]. An example of the latter is the experiment where complicated 3D structures were created using a solid solution of different complex oxides [5]. In this solid solution a preferential crystal facet dominates the ordering process resulting in one material being embedded in the other material in for example squares, dots, wires or ribbons. In literature, there are examples of spontaneous self-organisation of deposited material on a perovskite template showing mixed A and B ions at the surface. 37 Arranging atoms Here, we would like to describe a newly discovered route to self-assembled nanowires using a controlled substrate surface morphology. As discussed above, a perovskite unit cell consists of two types of cations, either one of them can be present at the surface. These chemically distinct areas of the surface have a different interaction with the material deposited by PLD. If on the one hand the deposited material wets one of these surface terminations whereas on the other hand the other termination is not wetted, the resulting thin film will show a structure, which follows the original substrate chemical termination morphology. This is exactly the case for growth of SrRuO3 (a ferromagnetic metal) on DyScO3, where the DyScO3 crystal shows ordered areas of DyO and ScO2 termination, as depicted in figure 1b indicated with dark (blue) and lighter (yellow) areas. The growth results in nanowires of SrRuO3, which lie on top of the ScO2, terminated areas, figure 1c. By annealing the crystal at high temperature the different types of surface termination order and straighten, an example of such an ordered crystal surface if given in Figure 2a. Figure 2a shows a lateral force micrograph (LFM) recorded using an Atomic Force Microscope (AFM) of a DyScO3 substrate. This substrate was annealed at high temperatures. The colour indicates the interaction strength between the AFM tip and the surface. The interaction strength varies locally, caused by the different chemical terminations on the DyScO3 surface. Vicinal terraces are about 200 nm wide and the mixed termination ratio is about 75 percent. After PLD growth, a nanowire pattern of SrRuO3 is observed using a Scanning Tunneling Microscope (STM), depicted in Figure 2b. The resulting wire array shows nanowires, which are slightly wider than the original substrate mixed termination template and are 6-8 nm in height. The wires are single-crystalline and have a high aspect ratio. They are just 100 nm wide, but up to 50 micron long. It is important to note that the SrRuO3 is electrically conducting and commonly used as an electrode material whereas DyScO3 is a good insulator. The nanowires are thus conducting on an insulating substrate, while isolated over a long distance. This property was exploited by using the wire pattern as a bottom electrode for ferroelectric PbTiO3. Figure 2c shows an AFM image of such a PbTiO3 thin on top of a nanowire array. The ferroelectric properties are probed using a Piezo Force Microscope (PFM). Here we probe PbTiO3 electrical polarisation by applying an electrical field between the SrRuO3 bottom electrode and the PFM tip. Figure 2d shows such a PFM image. We can clearly see that a relationship exists between the nanowire morphology and the ferroelectric domains of the PbTiO3 film. Monte Carlo Model Figure 2: LFM image of a mixed terminated DyScO3 substrate (a), resulting nanowire pattern STM image (inset: line profile) (b), AFM image of a DyScO3/SrRuO3/PbTiO3 structure (c), PFM image of structure c (d). For the colour image, look up the digital version online. Self assembled nanowires The process of making the nanowire arrays requires control over the chemical composition of DyScO3 substrate. The substrates are 5x5x0.5 mm single crystals with one polished surface. The crystals are cut in such a way that it shows AO and BO2 planes parallel to the physical surface. In practice these surfaces are off by a few tenths of a degree with respect to the crystal lattice, resulting in unit cell high steps. 38 In an ideal case PLD growth results in atomically flat two-dimensional films. For the nanowire growth we used growth conditions, temperature, laser energy, etc which should result in these flat films if the substrate surface was completely single terminated. From these thin film growth experiments we know the deposition rate of SrRuO3. In the case of nanowire growth all the material we deposit at this rate actually sticks to the surface and becomes part of the nanowire. In other words, the total volume of material in the nanowire is similar to the total volume of material we would have deposited in a thin film. Therefore we conclude that the wires form during growth via a diffusion process. All the material sticks, diffuses and finally nucleates on a nanowire. Arranging atoms Such diffusion process can be simulated using a kinetic Monte Carlo model or in two dimensions a Solid-on-Solid model. A crystal lattice of 512x128 u.c. with so-called periodic boundary conditions was used to study the initial growth on substrates with areas of different surface. The model is based on an Arrhenius type equation, which relates temperature and energy barriers for diffusion to a single diffusivity value. The diffusivity, DS=D0 exp[-(ES+nEN)/kBT] is calculated for each lattice site, based on an the local temperature T, energy barrier for diffusion related to the substrate surface, ES and a nearest neighbor interaction term, EN. To simulate a mixed terminated substrate, the local ES values are changed to create areas of different diffusivity. The areas with a relatively low diffusivity act as sink sites with a high probability of nucleation, gathering all the applied material. Figure 3 shows simulation results for growth of 0, 1, 30 and 60 pulses of SrRuO3 on a mixed terminated substrate with an ES difference of 0.3 eV, here 60 pulses corresponds to the amount of material required to make two monolayers. The starting template is depicted in Figure 3a, it has steps of 170 u.c. wide and a 50 percent mixed terminated surface ordered along the step edges. During growth Figure 3b-d material diffuses onto areas with a low diffusivity. When growth is continued a nanowire pattern appears, where wires grow in height and width simultaneously, but at different rates. Ideally one would like to combine a strong sensitivity to different surface terminations and a large diffusion length to create well isolated nanowires. In other simulations, low diffusion lengths result in undesired nucleation on all terraces. A high growth temperature decreases the sensitivity to different chemical terminations, also resulting in undesired nucleation. However a high temperature does increase the diffusion length. Using the proposed mechanism, the growth temperature can be optimised to facilitate wire growth and prevent nucleation in between the nanowires. Conclusions & Outlook Using the right kind of template one can grow selfassembled nanowires of single crystalline complex oxide materials. The method that we described has the potential to be used for various other nano-patterns of complex oxides such as dots. Confining conducting electrons in small structures is interesting from a fundamental point of view, since confined electrons reveal their quantum nature. This is particularly interesting if the electrons are of the interacting type. For applications, the method offers the possibility to fabricate prepatterned electrodes for ferroelectric switching devices as in F-RAM (ferroelectric random access memory). The key to the success of the method is to better control the formation of the right kind of template surfaces, which is one of the things that is getting a lot of attention in the current research at IMS. Acknowledgements Brian Smith, Harold Zandvliet, André ten Elshof, Josée Kleibeuker, Guus Rijnders, Jeroen Blok, IMS group, MESA+. References 1. Ho Nyung Lee, Hans M. Christen, Matthew F. Chisholm, Christopher M. Rouleau & Douglas H. Lowndes, Nature 433, 395 (2005) 2. A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004) 3. G. Koster, B.L. Kropman, G. Rijnders, D.H.A. Blank and H. Rogalla, Appl. Phys. Lett. 73 (1998) 2920-2922 4. R. Bachelet, F. Sanchez, J. Santiso, C. Munuera, C. Ocal, J. Fontcuberta Chemistry of Materials 2009 21 (12), 2494-2498 5. J.L. MacManus-Driscoll Adv. Funct. Mater. 2010 20, 1-11 6. Paul te Riele, PhD thesis University of Twente. Figure 3: Nanowire growth morphology evolution modeled by kinetic Monte Carlo, after 0, 1, 30 and 60 pulses (a-d). 39 Morgen kunnen we sneller chips maken. Vandaag mag jij ons vertellen hoe. Deep UV-licht (193 nm) De race om steeds meer IC-schakelingen op de vierkante centimeter te realiseren, is niet de enige race in de chipwereld. Fabrikanten willen ook de chipproductie zélf versnellen. Maar hoe voer je een machine op, die op de nanometer nauwkeurig moet presteren? v 6 m/s In de chip-lithografiesystemen waar ASML nu aan werkt, wordt een schijf fotogevoelig silicium (de wafer) op hoge snelheid belicht. 33 m/s2 t 0 10 70 60 50 40 30 20 Chips met 45-nm-details kun je alleen maken als je - tussen versnelling en vertraging door op de nanometer exact belicht. 1000 sensoren en 8000 actuatoren bedwingen en daarmee 180 wafers per uur belichten. Hoeveel software en processoren vraagt dat? En hoe manage je de architectuur daarvan? 33 m/s2 De wafer ligt op de zogenoemde waferstage (ruim 35 kilo). Die beweegt onder het licht door. Heen en weer, dus met een extreme versnelling en vertraging van 33 m/s2. Versnellen met 33 m/s2 is al een uitdaging op zich. Welke motoren kies je? Waar vind je versterkers met 100 kW vermogen, 120 dB SNR en 10 kHz BW? En dan begint het pas. Want voorkom maar ’ns dat al die warmte je systeem weer onnauwkeurig maakt... Voor engineers die vooruitdenken Profiel: Wereldwijd marktleider in chip-lithografiesystemen | Marktaandeel: 65% | R&Dbudget: 500 miljoen euro | Kansen voor: Fysici, Chemici, Software Engineers, Elektrotechnici, Mechatronici en Werktuigbouwkundigen | Ontdek: ASML.com/careers