Introduction to Adaptive Systems
Transcription
Introduction to Adaptive Systems
Introduction to Adaptive Systems Marco A. Wiering 2 Contents 1 Introduction 1.1 Adaptive Systems . . . . . . . . . . . . . . . . . . . . . 1.2 Intelligent Agents . . . . . . . . . . . . . . . . . . . . . 1.3 Model for Adaptive Systems . . . . . . . . . . . . . . . 1.3.1 Reward function . . . . . . . . . . . . . . . . . 1.3.2 The internal state . . . . . . . . . . . . . . . . 1.4 Total System Perspective . . . . . . . . . . . . . . . . 1.4.1 An example: a room heater with a thermostat 1.5 Environments . . . . . . . . . . . . . . . . . . . . . . . 1.6 Multi-agent Systems . . . . . . . . . . . . . . . . . . . 1.6.1 Model of a multi-agent system . . . . . . . . . 1.7 Complex Adaptive Systems . . . . . . . . . . . . . . . 1.7.1 Predator-Prey systems . . . . . . . . . . . . . . 1.7.2 State dynamics . . . . . . . . . . . . . . . . . . 1.8 Outline of this Syllabus . . . . . . . . . . . . . . . . . 2 Artificial Life 2.1 Genetic Algorithms and Artificial Life . . . . . . . 2.1.1 Interaction between evolution and learning 2.2 Cellular Automata . . . . . . . . . . . . . . . . . . 2.2.1 Formal description of CA . . . . . . . . . . 2.2.2 Example CA . . . . . . . . . . . . . . . . . 2.2.3 Dynamics of the CA . . . . . . . . . . . . . 2.2.4 Processes in CA . . . . . . . . . . . . . . . 2.2.5 Examples of cyclic processes . . . . . . . . . 2.2.6 Elimination of basis patterns . . . . . . . . 2.2.7 Research in CA . . . . . . . . . . . . . . . . 2.3 Ecological Models . . . . . . . . . . . . . . . . . . . 2.3.1 Strategic Bugs . . . . . . . . . . . . . . . . 2.4 Artificial Market Models . . . . . . . . . . . . . . . 2.4.1 Are real markets predictable? . . . . . . . . 2.4.2 Models of financial theories . . . . . . . . . 2.5 Artificial Art and Fractals . . . . . . . . . . . . . . 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 9 10 11 12 13 13 16 18 18 19 19 20 22 . . . . . . . . . . . . . . . . . 25 26 27 28 28 29 29 29 30 31 32 35 36 37 37 38 38 40 4 CONTENTS 3 Evolutionary Computation 3.1 Solving Optimisation Problems . . . . . . . . . . . . . 3.1.1 Formal description of an optimisation problem 3.1.2 Finding a solution . . . . . . . . . . . . . . . . 3.2 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . 3.2.1 Steps for making a genetic algorithm . . . . . . 3.2.2 Constructing a representation . . . . . . . . . . 3.2.3 Initialisation . . . . . . . . . . . . . . . . . . . 3.2.4 Evaluating an individual . . . . . . . . . . . . . 3.2.5 Mutation operators . . . . . . . . . . . . . . . . 3.2.6 Recombination operators . . . . . . . . . . . . 3.2.7 Selection strategies . . . . . . . . . . . . . . . . 3.2.8 Replacement strategy . . . . . . . . . . . . . . 3.2.9 Recombination versus mutation . . . . . . . . . 3.3 Genetic Programming . . . . . . . . . . . . . . . . . . 3.3.1 Mutation in GP . . . . . . . . . . . . . . . . . 3.3.2 Recombination in GP . . . . . . . . . . . . . . 3.3.3 Probabilistic incremental program evolution . . 3.4 Memetic Algorithms . . . . . . . . . . . . . . . . . . . 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 4 Physical and Biological Adaptive Systems 4.1 From Physics to Biology . . . . . . . . . . . . . . . 4.2 Non-linear Dynamical Systems and Chaos Theory 4.2.1 The logistic map . . . . . . . . . . . . . . . 4.3 Self-organising Biological Systems . . . . . . . . . . 4.3.1 Models of infection diseases . . . . . . . . . 4.4 Swarm Intelligence . . . . . . . . . . . . . . . . . . 4.4.1 Sorting behavior of ant colonies . . . . . . . 4.4.2 Ant colony optimisation . . . . . . . . . . . 4.4.3 Foraging ants . . . . . . . . . . . . . . . . . 4.4.4 Properties of ant algorithms . . . . . . . . . 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . 5 Co-Evolution 5.1 From Natural Selection to Co-evolution . . . . . 5.2 Replicator Dynamics . . . . . . . . . . . . . . . . 5.3 Daisyworld and Gaia . . . . . . . . . . . . . . . . 5.3.1 Cellular automaton model for Daisyworld 5.3.2 Gaia hypothesis . . . . . . . . . . . . . . . 5.4 Recycling Networks . . . . . . . . . . . . . . . . . 5.5 Co-evolution for Optimisation . . . . . . . . . . . 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 42 42 43 44 45 46 47 48 49 50 53 55 55 56 57 57 57 59 60 . . . . . . . . . . . 61 62 64 66 69 70 71 72 72 74 75 77 . . . . . . . . 79 80 81 82 83 84 86 88 90 CONTENTS 6 Unsupervised Learning and Self Organising Networks 6.1 Unsupervised Learning . . . . . . . . . . . . . . . . . . . 6.1.1 K-means clustering . . . . . . . . . . . . . . . . . 6.2 Competitive Learning . . . . . . . . . . . . . . . . . . . 6.2.1 Normalised competitive learning . . . . . . . . . 6.2.2 Unnormalised competitive learning . . . . . . . . 6.2.3 Vector quantisation . . . . . . . . . . . . . . . . 6.3 Learning Vector Quantisation (LVQ) . . . . . . . . . . . 6.4 Kohonen Networks . . . . . . . . . . . . . . . . . . . . . 6.4.1 Kohonen network learning algorithm . . . . . . . 6.4.2 Supervised learning in Kohonen networks . . . . 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 92 92 93 94 96 98 101 103 103 105 105 6 CONTENTS Chapter 1 Introduction Everywhere around us we can observe change, in fact without change life would be extremely boring. Life implies change, since if there would not be any change anymore in the universe, everything would be dead. Physicists think it is likely that after very many years (think about 10500 years), the universe would stop changing and enter a state of thermal equilibrium in which it is extremely cold (near the absolute minimum temperature) and in which all particles (electrons, neutrinos and protons) are isolated and stable (in this stable state even dark holes will have evaporated). This means that the particles will not interact anymore and change will stop. This view relies on the theory that the universe is expanding — and this expansion is accelerating which is implied by a positive cosmological constant (the energy density of vacuum). The theory that the universe would contract again after some while (which may imply a harmonic universe) is not taken very serious anymore nowadays. So, after a long time, the universe will reach a stable state without change. Fortunately since this takes so long, we should not worry at the moment. Furthermore, there are some thoughts that intelligent life may change all of this. A realistic model of any changing system (e.g. the weather or the stock market) consists of a description of the state at the current time step and some function or model which determines in a deterministic way (only 1 successor state is possible) or in a stochastic way (there are multiple possible successor states which may occur with some probability) the next state given the current state. We will call the state of the system at time-step t: S(t). It is clear that if we examine the state of the system over time, that there is a sequence of states: S(t), S(t + 1), . . . , S(t + n), . . .. Such a sequence of states is often referred to as the state-trajectory of the system. Note that we often consider time to be discrete, that is that all time-steps are positive natural numbers: t ∈ {0, 1, 2, . . . , ∞}. We only use discrete time due to computational reasons and simplicity, since representing continuous numbers on a computer using bit-representations is not really feasible (although very precise approximations are of course possible). Mathematically, we could also consider time as being continuous, although the mathematics would involve some different notation. 1.1 Adaptive Systems Although the “objective” state of the universe would consist of a single representation of all elements, and therefore a single state, in reality we can observe different objects which can be modelled as separate elements. Therefore instead of a single state at time t: S(t), we 7 8 CHAPTER 1. INTRODUCTION may consider the world to consist of l objects and write Si (t) where 1 ≤ i ≤ l, to denote the state of object i at time t. In this way there are trajectories for all different objects. If all these objects would evolve completely separately, the universe would basically consist of many sub-universes, and we can look at the trajectory of every single object alone. However, in most real systems, the objects will interact. Interaction means that the state of some object influences the trajectory of another object, e.g. think about Newton’s laws in which gravity causes attraction from one object to another one. At this point we are ready to understand what an adaptive system is. An adaptive system is a system in which there is interaction between the system and its environment so that both make transitions to changing states. Of course it may happen that after a long period of time, the adaptive system enters a stable state and does not change anymore. In that case we still speak of an adaptive system, but if the adaptive system never made transitions to different states, it would not be an adaptive system. So the first requirement is that an adaptive system is dynamic (changing), at least for a while. Sometimes an adaptive system is part of another system. Think for example about some robot which walks in a room, but does not displace any objects in that room. We have to think about this situation as a room which has a robot inside of it. Since the robot is changing its position, the room is also changing. So in this case the robot is the adaptive system and the room is the changing environment. Another requirement for an adaptive system is that the adaptive system will change itself or its environment using its trajectory of states in order to attain a goal that may be to simulate some process — to understand what will happen under some conditions, (e.g. we can simulate what happens if we put ten sharks in a pool and do not feed them), or the goal to optimize something (e.g. a robot which keeps the floors clean). Finally there can be learning adaptive systems that have the ability to measure their own performance and are able to change their own internal knowledge parameters in order to improve their performance. In this case we say that the adaptive system is optimizing its behavior for solving a particular task. If we call the state of the internal knowledge parameters: SI (t) then learning means to change the state of the internal knowledge parameters after each iteration (time-step) so learning will cause a trajectory: SI (t), SI (t + 1), . . . , SI (T ) where the final state SI (T ) may be a stable state and has (near)-optimal performance on the task. When you are not acquainted with machine learning, a learning computer system may seem strange. However, machine learning receives a lot of interest in the artificial intelligence community nowadays, and learning computer programs certainly exist. A very simple example of learning is a computer program which can decide between option 1 and option 2. Each time it selects option 1 the environment (possibly a human teacher) tells the system that it was a success, and each time the program selects option 2 it is told that it is a failure. It will not be surprising that with a simple learning program the system will quickly always select option 1 and optimizes its performance. More advanced learning systems such as for speech recognition, face recognition, or handwritten text recognition are also widely spread. Other terms which are very related to adaptive systems are: cybernetics, self-organising systems, and complex adaptive systems. The term cybernetics as it is used nowadays stems from Norbert Wiener and is motivated in his book: Cybernetics: or, Control and Communication in the Animal and the Machine (1948). Before Norbert Wiener worked on gunfire control. Freudenthal wrote about this: 1.2. INTELLIGENT AGENTS 9 While studying anti-aircraft fire control, Wiener may have conceived the idea of considering the operator as part of the steering mechanism and of applying to him such notions as feedback and stability, which had been devised for mechanical systems and electrical circuits. ... As time passed, such flashes of insight were more consciously put to use in a sort of biological research ... [Cybernetics] has contributed to popularising a way of thinking in communication theory terms, such as feedback, information, control, input, output, stability, homeostasis, prediction, and filtering. On the other hand, it also has contributed to spreading mistaken ideas of what mathematics really means. There are many adaptive systems to be found, some examples are: • Robots which navigate through an environment with some particular goal (e.g. showing visitors of a museum a sequence of different objects or helping people in elderly homes to walk around in the corridors) • Learning systems which receive data and output knowledge, e.g. classifying the gender of humans using photos of their faces, or recognising speech from recorded and annotated speech fragments • Automatic driving cars or unmanned aerial vehicles (UAVs) • Evolutionary systems in which the distribution of the gene-pool adapts itself to the environment • Economical systems in which well performing companies expand and bad performing ones go out of business • Biological systems such as earthquakes or forest fires 1.2 Intelligent Agents A fairly new concept in artificial intelligence is an Agent. The definition of an agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to meet its design objectives. An agent possesses particular characteristics such as: • Autonomy: The agent makes its own choices based on its (virtual) inputs of the environment; even if a user tells the agent to drive of a cliff, the agent can refuse • Reactivity: Agents are able to perceive their environment, and respond in a timely fashion to changes that occur in it in order to satisfy their design objectives • Pro-activeness: Agents are able to exhibit goal-directed behavior by taking the initiative in order to satisfy their design objectives • Social Ability: Intelligent agents are capable of interacting with other agents (and possibly humans) 10 CHAPTER 1. INTRODUCTION Examples of agents are robots, mail-clients, and thermostats. The advantages of using the agent metaphor becomes clear when we have to control a system (e.g. a robot). First of all it becomes easier to speak about the sensory inputs which an agent receives from its environment though its (virtual) sensors. Using the inputs and possibly its current internal state, the agent selects an action. The action leads to a change in the environment. The agent usually has goals which it should accomplish. There can be goals of achievement (reaching a particular goal state) or maintenance goals (keeping a desired state of the system). The goals can often be easily modelled as a reward function which sends the agent utility values for reaching particular states. The reward function could also give a reward (or penalty which is a negative reward) for individual actions. E.g. if the task for a robot-agent is to go to office R12 as soon as possible, the reward function could emit -1 for every step (a penalty) and a big reward of +100 if the agent reaches the desired office. An intelligent agent can perceive its environment, reason, predict, and act (using its actuators). A rational agent acts to maximize its performance measure so that it will reach its goal with the least amount of effort. An autonomous agent acts according to its own experiences. So it does not execute a fixed algorithm which always performs the same operations (such as a sorting algorithm), but uses its perceptions to direct its behavior. The agent is modelled in a program which is executed on an architecture (computer, hardware). The program, architecture, and environment determine the behavior of the agent. 1.3 Model for Adaptive Systems We now want to make a formal model of an adaptive system which interacts with an environment. The objective state of the world is the state of the world at some time-step. Often the adaptive system does not perceive this complete state, but receives (partial) inputs from the environment. Next to current inputs from the environment, the system can have beliefs about the world from its past interaction with the environment. Furthermore, the agent can perform a number of actions, and chooses one of them at every time-step. The control method which uses beliefs and inputs to select an action is often referred to as the policy. There is also a transition function which changes the state of the world according to the previous state and the action that the agent executed. Then there is a reward function which provides rewards to the agent after executing actions in the environment. Finally the system requires a function to update the internal (belief) state. So when we put these together, we get a model M = < t, S, I, B, A, π, T, R, U > with: • A time-element t = {1, 2, 3, . . .} • A state of the environment at time t: S(t) • An input of the environment received at time t: I(t) • An internal state (belief) of the agent at time t: B(t) • A number of possible actions A with A(t): the action executed by the agent at time t. • A policy which maps the input and belief to an action of the agent: π(I(t), B(t)) → A(t) • A transition-rule which maps the state of the environment and the action of the agent to a new state of the environment: T (S(t), A(t)) → S(t + 1) 1.3. MODEL FOR ADAPTIVE SYSTEMS 11 • A reward-function which gives rewards to the system, for this there are two possibilities, depending on whether the reward function is located in the environment so that we get: R(S(t), A(t)) → R(t) or when the reward function is located in the agent and the agent cannot know S(t) we have to use: R(I(t), B(t), A(t)) → R(t). • An update function for the internal (belief) state of the agent U (I(t), B(t), A(t)) → B(t + 1). We can note a number of causal relations in the model which are depicted in Figure 1.1. Causality in time t t S I I B A Causal Graph I S B I B A R t t+1 S A S I B A B R A Figure 1.1: The relations between the different elements of an adaptive system. If we study the figure, we can see that there is one big feedback loop, going from Belief to Action to State to Input to Belief. So Belief influences belief on a later time-step. Note that not all adaptive systems use an internal state (belief), we will go into this in more detail later. 1.3.1 Reward function An agent usually has one or more goals which it wants to achieve or maintain. To formalise the notion of goal, one could use qualitative goals which can be true or false, such as Goal(go home). Such qualitative goals are usually used in logical agents that try to make a plan using operators which bring the current state to a goal state (the plan can be computed forwards from the current state to the goal or alternatively backwards from the goal state to the current state). Another possibility is to use a more quantitative notion of a goal using a reward signal which is emitted after each time-step. The advantage of the latter is that it becomes easier to distinguish between multiple plans which bring about a trajectory which attains a specific goal. E.g. if an agent uses 100 steps or 20 steps to find the kitchen, then clearly using 20 steps should be preferred. However, when qualitative goals are used, they both become true after some time. Even if the planner tries to come up with the shortest plan, efforts to execute the plan are not easily incorporated. Using a reward function we can emit after each step a reward of -1 (so a cost of 1) and for reaching the goal, the agent may 12 CHAPTER 1. INTRODUCTION be rewarded with a high bonus. In this way shorter paths are preferred. Furthermore, when different actions require different effort, we can use different costs for different actions (e.g. when climbing a mountain it costs usually a lot of effort to take steep paths). In decision theory usually utilities or reward signals are used. The goal for the agent then becomes to maximize its obtained rewards in its future. So its policy should maximize: ∞ X γ t R(t) (1.1) t=0 Where 0 ≤ γ ≤ 1 is the discount factor which determines how future rewards are traded off against immediate rewards. E.g. if we find it is important to get a lot of reward during the current day and are not interested in the examination tomorrow, we will set the discount factor to a very low number, maybe resulting in drinking a lot of beer in a bar and failing the examination tomorrow. However, if we are interested in life-long happiness, we should use a high discount factor (close to 1). 1.3.2 The internal state Often no internal state (IS) is used, but without internal state we can only construct a reactive agent. A reactive agent uses a policy which maps the current input to an action. It does not use any memory of previous inputs or actions. For a game like chess, a reactive agent is perfect, because it does not really matter how a particular board-position came about, the best move only depends on the current state of the board which is fully accessible (completely observable) for the agent. However, in case you are looking for a restaurant and someone tells you “go straight until the second traffic light and then turn left.” Then you have to use memory, because if you would see a traffic light you cannot know whether to turn left or not without knowing (remembering) that you have seen another traffic light before. In more complex agents, internal state is very important. Note that we define the internal state as a recollection of past inputs and performed actions and not the knowledge learned by the agent about how to perform (this knowledge is in the adaptive policy). If an agent has to count to ten, it can map the next number using the previous one and does not need to remember what was before. In such cases there is therefore only a previous state which is the input for the policy. If the agent has to remember the capital of the United States, and uses it a long time afterwards, then it uses some kind of internal memory, but in some cases it would use long-term memory that is stored in the policy by learning the response to the question “what is the capital of the US?” Therefore we can speak of long-term and short-term memory, and the long-term memory resides usually in the policy (or knowledge representation) whereas short-term information which needs to be remembered only for a while is stored in short-term memory or the internal state. When we speak about belief (e.g. facts which are believed by the agent with some probability), however, it can also be stored in long-term memory, and therefore it would be better to make a distinction between short-term internal state and long-term belief. For acting one would still use knowledge stored in the policy, although this would usually be procedural knowledge (for learned skills) in contrast to declarative knowledge (knowledge and beliefs about the world). For now we just use the distinction between internal state (to remember facts) which is the short-term changing belief or a policy for acting. Humans possess a very complex internal state. If you close your eyes and ears, and stop focusing on your senses, then you do not receive any inputs from the environment. But 1.4. TOTAL SYSTEM PERSPECTIVE 13 still, thoughts arise. These thoughts come from the internal state, most often the thoughts are about things which happened not so long ago (like a minute ago, today or yesterday). Of course you can also act and direct your thoughts, in this way your brain becomes the environment and there is an interaction between you and your brain. Therefore when you think about how it would be to walk on the beach, you use your imagination and some policy for choosing what to do next. In that case, the internal state is only there to remind you of the start of the walk on the beach and whether you saw the sun shining or not. In many forms of meditation, one should close her eyes and concentrate on breathing. In this way, there is no information at all in the brain, basically one starts to think about nothing at all. In that case, there is no input and a diminishing internal state until it becomes empty too, and this may cause a very relaxing experience. Note that meditation is not the same as sleeping, some people say that sleeping is inside the inactive consciousness and meditation is in the subconscious where people are still experiencing things, but can concentrate on some thoughts (such as nothingness) much better. Finally, the opposite of a yogi is someone who has schizophrenia. In schizofrenia, one believes very much in the current internal state, and the actions focus on the information present in the internal state. So new inputs which disprove strange ideas residing in the internal state are almost not taken into account, and it is very difficult to convince such people that they are living in a reality set up by themselves without any logic or correspondence to the real world. 1.4 Total System Perspective An adaptive system (e.g. an agent) interacts with an environment. In principle there may be multiple agents acting in the environment, and it is important to understand the interaction between the agents and their environment. Therefore we usually have to look at the total system which consists of the smaller parts. Looking at the complete system gives different possible views on what the agents are and what they should do. For example, examine forest fire control, the entities which play a role are the trees, fire-men, bulldozers, air-planes, fire, smoke columns, the weather etc. If we examine these entities, we can easily see that only the bulldozers, fire-men, and air-planes can be controlled, and therefore we can make them an agent with their own behavior, goals, etc. Sometimes it is not so easy to abstract from reality; we do not want to model all details, but we want a realistic interaction between the agent and the environment. Example 1. Examine a restaurant, which entities play a role and which could be modelled as an agent? If we examine possible scenarios we can exploit our creativity on this topic. For example the entities may be the kitchen, tables, chairs, cook, waiter, lights, etc. Now we might consider to make them all agents, e.g. lights which dim if some romantic couple is sitting below them, tables and chairs which can move by themselves so that a new configuration of tables can be made automatically when a large group of people enters the restaurant etc. Would such as futuristic restaurant not be nice to visit? 1.4.1 An example: a room heater with a thermostat Consider a thermostat for a room heater which regulates the temperature of a room. The heater uses the thermostat to measure the temperature of the room. This is the input of the system. The heater has actions: heat, or do-nothing. The temperature of the room will decrease (until some lower limit value) if the heater does not heat the room, and the 14 CHAPTER 1. INTRODUCTION temperature of the room will increase if the heater is on. Figure 1.2 shows the interaction between the heater and the temperature of the room. Room Heater Input Temperature Action Figure 1.2: The interaction between a heater and the temperature in a room. Making a model for the heater The state of the environment which should first be modelled is the temperature of the room at a specific time. Since this is the environmental state, we denote it as S(t). The input of the heater is in this case also the temperature of the room (although it might contain noise due to imprecise measurements), we denote this input as I(t). The internal state of the heater is denoted as B(t) and it can take on values whether the heater is on (heating) or whether it is off (doing nothing). The possible actions of the heater are: heat or do nothing. Policy of the heater. Now we have to design the policy of the heater which is the most important element, since this is our control objective. Of course we can design the policy in many possible ways, but if there is a reward function, the control policy should be the one which optimizes the cumulative reward over time. The construction of the policy can be done by manual design, although it could also be learned. We will not go into details at this moment how learning this policy should be done, instead we manually design a policy since it is easy enough to come up with a good solution (so learning is not required). An example policy of the heater uses the following if-then rules: 1. If I(t) ≤ 21 then heat 2. If I(t) > 21 and I(t) ≤ 23 and B(t) == heat then heat 3. If I(t) > 21 and I(t) ≤ 23 and B(t) == do nothing then do-nothing 4. If I(t) > 23 then do-nothing If we examine the rules, we can see they are exclusive, at each time-step only one rule can be applied (sometimes the application of a rule is called a firing rule). If rules would overlap, the system would become more complex, since some mechanism should then be constructed which chooses the final decision. Research in fuzzy logic uses membership functions for rules, e.g. if the temperature is warm then do-nothing. The membership function then determines whether it is warm, e.g. is 24 degrees warm, and 27 degrees? This membership function should 1.4. TOTAL SYSTEM PERSPECTIVE 15 be designed (although it may also be learned) and the rules all fire using their activation which is given by the application of the membership functions to the input. After this all actions are integrated using the activations as votes. We will not go into detail into fuzzy logic here, but just mention that it can be used when it is difficult to set absolute thresholds for rules (such as 23 degrees in the above example). Another issue which is important is that the used policy creates a negative feedback loop. This means that if the temperature goes up, the heater will stop to increase the temperature, so that the temperature will go down again. In this way the system remains stable between the temperature bounds. If we would create a policy which would heat the room more when the temperature becomes higher, we would create a positive feedback loop, leading to a temperature which becomes very hot until possibly the heater will break down. It is therefore important to note that negative feedback loops are important for stable systems, although positive feedback loops can also be useful, e.g. if one want to have a desired speed very fast, the system can increase the speeds with larger and larger jumps until finally a negative feedback loop would take over. Another way to construct the policy is to use decision trees. A decision tree makes a choice by starting at the root node of the tree and following branches with choice labels until we finally arrive at a leave node which makes a decision. A decision tree which is equivalent to the set of above rules is shown in Figure 1.3. ROOT I(t) > 21 and I(t) <= 23 I(t) <= 21 HEAT I(t) > 23 DO NOTHING B(T) = HEAT HEAT B(T) = DO NOTHING DO NOTHING Figure 1.3: The policy of the heater designed as a decision tree. The update and transition function. To make the model of the system complete, we also have to specify how we update the belief and environmental transition function. In our simple model, these are easily obtained (although the environmental transition function might depend on a lot of different factors such as the temperature outside, whether a door or window is open etc.). The belief update function is modelled as follows: • U (∗, ∗, heat) → heat • U (∗, ∗, do nothing) → do nothing Where ∗ denotes the don’t care symbol which can take on any value for the function (or rule) to be applied. So the update function for the internal state or belief just remembers the previous action. We make the following simple transition function of the environment (in reality this transition function does not have to be known, but we construct it here to 16 CHAPTER 1. INTRODUCTION make our model complete). If the heater is on then the temperature will increase (let’s say that it is a simple linear increasing function, which is of course not true in reality due to the effect that there is an upper limit of the temperature, and that more heat will be lost due to interaction with the outside when the temperature difference is larger. In reality the heat-loss is a linear function of the temperature difference, but in our model we do not include the outside temperature, since then isolation will also be important and we get too many details to model). We also make a simple transition function when the heater is off. So using our simple assumptions we make the following environmental transition function: • T (S(t), heat) → S(t) + 0.1 • T (S(t), do nothing) → S(t) − 0.05 The reward function is only needed for self-adapting systems. However, we can also use it as a measurement function on the performance of a policy. Let’s say that we want the room’s temperature to remain close to 22 degrees, then the reward function may look like: R(I, ∗, ∗) = −(I − 22)2 Dynamics of the interaction When we let the heater interact with the temperature of the room, we will note that there will be constant change or dynamics of a number of variables. The following variables will show dynamics: • The state of the environment S(t) • The input of the heater (in this case equal to the state of the environment): I(t) • The action of the heater: A(t) • The received reward: R(t) • The internal state of the heater (in this case equal to the previous action of the heater): B(t) If we let the temperature of the room start at 15 degrees, we can examine the dynamics of the room’s temperature (the state of the environment). This is shown in Figure 1.4. 1.5 Environments The interaction with the environment depends a lot on the environment itself. We can make a very simple system which shows very complex behavior when the environment is complex. One good example of this is Simon’s ant. Herbert Simon is a well-known researcher in artificial intelligence and he thought about a simple ant which follows the coast line along the beach. Since the waves make different complex patterns on the beach, the ant which follows the coast line will also show complex behavior, although the design of this ant may be very simple. On the other hand, the environment can also make the design of a system much more complicated. There are some characteristics of environments which are important to study, before we can understand how complex the construction of a well performing system will be. The following characteristics of environments are most important: 1.5. ENVIRONMENTS 17 25 20 Temperature 15 10 5 0 10 30 50 70 90 110 130 Time Figure 1.4: The dynamics of the room’s temperature while interacting with the heater with the given policy. Note that there is a repetition in the dynamics. • Completely / Partially observable. The question here is about the perception of the agent of the environment. Can it perceive the complete state of the environment through its (virtual) sensors? Then the environment is completely observable, this is for example the case in many board-games (but not in Stratego). • Deterministic / Non-deterministic. If the next state of an environment given the previous state and action of an agent is always unique, then it is a deterministic environment. If the successor state can be one of many possible states, usually a probability distribution is used and then the environment is non-deterministic (also called stochastic). • Episodic / Non-episodic. If the task requires always a single interaction with the environment, then the interaction with the environment is episodic. In case a complete sequence of actions should be planned and executed, the interaction with the environment is non-episodic. • Static / Dynamic. If the environment does not change when we do not regard the action of the agent, then the environment is static. In case the environment changes on its own independently of the action of the agent, we say the environment is dynamic. In case the reward function changes, we say the environment is semi-dynamic. • Discrete / Continuous. If the state of the environment only uses discrete variables such as in chess, the environment is discrete. If continuous variables are necessary to accurately describe the state of the environment, the environment is continuous (as is the case with robotics where the position and orientation are continuous). If we consider these dimensions to characterise the environment, it will not be surprising that the environments that are most complex to perfectly control are partially observable, non-deterministic, non-episodic, dynamic, and continuous. We may always be able to try to simulate these environments, although a good model is also complicated (as for example for weather prediction). We can make a list of environments and show the characteristics of these environments. Figure 1.5 shows such a mapping of tasks (and environments) to characteristics. 18 CHAPTER 1. INTRODUCTION Completely observable Deterministic Episodic Static Discrete Environment Chess with clock Chess without clock Poker Backgammon Taxi driving Medical diagnosis Object recognition Interactive english teacher Yes Yes No Yes No No Yes No Yes Yes No No No No Yes No No No No No No No Yes No Semi Yes Yes Yes No No Semi No Yes Yes Yes Yes No No No Yes Figure 1.5: A mapping from environments and tasks to characteristics. 1.6 Multi-agent Systems In particular tasks, there are multiple agents which may be working together to solve a problem, or they may be competing to get the best out of the situation for themselves. In the case of multiple agents interacting with each other and the environment, we speak of a Multi-agent System (MAS). In principle the whole MAS could be modelled as one superagent which selects actions for all individual agents. However, thinking about a MAS as a decentralised architecture has some advantages: • Robustness. If the super-agent would stop working, nothing can be done anymore, whereas if a single agent of a big group of agents stops to work, the system can still continue to solve most tasks. • Speed. In case of multiple agents, each agent could easily run on its own computer (distributed computing), making the whole system much faster than using a single computer. • Simplicity to extend or modify the system. It is much easier to add a new agent running its own policy than to change one big program of the super-agent. • Information hiding. If some companies have secret information, they do not want other agents to access that information. Therefore this information should only be known to a single agent. If everything runs on a super-agent the privacy rules are much harder to guarantee. 1.6.1 Model of a multi-agent system If we are dealing with a MAS, we can still model the individual agents with the same formal methods as with single agents, so with inputs, actions, internal state, policy, reward function, and belief update function. In many cases, however, there will also be communication between the agents. In that case the agents possess communication signals (usually some language) and they map inputs and internal states to communication signals which they can send to 1.7. COMPLEX ADAPTIVE SYSTEMS 19 individual agents or broadcast to all of them. Communication is important if the agents have to cooperate. Coordination of agents is important to optimize a MAS, since otherwise they might all start to do the same job and go to the same places etc. It is clearly more efficient if the agents can discuss among themselves what role they will play in solving a task. Furthermore there may also be management agents which give roles and tasks to individual agents etc. A current challenging research field is to study self-adaptive structures or architectures of multi-agent organisations. 1.7 Complex Adaptive Systems Some systems consisting of multiple interacting entities are called complex adaptive systems. The difference between complex adaptive systems and MASs is that in complex adaptive systems, the individual entities do not have a goal, they are just part of the overall system. Basically, these entities are smaller than a complete agent (think about the difference between your body-cells and you as a complete organism). Therefore complex adaptive systems also do not have to be able to control some process or solve some task, they are more important for simulating processes. We do not consider such complex adaptive systems as being rational, although they may still adapt themselves and can be very complex. In complex adaptive systems, simple rules can create complex behavior if multiple simple entities interact. We then often say that the overall system behavior emerges from the interaction between the entities. Examples of processes which we can model with complex adaptive systems are: • Traffic consisting of many vehicles or other users of infrastructures • Forest fires consisting of trees, grass, etc. which propagate the fire • Infection diseases consisting of viruses and virus-carriers • Magnetism consisting of elementary particles which can be positively or negatively charged • Ecological systems which consist of many organisms which can eat each other and reproduce • Economical markets which consist of many stocks and investors In some cases of the above processes, we might also use a MAS to model them and try to optimize the process. This is especially clear in traffic or economical markets. 1.7.1 Predator-Prey systems A simple example of a system consisting of multiple entities is a predator-prey system. The predator looks for food (prey) to eat and produces offspring. The prey also looks for food, reproduces itself, and tries to circumvent being eaten by predators. The interesting phenomenon is that the population of prey and predators depend on each other. If there are many predators, the population of prey will decrease since many of them will be eaten. But if there are few prey, the population of predators will decrease since there will not be enough food for all of them. If there are then few predators left, the population of prey will increase again, leading to repetitive dynamics. 20 CHAPTER 1. INTRODUCTION Lotka-Volterra Equations. Lotka and Volterra captured the predator-prey system with a couple of equations. We will call the size of the prey-population x and the size of the predator-population y. Now the environmental state S(t) = (x(t), y(t)). The state will change according to the following two rules: • x(t + 1) = x(t) + Ax(t) − Bx(t)y(t) • y(t + 1) = y(t) − Cy(t) + Dx(t)y(t) When we choose starting population sizes: S(0) = (x(0), y(0)) and we take some parameter values for A, B, C, D we get a dynamical system which behaves for example as seen in Figure 1.6. Figure 1.6: The predator-prey dynamics using Lotka-Volterra equations. Note that the predator population y will grow if there is a lot of prey and the prey population will decrease if there are many predators. 1.7.2 State dynamics We have seen that the state of the environment shows a particular kind of dynamics. We can distinguish between three kinds of dynamics: dynamics to a Stable point, dynamics leading to a periodic cycle, and chaotic dynamics. When the state enters a stable point, it will always stay there, this means that the dynamics basically ends and S(t+1) = S(t) for all t ≥ n where n is some time-step where the process enters the stable point. We can compute what the stable point of the dynamics of the Lotka Volterra equations will be depending on the parameters A, B, C, D. Whether the process will enter the stable point may also depend on the initial state. The following should hold for a stable point for the Lotka-Volterra process: (x(t + 1), y(t + 1)) = (x(t), y(t)) Then we can find a stable point S(∗) = (x(∗), y(∗)) as follows: x(∗) = x(∗) + Ax(∗) − Bx(∗)y(∗) 0 = A − By(∗) A y(∗) = B y(∗) = y(∗) − Cy(∗) + Dx(∗)y(∗) (1.2) (1.3) (1.4) (1.5) 1.7. COMPLEX ADAPTIVE SYSTEMS 21 0 = −C + Dx(∗) (1.6) C (1.7) x(∗) = D Periodic Cycle. For a periodic cycle, after some initial transient process, the statesequence should always repeat itself after some period of fixed length. We have already seen two processes which lead to a periodic cycle, the heater and the Lotka-Volterra equations. Formally for a periodic cycle the following should hold: S(t) = S(t + n) S(t + 1) = S(t + n + 1) . . . S(t + n − 1) = S(t + 2n − 1) Here we say that the length of the periodic cycle is n. Note that a stable point is equivalent to a periodic cycle of length 1. Sometimes a process slowly converges to a cyclic behavior. We then say that the final attractor is a limit cycle. Chaotic dynamics. In case the process does not lead to a stable point or to a periodic cycle (also called a stable limit cycle), the process might be called chaotic although there are some additional conditions for a true definition of chaos explained below. In chaotic dynamics it is very hard to predict what will happen after a long time, although according to the above definition alone it may be simple in some cases, e.g. the equation S(t+1) = S(t)+1 would according to the above definition also lead to chaotic dynamics. This is of course very strange, since we always think about chaotic processes as being unpredictable. Therefore we have to include the condition that the process is non-linear and sensitive to initial conditions. This means that when we start with two initial states S1 (0) and S2 (0) which may be very close to each other, that the difference between the trajectories will increase (exponentially) after iterating the process over time. In the case of the equation S(t + 1) = S(t) + 1 the difference between two starting states will not grow but remain the same and the system is clearly linear. But there are processes which are non-linear for which the difference between the state trajectories grows which are still predictable such as S(t + 1) = S(t) × S(t) where S(0) ≥ 1. Therefore even this requirement may not be strict enough, and to eliminate such trivial cases we have to add the condition that the state trajectory does not go to infinity, but remains bounded in some subspace. This bounded subspace is called a chaotic attractor, and although the state trajectory will remain in the attractor, it is unpredictable where it will be if we do not know the precise initial state and model of the chaotic system. All we can do is to compute a probability function over this subspace to guess in which area the process will be at some time-step. The requirement that the difference between two initial states will grow makes the prediction problem much harder, since if our measured initial state has some small error ǫ then after some time, the error will have grown drastically so that our prediction of the state will not be valid or useful anymore. Since measuring a state and the change of the state for a complex non-linear system at the same time is impossible (for change we need to look at the difference between two states), we can never have a precise measurement of the current state (where the state includes position and velocity or change). Therefore, when the process is chaotic, it cannot be predicted over time. Another interesting thought is that chaos is not really possible on a computer, since there are a fixed number of states on the computer. Therefore, since a chaotic system always uses a 22 CHAPTER 1. INTRODUCTION deterministic transition function, we will always come back some time to the same state and then go to the next state etc. leading to some periodic cycle of very large period. It is also true that it is often hard to distinguish between chaotic dynamics and a periodic cycle, since the period may be so large that the process appears to be chaotic, but in reality has a very large period which did not appear in the generated state trajectory. Finally we should note that there is a big difference between non-determinism (randomness) or a chaotic process. A chaotic system is deterministic, but may appear random to an observer. On the other hand in non-determinism the process will never follow exactly the same state trajectory, so one might think such processes are chaotic. However, in a chaotic system we could in principle predict future states if the current state is exactly known. The impossibility to predict future states comes from the impossibility to know exactly the current state. On the other hand, in a non-deterministic system, even if we would know the exact initial state, prediction of a trajectory would be impossible since there would be many possible future trajectories. If we examine random-number generators, they are in reality pseudo-random number generators which provide us with seemingly random numbers, but basically it draws the random numbers from a huge periodic cycle of fixed length. Real randomness probably exists in nature, although it is extremely difficult to find out whether it is not deterministic chaos which makes nature to appear random. 1.8 Outline of this Syllabus This syllabus describes a wide variety of adaptive systems, ranging from artificial life models such as cellular automata to machine learning methods such as artificial neural networks. Since the topic of adaptive systems is so broad, there may not always be an evident connection between the different topics. For example in machine learning, knowledge may be learned from examples. The interaction with the environment may not be very clear in such cases, since the knowledge representation is changing according to the learning dynamics generated by the interaction between the learning algorithm and the examples. Therefore the concept of environment should be considered also very broad ranging from the system itself or examples to a real world environment. In this syllabus the following topics will be covered: • Cellular Automata which are useful as models for complex adaptive systems and studying artificial life. • Biological adaptive systems in which systems inspired on swarm (e.g. ants) intelligence are used to solve complex problems • Evolutionary computation in which a model of evolutionary processes is used to solve complex optimisation problems • Robotics, where physical robots interact with an environment to solve some specific task • Machine learning, in which different algorithms such as decision trees, Bayesian learning, neural networks, and self-organising maps are studied in their way of learning knowledge from examples. This knowledge may then be used to solve classification tasks such as mapping mushroom-features to the concept whether they are edible or poisonous. 1.8. OUTLINE OF THIS SYLLABUS 23 • Reinforcement learning, which is a part of machine learning, but where the focus is more on an agent which can learn to behave by interacting with some specific environment. 24 CHAPTER 1. INTRODUCTION Chapter 2 Artificial Life Artificial life researchers study computation models of life-like and emergent processes in which complex dynamics or patterns arise from the interaction between many simple entities. Artificial Life is a broad interdisciplinary field where research runs from biology, chemistry, physics to computer science and engineering. The first artificial life workshop was held in Santa Fe in 1987 and after this the interest in this field grew tremendously. One of the most ambitious goals of artificial life is to study the principles of life itself. To study the properties of life there are basically two roads; to study carbon life forms and their development (mainly done in biochemistry) and to examine life forms and their properties using a computer. What both fields have in common is that life emerges from building blocks which cannot be called alive on their own. So the interaction between the elements makes the whole system appear to be alive. Since the interactions are usually not well understood, the study to artificial life is usually holistic in nature, which means that we look at the whole system without being able to make clear separations in smaller modules. Still today many scientists think that life evolved from chemicals in the primordial soup (containing a large number of carbon compounds), although some scientists believe that life may have come from space on a comet. Some assert that all life in the universe must be based on the chemistry of carbon compounds, which is also referred to as “carbon chauvinism”. Thus, artificial life constructs models and simulates them to study living entities or other complex systems in computer systems. Some research questions which it tries to answer are: • Biology: How do living organisms interact in biological processes such as finding/eating food, survival strategies, reproduction? • Biochemistry: How can living entities emerge from the interaction of non-living chemical substrates? • Sociology: How do agents interact in artificial societies if they have common or competing goals? • Economy: How do rational entities behave and interact in economical environments such as in stock-markets, e-commerce, auctions, etc.? • Physics: How do physical particles interact in a particular space? • Artificial Art: How can we use artificial life to construct computer art? 25 26 CHAPTER 2. ARTIFICIAL LIFE One important goal of artificial life is to understand the source and functionality of life. One particular way of doing that is to make computer programs which simulate organisms using some encoding (might be similar to DNA encoding, but the encoding can range to computer programs resembling Turing machines). The development of artificial creatures which can be called alive also requires us to have a good definition of alive. For this we cite: http://www.wordiq.com/definition/Life In biology a conventional definition of an entity that is considered alive has to exhibit all the following phenomena at least once during its existence: • Growth • Metabolism; consuming, transforming and storing energy/mass growing by absorbing and reorganizing mass; excreting waste • Motion, either moving itself, or having internal motion • Reproduction; the ability to create entities which are similar to itself • Response to stimuli; the ability to measure properties of its surrounding environment, and act upon certain conditions A problem with this definition is that one can easily find counterexamples and examples that require further elaboration, e.g. according to the above definition fire would be alive, male mules are not alive as they are sterile and cannot reproduce, viruses are not alive as they do not grow. One could restrict the definition to say that living organisms found in biology should consist of at least one cell and require both energy and matter to continue living, but these restrictions do not help us to understand artificial life. Finally one could change the definition of reproduction to say that organisms such as mules and ants are still alive by applying the definition to the level of entire species or of individual genes. As we can see; there are still many possible definitions and just as with the concept intelligence, we may not easily get one unique definition of “alive”. 2.1 Genetic Algorithms and Artificial Life One well-known algorithm in artificial intelligence that is based on evolutionary theory is the genetic algorithm (GA). Darwin speculated (without knowing anything about the existence of genes) that evolution works by recombination of material of parents which pass the selective pressure of the environment. If there are many individuals only some can remain alive and reproduce, this selection is very important for nature since it allows the best apt individuals to reproduce (survival of the fittest). Once parents are selected they are allowed to create offspring and this offspring is slightly mutated so that the offspring will not contain exactly the same genetic material as the parents. Genetic algorithms can be used for combinatorial optimization problems, function optimization, robot control, and the study of artificial life societies. We will not go into detail into genetic algorithms here, since they will be described thoroughly in a separate chapter. Shortly, genetic algorithms are able to mimic the concept of reproduction. Say some artificial organism is stored in some representation, such as a bitstring (a string of 0’s and 1’s). Then we can take two parents, cutoff their string in two parts and glue these parts together to create a new offspring, which could possibly be better 2.1. GENETIC ALGORITHMS AND ARTIFICIAL LIFE 27 in the task than its parents. Since parents which are allowed to reproduce are selected on their fitness in the environment, they are likely to possess good blocks of genetic material which may then be propagated to the child (offspring). In combination with artificial life, genetic algorithms allow us to study a wide variety of topics, including: • Robots which interact with an environment to solve some task • Competitive evolutionary models such as arm-races studied by Karl Sims. In the armraces experiment different morphologies and behaviors were evolved in 3D structures where two organisms had to compete against each other by harming the opponent. The winning individual passed the test and was able to reproduce leading to a wide variety of improving morphologies and behaviors. • Models of social systems such as the study of emerging societies of individuals which work together • Economical models such as the development of buying and selling strategies • Population genetics models where one examines which groups of genes remain in the population • The study of the interaction between learning and evolution 2.1.1 Interaction between evolution and learning In evolutionary theory, sociology, and psychology one often considers the difference between nature and nurture. Nature is what a newborn organism possesses at its birth. E.g. Chomsky claims that a lot of knowledge for learning a language is already born in the brain of a child when it is born. Nurture is the knowledge, skills, and behaviors which an organism develops through its adaption and learning process while interacting with an environment. The nature/nurture dilemma is often to say whether something was born inside an organism or whether it developed due to the interaction with the environment. Examples of this are whether criminals are born like a criminal or whether they become one due to their education and life. Another example is whether homo-sexuality or intelligence is inborn and stored in the genes or not. Often it is better to say that nature gives a bias towards some behavior or the other, and nurture causes some behaviors to be expressed. E.g. if someone has genes which may be similar to other people having schizophrenia, it is not necessary that such a person would develop the disease, this depends a lot on circumstances but if such a person would suffer from a lot of stress, the genes may be expressed with a much bigger probability. In artificial life simulations a number of machine learning algorithms can be used which can learn from the interaction with the world. Examples of this are reinforcement learning and neural networks. Although these topics will be discussed in separate chapters, they could also be used together with genetic algorithms in an environment consisting of many entities that interact and evolve. Now if we want to study the interaction between evolution and learning we see that evolution is very slow and takes place over generations of individuals, whereas learning is very fast and takes place within an individual (agent). The combination of these 2 leads to two possible effects: • Baldwin effect. Here an individual learns during its interaction with the environment. This learning may increase the fitness of the individual so that individuals which are 28 CHAPTER 2. ARTIFICIAL LIFE good in learning may receive higher fitness values (are better able to act in the environment) than slow learning individuals. Therefore individuals which are good in learning may reproduce with a higher probability leading to offspring which are potentially also very good in learning. Thus, although the skill of learning is propagated to offspring, learned knowledge is not immediately propagated to the offspring. • Lamarckian learning. Here an individual learns during its life and when it gets offspring it also propagates its learned knowledge to its children which then do not have to learn this knowledge anymore. Lamarckian learning is biologically not very realistic, but in computer programs it would be easily feasible. E.g. suppose that a group of robots all go to learn to use a language, then if they meet they can create offspring which immediately possess multiple languages. In this way the evolutionary process could become much more efficient. Although Lamarckian learning has not been realistic from a biological point of view until today, research in genetic engineering has currently invented methods to change the DNA of an organism which can then be transmitted to its offspring. 2.2 Cellular Automata Cellular automata are often used by researchers working in artificial life. The inventor of cellular automata (CA) is John von Neumann who also devised the modern computer and played an important role in (economical) game theory. Cellular automata are decentralised spatial systems with a large number of simple, identical components which are locally connected. The interesting thing of cellular automata is that they are very suited for visualizing processes, and that although they consist of simple components and some simple rules, they can show very complex behaviors. CA are used in a number of fields for biological, social, and physical processes such as: • Fluid dynamics • Galaxy formation • Earthquakes • Biological pattern formation • Forest fires • Traffic models • Emergent cooperative and collective behavior 2.2.1 Formal description of CA A cellular automaton consists of two components: • The cellular space. The cellular space consists of a lattice of N identical cells. Usually P all cells have the same local connectivity to other cells. Let be the set of possible P states for a single cell. Then k = | | is the number of possible states per cell. A cell with index i on time-step t is in state sti . The state sti together with the states of the cells with which i is connected is called the neigborhood nti of cell i. 2.2. CELLULAR AUTOMATA 29 • The transition rule. The transition rule r(nti ) gives an update for cell i to its next state sit+1 as a function of its neigborhood. Usually all cells are synchronously (at the same time) updated. The rule is often implemented as a lookup-table. 2.2.2 Example CA The following gives an example of a CA consisting of a 1-dimensional lattice of 11 states with periodic boundary conditions. The periodic boundary conditions mean that the most left state has the most right state as its left neighbour and vice versa. Since the neigborhood of a cell consists of itself, the state of the cell to the left and to the right, the size of the neigborhood is 3. Therefore, since the number of possible states of a single cell is only 2 (1 or 0), the transition rule consists of 23 = 8 components; for each neigborhood there is one possible successor state for each cell. Note that in this example there are 211 = 2048 possible complete state configurations for the CA. Rule Table R: Neighborhood: 000 001 010 011 100 101 110 111 Output bit 0 1 1 1 0 1 1 0 Lattice: Periodic boundary conditions t=0 1 0 1 0 0 1 1 0 0 1 0 t=1 1 1 1 0 1 1 1 0 1 1 1 Figure 2.1: A cellular automaton using a 1-dimensional lattice, a neigborhood size of 3, and 2 possible states (0 or 1) per cell. The figure shows the CA configuration at time t = 1 computed using the transition rule on the CA configuration at time t = 0. 2.2.3 Dynamics of the CA The CA given in the previous subsection only uses 1 dimension, a neigborhood size of only 3, and 2 possible states per cell. Therefore, it is one of the simplest CA. But even this CA can show complex behavior if we iterate it over time and show the dynamics in the space-time dimensions, see Figure 2.2. It will not be a surprise that cellular automata with more complex transition rules and a larger number of possible states can even shown much more complex behavior. In principle there are other possible iterative networks or automata networks, cellular automata are just one kind of automata of this family. 2.2.4 Processes in CA In Chapter one we have already seen that when we have bounded spaces, we can divide a process resulting in a pattern into three different classes; stable, periodic, and chaotic. Since the cellular configuration state space of a CA is bounded, we can divide patterns created by 30 CHAPTER 2. ARTIFICIAL LIFE Figure 2.2: The sequence of cellular patterns of the CA given in Figure 2.1 generated by iterating it over 100 time steps. a CA into these three groups. Note however that the set of possible complete states of a CA is not only bounded, but also finite. The three possible resulting patterns of a CA are: • A stable state (or point), after entering the stable state, the process remains in the same state and change stops. • A cyclic pattern. The CA traverses through a repeating pattern of some periodic length. If there are multiple sub-patterns each with their own periodic length, the complete pattern will be periodic but with a larger length (e.g. if two sub-patterns which do not interact in the CA have periodic lengths of 2 and 3, the complete pattern will have periodic length 6). • Chaotic behavior. The CA always goes to new, unseen patterns. Since the CA is deterministic, chaotic behavior would be possible. However, since the number of possible states on a computer is finite (although it is often huge), there will after finite time always be a state which has been seen before after which the process repeats the same cycle of configurations. Therefore real chaotic behavior in a CA is not possible, only a periodic cycle of very large length will be possible in a finite CA. It is important to understand that an initial configuration may lead to a sequence of patterns which are all different, after which it may enter a stable state or a periodic cycle. The time until the CA enters a stable state or periodic cycle is called the transient period. Some researchers also like to include structured behavior with the above mentioned three types of behavior. In structured behavior, the behavior seems very structured, but there is no repetitive sequence (at least not for a long time). The dynamics of CA can be influenced by the transition rules. Some transition rules can lead to very simple behavior, whereas others lead to very complex behavior. Some people find it a sport to make a transition rule which has the longest possible periodic length. 2.2.5 Examples of cyclic processes A stable state is easy to make, e.g. it can consist of only 1’s. Then if we make transition rules which always output a 1, we get the resulting stable state from any possible initial 2.2. CELLULAR AUTOMATA 31 configuration after one time step. Periodic cycles can be made in many possible ways. Here we show a simple example. Suppose we have a 2-dimensional lattice. The transition rule is: if 2 neighbours (out of 4) are active, then the cell is activated (becomes 1 or black). Otherwise the cell is not activated (becomes 0 or white). Figure 2.3 shows a lattice without boundary conditions (basically we show a small part of the lattice which is everywhere else empty so that we still have identical connectivity for all states), resulting in a periodic cycle of length 2. Figure 2.3: A cellular automaton configuration with a repeating pattern (the periodic length is 2). Problem. Given a 2-dimensional lattice with transition rule: if one neighbour is active and the cell was inactive, then the cell becomes active. Else if the cell was active at the previous time-step keep the cell active in the next time-step. Otherwise the cell remains inactive. Now evolve the CA in Figure 2.4. t=0 t=1 t=2 t=3 Figure 2.4: The lattice of the CA for the problem. Try to evolve the CA over time with the above given transition rule. 2.2.6 Elimination of basis patterns When one evolves a CA, there are often some regularities involved, and other parts which are completely unpredictable. Therefore some researchers have tried to use methods for eliminating the basis of the evolutionary transitions in a CA. This basis can consist of walls, singularities, etc. and can then be eliminated from the process. The importance of eliminating the basis patterns is to get more inside in possible chaotic or turbulent processes. For example take the process from Figure 2.5. If we remove the regularities from this process, we get the process shown in Figure 2.6. We can see that most of the seemingly complex process is removed, but some embedded particles move about 32 CHAPTER 2. ARTIFICIAL LIFE in a seemingly random way. It turns out that when these embedded particles hit each other, that they will be destroyed. Figure 2.5: A CA process iterated over time. Figure 2.6: The process of Figure 2.5 with the regular basis patterns removed. 2.2.7 Research in CA One important insight is that cellular automata are universal machines. That means that they can compute any computable function and are therefore just as powerful as Turing Machines. This also means that any algorithm which can be implemented on the usual sequential computer can in principle also be implemented in a CA. Conway’s game of life The game of life was invented by the mathematician John Conway in 1970. He chose the rules carefully after trying many other possibilities, some of which caused the cells to die too fast and others which caused too many cells to be born. The game of life balances these tendencies, making it hard to tell whether a pattern will die out completely, form a stable population, or grow forever. Conways’ game of life uses a 2-dimensional lattice with 8 neighbours for each cell. The transition rule(s) are: 2.2. CELLULAR AUTOMATA 33 • If a cell is not active (dead, black, or 1) and it has exactly 3 living neighbours, then the cell will become active (rule of birth) • If a cell is active and it has 2 or 3 neighbours which are active, then the cell stays active (rule of survival) • In all other cases the cell becomes not active (rule of death due to overcrowding or loneliness). One of the interesting things about the game of life is that it has universal computing power, even with the three rules given above. This universal computing power relies on particular patterns known as gliders. Such gliders are living entities which cross the 2-D lattice and which can pass information so that it becomes possible to make logical AND, and NOT gates. For an example of the behavior of a glider look at Figure 2.7. t=0 t=1 t=3 t=4 t=2 Figure 2.7: A glider moving one step diagonal after each 4 time-steps. Another important object in the game of life is the use of a Glider gun. Glider guns can fire gliders and remain stable, which makes it possible to propagate information at some rate. By using multiple glider guns which shoot gliders, we can make interactions between different patterns which are propagated in the cellular space. An example of this is to have two gliders which collapse after which they will be destroyed. This would be useful to make a NOT gate. Making a CA using the game of life rules to compute arbitrary functions is very complicated, because it requires a very careful development of the initial configuration consisting of glider guns and other patterns, but in principle it would be possible. Another interesting pattern in the game of life which shows very complex behavior is known as the R-pentomino which looks as shown in Figure 2.8. It is remarkable that such a simple pattern can create complex behavior including gliders and many other patterns. Development of cellular automata One goal of artificial life is to make artificial systems which can be called alive. For this reproduction seems necessary, and therefore research investigated whether this was possible 34 CHAPTER 2. ARTIFICIAL LIFE Figure 2.8: The pattern called R-pentomino which creates very complex behavior. in cellular automata. In 1966, John Von Neumann constructed a cellular automaton which was able to reproduce itself, demonstrating one of the necessary abilities of living systems. Some other researchers examined whether cellular automata could be used for recognizing languages. In 1972, Smith constructed a CA which could recognize context-sensitive languages such as palindromes (palindromes are strings which are the same if you read them from left to right or from right to left). After that, Mitchell et. al (1994) used genetic algorithms to evolve the transition rules of CA. They tried this using the majority problem as a testbed. In the majority problem a bitstring is given of some size and each bit of the string can be on or off. Now the system should tell whether the majority of bits was on or off. The system could indicate this by making all bits on (off) if the majority was on (off) after a number of iterations. Although this problem can of course be simply solved by counting all bits, such a counter would require some form of register or additional memory which was not inside the cellular automaton. Thus, the question was whether the genetic algorithm could evolve transition rules which can solve the problem. The result was that the genetic algorithms found different solutions which are however not optimal for solving all initial problems (with any order of 1’s and 0’s). Some of the solutions used embedded particles. The reason that no optimal solution was evolved was due to the limited local connectivity which does not allow all bits to communicate to each other. Other cellular automata Cellular automata can also be simply and efficiently used for simulating particular processes such as: • Modelling Traffic. Here a cell is active if there is a car and it is inactive if there is no car. The rules are simple to make too; if the predessor cell is empty, move to that cell, otherwise stop. The CA can be made more complicated by adding in each cell occupied by a car some internal state which models the destination address of the car. Also different speeds can be taken into account. • Modelling Epidemics. Here a cell can be a sick, healthy, or immune person. • Modelling Forest Fires. A cell can be a tree on fire, water, a tree without being on fire, grass, sand, etc. It is also possible to include external parameters such as wind-strength and wind-direction, humidity etc. to influence the behavior of the model. 2.3. ECOLOGICAL MODELS 35 Power laws There is a lot of research using CA for examining chaotic processes as for example studied in sandpile models. In cellular automata sandpile models a granular material in a gravitational field is used (the model can be two or three dimensional). There are two kinds of cells; immovable ground cells and movable sand grains. Grains fall from a source at the top of the window and proceed down to the ground. Grains pile up and redistribute themselves according to the cellular automata rules (e.g. if two cells on top of each other possess grain, and a neighboring cell does not, then the top grain element will make a transition to the empty neighboring cell). One interesting thing of CA implementations of such physical models is that there will sometimes be long shifts of grain during the redistribution. Such a shift is often called an avalanche. Now the interesting thing is that large avalanches will be much less probable than smaller ones, and that the probability distribution law respects a power law (or Zipf’s rule or Pareto distribution). E.g. if we take English words according to their number of occurrences and we rank all the words according to their usage (so rank 1 means the word is used most often), then Zipf’s law states that the size y of occurrence of an event (in this example the occurrence of a word) is inversely proportional to its rank r according to: y = ar −b Where a is some constant and the exponential factor b is close to 1. Such a power law has been demonstrated in many research fields, such as in social studies where the number of users of web-pages are counted to examine Website popularity. There are few web-pages with a large number of users, and many web-pages with few users, and the distribution follows Zipf’s law. Pareto looked at income and found that there are few millionaires whereas there are many people with a modest income. Also for earthquakes, there are few very heavy earthquakes and many smaller ones, etc. To show whether some data provides evidence for a power law, it can be hard to work with very large values appearing in the data. In that case we can make a log-log plot by taking the logarithm on both sides (note that they should be positive) so that we get: log y = log ar −b log y = log a + log r −b log y = log a − b log r (2.1) Thus in a log-lot plot of the data, the resulting function relating two variables should be a line (with negative slope b). 2.3 Ecological Models In biology and ecology, simulation models often make use of cellular automata due to their insightfulness and easy implementation while still providing interesting and complex behaviors. Ecological models can be used to study social phenomena, immunology and epidemics, population dynamics of different species etc. An artificial ecosystem consists of a number of individuals (agents) which: • Occupy a position in the environment • Interact with the environment and with other agents 36 CHAPTER 2. ARTIFICIAL LIFE • Possess some internal state such as amount of energy or money By examining the evolutionary process in an ecosystem it is possible to research the creation and continuity of processes such as: • Cooperation: E.g., trading behavior between individuals • Competition: E.g., fighting behavior between individuals • Imitation: E.g., an agent learns what he should do by looking at and imitating other agents • Parasitic behavior: An individual profits from another individual whereas the other individual is harmed by this. Parasitic behavior can be found in many places in nature, a good example of this are viruses. • Communities: If a large group of individuals are put together they might form communities for the benefit of all. An example of this is fish-schools which can better protect the fish from predators (especially the fish which swim in the middle). Another advantage of communities is that individuals can cooperate and specialise on their own task. 2.3.1 Strategic Bugs Bedau and Packard developed the artificial life model called Strategic bugs (1992). This model of an ecosystem uses individuals which try to find food and reproduce. The model consists of: • An environment modelled as a 2-dimensional lattice. • A cell in the environment can be occupied by food or by a bug or is empty • Food will grow automatically in the environment; food is added in a cell with some probability if there was no food or bug there • Bugs survive by finding food • Bugs use energy to move and die if they do not have any energy anymore • Bugs can clone themselves or reproduce with another bug if they have sufficient energy. The behavior of a bug evolves from the interaction of the policy of the bug and the environment. The bug’s policy uses a lookup table to map environmental inputs to actions. An example rule is: if there are more than 5 food units in the east, then make a step to the east. Bedau and Packard tried to come up with a measure for the evolutionary dynamics. If such an ecosystem is simulated and new individuals will be generated all the time, then the question is “What is really new and which individual traits are evolved in the system?” For this they examined the evolutionary activity which looks at the genetic changes in the chromosome strings. The experiments showed that there were waves of evolutionary activity, new genetic material was often found after some time and then stayed in the population for some period. Thus it was seen that new genetic material and therefore behavior was found and exploited during the evolutionary process. 2.4. ARTIFICIAL MARKET MODELS 2.4 37 Artificial Market Models Financial markets such as stock markets are difficult to predict. Some might think it is completely random behavior, but the investors involved do not seem to make random, but on the contrary, rational decisions. Thus it seems more to be a chaotic process emerging from the large number of investors and unforeseen circumstances. One important question is to examine under what conditions predictions about the dynamics of financial markets will be possible. To study this question we first have to look at the efficient market hypothesis (EMH). In an information efficient market all price fluctuations are unpredictable if all necessary investment information is taken into account by the investors. The information is taken into account if the expectancies, intentions, and (secret) information of the market participants is incorporated in the prices. From this follows that when a market is more efficient, that the price fluctuations which are generated by the market are more random (and therefore unpredictable). Basically this is caused by the fact that if there would be only a small information advantage by some investors, that the actions of these investors will immediately correct the prices, so that further gain will become impossible. 2.4.1 Are real markets predictable? Some people tend to make a lot of gain from stock markets. One important case is that of an analyst which has such an importance that (s)he is considered a guru for predicting which stocks will rise and fall. If the guru tells everyone that stock X will increase a lot, then there will be many people buying that stock. The effect is that of a self-fulfilling prophecy; the stock price will increase since the prophet announced it and many people believe it and will buy that stock. Only the buyers which were the last in buying that stock will loose money, the investors which are quickest will gain money and sell them immediately after the price has increased sufficiently. There are other cases and reasons to believe that stock markets can be predictable. One reason is that investors trade-off expected risk and expected gain. This means that a risk-aversive (in contrary to a risk-seeking) investor will sell stocks with a high risk but also with an expected gain. The distribution between risk-aversive and risk-seeking individuals will then cause different price fluctuations, which are therefore not completely random. In fact a number of studies have indicated that price fluctuations are not completely random. When we examine the efficient market hypotheses, then it requires rational and completely informed investors. However these assumptions are not realistic. Investors are not completely rational and sometimes hard to predict. Furthermore, information is often difficult to interpret, technologies and companies change, and there are costs associated with transactions and information gathering. One seemingly efficient method for trading stocks is to examine the relative competitive advantage between different markets. When one compares some market to other markets, one can see that one market (such as a market in obligations) was more promising during the previous period, so that it will be likely that more investors will step to that relatively more advantageous market which leads to more profit on that market. Comparing markets (e.g. between countries, or kind of markets — e.g. obligations versus stocks) can therefore be a good option. 38 CHAPTER 2. ARTIFICIAL LIFE 2.4.2 Models of financial theories Already for a long time there have been people trying to come up with financial theories, since if it would work one could get a lot of money out of it. It should be said, however, that if you would ever find a theory which works, that you should not tell it to other people. The reason is that your advantage will be lost in using this theory if everyone knows it. People could even trade in such a way that you will loose money with your once so well working theory. Therefore we can only show general approaches that have been invented to come up with models to predict the price fluctuations: • Psychological models. Here the model tries to analyse the risk-taking behavior of investors and examines how human-attitudes to the market influences the stock prices. • Learning models. Here data about the stock prices of the past is used to train a model to predict its development in the future. • Agent models. Here investors are modelled as agents which use particular strategies. By letting the modelled agents interact the complex dynamic of stock markets can be simulated. • Evolutionary algorithms for developing strategies. Here the evolution of strategies of investors is mimicked. Competitive strategies could be used to create other strategies. Finally a strategy which was observed to gain most money in the past could be used to trade in the future. 2.5 Artificial Art and Fractals Iterating a simple function can create very complex, artistic, patterns. This was shown by Bernoit Mandelbrot who discovered the Mandelbrot set, which is a fractal. A fractal is a pattern which is self-similar to different scales, so if we look at a zoomed out picture of some details of the fractal we can recognize features which were also shown in the bigger pattern. It should be said that a fractal can be very complex and not all small scale components look similar to the whole pattern. So how can we get the Mandelbrot set? First of all consider the function: xk+1 = x2k If we look at the starting values for xk for which the iteration converges to a single point, we can see that these are the values −1 < x0 < 1, and the final point will be x∞ = 0. If x0 < −1 or x0 > 1 then the value after many iterations goes to infinity. If x0 is -1 or 1 then the point will stay in 1, but this point is unstable, since small perturbations (changes of xk ) will let the value go to 0 or ∞. In principle the values for which the iteration stays bounded is called the Julia set, although more interesting Julia sets are associated to Mandelbrot sets as we will see later. So for the function f (x) = x2 , the Julia set would be the region between -1 and 1. In the space of real numbers, not so many interesting things can happen. But now let’s consider the use of complex numbers. Complex numbers consist√of a real and an imaginary part, so we write them as: x = ai + b, where i is defined as i = −1. We can add, subtract, multiply and divide complex numbers just as we can with real numbers. For example if we take x = 3i, then x2 = −9. Complex numbers are used in many sciences such as in quantum mechanics and electric engineering, but we will not go into details about them here. 2.5. ARTIFICIAL ART AND FRACTALS 39 Now consider the functions of the type: xk+1 = x2k + C The question is: if we start with x0 = 0, for which complex numbers C will the iteration of this function not become infinite? This set of complex numbers for which the iterations will stay bounded is called the Mandelbrot set, and it is displayed in Figure 2.9. We can see its complex shape in the complex plane (the real part is depicted on the x-axis and the imaginary part of the points belonging to the set are shown on the y-axis). The points in black belong to the Mandelbrot set, and the others do not. This is an example of a fractal, a self-similar structure. The word fractal was also invented by Mandelbrot. Figure 2.9: The Mandelbrot fractal Now look what happens if we zoom-in in the picture. The zoomed in figure of the lower part of Figure 2.9 is shown in Figure 2.10. Note that this pattern is very similar to the original Mandelbrot set, and we already see that there are much more self-similar structures to be found in the picture. Figure 2.10: A zoomed in pattern of the Mandelbrot fractal Now, consider again the iterated function xk+1 = x2k + C 40 CHAPTER 2. ARTIFICIAL LIFE But, now we have chosen a value for C which is an element of the Mandelbrot set. Then another question we can ask is; which initial values x0 in the complex plane cause the iteration to remain bounded? This set which belongs to a particular value of C is called the Julia set for C. An example pattern from the Julia set is shown in Figure 2.11. Figure 2.11: An example pattern from the Julia set Computer artists like to use fractals, since although the equations are simple, as long as they are non-linear (linear maps cannot produce interesting patterns like fractals) they can produce a large variety of complex patterns, and zooming in in the pictures creates many other patterns. This is just another example of using simple rules to create very complex patterns. 2.6 Conclusion Artificial life is useful for simulating many biological, physical, sociological, and economical processes. One goal of artificial life is to understand the principles underlying living entities and the emergence of life forms. Artificial life can be combined with genetic algorithms for optimizing individual behaviors by adapting them to the (changing) environment. If multiple individuals adapt themselves and also adapt the environment, the resulting dynamics can be very complex and unpredictable. Even with simple entities such as used in cellular automata, complex behavior can result from the interaction between simple components. Cellular automata are very useful for modelling and visualizing spatial processes such as forest fires and can be used to study the behavior of many different complex processes. One interesting thing is that cellular automata are just as powerful as Turing machines which means that any computable function can be implemented using a cellular automaton. Another aspect in artificial life is the study of price-dynamics in financial markets. Although an efficient market would be completely unpredictable, in reality there are many reasons to believe that price-fluctuations are not completely random. Making models for predicting price changes is a challenging research topic, although found theories may never be published, since they would eliminate their usefulness if they are known by many investors. Finally we have shown that using the complex plane, simple iterative functions can create complex patterns, called fractals. Examples of these are the Mandelbrot and Julia sets. Computer artists like to use fractals, because they look complex, but are easy to make. Fractals also play a role in chaotic systems as we will see in a later chapter. Chapter 3 Evolutionary Computation Inspired by the success of nature in evolving such complex creatures as human beings, researchers in artificial intelligence have developed algorithms which are based on evolution theory. The class of these algorithms are called evolutionary algorithms and consists among others of genetic algorithms, evolutionary strategies, and genetic programming. Genetic algorithms (GAs) are the most famous ones and they were invented by John Holland. Evolutionary algorithms are optimisation algorithms that are inspired on Darwin’s evolution theory, known as natural selection or survival of the fittest and they were developed during the 1960’s and 1970’s. One of their strengths is that they can find very good solutions in very large search spaces, where exhaustive search (trying out all possible solutions) would cost much too much time. The principle of evolutionary algorithms is that solutions are evaluated after which the best solutions are allowed to reproduce most offspring (children). If the parent individuals form good solutions, they are likely to possess good building blocks of genetic material (the genetic material makes up the solution) that may be useful for creating new individuals. Genetic algorithms usually take two parent individuals and they recombine their genetic material to produce a child that inherits genetic material from both parents. If the child performs well on the evaluation test (evaluating an individual and measuring how well an individual performs is commonly done by the use of a fitness function), it will also be selected for reproduction and in this way the genetic material can again be propagated to new generations. Since the individuals themselves will usually die (they are often replaced by individuals of the next generation), Richard Dawkins came with the selfish gene hypothesis. This hypothesis says that basically the genes are alive and use the mortal individuals (e.g. us) as hosts so that they are able to propagate themselves further. Some genes may be found in many individuals, whereas other genes are only found in a small subset of individuals. In this way, the genes seem to compete for hosts, and genes which occupy well performing individuals are likely to be able to reproduce themselves. The other way around we can say that genes which occupy well performing individuals give advantages for the individual and therefore it is good if they are allowed to reproduce. In this chapter we will look at evolutionary algorithms in general and focus on genetic algorithms, although most issues involved also play a role for other evolutionary algorithms. We first describe optimisation problems and then examine which steps should be pursued for constructing an evolutionary algorithm, and what kind of representations are useful for the algorithm for solving a particular problem. Finally we will examine some other evolutionary algorithms. 41 42 3.1 CHAPTER 3. EVOLUTIONARY COMPUTATION Solving Optimisation Problems A lot of research in computer science and artificial intelligence has been devoted to solving optimisation problems. There are many different optimisation problems; e.g. one of them is shortest path-planning which requires the algorithm to compute the shortest path from a state to a particular goal state. Well known applications for such algorithms are planners used by cars (e.g. the Carin system) or for train-passengers. In principle shortest path problems are simple problems, and can be solved efficiently by algorithms such as Dijkstra’s shortest path algorithm or the A* algorithm. These algorithms can compute the shortest path in a very short time for problems consisting of more than 100,000 cities (or nodes if we formalise the problem as a graph using nodes and weighted edges representing the distances of connections between nodes). On the other hand, there also exist combinatorial optimisation problems which are very hard to solve. One example is the traveling salesman problem (TSP). This problem requires that a salesman goes to N customers which live in different cities, so that the total tour he has to make from his starting city to single visits to all customers and back to his starting place should be minimal. This problem is known to be NP-complete and therefore unless P = N P not solvable in polynomial time. For example if we use an exhaustive search algorithm which computes and evaluates all possible tours, then it has to examine about N ! tours, which increases exponentially with N . Thus for a problem with 50 cities, the exhaustive search algorithm would need to evaluate 50! solutions. Let’s say that evaluating one solution costs 1 nanosecond (which is 10−9 second), then evaluating all possible solutions would cost about 9.6× 1047 years, which is therefore much longer than the age of the universe. Clearly exhaustive search approaches cannot be used for solving such combinatorial optimisation problems and heuristic search algorithms have to be used which can find good solutions in a short time, although they do not always come up with the optimal solution. There is a number of different heuristic search algorithms such as Tabu search, simulated annealing, multiple restart local hill-climbing, ant colony algorithms, and genetic algorithms. Genetic algorithms differ from the others in the way that they keep a population of solutions and use recombination operators to form new solutions. 3.1.1 Formal description of an optimisation problem Optimisation problems consist of two components; the representation space and the evaluation (or fitness) function. The representation space denotes all possible solutions. For example if we want to solve the TSP, the representation space consists of all possible tours which are encoded in some specific way. If we want to throw a spear at some target and can select the force and the angle to the ground, the representation space might consist of 2 continuous dimensions which take on all possible values for the force and angle. On the other hand, one could restrict this space by allowing only angles between 0 and 360 degrees and positive forces which are smaller than the maximum force one can use to throw the spear. Let’s call the representation space S and a single solution s ∈ S. The evaluation function (which in the context of evolutionary algorithms is usually called a fitness function) compares different solutions to each other. Although solutions could be compared on multiple criteria, let’s assume for now that there is a single fitness function f (.) which maps a solution s to a specific fitness value f (s) ∈ ℜ. The goal is to find the solution smax which has the maximal fitness: f (smax ) ≥ f (s) ∀ s 3.1. SOLVING OPTIMISATION PROBLEMS 43 It may happen that there are multiple different solutions with the same maximal fitness value. We may then require to find all of them, or only one (which is of course simpler). So the goal is to search through the representation space for a solution which has the maximal possible fitness value given the fitness function f (.). Since the representation space may consist of a huge number of possible solutions or may be continuous, the optimal solution may be very hard to find. Therefore, in practice algorithms are compared by their best found solutions within the same amount of computational time. Among these algorithms there could also be a human (expert) which tries to come up with a solution, but if the fitness function gets more complicated and the representation space becomes bigger, the advantage of computers in their ability to try out millions of solutions within a short period of time outcompetes the ability of any human in finding a good solution. 3.1.2 Finding a solution Heuristic search algorithms usually start with one or more random solutions which are then evaluated. For example local hill-climbing starts with a random solution and then changes this solution slightly in some way. Then, this new solution is evaluated and if it is a better one than the previous one, it is kept and otherwise the previous one is kept. This simple process is repeated until the solution is good enough or time is expired. The local hill-climbing algorithm looks as follows: • Generate initial solution s0 ; t = 0 • Repeat until stop criterium holds: • snew = change(st ) • if f (snew ) ≥ f (st) then st+1 = snew • else st+1 = st . • t = t +1 Using this algorithm and a random initial solution s0 , a sequence of solutions s0 , s1 , . . . , sT is generated, where each later solution has a larger or equal fitness value compared to all preceding solutions. The most important function in this algorithm is the function change. By changing a solution, we do not mean to generate a new random solution, since if we would generate and evaluate random solutions all the time, there would not be any progressive search towards a better solution. Instead random search would probably work just as good as exhaustive search and is not a heuristic search algorithm. So it should be clear than the function change should keep some part of the old solution in the new solution and change some other part. As an example consider a representation space consisting of bitstrings of some specific length N . It is clear that the representation space in this case is: S = {0, 1}N . Now we could make a function change which changes a single bit (i.e. mutating it from 0 to 1 or from 1 to 0). In this case a solution would have N neighbours with this change operator. Now one possible local hill-climbing algorithms would try all solutions in the neighbourhood of the current solution and then select the best one as snew . Or, alternatively, it could select a single random solution from the neighbourhood. In both cases, for many fitness functions, the local hill-climbing algorithm could get stuck in a local optimum. A local optimum is a solution which is not the global optimum (the best solution in the representation space), but 44 CHAPTER 3. EVOLUTIONARY COMPUTATION one which cannot be improved using the specific change operator. Thus, a local optimum is the best one in a specific subspace (or attractor in the fitness landscape). Since the local hill-climbing algorithm would not generate a new solution if it has found a local optimum, the algorithm gets stuck and will not find the global optimum. This could be avoided of course by changing the change operator, however this is not trivial. Since if we allow the change operator to change two bits, the neighbourhood would become bigger, but since still not all solutions can be reached, we can again easily get trapped in a local optimum. Only if we allow the change operator to change all bits, we may eventually always find the global optimum, but as mentioned before changing all bits amounts up to exhaustive or random search. A solution to the above problem is to change bits with a specific small probability. In this way, usually small changes will be made, but it is always possible to escape from a local minimum with some probability. Another possibility is used by algorithms such as simulated annealing that always accepts improving solutions, but also can select a new solution with lower fitness value than the current one, albeit with a probability smaller than 1. In specific, simulated annealing accepts a new solution with probability: min(1, e(f (snew )−f (st ))/T ) where T is the temperature which allows the algorithm to explore more (using a large T ) or to only accept improving solutions (using T = 0). Usually the temperature is cooled down (annealed) starting with a high temperature and ending with a temperature of 0. If annealing the temperature from infinity to 0 is done with very slow steps, the algorithm will finally converge to the global optimum. However, in practice annealing should be done faster and the algorithm usually converges to a local maxima just like local hill-climbing. A practical method to deal with this is to use multiple restarts with different initial solutions and finally selecting the best found solution during all runs. 3.2 Genetic Algorithms In contrast to local hill-climbing and simulated annealing, genetic algorithms use a population of individuals to search for solutions. The advantage of a population is that the search is done in a distributed way and that individuals are enabled to exchange genetic material (in principle the individuals are able to communicate). Making the search using a population also allows for parallel computation, which is especially useful if executing the fitness function costs a long time. However, it would also be possible to parallellize local hill-climbing or simulated annealing, so that different initial solutions are brought to different final solutions after which the best can be selected. Therefore the real advantage lies in the possibility of individuals to exchange genetic material by using recombination operators and by the use of selective pressure on the whole population so that the best individuals are most likely to reproduce and continue the search for novel solutions. A genetic algorithm looks as follows in pseudo-code: 1. Initialize a population of N individuals 2. Repeat: (a) Evaluate all individuals in the population using the fitness function (b) Repeat N times: • Select two individuals for reproduction according to their fitness values 3.2. GENETIC ALGORITHMS 45 • Recombine these two parent individuals to create one offspring • Mutate the offspring • Insert the offspring in a new population (c) Replace the population by the new population There is a state of every individual and since a population consists of N individuals, the population also has a state. Therefore after each iteration of this algorithm (usually called a generation), the population state makes a transition to a new state. Finally after a long time, it may happen that the population contains the optimal solution. Since the optimal solution may get lost, we always store the best solution found so far in some place (or alternatively the Elitist strategy may be used that always copies the best found solution to the new population). 3.2.1 Steps for making a genetic algorithm For solving real world problems with genetic algorithms, such as a time-tabling problem which requires us to schedule for example busses to drivers so that all busses have one driver and no driver has to drive when (s)he indicated that (s)he does not want to drive, the question arises how to make a representation of the problem. This is often more art than science, and research has indicated that particular representations allow better solutions to be found much earlier. For other problems, making a representation does not need to be hard but the chosen representation can influence how fast good solutions are found. Take for example the colouring problem which is also a NP hard problem. In a colouring problem multiple cities may be connected to each other and we want to assign different colors to cities if they are connected. The goal is to find a feasible solution while minimizing the amount of used colors. To solve this problem we may choose a representation which consists of N numbers where N is the number of cities and the number indicates the assigned color to the city. On the other hand, we could also design a representation in which we have a maximum of M colors and N M binary states in which each element of the list of N M states indicates whether the city has that color or not. One should note that the second representation is larger, although it requires only binary states. Furthermore in the second representation it is much easier that false solutions (solutions which do not respect the conditions of the problem) are generated, since it allows for cities to have multiple or 0 colors. Therefore, the first representation should be preferred. Except for constructing a representation, we also need to find ways to initialize a population, to construct a mapping from genotype to phenotype (the genotype is the encoding in the chromosome on which the genetic operators work, whereas the phenotype is tested using the fitness function), and also to make a fitness function for evaluating an individual (some fitness functions would favour the same optimal solution, but one of these can be more useful for the genetic algorithm to find it). There are also more specific steps; we need to design a mutation operator, a recombination operator, we have to determine how parents are selected for reproduction, we need to decide how individuals are used to construct a new population, and finally we have to decide when the algorithm has to stop. We will explain these steps in more detail below. 46 3.2.2 CHAPTER 3. EVOLUTIONARY COMPUTATION Constructing a representation The first decision we have to make when we want to implement a genetic algorithm for solving a specific problem is the representation we want to use. As mentioned above, there are often many possible representations, and therefore we have to examine the problem to choose one. Although the representation is often the first decision, we also have to take into account a possible fitness function and which genetic operators (mutation and crossover) we would like to use. For example, if we want to evolve a robot which drives as fast as possible without hitting any obstacles, we could decide to use a function which maps sensory information of the robot to actions (e.g. left motor speed and right motor speed). The obvious representation used in this case would consist of continuous parameters making up the function. Therefore, we may prefer to use particular representations which allow for continuous numbers, although this is not strictly necessary since we may also construct the genotype to phenotype mapping in some way that converts discrete symbols to continuous numbers. Binary representations and finite discrete sets The most often used representation in genetic algorithms uses binary values, encoding a chromosome using a bitstring of N bits. See Figure 3.1 for an example. Of course it would also be possible to use a different set of discrete values, e.g. like the one used by biological DNA: {C, G, A, T }. It depends on the problem whether a binary representation would be more suitable than using different sets of values. It should be said that by concattenating two neighboring binary values, one could also encode each value from a set containing 4 different values. However, in this case a binary encoding would not be preferred, since the recombination operator would not respect the primitive element being a single symbol and could easily destroy such symbols through crossover. Furthermore, a solution in which primitive symbols would be mapped to a single gene would be more readable. Chromosome 1 0 1 0 0 0 1 1 Gene Figure 3.1: A chromosome which uses a binary representation and which is therefore encoded as a bitstring. If we have a binary representation for the genotype, we can still use it to construct different representations for phenotypes. It should be said that search using the genetic operators takes place in the genotype space, but the phenotype is an intermediary representation which is easier to evaluate by the fitness function. Often, however, the mapping from genotype to phenotype can be an identity mapping meaning that they are exactly the same. For example, using the 8-bit phenotype given before, we can construct an integer number by computing the natural value of the binary representation. E.g. in the example genotype of 3.2. GENETIC ALGORITHMS 47 Figure 3.1 we could convert the genotype to the integer: 27 +25 +21 +20 = 163. Alternatively, if we want a phenotype which is a number between 2.5 and 20.5 we could compute x = 2.5 + 163 256 (20.5 − 2.5) = 13.9609. Thus, using a mapping from phenotype to genotype gives us additional freedom. In the first example, small changes of the genotype (e.g. mutating the first bit) would correspond to big changes in the phenotype (changing from 163 to 35). We note, however, that in the second example, not all solutions between 2.5. and 20.5 can be represented using the limited precision of the 8-bit genotype. Representing real numbers If we want to construct a phenotype of real numbers, it is a more natural way to encode these real numbers immediately in the genotype and to search in the space of real numbers. We have already seen that this can lead to more precise solutions, since the binary encoding would have a limited precision unless we use a very long bitstring. Another advantage is that the encoding is much smaller, although this comes at the cost of creating a continuous search space. Thus, if our problem requires the combined optimisation of n real numbers we could use a genotype X = (x1 , x2 , . . . , xn ) where xi ∈ ℜ. The representation space would therefore be S = ℜn . For real numbered representations, we have to use a fitness function which maps a solution to a real number, therefore the fitness function is a mapping f : ℜn → ℜ. This encoding is often used for parameter optimisation, e.g. when we want to construct a washing machine which has to determine how much water to consume, how much power to use for turning the cabinet, etc. The fitness function could then trade-off costs versus the quality of the washing machine. Representing ordering problems For particular problems there are natural constraints which the representation should obey. An example is the traveling salesman problem which requires a solution that is a tour from a starting city to a last city while visiting all cities in between exactly once. A natural representation for such an ordering problem is to use a list of numbers where each number represents a city. An example is the chromosome in Figure 3.2. 3 4 8 6 1 2 7 5 Figure 3.2: A chromosome which uses a list encoding of natural numbers to represent ordering problems. 3.2.3 Initialisation Before running the genetic algorithm, one should have an initial population. Often one does not have any a-priori knowledge of the problem so that the initialisation is usually done using a pseudo-random generator. As with all decisions in a GA, the initialisation also depends on the representation, so that we have different possible initialisations: 48 CHAPTER 3. EVOLUTIONARY COMPUTATION • Binary strings. Each single bit on each location in the string of each individual receives 50% probability to become a 0 and 50% probability to become a 1. Note that the whole string will likely possess as many 0’s and 1’s, if we would have a-priori knowledge, we might want to change the a-priori generation constant of 50%. For discrete sets with more than 2 elements, one can choose uniform randomly between all possible symbols to initialize each location in a genetic string. • Real numbers. If the space of the real numbers is bounded by lower and higher limits, it would be natural to generate a uniform number in between these boundaries. If we have an unbounded space (e.g. the space of real numbers) then we cannot generate uniform randomly chosen numbers, but have to use for example a Gaussian function with a mean value and a standard deviation for initialisation. If one would not have any a-priori information about the location of fit individuals, initialisation in this case would be difficult, and one should try some short runs with different initialisations to locate good regions in the fitness landscape. • Ordered lists. In this case, we should take care that we have a legal initial population (each city has to be represented in each individual exactly one time). This can be easily done by generating numbers randomly and eliminating those numbers that have been used before during the initialisation of an individual coding a tour. Sometimes, one possesses a-priori knowledge of possible good solutions. This may be through heuristic knowledge or from previous runs of the genetic algorithm or another optimisation algorithm. Although this has the advantage that the starting population may have higher average fitness, there are also some disadvantages to this approach: • It is more likely that genetic diversity in the initial population is decreased, which can make the population converge much faster to a population of equal individuals. • Due to the initial bias which is introduced in this way, it is more difficult for the algorithm to search through the whole state space, possibly making it almost impossible to find a global optimum which is distant from the individuals in the initial population. 3.2.4 Evaluating an individual Since most operations in a genetic algorithm can be executed in a very short time, the time needed for evaluating an individual is often a bottleneck. The evaluation can be done by a subroutine, a (black-box) simulator, or an external process (e.g. robots). In some cases evaluating an individual can be quite fast, e.g. in the traveling salesman problem the evaluation would cost at most a number of computations which is linear in the number of cities (i.e. one can simply sum all the distances between cities which are directly connected in the tour). In other cases, especially for real world problems, evaluating an individual can consume a lot of time. For example if one wants to use genetic algorithms to learn to control a robot for solving some task, even the optimal controller might already take several minutes to solve the task. Clearly in such a case, populations can not be very large and the number of generations should also be limited. One method to reduce evaluation time for such problems is to store the evaluations of all individuals in memory, so that a possible solution which has already been evaluated before, does not need to be re-evaluated. 3.2. GENETIC ALGORITHMS 49 If evaluating time is so large, that too few solutions can be evaluated in order for the algorithm to come up with good solutions starting with a random initial population, one could try to approximate the evaluation function by a model which is much faster albeit not as accurate as the real evaluation function. After evolving populations using this approximate fitness function, the best individuals may be further evolved using the real fitness function. A possibility for computing an approximate fitness function is to evaluate a number of solutions and to use a function approximator (such as a neural network) to learn to approximate the fitness landscape. Since the approximate fitness function often does not approximate the real one accurately, one should not run too many generations to find optimal solutions for this approximate fitness function, but only use it to come up with a population which can perform reasonably in the real problem. In case of robotics, some researchers try to come up with very good simulators which makes the evolution much faster than executing the robots in the real world. If the simulator accurately models the problem in the real world, good solutions which have been evolved using the simulator often also perform very well in the real world. Another function provided by the fitness function is to deal with constraints on the solution space. For particular problems there may be hard or soft constraints which a solution has to obey. Possibilities to deal with such constraints are: • Use a penalty term which punishes illegal solutions. A problem of this solution is that in some cases where there are many constraints a large proportion of a population may consist of illegal solutions, and even if these are immediately eliminated, they make the search much less efficient. • Use specific evolutionary operators which make sure that all individuals form legal solutions. This is often preferred, but can be harder to implement, especially if not all constraints in the problem are known. 3.2.5 Mutation operators In genetic algorithms there are two operators which determine the search for solutions in the genotype space. The first one is mutation. Mutation is used to perturbate (slightly change) an individual so that a new individual is created, but which still resembles the previous one (in genetic algorithms mutation is often performed after recombination so that the previous one is already a new individual). Mutation is an important operator, since it allows us to explore the representation space. Without it, it would become possible that the whole population contains the same allele (value on some locus or location in the genetic string), so that different values for this locus would never be examined. Mutation is also useful to create more diversity and to escape from a converged population which otherwise would not explore different solutions anymore. It is possible to use different mutation operators for the same representation, but it is important that: • At least one mutation operator should make it possible to search through the whole space of solutions • The size of the mutation operator should be controllable • Mutation should create valid (legal) individuals 50 CHAPTER 3. EVOLUTIONARY COMPUTATION Mutation for binary representations Mutation on a bitstring usually is performed by changing a bit to its opposite (0 → 1 or 1 → 0). This is usually done on each locus of a genetic string with some probability Pm . Thus the mean number of mutations is N Pm where N is the length of the bitstring. By increasing Pm the algorithm becomes more explorative, but may also lose more important genetic material that was evolved before. A good heuristic to set Pm is to set it as N1 which creates a mean number of mutations of 1. Figure 3.3 shows schematically how mutation is done on a bitstring. 1 1 1 1 1 1 1 1 Before mutation 1 1 1 0 1 1 1 1 After mutation Mutated Gene Figure 3.3: A chromosome represented as a bitstring is changed by mutation. In case of multi-valued discrete representations with a finite number of elements, mutation is usually done by first examining each locus and using the probability Pm to choose whether mutation should occur, and if a mutation should occur, each possible symbol has equal probability to replace the previous symbol on that location in the chromosome. Mutation for real numbers If a representation of real numbers is used, we also need a different mutation operator. We can use the same way as before to select a locus which will be mutated with probability Pm . But now the value of the locus is a real number. We can perturb this number using a particular form of added randomness. Usually Gaussian distributed zero-mean noise is used with a particular standard deviation, so that we get for the chosen value of the gene xi in a chromosome: xi = xi + N (0, σ) Mutation for ordered representations For mutating ordered representations we should try to make sure that the resulting individual respects the constraints of the problem. That means that for a traveling salesman problem all cities are used exactly one time in the chromosome. We can do this by using a swap of two values on two different loci. Thus we generate two locations and swap their values as demonstrated in Figure 3.4. 3.2.6 Recombination operators The advantage of using recombination operators is that it becomes possible to combine useful genetic material from multiple parents. Therefore, if one parent has particular good building 3.2. GENETIC ALGORITHMS 51 7 3 1 8 2 4 6 5 7 3 6 8 2 4 1 5 Figure 3.4: A chromosome represented as an ordered list is mutated by swapping the values of two locations. blocks, and another parent has different good building blocks, the offspring by recombining these parents may immediately possess all good building blocks from both parents. Of course this is only the case if recombination succeeds very well, an offspring may also contain those parts of the parents which are not useful. However, good individuals will be kept in the population and the worse ones will die, so that it is often still useful to use recombination. A recombination operator usually maps two parent individuals to one or two children. We can use one or more recombination operators, but it is important that: • The child must inherit particular genetic material from both parents. If it only inherits genetic material from one of the parents, it is basically a mutation operator • The recombination operator must be designed together with the representation of an individual and the fitness function so that recombination is not often a catastrophe (generating bad individuals) • The recombination operator should generate legal individuals, if possible Recombination for binary strings For binary strings there exist a number of different crossover operators. One of them is 1-point crossover in which there is a single cutting point that is randomly generated after which both individuals are cut at that point in two parts. Then these parts are combined, resulting in two possible children of which finally one or both will be kept in the new population (usually after mutating them as well). Figure 3.5 shows how 1-point crossover is done on bitstrings. Instead of using a single cutting point, one could also use two cutting points and take both sides of one parent together with the middle part of the other parent to form new solutions. This crossover operator is known as 2-point crossover. Another possibility is to use uniform crossover, here it is decided by a random choice for each location separately whether the value of the first individual or of the second individual is used in the offspring. We can see the different effects of a generated crossover operator using crossover masks. Figure 3.6 shows a crossover mask which is used to create two children from two parents. Note that these recombination operators are useful for all finite discrete sets and thus wider applicable than only for binary strings. 52 CHAPTER 3. EVOLUTIONARY COMPUTATION Cut Cut 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Parents 1 1 1 0 0 0 0 0 0 0 1 1 1 1 Children Figure 3.5: The recombination operator known as 1-point crossover. Here the part left to the cutting point of the first parent is combined with the part right to the cutting point of the second parent (and vice versa). 1 1 0 0 1 0 0 Mask (Uniform) 1 1 1 1 0 1 1 0 0 1 0 0 0 0 Parents 1 1 1 0 0 0 0 0 0 1 1 0 1 1 Children Figure 3.6: The effect of a recombination operator can be shown by a crossover mask. Here the crossover mask is uniformly generated, after which this mask is used to decide which values on which location to use from both parents in the offspring. Recombination for real numbered representations If we have representations which consist of real numbers, one might also want to use the recombination operators that are given above for binary strings. However, another option is to average the numbers on the same location, so that we get: (xc1 = xa1 + xb1 xa + xbn , . . . , xcn = n ) 2 2 The two different recombination operators for real numbers can also be used together by randomly selecting one of them each time. Recombination for ordered representations Designing recombination operators for ordered representations is usually more difficult, since we have to ensure that we get children that respect the constraints of the problem. E.g. if we would use 1-point crossover for the TSP, we will almost for sure get children which have 3.2. GENETIC ALGORITHMS 53 some cities twice and some other cities no time in their representation, which would amount to many illegal solutions. Penalising such solutions would also not be effective, since almost all individuals would become illegal. There has been a lot of research for making recombination operators for ordered representations, but we only mention one possible recombination operator here. Since the constraint on a recombination operator is that it has to inherit information from both parents, we start by selecting a part of the first parent and copy that to the child. After this, we want to use information from the second parent about the order of values which is not yet copied to the child. This we do by looking at the second parent, examining the order in the second parent of the cities which are not yet inside the child, and attaching these cities in this order to the child. Figure 3.7 shows an illustration of this recombination operator for ordered lists. Parent 1 7 3 1 Parent 2 8 2 4 6 5 4 3 2 8 6 7 1 5 7,3,4,6,5 7 5 1 8 2 1 8 2 Order: 4,3,6,7,5 4 3 6 Child 1 Figure 3.7: A possible recombination operator for ordered representations such as for the TSP. The operator copies a part of the first parent to the child and attaches the remaining cities to the child while respecting their order in the second parent. 3.2.7 Selection strategies Another important topic in the design of GAs is to select which parents are allowed to create children. If one would always randomly choose parents for creating children, there would not be any selective pressure for obtaining better individuals. Thus, good individuals must have a larger probability for generating offspring than worse individuals. The selection strategy determines how individuals of a population are chosen for generating offspring. Often the selection strategy allows bad individuals to generate offspring as well, albeit with a much smaller probability, although some selection strategies only create offspring with the best individuals. The reason for using less than average fit individuals for creating offspring is that they can still contain good genetic material and that the good individuals may resemble each other very much. Therefore, using bad individuals may create more diverse populations. In the following we will describe a number of different selection strategies. 54 CHAPTER 3. EVOLUTIONARY COMPUTATION Fitness proportional selection In fitness proportional selection, parents which are allowed to reproduce themselves are assigned a probability for reproduction that is based on their fitness. Suppose all fitness values are positive, then fitness proportional selection computes the probability pi that individual i is used for creating offspring as: fi pi = P j fj where fi indicates the fitness of the ith individual. If some fitness values are negative, one should first subtract the fitness of the worst individual to create only new fitness values which are positive. There are some disadvantages to this selection strategy: • There is a danger of premature convergence, since good individuals with a much larger fitness value than other individuals can quickly take over the whole population • There is little selection pressure if the fitness values all lie close to each other • If we add some constant to all fitness values, the resulting probabilities will become different, so that similar fitness functions lead to completely different results A possible way to deal with some of these disadvantages is to scale all fitness values, for example between values of 0 and 1. For this scaling one might use different functions such as the square root etc. Although this might seem a solution, the scaling method should be designed ad-hoc for a particular problem and therefore requires a lot of experimental testing. Tournament selection Tournament selection does not have the problems mentioned above, and is therefore used much more often, also because it is very easy to implement. In tournament selection k individuals are selected randomly from the population without replacing (so each individual can only be selected one time), and then the best individual of this group of k individuals is used for creating offspring. Here, k is known as the tournament size, and is usually set to 2 or 3 (although the best value also depends on the size of the population). Very high values of k cause a too high selection pressure and therefore can easily lead to premature convergence. Figure 3.8 shows how this selection strategy works. Population Winner Participants (k = 3) f=6 f=2 f=1 f=3 f=8 f=9 f=9 f=4 f=5 f=9 f=5 f=5 f=3 2 1 f=3 3 Figure 3.8: In tournament selection k individuals are selected and the best one is used for creating offspring. 3.2. GENETIC ALGORITHMS 55 Rank-based selection In rank-based selection all individuals receive a rank where higher ranks are assigned to better individuals. Then this rank is used to select a parent. So if we have a population of N individuals, the best individual gets a rank of N , and the worst one a rank of 1. Then we compute probabilities of each individual to become a parent as: ri pi = P j rj where ri is the rank of the ith individual. Truncated selection In truncated selection the best M < N individuals are selected and used for generating offspring with equal probability. The problem of truncated selection is that it does not make distinctions between the best and the M th best individual. Some researchers have used truncated selection where the best 25% of the individuals in the population are used for creating offspring, but this is a very high selection pressure and can therefore easily lead to premature convergence. 3.2.8 Replacement strategy The selective pressure is also influenced by the way individuals of the current population are eliminated to make place for new individuals. In a generational genetic algorithm, one usually kills the old population and replaces it by a completely new population, whereas in a steady-state genetic algorithm at each time one new individual is created which replaces one individual of the old population (usually the worst one). Generational GAs are most often used, but sometimes part of the old population is kept in the new population. E.g. one well-known approach is to always keep the best individual and copy it to the next population, this approach is called Elitism (or elitist strategy). We recall that even if the elitist strategy is not used, we always keep the best found solution so far in memory. 3.2.9 Recombination versus mutation The two search operators used in genetic algorithms have different usage. The recombination operator causes new individuals to depend on the whole population (genetic material of individuals is mixed). Its utility relies on the schemata-theorem which tells us that if the crossover operator does not destroy good building blocks too often, they can be quickly mixed and stay in the population, since an individual consisting of two good building blocks (schemata) is likely to have a higher fitness value and therefore more likely to propagate its genetic material. In principle, the crossover operator exploits previously found genetic material and leads to faster convergence. In case the whole population has converged to the same individual, the crossover operator will not have any effect anymore. Thus, with less diverse populations, the effect of crossover diminishes. On the other hand the mutation operator possesses different properties. It allows a population to escape from a single local minimum. Furthermore it allows values of locations which have been lost to be reinserted again. Thus we should regard it as an exploration operator. 56 CHAPTER 3. EVOLUTIONARY COMPUTATION Genetic algorithms and evolutionary strategies Independently on the development of genetic algorithms, Rechenberg invented evolutionary strategies (ES). There is a number of different evolutionary strategies, but in principle ES resemble GA a lot. Like GAs they rely on reproducing parents for creating new solutions. The differences between GA and ES are that ES usually work on real numbered representations and that they also evolve their own mutation parameter σ. Furthermore, most ES do not use crossover, and some ES only use a single individual whereas GAs always use a population. The choice whether to use crossover or not depends on: • Is the fitness function separable in additive components (e.g. if we want to maximize the number of 1’s in bitstring, then the fitness function is the addition of the fitness of each separate location). In case of separable fitness functions, the use of recombination can lead to much faster search times for optimal solutions. • Are there building blocks? If there are no real building blocks, then crossover does not make sense. • Is there a semantically meaningful recombination operator? If recombination is meaningful it should be used. 3.3 Genetic Programming Although genetic algorithms can be used for learning (robot) controllers or functions mapping inputs to outputs, the use of binary representations or real numbers without a structure does not provide immediate means for doing so. Therefore in the late 1980’s Genetic Programming (GP) was invented and made famous by the work and books of John Koza. The main element of genetic programming is the use of functional (or program) trees which are used to map inputs to outputs. E.g., for robot control the inputs may consist of sensory inputs and the outputs may be motor commands. By evolving functional program trees, those programs which work best for the task at hand will remain in the population and reproduce. A program tree may consist of a large number of functions such as cos, sin, ×, +, /, exp, and random constants. These functions usually require a fixed number of inputs. Therefore a program tree must obey some constraints which make it legal. To make a program tree legal, functions which require n arguments (called n-ary functions), should have n branches to child-nodes where each child-node is filled in by another function or variable. The leaf nodes of the tree are input-variables or random constants. Figure 3.9 shows an example of a program tree. Genetic programming has been used for a number of different problems among which; supervised learning (machine learning) to map inputs to outputs, learning to control robots, and pattern recognition to distinguish between different objects from pixel-data. Genetic programming is quite flexible in its use of functions and primitive building blocks. Loops, memory registers, special random numbers, and more have been used to solve particular tasks. Like in genetic algorithms, one has to devise mutation and crossover operators for program trees. The other elements of a genetic programming algorithm can be equal to the ones used by genetic algorithms. 3.3. GENETIC PROGRAMMING 57 Program Tree COS Cos((X1 + X2) * 2) * + X1 Function 2 X2 Figure 3.9: A program tree and its corresponding function. 3.3.1 Mutation in GP The mutation operator can adjust a node in the tree. If the new function in the node will have the same number of arguments, it is easy, but otherwise some solutions have to be found. In the case of point-mutations one only allows mutating a terminal to a different terminal and a function to a different function of the same arity. Other researchers have used mutation of subtrees, in which a complete subtree is replaced by a randomly created new subtree. Figure 3.10 shows an example of a point mutation in GP. Before Mutation COS COS * + + X1 After Mutation + 2 X2 X1 2 X2 Figure 3.10: Point mutation in genetic programming. A function in a node is replaced by a different function with the same number of arguments. 3.3.2 Recombination in GP The recombination operator also works on program trees. First particular subtrees are cut from the main program trees for both parent individuals and then these subtrees are exchanged. Figure 3.11 shows an example of the recombination operator in GP. 3.3.3 Probabilistic incremental program evolution Instead of using a population of individuals, one could also use generative prototypes which generate individuals according to some probability distribution. Baluja invented population based incremental learning (PBIL) which encodes a chromosome for generating bitstrings. For 58 CHAPTER 3. EVOLUTIONARY COMPUTATION Parents COS SIN CUT CUT + * + X1 * 2 X2 2 COS X1 X2 SIN COS Children * * + COS 2 X1 2 + X2 X2 X1 Figure 3.11: Recombination in genetic programming. A subtree of one parent is exchanged with a subtree of another parent. this the chromosome consists of probabilities for generating 1 on a specific location (and 1 minus that probability for generating a 0). Using this prototype chromosome, individuals can be generated and evaluated. After that the prototype chromosome can be adjusted towards the best individual so that it will generate solutions around the best individuals with higher probability. This idea was pursued by Rafal Salustowicz for transforming populations of program trees in a representation using a probabilistic program tree (PPT). The idea is known as probabilistic incremental program evolution (PIPE) and it uses probabilities to generate functions in a particular node. The probabilistic program tree which is used for generating program trees consists of a single large tree consisting of probabilities of functions in each node, as shown in Figure 3.12. The PPT is used to generate an individual as follows: • Start at the root node and select a function according to the probabilities • Go to the subtrees of the PPT to generate the necessary arguments for the previously generated functions • Repeat this until the program is finished (all leaf nodes consist of terminals such as variables or constants) For learning in PIPE, it is requested that the PPT is changed so that the individuals which are generated from it obtain higher fitness values. For this PIPE repeats the following steps: • Generate N individuals with the prototype tree • Evaluate these N individuals • Select the best individual and increase the probabilities of the functions and terminals used by this best individual 3.4. MEMETIC ALGORITHMS 59 Probabilistic Prototype Tree SIN COS * + / X1 X2 SIN COS * + / X1 X2 0.23 0.11 0.19 0.06 0.06 0.19 0.06 0.51 0.20 0.09 0.04 0.06 0.09 0.01 SIN COS * + / X1 X2 0.01 0.22 0.19 0.24 0.09 0.07 0.18 Figure 3.12: The probabilistic prototype tree used in PIPE for generating individuals. • Mutate the probabilities of the PPT a little bit PIPE has been compared to GP and it was experimentally found that PIPE can find good solutions faster than GP for particular problems. 3.4 Memetic Algorithms There is an increasing amount of research which combines GA with local hill-climbing techniques. Such algorithms are known as memetic algorithms. Memetic algorithms are inspired by memes [Dawkins, 1976], pieces of mental ideas, like stories, ideas, and gossip, which reproduce (propagate) themselves through a population of meme carriers. Corresponding to the selfish gene idea [Dawkins, 1976] in this mechanism each meme uses the host (the individual) to propagate itself further through the population, and in this way competes with different memes for the limited resources (there is always limited memory and time for knowing and telling all ideas and stories). The difference between genes and memes is that the first are inspired by biological evolution and the second by cultural evolution. Cultural evolution is different because Lamarckian learning is possible in this model. That means that each transmitted meme can be changed according to receiving more information from the environment. This makes it possible to locally optimize each different meme before it is transmitted to other individuals. Although optimisation of transmitted memes before they are propagated further seems an efficient way for knowledge propagation or population-based optimisation, the question is how we can optimize a meme or individual. For this we can combine genetic algorithms with different optimisation methods. The optimisation technique which is most often used is a simple local hill-climber, but some researchers have also proposed different techniques such as Tabu Search. Because a local hill-climber is used, each individual is not truly optimized, but only brought to its local maximum. If it would be possible to fully optimize the individual, we would not need a genetic algorithm at all. 60 CHAPTER 3. EVOLUTIONARY COMPUTATION The good thing of memetic algorithms compared to genetic algorithms is that genetic algorithms usually have problems in fine-tuning a good solution to make it an optimal one. E.g. suppose that a bitstring contains perfect genetic material except for a single bit. In this case there are much more possible mutations which harm the individual than mutations which bring it to the true global optimum. Memetic algorithms do not have this problem and they also have the advantage that all individuals in the population are in local maxima. However, this also involves a cost, since the local hill-climber can require many evaluations to bring an individual to a local maximum in its region. Memetic algorithms have already been compared to GAs on a number of combinatorial optimisation problems such as the traveling salesman problem (TSP) [Radcliffe and Surry, 1994] and experimental results indicated that the memetic algorithms found much better solutions than standard genetic algorithms. Memetic algorithms have also been compared to the Ant Colony System [Dorigo et al., 1996], [Dorigo and Gambardella, 1997] and to Tabu Search [Glover and Laguna, 1997] and results indicated that memetic algorithms outperformed both of them on the Quadratic Assignment Problem [Merz and Freisleben, 1999]. 3.5 Discussion Evolutionary algorithms have the advantage that they can be used for solving a large number of different problems. For example if one wants to make a function which generates particular patterns and no other learning method exists, one could always use an evolutionary algorithm. Furthermore, evolutionary algorithms are good in searching through very large spaces and can be easily parallellized. A problem with evolutionary algorithms is that sometimes the population converges prematurely to a suboptimal local minimum. Therefore a lot of research effort has come up with methods for keeping diversity during the evolution. Another problem is that many individuals are evaluated and then never used anymore, which seems a waste of computer power. Furthermore, the learning progress can be quite slow for some problems and if many individuals have the same fitness value there is not much selective pressure. E.g. if there is only a good/bad final evaluation, it is very hard to come up with solutions which are evaluated good if in the beginning all individuals are bad. Therefore, the fitness function should be designed in a way to provide maximal informative information. A lot of current research focuses on “linkage learning”. We have seen that recombination is a useful operator which can allow for quickly combining good genetic material (building blocks). However, uniform crossover is very disruptive, since it is a random crossover operator it does not keep building blocks as a whole together. On the other hand 1-point crossover may keep building blocks together if the building blocks are encoded on bits which lie nearby on a genetic string (i.e. next to each other). It may happen, however, that a building block is not encoded in a genetic string as material next to each other, but distributed over the whole string. In order to use effective crossover for such problems one must identify the building blocks which is known as linkage learning. Since building blocks can be quite large, finding the complete block can be very difficult, but effective progress in this direction has been made. Chapter 4 Physical and Biological Adaptive Systems Before the 16’th century, the Western thinkers believed in a deductive approach to acknowledge truth. For example, Aristotle always thought that heavy objects would fall faster to the ground than lighter objects. It was not until Galileo Galilei (1564-1642) tested this (according to some he did his experiments by dropping objects from the tower of Pisa), that this hypothesis turned out to be false (if we disregard air-resistance). After this Galilei played an important role to use mathematics for making predictive models and he also showed that planets were going around the sun instead of around the earth (this hypothesis he had to retract from the church). This was the start of a natural science where experiments were used to make (predictive) models. Christiaan Huygens also played an important role by his discovery of much better clocks to make measuring time much more precise, his discovery of better lenses and telescopes, and the discovery that light could be described by waves instead of particles. The new science continued with Kepler (1571 - 1630) who approximated the orbits of planets and came up with ellipsoids to predict them instead of the commonly thought hypothesis that the orbits should be approximated using circles. Isaac Newton (1642-1727) discovered the gravitation laws and laws of mechanics which were the final breakthrough for a new natural science. Newton’s gravitation laws tells that two objects (e.g. planets) attract each other based on the multiplication of their masses divided by the square of the distance between them, and it is very accurate for big objects which do not move at very high speed (for very small moving particles quantum mechanics introduced different laws, and for very high speed relativity theory was later invented). Newton’s laws of mechanics were also used to predict that planet orbits were ellipsoids and that planets will circle around the sun whose movement is hardly influenced by the planets. After this fruitful period of scientific revolutions, researchers started to think that the universe worked like a clock and that everything could be predicted. This even led to the idea of a Genius by Laplace which would be an almighty entity which could predict the future and the past based on the current state and the mechanical laws. Although this idea of a universal clock brought many fruitful machines such as computers and television, already in the start of the 19’th century Poincaré had discovered that not everything could be predicted. Poincaré was studying three body problems, like three planets moving around each other, and discovered that there were not enough known equations to come up with a single analytical solution for predicting their movements. This eventually led to chaos theory, where a model 61 62 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS can be deterministic, but still shows unpredictable behavior if we cannot exactly measure the initial state. Although the word chaos often refers to a state without order, researchers have found remarkable structures in chaotic systems. Even in chaotic systems there seems to be a kind of self-organisation. In this chapter we will look at the path from physics to biology, take a look at chaotic systems, and then we will examine self-organising biological systems such as ants and the use of these systems for solving optimisation problems. 4.1 From Physics to Biology In Newtonian mechanics, the systems are reversible, which means that we can turn around the arrow of time and compute the past instead of the future. There are specific laws of physical systems such as the conservation of energy which states that the sum of potential and kinetic energy of an objects must remain constant. An example is a ball which we throw in the air. In the beginning the kinetic energy (due to its speed) is maximal, and it will become 0 at the highest point where the potential energy (due to gravitation) is maximal. Then it will fall again while conserving its energy until finally it bounces against the ground and will lose energy due to this (in reality the height of the ball will be damped due to friction which causes a loss of energy. Without loss of energy the ball would continue bouncing forever). If we have energy preserving systems, the system will continue with its movement. A good example is a pendulum. Suppose a pendulum is mounted at some point, and there is no friction at this point or friction due to air resistance. Then we give the clock a push to the right and it will remain moving to the left and to the right. If we give the pendulum a harder push, it will go around and continue going around. Let’s look at the phase diagram in Figure 4.1 that shows possible trajectories in the plane with the angle on the x-axis, and the (normalised) angular speed on the y-axis. Figure 4.1: The phase diagram of the pendulum 4.1. FROM PHYSICS TO BIOLOGY 63 In the middle of the figure a stable equilibrium is shown, the pendulum is not moving at all. Trajectories a and b show periodic cycles (orbits) where the pendulum is moving to the left, right, left, etc. Orbit c leads to an unstable equilibrium in which the pendulum goes to the highest point and there it stops to move. This point is unstable, because a slight perturbation will cause it to move again. Finally, in orbit d the pendulum is going over its head. The pendulum is an example of a reversible system in which energy is conserved. Ideally, such mechanical systems always conserve their energy. However, there are also many systems which are irreversible, which are thermodynamic objects. After the industrial revolution, many scientists were interested in making the optimal (perpetuum mobile) machine; one which would continue to work forever. But soon they discovered that every machine would lose useful energy due to production of heat. An example of a thermodynamic object is a system which consists of a box with 2 halves. In one half there are N gas-molecules and in the other half there are none. The initial state is very ordered since all the gas-molecules are at the left half. Now we take away the border between the halves and we will observe that after some time both halves will contain roughly the same amount of molecules. This is an example of an irreversible system since if the system would be in a state with the same amount of molecules in both halves it would probably never go to the state with all molecules in one half again. To describe such processes, Boltzmann invented the word entropy. Entropy corresponds to the amount of disorder which is caused by the production of useless energy such as heat which cannot be turned back to make energy without a heat potential. Entropy has also been widely used in thermodynamics to explain why heat will always flow from a hot space to a colder space. Consider the case of the N gas molecules again. Boltzmann used a statistical explanation why the molecules would mix and a state of disorder would arise. Consider now N molecules and the number of permutations that can describe a possible state. For example all N molecules in one half of the box would only have one possible state, one molecule in one half and the rest in the other half would have N possible states. Now if we divide the N molecules in N1 and N2 molecules in both halves, the number of permutations would be: P = N! N1 !N2 ! Now its logical that the system will go to an equilibrium with most possible states, that is where N1 = N2 . For this Boltzmann defined entropy of a system as: S = k log P Where k is called the Boltzmann constant. So although all microscopic states are equally possible, due to the effect that there are much more microscopic states around the macroscopic situation of having the same number of molecules in both halves, this situation will arise after some time. Of course small deviations from the macroscopic equilibrium can happen, but the system’s state will oscillate around this equilibrium. We can see that entropy is maximised and that disorder will be the result. Since entropy production is always positive in a closed system and there is a state with maximal entropy, the system will always converge to such an equilibrium. Since the initial state gets lost in this case, the process is not reversible (many states lead to the same final state). Note the difference with the energy-preserving pendulum which is reversible. It is important to 64 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS note that there are many irreversible processes in machines caused by loss of heat, friction etc. so that is is not possible to make a machine which continues forever without receiving additional energy. These processes cause an increase of the entropy of the system. But how is this with open systems such as living systems? Here the change of entropy of the system is governed by an internal change of entropy dSi /dt which is irreversible and always positive, and an exchange of entropy between the system and its environment dSu /dt which can be positive or negative. We note that the exchange of entropy of a closed system is not possible (since there is no environment to interact with) so that the entropy can only increase or remain constant (at the maximal value). In this case, the entropy determines the direction of time; for all closed systems their future lies in the direction of increased entropy. This lead to the two laws of the thermodynamics by Clausius in 1865: • The energy of the world is constant • The entropy of the world goes to a maximal value Thus in the thermodynamic equilibrium the entropy and disorder will be at its maximum. However, living systems can exchange entropy with their environment. This allows them to keep their entropy low. E.g. by consuming food and energy, a living system is able to keep its order without having to increase its entropy. This is the essential difference between open and closed systems. An open system can receive useful energy from the environment and thereby it can reduce its disorder and create more order. 4.2 Non-linear Dynamical Systems and Chaos Theory As mentioned before, Poincaré had already discovered that there are no analytical solutions to be found for the n-body problem with n larger than 2. For 2 planets, there is an analytical solution which determines the position and velocity of both interacting planets given the initial conditions. These planets will move around their point of joint mass as shown in Figure 4.2. Point of common mass Planet 1 Planet 2 Figure 4.2: The orbits of two interacting planets For the n-body problem with n ≥ 3, Poincaré had demonstrated that there were not enough differential equations to be able to compute a solution to the problem. The problem was therefore not integratable to a closed-form analytical solution. Poincaré has also demonstrated that small perturbations could cause large differences of trajectories in this case. This was the first time chaotic dynamics had been mentioned. After this, for a long time few researchers were studying chaotic systems. One major breakthrough in their understanding came when computers were used which could visualise 4.2. NON-LINEAR DYNAMICAL SYSTEMS AND CHAOS THEORY 65 such processes. The first famous demonstration of chaos using computer simulations was described by the meteorologist Edward Lorenz who was studying weather prediction. In 1961 he saw an event in his computer simulations. By accident he discovered sensitivity to initial conditions, since he wanted to repeat his simulations, but found completely different results. After some time he discovered that the values he used in his second simulation were rounded to three decimals, whereas the computer used values with 6 decimals during the entire run. These minimal differences quickly caused large deviations as is seen in Figure 4.3. Figure 4.3: The simulations done by Lorenz showed sensitivity to initial conditions. Although the initial values were almost similar, the difference between the trajectories became very large. In chaos theory it is often said that little causes create big consequences. After simplifying his model to three variables, he first noted something like random behavior, but after plotting the values in a coordinate space, he obtained his famous Lorenz attractor depicted in Figure 4.4. We can see an ordered structure, so again we should not confuse chaotic dynamics with non-determinism. Figure 4.4: The Lorenz attractor The dynamical system of Lorenz is quite complicated to analyse, and therefore we will use an example from biology to demonstrate chaotic dynamics in an easier way. 66 4.2.1 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS The logistic map Around 1800, T.R. Malthus assumed that the growth of a population would be linear with the number of individuals x(t). The mathematical expression is the differential equation: dx = kx dt which has as closed-form solution an exponential growing population: x(t) = x(0)exp(kt) In 1844 P.F. Verhulst noted that for a growing population there must arise competition so that the population would stop growing at some time. He noted that the population would grow linearly with the number of individuals and the difference between the number of available sources and the sources needed to sustain the population. This model is known as the following Verhulst equation: dx = Ax(N − x) dt with AN the maximal number of available sources and Ax the amount needed for x persons. The logistic map equation can be derived from this in which we use discrete time and change variables. The logistic map equation looks as follows: x(t + 1) = rx(t)(1 − x(t)) Where x has a value between 0 and 1. For values of r below 1, the population will die out (x(∞) = 0). If r is between 1 and 3, there is one single final state x(∞). Now if we keep increasing r, there will arise period-2 cycles and higher periodic cycles. Each value for r that causes the period to increase (in the beginning it doubles) is called a bifurcation point. Figure 4.5 shows a period-2 cycle of this map with a value of r a little bit larger than 3. Figure 4.5: A period-2 cycle of the logistic map. Figure 4.6 shows a larger periodic cycle. Although the periodic attractor is difficult to see, it is important to note that trajectories from different starting points x0 approach this limit cycle. Now, look what happens if we plot the value of r to the values which x can take after a long transient period (so we eliminate the initial values x(t) by waiting for 1000 steps). This 4.2. NON-LINEAR DYNAMICAL SYSTEMS AND CHAOS THEORY 67 Figure 4.6: A larger periodic cycle of the logistic map. plot is shown in Figure 4.7. The figure shows a very complicated bifurcation diagram. In the beginning there is a single steady state (for r ≤ 1 all trajectories go to x(∞) = 0). When r > 1 and r < 3 there is a single stable state for x, although the final value x(∞) depends on r. Now if we increase r to a value higher than 3, there is a periodic cycle of length 2, which is shown in the bifurcation diagram by the two branches which determine the multitude of values of x which are part of periodic cycles. Increasing r further leads to periodic cycles of length 4, 8, 16, etc. Until finally the period becomes infinite and the system shows chaotic behavior. Figure 4.7: A plot of the value of the control parameter r to the values which x will take after some transient period. In Figure 4.8, we see a more detailed figure of this bifurcation diagram for values of r between 3.4 and 4. It shows that although there are values of r displaying chaotic behavior, for some values of r there are again periodic cycles, which is shown by the bands with only few branches. If we further zoom in in the area of Figure 4.8, we get the figure displayed in Figure 4.9. This figure shows clearly that there are periodic cycles alternating with chaotic dynamics. A remarkable property of the chaotic dynamics generated by the logistic map is when we further zoom in in the area of Figure 4.9 and get the Figure 4.10. This figure clearly shows that there is a self-similar pattern on a smaller scale. Again we see bifurcation points 68 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS Figure 4.8: A plot of the value of the control parameter r to the values which x will take after some transient period. Figure 4.9: A plot of the value of the control parameter r between 3.73 and 3.753 to the values which x will take after some transient period. and periodic lengths which double, until again it arrives at chaotic dynamics which visit an infinite number of points. So what can we learn from this? First of all even simple equations can display chaotic behavior. For a map (or difference equation) chaotic dynamics can be obtained with a single variable (the population x). When using differential equations it turns out that there need to be three differential equations which form a non-linear system in order for the system to display chaotic behavior. Furthermore, when chaotic dynamics arise, even a very small difference between two initial states can cause a very different trajectory. This means that if we cannot exactly measure the initial state our hope to predict the future dynamics of the system is lost. Of course, here we have shown simple mathematical equations leading to chaotic behavior, the question therefore is whether chaos also arises in real natural systems. The answer to this is yes; research has turned out that the heartbeat follows an irregular non-periodic patterns, and using a EEG it was shown that the brain also possesses chaotic dynamics. Furthermore, in biological systems the population of particular kinds of flies also shows chaotic behavior. And of course to come back to Lorenz, the weather is unpredictable since it is very sensitive to initial conditions. This sensitivity in chaos theory is often related to the possibility that a butterfly in Japan can cause a tornado in Europe. 4.3. SELF-ORGANISING BIOLOGICAL SYSTEMS 69 Figure 4.10: A plot of the value of the control parameter r between 3.741 and 3.745 to the values which x will take after some transient period. Instead of only disorder, we can also see ordered patterns in chaotic systems. One example is the self-similar structure if we look at the pattern of a bifurcation diagram at different scales. Furthermore, if we look at the Lorenz attractor, we can see that not all states are possible; the state trajectories are all on a particular manifold (subspace of the whole space). On the contrary, when we would use a stochastic (non-deterministic) system, the trajectories would fill up the whole phase diagram. In reality chaos therefore also displays order, which is also the statement of Ilya Prigogine; “order out of chaos”. 4.3 Self-organising Biological Systems Adaptive systems can be used fruitfully to model biological systems. We have already seen that the model can consist of mathematical equations, but they can also have a spatial configuration using individualistic models such as cellular automata. The advantage of using individualistic models moving in a particular space is that there is an additional degree of freedom for the physical space and therefore additional emergent patterns. By simulating an individualistic model, it also becomes much easier to visualise processes such as the fire propagation in forest fires. The disadvantage of spatial models compared to mathematical equations is that it is much slower to simulate. Some examples of biological models which can be modelled are: • Infection diseases • Forest fires • Floods • Volcano eruptions • Co-evolving species The first four processes mentioned above show a common aspect; they propagate themselves over paths which depend on the environment. To stop the propagation, such paths should be “closed”. This is essential for controlling these natural disasters, but will not be the issue in this chapter. 70 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS 4.3.1 Models of infection diseases We will look at two different models for simulating infection diseases. In infection diseases, we can distinguish between three kinds of individuals in the population: • Healthy individuals (H) • Infected, sick individuals (S) • Immune individuals which have had the disease (I) If a healthy person comes in the neighbourhood of an infected individual, the healthy person will also become infected in our model (although usually this will only happen with some probability). If an infected person has been sick long enough, it becomes an immune individual which is not sick anymore. Mathematical model of infection diseases We can make a model using difference equations. We start with a state of the population: S(0) = (H(0), I(0), S(0)), and use the following equations to determine the evolution of the system: S(t + 1) = S(t) + S(t)H(t) − bS(t) I(t + 1) = I(t) + bS(t) H(t + 1) = H(t) − aS(t)H(t) Here we have two control parameters a and b. Note that the values H, I, S should not become negative! If we examine the model, we can see that the number of immune individuals is always increasing or stays equal. Therefore a stable attractor point is a situation with all people immune to the disease. However, if the control parameter b is set to a very large value, the population of sick people might decrease too fast and might become 0 before all healthy people became sick. Therefore other possible stable states include a number of healthy and immune people. Also when there are no sick or immune people at all at start, the stable point would consist only of healthy people. Cellular automaton model of infection diseases We can also use a cellular automaton (CA) in which we have to make rules to update the state of the CA. Suppose we take the 2-dimensional CA with individuals as shown in Figure 4.11. Cells can be empty or be occupied by a sick, immune, or healthy person. The CA also needs transition rules to change the state of the system, we can make the following rules: • If H has a S in a cell next to it, the H becomes a S. • S has each time step a chance to become a I • For navigation, all individuals make a random step at each time-step 4.4. SWARM INTELLIGENCE 71 H S S S H H H S H I I S H I S S I S Figure 4.11: The CA for infection diseases. H = healthy person, I = immune person, S = sick person Step 2 above uses a probability to change a state of a cell and navigation also used randomness, therefore this is an example of a stochastic cellular automaton. Finally, we can also make another navigation strategy so that healthy persons stay away from sick individuals. This could lead to different evolving patterns where healthy persons are in one corner, far away from the sick individuals. 4.4 Swarm Intelligence It is well known that a large group of simple organisms such as ants or bees can show intelligent behavior. The question is how this collective intelligent behavior emerges from simple individuals. In this section we will see examples of this phenomenon and how this self-organising collective behavior can be used for making optimisation algorithms. First we will look at some smart collective behaviors: • Foraging behavior: individuals search for food and bring it to their nest • Protection of the nest: individuals have received an altruistic and non-producing task which helps the group to survive • Building of a nest: E.g. how do termites construct their nest or how are honeycombs made by bees. • Stacking food and spreading it It is clear that there is no super controller which sends the individuals messages how to do their task. In some ways the behaviors emerge from simple individual behaviors. E.g. if we look at the process of creating honeycombs, then we can see that the structure emerges from local interactions between the bees. Every bee creates a single cell in the wax by hollowing out part of the space of the wax. Whenever a bee makes a cell it takes away parts of the borders of the cell. When it feels that there is another bee working in the cell close next to it, it stops taking wax out of the direction of that bee. In this way a hexagonal pattern emerges with very similar cells (because bees have similar sizes), see Figure 4.12. 72 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS Figure 4.12: A honeycomb It is also known that ants can solve particular problems, such as finding the shortest path to a food pile, clustering or sorting food, and clustering dead ant bodies. Although a single ant is not intelligent, the whole colony shows intelligent group behavior (super-intelligence). 4.4.1 Sorting behavior of ant colonies When many ants die at the same time, the living group makes cemeteries of the dead ants by stacking them all on the same place. How can this be done if single ants are not intelligent enough to know where to put the dead ant they may be carrying? To explain this, we can make a simple model with three rules: • An ant walks in arbitrary directions • Whenever an ant does not carry anything and finds a dead ant, it takes it and will carry it to some different place • Whenever an ant carries a dead ant and sees a pile of dead ants, it will drop the ant near that pile These three simple rules can explain the group-behavior of sorting ants. A similar model can be made to let ants make piles of sugar and chocolate. Since each ant is very simple, it would take a long time until some organisation would emerge using a single ant. However, when many ants are used, the self-organisation of matter in the space can occur at very short time periods. This is also a reason why some researchers investigate collective swarm robotics to make many simple small robots collaborate together to perform different tasks, instead of a single large robot which has to do everything alone. 4.4.2 Ant colony optimisation A new kind of multi-agent adaptive system for combinatorial optimisation has been invented by Marco Dorigo in the 90’s. In this algorithm, a colony of ants works together to find solutions to difficult path-planning problems such as the traveling salesman problem. The algorithm is inspired by how ant colonies work in reality. The foraging ants leave a chemical 4.4. SWARM INTELLIGENCE 73 substance known as pheromone on the ground when they go from their nest to a food source and vice versa. Other foraging ants follow the paths with most pheromone according to a probability distribution. While following these paths they strengthen them by leaving additional pheromone. This collective foraging behavior enables an ant colony to find the shortest path between the nest and a food source. Optimisation algorithms which are inspired by the collective foraging behavior of ants are called ant colony systems or simply ant algorithms. We will first examine combinatorial optimisation problems which determines the class of problems which are hard to solve and for which ant colony systems can be applied. Combinatorial optimisation Particular problems cost exponential amount of time to solve. To get an idea of an exponential problem, consider a solution that consists of n states and the time to solve it is 2n or n!. An example is to find a bitstring of only 1’s when the fitness is 0 for all solutions except for the state with all 1’s which gets higher fitness (known as a needle in a haystack problem). Exponential time problems grow much faster than polynomial time problems: np →0 n→∞ en lim Where p is the degree of some polynomial function and e is the natural exponent. A number of well known mathematical problems are called combinatorial optimisation problems, a subset of these are NP-complete problems which cannot be solved in polynomial time unless P = NP. The question P = NP is known as one of the open and most important questions in computer science and optimisation. The interesting thing is that if one of these NP-complete problems can be solved by some algorithm in polynomial time, all these problems can be solved in polynomial time. So far no polynomial time algorithm has been found to solve one of these problems, however. Since computer power cannot increase faster than exponential time (Moore’s law states that computer power doubles every two years), some big combinatorial optimisation problems can never be solved optimally. Some examples of combinatorial optimisation problems are: • The traveling salesman problem: find the shortest tour through n cities • Quadratic assignment problem: minimize the flow (total distance which has to be travelled) if a number of employees has to visit each other daily in a building according to some frequency. So the total cost is the product of the distance matrix and the frequency matrix. The problem requires to assign locations to all people to minimize the total cost. This often involves putting people who meet each other frequently in nearby locations. • 3-satisfiability: Find truth-values for n propositions to make the following kind of formula true: {x1 ∨ ¬x2 ∨ x4 } ∧ . . . ∧ {x1 ∨ ¬x5 ∨ x7 } • Job-shop scheduling: Minimize the total time to do a number of jobs on a number of machines where each job has to visit a sequence of machines in a specific order and each machine can only handle one job at a time. 74 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS We will elaborate a bit on the traveling salesman problem here, since ant algorithms were first used to solve this kind of problem. In the traveling salesman problem (TSP) there is a seller which wants to visit n cities and come back to his starting city. All cities i and j are connected with a road of distance l(i, j). These lengths are represented in a distance matrix. The agent must compute a tour to minimize the length of the total tour. An example of a tour with 8 cities with distance 31 is shown in Figure 4.13. 4 3 5 4 5 4 4 2 Figure 4.13: A tour in a traveling salesman problem How can we generate a tour for the traveling salesman problem? The constraints are that all cities have to be visited exactly once and that the tour ends at the starting city. Now we keep a set of all cities which have not been visited: J = {i | i is not visited}. In the beginning J consists of all cities. After visiting a city, we remove that city from the set J. The algorithm for making a tour now consists of the following steps: 1. Choose an initial city s0 and remove it from J 2. For t = 1 to n: (a) Choose city st out of J and remove st from J 3. Compute the total length of the tour: P −1 L= N t=0 l(st , st+1 ) + l(sN , s0 ) Of course the most important thing is to make the rule for choosing the next city given the current one and the set J. Different algorithms for computing tours can be compared to the final value L returned by the algorithm (note that for very large problems, it is extremely hard to find an optimal solution, so that an algorithm should just find a good one). 4.4.3 Foraging ants One algorithm for making an adaptive rule for selecting the next city given the current one and the set J is inspired on the collective foraging behavior of ants. We will first examine why ants can find shortest paths from the nest to a food source. Let’s have a look at Figure 4.14. It shows two paths from the left to the right and ants approaching the point where they 4.4. SWARM INTELLIGENCE 75 Figure 4.14: In the beginning the ant colony does not have any information about which path to take need to choose one of them. In the beginning their choice will be completely random, so 50% will take the upper path and the other 50% the lower path. Now in Figure 4.15 it becomes clear that ants which took the lower path will arrive at the destination earlier than those which took the upper path. Therefore, as we can see in Figure 4.16, the lower path will accumulate more pheromone and will be preferred by most ants, leading to more and more strengthening of this path (see Figure 4.17). Figure 4.15: Ants which take the lower path will arrive sooner at the destination Figure 4.16: This causes more ants to follow the lower part 4.4.4 Properties of ant algorithms There are multiple different ant algorithms, but they all share the following properties: • They consist of a colony of artificial ants 76 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS Figure 4.17: The amount of pheromone keeps on strengthening more along the lower path than along the upper path, therefore finally almost all ants will follow the lower path. • Ants make discrete steps • Ants put pheromone on chosen paths • Ants use the pheromone to decide which steps to make Ant algorithms have been used for a wide variety of combinatorial optimisation problems such as the traveling salesman problem, the quadratic assignment problem, and network routing. The idea to let individuals interact, because one of them changes the environment is called stigmercy. The first ant algorithm, the ant system, was initially tested on the TSP. It works as follows: • All N ants make a tour for which they use pheromone between cities to select the next city • All not followed edges lose a bit of pheromone due to evaporation • All followed edges receive additional pheromone where edges belonging to shorter tours receive more pheromone. The ant-system was thereafter changed in some ways and this led to the ant colony system. We will now give a formal description of the ant-colony system used for the traveling salesman problem (although the ant-colony system is often called a meta-heuristic that includes many possible algorithms and can be used for different problems). The ant colony system consists of K ants. The amount of pheronome between 2 cities i and j is denoted as m(i, j). For choosing the next city an additional heuristic is used which 1 . is the inverse of the length between two cities: v(i, j) = l(i,j) Now every ant: k = 1 . . . k makes a tour: • Choose a random starting city for ant k : i = random(0, N ) and take the city out of the set Jk of unvisited cities for ant k • Choose next cities given the previous one according to: j= ( arg max{[m(i, h)] · [v(i, h)]β } if q ≤ q0 h∈Jk S else (4.1) Here β is a control parameter, 0 ≤ q ≤ 1 is a random number, and the control parameter 0 ≤ q0 ≤ 1 determines the relative importance of exploration versus exploitation. If 4.5. DISCUSSION 77 exploration is used, we generate S which is a city chosen according to the probability distribution given by the following equation: pij = P [m(i,j)]·[v(i,j)]β [m(i,h)]·[v(i,h)]β h∈J k 0 if j ∈ Jk (4.2) else Now all ants have made a tour and we can update the pheromone trails as follows. First we compute which generated tour was the best one during the last generation, let’s call this tour Sgb for global-best solution. This tour has length: Lgb . Now the update rule looks as follows: m(i, j) = (1 − α) · m(i, j) + α · ∆m(i, j) where ∆m(i, j) = ( (Lgb )−1 if edge (i,j) ∈ Sgb 0 else Here, α is a control parameter similar to the learning-rate. Note that the added pheromone depends on the length of the best tour, and that pheronome on other edges evaporate. This is one possible ant colony system, it is also possible to let the pheromone be adapted to the best tour ever found, instead of the best tour of the last cycle. Other possibilities of choosing paths are also possible, but the method given above usually works a bit better. Note also that there are many parameters to set: α, β, q0 and the initial values for the pheromone. 4.5 Discussion Biological systems differ from mechanical systems or thermodynamic systems since they are able to take energy from the environment in order to decrease their internal entropy (state of disorder). We have seen that there are dynamic systems which look very simple, but which can lead to chaotic dynamics. An example is the logistic map and its operation depends on the control parameter r. If we increase r we can see that instead of a single stable state, there will arise bifurcations to periodic cycles of higher order, finally leading to chaotic dynamics. Chaotic dynamics leads to unpredictable systems, since if we do not know the exact initial condition of the system, the evolution of the system will create large discrepancies between the predicted and the real observed behavior. Although chaotic systems are unpredictable, they also show some kind of order which is seen from the emergence of manifolds on which all points lie (such as in the Lorenz attractor) or the self-similar structure when one looks at chaotic dynamics from different scales. In biology, there are often simple organisms which can fulfil complex tasks. We have seen that this intelligent collective behavior can emerge from simple individual rules. An example of this is when ants build ant-cemeteries. Furthermore, this ability of swarm intelligence has also inspired researchers to develop algorithms for solving complex problems. A well-known example of this is the ant colony system which has been fruitfully used to solve combinatorial optimisation problems such as the traveling salesman problem. 78 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS Chapter 5 Co-Evolution Let us first consider the history of the earth. Using the internet-site: “http:///www.solstation.com/life.htm” the following summary can be extracted: Our solar system was born about 4.6 billion years ago. In this time protoplanets agglomerated from a circum-Solar disk of dust and gas. Not long after that the protoplanetary Earth was struck by a Mars-sized body to form the Earth and Moon. Geologists have determined that the Earth is about 4.56 billion years old. Initially, the Earth’s surface was mostly molten rock that cooled down due to the radiation of heat into space, whereas the atmosphere consisted mostly of water (H2 O), carbon dioxide (CO2 ), nitrogen (N2 ), and hydrogen (N2 ) with only a little bit of oxygen (O2 ). Eventually a rocky crust was formed and some areas were covered with water rich with organic compounds. From these organic compounds, self-replicating, carbon-based microbial life developed during the first billion years of Earth’s existence. The microbes spread widely in wet habitats and life diversified and adapted to new biotic niches, some on land, but life stayed single-celled. After some time microbes were formed which produced oxygen and these became widespread. Chemical reactions caused the production of ozone (O3 ) which protected carbon-based life forms from the Sun’s ultraviolet radiation. Although the large concentration of CO2 caused the Earth to warm-up, the produced O2 caused a chilling effect and as a result the Earth’s surface was frozen for large parts, although some prokaryotic microbial life survived in warm ocean seafloors, near volcanos and other warm regions. Due to a large volcanic activity, the Earth warmed up again, but leading to a different niche which led to heavy evolutionary pressure. About 2.5 billion years ago some microbes developed a nucleus using cellular membranes to contain their DNA (eukaryotes), perhaps through endosymbiosis in which different microbes merged to new life-forms. The first multi-cellular life-forms (e.g. plants) evolved after 2.6 billion years of Earth’s existence. This multi-cellularity allowed the plants to grow larger than their microbial ancestors. Between 3.85 and 4.02 billion years after the birth of the solar system, there may have been a cycle between ice climates and acid hothouses, leading to strong selective pressure. After a massive extinction, intense evolutionary pressure may have resulted in a burst of multi-cellular evolution and diversity leading to the first multi-cellular animals. After this Dinosaurs were created and may have become extinct 65 millions years ago by the assistance of a large cometary impact. 79 80 CHAPTER 5. CO-EVOLUTION The extinction of the Dinosaurs created ecological conditions which eventually led to the creation of modern Human (Homo sapiens sapiens) which originated only 100,000 years ago. What we can observe from the history of the Earth is that life adapts itself to the biological niche. If environmental circumstances are good for some organisms they can multiply, but there have been many species which became extinct due to environmental conditions or cometary impacts. The way that evolution works is therefore really governed by environmental selection; there is no optimisation but only adaptation to the environment. 5.1 From Natural Selection to Co-evolution No biologist doubts that natural evolution has occurred and created the diversity of organisms alive today. For the evolutionary theory there are enough indicative facts such as the existence of DNA, organisms which have been shown to mutate themselves to cope with changing environments, and observed links between different organisms in the phylogenetic tree. The current debate is more on the question how evolution has come about and which mechanisms play a role in evolutionary processes on a planetary scale. In Darwin’s evolutionary theory survival of the fittest plays an eminent role to explain the evolution of organisms. We can explain the birth of this competitive mechanism by looking at a planet which is initially populated by some organisms of a specific type with plenty (though finite) amount of nutricients for them to survive. As long as the initial circumstances are good, the population will grow. However, this growth will always lead to a situation in which there are so many organisms that the resources (space, food) will become limited. If the resources are scarce, not all individuals will be able to get enough food and multiply themselves. In such a situation there will arise a competition for the resources and those organisms which are best able to get food will survive and create offspring. The question is which organisms will survive and reproduce. For this we have to examine their genetic material. The existence of particular genes in an individual will give it an advantage and this allows such genes to be reproduced. Therefore there will be more and more offspring which will consist of these genes in their genetic material. Since the resources will usually not grow very much, the population will not grow anymore and only the genetic material inside individual organisms will change. Finally, it may happen that all organisms of the same population will resemble each other very much, especially if the environmental conditions are the same over the whole planet. However, if there are different biological niches, individuals may have adapted themselves to their local niche, so that individuals of the same population will remain somewhat different. Since mutation keeps on occurring during reproduction, it may happen that many mutations after many generations create a new organism which does not look alike the original one. In this way, multiple organisms can evolve and keep on adapting to their local niche. Since evolution through natural selection is just a mechanism we can implement it in a computer program. A known example of artificial evolution is the use of genetic algorithms. In genetic algorithms, a fitness function is used to evaluate individuals. Such a fitness function is designed a-priori by the programmer and determines how many children an individual can obtain in a given population. Although these genetic algorithms are very good for solving optimisation problems, they do not exactly look alike natural evolution. The problem is that the fitness function is defined a-priori, whereas in natural evolution there is nobody who determines the fitness function. 5.2. REPLICATOR DYNAMICS 81 In reality the (implicit) fitness of an individual depends on its environment in which other species interact with it. Such a fitness function is therefore non-stationary and changes according to the adaptions of different populations in the environment. Here we speak of co-evolution. Co-evolutionary processes can be quite complex, since everything depends on each other. Therefore we have to look at the whole system or environment to study the population dynamics. 5.2 Replicator Dynamics We have already seen two different models for studying the dynamics of interacting species: • With differential equations (mathematical rules which specify how the variables change). An example of this are the Lotka-Volterra equations. • With cellular automata We can also generalise the Lotka-Volterra equations to multiple organisms, this is done using the model of Replicator dynamics. We will first study a model in which the fitness of an organism (phenotype) is fixed and independent of its environment. The replicator equation describes the behavior of a population of organisms which is divided in n phenotypes E1 , . . . , En . The relative frequencies of these phenotypes are denoted as x1 , . . . , xn , and so P we obtain a relative frequency vector ~x = (x1 , x2 , . . . , xn ), where i xi = 1. The fitness of a phenotype Ei is fixed and is denoted as fi (~x). Now we can first compute the average fitness of a population using: fˆ(~x) = n X xi fi (~x) i=1 The change of the frequency of phenotype Ei is related to the difference in fitness of Ei and the average of the population: ∂xi = fi (~x) − fˆ(~x) xi Now we get the replicator equation with adaption speed α (α can be seen as a timeoperator dt after which we recompute the relative frequencies): ∆xi = αxi (fi (~x) − fˆ(~x)) If the fitness values of the existing phenotypes are different, the replicator equation will also change their relative frequencies. If the environment does not change from outside and the fitness values of phenotypes remain constant, then the phenotype with the largest fitness will overtake the whole population. This assumption is of course unrealistic: the environment and fitness values will change due to the changing frequencies. Now we will look at a model for co-evolutionary replicator dynamics. Here we make the fitness of a phenotype dependent on other existing phenotypes and the relative frequencies. We do this by computing the fitness value at some time-step as follows: fi (~x) = n X j=1 aij xj 82 CHAPTER 5. CO-EVOLUTION Here the values aij make up the fitness value of phenotype Ei in the presence of Ej . We can immediately see that phenotypes can let the fitness of other phenotypes increase or decrease. It can therefore happen that both aij and aji are positive and quite large. The result will be that these species co-operate and obtain a higher fitness due to this co-operation. Since we always compute relative frequencies with replicator dynamics, we do not always see this co-operation in the values xi . However, in reality we may assume that both populations will grow, although one may grow faster than the other. On the other hand when aij and aji are negative and quite large, these species are competitive, and the one with the largest frequency will dominate and can make the other one extinct (dependent on the rest of the environment of course). Instead of two cooperating or competitive organisms, there can also be whole groups of cooperating organisms which may compete with other groups. In this sense we can clearly see the dependence of an organism of its environment. 5.3 Daisyworld and Gaia In 1983, James Lovelock presented his Daisyworld model which he presented to explore the relationship between organisms and their environment. Daisyworld is a computer model of an imaginary planet consisting of white and black daisies. Daisies can change their environment, reproduce, grow, and die. There is a global variable: the temperature of the planet which may slowly increase due to the radiation of an imaginary sun. Now the temperature of the planet has an influence on the growth, reproduction, and death of daisies. White daisies have a favourite temperature in which they grow and reproduce fastest and this temperature is higher than the favourite temperature of black daisies. This has as a consequence that if the temperature of the planet would increase, that the population of white daisies would become bigger than the population of black daisies. If the planet’s temperature would not stop increasing, however, the temperature would become too hot for any living organism to survive leading to a planet without life-forms. Due to the albedo effect of white daisies, however, the solar radiation is reflected which causes the temperature of the planet to decrease when there are enough white daisies. Therefore when the planet is warmed up and there are many white daisies the planet will cool down. If the white daisies would continue to decrease the planet’s temperature, the planet would become too cold and all life forms would also become extinct. However, black daisies absorb the heat of the sun and therefore they increase the temperature of the planet. Therefore, if the planet becomes colder, the number of black daisies would become larger than the number of white daisies (since the black daisies’ favourite temperature for growth is lower), and the planet would become warmer again. This again leads to a temperature which is closer to the favourite temperature of the white daisies so that the population of white daisies would grow again and thereby cool down the planet. Thus, we can see that in Daisyworld the daisies influence the environment, and the environment has an influence of the population growth of the daisies. The daisies are also related, since if there would only be black daisies, the temperature could only increase so that life becomes impossible. By increasing and decreasing the temperature of the planet, the different daisy populations are linked to each other, leading to cooperative co-evolutionary dynamics. Furthermore, since the daisies make the temperature suitable for both to survive, they regulate the temperature, like a thermostat of a heater would regulate the temperature 5.3. DAISYWORLD AND GAIA 83 of a room. Therefore we can see that there is a self-regulating feedback loop. 5.3.1 Cellular automaton model for Daisyworld We can use a cellular automaton as a spatial model for Daisyworld. Each cell can be a black or white daisy or a black or white daisy-seed. Furthermore, each cell has its local temperature. Each cycle we can increase the temperature of all cells with for example one degree (of course we can also decrease the temperature). If the temperature of each cell continues to increase, the temperature would become 100 degrees and all life-forms would die. The rules of the CA look as follows: • Black daisies have most probability to survive at a temperature of 40 degrees, and white daisies at 60 degrees. Each 20 degrees away from their favourite temperature, the survival probability decreases with 50%. • Black daisies increase the temperature of 49 cells around their cell with 3 degrees. White daisies cool down the 49 cells around them with 3 degrees. • White daisies reproduce 6 seeds in random location of their 25-cell neighbourhood with most probability (40%) at 60 degrees, and black daisies do the same at 40 degrees. • Daisy seeds have a probability of 10% to die each cycle. White (black) seeds become white (black) daisies with most probability at 60 (40) degrees. We can see the Cellular Automaton model of Daisyworld in Figure 5.1. Figure 5.1: A cellular automaton model of Daisyworld. At the right the average temperature of the planet is shown and the temperature in all cells. Now there are two evolutionary processes in this model: natural selection and selfregulation. Natural selection in Daisyworld takes place becomes there is competition between the different daisy types, since there are limited sources (cells or space to grow). Now let’s examine what happens if we use mutation in the model. Mutation is an arbitrary small change 84 CHAPTER 5. CO-EVOLUTION of a genotype of an organism. Such a small change results in a small change of the color which means a difference in the absorbing or reflection of solar energy and therefore different cooling or heating behaviors. In general a mutation can be good for an individual organism, although most mutations are damaging or neutral. However, even if a mutation only gives an advantage one in a million times, once it occurred the new organism may quickly propagate through the environment. The most interesting aspect of Daisyworld is the self-regulation which appears to be at a higher level than natural selection. This self-regulation is good for all individuals, because it keeps the temperature of a planet at a level which makes life possible. Because this self regulation is good for all individuals, we might think that is is on its own caused by natural selection. However, in Daisyworld self-regulation is not participating in a competitive or reproductive mechanism and therefore is not created by some form of higher level evolutionary process. We can better say that natural selection prefers daisy properties and patterns which lead to self-regulating dynamics. 5.3.2 Gaia hypothesis In the beginning of the sixties, James Lovelock was working at NASA that wanted to research whether there was life on Mars. Lovelock wondered what kind of tests would be possible to demonstrate the existence of life. Of course it would be possible to check the surface of Mars and to look whether some organisms live there, but it might always be possible that at the place where the spaceship would have landed no life forms existed, whereas life forms might exist at other parts of the planet. Lovelock thought about examining processes that reduce the entropy of the planet. This can best be explained by looking at a beach. When we sea a sand-castle on the beach, we can see a very ordered object which must be constructed by life forms. On the other hand, if there would not be any life forms on the beach, the surface of the sand on the beach would be completely smooth and not contain any order. But how can this be measured, since not all organisms make sand castles. Lovelock thought about the atmospheric conditions of the planet. If we consider our planet, the Earth, then we can see that the constituents of the atmosphere are very much out of equilibrium. For example, there is much too much oxygen (O2 ) and much too little carbon dioxide (CO2 ). If we look at Venus, there is 98% carbon dioxide and only a tiny bit oxygen in the atmosphere. On Mars, there is 95% carbon dioxide and 0.13% oxygen. If we compare this to the Earth where there is 0.03% carbon dioxide and 21% oxygen we can see a huge difference. Lovelock explained this difference due to the existence of self-regulatory mechanisms of the biosphere on Earth which he called Gaia. If there would not be any life on Earth, the gases would react with each other and this would lead to an equilibrium similar to that of Mars or Venus. However, since life forms regulate the complete atmosphere it can continuously stay far out of equilibrium and make life possible. Lovelock predicted that because the planet Mars has an atmosphere which is in a chemical equilibrium, there cannot be any life on Mars, On the other hand, because the atmosphere on Earth is far out of equilibrium there is a complex organising self-regulating force called Gaia which makes life possible. Without this self regulation the amount of carbon dioxide may become much too large and heat up the planet, making life impossible. If one looks at the mechanisms of Gaia, one can see a complex web consisting of bacteria, alges and green plants which play a major role in transforming chemical substances so that life can flourish. In this way Gaia has some kind of metabolism, keeping its temperature constant like a human does. 5.3. DAISYWORLD AND GAIA 85 For example if a human being is very cold, he begins to shake, this causes movements of the body and muscles which makes the body temperature higher. On the other hand if a human being is warm, he will transpirate and thereby lose body heat. These mechanisms therefore keep the temperature of a human more or less constant, and without it (e.g. without feeling cold when it is very cold) people would have died a long time ago. The name Gaia refers to the Greek goddess Gaea, see Figure 5.2. Since the whole web of organisms creates a self-regulating mechanism, one may speculate that this entire superorganism is alive as well. This led to three forms of the Gaia-hypothesis: • Co-evolutionary Gaia is a weak form of the Gaia hypothesis. It says that life determines the environment through a feedback loop between organisms and the environment which shape the evolution of both. • Geophysiological Gaia is a strong form of the Gaia hypothesis. It says that the Earth itself is a living organism and that life itself optimizes the physical and chemical environment. • Homeostatic Gaia is between these extremes. It says that the interaction between organisms and the environment are dominated by mostly negative feedback loops and some positive feedback loops that stabilize the global environment. Figure 5.2: The Greek Goddess Gaea, or mother Earth. There are many examples to demonstrate the homeostatic process of Gaia. Some of these are: • The amount of oxygen. Lovelock demonstrated that Gaia worked to keep the amount of oxygen high in the atmosphere, but not too high so that a fire would spread too fast and destroy too much. • Temperature. The average ground temperature per year around the equator has been between 10 and 20 degrees for more than a billion years. The temperature on Mars fluctuates much more and is not suitable for life-forms (-53 degrees is much too cold). • Carbon-dioxide. The stability of the temperature on the Earth is partially regulated by the amount of carbon dioxide in the atmosphere. The decrease of heat absorption of the Earth in some periods is caused by a smaller amount of carbon dioxide which is regulated by life-forms. 86 CHAPTER 5. CO-EVOLUTION In Figure 5.3 we can see that the temperature of the world has increased during the last century. This may be caused by the large amount of burned fossil fuels during this period, although differences in temperatures are also often caused by the change of the Earth’s orbit around the sun. The Gaia hypothesis states that mankind can not destroy life on Earth by e.g. burning all fossil fuels, or using gases which deplete the ozone layer, since the metabolism of the Earth will be much too strong and always some organisms will survive. Even if we would throw all nuclear weapons, we would not destroy all life forms and life will continue albeit without human beings. Figure 5.3: The northern hemisphere shows an increasing temperature during the last 100 years. 5.4 Recycling Networks If there are multiple co-evolving organisms in an environment, they can also interact with the available sources such as chemical compounds. It is possible that these organisms recycle each other’s waste so that all compounds remain available for the environment. Of course some of these processes will cost energy which is usually obtained by the sun through e.g. photo-synthesis. Some other processes will create free energy for an organism which it can use to move or to reproduce. An example of such a process is when we put plants and mammals together in an environment and make a simplified model: • Plants transform CO2 into C and O2 molecules • Mammals transform C and O2 into CO2 molecules • External chemical reactions transform C and O2 into CO2 • Mammals can eat plants and thereby increase their mass with C molecules which they store. 5.4. RECYCLING NETWORKS 87 We can implement this model in a cellular automaton consisting of plants, mammals, and molecules. In Figure 5.4 we show the simple model in which we use a layered cellular automaton, one layer of the CA consisting of the positions of molecules and the other layer consisting of plants and mammals. These two layers will interact on a cell by cell basis (for simplicity mammals have the same size as molecules which is of course very unrealistic). P M CO O P P O M CO O P CO CO M M CO M P P M P M O O P P P Figure 5.4: A layered cellular automaton for modelling a recycling network. To make the CA model complete, we also need to model the amount of carbon (C) inside plants and mammals. Therefore, Figure 5.4 does not show us the complete picture, there are internal states of plants and mammals which model the amount of C molecules. Furthermore, we need to make transition rules to let plants and mammals reproduce and die. Mammals should also have the possibility to navigate on the grid and look for food. We do not model these issues here, although an implementation of these rules would be straightforward. Here we are more interested to examine the feedback loops in the model which will create a recycling network. If we examine this simple ecology consisting of plants, mammals, and chemical molecules, we can see that the molecules will be recycled under good conditions. If they would not be recycled then the mammals would die since there would not be any O2 molecules anymore for them. We can see the following dynamics in this model: • Without plants, all C and O2 molecules will be transformed to CO2 molecules. This will lead to a stable chemical equilibrium where no reactions can take place anymore, resulting in the death of all mammals. • If there are many plants, the number of O2 molecules would grow, leading to less CO2 molecules for the plants, possibly also leading to the death of some plants. This will cause the transformation of CO2 to C and O2 molecules done by the plants to become much slower, and will give the external reactions and mammals the ability to create more CO2 molecules, leading to a homeostatic equilibrium. If there would not be any mammals it can be easily seen that there cannot be too many plants, because the speed of the external reactions can be very slow. Therefore, the existence of mammals may be profitable for plants (although the mammals also eat the plants). • If there are many plants and mammals, they will quickly recycle the molecules. This leads to a situation that even with few molecules, many plants and mammals can survive. 88 CHAPTER 5. CO-EVOLUTION It should be noted that these amounts of plants and mammals depend heavily on each other, but natural processes are likely to create a good situation. • If there are too many mammals, many plants will be eaten. If this causes few plants to survive, there will not be enough food for all mammals causing many mammals to die. Therefore the growth and decline of the mammal population will not make it easily possible that all plants will be eaten, so that mammals cause their own extinction (this is similar to predator-prey dynamics). Recycling networks are very important for Gaia and co-evolutionary systems. For example in Gaia many molecules are recycled causing almost optimal conditions for life. One example is the amount of salt in the seas. When this becomes too large, almost all sea life-forms will dry out and die. However, every year a lot of salt is moved from the land to the seas which might easily lead to very large concentrations of salt in the sea. It has been shown by Lovelock that the sea functions as a kind of salt pump keeping the concentration of salt at levels which are advantageous for life forms. Also in rain-forests the plants and trees cause a very efficient recycling of water molecules. In this way, even with a small amount of H2 O molecules many plants and trees can survive. Furthermore this recycling and co-evolutionary dynamics also causes a profitable temperature for the plants and trees which makes it possible to have rain-forests in hot countries that create their own local redistribution of water. 5.5 Co-evolution for Optimisation Co-evolutionary processes are not only important for studying population dynamics in ecologies, but can also be used for making optimisation algorithms. We already studied genetic algorithms which can be used for searching for optimal (or near-optimal) solutions for many different problems for which exhaustive search would never work. There is currently more and more research to use co-evolution to improve the ability of genetic algorithms in finding solutions. The idea relies on evolving a population of individuals to solve some problem which can be described by a large set of tests for which an individual should succeed. If the tests are not clearly specified, they can also be evolved by evolutionary algorithms. An example is to learn to play backgammon. If you want to be sure your individual, which encodes for a backgammon playing program, is very good in backgammon, you want to test it against other programs. When the other programs are not available, you can evolve these programs. The individual which plays best against these test-programs (some call them parasites since they are used to kill individuals by determining their fitness), may reproduce in the learner population. The tests which are good for evaluating learners can also reproduce to create other tests. This is then a co-evolutionary process and makes sense since there is no clear fitness function to specify what a good backgammon player is. We will now examine a specific problem which requires a solution to be able to solve a specific task such as sorting a series of numbers. In principle there are many instantiations of the sorting problem, since we can vary the numbers, or the amount of numbers, or their initial order, etc. So suppose we take N instantiations of the sorting problem and keep these fixed (like we would do with normal evolutionary computation). Now we can use as a fitness function the amount of instantiations of the sorting task which are solved by an individual. The problem of this is that it can cost a lot of time to evaluate all individuals on all N 5.5. CO-EVOLUTION FOR OPTIMISATION 89 tasks if N is large. And if we take the number of instantiations too low, maybe we evolve an individual which can sort these instantiations of the sorting problem, but performs poorly on other sorting problems. Furthermore, it is possible that the best individuals always are able to sort the same 0.7N problems and never the others. In this case there is not a good gradient (search direction) for further evolution. Co-evolution for optimisation. A solution to these problems is to use co-evolution with learners (the individuals which need to solve the task) and problem-instantiations (the parasites or the tests). There are K tests which can be much smaller than the N tests we needed for a complete evaluation in normal evolution, since these K tests also evolve. There are also L learners which are tested on the tests (can be all tests, but might also be a part of all tests). The fitness of a learner is higher if it scores better on the tests it is evaluated on. This creates improving learners, but how can we evolve the test-individuals? An initial idea would be to make the fitness of a test higher when less learners can solve it (we will later examine the problems of this method for assigning such fitness values to tests). In this way, the learners and tests will co-evolve. The parasites make the tests harder and harder and the individuals have to solve these increasingly difficult tests. A problem of the above fitness definition of tests is that it becomes possible that only tests remain which cannot be solved by any learner. This leads to all learners having the same fitness and would stop further evolution. Therefore it is much better to let the fitness of a test depend on the way it can differentiate between different learners. In this way when a test is solved by all learners or is not solved by any learner, the test is basically useless at the current stage of evolution and will get a low fitness so that it is not allowed to stay in the population or to reproduce. If two tests make exactly the same distinctions between all learners, it is possible to reduce the fitness of one of them since they would essentially encode the same distinction. Pareto-front in co-evolutionary GA. If we have a number of learners with their result on all tests, we want to examine which learners are allowed to reproduce themselves. For this we will examine the Pareto-front of individuals which means the set of individuals which are not dominated by any other individual. When a learner passes a number of tests and another learner passes the same number of tests, but also an additional one, it is not hard to see that the second learner performs strictly better than the first one. In this case we say that the first learner is dominated by the second one. We can make this more formal by the following definition, where fi (j) is the fitness of learner i on test j. We define: dominates(k, i) = ∀jfi (j) ≤ fk (j) ∧ ∃lfi (l) < fk (l) So dominates(k,i) says that learner i is dominated by learner k. Now we define the Paretofront as all learners which are not dominated by any other learner. Now we only let the learners in the Pareto-front reproduce and eliminate all other learners which are dominated by some other learner. This Pareto-front optimisation is also a used and good method for multi-objective optimisation in which there are more criteria to evaluate an individual. 90 5.6 CHAPTER 5. CO-EVOLUTION Conclusion In this chapter we studied co-evolutionary processes which are important in natural evolution. We have seen that instead of Darwin’s survival of the fittest, there can be groups of cooperating organisms which struggle for the same spatial resources, but which may help each other to survive at the same time. We also looked at the methods that life-forms use to alter their environment. There are many mechanisms which keep the environment profitable for life to sustain itself. Lovelock studied this complex web of many coupled processes for the first time and called this entire mechanism of a homeostatic Earth; Gaia. There are many examples of Gaian processes, and in this chapter we only examined a few, but important ones. Gaian homeostasis also relies on recycling networks in which chemical compounds are transformed through a sequence of different organisms so that resources never become depleted. This is very important, since if some compound would get lost, the whole recycling network might starve since their required resources are not available. Finally we have examined how coevolution can be used in evolutionary computation to make the search for optimal solutions different and for some problems more successful than the search process of normal evolutionary algorithms. Here learners and tests evolve together to allow learners to become better in solving the tests, and the tests to create harder and harder problems while still being able to differentiate between learners. It is important that we look at the co-evolutionary mechanisms when we use the Earth’s resources and kill organisms. Particular organisms may play very important roles to keep the homeostatic equilibrium of the Earth or of a local environmental niche. Since we cannot study a single organism alone, apart from its environment, we again need a holistic approach in which all elements are studied in a total perspective. Chapter 6 Unsupervised Learning and Self Organising Networks Unsupervised learning is one of the three forms of machine learning; supervised, unsupervised, and reinforcement learning. The special aspect of unsupervised learning is that there are only input (sensory) signals and no desired outputs or evaluations of actions to specify an optimal behavior. In unsupervised learning it is more important to deal with input signals and to form a meaningful representation of these. E.g. if we look at different objects, we can cluster objects which look similar together. This clustering does not take into account what the label of an object is, and therefore trees and plants may be grouped together in unsupervised learning, whereas in supervised learning we may want to map inputs to the label plant or tree. It is also possible that particular plants form their own cluster (or group) such as cactuses, this grouping is only based on their input representation (e.g. their visual input), and not based on any a-priori specified target concept which we want to learn. We may therefore start to think that unsupervised learning is less important than supervised learning, but this is not true since they have different objectives. Unsupervised learning has an important task in preprocessing the sometimes high-dimensional input and can therefore be used to make the supervised learning task simpler. Furthermore, supervised learning always requires labelled data, but labelled data is much harder obtained than unlabelled data. Therefore unsupervised learning can be applied continuously without the need for a teacher. This is a big advantage, since it makes continual life-long learning possible. The second topic in this chapter is self-organising networks or often called self-organising maps (SOMs). These SOMs are neural networks and can be applied for unsupervised learning purposes and can be easily extended for supervised and reinforcement learning problems. In principle a SOM consists of a number of neurons that have a position in the input space. Every time a new input arrives, the SOM computes distances between the input and all neurons, and thereby activates those neurons which are closest to the input. This idea of looking at similarities is a very general idea for generalization, since we usually consider objects that look alike (have a small distance according to some distance measure) to be of the same group of objects. To train the SOM, activated neurons are brought closer to the generated inputs, in order to minimize the distance between generated inputs and activated neurons. In this way a representation of the complete set of inputs is formed in which the distance between generated inputs and activated neurons is slowly minimized. By using SOMs in this way, we can construct a lower dimensional representation of a continuous, possibly high-dimensional 91 92 CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETWORKS input space. E.g. if we consider faces with different orientations as input, the input-space is high-dimensional, but activated neurons in the SOM essentially represent the orientation of the face which is of much smaller dimensionality. 6.1 Unsupervised Learning In unsupervised learning the program receives at each time-step an input pattern xp which is not associated to a target concept. Therefore all learned information must be obtained from the input patterns alone. Possible uses of unsupervised learning are: • Clustering: The input patterns are grouped into clusters where input patterns inside a cluster are similar and input patterns between clusters are dissimilar according to some distance measure. • Vector quantisation: A continuous input-space is discretized. • Dimensionality reduction: The input-space is projected to a feature space of lower dimensionality while still containing most information about the input patterns. • Feature extraction: particular characteristic features are obtained from input patterns. 6.1.1 K-means clustering One well-known clustering method is called K-means clustering. K-means clustering uses K prototypes which will form K clusters of all input patterns. In principle K-means clustering is a batch learning method, which means that all the data should be collected before and the algorithm is executed one time on all this data. Running the algorithm on this data creates a specific set of clusters. If another input pattern is collected, the algorithm has to be executed again on all data examples which therefore can cost more time than online clustering methods. K-means clustering is usually executed on input patterns consisting of continuous attributes, although it can be extended on patterns partly consisting of nominal or ordinal attributes. The K-means algorithm uses K prototype vectors: w1 , . . . , wK where each prototype vector is an element of ℜN where N is the number of attributes describing an input pattern. Each prototype vector wi represents a cluster C i which is a set of input patterns which are element of that cluster. So the algorithm partitions the data in the K clusters. We assume that there are n input patterns (examples) denoted as: x1 , . . . , xn . The algorithm works as follows: • Initialize the weight-vectors w1 , . . . , wK . • Repeat the following steps until the clusters do not change anymore 1. Assign all examples x1 , . . . , xn to one of the clusters. This is done as follows: An example xi is an element of cluster C j if the prototype vector wj is closer to the input pattern xi than all other prototype vectors: d(wj , xi ) ≤ d(wl , xi ) For all l 6= j 6.2. COMPETITIVE LEARNING 93 The distance d(x, y) between two vectors is computed using the Euclidean distance measure: s d(x, y) = X i (xi − yi )2 In case the distances to multiple prototype vectors are exactly equal, the example can be assigned to a random one of these. 2. Set the prototype vector to the center of all input patterns in the corresponding cluster. So for each cluster C j we compute: wij = P k k∈C j xi |C j | Where |C| denotes the number of elements in the set C. An example of K-means clustering. Suppose we have four examples consisting of two continuous attributes. The examples are: (1,2); (1,4); (2,3); (3,5). Now we want to cluster these examples using K = 2 clusters. We first initialize these clusters, suppose that w1 = (1, 1) and w2 = (3, 3). Now we can see that if we assign the examples to the closest prototypes, we get the following assignment: (1, 2) → 1 (1, 4) → 2 (2, 3) → 2 (3, 5) → 2 Now we compute the new prototype vectors and obtain: w1 = (1, 2) and w2 = (2, 4). We have to repeat the process to see whether the cluster stay equal after the prototype vectors have changed. If we repeat the assignment process to clusters, we can see that the examples stay in the same clusters, and therefore we can stop (continuing would not change anything). 6.2 Competitive Learning K-means clustering works on a given collection of data and when the data changes, the algorithm has to be executed again on all examples. There also exist a number of online clustering approaches which are based on artificial neural network models. Competitive learning is one of these methods and partitions the data into specific clusters by iterating an update rule a single time each time a new input pattern arrives. Therefore these online competitive learning algorithms are more suitable for changing environments, since they can change the clusters online according to the changing distributions of input patterns. Again only input patterns xp are given to the system. The system consists of a particular neural network as a representation of the clustering. The network propagates the input to the top where an output is given which tells us in which cluster an input pattern falls. Like in the K-means algorithm, the number of clusters should be given to the system and usually stays fixed during learning. In a simple competitive learning network all inputs are connected to all outputs representing the clusters, see Figure 6.1. The inputs describe a specific input pattern and when given these inputs, the competitive learning network can easily compute in which cluster the input falls. 94 CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETWORKS output o woi input i Figure 6.1: In a competitive network all input units are connected to output units through a set of weights. 6.2.1 Normalised competitive learning There are two versions of the competitive learning algorithm, the normalised and unnormalised versions. We first examine the normalised version which normalises all weight vectors and input vectors to a length of 1. Normalising a vector v means that its norm ||v||| will be one. The norm of a vector is computed as: ||v|| = q 2 (v12 + v22 + . . . + vN v uN uX = t vi2 i=1 Basically the norm of a vector is its Euclidean distance to the origin of the coordinate system. This origin is a vector with only 0’s. Normalising a vector is then done by dividing a vector by its norm: x xnorm = kxk So if all vectors are normalised, all weight vectors (each output unit has one weight vector which determines how it will be activated by an input pattern) will have length 1, which means that they all fall on a circle when there are 2 dimensions (N = 2). Therefore, the weights can only move on the circle. So, how do we adapt the weight vectors? Just as in the K-means algorithm, we initialize the weight vectors for the chosen number of clusters (represented by as many output units). Then, the normalised competitive learning algorithm performs the following steps after receiving an input pattern: • Each output unit o computes its activation y o by the dot- or inner-product: yo = X wio xi = wo x i • Then the output neuron k with the highest activation will be selected as the winning neuron: ∀o 6= k : yo ≤ yk 6.2. COMPETITIVE LEARNING 95 • Finally, the weights of the winning neuron k will be updated by the following learning rule: wk (t) + γ(x(t) − wk (t)) wk (t + 1) = kwk (t) + γ(x(t) − wk (t))k The divisor in the fraction makes sure that the weight vector remains normalised. The mechanism of normalised competitive learning causes the winning weight-vector to turn towards the input pattern. This causes weight-vectors to point to regions where there are many inputs, see Figure 6.2. w1 w3 w2 Figure 6.2: In a normalised competitive network, the weight-vectors will start to point to clusters with many inputs. When we would not use normalised weight vectors, there would be a problem with this algorithm which is illustrated in Figure 6.3. Here it is seen that if weight-vectors are different in size, larger vectors would win against smaller weight vectors, since their dot-product with input vectors is larger, although their (Euclidean) distance to an example is larger. w1 w1 x w2 x w2 Winner = 1 Winner = 1 Figure 6.3: (A) With normalised weight vectors the algorithm works appropriate. (B) When weight vectors would not be normalised, we would get undesirable effects, since larger weight vectors would start to win against small weight vectors. 96 CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETWORKS 6.2.2 Unnormalised competitive learning Instead of using the dot-product between two vectors to determine the winner for which we need normalised vectors, we can also use the Euclidean distance to determine the winning neuron. Then we do not need normalised weight vectors anymore, but we will deal with unnormalised ones. So in this case all weight-vectors are again randomly initialised and we determine the winner with the Euclidean distance: Winner k : kwk − xk ≤ kwo − xk ∀o. So here we take the norm of the difference between two vectors, which is the same as taking the Euclidean distance d(wk , x). The neuron with the smallest distance will win the competition. If all weight-vectors are normalised, this will give us the same results as computing the winner with the dot-product, but if the vectors are not normalised different results will be obtained. After determining the winning neuron for an input vector, we move that neuron closer to the input vector using the following learning rule: wk (t + 1) = wk (t) + γ(x(t) − wk (t)) (6.1) where 0 ≤ γ ≤ 1 is a learning rate which determines how much the neuron will move to the pattern (if γ = 1 the point will jump to the input vector, and therefore when continuing learning there will be a lot of jumping around. When the learning rate decreases while more updates have been done, a real “average” of the represented input patterns can be learned). Example unnormalised competitive learning. Suppose we start with K = 2 neurons with initialized weight-vectors: w1 = (1, 1) and w2 = (3, 2). Now we receive the following four examples: x1 = (1, 2) x2 = (2, 5) x3 = (3, 4) x4 = (2, 3) When we set the learning rate γ to 0.5, the following updates will be made: On x1 = (1, 2) → d(w1 , x1 ) = 1, d(w2 , x1 ) = 2. Therefore: Winner w1 = (1, 1). Application of the update rule gives: w1 = (1, 1) + 0.5((1, 2) − (1, 1)) √ = (1, 1.5). 2 2 √ 2 1 2 x = (2, 5) → d(w , x ) = 13.25, d(w , x ) = 10. Therefore: Winner w2 = (3, 2). Application of the update rule gives: w2 = (3, 2) + 0.5((2, 5) − (3, √ 2)) = (2.5, 3.5). √ x3 = (3, 4) → d(w1 , x3 ) = 10.25, d(w2 , x3 ) = 0.5. Therefore: Winner w2 = (2.5, 3.5) Application of the update rule gives: w2 = (2.5, 3.5) + 0.5((3, 4) − (2.5, 3.5)) = (2.75, 3.75). Now try it yourself on the fourth example. Initialisation A problem of the recursive (online) clustering methods which also holds for the K-means clustering algorithm is a possible wrong initialisation of the weight vectors of the neurons. Therefore it can happen that some neuron never becomes a winner and therefore never learns. In that case we are basically dealing with a dead (or silent) neuron and have one cluster less in our algorithm. To deal with this problem, there are two methods: 6.2. COMPETITIVE LEARNING 97 • Initialise a neuron on some input pattern • Use “leaky learning”. For this we let all neurons adapt on all examples, although we use a very small learning rate for this adaption so that this will only make a difference in the long run. The leaky learning rule adapts all neurons (except for the winning neuron) to the current example with a very small learning rate γ ′ << γ: wl (t + 1) = wl (t) + γ ′ (x(t) − wl (t)), ∀l 6= k Minimising the cost function The goal of a clustering method is to obtain a clustering in which the similarities between inputs of the same cluster are much larger than similarities between inputs of different clusters. The similarity between two inputs can be computed using the inverse of the (Euclidean) distance between the two inputs. Therefore if we minimize the distances between a neuron and all the examples in the cluster, we will maximize the similarities between the inputs in a cluster. A common measure to compute the quality of a final obtained set of clusters on a number of input patterns is to use the following quadratic cost function E: E= 1 XX k 1X k kw − xp k2 = (wi − xpi )2 2 p 2 p i In which k is the winning neuron on input pattern xp . Now we can prove that competitive learning searches for the minimum of this cost function by following the negative gradient of this cost function. Proof that the cost function is minimized. The cost-function for pattern xp : Ep = 1X k (wi − xpi )2 2 i in which k is the winning neuron is minimized by Equation 6.1. We first examine how the weight-vectors should be adjusted to minimize the cost-function p E on pattern xp : ∂E p ∆p wio = −γ ∂wio Now we have as the partial derivative of E p to the weight-vectors: ∂E p = wio − xpi , If unit o wins o ∂wi = 0, else (6.2) From this follows (for winner o): ∆p wio = γ(xpi − wio ) Thus we demonstrated that the cost-function is minimized by repetitive weight-vector updates. Some notes on this are: 98 CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETWORKS • If we continue the updating process with a fixed learning rate, the weight-vectors will always make some update step, and therefore we do not obtain a stable clustering. To obtain a stable clustering we should decrease the learning-rate γ after each update P according to the conditions of stochastic approximation: (1) ∞ t=1 γt = ∞ and (2) P∞ 2 t=1 γt < ∞. The first condition makes sure that the weight-vectors are able to move an arbitrarily long distance to their final cluster-point, and the second condition makes sure that the variance of updates goes to zero which means that finally a stable state will be obtained. A possible way of setting the learning rate which respect these conditions is: γt = 1t . • It is important to note that the cost-function is likely to contain local minima. Therefore the algorithm does not always obtain the global minimum of the cost-function. Although the algorithm will converge (given the conditions on the learning-rate), convergence to a global minimum is not guaranteed. Better results can therefore be obtained if we execute the algorithm multiple times starting with different initial weight-vectors. • Choosing the number of cluster-points (or neurons) is an art and not a science. Of course the minimum of the cost-function can be obtained if we use as many clusterpoint as input-patterns and set all the cluster-points on a different input-pattern. This would result in a cost of 0. However, using as many cluster-points as input-patterns does not make any sense since we want to obtain an abstraction of the input data. It is also logical that increasing K leads to a smaller minimal cost, so how should we then choose K? Often we need to trade off the complexity of the clustering (the number of used cluster-points) and the obtained error-function. Thus, we like to minimize a new cost-function: Ef = E + λK where the user-defined parameter λ trades off complexity versus clustering cost. Ef can then be minimized by running the algorithm with different K. 6.2.3 Vector quantisation Another important use of competitive learning is vector quantisation. In vector quantisation we divide the whole input space into a number of non-overlapping subspaces. The difference with clustering is that we are not so much interested in the clusters of similar input-patterns, but more in the quantisation of the whole input space. Vector quantisation uses the same (unnormalised) competitive learning algorithm as described before, but we will finally examine the subspaces and not the clusters. It should be noted that the distribution of input-patterns is respected by competitive learning; more inputs in a region lead to more cluster-points. An example of an obtained vector quantisation is shown in Figure 6.4. Vector quantisation combined with supervised learning Vector quantisation can also be used in a preprocessing phase for supervised learning purposes. In this case, each neuron corresponds to some output value which is the average of the output values for all input-patterns for which this neuron wins the competition. The output-values for multiple outputs belonging to some neuron that represents a subspace of the input space is usually stored in the weights from this neuron to the output neurons. Thus we can denote the value for output o which is computed when neuron h is activated as woh . If there is only one 6.2. COMPETITIVE LEARNING 99 Figure 6.4: A final set of clusters (the big black dots) corresponds with a quantisation of the input space into subspaces. output, we sometimes write y h to indicate that this value is the output of neuron h. Figure 6.5 shows a supervised vector quantisation network in which vector quantisation in the first layer is combined with supervised learning in the second layer. Vector Quantisation i whi Feed Forward h woh o Y Figure 6.5: A supervised vector quantisation network. First the input is mapped by a competitive network to a single activated internal neuron. Then this neuron is used for determining the output of the architecture. For learning this network we can first perform the (unsupervised) vector quantisation steps with the unnormalised vector quantisation algorithm and then perform the supervised learning steps, but is is also possible to perform these two updates at the same time. The supervised learning step can simply be done with a simple version of the delta-rule. The complete algorithm for supervised vector quantisation looks as follows: • Present the network with input x and target value D = f (x) • Apply the unsupervised quantisation step: determine the distance of x to the (input) weight-vector of each neuron and determine the winner k, then update the (input) weight-vector of neuron k with the unsupervised competitive learning rule (Eq. 6.1). • Apply the supervised approximation step, for all outputs o do: wok (t + 1) = wok (t) + α(Do − wok (t)) 100CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETWORKS This is a simple version of the delta-rule where α is the learning-rate and k the winning neuron. This algorithm can work well for smooth functions, but may have problems with fluctuating functions. The reason is that inside a subspace in which a single neuron is activated, the generated network output is always the same. This means that large fluctuations will cause problems and can only be approximated well when enough neurons are used. For smooth functions, however, the target values inside a subspace are quite similar so that the approximation can be quite good. Given a vector quantisation and input-patterns with their target outputs, we can compute to which values wok the network converges. First we define a function g(x, k) as: g(x, k) = 1, If k is the winner = 0, Else Now it can be shown that the supervised vector quantisation learning rule converges to: woh = R ℜnRDo (x)g(x, h)p(x)dx ℜn g(x, h)p(x)dx where Do (x) is the desired output value of output o on input-pattern x and p(x) is a probability density function which models the probabilities of receiving different inputs. Thus, each weight from neuron h to output o converges to the average target output value for output o for all the cases that neuron h wins. Example of supervised vector quantisation. The winning neuron moves according to the same update rule as normalised competitive learning. Since there is only a single output in the example below, we will write y k to denote the output value of neuron k. The value y k for the winning neuron wk is adapted after each example by the following update rule: y k = y k + α(D p − y k ) Suppose we start again with 2 cluster-points and set their output-values to 0 : w1 = (1, 1), y 1 = 0 and w2 = (3, 2), y 2 = 0. Now we receive the following learning examples: (x1 → D 1 ) = (1, 2 → 3) (x2 → D 2 ) = (2, 5 → 7) (x3 → D 3 ) = (3, 4 → 7) (x4 → D 4 ) = (2, 3 → 5) Suppose we set the learning-rate γ to 0.5 and the learning rate for the supervised learning step α = 0.5. Now if we update on the four learning examples, the following updates are made: x1 = (1, 2) → d(w1 , x1 ) = 1, d(w2 , x1 ) = 2. Thus: Winner w1 = (1, 1). Application of the update rule gives: w1 = (1, 1) + 0.5((1, 2) − (1, 1)) = (1, 1.5). This is just the same as in the example of unnormalised competitive learning before. The only difference in computations is that we also adjust the output values of the winning neuron: y 1 = 0 + 0.5(3 − 0) = 1.5 6.3. LEARNING VECTOR QUANTISATION (LVQ) 101 Since the weight-vectors wi are adjusted in the same way as in the example of competitive learning, we only show the updates of the neurons’ output values: x2 = (2, 5). Winner is neuron 2. y 2 = 0 + 0.5(7 − 0) = 3.5. x3 = (3, 4). Winner is neuron 2. y 2 = 3.5 + 0.5(7 − 3.5) = 5.25. Now try it yourself on the fourth example. 6.3 Learning Vector Quantisation (LVQ) Learning vector quantisation is basically a supervised learning algorithm, since the neurons have labels associated to them and therefore can classify inputs into a fixed number of categories. Using the training examples, which in this case consist of an input pattern and an associated discrete label (or output), LVQ learns decision boundaries which partition the input space into subspaces with an associated label. The goal is that each input patterns falls into a subspace with the same associated label. The algorithm looks as follows: • Initialize the weight-vectors of a number of neurons and label each neuron o with a discrete class label y o • Present a training example (xp , dp ) • Use the distance measure between the weight-vectors of the neurons and the input vector xp to compute the winning neuron k1 and the second closest neuron k2 : kxp − wk1 k < kxp − wk2 k < kxp − wi k ∀i 6= k1 , k2 • The labels y k1 and y k2 are compared to the desired label of the example dp from which an update is computed The update rule causes the winning neuron to move closer to the input example when its label corresponds to the desired label for that example. In case the labels are not the same, the algorithm looks at the second-best neuron and when its label is correct it is moved closer and in this case the winning neuron is moved away from the input example. Formally, the update rules look as follows: • If y k1 = dp : Apply the weight update rule for k1 : wk1 (t + 1) = wk1 (t) + γ(xp − wk1 (t)) • Else, if y k1 6= dp and y k2 = dp : Apply the weight update rule for k2 : wk2 (t + 1) = wk2 (t) + γ(xp − wk2 (t)) and move the winning neuron away from the example: wk1 (t + 1) = wk1 (t) − γ(xp − wk1 (t)) 102CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETWORKS The algorithm does not perform any update if the labels of the winning and second-best neurons do not agree with the label of the example. One could make an algorithm which would move the closest neuron with the correct label to the example (and possibly move all others away from it), but this is not done in LVQ. A possible problem of this would be strong oscillation of the weight-vectors of the neurons due to noise. LVQ example. In LVQ, we use K cluster-points (neurons) with a labelled output. We compute the closest (winning) neuron wk1 and the second closest neuron wk2 for each training example and apply the weight update rules. Suppose we start with 2 cluster-points: w1 = (1, 1) with label y 1 = A, and w2 = (3, 2) with label y 2 = B. We set the learning rate γ to 0.5. Now we receive the following training examples: (x1 → D 1 ) = (1, 2 → A) (x2 → D 2 ) = (2, 5 → B) (x3 → D 3 ) = (3, 4 → A) (x4 → D 4 ) = (2, 3 → B) Then we get the following update rules: For (1, 2 → A), the winner is neuron 1 and the second best is neuron 2. The label of neuron 1 y 1 = D 1 . Therefore neuron 1 is moved closer to the example: w1 = (1, 1) + 0.5((1, 2) − (1, 1)) = (1, 1.5). x2 = (2, 5). Winner is neuron 2. Second closest is neuron 1. The label of neuron 2 is the same as the label D 2 , therefore neuron 2 is moved closer to the example: w2 = (3, 2) + 0.5((2, 5) − (3, 2)) = (2.5, 3.5). x3 = (3, 4). Winner is neuron 2. Second closest is neuron 1. The label of neuron 2 is not the same as the label D 3 . The label of neuron 1 is the same as D 3 . Therefore we move neuron 1 closer to the example, and neuron 2 away from the example: w1 = (1, 1.5) + 0.5((3, 4) − (1, 1.5)) = (2, 2.75). w2 = (2.5, 3.5) − 0.5((3, 4) − (2.5, 3.5)) = (2.25, 3.25). Now try it yourself on the fourth example. An example partitioning of a 2-dimensional input space is shown in Figure 6.6. The structure of the decision boundaries of such a partitioning is often called a Voronoi diagram. D A C B A Figure 6.6: An example of a partitioning created by LVQ. 6.4. KOHONEN NETWORKS 6.4 103 Kohonen Networks Kohonen networks or Kohonen maps are self-organising maps (SOMs) in which the neurons are ordered in a specific structure such as a 2-dimensional grid. This ordering or structure determines which neurons are neighbours. Input patterns which are lying close together are mapped to neurons in the structure S which are close together (the same neuron or neighbouring neurons). The learning algorithm causes the structure of the neurons to get a specific shape which reflects the underlying (low dimensional) manifold of the input patterns received by the algorithm. The structure of a Kohonen network is determined before the learning process, and often a structure is used which has lower dimensionality than the dimensionality of the input space. This is very useful to visualise the structure of inputs which fall on a subspace of the input space, see Figure 6.7. The structure used here is a 2-dimensional structure consisting of 4 × 4 neurons. Figure 6.7: In this example, the 2-dimensional 4 × 4 structure of the Kohonen network covers a manifold of lower dimensionality than the input space. 6.4.1 Kohonen network learning algorithm Again we compute the winning neuron for an incoming input pattern using some distance measure such as the Euclidean distance. Instead of only updating the winning neuron, we also update the neighbours of the winning neuron for which we use a neighbourhood function g(o, k) between two neurons. Here we define g(k, k) = 1 and with a longer separation distance in the structure we decrease the value of the neighbourhood function g(o, k). So the update is done using: wo (t + 1) = wo (t) + γg(o, k)(x(t) − wo (t)) ∀o ∈ S. Where k is the winning neuron and we have to define a function g(o, k). For example we can use a Gaussian function defined as: g(o, k) = exp(−distanceS (o, k)) Where distanceS (o, k) computes the distance in the structure S between two neurons. This distance is the minimal number of edges which have to be traversed in the structure to arrive at neuron o from winning neuron k. By this collective learning method input patterns which lie close together are mapped to neurons which are close together in the structure. In this way the topology which can be 104CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETWORKS found in the input signals is represented in the learned Kohonen network. Figure 6.8 shows an example of the learning process in which input patterns are drawn randomly from the 2-dimensional subspace. Iteration 0 Iteration 600 Iteration 1900 Figure 6.8: The Kohonen network learns a representation which preserves the structure of the input patterns. If the intrinsic dimensionality of the structure S is smaller than the dimensionality of the input space, the neurons of the network are “folded” in the input space. This can be seen in Figure 6.9. Figure 6.9: If the dimensionality of the structure is smaller than the manifold from which input patterns are generated, the resulting Kohonen map is folded in the input space. Here this folding is shown for a 1-dimensional structure in a 2-dimensional input-space. Example Kohonen network. Suppose we use a Kohonen network with 3 neurons connected in a line (thus 1-dimensional) structure. We use a neighbourhood relation as follows: g(k, k) = 1 and g(h, k) = 0.5 if h and k are direct neighbours on the line, else g(h, k) = 0. Again we always compute the winning neuron on each input pattern, and then we update all neurons as follows: wi = wi + γg(i, k)(xp − wi ) We initialise: w1 = (1, 1), w2 = (3, 2), w3 = (2, 4). We set γ = 0.5. Now we obtain the examples: x1 = (1, 2) x2 = (2, 5) x3 = (3, 4) x4 = (2, 3) 6.5. DISCUSSION 105 On x1 = (1, 2) neuron 1 wins the competition. This results in the update: w1 = (1, 1) + 0.5 ∗ 1((1, 2) − (1, 1)) = (1, 1.5). We also have to update the neighbours. g(2, 1) = 0.5 en g(3, 1) = 0. So we update neuron 2: w2 = (3, 2) + 0.5 ∗ 0.5((1, 2) − (3, 2)) = (2.5, 2). On x2 = (2, 5) neuron 3 wins. This results in the update: w3 = (2, 4) + 0.5 ∗ 1((2, 5) − (2, 4)) = (2, 4.5). We also have to update the neighbours. g(2, 3) = 0.5 en g(1, 3) = 0. So we update neuron 2: w2 = (2.5, 2) + 0.5 ∗ 0.5((2, 5) − (2.5, 2)) = (2.375, 2.75). On x3 = (3, 4) neuron 3 wins. This results in the update: w3 = (2, 4.5) + 0.5 ∗ 1((3, 4) − (2, 4.5)) = (2.5, 4.25). We also have to update the neighbours. Again g(2, 3) = 0.5 en g(1, 3) = 0. So we update neuron 2: w2 = (2.375, 2.75) + 0.5 ∗ 0.5((3, 4) − (2.375, 2.75)) = (2.53, 3.06). Try it yourself on the last example. 6.4.2 Supervised learning in Kohonen networks A Kohonen network can also be used for supervised learning. For this we use outputs woh for each neuron h and each output o. In case there is only a single output we can denote the output of a neuron h as y h . To determine the overall output on a training example, we use the outputs of all activated neurons (neurons are activated if g(h, k) > 0. So we obtain the output yo by the following formula which weighs the neuron outputs by their activations: P h h∈S g(h, k)wo yo = P h∈S g(h, k) This is basically a weighted sum and causes smoother functions when larger neighbourhood function values are used. Now each neuron can learn output values in two different ways. The first possibility is to let neurons learn the average output weighted by its activation using: woh = woh + α(Do − woh ) P g(h, k) i∈S g(i, k) Where Do is the target value for output o. We can also let each neuron learn to reduce the overall error of the network. In this case neurons collaborate more. The following learning rule does this: woh = woh + α(Do − yo ) P g(h, k) i∈S g(i, k) Furthermore for supervised learning in Kohonen networks, the unsupervised steps can be changed so that neurons with small errors are moved faster to the input pattern than neurons with larger errors. 6.5 Discussion In this chapter we examined unsupervised learning methods which can be used for clustering data, vector quantisation, dimensionality reduction, and feature extraction. The K-means 106CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETWORKS algorithm is a well-known method for clustering, but is a batch learning method meaning that it has to be executed on all input patterns. In competitive learning, updates are made online. The neurons compete for becoming activated based on their distance to the input pattern. Unsupervised learning methods can also be extended with additional output weights to make supervised learning possible. In this case we can simply use the delta rule for learning outputs of each neuron. The shown algorithms are well able in dealing with continuous inputs, for discrete inputs some adaptions may be necessary to improve the algorithms. All learning algorithms respect the locality principle; inputs which lie close together in the input space are grouped together. For supervised learning, the shown algorithms can be very suitable if the function is smooth. By using additional neurons a good approximation of a fluctuating target function can be learned, but finding the winning neuron becomes slow if many neurons are used. Bibliography [Dawkins, 1976] Dawkins, R. (1976). The Selfish Gene. Oxford University Press. [Dorigo and Gambardella, 1997] Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. Evolutionary Computation, 1(1):53–66. [Dorigo et al., 1996] Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(1):29–41. [Glover and Laguna, 1997] Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers. [Merz and Freisleben, 1999] Merz, P. and Freisleben, B. (1999). A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem. In et al., P. J. A., editor, Proceedings of the Congress on Evolutionary Computation, volume 3, pages 2063–2070. [Radcliffe and Surry, 1994] Radcliffe, N. J. and Surry, P. D. (1994). Formal memetic algorithms. In Evolutionary Computing, AISB Workshop, pages 1–16. 107 Transparanten bij het vak Inleiding Adaptieve Systemen: Reinforcement Leren. M. Wiering Stap = overgang (transitie) van de ene toestand P naar de volgende ( j P (i, a, j) = 1) Toestanden kunnen terminaal zijn: ketens van stappen die hier terecht komen worden niet verder voortgezet Inhouds opgave • Markov Decision Problems Markov eigenschap • Dynamisch Programmeren: herhaling De huidige toestand en actie geven alle mogelijke informatie voor het voorspellen naar welke volgende toestand een stap gemaakt zal worden: • Reinforcement Leren: principes • Temporal difference leren P (st+1 |st , at ) = P (st+1 |st , at , . . . , s1 , a1 ) • Q-leren Dus, voor het voorspellen van de toekomst doet het er niet toe hoe je in de huidige toestand gekomen bent. • Model gebaseerd leren Vergelijk processen in de natuurkunde: waar zou het verleden gerepresenteerd moeten zijn? Leerdoelen: 1. De theorie begrijpen en de RL algoritmen kunnen opschrijven/gebruiken. Voorbeeld MDP: 2. Begrijpen waarom exploratie/generalisatie van belang is en manieren kunnen vertellen hoe we dat kunnen aanpakken. 0 3. Applicaties kunnen bedenken voor RL toepassingen. +1 0 0 0 0 0 0 -1 0 Deterministic MDP Number of states = 5 Number of actions = 2 Markov besluits problemen Een Markov decision process (MDP) bestaat uit: Passief leren — leert uitkomst van proces zonder besluiten te kunnen nemen welke uitkomst van proces beinvloeden → predictie. • S: Eindige verzameling toestanden {S1 , S2 , . . . , Sn }. • A: Eindige verzameling acties. Voorbeeld: in het bovenstaande MDP worden alle acties met 50% gekozen. Wat is de verwachte som der beloningen in de toekomst? • P (i, a, j): kans om een stapje naar toestand j te maken als actie a wordt geselecteerd in toestand i. Actief leren — leert policy welke acties selecteert zodat uitkomst van proces voor de agent zo goed mogelijk is → controle. • R(i, a, j) beloning voor het maken van een transitie van toestand i naar toestand j door het executeren van actie a Voorbeeld: in bovenstaande MDP: wat is de optimale actie in elke toestand? Wat is dan de verwachte som der beloningen in de toekomst? • γ: discount parameter voor toekomstige beloningen: (0 ≤ γ ≤ 1) Actie selectie policy Policy Π selecteert een actie als een functie van de huidige toestand at = Π(st ) 1 Doel: Leer de policy Π∗ welke de toekomstige Q-functie voor het evalueren van toestand/actie verwachte beloningen maximaliseert: paren. Π∗ = arg max E( Π ∞ X Als V , de toestand waarde-functie bekend is, dan kunnen we in een toestand alle acties uitproberen, de nieuwe toestand bepalen (met behulp van het model) en die actie selecteren welke leidt tot de grootst verwachte som van toekomstige beloningen. γ t R(st , Π(st ), st+1 )|s0 = s) t=0 Voorbeeld policy: Als de Q-functie bekend is dan kunnen we in elke toestand direct de actie selecteren met de hoogste Q-waarde (hiervoor is dan ook geen model meer nodig). G Dynamisch programmeren (Bellman 1957) De optimale Q-functie voldoet aan de Bellman vergelijking: X Q∗ (i, a) = P (i, a, j)(R(i, a, j) + γV ∗ (j)) Er zijn |A||S| policies, hoe weten we welke policy het beste is? j Waarde-functie (utiliteiten functie): De waar- Hier is V ∗ (j) = maxa Q∗ (j, a) de van een toestand schat de verwachte toekomDe optimale policy verkrijgen we dan door: stige beloningen: V (s) = E( ∞ X Π∗ (i) = arg max Q∗ (i, a) a t γ R(st , Π(st ), st+1 )|s0 = s) t=0 Opmerkingen: De Q-functie schat de waarde voor het selecteren • V ∗ is uniek bepaald van een actie in een gegeven toestand: • Π∗ is niet altijd uniek bepaald (soms zijn X P (st , at , st+1 )(R(st , at , st+1 )+γV (st+1 ))er meerdere optimale policies) Q(st , at ) = st+1 Voorbeeld waarde functie (in deterministische wereld): 5 6 6 7 5 6 4 Value Iteration We kunnen de optimale policy en de Q-functie berekenen door gebruik te maken van een dynamisch programmeer algoritme: 10 8 Value iteration: 9 1. Initialiseer de Q-waarde en V-waarden (b.v. op 0) 8 6 7 2. Maak een “update” voor de Q-waarden: X Q(i, a) := P (i, a, j)(R(i, a, j) + γV (j)) j De V-functie en de Q-functie Voor terminale toestanden geldt: P (i, a, i) = 1 en R(i, a, i) = 0 voor elke actie.(Of P (i, a, j) = 0 voor alle j) We maken gebruik van 2 waarde functies: de Vfunctie voor het evalueren van toestanden en de 2 3. Bereken dan de nieuwe waarde functie: V (i) := max Q(i, a) a En los de onbekenden op. (1) • Policy evaluation: Start met V (i) = 0 voor alle toestanden i 4. Pas de policy aan zodat in elke toestand de actie met maximale huidige waarde wordt geselecteerd. en herhaal X V (i) := Π(i) := argmaxa Q(i, a) P (i, j)(R(i, j) + γV (j)) j een groot aantal keer voor alle niet-terminale toestanden i 5. Ga naar (2) totdat V niet meer verandert Evalueren van een policy Opgave: Als we de policy vastleggen, kunnen we berekenen wat de exacte waarde van een bepaalde toe- Gegeven de toestanden 1 t/m 4 waarvan 4 terstand is. Dit correspondeert met passief leren minaal is: (waarbij de vastgelegde policy de overgangskansen bepaalt). P = 0.5 R = -1 Omdat we nu een vaste policy Π hebben kunnen we de acties uit de transitie en belonings functies elimineren: 1 P = 0.5 R=1 P (i, j) = P (i, Π(i), j) en: R(i, j) = R(i, Π(i), j) 3 2 P = 0.5 R = -1 P=1 R=1 P = 0.5 R=2 4 Nu is V Π (i) voor elke toestand i vastgelegd: • voor terminale toestanden i: Bereken de waarden voor alle toestanden. V Π (i) = 0 • voor niet-terminale toestanden i: X V Π (i) = P (i, j)(R(i, j) + γV Π (j)) Dynamisch programmeren als planning tool Planning: bereken acties om doel te verwezenlijken. Voorbeeld: A* planning. Problemen met niet deterministische omgevingen. j Stelsel van n lineaire vergelijkingen met n onbekenden V (i) =⇒ precies één oplossing voor de V-functie. DP: gegeven een toestand: selecteer een actie en volg vervolgens de (optimale) policy Hoe bepaal je de n onbekenden V (i)? DP voordeel: Tijdens het runnen kunnen acties direct geselecteerd worden (dus zonder kostbare plan operaties) Twee methoden: • Gauss-eliminatie ( = ‘vegen’) V (1) = X DP nadeel: de waarde functie moet nauwkeurig zijn. P (1, j)(R(1, j) + γV (j)) Problemen voor het gebruik van dynamisch programmeren: j V (2) = X P (2, j)(R(2, j) + γV (j)) X P (n, j)(R(n, j) + γV (j)) j .. = V (n) = • Een a-priori model van het Markov decision process is nodig (de omgeving moet bekend zijn) j 3 • Als er veel variabelen zijn wordt de toe- Geen a-priori gegeven model (transitie kansen, standsruimte zeer groot (bv. n binaire va- beloningen) is nodig. riabelen → 2n toestanden. DP wordt comReinforcement leren leert een subjectieve “view” putationeel dan heel duur. op de wereld door de interactie met de wereld. • Wat als de toestandsruimte continu is? Een policy wordt getest hetgeen ervaringen oplevert waarvan geleerd kan worden om een nieuwe policy te berekenen. • Wat als acties/tijd continu zijn? • Wat als omgeving niet-Markov? Exploratie van de toestands ruimte is nodig. De beste actie leren met RL G Stel je speelt de twee-armige bandiet: er zijn twee acties (L en R), beide kosten een euro. De linkerarm heeft kans 10% op uitbetalen van 6 euro. Epoch = Sequentie Ervaringen (stapjes) De rechterarm heeft kans 1% op uitbetalen van 100 euro. Subjectieve kijk van de agent op de wereld Helaas weet je de kansen en opbrengsten niet. Door herhaaldelijk beide armen uit te proberen, kun je de kans op winst en het winstbedrag leren (gewoon door het gemiddelde te bepalen). Principes van reinforcement leren (RL) Om de Q-functie te leren, herhalen RL algoritmen voortdurend het volgende: Als de kansen en de bedragen nauwkeurig bekend zijn is het simpel om optimaal te spelen. 1. Selecteer actie at gegeven de toestand st 2-armige bandiet en exploratie 2. Vergaar de beloning rt en observeer de opvolgende toestand st+1 Stel je speelt het spel en krijgt de volgende resultaten: 3. Maak een “update” van de Q-functie door gebruik te maken van de laatse ervaring: (st , at , rt , st+1 ) (1, L, -1) (2, R, -1) (3, L, +5) De verwachtings waarden kunnen we opschrijven als een quadruple: Epoch = keten opeenvolgende toestanden eindigend in terminale toestand (of na vast aantal (Actie A, kans P , winstbedrag R, gem. waarde stapjes). V) +1 Voor bovenstaande ervaringen worden deze: (L, 0.5, 5, 2.0) en (R, 0, ?, -1). -1 +2 0 Als we nu verder spelen, moeten we dan direct L kiezen, of toch R blijven uitproberen? Dit wordt het exploratie/exploitatie dilemma ge- Uit de epochs willen we de waarde functie en de optimale strategie leren noemd Vergelijk: kiezen we voor informatie voor meer toekomstige beloning of voor directe beloning? Vier RL methoden: • Monte Carlo sampling (Naı̈ef updaten) Reinforcement leren 4 Hier is α een klein positief getal, de learning rate • Temporal difference (TD) leren • Q-leren Idee: geef elke keer V (i) een duwtje in de ge• Model-gebaseerd dynamisch program- wenste richting meren Bij vaste α komt dit snel in de buurt van de echte utiliteit, maar convergeert daarna niet verder De eerste drie methodes gebruiken geen transitie Als α steeds kleiner wordt naarmate toestand i model en worden daarom ook vaak direct RL vaker bezocht is, convergeert het wel of model-free RL genoemd. De vierde schat eerst een transitie model en berekent de waarde functie aan de hand van dynamisch programmeer achtige methoden. Daarom wordt deze methode ook wel indirect RL of model-based RL genoemd. Voorbeeld: Als P (i, j) = 13 en P (i, k) = 23 , en de overgang i → j komt 10 keer voor en de overgang i → k komt 20 keer voor, dan: 10× : V (i) := V (i) + α(R(i, j) + γV (j) − V (i)) Monte Carlo Sampling 20× : V (i) := V (i) + α(R(i, k) + γV (k) − V (i)) ≈ V (i) := V (i) + α(10R(i, j) + 10γV (j)+ • Bepaal voor elke toestand s in een epoch k de reward-to-go: ak = de som van alle beloningen in die epoch vanaf het eerste moment dat die toestand bezocht is tot de epoch afgelopen is 20R(i, k) + 20γV (k) − 30V (i)), ⇔ 30αV (i) = α(10R(i, j) + 10γV (j) + 20R(i, k) + 20γV (k)) • Schatting voor utiliteit van een toestand: precies een stap in de gewenste richting =⇒ neem het gemiddelde van alle rewardsto-go van alle keren dat die toe1 2 V (i) := (R(i, j) + γV (j)) + (R(i, k) + γV (k)) stand in een epoch voorkomt 3 3 V (s) = Pk i=1 ai (s)| s bezocht in epoch i aantal epochs dat s bezocht werd Opgave: +5 Bezwaar: deze methode convergeert zeer langzaam (update variantie is heel groot) 2 +5 3 -5 5 1 -5 Temporal difference leren: -5 4 In plaats van direct de hele toestand keten te gebruiken voor een update, kunnen we ook alleen de opvolgende toestand gebruiken. Doe voor elke stap van i naar j in een epoch: +5 6 7 Stel elke overgang 50% kans. • als j terminaal: V (i) := V (i) + α(R(i, j) − V (i)) Stel vervolgens dat de agent de volgende epochs (sequenties van toestanden) meemaakt: {1, 2, 3} {1, 4, 7} {1, 2, 5} • als j niet terminaal: V (i) := V (i) + α(R(i, j) + γV (j) − V (i)) 5 {1, 2, 3} Welke updates van de V-functie zal de agent maken met Monte Carlo sampling? Welke met TD-leren? Model-gebaseerd RL Model-gebaseerd RL schat eerst de transitie en de belonings functies: Maak schatting van P (i, a, j): P̂( i, a, j) := Q-leren Q-learning (Watkins, 1989) verandert een enkele Q-waarde gegeven de ervaring (st , at , rt , st+1 ): # overgangen van i → j waarbij a gekozen # keren actie a in toestand i gekozen Doe hetzelfde voor de beloning: Q(st , at ) := Q(st , at )+α(rt +γV (st+1 )−Q(st , at )) Hierbij is V (s) = maxa Q(s, a). R̂(i, a, j) := som beloningen op overgang van i → j na kiezen a # transities van i naar j waarbij a gekozen werd Herhaal de update X Q(i, a) := P̂ (i, a, j)(R̂(i, a, j) + γV (j)) Als Q-leren gebruikt wordt, convergeert de Qfunctie naar de optimale Q-functie als alle toestand/actie paren oneindig vaak bezocht worden (en de leersnelheid afneemt). j een aantal keer voor alle niet-terminale toestanden Q-leren is meest gebruikte RL methode. Vaak is het onnodig om alle Q-waarden te updaten: Voordeel van Q-leren: simpel te implementeren. Nadeel van Q-leren: kan lang duren voordat beloning aan eind van keten terug gepropageerd is naar een toestand. Slechts een subset van de Q-waarden zal significant veranderen door de laatste ervaring. Snellere update-methoden houden hier rekening mee (bv. Prioritized sweeping) Voorbeeld Q-leren We hebben de volgende toestandsgraaf met over- Experimentele vergelijking gangen voor de acties Links (L) en rechts (R). Er zijn 5 toestanden: A,B,C,D,E. E is een terminale toestand. R=-1 P(L) = 0.9 P(R) = 0.1 A R=-1 P(L) = 0.9 P(R) = 0.1 B R=-1 P(L) = 1.0 P(R) = 1.0 R=-1 P(L) = 0.9 P(R) = 0.1 C R=-1 P(L) = 0.1 P(R) = 0.9 G D R=-1 P(L) = 0.1 P(R) = 0.9 E R=-1 P(L) = 0.1 P(R) = 0.9 S 50 × 50 maze Reward goal = + 100 ; Reward blocked = -2 ; Reward penalty = -10 ; otherwise -1; 10% noise in action execution Max-random exploration (30% → 0% noise) Stel de volgende overgangen worden gemaakt: (A, L, B); (B, R, C); (C, R, D); (D,R,E) (C,L,D); (D, L, C); (C,R,D); (D,R,E) (B,L,A); (A,R,B); (B,L,C); (C,R,D); (D,L,E) Vraag: Wat zijn de resulterende Q-waarden als Q-leren gebruikt wordt (α = 0.5)? Indirect vs. Direct RL Voordelen direct RL: 6 100000 1e+06 Q-learning Q(0.5)-learning Model-based Q Prioritized Sweeping Q-learning Q(0.5)-learning Model-based Q Prioritized Sweeping 80000 number of steps in trial Cumulative reward per 10000 steps 100000 60000 40000 20000 10000 1000 0 100 -20000 -40000 10 0 250000 500000 750000 1e+06 0 2000 #steps 4000 6000 8000 trial number • Minder geheugen ruimte nodig (transitie functie kan groot zijn) • Werkt ook met niet discrete representaties (bv. neurale netwerken) • Kan beter werken als Markov eigenschap niet geldt Nadelen direct RL: • Veel informatie wordt weggegooid • Agent heeft geen mogelijkheid tot introspectie: bv. welke actie heb ik nog weinig uitgeprobeerd (voor exploratie) • Leren kan veel langer duren • Geleerde waarde functie meestal veel minder nauwkeurig 7 Transparanten bij het vak Inleiding Adaptieve Systemen: Optimal Control. M. Wiering 4. Begrijpen waarom exploratie/generalisatie van belang is en manieren kunnen vertellen hoe we dat kunnen aanpakken. Reinforcement leren 5. Applicaties kunnen bedenken voor RL toepassingen. Supervised leren: leren uit gegevens die allemaal voorzien zijn van de gewenste uitkomst Reinforcement leren : Reinforcement leren: leren door het uitproberen van acties, waarbij na sommige acties een beloning (reward) of straf (punishment) wordt gegeven Leer een agent te controlleren door acties uit te proberen en de verkregen feedback (beloningen) te gebruiken om gedrag te versterken (reinforce). Voorbeelden: De agent interacteert met een omgeving door het gebruik van (virtuele) sensoren en actuatoren. • Bepaal route van een robot – Beloning: als gewenste positie bereikt De belonings functie bepaalt welk gedrag van de is agent het meest gewenst is. – Straf: als de robot ergens tegen opbotst • Speel schaak, dammen, backgammon, . . . Omgeving – Beloning: als het spel gewonnen is Beloning Input – Straf: als het spel verloren is Actie Straf = beloning met negatieve waarde Agent Inhouds opgave • Kortste pad algoritmen Reinforcement leren (RL) en Evolutionai• Optimal Control, dynamisch programme- re Algoritmen (EA) ren Stel je wilt leren schaken, dan wil je dus een evaluatie functie leren. • Reinforcement Leren: principes Je wilt de evaluatie van een stand weten; wat je kunt doen is de stand 1000 keer uitspelen (waarbij verschillende zetten aan bod komen) en bekijken hoe vaak er gewonnen wordt. • Temporal difference leren • Q-leren • Model gebaseerd leren Door tegen jezelf te spelen, kun je op deze manier een steeds betere evaluatie functie leren (met RL). Leerdoelen: Een andere mogelijkheid is om speler A tegen speler B te laten spelen. De winnaar gaat door en krijgt een tegenstander welke net iets afwijkt. 1. Markov decision problems begrijpen 2. Dynamisch programmeer algoritmen begrijpen en kunnen toepassen Door herhaaldelijk competities uit te voeren, kunnen dergelijke evolutionaire algoritmen leren scha3. De RL principes begrijpen en de RL algo- ken. ritmen kunnen opschrijven/gebruiken. 1 • De toestand Enkele bekende applicaties • De minimaal gevonden afstand tot de beginknoop Samuel’s checkers programma leerde dammen (op 64 velden) door tegen zichzelf te spelen en werd het eerste spel-programma dat de programmeur versloeg (1959). • De vaderknoop welke aangeeft wat de vorige toestand in het best gevonden pad is. Tesauro maakte TD-gammon (1992), een RL programma welke backgammon leerde spelen op wereldklasse nivo. TD-gammon werd veel beter dan Neuro-gammon, een programma welke supervised leren gebruikte. We verdelen de toestanden over 2 verzamelingen: Crites en Barto (1996) gebruikten RL om een controller te leren voor meerdere liften in een gesimuleerde omgeving. • een verzameling waarvan we dat nog niet weten. • een verzameling waarvan we weten dat we het kortste pad hebben bepaald De datastructuur: (knoop, kosten, vader, geexp). Verder: • Robot besturing Voorbeeld zoekprobleem • Combinatorial optimization • Network routing B 2 C 4 E 7 • Verkeers controle 2 A F 1 3 9 Kortste pad algoritmen D Reinforcement-leer algoritmen leren paden in een zoekruimte met de hoogste som van beloningen of de laagste padkosten. (1) Initialisatie: Zet beginknoop op padkosten 0. Hiervan is optimale pad bekend (maar knoop is niet geexpandeerd). Zet andere knoWe kennen wellicht al een aantal zoek-algoritmen pen op maximale waarde Bekend = [(A, 0, [A], 0)] welke het kortste pad kunnen berekenen Onbekend = [(B, 1000, []), (C, 1000, []), (D, 1000, []), (vb. Breadth-first zoeken). Reinforcement leren kan dan ook goed gebruikt worden voor het vinden van het kortste pad. (E, 1000, []), (F, 1000, [])] Voor het kortste-pad probleem in een netwerk, bestaan er echter efficientere algoritmen. (2) Expandeer bekende, niet-geexpandeerde knoop (A): De besproken zoek algoritmen zijn inefficient omBekend = [(A, 0, [A], 1)] dat ze de zoekboom voor elke zoekknoop steeds Onbekend = [(B, 7, [BA]), (C, 1000, []), (D, 3, [DA]), opnieuw expanderen. (E, 1000, []), (F, 1000, [])] Dijkstra’s kortste pad algoritme (1959) is het meest efficient, als de omgeving deterministisch en bekend is. (3) Onbekende knoop met kortste padkosten wordt bekend (D): Bekend = [(A, 0, [A], 1), (D, 3, [DA], 0)] Onbekend = [(B, 7, [BA]), (C, 1000, []), (E, 1000, []), (F, 1000, [])] Dijkstra’s kortste pad algoritme (DKPA) (2) Expandeer bekende, niet-geexpandeerde knoop (D): Bekend = [(A, 0, [A], 1), (D, 3, [DA], 1)] Onbekend = [(B, 7, [BA]), (C, 4, [CDA]), (E, 1000, []), DKPA maakt gebruik van de structuur van het probleem (een graaf i.p.v. een boom) Het houdt voor elke zoekknoop de volgende informatie bij: (F, 12, [F DA])] 2 (3) Onbekende knoop met kortste padkos- als de kosten en het effect (de opvolgende toeten wordt bekend (C): stand) van operatoren bekend zijn. Bekend = [(A, 0, [A], 1), (D, 3, [DA], 1), (C, 4, [CDA], 0)] Onbekend = [(B, 7, [BA]), (E, 1000, []), (F, 12, [F DA])] (2) Expandeer bekende, niet-geexpandeerdeDynamisch Programmeren knoop (C): We kunnen dynamisch programmeren gebruiken Bekend = [(A, 0, [A], 1), (D, 3, [DA], 1), (C, 4, [CDA], 1)] als: Onbekend = [(B, 6, [BCDA]), (E, 8, [ECDA]), (F, 12, [F DA])] (3) Onbekende knoop met kortste padkosten wordt bekend (B): Bekend = [(A, 0, [A], 1), (D, 3, [DA], 1), (C, 4, [CDA], 1), (B, 6, [BCDA], 0)] • De omgeving stochastisch is (er zijn meerdere mogelijke opvolgende toestanden als een operator gebruikt wordt in een bepaalde toestand) • Operatoren een negatieve kosten kunnen hebben Onbekend = [(E, 8, [ECDA]), (F, 12, [F DA])] (2) Expandeer bekende, niet-geexpandeerde • De effecten van operatoren bekend zijn. knoop (B): Bekend = [(A, 0, [A], 1), (D, 3, [DA], 1), (C, 4, [CDA], 1), Als een omgeving stochastisch is, kan het gebeu(B, 6, [BCDA], 1)] ren dat de padkosten van een toestand afhanOnbekend = [(E, 8, [ECDA]), (F, 12, [F DA])] kelijk is van vadertoestanden. Dit zorgt voor (3) Onbekende knoop met kortste padkoscyclische afhankelijkheden tussen toestanden. ten wordt bekend (E): Bekend = [(A, 0, [A], 1), (D, 3, [DA], 1), (C, 4, [CDA], 1), (B, 6, [BCDA], 1), (E, 8, [ECDA], 0)] A=L P=1 K=1 Onbekend = [(F, 12, [F DA])] (2) Expandeer bekende, niet-geexpandeerde knoop (E): Bekend = [(A, 0, [A], 1), (D, 3, [DA], 1), (C, 4, [CDA], 1), A=R P=0.5 K=2 (B, 6, [BCDA], 1), (E, 8, [ECDA], 1)] Onbekend = [(F, 10, [F ECDA])] (3) Onbekende knoop met kortste padkosten wordt bekend (F): Bekend = [(A, 0, [A], 1), (D, 3, [DA], 1), (C, 4, [CDA], 1), (B, 6, [BCDA], 1), (E, 8, [ECDA], 1), (F, 10, [F ECDA])] A B A=R P=0.5 K=4 C A=R P=1 K=2 Complexiteit Dijkstra’s kortste pad De complexiteit van Dijkstra’s kortste pad is O(n2 ) voor een naieve implementatie (n is het aantal toestanden). Rekenen met Dynamisch programmeren Als een omgeving stochastisch is, moeten we de gemiddelde padkosten berekenen. Tijdens het De complexiteit kan verbeterd worden door het genereren van een pad, laten we een random gebruik van efficientere datastructuren om het nummer generator bepalen wat de uitkomst van minimum te vinden van de toestanden waarvan een operator is. er 1 bekend (en minimaal) is. Zo zijn voor bovenstaand probleem de volgende Dijkstra’s algoritme werkt alleen als alle operapaden mogelijk (als steeds actie = R gekozen toren een positieve kosten hebben. wordt): Dijkstra’s algoritme werkt alleen voor determi[A, B, C]; [A, B, A, B, C]; [A, B, A, B, A, B, C] etc. nistische omgevingen. Elk van deze paden heeft een kans: Dijkstra’s algoritme kan alleen gebruikt worden 3 P ([A, B, C]) = 0.5 ; P ([A, B, A, B, C]) = 0.25; etc. • Te itereren: begin met V[A,C] = 0 en V[B,C] = 0. Bereken de waarden dan steeds opnieuw door gebruik te maken van de vergelijkingen. Elk van deze paden heeft ook een totale kosten: K([A, B, C]) = 6 ; K([A, B, A, B, C]) = 10 etc. • Te elimineren: We kunnen afhankelijkheid (1) invullen in (2) en verkrijgen: De verwachte padkosten V van A naar C als steeds actie R gekozen wordt is dan het gemiddelde: V [B, C] 0.5V [B, C] V [B, C] = 8 V ([A, C]) = P ([A, B, C])K([A, B, C]) + P ([A, B, A, B, C])K([A, B, A, B, C]) + . . . = 3 + 0.5(2 + V [B, C]) = 4 Hieruit volgt: V [A, C] = 10. Hiervoor gingen we ervan uit dat de policy Π al bekend was. Dan kan V Π berekend worden. NB. Als in toestand B de actie L gekozen wordt, dan zijn de padkosten V [A, C] oneindig groot! We schrijven daarom ook vaak V Π [A, C], waarin de policy Π aangeeft welke actie er in elke Voorbeeld toestand gekozen wordt. Beschouw de volgende cyclische graaf. Stel dat altijd actie = R wordt geselecteerd door de policy. Bereken nu de waarde functie. Gebruik maken van afhankelijkheden Als we naar het probleem kijken, zien we dat de kosten van A naar C gelijk zijn aan de kosten om van A naar B te gaan plus de kosten om van B naar C te gaan. A=L P=1 K=1 Dit kunnen we opschrijven als: A=R P=0.5 K=2 V [A, C] = K[A, B]+V [B, C] = 2+V [B, C] (1) D Hetzelfde kunnen we doen voor toestand B (we gaan er weer van uit dat actie R gekozen wordt: V [B, C] = A=R P=0.5 K=2 A A=R P= 1 K=3 B A=R P=0.5 K=4 A=R P=0.5 K=4 0.5(K[B, A] + V [A, C]) + 0.5(K[B, C] + V [C, C]) = 0.5 ∗ 2 + 0.5V [A, C] + 0.5 ∗ 4 + 0.5 ∗ 0 = 3 + 0.5V [A, C] Berekenen van actie waarden Door gebruik te maken van de afhankelijkheden: Normaal gesproken willen we de optimale policy Π∗ berekenen. (1) V [A, C] = 2 + V [B, C], en (2) V [B, C] = 3 + 0.5V [A, C] Hiervoor gebruiken we Quality (Q)-waarden voor acties. Kunnen we V [A, C] en V [B, C] berekenen. Voorbeeld: Q([A, C], R) = 2 + V [B, C] Voorbeeld: Q([B, C], L) = 1 + V [A, C] Voorbeeld: Q([B, C], R) = 0.5(2+V [A, C])+0.5(4+V [C, C]) Methoden om de V-functie te berekenen Dit kunnen we doen door: 4 C Gegeven de waarden Q([B, C], L) en Q([B, C], R) Als we eerder stoppen, verkrijgen we een subkunnen we beste actie selecteren (degene met optimale oplossing, welke beter wordt naarmate laagste Q-waarde). er langer geitereerd wordt. Op deze manier kunnen we V uitdrukken in Q: Voorbeeld: dynamisch programmeren V ([B, C]) = min Q([B, C], a) a Beschouw een deterministische doolhof. De kosten van alle acties zijn 1. G is doeltoestand (V (G) = 0). Gegeven de Q-waarden kunnen we nu ook de beste actie selecteren: Als we value iteration toepassen krijgen we achtereenvolgens: Π([B, C]) = arg min Q([B, C], a) a Het algemene geval We willen de doeltoestand niet altijd expliciet vermelden, er kunnen immers meerdere doeltoestanden zijn. 0 0 0 0 0 0 0 Daarom schrijven we simpelweg V (S) en Q(S, A) voor de waarden (verwachte padkosten) vanuit toestand S. Verder gebruiken we P (S, A, T ) voor de kans op een overgang van toestand S naar toestand T als actie A geexecuteerd wordt. K(S, A, T ) beschrijft de kosten om met actie A van toestand S naar toestand T te gaan. 0 2 2 2 2 2 2 2 0 2 2 D 1 1 0 1 1 0 1 1 0 1 0 3 3 1 3 3 2 3 3 2 3 0 1 1 1 1 1 2 1 0 2 3 3 De complexiteit van dynamisch programmeren voor een deterministische doolhof = O(N AL), waarbij N het aantal toestanden, A het aantal acties, en L het langste optimale pad is. Nu kunnen we een dynamisch programmeer algoritme gebruiken voor het berekenen van alle V- en Q-waarden en de optimale policy. Dynamisch programmeren kunnen we niet gebruiken als de effecten en kosten van operatoren onbekend zijn. Value iteration: • (1) Initialisatie V(S) = 0 ; Q(S,A) = 0 voor alle toestanden en acties. Conclusie • Dijkstra’s kortste pad algoritme kan gebruikt worden als de omgeving bekend is en alle acties positieve kosten hebben en alle acties deterministisch zijn. • Herhaal stappen (2-4) voor alle (S,A) paren totdat de waardefunctie V niet of nauwelijks meer verandert. • (2) Iteratie P : bereken Q-waarden Q(S, A) = T P (S, A, T )(K(S, A, T )+V (T )) • Dynamisch programmeren kan gebruikt worden als de omgeving bekend is. Acties kunnen negatieve kosten hebben en nietdeterministisch zijn. • (4) Iteratie : bereken nieuwe policy acties: Π(S) = arg minA Q(S, A) • Dynamisch programmeren berusten op een V-functie welke de waarde om in een toestand te zijn schat en op een Q-functie welke de waarde van een actie in een toestand schat. • (3) Iteratie : bereken V-waarden V (S) = minA Q(S, A) Dit levert de optimale policy op. Helaas kan het itereren totdat de waarde-functie V niet meer verandert oneindig lang duren. 5 • DP kan niet gebruikt worden als de omgeving onbekend is. 6 1. Bereken welke voorbeelden x1 , . . . , xn in elk van de clusters vallen. Transparanten bij het vak Inleiding Adaptieve Systemen: Unsupervised Leren/ Self organizing networks. M. Wiering Een voorbeeld xi valt in een cluster C j als wj de prototype vector is met de kleinste Euclidische afstand tot het voorbeeld: Unsupervised Learning en Self Organizing Networks d(wj , xi ) ≤ d(wl , xi ) Leerdoelen: Voor alle l 6= j pP 2 Met d(x, y) = i (xi − yi ) : de Euclidische afstand tussen x en y. • Weten wat unsupervised learning is • Weten hoe K-means clustering gaat 2. Zet de prototype vectoren op het centrum van de input voorbeelden in de betreffende cluster. Voor alle clusters C j doe: • Competitive Learning begrijpen en kunnen uitleggen • LVQ begrijpen en kunnen toepassen wij • Kohonen netwerken begrijpen en de leerformules kennen = P k∈C j |C j | xki • Kunnen uitrekenen wat gewichtenveranderingen in een competitief leersysteem zijn Voorbeeld We hebben vier voorbeelden: (1,2) (1,4) Unsupervised Leren (2,3) In Unsupervised leren krijgen we enkel patronen (3,5) xp als input en geen doel output. We initialiseren 2 prototype vectoren w1 = (1, 1) De geleerde informatie moet dus volledig uit de en w2 = (3, 3) inputpatronen gehaald worden We zien dat de voorbeelden in de volgende clusUnsupervised leren kan gebruikt worden voor: ters vallen: (1,2) → 1 • Clustering: Groepeer de data in clusters. (1,4) → 2 (2,3) → 2 • Vector quantisation: Discretiseer een con- (3,5) → 2 tinue inputruimte Nu berekenen we de nieuwe prototype vectoren • Dimensionaliteits reductie: groepeer de da- en krijgen: w1 = (1, 2) en w2 = (2, 4). ta in een subruimte van lagere dimensie Hierna vallen alle voorbeelden weer in dezelfde dan de dimensionaliteit van de data clusters dus zijn we klaar. • Feature extraction: Extraheer kenmerken uit de data Competitive learning Competitief leren verdeelt de input ruimte over clusters in de input data K-means clustering Er worden enkel input patronen xp aangeboden. De output van het leernetwerk op een input patroon is de cluster waarin xp valt. K-means clustering kan gebruikt worden op continue attributen. Het algoritme begint met K prototype vectoren w1 , . . . , wK welke elk een cluster (C 1 , . . . , C K ) representeren. In een simpel competitief leernetwerk worden alle inputs i met alle outputs o verbonden. Hoe wordt de actieve (winnende) cluster bepaald? Herhaal tot clusters niet meer veranderen: 1 output o w1 w3 wio w2 input i w1 w1 We veronderstellen allereerst dat gewichten en inputs genormaliseerd worden tot lengte 1. x w2 x w2 Adaptieve stappen voor het netwerk Winnaar = 1 (1) Elke output unit o berekent zijn activatie yo door het ”dot-product”: X yo = wio xi = wo x Selecteren van de winnaar met de Euclidische afstand i Als inputs en gewichten vectoren niet genormaliseerd zijn, kunnen we de Euclidische afstand nemen om de winnaar te bepalen: (2) Vervolgens wordt de output neuron k met maximale activatie gekozen: ∀o 6= k : Winnaar = 1 Winnaar y o ≤ yk k : kwk − xk ≤ kwo − xk ∀o. Als de vectoren genormaliseerd zijn, geeft het Activaties worden gereset zodat yk = 1 en yo6=k = gebruik van de Euclidische afstand dezelfde win0. naar terug als het gebruik van het dot-produkt. (3) Tenslotte worden de gewichten van de winDe gewichten update-regel schuift de gewichten nende neuron k veranderd door de volgende leervector van de winnende neuron naar het inputregel: patroon: wk (t) + γ(x(t) − wk (t)) wk (t + 1) = kwk (t) + γ(x(t) − wk (t))k wk (t + 1) = wk (t) + γ(x(t) − wk (t)) (1) De deler zorgt ervoor dat de gewichten vector genormaliseerd wordt. Competitive Learning (niet genormaliseerd) Er zijn K clusterpunten (neuronen) w i , 1 ≤ i ≤ K. Werking van competitive learning In principe worden de gewichten vectoren in de input ruimte gedraaid naar het voorbeeld Eerst berekenen we voor elke clusterpunt de Euclidische afstand naar een voorbeeld met: sX d(wi , xp ) = (wji − xpj )2 Dus gaan gewichten vectoren wijzen naar gebieden waar veel inputs verschijnen Het kan mis gaan als inputs en gewichten vectoren niet genormaliseerd zijn: Het ongewenste effect is dat grote gewichten vectoren het winnen tegen kleine gewichten vectoren. j De winnende neuron k heeft de minimale d(w k , xp ) Vervolgende verschuiven we de winnende neuron k naar voorbeeld xp : wik = wik + γ(xpi − wik ) 2 Voorbeeld: We hebben 2 (K = 2) neuronen met geinitialiseerde waarden: w 1 = (1, 1) en w2 = (3, 2). Een gebruikelijke maat om de kwaliteit van een clustering te berekenen is gegeven door de volgende kwadratische-fout kosten functie: Nu krijgen we 4 leervoorbeelden: x1 = (1, 2) x2 = (2, 5) x3 = (3, 4) x4 = (2, 3) E= 1X kwk − xp k2 2 p Hier is k weer de winnende neuron voor inputpatroon xp . We zetten de leersnelheid γ = 0.5. Dan krijgen we: We kunnen aantonen dat competitive learning het minimum van de kosten functie zoekt door de negatieve afgeleidde te volgen. x1 = (1, 2) → d(w 1 , x1 ) = 1, d(w2 , x1 ) = 2. Dus: Winnaar w1 = (1, 1) Toepassen van de update vergelijking geeft: w1 = (1, 1) + 0.5((1, 2) − (1, 1)) = (1, 1.5). Bewijs: √ 2 1 2 2 2 p x √ = (2, 5) → d(w , x 2) = 13.25, d(w , x ) = De foutfunctie voor patroon x : 10. Dus: Winnaar w = (3, 2) Toepassen van 1X de update vergelijking geeft: E= (wik − xpi )2 2 2 i w = (3, 2) + 0.5((2, 5) − (3, 2)) = (2.5, 3.5). √ 3 1 3 2 3 x √ = (3, 4) → d(w , x )2 = 10.25, d(w , x ) = waar k een winnende neuron is, wordt gemini0.5. Dus: Winnaar w = (2.5, 3.5) Toepassen maliseert door de gewichten update-regel van van de update vergelijking geeft: vergelijking (1). w2 = (2.5, 3.5)+0.5((3, 4)−(2.5, 3.5)) = (2.75, 3.75). Bewijs: we berekenen het effect van een gewichProbeer het nu zelf voor het laatste voorbeeld. ten verandering op de foutfunctie: ∆p wio = −γ Initialisatie ∂E p ∂wio Een probleem van de recursieve clustering me- Nu hebben we als gedeeltelijke afgeleidde van thodes is de initialisatie: Het kan gebeuren dat E p : een neuron nooit winnaar wordt en dus niet leert. ∂E p = wio − xpi , Als unit o wint Twee oplossingen: ∂wio = 0, anders (2) • Initialiseer een neuron op een inputpatroon Hieruit volgt (voor winnaar o): • Gebruik ”leaky learning”. Hier leren alle ∆p wio = γ(xpo − wio ) neuronen op alle inputpatronen met een zeer kleine leersnelheid γ 0 << γ: Dus: de kosten functie wordt geminimaliseerd door herhaalde gewichten updates. wl (t + 1) = wl (t) + γ 0 (x(t) − wl (t)), ∀l 6= k Vector quantisatie Minimalisering van de kosten functie Een ander belangrijk gebruik van competitief leren is vector quantisatie. Clustering houdt in dat overeenkomsten tussen inputs in dezelfde cluster veel groter zijn dan inputs in andere clusters. Een vector quantisatie verdeelt de input ruimte in een aantal verschillende subruimtes. De mate van overeenkomst wordt vaak uitgedrukt door de (inverse van de) Euclidische afstandsmaat te gebruiken Het verschil met clustering is dat we nu niet zo geinteresseerd zijn in clusters van gelijke data, maar meer in het quantificeren van de hele input ruimte. 3 De quantisatie welke geleerd wordt door competitive leren respecteert de verdeling van inputs: meer inputs in een regio leidt tot meer clusters uit: Een voorbeeld vector quantisatie: Dit is simpelweg de delta-regel met yo = wko waar k de winnende neuron is. wko (t + 1) = wko (t) + γ(d − wko (t)) Als we een functie g(x, k) definieren als: g(x, k) = 1, = 0, Als k de winnaar is Anders Dan kan aangetoond worden dat de bovenstaande leerprocedure convergeert naar: R n yo g(x, h)dx Who = R< <n g(x, h)dx Combinatie met Supervised leren Vector quantisatie kan gebruikt worden als preprocessing stadium voor een supervised lerend systeem. Dus: elke tabel-entry (gewicht van hidden unit h naar output unit o) convergeert naar het gemiddelde van de doelwaarde voor alle keren dat de neuron wint. Een voorbeeld is het volgende netwerk dat vector quantisatie in de eerste laag combineert met supervised leren in de 2e laag: Supervised Vector Quantization Vector Quantisatie i wih Feed Forward h who De winnende neuron verschuift volgens dezelfde update regel als bij vector quantisatie, maar bovendien wordt er een output y k voor de winnende neuron wk na het leervoorbeeld bijgesteld met: o Y y k = y k + α(Dp − y k ) Stel nu weer 2 clusterpunten : w1 = (1, 1), y1 = 0 en w2 = (3, 2), y2 = 0. We kunnen eerst de vector quantisatie uitvoeren en dan de supervised leerstap maken, of we kunnen beide lagen tegelijk aanpassen. We (x1 (x2 (x3 (x4 Leeralgoritme supervised vector quantisatie krijgen de volgende leervoorbeelden: → D1 ) = (1, 2 → 3) → D2 ) = (2, 5 → 7) → D3 ) = (3, 4 → 7) → D4 ) = (2, 3 → 5) Stel we zetten de leersnelheid γ = 0.5 en α = 0.5. Dan krijgen we: • Presenteer het netwerk met input x en doel x1 = (1, 2) → d(w 1 , x1 ) = 1, d(w2 , x1 ) = 2. waarde d = f (x). Dus: Winnaar w1 = (1, 1) Toepassen van de • Voer de unsupervised quantisatie stap uit. update vergelijking geeft: Bereken de afstand van x naar elke gewich- w1 = (1, 1) + 0.5((1, 2) − (1, 1)) = (1, 1.5). ten vector en bepaal de winnaar k. Stel de Dit is precies als hiervoor. gewichtenvector bij met de unsupervised leerregel. Het enige verschil is dat we nu ook de output • Voer de supervised approximatie leerstap van de winnende neuron moeten bijstellen: y 1 = 0 + 0.5(3 − 0) = 1.5 4 We laten nu enkel zien hoe de output waarden Dus: de neuron met het juiste label (als de winvan de neuronen veranderen, de gewichtenvec- naar of de 1-na beste dit zijn) wordt geschoven naar het input patroon. toren wi veranderen net als hiervoor. x2 = (2, 5). Winnaar is neuron 2. y 2 = 0 + 0.5(7 − 0) = 3.5. D A x3 = (3, 4). Winnaar is neuron 2. y 2 = 3.5 + 0.5(7 − 3.5) = 5.25. C Probeer nu zelf de update voor voorbeeld 4 te berekenen. B A Learning Vector Quantisatie (LVQ) Is eigenlijk een supervised leeralgoritme voor discrete outputs LVQ: voorbeeld Deze netwerken proberen ”decision boundaries”te We hebben nu K clusterpunten (neuronen) met leren aan de hand van gelabelde voorbeelden, een gelabelde output. We berekenen de dichtszodat elk voorbeeld in een regio valt met de juis- bijzijnde neuron wk1 en de op 1 na dichtsbijzijnte klasse-label. de neuron wk2 . Het algoritme ziet er als volgt uit: Stel we beginnen met de volgende clusterpunten: w1 = (1, 1) en label y 1 = A. w2 = (3, 2) en label 1. Associeer met elke output neuron o een y 2 = B. klasse label yo We krijgen de volgende leervoorbeelden: 2. Presenteer een leervoorbeeld (xp , dp ) (x1 → D1 ) = (1, 2 → A) 2 2 3. Gebruik een afstandsmaat tussen gewich- (x → D ) = (2, 5 → B) 3 3 tenvectoren en inputvector xp om de win- (x → D ) = (3, 4 → A) 4 4 nende neuron k1 en de op een na beste (x → D ) = (2, 3 → B) neuron k2 te vinden Dan krijgen we: (1, 2 → A), winnaar is neuron is neuron 2. De label van neukxp −wk1 k < kxp −wk2 k < kxp −wi k∀i 6= k1 , k12 een na beste ron 1 = D1 . Dus: neuron 1 verschuift naar het 4. De labels yk1 en yk2 worden vergeleken voorbeeld: 1 met dp , waaruit een gewichtenverandering w = (1, 1) + 0.5((1, 2) − (1, 1)) = (1, 1.5). x2 = (2, 5) Winnaar is neuron 2. 1 na beste is neuron 1. De label van neuron 2 is gelijk aan de label D2 , dus neuron 2 verschuift naar het voorbeeld: w2 = (3, 2) + 0.5((2, 5) − (3, 2)) = (2.5, 3.5). wordt bepaald. Update regels x3 = (3, 4). Winnaar is neuron 2. 1 na beste is neuron 1. De label van neuron 2 is niet gelijk aan de label D3 . De label van neuron 1 is wel gelijk aan D 3 . Dus verschuiven we neuron 1 naar het voorbeeld en neuron 2 weg van het voorbeeld: w1 = (1, 1.5) + 0.5((3, 4) − (1, 1.5)) = (2, 2.75). w2 = (2.5, 3.5)−0.5((3, 4)−(2.5, 3.5)) = (2.25, 3.25). • Als yk1 = dp : Voer de gewichten update regel voor k1 uit: wk1 (t + 1) = wk1 (t) + γ(xp − wk1 (t)) • Anders, als yk1 6= dp en yk2 = dp : Voer de gewichten update regel voor k2 uit: wk2 (t + 1) = wk2 (t) + γ(xp − wk2 (t)) Bepaal nu zelf de updates voor voorbeeld 4. en verwijder de winnende neuron van het voorbeeld: Vraag: tekenen decision boundaries wk1 (t + 1) = wk1 (t) − γ(xp − wk1 (t)) 5 De geleerde partitie van de input ruimte wordt ook wel een Voronoi diagram genoemd. wo (t+1) = wo (t)+γg(o, k)(x(t)−wo (t)) ∀o ∈ S. Vraag: Gegeven de volgende plaatsing van output neuronen, teken (ongeveer) het bijpassende Voronoi diagram Hier is g(o, k) een afnemende functie van de afstand tussen units o en k zodat g(k, k) = 1. Bijvoorbeeld: g(o, k) = exp(−buuraf stand(o, k))2 k o Kohonen netwerk In een Kohonen netwerk zijn de output units geordend op een bepaalde manier, b.v. in een 2-dimensionale grid. Voorbeeld leerproces Inputs die dicht bij elkaar vallen moeten gemapped worden op output units (in S) welke dicht bij elkaar liggen (dezelfde neuron of buren) Hierdoor blijft de topologie inherent in de inputsignalen bewaard in het geleerde Kohonen netwerk: Door deze collectieve leermethode worden inDeze ordening bepaalt welke neuronen buren van puts die dichtbij elkaar vallen gemapped op output neuronen die dicht bij elkaar zitten. elkaar zijn. Vaak wordt een Kohonen netwerk van lagere dimensionaliteit gebruikt dan de inputvectoren. Dit is vooral handig als de inputs in een subruimte van <n vallen: Iteratie 0 Iteratie 600 Iteratie 1900 Als de instrinsieke dimensionaliteit in S kleiner is dan N , worden de neuronen van het netwerk “gevouwen” in de input ruimte: Kohonen netwerk leeralgoritme Voor een leervoorbeeld wordt weer de winnende neuron k berekend met de bekende Euclidische afstandsmaat. Vervolgens worden de inputs van de winnende neuron en zijn (niet enkel directe) buren bijgesteld door: Kohonen netwerk: Voorbeeld 6 We hebben een Kohonen netwerk met 3 neuro- Elke neuron leert dan de gemiddelde output over nen verbonden in een lijn. We maken gebruik alle gewogen input patronen: van de burenrelaties door g(k, k) = 1 te nemen g(h, k) en g(h, k) = 0.5 te zetten als h en k directe buwho = who + γ(d − who ) P ren zijn, anders is g(h, k) = 0. i∈S g(i, k) Nu berekenen we weer eerst de winnende neuron k, en vervolgens updaten we alle neuronen als volgt: De unsupervised leerstap kan eventueel aangepast worden om de beste neuronen het snelst te verschuiven naar het leervoorbeeld. wi = wi + γg(i, k)(xp − wi ) Conclusie Nu initialiseren we w 1 = (1, 1), w2 = (3, 2), w3 = (2, 4). Weer zetten we γ = 0.5. • Unsupervised leermethoden kunnen gebruikt worden voor: Clustering, Vector quantisation, Dimensionaliteits reductie en Feature extraction. We krijgen weer de voorbeelden: x1 = (1, 2) x2 = (2, 5) x3 = (3, 4) x4 = (2, 3) • In competitief leren strijden de neuronen om geactiveerd te worden. Op x1 = (1, 2) wint neuron 1. Dit resulteert in de update: w1 = (1, 1) + 0.5 ∗ 1((1, 2) − (1, 1)) = (1, 1.5). We moeten ook de buren updaten. g(2, 1) = 0.5 en g(3, 1) = 0. Dus updaten we neuron 2: w2 = (3, 2) + 0.5 ∗ 0.5((1, 2) − (3, 2)) = (2.5, 2). • De unsupervised leermethoden kunnen uitgebreid worden met een extra output laag om ook supervised te kunnen leren. Hiervoor wordt de delta regel voor de nieuwe laag gebruikt. Op x2 = (2, 5) wint neuron 3. Dit resulteert in • de update: w3 = (2, 4) + 0.5 ∗ 1((2, 5) − (2, 4)) = (2, 4.5). We moeten ook de buren updaten. g(2, 3) = 0.5 • en g(1, 3) = 0. Dus updaten we neuron 2: 2 w = (2.5, 2)+0.5∗0.5((2, 5)−(2.5, 2)) = (2.375, 2.75). Op x3 = (3, 4) wint neuron 3. Dit resulteert in de update: w3 = (2, 4.5)+0.5∗1((3, 4)−(2, 4.5)) = (2.5, 4.25). We moeten ook de buren updaten. g(2, 3) = 0.5 en g(1, 3) = 0. Dus updaten we neuron 2: w2 = (2.375, 2.75)+0.5∗0.5((3, 4)−(2.375, 2.75)) = (2.53, 3.06). Probeer het nu zelf voor het laatste voorbeeld. Kohonen netwerk: Supervised leren Een Kohonen netwerk kan ook gebruikt worden voor supervised leren. Hiervoor kunnen we elke output neuron h met een tabel-entry (who ) verschaffen Voor het bepalen van de totale output y kunnen we de outputs van buren mee laten tellen door: P h∈S g(h, k)who y= P h∈S g(h, k) 7 De getoonde leeralgoritmen kunnen het best omgaan met continue inputs, voor discrete inputs zijn extra aanpassingen nodig De leeralgoritmen respecteren het lokaliteits principe: inputs die dicht bij elkaar liggen worden samen gegroepeerd. • Voor Supervised leren zijn de getoonde leeralgoritmen geschikt als de functie erg grillig (niet smooth) is. Door extra neuronen toe te voegen kan een goede approximatie van een functie geleerd worden. Transparanten bij het vak Inleiding Adaptieve Systemen: Biologische Adaptieve Systemen. M. Wierin Nauurwetenschap Voor de 16e eeuw geloofden nog veel wetenschappers in een deductieve benadering om kennis te vergaren Zo dacht Aristoteles dat zware objecten sneller vallen dan lichte objecten Dit duurde tot Galileo Galilei (1564 - 1642) dit testte waaruit bleek dat deze hypothese fout was Het is b.v. niet mogelijk om een machine te maken die altijd kan blijven doorgaan zonder dat deze extra energie krijgt Hierna volgden een aantal belangrijke wetenschappelijke doorbraken welke uitdraaiden op een nieuwe natuurwetenschap Als voorbeeld van een niet-omkeerbaar systeem nemen we een vat met twee helften waarin aanvankelijk alle gasmoleculen in 1 helft zitten (een geordende toestand) • Galilei maakte voorspellende methoden (aarde draait om de zon) Als we de wand die de helften scheidt wegnemen, dan zal de wanorde van het systeem enkel toenemen • Huygens kon betere klokken, lensen, en telescopen maken zodat experimenten veel precieser gedaan konden worden Boltzmann bedacht de maat entropie om de wanorde van een systeem te beschrijven. • Kepler benaderde banen van planeten met ellipsen i.p.v. de gebruikelijke cirkels Stel dat er N moleculen zijn waarvan in 1 helft van het vak N1 en in het andere helft van het vat N2 . Dan is het aantal permutaties van die toestand: N! P = N1 !N2 ! • Newton ontdekte de aantrekkingswet tussen 2 objecten waaruit ook volgde dat planeetbanen ellipsen waren Omkeerbare Systemen Entropie De nieuwe wetenschap leidde tot de gedachte dat het universum voorspelbaar was (Genius van Lap- Het is dus logisch dat het systeem naar een evenwicht gaat met de meeste mogelijke toestanden, lace) dus met N1 = N2 . De mechanische wetten van Newton beschrijven een omkeerbaar systeem. Dit houdt in dat als Boltzmann definieerde de entropie van het syswe de richting van de tijd veranderen, we het teem: S = k log P verleden en de toekomst omdraaien. Omkeerbare systemen behouden hun energie en daarom kunnen ze doorgaan met hun beweging. Omdat de entropie voortdurend toeneemt en er een toestand is met maximale entropie, zal het systeem uiteindelijk in een evenwicht terecht komen, het systeem is dan dus niet omkeerbaar. Een voorbeeld hiervan is een slingerklok als we wrijving verwaarlozen. Dit leidde tot de twee wetten van de thermodynamica (Classius 1865): Niet Omkeerbare Systemen Er zijn ook veel systemen waarbij bruikbare energie verloren gaat (thermodynamische systemen) 1 • De energie van de wereld is constant • De entropie van de wereld gaat naar een maximale waarde Let op dat dit geldt voor gesloten systemen. Voor r < 1 gaat x altijd naar 0. Als we r verOpen systemen zoals levende wezens kunnen hun hogen krijgen we eerst 1 stabiel eindpunt welke entropie verminderen door bruikbare energie van afhangt van de waarde van r. de omgeving op te nemen Als we r nog meer verhogen krijgen we een periodische cyclus van lengte 2 Chaos Theorie: de Lorenz attractor In sommige systemen veroorzaken kleine verschillen in beginvoorwaarden grote verschillen in de toekomst. Dit soort systemen volgen chaotisch gedrag De meteoroloog Edward Lorenz vond per toeval met behulp van zijn computer een chaotisch systeem toen hij een model maakte van het weer. Hoewel hij bijna dezelfde parameters had gebruikt en het systeem deterministisch was, volgde het systeem na een tijdje een heel ander traject Chaos in de Logisieke Map Maar wat gebeurt er als we r blijven verhogen? En als we dan inzoomen: Logistieke Map De Lorenz attractor is moeilijk om te analyseren, daarom gebruiken we de simpelere logistieke map beschreven door: Biologische Adaptieve Systemen x(t + 1) = rx(t)(1 − x(t)) Adaptieve systemen kunnen goed gebruikt worden om biologische processen mee te modelleren. Hierin heeft x(t) een waarde tussen 0 en 1. Het interessante is om te kijken wat er gebeurt als we de controle parameter r veranderen. Enkele voorbeelden hiervan zijn: • Infectie ziektes 2 • Ziek geweeste, immune individuen (I) Als een gezond individu in aanraking komt met een geinfecteerd individu, dan wordt het gezonde individu ook geinfecteerd. Als een geinfecteerd individu lang genoeg ziek is geweest, wordt het een ziek geweeste, immuun individu • Bosbranden Niet ruimtelijk model voor infectie ziektes • Overstromingen We kunnen een model maken m.b.v. update vergelijkingen. • Vulkaan uitbarstingen We beginnen met een populatie (Z(0), I(0), G(0)), hierna gebruiken we: • Co-Evoluerende soorten De eerste 4 voorbeelden hebben een overeenkomstig aspect: Z(t + 1) = Z(t) + aZ(t)G(t) − bZ(t) Ze breiden zich uit (propageren zichzelf) over paden welke afhangen van de omgeving. G(t + 1) = G(t) − aZ(t)G(t) I(t + 1) = I(t) + bZ(t) Om de propagatie tegen te gaan moeten propagatieBeginnend met een initiele populatie en gekozen paden “gesloten” worden. parameters (a, b), kunnen we het gedrag simuleren. Ruimtelijke Modellen vs. niet-ruimtelijke modellen Let op dat Z, I, G niet negatief mogen worden! Het gebruik van ruimtelijke modellen maken bepaalde processen makkelijker te visualiseren (v.b. bosbranden). We kunnen ook een cellulaire automaat (CA) gebruiken: Uiteindelijk kunnen alle individuen ziek geweeWe kunnen biologische processen modelleren met ste, immune individuen worden ruimtelijke modellen zoals cellulaire automaten, Vraag: begin met (Z(0) = 10, I(0) = 0, G(0) maar we kunnen deze ook direct modelleren m.b.v = 90), neem a = 0.01 en b = 0.1, itereer het vergelijkingen. model enkele keren. Het gebruik van ruimtelijke modellen geeft een extra vrijheidsgraad en daarmee meer mogelijke Ruimtelijk model van infectie ziektes emergerende patronen. Het gebruik van ruimtelijke modellen is wel veel langzamer om te simuleren. G Modelleren van infectie ziektes Z Z Z G G G We zullen nu 2 manieren bekijken om infectie ziektes te simuleren. Bij infectie ziektes bestaan er 3 soorten individuen (agenten of populaties): I I • Gezonde individuen (G) • Geinfecteerde, zieke individuen (Z) 3 Z Z Z G I G Z Z I Nu moeten we regels opstellen om de toestanden in de CA te veranderen. Toch kan het totale groepsgedrag welke emergeert uit de samenwerking tussen veel mieren in een kolonie vrij intelligent lijken. Hoe kunnen mieren begraafplaatsen met stapels van lijken bouwen? Regels voor het CA model Als G een Z in een vakje naast zich heeft, wordt deze individu zelf ook een Z. We kunnen een simpel model van een mier maken: Z heeft elke tijdstap een kans p om een I te worden • De mier beweegt in willekeurige richtingen Voor de navigatie kunnen we een random-walk van alle agenten gebruiken; ze maken willekeurige stapjes in alle richtingen. • Als een mier niets draagt en een dode mier ziet, pakt de mier het lijk op • Als de mier een lijk draagt en een verzameling andere lijken tegenkomt, laat hij het lijk daar achter. We zouden ook kunnen modelleren dat gezonde mensen wegblijven van geinfecteerden, dat veroorzaakt een heel andere dynamiek. Vraag: Wat voor phenomenen zouden kunnen optreden als gezonde individuen uit de buurt blijven van geinfecteerden? Deze 3 simpele regels veroorzaken de begraafplaatsen van mierenlijken welke men kan observeren. Swarm Intelligence Vraag: bedenk hoe mieren korrels suiker en chocolade van elkaar kunnen scheiden. Grote groepen van simpele organismen zoals bijen of mieren, kunnen samen intelligent gedrag Combinatorische optimalisatie vertonen. Bepaalde problemen kosten exponentieel veel tijd Voorbeelden zijn: om optimaal op te lossen. • Foraging behavior (op zoek gaan naar voed- V.b. van exponentiele tijd problemen: Stel een probleem bestaat uit n toestanden en de tijd die sel) het kost om het op te lossen is 2n of n! • Bescherming van het nest Exponentiele tijd problemen groeien veel sneller • Bouwen van het nest (v.b. termieten, waar dan polynomiale tijd problemen: zit de blueprint?) np lim n → 0 n→∞ e • Voedsel verspreiding en opslag Het is bekend dat mier-kolonieen bepaalde bekende problemen kunnen oplossen, zoals het vinden van het kortste pad naar een voedselplek, sorteren (clusteren en stapelen) van voedsel of mieren-lijken. Een aantal bekende wiskundige problemen noemen we combinatorische optimalisatie problemen (een voorbeeld zijn NP-complete problemen, welke niet in polynomiale tijd opgelost kunnen worden, tenzij P=NP). Hoewel een enkele mier of bij niet erg intelligent is, vertoont het gedrag van de gehele kolonie wel intelligent gedrag (super-intelligentie) Aangezien de computer kracht niet sneller dan exponentieel toe kan nemen, kunnen we bepaalde grote combinatorische optimalisatie problemen nooit optimaal oplossen. Sorteer gedrag van mier-kolonieen Voorbeelden van Combinatorische optimalisatie problemen Een enkele mier heeft maar zeer beperkte intelligente vermogens. Een aantal voorbeelden van combinatorische optimalisatie problemen zijn: 4 • Traveling salesman probleem: vind kortste tour tussen n steden. De constraints zijn dat alle steden precies 1 keer aangedaan worden en dat de tour terugkomt op zijn beginstad. • Quadratic assignment probleem: Minimaliseer de flow (totaal afgelegde afstand) als een aantal werknemers elkaar in een gebouw volgens een bepaalde frequentie opzoeken. We kunnen een lijst bijhouden van steden die nog niet bezocht zijn: J = {i| i is nog niet bezocht} In het begin bevat J alle steden. Na het bezoeken van een stad wordt die stad uit J gehaald. • 3-Satisfiability: vind waarheidswaarden van proposities die volgende vorm waarmaken: 1. Kies initiele stad s1 en haal s1 weg uit J 2. For t = 2 To N: {x1 ∨ ¬x2 ∨ x4 } ∧ . . . ∧ {x1 ∨ ¬x5 ∨ x7 } 3. • Job-shop scheduling: Minimaliseer de totaal benodigde tijd om een aantal jobs te laten volbrengen door een aantal machines welke in sequentie elke job moeten doorlopen. Kies stad st uit J en haal deze weg uit J 4. Bereken lengte van deze tour: PN −1 L = t=1 l(st , st+1 ) + l(sN , s1 ) Het doel is om de tour met minimale totale lengte L te vinden In het vak (logische) complexiteits theorie wordt hier nader op ingegaan. Ant Algoritmen Traveling salesman probleem (TSP) Een nieuw soort multi-agent adaptief systeem voor combinatorische optimalisatie is bedacht door Marco Dorigo in 1992. Er is een verkoper die n steden aan wil doen en in zijn beginstad wil terugkomen. Een kolonie van mieren werkt samen om b.v. voor het TSP een optimale tour te zoeken. Alle steden i en j zijn verbonden met een weg van lengte l(i, j). Deze lengtes staan in een afstand matrix. Foraging ants leggen een chemische substantie neer (genoemd pheromoon) wanneer ze van hun nest naar een voedsel bron gaan en vice versa. De agent moet nu een tour bedenken welke de totale kosten voor het aandoen van alle steden minimaliseert. Andere foraging ants volgen de tracks met de meeste gehalte aan pheromoon volgens een kansverdeling. Dit collectieve foraging behavior stelt de mieren in staat om het kortste pad te vinden van hun nest naar een voedsel bron. 4 3 5 4 Optimalisatie algoritmen welke geinspireerd zijn door het collectieve foraging gedrag van mieren worden Ant Algoritmen genoemd. 5 4 4 2 Voorbeeld: Foraging ants Vraag: Hoeveel mogelijke touren zijn er met N steden? Vervolg Foraging ants Genereren van een tour Eigenschappen van Ant Algoritmen Hoe kunnen we een tour genereren? Er zijn een reeks verschillende Ant Algoritmen, maar ze delen allemaal de volgende eigenschappen: 5 • Ze bestaan uit een kunstmatige kolonie van coopererende mieren 2. Alle niet gevolgde edges (kanten) verliezen een beetje pheromoon door evaporatie • Mieren maken discrete stappen. 3. Alle gevolgde touren krijgen extra pheromoon waarbij de kortste tour meer pheromoon krijgt dan langere touren. • Mieren leggen pheromoon neer op hun gekozen paden • Mieren gebruiken de neergelegde pheremoon Vraag: bedenk hier een variant op en analyseer tracks voor het kiezen waar ze naar toe de voor- en nadelen. gaan Ant Algoritmen worden gebruikt voor een groot Formele specificatie Ant Systeem aantal Combinatorische optimalisatie algoritmen De kolonie bestaat uit K mieren. zoals TSP, QAP, network routing De mate van pheromoon tussen 2 steden i en j Het idee dat twee individuen indirect interac- noteren we als m(i, j) teren omdat 1 van hen de omgeving verandert In het kiezen van een volgende stad gebruiken en de ander de veranderde omgeving gebruikt we een extra heuristiek: de inverse van de lengte voor het nemen van besluiten wordt stigmercy 1 tussen 2 steden: v(i, j) = l(i,j) genoemd. Nu maakt elke mier: k = 1..K een tour: Ant System 1. Kies random start stad voor mier k: i = random(1,N) en haal deze start stad weg uit de lijst Jk van onbezochte steden voor mier k Het eerste Ant algoritme was “the Ant system” (AS). The Ant system werd initieel getest op het TSP. 2. Kies steeds de volgende stad voor mier k als volgt: ( arg max{[m(i, h)] · [v(i, h)]β } if q ≤ q0 h∈Jk j= S anders (1) The Ant System werkt als volgt: 1. Alle N ants maken een tour waarbij ze de pheromoon tracks gebruiken voor het kiezen van de volgende stad. 6 Hierbij is q een random getal (0 ≤ q ≤ 1) We hebben allereerst gekeken hoe we modellen Parameter (0 ≤ q0 ≤ 1) bepaalt de rela- voor de spreiding van infectie ziektes kunnen tieve belangrijkheid van exploitatie versus maken. exploratie. Ruimtelijke modellen bieden meer simulatie vrijheden, maar duren langer om te draaien op een computer. Vervolgens hebben we gekeken hoe een kolonie S is een stad gekozen volgens de kansver- van “domme” mieren toch intelligent gedrag kan deling gegeven in de volgende vergelijking: vertonen. pij = P [m(i,j)]·[v(i,j)]β [m(i,h)]·[v(i,h)]β Zo kunnen mieren objecten clusteren m.b.v. een aantal simpele regels if j ∈ Jk Ant algoritmen kunnen gebruikt worden om complexe combinatorische problemen zoals de traveling salesman probleem op te lossen. h∈Jk 0 anders (2) Nu hebben alle mieren een tour gemaakt. Andere manieren om de volgende steden te selecteren zijn ook mogelijk, maar bovenstaande werken meestal iets beter. Als parameters moeten ingesteld worden hoe groot de pheromoon tracks m(i, j) initieel zijn, wat q0 is, en wat β moet zijn. Updaten van de pheromoon tracks Er zijn meerdere mogelijke update regels. Als keuze kan men bijvoorbeeld maken om enkel de beste tour te updaten (en niet alle). We noemen de best gevonden tour van alle mieren in de laatste generatie Sgb (S globaal best). Deze tour heeft lengte Lgb De update regel komt er dan als volgt uit te zien: m(i, j) = (1 − α) · m(i, j) + α · ∆m(i, j) waarbij ∆m(i, j) = (Lgb )−1 0 if edge (i,j) ∈ Sgb anders Hierbij is α de leersnelheid. Let op dat de extra gehalte aan pheromoon van de lengte van de best gevonden tour afhangt en dat andere edges evaporeren. Discussie Er zijn veel soorten biologisch adaptieve systemen. 7 Transparanten bij het vak Inleiding Adaptieve Systemen: Neurale Netwerken. M. Wiering Synapse Axon van andere neuron Nucleus Neurale netwerken Dendriet Leerdoelen: Axon Synapse Soma • Weten wanneer neurale netwerken toepasbaar zijn Dit heeft als effect dat de actie-potentiaal in de soma vemindert of vermeerdert. • De Delta-leerregel kennen • Kunnen uitrekenen wat gewichtenverande- Wanneer de actie-potentiaal een bepaalde dremringen in een lineair netwerk zijn gegeven pelwaarde overschrijdt, wordt een electrische pulse doorgegeven naar de axon (de neuron vuurt). een leervoorbeeld • Weten wat multi-layer feedforward neurale netwerken zijn Synapses welke de actie potentiaal laten toenemen heten excitatory. • De backpropagation leerregel kunnen opschrijven en uitleggen Synapses welke de actie potentiaal laten afnemen heten inhibitory. • Weten wat recurrente neurale netwerken zijn Kunstmatige neurale netwerken Een neuraal netwerk bestaat uit een aantal neuronen (units) en verbindingen tussen de neuronen. Neurale netwerken Elke verbinding heeft een gewicht eraan geassocieerd (een getal). Kunstmatige neurale netwerken (KNN) bestaan uit een verzameling neuronen (rekeneenheden) welke verbonden zijn in netwerken (McCulloch en Pitts, 1943). Het leren gebeurt gewoonlijk door de gewichten bij te stellen. Ze bezitten nuttige computationele eigenschap- Elke neuron heeft een aantal ingaande verbinpen (bv. ze kunnen alle continue functies bena- dingen van andere neuronen, een aantal uitgaanderen met 1 hidden laag en alle functies met 2 de verbindingen en een activatie nivo. hidden lagen) Het idee is dat elke neuron een lokale berekening Ze bieden ons de mogelijkheid om te leren hoe uitvoert, gebruikmakende van zijn inkomende de hersenen werken. verbindingen. Een neuron of zenuwcel is de fundamentele bouw- Om een neuraal netwerk te bouwen moet men steen van het brein. de topologie van het netwerk instellen (hoe zijn neuronen verbonden). Een neuron bestaat uit een cellichaam : de soma Gewichten worden meestal willekeurig geinitialiseerd. Uit het cellichaam vertakken dendrieten en een axon. Een axon verbindt zich met dendrieten van andere neuronen in synapses, de verbindingspunten. Vergelijking KNN en Biologische NN Beschouw mensen: Een menselijk neuraal netwerk • Neuron switch tijd: .001 seconde Chemische transmitter vloeistoffen worden vrijgegeven in de synapses en stromen de dendrieten binnen. • Aantal neuronen: 1010−11 • Connecties per neuron: 104−5 1 • Visuele herkennings tijd : 0.1 seconde • 100 inferentie stappen lijkt niet genoeg → Veel parallelle computatie "!$#&% Eigenschappen van neurale netwerken (KNN) • Veel neuron-achtige drempel switch units • Veel gewogen connecties tussen units Sharp Left Straight Ahead Sharp Right 30 Output Units 4 Hidden Units • In hoge mate parallel, gedistribueerd proces 30x32 Sensor Input Retina • Nadruk op automatisch leren van gewichten '' ( ) * + , - ) . ( / 0 ) . 1 2 - + ) 3 + 4 2 2 5 687 9 : ; < = > = 7 ? < ; < @ A B C D8/ + * E ) ( A D* F - G HI / ( A J K K ' Wanneer kunnen Neurale Netwerken gebruikt worden? • De Hidden laag: hier worden interne (nietlineaire) berekeningen uitgevoerd. • Input is hoog-dimensionaal discreet of continu (b.v. ruwe sensor input) • De Output laag: hier worden de waarden van de outputs van het netwerk berekend. • Output is discreet of continu • Output is een vector van waarden • Mogelijk ruisige data Output Layer • Vorm van doelfunctie is onbekend Hidden Layer • Menselijke leesbaarheid van gevonden oplossing is onbelangrijk Input Layer Voorbeelden: • Spraak herkenning • Beeld classificatie (gezichts herkenning) Neuron • Financiële voorspelling In een netwerk ziet een individuele neuron er als volgt uit: • Patroon herkenning (postcodes) Aj W Ai = g(Ii) j,i Σ Voorbeeld: autorijden Input verbindingen Ii Input functie Feedforward neurale netwerken Vormen een gelaagde structuur. Alle verbindingen gaan van 1 laag, naar de volgende laag. g Activatie functie Ai Output Verbindingen Output Leren gaat door gewichten bij te stellen aan de hand van de fout op leervoorbeelden. We onderscheiden de volgende lagen: • De Input laag: hier worden de inputs van het netwerk naartoe gecopieerd. Voorbeeld: de output van een netwerk is 0.9. De gewenste output is 1.0. Verhoog de gewich2 ten die de output van het netwerk doen toenemen. Verlaag de gewichten die de output doen afnemen. Y 1 -1.5 1 1 Een lineair neuraal netwerk X1 Het simpelste neurale netwerk is een lineair neuraal netwerk. Deze bestaat uit enkel een input en output laag. • Definieer de fout als het kwadratische verschil tussen de gewenste uitkomst D en de verkregen uitkomst Y voor een voorbeeld: X1 , . . . , XN → D: Y Output Unit w2 w4 w3 1 X1 X2 X3 Bias Het leren gaat als volgt: Een lineair neuraal netwerk ziet er als volgt uit: w1 X2 E= Input Units 1 (D − Y )2 2 Bias • We willen nu de afgeleidde van de fout E naar de gewichten w1 , . . . , wN berekenen: Er wordt een bias-unit gebruikt om alle lineaire functies te kunnen representeren. Deze kan als extra waarde (1) aan de inputvector meegegeven worden. ∂E ∂E ∂Y = = −(D − Y )Xi ∂wi ∂Y ∂wi • Nu “updaten” we de gewichten met leersnelheid α > 0 om de fout te verkleinen. De Delta-leerregel ziet er als volgt uit: Het lineaire netwerk wordt gezien als een functiemapping van de inputs X1 , . . . , XN naar output Y: X Y = w i Xi wi = wi + α(D − Y )Xi i • We stoppen als de totale fout over alle leervoorbeelden klein genoeg is. Representeren Een lineair netwerk kan bijvoorbeeld de AND functie representeren: Voorbeeld Gegeven leervoorbeeld (0.5, 0.5 → 1). We maken een lineair netwerk met initiele gewichten 0.3 en 0.5 en 0.0 (voor de bias). 1 1 0 X2 We kiezen een leersnelheid, bv: α = 0.5 Lineair Netwerk 0 X1 Nu kunnen we de gewichten aanpassen: 1 Y = 0.3 ∗ 0.5 + 0.5 ∗ 0.5 + 0.0 ∗ 1.0 = 0.4. E = 1/2(1.0 − 0.4)2 = 0.18 w1 = 0.3 + 0.5 ∗ 0.6 ∗ 0.5 = 0.45 w2 = 0.5 + 0.5 ∗ 0.6 ∗ 0.5 = 0.65 w3 = 0.0 + 0.5 ∗ 0.6 ∗ 1.0 = 0.30 Het volgende netwerk (de Perceptron) doet dit (als de output > 0 dan Y = 1, anders Y = 0): Bij een volgende presentatie van het leervoorbeeld is de nieuwe uitkomst: Y 0 = 0.45 ∗ 0.5 + 0.65 ∗ 0.5 + 0.3 ∗ 1.0 = 0.85. Leren Een initieel netwerk wordt gemaakt met random gewichten (bv. tussen -0.5 en 0.5) 3 Vraag: Stel hetzelfde leervoorbeeld wordt nogmaals gepresenteerd. Bereken de nieuwe gewichten. E(p) 4 3 2 1 Batch vs Stochastic Gradient Descent -3 -2 0 -1 1 2 3 W -1 Er zijn in principe 2 methodes om met de data om te gaan: -2 • Batch-leren: probeert de fout in 1 keer voor alle voorbeelden in de leerverzame- We hebben : Y = W T X, voor alle voorbeelden. ling te verminderen. Hiervoor wordt de We zetten de voorbeelden in de matrices X en totale gradient berekend en in 1 keer bij- Y en doen dat als volgt: gesteld: Y = [Y 1 , Y 2 , Y 3 , . . . , Y N ], en X = [X 1 , X 2 , X 3 , . . . , X N ]. 1X p Nu hebben we (pseudo-inverse): (D − Y p )2 E= 2 p Y = WTX Y X T = W T XX T Dus: X ∂E ∂E ∂Y = = −(Dp − Y p )Xip ∂wi ∂Y ∂wi p (1) Y X T (XX T )−1 = W T W T = Y X T (XX T )−1 • Online-leren: stelt de fout na elk leervoorbeeld bij. Maakt dus stochastische stapjes in het foutlandschap (de totale fout kan Voorbeeld pseudo inverse verminderd of vermeerderd worden): Voorbeeld: lineair netwerk met 1 input unit en 1 bias (met constante waarde 1). Data-Voorbeelden: ∂E ∂E ∂Y p p p p (0 → 1) = = −(D − Y )Xi ∂wi ∂Y p ∂wi (1 → 2) (2 → 3) Meestal wordt online learning gebruikt. Dit kan enkele orders van magnitude sneller convergeren (10 a 100 keer zo snel). 0 T XX = 1 Intuitie van leerproces 0 1 2 1 1 1 2 1 1 1 1 (XX T )−1 = 21 −2 Fout van leervoorbeeld heeft afgeleidde naar elk gewicht. Minimaliseer de fout door de afgeleidde (gradient) af te gaan. Voorbeeld doelfunctie : Y = 2X. X T (XX T )−1 Leervoorbeeld p = (1, 2). 1 − 2 = 0 1 2 Foutlandschap voorbeeld: Y X T (XX T )−1 Berekenen van optimale gewichten We kunnen ook Lineaire Algebra gebruiken om de optimale gewichten voor een lineair netwerk te berekenen. = 1 2 5 = 3 − 21 5 3 3 6 5 6 1 3 − 16 1 −2 3 0 1 2 5 6 1 3 − 16 Beperkingen van lineaire netwerken 4 = 1 1 1 1 0 ii = X2 X wji aj + bi j 1 0 0 X1 • Bereken activatie hidden units (andere ~a): 1 ai = Fi (ii ) = Een lineair netwerk kan de X-OR functie niet representeren. De voorbeelden van de X-OR functie zijn niet-lineair scheidbaar. 1 1 + e−ii • Bereken activatie output units s: Na het verschijnen van het book Perceptrons van Minsky en Papert (1969) waarin deze problemen aangetoond werden, was het aanvankelijke enthousiasme voor neurale netwerken verdwenen. si = F i ( X wji aj + bi ) j Activatie Functies Een kleine groep onderzoekers ging wel door. Dit leidde tot een aantal verschillende neurale netwerken. Er kunnen meerdere activatie functies gebruikt worden. Verschillende activatie functies zijn nuttig voor representeren bepaalde functie (voorkennis) In 1986 werden neurale netwerken weer populair na het uitvinden van het backpropagation algoritme, waarmee door gebruik van de kettingregel ook niet-lineaire (multi-layer) feedforward neurale netwerken geleerd konden worden. A A A 1 1 1 0 1 0 I I Representatie in multi-layer feedforward neurale netwerken A=I We representeren het netwerk in een gerichte graaf. De optimale representatie kan een willekeurig kleine fout hebben voor een bepaalde doel functie. Lineair A= 1 1 + exp (-I) Sigmoid 0 A = exp( (m -2I) s I 2 ) Radial Basis (Gaussian) Gewoonlijk wordt de topologie van het netwerk van te voren gekozen. De hidden laag gebruikt meestal sigmoid functies of Radial Basis functies (meer lokaal) Hierdoor onstaat er echter een representatie fout (zelfs de optimale gewichten in een gekozen representatie hebben een bepaalde fout) De output laag gebruikt meestal een lineaire activatie functie (zodat alle functies gerepresenteerd kunnen worden) Ook lukt het vaak niet om de optimale gewichten te vinden (leerfout) door de lokale minima. Backpropagation We onderscheiden 2 stappen: voorwaartste pro- Minimaliseer error functie: pagatie (gebruik) en terugwaartse propagatie (le1X ren). E= (di − si )2 2 i Voorwaartse propagatie in multi-layer feed- Door gewichten aan te passen m.b.v. gradient descent: forward neurale netwerken ∂E ∂E ∂ii = ∂wji ∂ii ∂wji • Clamp input vector ~a • Bereken gesommeerde input hidden units: - Leerregel met leersnelheid α : 5 ∆wji = −α • Zal lokaal minimum vinden en niet noodzakelijk globaal minimum. Kan met meerdere restarts toch goed werken. ∂E = αδi aj ∂wji • Gebruikt soms een momentum term: - Output unit: δi = − ∆wij (t) = γδj xi + µ∆wij (t − 1) ∂E = (di − si )Fi0 (ii ) ∂ii • Minimaliseert fout over alle trainings voorbeelden, zal het goed generaliseren naar opvolgende voorbeelden? - Hidden unit: δi = Fi0 (ii ) X δo wio – Pas op met teveel hidden units → overfitting o∈Outputs Hier is Fi0 (ii ) = (1 − ai )ai , als F de sigmoid functie is. – Werkt goed met genoeg voorbeelden: Vuistregel: aantal leervoorbeelden is veelvoud van aantal gewichten. en Fi0 (ii ) = 1, als F de lineaire functie is. • Leren kan duizenden iteraties duren → traag! Leren als zoeken • Gebruik van geleerd netwerk gaat snel. Gradient descent op het foutlandschap werkt als volgt: Representatie van hidden units E R R O R !#"$&% ')(+*-,/. Inputs State : W Problemen: Outputs • Lange even vlaktes. Als het foutlandschap ergens heel vlak is, gaat het leren erg langzaam (de gradient is zeer klein). 0 $&1*2"/$&34/5 33$6"87 1&9+$6*:*2$6;/*2$&<=$&"%21%=5 (". @5 3/3$6" A?/%=;/?% > "/;?/% B 17 ?/$&< C&DD+D+D+D+D+DEGF H+IJF DKLF D+HEMC&D+D+DD+D+D+D DC6D+D+D+D+D+DEGF DC#F C+CNF H+HEODC&D+DD+D+D+D D+DC&D+D+D+D+DEGF DC#F IPJF QPNEOD+DC&DD+D+D+D D+DDC&D+D+D+DEGF I+IJF IPJF PCREOD+D+DC6D+D+D+D D+DD+DC&D+D+DEGF D+SJF D+TUF D+QEOD+D+D+DC&D+D+D D+DD+D+DC&D+DEGF Q+QJF I+IUF I+IEOD+D+D+DDC&D+D D+DD+D+D+DC&DEGF H+DJF DCNF I+HEOD+D+D+DD+DC&D D+DD+D+D+D+DCREGF V+DJF IKLF DCREOD+D+D+DD+D+DC • Het leren van een optimaal netwerk is een NP-moeilijk probleem. WX • Lokale minima. Als het netwerk in een lokaal minimum komt, kan het niet meer verbeterd worden met gradient descent. Y Z [ \ ] ^ Z6_ Y ` a Z _2b c ^ \ Z d \ e c c f&gh i j k l m6n m h o l k l p q r2s t` \ [ u Z Y q t[ vw^ x y/z=` Y q { W W | Meer over backpropagation • Gradient descent over gehele netwerk gewichten vector Evolutie van leerproces • Makkelijk generaliseerbaar naar willekeurige gerichte grafen. Evolutie van leerproces (2) 6 werken: • Elman netwerken • Jordan netwerken Sum of squared errors for each output unit 0.9 • Time delay neurale netwerken (TDNN) 0.8 0.7 0.6 • Hopfield netwerken (Boltzmann machines) 0.5 0.4 0.3 0.2 0.1 0 0 500 1000 1500 2000 2500 Elman netwerken Elman netwerken koppelen activatie van hidden units terug naar inputs: goed voor predictie waarin tijd belangrijke rol speelt. ! " # $ % & ' # & ( ) *+ # , - 1 1 ./ 01 21 23 Weights from inputs to one hidden unit 4 INPUT UNITS 3 CONTEXT UNITS 2 1 0 -1 -2 -3 Leeralgoritme: Recurrent backpropagation through time: -4 -5 0 500 1000 1500 2000 2500 Y(t+1) 45 6 7 8 9 : ; 7 < 6 = > 7 < ? @ ; 9 7 A 9 B @ @ C D E F G H I J K J E L I H I M N O P Q = 9 8 R 7 6 N Q 8 S ; T UV = 6 N W 4 4 5 Y(t) Y(t-1) Recurrente neurale netwerken Feedforward neurale netwerken worden meest gebruikt: voor patroon herkenning zijn ze uitstekend Recurrente neurale netwerken zijn geschikt voor Jordan netwerken problemen waarin tijdspredictie (bv. SpraakJordan netwerken koppelen activatie van outherkenning) een rol speelt. put units terug naar inputs: goed voor predictie Recurrente netwerken kunnen vorige inputs mee waarin tijd belangrijke rol speelt en sequentie laten tellen in hun predictie van de huidige toe- van beslissingen een rol speelt. stand van het systeem. Jordan en Elman netwerken werken ongeveer Recurrente netwerken kunnen ook gebruikt wor- even goed. den voor het infereren van een heel patroon op Ze hebben grote problemen als de gradient through basis van een deelpatroon (pattern completion) time een erg zwak signaal wordt → We onderscheiden de volgende recurrente net- gewichten worden erg langzaam bijgesteld. 7 A1 1 A6 A2 W INPUT UNITS A5 CONTEXT UNITS A3 A4 NB: Leren vaak veel trager dan feedforward netwerken. Alternatieve leermethode: Evolutionary computation. Symmetrische gewichten / Asymmetrische gewichten. Lijken op Bayesiaanse geloofs netwerken. Time Delay Neurale Networken (TDNN) TDNN gebruiken inputs van voorgaande tijdstappen voor huidige predictie Voor- en nadelen van Neurale netwerken Nadelen: OUTPUT(T) • Belanden vaak in lokale minima. • Geen directe manier om om te gaan met missende waarden • Soms erg traag leerproces INPUTS(T-m)....INPUTS(T-1) • Soms vergeet het netwerk geleerde kennis als het getraind wordt op nieuwe kennis (leer-interferentie) INPUTS(T) • Het kan veel experimenteertijd kosten om een goede topologie en leerparameters te vinden. Hebben problemen met Markov order (m) : • Hoeveel voorgaande inputs moeten meegegeven worden? • Het is niet zo makkelijk om a-priori kennis in een netwerk te zetten • Kan inputs die langer geleden gezien zijn nooit mee laten tellen in beslissing. • Leren optimaal neuraal netwerk is NP-moeilijk probleem • Veroorzaakt soms erg groot netwerk Hebben geen problemen met afnemende gradient Voordelen: (b.v. 100000001 → 1 en 000000001 → 0). • Kan alle functies exact representeren • Kan goed met ruis omgaan Hopfield Netwerk Autoassociative Networks (Hopfield Netwerk, Boltz- • Kan goed met redundantie omgaan mann machine): soort geheugen voor opslaan • Kan goed met hoog dimensionale inputpatronen: goed voor pattern completion ruimtes omgaan Leerregels versterken verbindingen tussen inputs • Kan direct continue functies benaderen die gelijk aan staan. Als deelpatroon aangeboden wordt, zullen inputs die vaak gelijk met an• Is robuust tegen wegvallen neuronen → dere inputs voorkomen ook aan komen te staan graceful degradation De nieuw geactiveerde inputs kunnen weer andere inputs activeren 8 Transparanten bij het vak Inleiding Adaptieve Systemen: Co-evolutie. M. Wiering Evolutie in een computer Omdat evolutie door natuurlijke selectie een mechanisme is, kunnen we het programmeren in een computer programma. Co-evolutie Een bekend voorbeeld van een programma dat Geen bioloog twijfelt eraan of evolutie opgetregebruik maakt van kunstmatige evolutie d.m.v. den is, omdat er genoeg direct geobserveerde benatuurlijke selectie is het genetische algoritwijzen voor zijn. me. Het huidige debat gaat over de vraag hoe evoluHierbij wordt er een fitness functie gebruikt weltie tot stand is gekomen en welke mechanismen ke door de programmeur is gedefinieerd. erin een rol spelen. De fitness functie bepaald (indirect) hoeveel naIn dit college gaan we de volgende aspecten bekomelingen een individu kan genereren. handelen: Hoewel GA geschikt zijn voor optimalisatie doeleinden, lijkt het niet perfect op natuurlijke evo• Natuurlijke selectie lutie. • Co-evolutie De fitness functie moet namelijk gedefinieerd worden, en in natuurlijke evolutie is er niemand die • Replicator dynamics de fitness functie bepaalt. • Daisyworld • Gaia hypothese Co-evolutie • Recycling netwerken In het echt hangt de fitness van een individu af van zijn omgeving waaronder de andere species die erin voorkomen. • Co-evolutie voor optimalisatie Zo’n fitness functie is daarom niet-stationair, maar verandert met de tijd aangezien de groottes van de verschillende populaties veranderen. Evolutie door natuurlijke selectie In Darwin’s evolutionaire theorie speelt survival We hebben voorheen reeds 2 verschillende moof the fittest de belangrijkste rol als verklaring dellen bekeken om de dynamiek van interactevan de evolutie van organismen. rende species te bestuderen: Beschouw een wereld bevolkt met organismen • Met differentiaal vergelijkingen met een aanzienlijke reproductie snelheid. (wiskundige regels die specificeren hoe beZolang de omstandigheden goed zijn, zal de popaalde variabelen veranderen) pulatie groeien, maar op een gegeven moment • Met cellulaire automaten zijn er te weinig bronnen of ruimte om alle organismen zich te laten voortplanten. Daarom zullen enkel bepaalde individuen zich Een bekend voorbeeld van de eerste zijn de LotkaVolterra vergelijkingen. voortplanten en de vraag is welke. Organismen verschillen omdat ze verschillende We kunnen de Lotka-Volterra vergelijkingen ook genen hebben. Deze verschillen geven een voor- generaliseren voor meerdere organismen. deel aan bepaalde organismen om met de omgeving om te gaan. Replicator Dynamics Organismen met voordelen zullen meer kans hebben zich voort te planten en daarom zullen er Laten we eerst een model bekijken waarin de fitmeer nakomelingen komen met deze genetische ness van een organisme (phenotype) wel gegeven is. eigenschappen. 1 De replicator vergelijking beschrijft het gedrag Hierbij zien we dat phenotypen de fitness van van een populatie welke verdeeld is in n pheno- andere phenotypen kunnen laten afnemen of toetypes E1 tot En . nemen. De relatieve frequenties noteren we als x1 tot xn Hierbij kan het zijn dat aij en aji beide posigespecificeerd door de vector ~x = (x1 , x2 , . . . , xn ) tief en groot zijn. Het gevolg daarvan is dat P (hier is i xi = 1) ze samen werken om beide in frequentie toe te nemen. De fitness van phenotype Ei wordt genoteerd als fi (~x) Hierdoor kunnen bepaalde mutuele coopererende phenotypes ontstaan. Deze groepen kunnen De gemiddelde fitness van de populatie is: ook weer competitie hebben met andere groepen phenotypes. n X f ˆ(~x) = xi fi (~x) Vraag: Wat voor soort waarden a en a hebij ji ben predator-prooi phenotypes? i=1 Vervolg replicator dynamics Daisyworld De snelheid van toename van de frequentie van Ei is gelijk aan het verschil in fitness van Ei en de gemiddelde fitness van de populatie: In 1983 presenteerde Lovelock het model Daisyworld welke hij maakte om de relatie tussen organismen en hun omgeving te verkennen. ∂xi ˆx) = fi (~x) − f (~ xi Daisyworld is een computer model van een imaginaire planeet waarin zwarte en witte daisies leven. Nu krijgen we de replicator vergelijking met adap- Daisies kunnen hun omgeving veranderen, groeitie snelheid α: en, reproduceren, en sterven. ˆx)) ∆xi = αxi (fi (~x) − f (~ Er is een globale variabele: de temperatuur van de planeet welke langzaam toeneemt door een imaginaire zon. Als de fitness waarden van de phenotypes verschillen, verandert de vector van relatieve frequenties ~x. Witte daisies hebben een favoriete temperatuur waarin ze het snelste groeien en deze temperatuur is hoger dan de favoriete temperatuur van zwarte daisies. Als de omgeving niet verandert en de fitness functies blijven ook gelijk (constant selection) dan zal de phenotype met de hoogste fitness de hele populatie overnemen. Daarom zal de populatie witte daisies sneller groeien als de temperatuur vrij hoog begint te worden dan de populatie zwarte daisies. Deze assumpties zijn natuurlijk onrealistisch: de omgeving en fitness functies zullen wel veranderen door de selectie. Vervolg Daisyworld Witte daisies refecteren echter de zon en koelen de planeet af. Dus als zij in aantal toenemen zal de temperatuur van de planeet afnemen. Co-evolutie met replicator dynamics We kunnen de fitness van een phenotype ook laten afhangen van andere aanwezige phenotypes: fi (~x) = n X Zwarte daisies absorberen de hitte van de zon en daarom verhogen ze de temperatuur van de omgeving. aij xj Daisies veranderen de omgeving, en de omgeving heeft een impact op de populatie groei van de fitness van Ei in de aanwezig- de daisies. j=1 Hierbij is aij heid van Ej Groeiende aantallen witte daisies koelen de pla- 2 neet af hetgeen gunstig wordt voor de groei van zwarte daisies. De populatie zwarte daisies zal daarom toenemen en de temperatuur zal weer stijgen. Het is het toe- en afnemen van de temperatuur van de planeet welke de twee soorten daisies verbinden met hun omgeving. Dus is er een zelf-regulerende feedback loop CA model voor Daisyworld We kunnen een CA gebruiken als ruimtelijk model van Daisyworld. Elke cel kan een (witte of zwarte) daisy of een (wit of zwart) daisy-zaadje bevatten. den om beperkte bronnen (namelijk de beschikbare ruimte). Verder heeft elke cel een temperatuur. Elke cycle wordt de temperatuur van elke cel opgehoogd met 1 graad. Mutatie is een willekeurige verandering van het genotype van een organisme Als witte daisies de gemiddelde temperatuur niet afkoelen, zal de temperatuur overal 100 graden Zo’n verandering kan resulteren in een klein verschil in de kleur van de daisy hetgeen een verworden en al het leven dood gaan. andering betekent in de absorptie van hitte van de daisy. Vervolg CA model Daisyworld In het algemeen kan een mutatie goed zijn voor Zwarte daisies hebben de meeste kans om te een organisme, hoewel de meeste mutaties schaoverleven bij 40 graden. Witte daisies bij 60 delijk of neutraal zijn. graden. Elke 20 graden daarvan weg, daalt de Echter, zelfs als een mutatie maar in 1 op de overlevingskans met 50% miljoen gevallen gunstig is, zal deze zich snel Zwarte daisies verwarmen alle 49 cellen rondom door de populatie heen kunnen propageren. hen met 3 graden. Witte daisies koelen de 49 cellen met 3 graden af. Zelf-regulatie en natural selection Witte daisies reproduceren 6 zaadjes op willekeurige lokaties in hun omgeving van 25 gridcel- Het meest interessante aspect in Daisyworld is len met de meeste kans (40%) op 60 graden (en echter de zelf-regulatie welke op een hogere level optreedt dan natuurlijke selectie. zwarte op 40 graden). De zelf-regulatie is gunstig voor alle individuen omdat het de temperatuur op een nivo houdt welke leven mogelijk maakt. Daisy zaadjes hebben 10% kans om elke cycle dood te gaan. Witte (zwarte) zaadjes worden witte (zwarte) daisies met de meeste kans op 60 (40) graden. Omdat de zelf-regulatie gunstig is voor alle individuen, zou men kunnen denken dat zelf-regulatie bestaat door natuurlijke selectie. Plaatje Daisyworld CA In Daisyworld is de zelf-regulatie echter niet betrokken in een vorm van competitie of reproductie. Natuurlijke selectie in Daisyworld We kunnen echter wel zeggen dat natuurlijke selectie daisy eigenschappen prefereert welke leiden tot een zelf-regulerende omgeving. In Daisyworld is er competitie (en daarom natuurlijke selectie) omdat de daisies allebei strij- 3 Vraag: Wat is het verband tussen zelf-regulatie en de fitness functie? tussen wezens en de omgeving kan de evolutie van beiden vormen. • Geophysiological Gaia is de sterke vorm van Gaia. Het stelt dat de aarde zelf een levend organisme is en dat het leven zelf de fysieke en chemische omgeving optimaliseert. Gaia Hypothese Toen James Lovelock onderzocht of er leven op Mars is, bedacht hij de Gaia hypothese. Hij realiseerde dat het niet noodzakelijk was om Mars te bezoeken, maar dat er slechts een klein onderzoek in de atmosfeer van Mars nodig was. • Homeostatic Gaia ligt hier tussenin. Het stelt dat de interactie tussen organismen en de omgeving gedomineerd worden door positieve en negatieve feedback loops welke de globale omgeving stabiliseren. Omdat de atmosfeer van Mars in een chemisch evenwicht is, kan er geen activiteit of leven zijn op Mars. Op aarde is er echter een chemisch niet-evenwicht; Lovelock zegt zelf dat zijn theorie een reactie onze atmosfeer bestaat uit veel gassen welke met van het systeem vereist, maar geen bewustzijn, elkaar kunnen reageren, maar toch in andere planning, of intentie. proporties aanwezig blijven. De Gaia theorie zegt dat dit niet-evenwicht een resultaat is van zelf-regulatie. Voorbeelden van Gaia processen Het idee dat Gaia een zelf-regulerend systeem is leidde tot het idee dat Gaia zelf een levend organisme is. • Zuurstof: Lovelock toont aan dat Gaia werkt om de zuurstof gehalte in de atmosfeer hoog te houden. De atmosfeer van Venus en Mars bevat slechts 0 en 0.13 procent aan vrije zuurstof. Griekse Godin Gaea • Temperatuur: De gemiddelde grondtemperatuur van de aarde ligt al meer dan 120 miljoen jaar tussen de 10 en 20 graden celcius. Op Mars varieert de temperatuur elke dag veel meer. • Koolstofdioxide: De stabiliteit van de temperatuur van de aarde wordt gewaarborgd door varierende hoeveelheden aan koolstofdioxide in de atmosfeer. De vermindering van opgenomen zonne-radiatie komt door een vermindering van koolstofdioxide in die perioden. Toenemende temperatuur van de aarde Drie vormen van de Gaia Hypothese Er zijn drie vormen van de Gaia Hypothese: Recycling netwerken • Co-evolutionairy Gaia is een zwakke vormAls we meerdere co-evoluerende species in een van Gaia. Het stelt dat het leven de om- omgeving hebben, kunnen ze ook interacteren geving bepaalt en deze feedback koppeling met aanwezige bronnen in de omgeving, zoals chemische verbindingen. 4 Let op dat we ook het gehalte aan C in planten (P) en zoogdieren (Z) moeten modelleren. We hebben boven dus niet alle toestanden getoond. Een interne toestands-variabele is hiervoor nodig. We moeten ook regels opstellen om planten en zoogdieren zich te laten reproduceren en dood te laten gaan. Verder moeten zoogdieren zich kunnen bewegen en eventueel op zoek gaan naar planten. Recyling in het model Door de ecologie worden de moleculen gerecycled. Wat zien we nu: Een voorbeeld is als we planten en zoogdieren bij elkaar in een omgeving zetten en een gesimplificeerd model maken: • Zonder planten worden alle (vrije) C en O2 moleculen omgezet in CO2 . Er treedt dus een evenwicht op. • Planten zetten CO2 om in C en O2 moleculen. • Als er heel veel planten zijn, groeit de hoeveelheid O2 . Hierdoor zal er weinig CO2 meer over zijn voor de planten. • Zoogdieren zetten C en O2 om in CO2 moleculen. • Als er zowel planten als zoogdieren zijn, recyclen ze de moleculen. Dit zorgt ervoor dat er meer planten en zoogdieren naast elkaar kunnen bestaan. • Externe reacties zetten C en O2 om in CO2 . • Zoogdieren kunnen planten eten en daarmee massa aan C erbij krijgen. • Als er te veel zoogdieren zijn, worden alle planten snel opgegeten. Als er echter weinig planten meer over zijn, zullen de zoogdieren sneller sterven. Dit model kunnen we implementeren in een cellulaire automaat bestaande uit planten, zoogdieren, en moleculen. Voor de inzichtelijkheid kunnen we 2 CA gebruiken die in wisselwerking met elkaar staan; 1 geeft aan waar planten en dieren zijn, 1 geeft aan waar de moleculen zitten. Recycling treedt op in veel Co-evolutionaire systemen en ecologieen. B.v. in regenwouden zorgt het voor een efficiente manier om met beperkte hoeveelheden H2 O om te gaan. CA voor recycling netwerken Co-evolutie voor optimalisatie We hebben reeds kennis gemaakt met Genetische algoritmen welke voor optimalisatie doeleinden gebruikt kunnen worden. P Z O CO P P O Z O Z P CO CO Sommige onderzoekers proberen een GA efficienter te maken door co-evolutie te gebruiken. Z Z CO CO P Z P Stel dat het probleem vereist om N taken op te lossen (b.v. sorteren van verschillende reeksen getallen). P Z O O P P P 5 Als fitness functie kun je nu gebruiken hoeveel van de N taken door een individu opgelost worden. Individuen I Het probleem hiervan is dat er steeds veel tijd in de evaluatie gestoken wordt. I Verder is het mogelijk dat er steeds door de beste individuen 0.7N taken opgelost worden, maar niet meer. Er is dan geen goede richting voor de volgende evolutie stap. I Parasieten I I I I I I P P P P P P P P I P P P P P P P P verschil kan maken (differentieren) tussen verschillende individuen. Co-evolutie voor optimalisatie, vervolg Een mogelijke oplossing hiervoor is om co-evolutie Bv. als een parasiet door alle individuen of juist te gebruiken tussen probleem-instanties (para- door helemaal geen individu opgelost wordt, dan sieten) en oplossers (de individuen). heeft hij een lage fitness. Er zijn K parasieten welke een kleine deelver- Als twee parasieten dezelfde onderscheidingen zameling van de N probleeminstanties bevatten maken tussen de populatie individuen kan de (dit maakt het efficient). fitness van 1 van hen ook omlaag gebracht worEr zijn ook K individuen die elk getest worden op een bepaald gekozen parasiet. den. De fitness van het individu is hoger naar mate het individu beter scoort op de testproblemen gegenereerd door de toegewezen parasiet. Pareto front in Co-evolutionaire GA Individuen kunnen gedomineerd worden door andere individuen als alle parasieten die zij oplossen ook door ten minste 1 ander individu opgelost wordt: De fitness van de parasiet is hoger naar mate het individu slechter scoort op zijn testproblemen. Op deze manier co-evolueren parasieten en individuen. Parasieten maken de taken steeds moeilijker, terwijl de individuen op de moeilijker taken steeds beter moeten gaan scoren. Stel we noemen de fitness van individu i op parasiet j: fi (j) Als nu geldt; domineert(k,i) = ∀jfi (j) ≤ fk (j) ∧ ∃lfi (l) < fk (l) Spatiele co-evolutie voor optimalisatie Dan wordt i gedomineerd door de individu k. Sommige onderzoekers gebruiken een spatiele ruimte (een CA) waarin de individuen en parasieten Het pareto front bestaat uit alle individuen die helemaal niet gedomineerd worden. co-evolueren. Nu kunnen we evolueren door gebruik te maken van individuen die in het pareto-front zitten De propagatie van een individu is dan lokaal en van de parasieten ook, zodat een individu niet te snel met totaal verschillende parasieten in aanraking komt. Dit is ook een goede methode voor multi-objective optimization; als er meerdere verschillende fitness waarden voor een individu zijn. Differentierende parasieten Conclusie Een probleem kan zijn dat alle individuen slecht scoren omdat de parasieten zich hebben ontwikkeld tot te lastige problemen. We hebben gekeken naar natuurlijke selectie en het probleem van de fitness functie. In ecologieen wordt de fitness van een organisme bepaald door de andere aanwezige organismen. Er is hier sprake van co-evolutie. Daarom kunnen we beter de fitness van een parasiet laten afhangen van de mate waarin hij 6 De verschillende organismen kunnen ook samenwerken, waardoor een zelf-regulerend systeem kan ontstaan. De (zwakke) Gaia-hypothese zegt dat het leven de omgeving bepaalt en dat deze feedback koppeling tussen wezens en de omgeving de evolutie van beiden vormt. In bepaalde ecologieen hebben organismen elkaar nodig om resources te recyclen. Er kunnen dan recycling netwerken ontstaan. Ook optimalisatie algoritmen kunnen goed gebruik maken van co-evolutie. 7 Transparanten bij het vak Inleiding Adaptieve Systemen: Beslisbomen. M. Wiering Kleur groen Geur Leerdoelen geen • Beslisbomen begrijpen en kunnen gebruiken om een classificatie te bepalen Ja wit Nee bruin Nee kruidig wee Ja Nee • Kunnen berekenen hoe beslisbomen gebouwd worden Aangezien elk attribuut hooguit 1 keer voor• De entropie van een kansverdeling kunnen komt op een pad, heb je na maximaal M (aantal attributen) stappen de classificatie. berekenen • Weten wanneer beslisbomen toegepast kunFuncties leren met beslisbomen nen worden We kunnen attributen op twee verschillende manieren gebruiken. Beslisbomen (1) We kunnen subbomen genereren voor alle discrete waarden van een attribuut. Beslisbomen kunnen functies met discrete outputs representeren. (2) We kunnen groter dan of kleiner dan gebruiken op bepaalde numerieke attributen zoals leeftijd. Ze worden al enige tijd (sinds 1986) gebruikt voor data mining en supervised learning. Een beslisboom kan alle Boolean functies representeren: Voorbeeld: je ziet de karakteristieken (Features) van een aantal paddestoelen (kleur, geur, formaat) en krijgt te horen welke giftig zijn: Attr. 1 Kleur groen wit bruin groen groen bruin wit groen wit groen Geur wee kruidig wee geen kruidig wee kruidig geen geen wee Formaat middel klein middel groot klein groot middel klein klein groot Giftig? ja nee nee ja nee nee nee ja nee ja Attr.2 Attr.2 Attr.2 Attr.2 Aantal Attributen Classificatie Representatie van functies Met M binaire attributen zijn er op deze maM nier 22 functioneel verschillende beslisbomen (er zijn er zelfs meer, omdat attributen in verschillende volgordes getest kunnen worden) Voorbeeld beslisboom 9 We willen een functie hebben welke (Kleur, Geur, Vb. M = 5 dan 4 ∗ 10 beslisbomen. Formaat) afbeeldt op (Giftig). In principe kan een verzameling voorbeelden direct gekopieerd worden in paden in de boom. We kunnen hiervoor de volgende consistente beslisboom genereren: Hier hebben we echter niks aan, omdat we hier niet mee kunnen generaliseren. (Vergelijk Ockham’s razor). Voor het bepalen van de classificatie loop je simpelweg het pad van de boom af tot je in een blad terecht komt. 1 Sommige functies kunnen niet efficient gerepre- we willen een kleine representatie zodat we kunsenteerd worden. nen generaliseren over nieuwe voorbeelden. Hiervoor zijn dan 2M bladeren en 2M −1 knopen nodig. Het induceren van beslisbomen Voorbeeld is pariteits functie (even aantal attributen staan op 1): Een logisch voorbeeld is gegeven bij de waarden voor de eigenschappen (attributen) en de waarde van het doel-predicaat. 1 Gegeven de volgende voorbeelden: 2 2 3 3 4 4 1 0 1 0 3 VB. x1 x2 x3 x4 x5 x6 x7 3 4 4 4 4 4 4 1 0 1 0 1 0 1 0 1 0 1 0 Figuur: Partiteits beslisboom Alt Ja Ja Nee Ja Ja Nee Nee Bar Nee Nee Ja Nee Nee Ja Ja Vrij Ja Nee Nee Ja Ja Nee Nee Hon Nee Ja Nee Ja Nee Ja Nee Men Enk Vol Enk Vol Vol Enk Geen Reg Nee Nee Nee Nee Nee Ja Ja Res Ja Nee Nee Nee Ja Ja Nee Type Frans Thai Burg Thai Frans Ita Burg Een triviale oplossing copieert elk voorbeeld in een pad in de beslisboom. Ook de majority functie: Hier hebben we weinig aan, want het gaat erom Als de meeste attributen 1 zijn, is het antwoord om te generaliseren naar voorbeelden die onbekend zijn. 1, anders is antwoord 0. We moeten niet enkel een beslisboom vinden die consistent is met de voorbeelden, maar ook de kleinst mogelijke (Ockham’s Razor). Kan niet efficient gerepresenteerd worden: 1 1 0 2 0 2 1 1 0 0 3 0 3 1 0 0 4 0 0 1 1 1 0 4 0 0 Het leeralgoritme 3 1 0 4 1 1 0 0 Het algoritme kiest het belangrijkste attribuut eerst. Belangrijkst staat hier voor het grootste verschil in de classificaties van de voorbeelden. 0 1 1 Figuur: Majority beslisboom Je moet minstens (M/2) attributen testen voor bepalen antwoord. =⇒ Meer dan 2M/2 bladeren. Mensen? Geen + - x7 Enkele + x1,x3,x6 - Vol + x4 - x2, x5 Type? frans Ita Thai Burger + x1 + x6 + x4 + x3 - x5 - x2 - x7 Exponentieel grote functies Exponentieel grote functies zijn onvermijdelijk Er bestaan 22 naar {0, 1}. M verschillende functies van {0, 1}M Dus je hebt gemiddeld minstens 2M bits nodig om de functie te representeren. • Als er positieve en negatieve voorbeelden zijn, kies dan het beste attribuut om ze te splitsen. In elke notatie heeft minstens de helft van de functies een representatie van ≥ 2M bits. • Als alle overige voorbeelden pos of neg zijn, zijn we klaar, en geven we ja of nee terug. Dat geldt ook voor propositie notatie: (x1 ∧ x2 ) ∨ ¬(x5 ∧ (x3 ∧ ¬x1 )). • Als er geen voorbeelden over zijn, geven we de meerderheids beslissing van de vaderknoop terug Zulke functies zijn dus niet goed leerbaar, want 2 Sch 0-10 30-60 0-10 10-30 >60 0-10 0-10 Wacht Ja Nee Ja Ja Nee Ja Nee • Als er nog pos en neg voorbeelden zijn, maar geen attributen meer, dan is de data incorrect (er is ruis). We kiezen dan de meerderheids beslissing. Stel (0 of 1), dan 2 mogelijkheden, 1 bit nodig. Stel (00, 01, 10, 11), dan 4 mogelijkheden, 2 bits nodig. Stel keuze uit 8 mogelijkheden, 3 bits nodig. Keuze uit k = 2n mogelijkheden → n maal keuze uit 2 mogelijkheden. Dan log2 (k) = n bits nodig. Voorbeeld van gemaakte beslisboom Als we nu doorgaan met het bouwen van de beslisboom, krijgen we het volgende resultaat: Mensen? Geen Enkele + - x7 Keuze uit k mogelijkheden dan log2 (k) bits nodig. Dit hoeft geen geheel getal te zijn. Keuze uit 3 mogelijkheden → log2 (3) ≈ 1.55 bits Keuze uit 3 mogelijkheden → log2 (3) ≈ 1.55 bits Keuze uit 7 mogelijkheden → log2 (7) ≈ 2.81 bits Totaal: keuze uit 63 mogelijkheden, → optellen = 5.91 bits. Vol + x1,x3,x6 >60 + - x5 Wachtschatting? 30-60 10-30 + x4 - + - x2 0-10 + - Informatietheorie voor kansen Iets dat gebeurt met kans 1 op n ≈ keuze uit n mogelijkheden, heeft informatie inhoud van log2 (n) bits. Stel we hebben de volgende data: VB. x1 x2 x3 x4 A 1 1 0 0 B 0 1 1 0 C 0 0 0 0 Output 0 1 0 0 Iets wat gebeurt met kans P heeft informatie inhoud van log2 ( P1 ) = −log2 (P ) bits. Als er n mogelijke gebeurtenissen zijn,P met respectievelijke kansen: P1 , P2 , . . . , Pn ( i Pi = 1.0), dan is de verwachte informatie inhoud: Vraag: Welke beslisboom zou het algoritme voor bovenstaande data genereren? P1 (−log2 P1 ) + P2 (−log2 P2 ) + . . . + Pn (−log2 Pn ) = n X Pi (−log2 Pi ) Kiezen van het splits attribuut De belangrijkste functie in het induceren van een boom is het kiezen van splits attributen. i=1 Hierbij is 0log2 0 = 0. We willen het attribuut dat de classificaties zoveel mogelijk discrimineert. Deze waarde heet ook wel de entropie (H). Voor het berekenen van de waarde (gain) van een attribuut gebruiken we informatie theorie. Voorbeelden Informatie theorie houdt zich bezig met het bepalen van de hoeveelheid bits die nodig zijn om iets (in dit geval pos. en neg. voorbeelden) te coderen. 1 2 1 1 log 22 2 Eerlijke munt: n = 2, P1 = P2 = Entropie (H) = − 21 log2 12 − = 1 2 + 1 2 =1 Oneerlijke munt, bijvoorbeeld gooi met dobbelsteen, wel of niet 6 → n = 2, P1 = 16 , P2 = 56 Voorbeeld: als munt gegooid wordt en we willen uitkomst representeren hebben we 1 bit nodig (kop = 1, munt = 0). Entropie (H) = − 16 log2 16 − 56 log2 56 = 0.65. Deze laatste waarde is dus lager, er is dan ook minder onzekerheid. Informatie theorie Eenheid van informatie is aantal (n) bits. 3 Uitwerking paddestoelen voorbeeld Entropie voor n=2 1 Als we nu naar kleur kijken, levert dat het volgende op: H 5 groen, waarvan 4 positief en 1 negatief 3 wit, allen negatief 2 bruin, beide negatief 0.5 0 1/6 1/2 1 5/6 Rest(kleur) = P 5 3 2 10 E(4, 1) + 10 E(0, 3) + 10 E(0, 2) Alles uitrekenen geeft: 0 < Rest(kleur) = 0.36 < Rest(geur) = 0.68 < Rest(f ormaat) = 0.88 < 1. Gebuik entropie voor kiezen van attributen Kies-attribuut geeft dus allereerst de kleur terug: Kies-attribuut(attributen, leervoorbeelden) Elk attribuut resulteert in nieuwe verzamelingen van positieve en negatieve clusters (in de nieuwe subbomen/bladeren). Kleur Van 1 cluster met p positieve voorbeelden en n negatieve voorbeelden is de entropie (verwachte informatie inhoud): − groen Hier recursief verder bruin wit 0 0 p p n n log2 − log2 p+n p+n p+n p+n Voorbeeld: paddestoelen. In begin 4 positieve en 6 negatieve voorbeelden. Entropie = 4 4 − 10 log 10 − 6 6 10 log 10 De algemene Kies-attribuut functie 1) Bereken voor elk attribuut a ∈ attributen: = 0.97 Kiezen attribuut Rest(a) = k X pi + ni i=1 Nu moeten we 1 van de 3 attributen kiezen. Bijvoorbeeld: formaat. M E(pi , ni ) Van de 10 zijn er: 3 groot, waarvan 2 positief en 1 negatief. 3 middel, waarvan 1 positief en 2 negatief. 4 klein, waarvan 1 positief en 3 negatief. Waarbij a1 , . . . , ak de attributen waarden voor a zijn, pi = {nr. positieve voorbeelden met a−waarde ai } ni = {nr. negatieve voorbeelden met a−waarde ai } M = totaal aantal voorbeelden Intuitief: van alles wat, dus niet zo’n beste keuze. Kies-attribuut kiest a waarvoor Rest(a) minimaal is. De entropie zal dus vrij groot zijn. Equivalent: Kies a waarvoor: Gain(a) = E(p, n) − Rest(a) maximaal is. De (rest)-entropie is de gemiddelde entropie van de deelverzamelingen: Gain(a) is altijd ≥ 0 en wordt de verwachte inwinst genoemd. 3 3 4 Rest(f ormaat) = 10 E(2, 1)+ 10 E(1, 2)+ 10 E(1, 3)formatie p p n n Hierbij is E(p, n) = − p+n log2 p+n − p+n log2 p+n . Vinden kleinste beslisboom Beslisboom algoritmen (ID3, C4.5) berekenen Rest(a) voor alle attributen en kiezen het attribuut met minimale Rest(a). Leert het algoritme altijd de kleinste beslisboom? Nee, hoewel er in de praktijk wel vrij kleine en bruikbare beslisbomen gevonden worden. 4 Voorbeeld: 3 binaire attributen (stip, hoog, breed), 6 leervoorbeelden • Worp dobbelsteen (1, 2, 3, 4, 5, 6) • Worp munt (kop, munt) Classificatie 1 Classificatie 0 • Weer (zonnig, bewolkt, regen) Doel: voorspellen kop/munt aan de hand van andere attributen. Het algoritme zal een bijna consistente beslisboom vinden. Toch is beslisboom niet bruikbaar. Kleinste, consistente boom: Cross validatie Stip nee ja Hoog Na het induceren van een beslisboom op de leervoorbeelden gaan we deze testen op de verzameling testvoorbeelden. Breed ja nee ja nee 1 0 1 0 Als we de rare beslisboom gaan testen op de testvoorbeelden komt er een lage (random) score uit. Het bouwen van een grote beslisboom zorgt vaak voor een goede score op leervoorbeelden en slechte score op testvoorbeelden (overfitting) Er zijn wel meer consistente beslisbomen, maar die hebben allemaal meer dan 3 knopen, meer dan 4 bladeren en diepte groter dan 2. Gegeven een hypothese ruimte H. Een hypothese h overfits de leervoorbeelden, als er een andere hypothese h0 is zodat h een kleinere fout heeft over de leervoorbeelden, maar h0 een kleinere fout heeft over de hele verzameling voorbeelden. Het gewenste attribuut Stip wordt echter niet door het algoritme gekozen, want : gain(stip = 0) gain(hoog) = gain(breed) = 0.044 Het algoritme vindt dus niet de kleinste consistente beslisboom. Precisie Het vinden van de kleinste consistente beslisboom is ook een NP-moeilijk probleem. Leervoorbeelden 0.9 Testvoorbeelden 0.7 Ander probleem: leren van X-or functie (00 = 0, 01 = 1, 10 = 1, 11 = 0). 0.5 0 Alle attributen hebben gain(x) = 0. 20 40 60 Grootte van boom Dan wordt er maar een attribuut gegokt, waarna er verder geleerd kan worden. Tegengaan van overfitting Een raar experiment Twee benaderingen: Stel iemand verzamelt de volgende data gedurende enkele weken: • Stop het groeien van de boom voordat het de leervoorbeelden precies classificeert. • Dag van de week (zo, ma, di, wo, do, vr, za) • Sta toe dat de beslisboom de leervoorbeelden overfits, maar snoei daarna de geleerde beslisboom (meer succesvol). • Uur van de dag (9, 10, 11, . . ., 20) • Kleur stoplicht (groen, oranje, rood) 5 Snoeien van de beslisboom kan op de volgende manieren: • Ontwerpen van olie platform gereedschap • Gebruik de verzameling testvoorbeelden om de utiliteit van het snoeien van takken te evalueren (simpel) nadat de hele beslisboom geleerd is. • Gebruik alle voorbeelden om te leren, maar gebruik een Chi-square test om te evalueren of een bepaalde knoop een verbetering voorbij de leervoorbeelden veroorzaakt. – In 1986 maakte BP gebruik van een expert systeem genaamd GASOIL – Dit systeem kon systemen ontwerpen welke olie van gas kunnen scheiden – Het systeem was de grootste commerciele expertsysteem met 2500 regels. – Zo’n systeem bouwen zou 10 mensjaren gekost hebben. Het leren kostte slechts 100 dagen. – Het systeem bespaart het bedrijf jaarlijks vele miljoenen guldens. Uitbreidingen beslisbomen • Leren te vliegen. • Ontbrekende gegevens: – vervang door meest voorkomende waarde – Beter: gebruik kansen. • Attributen met een prijskaartje – Leren een Cessna te vliegen op een vluchtsimulator. – De data werd gegenereerd door een ervaren menselijke piloot te observeren in zijn vlieggedrag. – Er werden zo 90.000 voorbeelden gegenereerd elk beschreven met 20 variabelen. – Stop prijs in gain-criterium (b.v. gebruik Gain Cost ). – Het geleerde systeem kon beter vliegen dan de leraren! • Attributen met meerdere waarden – Vervang gain door gainratio. • Attributen met numerieke waarde Verdere toepassingen – Maak binaire keuze tussen a < A en a ≥ A. Kies hierbij A zodat gain maximaal is. • Inductie: Probeer classificatie te voorspellen voor voorbeelden buiten gegeven data set. – Uitbreiding: Oblique decision trees → keuze op grond van lineaire combinaties van numerieke attributen. • Datamining: probeer bepaalde regels te vinden welke features classificeren aan de hand van waarden van andere features. Doel atttribuut kan alles zijn. • Multi-variate tests → kies op grond van meerdere attributen tegelijk. • Windowing Ten slotte: er kunnen verschillende equiva– Leer op subset van leervoorbeelden, lente beslisbomen voor dezelfde data set gebouwd voeg fout geclassificeerde voorbeelden worden: toe en leer opnieuw. – Maakt meerdere verschillende beslisbomen. Majority vote van alle geleer- Discussie de beslisbomen kan gebruikt worden. • Beslisbomen kunnen voor supervised leren gebruikt worden met discrete output waarden. Praktisch gebruik van beslisbomen 6 o o o x o o o o x o o o o o x x x x x x x x x x o o o o x o o o o o o o o o o x o o o x x o o o x x x x x x x x x x x x x o o o x x o x x x x x • Door gebruik van greedy recursief opslits algoritme zijn ze vaak erg snel (+) • De geleerde hypothese is goed leesbaar voor domein experts (+) • Het algoritme moet goed gebruikt worden om overfitting tegen te gaan (-) 7 Transparanten bij het vak Inleiding Adaptieve Systemen: Introductie Machine Leren. M. Wiering Wat is het leerprobleem? Leren = verbeteren een taak uit te voeren door middel van ervaring Lerende Machines • Verbeter in taak T, Voorbeeld: je ziet de karakteristieken (Features) van een aantal dieren en krijgt te horen welk dier het is. • Met respect tot prestatie maat P, • Gebaseerd op ervaring E. Je bent geinteresseerd om een concept te leren welke olifanten van andere dieren onderscheid. Voorbeeld: Leren te schaken Dier gegeven als [Gewicht, Kleur, Aantalpoten, Lengte] • T: Speel Schaak Nu hebben we een aantal (leer)-voorbeelden: • P: % of spelletjes gewonnen in toernooi [16kg, bruin, 4, 37cm, Hond] [560kg, bruin, 4, 200cm, P aard] • E: Gelegenheid om N spelletjes tegen zich[5100kg, grijs, 4, 310cm, Olif ant] zelf te spelen [5420kg, grijs, 4, 320cm, Olif ant] Voorbeeld: Leren spraak te herkennen Welke concepten zouden nu de olifant onder• T: Zet spraak om in tekst scheiden van de rest? [?, grijs, ?, ?, Olif ant] [> 5000kg, ?, 4, ?, Olif ant] [> 5099kg, grijs, 4, > 309cm, Olif ant] • P: % goed geclassificeerde woorden • E: Luister naar gesproken bekende tekst van spreker Vraag: welk concept zou jij kiezen? Vraag: Wat zijn T, P, E voor piano leren spelen Waarom passen we leren toe? Waaruit bestaat een lerend programma? • Het kan veel werk zijn om kennis te eli- We onderscheiden een leer-element welke verciteren en in een computer in te voeren. beteringen maakt en een prestatie-element welVoorbeeld: een expertsysteem welke bo- ke acties of outputs selecteert. men classificeert. Het ontwerp van leer-elementen wordt bepaald door de volgende zaken: • Voor bepaalde domeinen heeft een mens onvoldoende kennis om alles uit te pro• Welke componenten van het prestatie elegrammeren. Voorbeeld: spraakherkenning. ment moeten verbeterd worden? • Welke representatie is gekozen voor die componenten? • Een omgeving kan a priori volledig onbekend zijn. Voorbeeld: Een robot die in een onbekende omgeving een taak moet uitvoeren. • Wat voor feedback is aanwezig? • Welke prior informatie is aanwezig? • Menselijke kennis kan imperfect zijn. Voorbeeld: maken van een schaakprogramma: hoe ziet de evaluatie functie eruit? 3 vormen van leren • Continue automatische adaptie aan gebrui- Aan de hand van aanwezige feedback onderscheiker: lerende zoekprogramma’s, intelligent den we 3 vormen van leren: information retrieval. 1 Agent Inputs Prestatie Element Outputs Acties Leer Element Feedback Vormen van Supervised leren Er bestaan 3 verschillende leerproblemen in supervised leren: • Binary Classification. De data heeft 2 mogelijke uitkomsten. Het doel is de ene categorie van de andere te scheiden. Als dit niet perfect lukt (consistent) dan moet het aantal fouten geminimaliseerd worden. Prior Informatie • Supervised leren: de agent krijgt de input en de gewenste output binnen. Het doel is een functie te leren die de inputoutput mapping goed benadert. • Multi-class Classification. In dit geval zijn er meerdere mogelijke output klassen en moet voor elke input de optimale klasse teruggeven worden. • Reinforcement leren: de agent krijgt enkel een evaluatie van zijn gekozen actie binnen, maar niet de optimale actie. Het doel is een optimale actie-selectie policy te leren. • Regression. In dit geval moet de output een reële waarde zijn. Nu moet de (kwadratische) fout tot de gewenste output geminimaliseerd worden. • Unsupervised leren: de agent krijgt enkel inputs en geen outputs. Door middel van een objectieve (afstands) functie kan de agent patronen in de input leren zoals clusters in de inputspace. NB. Regression problemen kunnen niet door alle leeralgoritmen opgelost worden. Ingredienten van een Lerend Systeem Vaak worden bepaalde optimalisatie (zoek) algoritmen zoals genetische algoritmen ook als lerend beschouwd. Om te leren hebben we allereerst een representatie nodig. Voorbeeld: een neuraal netwerk, beslisboom. De representatie bepaald welke hypotheses (functies) geleerd kunnen worden. Enkele voorbeelden: Een hypothese is een invulling van een representatie (vb. Een geleerd neuraal netwerk). Supervised: Handgeschreven tekst herkenning, Spraakherkenning, Bepalen of iemand een lening krijgt, Gezichtsherkenning. Verder hebben we een evaluatie functie (prestatie functie) nodig, om een bepaalde hypothese te kunnen evalueren (vb. tel het aantal fouten). Reinforcement Leren: Spelletjes leren door tegen jezelf te spelen, Robot Controle, Kortstepad bepalen, Lift Controle Tenslotte hebben we leervoorbeelden nodig. In het geval van reinforcement leren hebben we een leeromgeving nodig — de leervoorbeelden Unupervised Leren: Compressie van data (voor- worden door het systeem zelf gegenereerd. beeld images), data analyse (Wat zijn belang- In de leervoorbeelden kan ruis (noise) zitten: rijkste kenmerken?), market basket (Associatie dit kan het leren aanzienlijk moeilijker maken. regels: Als iemand zuurkool koopt, koopt deze We moeten de ruis dus niet perfect leren, maar dan ook fles rode of witte wijn?) ons concentreren op de generalisatie eigenschapOptimalisatie (GA’s): Robot Controle, Functie optimalisatie (hoe moeten parameters bepaald worden voor optimaal resultaat?), Combinatorische problemen (Scheduling, TSP). pen. Vraag: Welke leervorm is geschikt voor het vertalen van een document? In Supervised leren krijgt de agent een aantal input-output voorbeelden en moet deze een func- Inductief supervised leren 2 tie leren welke de voorbeelden goed benadert (inductie). Genereer een hypothese welke consistent is met de leervoorbeelden Een functie kan een continue wiskundige functie zijn, maar ook een logische functie bestaande uit proposities etc. - - - Een leervoorbeeld is een paar: (x, f (x)). Soms gebruiken we y = f (x) om de outputfunctie weer te geven. - - - + + + + + + De inductieve inferentie taak is als volgt: gegeven een aantal voorbeelden van f (x), geef een functie h terug welke f benadert. Meest algemene consistente hypothese - - - Meest specifieke consistente hypothese De functie h wordt ook wel een hypothese genoemd. Inductieve Bias: Een leeralgoritme heeft een Testen van een hypothese preferentie over bepaalde hypotheses vergeleken De totale verzameling voorbeelden wordt meestmet andere hypotheses. al gesplitst in een leerverzameling en een testverzameling. De testverzameling wordt gebruikt om de geleerde hypothese te evalueren op haar generalisatie mogelijkheden (naar andere onbekende voorbeelden). Verschillende soorten inductieve bias Het kan gebeuren dat de fout op de leerverzameling 0 is, terwijl deze op de testverzameling vrij hoog is. - - - - + + + + + + + - - + - - 5 fouten - - - 6 fouten Voorbeeld van genereren hypothese Gegeven de volgende leervoorbeelden: Root learning - - - Root learning is eigenlijk niets anders dan het onthouden van alle leervoorbeelden. - - - De Hypothese is in dit geval de gehele verzameling geziene voorbeelden met hun classificaties. + + + + + + - Hoewel het nuttig is om telefoonnummers te leren heeft root learning de volgende grote nadelen: - - - 3 • Het systeem kan enkel voorbeelden goed classificeren als deze al een keer gezien zijn. E R R O R • Voor (bijna) perfecte classificatie moeten alle voorbeelden gezien worden • Het aantal leervoorbeelden (leertijd) en de opslagruimte voor de hypothese zijn enorm groot. State : W Leren is eigenlijk compressie! • Aantal input-attributen Ockham’s razor • Soort inputs: continu of discreet (hoeveel mogelijkheden) Als er meerdere hypotheses zijn die dezelfde leervoorbeelden goed classificeren, prefereren we de kleinste (met de minste parameters). • Zijn er missende waarden voor input-attributen • Is er ruis in input attributen (waarde van attribuut is gewijzigd) De kleinste kan het beste generaliseren Voorbeeld: Stel we hebben de volgende leervoorbeelden voor gezichten: • Aantal output-attributen [baard, mond, neus, snor, 2 blauwe ogen, 2 oren, bruin haar, gezicht] • Soort outputs: continu of discreet [¬baard, mond, neus, ¬snor, 2 groene ogen, 2 oren, bruin haar, gezicht] [¬baard, ¬mond, ¬neus, ¬snor, 5 witte ogen, ¬oren, ¬haar, dobbelsteen] • Zijn er missende waarden voor output-attributen • Is er ruis in output attributen We kunnen nu bv. de volgende 2 concepten voor een gezicht maken: [mond, neus, 2 oren, 2 ogen] of [mond, neus, 2 oren, 2 ogen, bruin haar] • Hoe ziet het proces achter de leervoorbeelden eruit (a priori kennis) De eerste generaliseert duidelijk beter Stappen voor Gebruik Machine Learning Leren is zoeken naar parameters Leren kan gezien worden als het zoeken naar parameters welke de fout minimaliseren. Bepaal de leertaak De parameters zijn afhankelijk van de gebruikte representatie. Taak T B.v. logische proposities voor beslisbomen, reële gewichten voor neurale netwerken. Verzamel voorbeelden voor deze taak Door gebruik te maken van een leeralgoritme krijg je een gestuurde zoektocht in het fout landschap: Selecteer representatie voor functie Leervoorbeelden Representatie Run leeralgoritme Hoe zien de leervoorbeelden eruit? Hypothese We leren een mapping van: Input [x1 , x2 , . . . , xn ] naar Output [y1 , . . . , ym ] voorbeelden Testvoorbeelden Voor het karakteriseren van de leertaak is van belang: 4 Test Evaluatie Sommige topics in Machine Learning • Welke algoritmen kunnen welke functies goed representeren? Unsupervised learning: • Clustering • Hoe beinvloedt het aantal leervoorbeelden de nauwkeurigheid? • K-Means Clustering • Principale Component Analyse • Hoe beinvloedt de complexiteit van de hypothese de nauwkeurigheid? • Independent Component Analyse • Hoe beinvloedt ruis de nauwkeurigheid? • Kohonen netwerk/ Zelf-organiserende netwerken • Wat zijn theoretische limieten van leerbaarheid? Evolutionary Computation • Hoe kan a priori kennis gebruikt worden? • Welke ideeën verschaffen biologische systemen ons? • Genetische Algoritmen • Hoe kan de representatie door het algoritme veranderd worden? • Probabilistic Incremental Program Evolution (PIPE) • Genetisch Programmeren • Evolutionary approaches to optimize Neural networks Wat voor lerende algoritmen bestaan er? • Evolutionary Markov Chain Monte Carlo (EMCMC) Supervised Learning: • Version Spaces • Decision Trees Gerelateerde disciplines • Naieve Bayes classifiers • Kunstmatige Intelligentie • Neurale Netwerken • Statistiek • k-Nearest Neighbors / Locally weighted learning • Computationele Complexiteits theorie • Zelforganiserende maps • Controle Theorie • Bayesian belief networks • Cognitieve Psychologie • Support vector machines • Biologie • Filosofie Reinforcement Leren • Neurofysiologie • Optimale controle, dynamisch programmeren • Economie • ... • Reinforcement leren (RL) algoritmes • Exploratie Conclusie • Functie approximatie en RL, multi-agent RL Er zijn drie vormen van leren: supervised, unsupervised, en reinforcement leren. 5 Om te leren hebben we leervoorbeelden (of een leeromgeving) nodig. Leren is het zoeken naar een hypothese (invulling van een representatie) welke goed presteert op de leervoorbeelden. Om om te gaan met ruis en te kunnen generaliseren, prefereren we meestal de kleinst mogelijke (consistente) hypothese. Om de generalisatie van een hypothese te meten, gebruiken we testvoorbeelden welke nog niet gezien zijn door het leeralgoritme. 6 Transparanten bij het vak Inleiding Adaptieve Systemen: Evolutionary Computation. M. Wiering f (smax ) ≥ f (s) ∀ s Omdat de representatie ruimte vaak erg groot is, kunnen we deze niet helemaal doorzoeken. Evolutionary Computation (EC) Daarom moeten we gebruik maken van heuristieke zoekalgoritmen Optimalisatie algoritmen geinspireerd door Darwin’s evolutie theorie (“natural selection”), ontdekt in de jaren ’60 en ’70. Voorbeelden hiervan zijn: Genetische algoritmen, Tabu search, Local hill-climbing, Simulated Annealing, Ant Colony Systemen Goed in gedistribueerd zoeken in grote ruimtes. Gebruiken genetische strings (meestal rij van nullen en enen) als representatie Local hillclimbing Evolutionaire algoritmen kunnen gebruikt wor- Local-hillclimbing werkt als volgt voor het vinden voor: den van een oplossing: • Controle taken • Genereer een oplossing s0 , t = 0 • Combinatorische optimalisatie • Herhaal tot stopconditie geldt: – snew = verander(st ) • Functie optimalisatie – Als f (snew ) > f (st ) then st+1 = snew – Anders: st+1 = st – t = t +1 Leerdoelen • Begrijpen waar optimalisatie problemen om De belangrijkste functie is hierbij: verander(s) draaien Een nadeel van local-hillclimbing is dat deze vaak in een lokaal minimum terecht komt. • Genetische algoritmen begrijpen Om daar mee om te gaan, wordt het algoritme • Representatie kunnen bedenken voor be- meestal vanaf verschillende beginpunten gestart. paald probleem • Mutatie en Recombinatie operatoren kunnen maken voor bepaalde representatie Genetische algoritmen • Verschillende selectie strategieën kennen Initialiseer: genereer populatie individuen (genetische strings / genotypes) • Verschil genetische algoritmen en Evolutionaire strategieen begrijpen - Herhaal: (1) Evalueer alle individuen (bereken fitness) (2) Selecteer individuen aan de hand van hun fitness (3) Recombineer geselecteerde individuen m.b.v. crossover en mutatie • Genetisch programmeren begrijpen • PIPE begrijpen Theorie: schemata worden overgedragen aan kinderen. Optimalisatie problemen In een optimalisatie probleem is er sprake van een representatie (oplossings) ruimte S en een fitness (evaluatie) functie. Stappen voor maken van EA Het doel is om de oplossing smax ∈ S te vinden met maximale fitness Hoe maken we een evolutionair algoritme? Abstracte stappen: 1 POPULATIE EVALUATIE SELECTIE/ RECOMBINATIE 1 0 0 0 0.72 1 0 1 0 0 1 1 0 0.45 0 1 1 1 0 0.56 0 1 0 1 0.11 1 0 1 0 0.89 1 Omzetten van genotype in phenotype 1 0 Als we een representatie voor de genotypes hebben, hebben we ook nog alle vrijheid om deze te vertalen in een phenotype 1 0 1 1 Het zoeken gebeurt in de genotype representatie ruimte • Ontwerp een representatie De phenotype wordt geevalueerd • Initialiseer de populatie 8 bits Genotype • Ontwerp een manier om een genotype om te zetten naar een phenotype 1 0 1 0 0 0 1 Phenotype: * Integer * Real number * Schedule * ..... 1 • Ontwerp een evaluatie (fitness) functie om een individu te evalueren Meer specifieke stappen: Voorbeeld: Phenotype: natuurlijke getallen: uitkomst binaire representatie = 163 • Ontwerp bepaalde recombinatie operator(en)Voorbeeld: Phenotype: getal tussen 2.5 en 20.5: • Ontwerp bepaalde mutatie operator(en) • Beslis hoe ouders worden geselecteerd x = 2.5 + • Beslis hoe individuen worden gestopt in de nieuwe populatie • Beslis wanneer het algoritme kan stoppen 163 (20.5 − 2.5) = 13.9609 256 Representeren van reële getallen Ontwerpen van een representatie Als we een phenotype van reële getallen willen verkrijgen, is een natuurlijke manier om de reële getallen direct te coderen in de genotype We moeten een manier verzinnen om een individu als een genotype te representeren Voorbeeld: een tupel met n reële getallen: X = (x1 , x2 , . . . , xn ) xi ∈ < Er zijn hiervoor vele mogelijkheden. De manier die we kiezen moet relevant zijn voor het probleem dat we willen oplossen. Een bekende applicatie hiervoor is parameter optimalisatie De fitness functie f mapt de tupel op een enkel getal: Voor het kiezen van een representatie moet er rekening gehouden worden met de evaluatie methode en de genetische operatoren f : <n → < De representatie kan met discrete waarden (binair, integer etc) Representatie voor orderingsprobleem. Voor bepaalde problemen zoals de TSP is het nodig een volgorde van steden te vinden. Dit coderen we als: Voorbeeld: binaire representatie : Chromosoom 3 1 0 1 0 0 0 1 1 Gen 2 4 8 6 1 2 7 5 Initialisatie • Tenminste 1 mutatie operator moet het mogelijk maken om de hele zoekruimte te kunnen doorzoeken Voor de intialisatie zijn er de volgende methoden: • Uniform willekeurig over de gehele zoekruimte: • De grootte van de mutatie stap moet controleerbaar zijn • Mutatie moet geldige chromosomen opleveren 1. Binaire strings: 0 en 1 met kans 0.5 2. Reeële getallen: Uniform op een gegeven interval (werkt niet als interval niet gesloten is) Voorbeeld mutatie: • Gebruik vorige resultaten om de populatie te initialiseren of gebruik heuristieken 1 1 1 1 1 1 1 1 Voor mutatie 1. Nadeel: mogelijk verlies van genetische diversiteit 1 1 1 0 1 1 1 1 Na mutatie 2. Nadeel: soms onmogelijk om te ontsnappen aan initiële bias. Gemuteerde Gen Evalueren van een individu Mutatie gebeurt gewoonlijk met kans Pm op elk gen Dit kan soms een erg kostbaar proces zijn, zeker voor real-world problems Speciale mutatie operatoren • Evalueer onveranderde individuen niet opnieuw Mutatie op reële getallen kan gedaan worden door een perturbatie aan te brengen met willekeurige ruis. Het kan een subroutine zijn, een black-box simulator of een extern proces (bv robots) Vaak wordt een Gaussiaanse ruis distributie gebruikt (met gemiddelde 0): Je kunt beginnen met een evaluatie functie welke de uitkomst van het proces benadert, maar dit kan niet te lang (bv. leer met neuraal netwerk hoe fitness landscape eruit ziet). xi = xi + N (0, σ) Mutatie voor order specifieke representaties (swap): selecteer 2 genen en wissel ze om: Omgaan met eisen: wat als phenotype niet aan een bepaalde eis voldoet? • Gebruik een penalty term in de fitness functie • Gebruik specifieke evolutionare algoritmen die omgaan met eisen 7 3 1 8 2 4 6 5 7 3 6 8 2 4 1 5 Probleem: omgaan met meerdere doelen in de fitness functie : gebruik compromissen tussen subdoelen Recombinatie operatoren Een recombinatie operator mapt gewoonlijk 2 ouders op 1 of 2 kinderen Mutatie operatoren We kunnen 1 of meerdere mutatie operatoren We kunnen 1 of meer recombinatie operatoren maken voor een representatie hebben. Belangrijk is: Belangrijk hierbij is: 3 • Het kind moet iets van elke ouder overerven. Anders is het een mutatie operator Ouder 1 7 3 • De recombinatie operator moet samen met de representatie ontworpen worden zodat recombinatie niet vaak een catastrofe is. 1 Ouder 2 8 2 4 6 5 4 3 2 8 6 7 1 5 7,3,4,6,5 • Recombinatie moet geldige chromosomen opleveren 7 5 1 8 2 1 8 2 Order: 4,3,6,7,5 4 3 6 Kind 1 Voorbeeld recombinatie (1-point crossover): Knip 1 1 1 1 1 1 Knip 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 Selectie Strategie Ouders 0 1 We willen een manier hebben zodat betere individuen een grotere kans hebben om ouders te zijn dan minder goede individuen Kinderen Dit geeft de selectie-druk welke de populatie in staat stelt zich te verbeteren We moeten minder goede individuen een kleine kans geven zich ook voort te propageren, omdat ze Recombinatie (crossover) kan one-point, two-point, bruikbaar genetisch materiaal kunnen bevatof uniform zijn. We kunnen dit visualiseren als ten. Recombinatie maskers een crossover masker: 1 1 0 0 1 0 0 Bv. Fitness proportionele selectie : ouder selecP tie met kans fi / j fj Verwacht aantal keer dat individu i gekozen wordt ˆ met fˆ als de gemiddelde populatieals ouder = fi /f, fitness Masker (Uniform) 1 1 1 1 0 1 1 0 0 1 0 0 0 0 Ouders 1 1 1 0 0 0 0 0 0 1 1 0 1 1 Kinderen Nadelen fitness proportionele selectie: • Gevaar van voorbarige convergentie, omdat zeer goed individuen hele populatie snel overnemen Crossover op reële getallen representaties kan gebeuren door getallen te middelen: (xc1 = • Lage selectie druk als fitness waarden dicht bij elkaar liggen xa1 + xb1 xa + xbn , . . . , xcn = n ) 2 2 • Gedraagt zich verschillend voor translatieve veranderingen van de fitness functie Crossover voor order afhankelijke representatie Oplossing: schalen van de fitness functie: fitness tussen 0 en 1 (beste), som van fitness waarden = 1. Hier moeten we oppassen dat we wel geldige chromosomen krijgen Kies een willekeurig deel van de eerste ouder en copieer dit naar het eerste kind Tournament selectie Copieer de overgebleven genen die niet in het gecopieerde deel zitten naar het eerste kind (gebruik de order van de genen van de 2e ouder) Selecteer k random individuen zonder terugleggen 4 Populatie Kampioen Deelnemers (k = 3) f=6 f=2 f=1 f=8 f=3 f=5 GA vs. ES f=9 f=4 f=9 f=5 f=5 f=3 f=9 2 1 GA gebruikt crossover en mutatie f=3 Evolutionaire strategieën (ES) gebruiken enkel mutatie 3 Keuze hangt af van: • Is de fitness functie scheidbaar? Neem de beste (k is de grootte van het toernooi) • Bestaan er building blocks? Andere selectie strategie: rank-based selection • Is er een semantisch betekenisvolle recombinatie operator? Rank-based selection ordent alle individuen op basis van hun fitness. De plaats in deze geordende lijst wordt de rank genoemd. Als recombinatie betekenisvol is → gebruik het! We gebruiken de rank om een individu te selecteren. Individuen met hoge rank (goede fitness) worden vaker gekozen. Genetisch Programmeren Gebruikt functionele bomen als representatie i.p.v. binaire strings Vervangings strategie De selectie druk wordt ook beinvloed door de Functies zoals: cos, sin, *, +, /, random conmanier waarop individuen uit de vorige gene- stant ratie gedood worden om plaats te maken voor Voorbeeld programma: nieuwe individuen We kunnen steeds een nieuwe populatie genereren, of een deel van de oude populatie elimineren gebruik makende van hun fitness. Programma Boom Functie COS Cos((X1 + X2) * 2) * We kunnen bijvoorbeeld de elitist strategie gebruiken en besluiten om het beste individu nooit uit de populatie te verwijderen + X1 2 X2 In elk geval slaan we het beste individu op in een veilige plaats Gebruik: • Supervised leren op continue inputs/outputs Recombinatie vs. Mutatie • Robot controle taken Recombinatie; • Beeld classificatie • Veranderingen hangen van hele populatie af • Flexibel: loops, geheugen registers, speciale random getallen etc. • Afnemend effect met convergentie van populatie • Exploitatie operator Mutatie en Recombinatie in GP De mutatie operator kan dan een knoop van de boom aanpassen: Mutatie: • Verplicht om uit lokale minima te ontsnappen Ook de recombinatie operator werkt op programma’s: • Exploratie operator 5 Voor Mutatie COS COS * + + X1 (2) Evalueer alle M individuen Na mutatie + 2 X2 (3) Selecteer de beste en schuif de kansen op zodat de kans dat de gevonden individu opnieuw gegenereerd wordt toeneemt 2 X1 (4) Muteer de PPT zodat de kansenverdeling licht gemuteerd wordt X2 PIPE werd vergeleken met GP en bleek in staat voor sommige problemen betere oplossingen te vinden Ouders COS SIN CUT CUT + * + X1 * 2 X2 2 X2 Voorbeeld van taak voor GA SIN Kinderen COS COS X1 Het Bin Packing probleem is een NP-moeilijk combinatorisch optimalisatie probleem: + * * + 2 X1 2 COS X2 X2 X1 Gegeven een lijst van objecten met hun gewicht en een bin met een bepaalde maximale capaciteit. PIPE Doel: deel de objecten zo in de bins dat er een minimum aantal bins nodig is voor het verpakProbabilistic Incremental Program Evolution (PIPE) gebruikt kansen om functies op een knoop ken van alle objecten. in programma boom te genereren Representatie: lijst van bin-nummer waarin elk Het slaat één probabilistic prototype tree (PPT) object zit: op i.p.v. alle individuen: Voorbeelden: [1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3] en [2, 2, 4, 3, 1, 3, 1, 2, 1, 2, 1, 3] Probabilistic Prototype Tree SIN COS * + / X1 X2 SIN COS * + / X1 X2 0.23 0.11 0.19 0.06 0.06 0.19 0.06 Fitness functie: hoeveel bins worden gebruikt? Hoe vol zijn gebruikte bins? 0.51 0.20 0.09 0.04 0.06 0.09 0.01 SIN COS * + / X1 X2 Vraag: hoeveel kinderen kunnen er gegenereerd worden door uniform crossover te gebruiken op 2 strings van lengte n? 0.01 0.22 0.19 0.24 0.09 0.07 0.18 Voor- en Nadelen EC Met behulp van de PPT worden individuen gemaakt: Voordelen: • Begin bij wortel en kies hiervoor functie volgens kansverdeling • Evolutionaire algoritmen kunnen vaak direct ingezet worden • Ga naar de subbomen van de PPT om de benodigde argumenten voor de eerder gegenereerde functies te genereren • Ze zijn goed in doorzoeken grote zoekruimtes • Kunnen gebruikt worden voor vele soorten problemen • Totdat programma helemaal af is • Makkelijk te parallelliseren Leerproces in PIPE Nadelen: Herhaal tot stopconditie geldig: • Soms last van voorbarige convergentie: verlies aan genetische diversiteit (1) Genereer op bovenstaande manier een populatie van M individuen 6 • Veel individuen worden geevalueerd en dan niet meer gebruikt • Kan traag leerproces opleveren • Als meeste individuen gelijke, slechte fitness hebben is er weinig selectie druk (bv. taak: goed antwoord/ fout antwoord). 7 Transparanten bij het Inleiding Adaptieve Systemen. Artificial Life. M. Wiering • Optimalisatie. Bv. Numerieke optimalisatie, job-shop scheduling. • Robot leren. Artificial Life • Economische modellen. Zoals ontwikkeling van prijs-strategieen Artificial life houdt zich bezig met het modelleren en simuleren van levende entiteiten en complexe systemen. Applicaties hiervan kan men vinden in: • Ecologische modellen. Zoals arm-races, coevolutie • Populatie genetics modellen. Welke genen blijven in populatie? • Biologie. Hoe interacteren levende organismen in biologische processen? • Economie: Hoe interacteren rationele agenten in economische omgevingen zoals aandeel markten, e-commerce, etc. • Sociologie: Hoe interacteren agenten in gemeenschappen als ze competitieve/ collaboratieve doelen hebben? • Bestuderen van interacties tussen evolutie en leren • Modellen van sociale systemen. Zoals evolutie van cooperatie. Interactie tussen evolutie en leren • Natuurkunde: Hoe interacteren fysische deeltjes in een bepaalde ruimte? Evolutie en leren zijn twee adaptie processen voor organismen. Evolutie is langzaam en vindt plaats over generaties van individuen. Leren is snel en vindt plaats in een individu (agent). ALife probeert de oorsprong en functionaliteit van het leven te begrijpen. Er zijn 2 mogelijke effecten van de combinatie van evolutie en leren. ALife probeert kunstmatige organismen te ontwerpen welke betekenisvol levend genoemd kunnen worden. • Baldwin Effect. Een individu leert door zijn interactie met de omgeving. Dit leren stuurt de fitness van het individu. Hierdoor kunnen organismen die goed kunnen leren een hogere fitness behalen. Geleerde kennis wordt niet overgedragen aan de offspring. ALife probeert interactie patronen tussen organismen te begrijpen. ALife probeert multi-agent systemen te construeren welke een bepaald multi-agent gedrag modelleren, nabootsen, en eventueel optimaliseren. • Lamarckiaans leren. Een individu leert tijdens zijn leven en geeft de geleerde kennis door aan zijn offspring. Voorbeelden: • Markt economieen Onderzoek toont aan dat leren en evolutie tegelijkertijd beter kan werken dan enkel 1 van beiden. • Sociale systemen • Imuun systemen • Ecosystemen Ecosystemen en evolutionaire dynamica Ecosystemen bestaan uit een aantal individuen (agenten) welke: Vraag: Wat is het verschil tussen AI en ALife? GA en ALife • Een positie in de omgeving bezetten Genetische Algoritmen worden gebruikt voor diverse doeleinden: • Interacteren met de omgeving en andere agenten 1 • Een bepaalde interne toestand (bv. energie, geld) hebben. • De cellulaire ruimte. De cellulaire ruimte is een lattice van N identieke cellen, elk met identieke patronen van lokale connectiviteit naar andere cellen. Door de evolutie van een ecosysteem te bestuderen kan men allerlei analogieen vinden met echte ecosystemen. Voorbeelden hiervan zijn: Laat Σ de verzameling toestanden zijn van een cel. k = |Σ| is het aantal toestanden per cel. • Cooperatie. Bv. handel tussen agenten. Een cel met index i is op tijdstip t in toestand sti . De toestand sti tezamen met de toestanden van de cellen waarmee i verbonden is wordt de neighborhood nti genoemd. • Competitie. Bv. gevechten tussen agenten. • Nabootsen. Bv. een agent leert wat hij moet doen door te kijken naar een andere agent. • De transitie regel. De transitie regel r(nti ) geeft de update van toestand st+1 i als een functie van zijn neighborhood. • Parasitair gedrag. Een agent profiteert van een andere agent. Gewoonlijk worden alle cellen synchroon geupdate. • Evolutie van gemeenschappen. Binnen gemeenschappen kunnen agenten samenwerken en zich specialiseren. De regel wordt meestal geimplementeerd als een lookup-tabel. Cellulaire Automaten Voorbeeld CA Cellulaire Automaten (CA) zijn gedecentraliseerde ruimtelijke systemen met een groot aantal simpele identieke componenten met lokale verbondenheid. Regel Tabel R: Ze worden gebruikt als modellen voor biologische, sociale en fysische processen, zoals: Lattice: Neighborhood: 000 001 010 011 100 101 110 111 Output bit 0 1 1 1 0 1 1 0 Periodische boundary condities t=0 1 0 1 0 0 1 1 0 0 1 0 t=1 1 1 1 0 1 1 1 0 1 1 1 • Vloeistof beweging • Galaxy formaties • Aardbevingen Vraag: bepaal de nieuwe configuratie op tijdstap t=2 • Biologische patroon vorming • Emergent cooperatief en collectief gedrag • Verkeers modellen Werking in tijd van CA • Bosbranden De bovenstaande CA met 1 dimensie en een neighborhood grootte van 3, is 1 van de simpelste CA. Toch kan zo’n CA complex gedrag vertonen als we deze voortdurend door itereren: Formele beschrijving CA CA bestaan uit 2 componenten: CA zijn onderdeel van de klasse iteratieve netwerken of automata netwerken. Verschillende soorten processen in CA 2 Zie hieronder een lattice zonder boundary condities (we tonen eigenlijk maar een klein gedeelte van de complete lattice welke verder leeg is) Dit leidt tot een periodieke cycle van lengte 2 voor bovenstaande initiele configuratie. Vraag: kan bovenstaande transitie regel volgens jou tot chaotisch gedrag leiden? Als we een gegeven CA met een begintoestand door itereren kunnen we verschillende soorten patronen verkrijgen: Opgave Gegeven een 2-dimensionele lattice en de updateregel: als 1 buur actief is en cel was inactief maak cel actief. Anders als cel actief was op tijdtap t, maak cel ook actief op volgende tijdstap. • 1 stabiele eindtoestand, waarna de evolutie (verandering) ophoudt. • 1 cyclisch patroon. Hier bevindt de CA zich achtereenvolgens in verschillende configuraties, maar deze configuraties vormen Evolueer de CA in onderstaande figuur: een cyclus, zodat dezelfde toestanden steeds terugkeren t=0 t=1 t=2 t=3 • Chaotisch gedrag. De configuratie blijft veranderen en komt nooit terug in dezelfde toestand (NB. dit kan in principe enkel voor oneindig grote automaten) • Sommige initiele patronen resulteren in complexe lokale structuren, welke soms lang doorgaan. Hierin zit vaak de meeste informatie. We noemen de tijdsperiode totdat er een fixed point of periodieke cyclus optreedt de transient period. Vraag: wat voor vorm komt eruit als we dit proces voortdurend door itereren op een grotere lattice? Ergens op de grens is er een fase transitie van complex geordend gedrag naar chaotisch gedrag. Eliminatie van de patroon basis Voorbeeld van cyclische patronen Sommige onderzoekers proberen een basis te vinden welke een achtergrond vormt (muren, singulariteiten) etc. Een stabiele eindtoestand kan b.v. enkel 1’en zijn. Transitie regels met zulke eindtoestanden zijn makkelijk op te stellen. Door de reguliere basis weg te halen kan inzicht gegeven worden in de evolutie van chaotische of turbulente processen. Stel we hebben een 2-dimensionele lattice. De transitie regel is: als 2 buren actief zijn, wordt de cel geactiveerd. Anders gaat de cel uit. Neem het volgende chaotische proces: 3 • Anders wordt de cel niet actief. Universele rekenkracht in Game of Life Conway’s game of life heeft ook universele rekenkracht. Deze rekenkracht berust op gliders welke informatie kunnen doorpropageren en waarmee logische and en not-gates gebouwd kunnen worden. Als we de reguliere achtergrond weghalen verkrijgen we: t=0 t=1 t=3 t=4 t=2 Deze glider beweegt zich 1 hokje diagonaal na elke 4 tijdstappen. Door gebruik te maken van glider guns kunnen interacties tussen gliders plaats vinden. Voorbeeld: Als gliders elkaar treffen worden ze vernietigd. Dit wordt gebruikt om een not-gate te maken. De “embedded particles” vertonen een “random walk” gedrag. Ontwikkeling van CA Als de “embedded particles” elkaar kruisen, wor- Von Neumann (1966) construeerde een CA welden ze vernietigd. ke in staat was om zichzelf te reproduceren. Smith (1972) construeerde een CA welke contextsensitieve talen kon herkennen (bv. palindromen). Onderzoek naar CA CA zijn universele computatie machines. Ze zijn dus net zo krachtig als Turing Machines. Mitchell et. al (1994) gebruikten GA om CA regels te evolueren. Ze probeerden dit uit op het Er is veel onderzoek naar CA. Een bekend voor- meerderheidsprobleem in 1-dimensionele CA. beeld van een CA is Conway’s game of life. Dit probleem is: als de meerderheid van de celConway’s game of life is een 2-dimensionele lat- len aan staat moeten na een periode van tijd tice met 8 buren voor elke cel. Verder zijn de alle cellen aangaan. Anders moeten alle cellen transitie regel(s): uitgaan. De GA vonden hiervoor verschillende oplossingen. Sommigen maakten gebruik van embedded particles. Door de lokale verbondenheid kon echter geen oplossing voor alle initiële configuraties het juiste antwoord genereren. • Als een cel actief is en 2 of 3 van zijn andere buren zijn actief, dan wordt de cel actief. • Anders als de cel inactief is en precies 3 buren zijn actief, wordt de cel ook actief. 4 Andere CA De experimenten tonen dat golven van activeit over tijdsperiodes worden geevolueerd. Dus de populatie vindt en exploiteert voortdurend nieuw genetisch materiaal. CA kunnen ook goed gebruikt worden voor problemen als het modelleren van verkeer. Hier is een cel b.v. actief als er een auto op een plek staat. Hoewel het model vrij simpel is, wordt de evolutionaire activiteit als een bruikbare variabele gezien om evolutie processen te meten. De CA kan complexer worden door elke auto een interne toestand mee te geven met de plaats van bestemming. (Dit kan in de cel zelf gecodeerd worden) Markt modellen CA kunnen ook gebruikt worden om epidemieën mee te modelleren. Hier kan een cel een ziek, gezond, of ziek-geweest persoon zijn. Financiële markten zijn moeilijk te voorspellen. De vraag is: onder welke omstandigheden zijn voorspellingen überhaupt mogelijk? CA kunnen ook gebruikt worden voor bosbranden. Hier kan een cel zich bv. in de toestanden (Brand, Water, Bomen, Gras, Zand) bevinden. Een uitgangspunt is de “Efficiente Markt Hypothese” (EMH) In een informatieve efficiente markt zijn prijsOok kunnen extra externe parameters zoals wind veranderingen onvoorspelbaar als er behoorlijk het gedrag van de CA beinvloeden (eventueel rekening mee is gehouden. Dat is als ze volledig door dynamische transitie regels) de verwachtingen en informatie van marktdeelnemers incorporeren. Hieruit volgt: hoe efficienter een markt is, des te willekeuriger zijn de prijsveranderingen die door de markt gegenereerd worden. Voorbeeld Strategic Bugs Strategic bugs is een ALife model (Bedau and Packard, 1992) waarin: Dit komt omdat zelfs bij de kleinste informatieve voordelen van investeerders, de acties van die investeerders direct de mogelijke winst op die aandelen elimineren. • De omgeving een 2-dimensionele lattice is. • Een cel in de omgeving een agent of voedsel kan bevatten. • Voedsel automatisch groeit in de omgeving: af en toe komt er voedsel in een willekeurige cel Zijn markten voorspelbaar? Maar: 1 van de neigingen van investeerders is de trade-off tussen verwachte risico’s en verwachte winst. • Bugs (agenten) overleven door het vinden en eten van voedsel. • Bugs gebruiken energie om te bewegen en sterven als ze geen energie meer hebben. Hierdoor kunnen bv. risk-aversieve investeerders aandelen verkopen met een hoog risico maar ook een verwachte winst. • Bugs kunnen zichzelf klonen of met een andere bug offspring maken. Het gevolg is dat niet alle prijsfluctuaties willekeurig zijn. Bepaalde studies hebben inderdaad aangetoond dat prijsfluctuaties niet volledig random zijn. Vraag: denk je dat computer algoritmen in staat zijn om aanzienlijke winsten te maken op de aandelenmarkt? Een bug wordt gemodelleerd door een lookuptabel representatie. Een voorbeeld regel is: als er meer dan 5 voedsel units ten noordwesten zitten, maak dan een stap naar het noordwesten. Bedau en Packard bestuderen de evolutionaire Niet rationele en volledig geinformeerde activiteit: in welke mate worden nieuwe gene- agenten tische vernieuwingen tot stand gebracht in de De hypothese dat investeerders volledig ratiopopulatie? 5 neel zijn en alle benodigde informatie bevatten is niet realistisch. Verdienstelijke strategieën accumuleren geld, terwijl verliesgevende strategieën geld verliezen en tenslotte verdwijnen. Dit komt omdat menselijk gedrag onvoorspelbaar is, informatie moeilijk te interpreteren valt, Dit kan dus gedaan worden m.b.v. genetische technologieen en instituten veranderen, en er algoritmen. kosten verbonden zijn aan transacties en inforDe creatie van nieuwe strategieën kunnen andere matie vergaring. strategieën minder/meer aantrekkelijk maken. Een veelbelovende richting is de relatieve effiEen financiële markt kan dus gezien worden als cientheid van een markt in vergelijking met aneen co-evoluerende ecologie van handels stratedere markten. B.v. future-contracten versus opgieën. ties. Net als een koelkast met een efficientheid van 40% behoorlijk goed lijkt en geprefereerd wordt ten opzichte van een koelkast met een efficientheid van 35%, worden ook bepaalde markten geprefereerd. Reinforcement leren voor agent-modellen Reinforcement leren kan gebruikt worden om agenten te laten leren van hun acties. Als bepaalde strategieën winst opleveren, worden ze meer gebruikt in de toekomst. De kern van zo’n agent is de mapping van partiële informatie naar handelingen. Deze mapDe wens om financiële theorieën te onwikkelen ping wordt aangepast door interactie met de omheeft geleid tot verschillende benaderingen om geving (de markt). de markt te verklaren: Reinforcement leren stelt een agent dus bij tij• Psychologische benaderingen ten opzichte dens zijn leven, terwijl GA een agent doen vervan risico-neem gedrag van investeerders. dwijnen of copiëren, zodat bepaalde winstgevenHierin wordt geanalyseerd hoe de mense- de strategieën meer in de populatie zullen kolijke psychologie het economische beslis- men. singsproces beinvloedt. Om markt-modellen realistisch te maken, kun• Evolutionaire speltheorie. Hierin wordt de nen ook allerlei financiële indexen, technologievolutie van stabiele toestanden van popu- sche innovaties, fusies etc. gemodelleerd worden laties van competitieve marktstrategieën in de simulatie. bestudeerd. Dit gebeurt meestal in gesimplificeerde, ideale gesimuleerde markten. Artificial Art en Fractals • Agent-gebaseerde modellering van markten. Hier worden investeerders gemodel- Het itereren van een simpele functie kan comleerd als agenten die bepaalde strategieën plexe, artistieke patronen genereren. gebruiken. Dit maakt het mogelijk om Een fractal is een patroon welke op zijn eigen complex leergedrag en dynamica in finan- subpatronen lijkt en welke vaak gemaakt kan ciële markten te bestuderen. worden door simpele vergelijkingen Modellen voor financiële theorieën Beschouw de functie: xk+1 = x2k Agent-gebaseerde modellen Een veelbelovende richting is de agent-gebaseerde Kijk naar de startwaarden voor xk waarvoor de iteratie naar een stabiel punt convergeert modellering. Markt-deelnemers zijn computationele entiteiten welke strategieën gebruiken op beperkte informatie. We kunnen direct zien dat voor de waarden −1 < x0 < 1, iteratief updaten convergeert en het stabiele punt is x∞ = 0. Sommige markt-deelnemers maken verlies en an- De waarden waarvoor de iteratie niet naar onderen winst. eindig gaat noemen we de Julia verzameling 6 Fractals gemaakt m.b.v. complexe getallen Met reële getallen kunnen er niet zo veel interessante dingen gebeuren. Dus laten we gebruik maken van complexe getallen beschreven door x = ai + b Beschouw nu functies van het type: xk+1 = x2k + C Als meerdere agenten zich evolueren en de fitness van een agent bepaald wordt door de hele Als we beginnen met x0 = 0, voor welke com- gemeenschap, wordt dit ook wel co-evolutie geplexe getallen C zal de iteratie voor deze functie noemd. dan niet oneindig worden? Cellulaire automaten zijn geschikt voor het moDeze verzameling van complexe getallen waar- delleren van bepaalde biologische, sociale en fyvoor de iteratie niet naar oneindig gaat noemen sische processen. we de Mandelbrot verzameling Markt economieën kunnen gemodelleerd worden als complexe wisselwerkingen tussen agenten met eigen gedragingen. De werking van zo’n systeem heeft analogieën met eco-systemen. Fractals zijn patronen welke op hun subpatronen lijken. Mandelbrot fractals kunnen gemaakt worden met een simpel iteratief algoritme Julia verzameling Beschouw opnieuw de geitereerde functie: xk+1 = x2k + C Nu hebben we een waarde voor C welke een element is van de Mandelbrot verzameling. Welke beginwaarden voor x0 in de complexe ruimte zorgen ervoor dat de iteratie niet naar oneindig gaat? Deze verzameling welke behoort bij een bepaalde waarde voor C noemen we de Julia verzameling voor C. Conclusie ALife is geschikt om complexe processen te bestuderen, bestaande uit interacterende entiteiten. Genetische algoritmen kunnen gebruikt worden om entiteiten (agenten) aan te passen aan hun veranderlijke omgeving. 7 Transparanten bij het vak Inleiding Adaptieve Systemen: Introductie. M. Wiering Modellering m.b.v. agenten Als een systeem gecontrolleerd moet worden, gebruiken we meestal de agent-metafoor. Adaptieve Systemen Adaptieve systemen zijn systemen waarin er een wisselwerking bestaat tussen het systeem en zijn omgeving, zodat beiden steeds transities maken naar veranderlijke toestanden. Een agent krijgt informatie over de toestand van de omgeving d.m.v. inputs, en kiest op basis van zijn interne toestand en de input een actie. De actie leidt tot een verandering van de toestand van de omgeving. Aan de hand van veranderende toestanden van het systeem zal een adaptief systeem zichzelf en/of de omgeving aanpassen om een bepaald doel te bewerkstelligen (simulatie, optimalisatie). Verder is een agent autonoom: hij bepaalt zelf zijn actie en kan bepaalde subdoelen tegen elkaar afwegen. Een agent kan ook communiceren met andere agenten, in dit geval spreken we van een sociale agent in een multi-agent systeem. Een lerend adaptief systeem heeft een mogelijkheid om zijn eigen prestatie te meten en kan zijn eigen interne parameters wijzigen om zichzelf te verbeteren (optimaliseren). De agent kan doelen hebben welke met een beloningsfunctie gemodelleerd kunnen worden. Andere geassocieerde benamingen zijn: • Cybernetica Model voor adaptieve systemen • Zelf-organiserende systemen Een adaptief systeem welke interacteert met een omgeving kan gemodelleerd worden met: • Complexe adaptieve systemen • Een tijd-element t = {1, 2, 3, . . .} • De toestand van de omgeving op tijdstip t: S(t) Voorbeelden van adaptieve systemen zijn: • Input van de agent verkregen op tijdstip t: I(t) • Robots die hun weg kunnen vinden in een bepaalde omgeving • Lerende systemen die data omzetten in kennis (vb. boomclassificatie) • Automatisch rijdende auto’s of automatische vliegtuig piloten • Een interne toestand op tijdstip t: B(t) • Een verzameling mogelijke acties: A, met A(t) de actie op tijdstip t • Een policy welke de input en interne toestand afbeeldt op een actie van het systeem: Π(I(t), B(t)) → A(t) • Evolutionaire systemen waarin de distributie van de genenpool zich aanpast aan de omgeving • Een transitieregel welke de toestand van de omgeving en de actie van het systeem afbeelt op een volgende toestand van de omgeving: T (S(t), A(t)) → S(t + 1) • Economieen waarin goed presterende bedrijven zich expanderen en anderen failliet gaan • Organismale systemen welke bepaalde essentiele eigenschappen handhaven om te kunnen overleven (zoals homeostase, autonomie) • Een beloningsfunctie voor het systeem: R(I(t), B(t), A(t)) → R(t) of R(S(t), A(t)) → R(t) Vraag: Bedenk een ander voorbeeld van een adaptief systeem 1 • Een update functie van de interne toestand van het systeem: U (I(t), B(t), A(t)) → B(t + 1) Een rationele agent handelt om zijn performance maat te maximaleren: v.b. doel bereiken met minst mogelijke kosten. Causale relaties in het model We zien bepaalde causale relaties in het model: Causaliteit in de tijd t t S I I B A I B A R t t+1 S A S I B A B Een autonome agent handelt op basis van zijn eigen ervaringen. De agent voert dus niet een vaststaand algoritme uit, maar gebruikt zijn waarnemingen om zijn gedrag te sturen (eventueel ook bij te stellen). Causale Graaf I Een agent wordt gestuurd door een programma welke draait op een architectuur (computer, hardware). S B R Het programma, de architectuur, en de omgeving bepalen het gedrag van de agent. A Vraag: In hoeverre bepaalt de architectuur het gedrag van een agent? Totale Systeem Perspectief Voor het begrijpen van de interactie tussen de agent en de omgeving is het van belang om naar het gehele systeem te kijken. Beloningsfunctie Een voorbeeld: Bosbrand controle. De entiteiten die een rol spelen zijn bomen, bulldozers, vliegtuigen, vuur, rookkolommen, het weer etc. Een agent kan bepaalde doelen hebben welke hij moet bereiken. Hiervoor zou men kwalitatieve Goals kunnen gebruiken. Hier zijn bulldozers en vliegtuigen de (controlleerbare) autonome agenten. Een andere mogelijkheid is om een kwantitatief belonings signaal te geven om een actie van de agent te beoordelen. Soms kan het lastig zijn om te abstraheren van de werkelijkheid: we willen niet alle details opIn de Logica gebruikt men meestal Goals en in nemen, maar wel een realistische interactie tusdecision theory meestal utilities of beloningssig- sen agent en omgeving modelleren. nalen. Vraag: Welke entiteiten spelen een rol in het exploiteren van een restaurant? Wat zijn de agenten? Het doel van de agent is om zijn som van beloningen verkregen in de toekomst te maximaliseren door het gebruik van een bepaalde policy: ∞ X Een voorbeeld: de bekende kachel γ t Rt Beschouw een kachel welke ervoor moet zorgen dat de kamertemperatuur gereguleerd wordt. t=0 Hier is 0 ≤ γ ≤ 1 de discount factor welke bepaalt in hoeverre lange termijn beloningen mee moeten tellen. De kachel heeft een thermometer om de kamertemperatuur op te meten. Dit is de input van het systeem. De kachel heeft de acties: Verwarm of doe niets. Intelligente agenten De temperatuur van de kamer daalt als de kachel uitstaat en wordt hoger als de kachel aanstaat. Een intelligente agent kan waarnemen (d.m.v. sensoren), redeneren, voorspellen, en handelen (d.m.v. actuatoren). Model van de kachel (1) 2 WORTEL (ROOT) Kamer Kachel I(t) <= 21 Input I(t) > 21 en I(t) <= 23 I(t) > 23 Temperatuur VERWARM Actie DOE NIETS B(T) = VERWARM VERWARM B(T) = DOE NIETS DOE NIETS De gemodelleerde toestand van de omgeving S(t) U (∗, ∗, Doe niets) → Doe niets is de kamertemperatuur. Een simpele transitie regel voor de omgeving is De input I(t) van de kachel is in dit geval ook als volgt: de kamertemperatuur op tijdstip t. T (S(t), V erwarm) → S(t) + 0.1 Als interne toestand B(t) heeft de kachel enkel als waarden of de kachel reeds aanstond of uitstond (Verwarm of Doe niets). T (S(t), Doe niets) → S(t) − 0.05 De beloningsfunctie hebben we alleen nodig voor zelflerende systemen. We zouden deze kunnen instellen als: De acties van de kachel zijn: Verwarm, Doe niets. R(I, ∗, ∗) = −|I − 22| Policy van de kachel Dus het systeem krijgt steeds straf als de temperatuur van de 22 graden afwijkt. Het belangrijkste element is de policy, omdat deze de interactie met de omgeving bepaalt (en eventueel geoptimaliseerd moet worden). Dynamiek van de wisselwerking Als we de kachel laten interacteren met de omgeving met een bepaalde begintemperatuur van stel 15 graden, krijgen we een dynamiek van de volgende parameters: De constructie van een policy kan met de hand gebeuren, maar kan ook geleerd worden. We kunnen een policy voor de kachel maken, b.v. bestaande uit als-dan regels: • De toestand van de omgeving (1) If I(t) ≤ 21 Then Verwarm • De input van de kachel (in dit geval gelijk aan de toestand van de omgeving) (2) If I(t) > 21 and I(t) ≤ 23 and B(t) == Verwarm Then Verwarm • De actie van de kachel (3) If I(t) > 21 and I(t) ≤ 23 and B(t) == Doe niets Then Doe niets • De verkregen beloning (4) If I(t) > 23 Then Doe niets Voorbeeld: temperatuur Beslisbomen Omgevingen Deze policy kunnen we ook met behulp van een beslisboom laten zien: Er zijn vele verschillende omgevingen, deze kunnen gekarakteriseerd worden aan de hand van de volgende kenmerken: Model van de kachel (2) • Volledige info/partiële informatie. Ziet een agent de volledige toestand van een omgeving met zijn/haar sensoren, of slechts een gedeelte hiervan? De update functie voor de interne toestand van de kachel is simpel en ziet er als volgt uit: U (∗, ∗, V erwarm) → V erwarm 3 25 Volledige informatie 20 Schaken met klok Schaken zonder klok Poker Backgammon Taxi rijden Medische diagnose Beeld analyse Interactieve engelse leraar 10 5 10 30 50 Episodisch Statisch Discreet Omgeving Temperatuur 15 0 Deterministisch 70 90 110 130 Tijd Yes Yes No Yes No No Yes No Yes Yes No No No No Yes No No No No No No No Yes No Semi Yes Yes Yes No No Semi No • Deterministisch vs. Vraag: bedenk zelf een omgeving en bepaal de Niet-deterministisch. Wordt de volgen- karakteristieken van deze omgeving. de toestand van de omgeving uniek bepaald door de huidige toestand en de gekozen actie van de agent, of is er een kans- De interne toestand verdeling naar opvolgende toestanden? Dikwijls wordt er geen interne toestand gebruikt, deze reactieve agent mapt direct input op ac• Episodisch vs. Niet episodisch. Wordt tie. een agent steeds voor 1 losstaande keuze gesteld welke onafhankelijk is van volgen- In sommige gevallen krijgt de agent dezelfde inde acties, of zit de agent in een wereld put in verschillende states. Zijn optimale acties waarbij de hele sequentie van acties een kunnen dan niet van elkaar afwijken. In zulke gevallen, gebruiken we de interne toestand om rol speelt. de huidige input te disambigueren. • Statisch vs. Dynamisch. Verandert de wereld tijdens het handelsproces, of niet. Als de overgangen tussen toestanden veranderen, dan is de omgeving dynamisch en speelt tijd een rol. Als de prestatie maat (belonings functie) verandert heet de omgeving semi-dynamisch. De interne toestand vat het verleden samen, alle vorige inputs en acties kunnen de huidige interne toestand bepalen. Als de actie veel van de interne toestand en weinig van de input afhangt, kunnen we spreken van een “introverte” agent. In het geval van psychoses, gaat de interne toe• Discreet vs. Continu. Is de toestand stand zijn eigen weg en kan het geloof erin door van de wereld discreet gerepresenteerd (vb. nieuwe inputs en acties moeilijk weerlegd worschaken) of niet, v.b. robot in continue den. omgeving met snelheid, x en y positie etc. Vraag: Hoe verandert de yogi zijn interne toestand met meditatie? Partiële informatie, niet-deterministische, niet episodische, dynamische, continue omgevingen zijn het moeilijkst voor de optimalisatie van agen- Multi-agent systemen ten. Als er meerdere agenten zijn, spreken we van Simulatie kan altijd, maar een goed voorspellend een multi-agent systeem (MAS). model is soms weer heel moeilijk te maken (vb. Hoewel het hele systeem in veel gevallen ook met weersvoorspelling). 1 superagent gemodelleerd kan worden, heeft De complexiteit van het gedrag van een agent het opsplitsen van het systeem in meerdere gehangt vaak af van de complexiteit van de omge- decentraliseerde agenten bepaalde voordelen: ving (vb. Simon’s Ant). • Robuustheid • Snelheid (Distributed computing) Voorbeelden van omgevingen 4 Yes Yes Yes Yes No No No Yes • Eenvoudigere uitbreidbaarheid of verandering • Bosbranden bestaande uit vele bomen die de brand doorpropageren • Information hiding (privacy) • Infectie ziekten bestaande uit virussen en virusdragers • Magnetisme bestaande uit deeltjes welke positief of negatief geladen kunnen zijn Model van een multi-agent systeem Als we te maken hebben met een multi-agent systeem, kunnen we de enkele agenten modelleren als hiervoor (met inputs, acties, interne toestand, policy, beloningsfunctie, update functie) • Ecologieen bestaande uit vele soorten dieren welke elkaar opeten en nakomelingen produceren. • Economische markten welke bestaan uit vele verschillende beleggers In sommige gevallen wordt het systeem ook uitgebreid met communicatie tussen agenten. De agenten hebben dan de beschikking over com- Vraag: welke van deze processen kunnen beter municatie signalen (een taal) en mappen inputs met MAS gemodelleerd worden? en interne toestand op een communicatie signaal. Predator-prooi systeem Zo’n communicatie signaal kan aan alle agenten worden gestuurd (broadcasting), maar ook naar Een simpel voorbeeld van een systeem bestaaneen enkele agent. de uit meerdere entiteiten is een predator-prey systeem. Communicatie is van belang als de agenten moeten coopereren. De agenten moeten dan op een De predator gaat op zoek naar prey (prooi) om bepaalde manier gecoordineerd worden. op te eten en plant zich voort. De prooi gaat zelf ook op zoek naar voedsel, probeert de predator te ontwijken, en plant zich voort. Complexe Adaptieve Systemen Bepaalde systemen bestaande uit meerdere entiteiten worden in sommige gevallen complexe adaptieve systemen genoemd. De populatie van prooien en predatoren hangen van elkaar af. Als er veel predatoren zijn, daalt de populatie prooien. Het verschil met multi-agent systemen is dat het niet zozeer gaat om de controle en optimalisatie van een systeem, maar meer om simulatie. Entiteiten worden hier vaak als niet rationeel verondersteld. Als er dan weinig prooien meer zijn, daalt de populatie predatoren. Als er weinig predatoren meer zijn, groeit de populatie prooien. In complexe adaptieve systemen kunnen simpele regels een complex gedrag genereren als er meerdere entiteiten met elkaar kunnen interacteren. Lotka-Volterra vergelijkingen We zeggen dan dat de totale dynamiek emergeert uit de wisselwerking tussen de entiteiten en de omgeving. We kunnen zo’n systeem vatten m.b.v. bepaalde regels. Een bekend model is het gebruik van Lotka-Volterra vergelijkingen. We noemen de grootte van de populatie prooien x en de de grootte van de populatie predatoren y. Vervolg Complexe adaptieve systemen Voorbeelden van processen die we met complexe adaptieve systemen kunnen modelleren zijn: Nu stellen we als toestand S(t) = (x(t), y(t)) met: • Het verkeer bestaande uit vele weggebruikers x(t + 1) = x(t) + Ax(t) − Bx(t)y(t) 5 Een systeem is chaotisch als het niet in een stabiel punt terecht komt, en er ook geen periodieke cykels zijn. Het systeem herhaalt zich dan nooit. y(t + 1) = y(t) − Cy(t) + Dx(t)y(t) Voorbeelden dynamiek: Het is vaak moeilijk te detecteren of een systeem echt chaotisch is, de cykel zou erg lang kunnen zijn! Vraag: denk je dat chaos in een computerprogramma mogelijk is? Inhoud van dit vak We gaan de volgende onderwerpen behandelen in de vervolg colleges: Vraag: Teken de dynamiek op de x- en y-assen • Cellulaire Automaten Stabiel punt • Artificial Life De dynamiek kan leiden tot een stabiel punt, periodisch zichzelf herhalen, of chaotisch zijn (altijd veranderlijk) • Biologische Adaptieve Systemen Voor een stabiel punt is het van belang dat alles gelijk blijft. Dus x(t+1) = x(t) en y(t+1) = y(t) • Robotica • Co-evolutie • Evolutionary Computation (2 colleges) We kunnen een stabiel punt (x(∗), y(∗)) vinden door de vergelijkingen: • Lerende Machines 1. Decision Trees x(∗) = x(∗) + Ax(∗) − Bx(∗)y(∗) 0 = A − By(∗) A y(∗) = B (1) (2) 2. Bayesian Learning (3) 4. Self-organizing maps 3. Neurale Netwerken • Reinforcement leren (3 colleges) y(∗) 0 x(∗) = y(∗) − Cy(∗) + Dx(∗)y(∗) (4) = −C + Dx(∗) C = D (5) Praktische Informatie (6) De toetsing van het vak bestaat uit: • 2 Deeltentamens (beide 40% van het eindcijfer) Periodieke cykels In bepaalde gevallen treedt er een herhaling op in een systeem. We spreken dan van een periodieke cykel. • Inlever opgaven (20% van het eindcijfer) • Practicum opdrachten (Verplichte voldoende) We hebben te maken met een periodieke cykel van lengte n als: De inlever opgaven dienen binnen een week nadat de opgaven verspreid zijn, ingeleverd te worden. S(t) = S(t + n) S(t + 1) = S(t + n + 1) Een aantal van de prakticum opgaven zijn op te halen van het lokweb (www.ou.nl/lokweb). . . . S(t + n − 1) = S(t + 2n − 1) 6 Conclusie We hebben inzicht opgedaan in adaptieve systemen welke interacteren met een omgeving. Adaptieve systemen kunnen goed gemodelleerd worden d.m.v. agenten met policies en een interne toestand. Als er meerdere agenten zijn, spreken we van multi-agent systemen (MAS). De agenten in een MAS kunnen dikwijls met elkaar communiceren. Veel natuurlijke processen kunnen gemodelleerd worden met multi-agent systemen (optimalisatie) of complexe adaptieve systemen (simulatie). De dynamiek van een systeem resulteert uit de begintoestand en de regels welke de nieuwe toestand bepalen. De dynamiek kan leiden naar een stabiel punt, kan periodiek gedrag vertonen of chaotisch zijn. 7 Reinforcement Leren Marco A. Wiering (marco@cs.uu.nl) Intelligent Systems Group Institute of Computing and Computing Sciences Universiteit Utrecht Samenvatting Dit korte overzichtsartikel beschrijft reinforcement leren als methode om agenten mee te leren controleren. Allereerst wordt de theoretische achtergrond van optimale controle theorie besproken. Vervolgens worden de principes van reinforcement−leer algoritmen en de belangrijkste 3 algoritmen beschreven. Tenslotte wordt kort ingegaan hoe RL algoritmen uitgebreid kunnen worden met exploratie technieken en functie approximatoren om het voor meer praktische problemen te gebruiken. 1 Introductie Reinforcement leren (RL) stelt een agent in staat om te leren van zijn eigen ervaringen. De betekenis van reinforcement leren is "versterkings leren". Dat houdt in dat als de agent iets doet waarvoor die beloning krijgt, de agent dat gedrag daarna vaker zal uitproberen. Het doel van een agent is om zo veel mogelijk beloning over de lange termijn te vergaren. Hiervoor moet de agent verschillende gedragingen uitproberen en evalueren. Door het leren van het uitproberen van verschillende acties, kan de agent op een gegeven moment leren welk gedrag optimaal is. Hiervoor worden waarde−functies gebruikt welke weergeven hoe goed het is voor de agent om zich in een bepaalde toestand van de wereld te bevinden en hoe goed het is om dan een bepaalde actie te verrichten. Figuur 1 illustreert de interactie van een RL agent met zijn omgeving. De agent krijgt inputs van de omgeving binnen en selecteert daarmee zijn actie. Na het verrichten van zijn actie krijgt de agent een belonings signaal en maakt de agent een stap naar een nieuwe toestand in de wereld. Omgeving Beloning Input Actie Agent Figuur 1: Een RL agent die interacteert met zijn omgeving Reinforcement leren is een groeiend onderzoeksveld. Zo is het al gebruikt om het spel Backgammon mee te leren (Tesauro, 92). In het begin werd hiervoor een neuraal netwerk random geinitialiseerd en dit netwerk werd gebruikt als evaluatie functie voor bordposities. Aanvankelijk speelde het netwerk dus willekeurige zetten. Na elke gespeelde partij werd de evaluatie functie bijgesteld door middel van een RL algoritme. Na het spelen van ruim 1 miljoen partijen tegen zichzelf, hetgeen in 1992 drie maanden kostte op een RS6000 computer, was het programma zo goed geworden dat deze zich tot de beste spelers van de wereld mocht rekenen. Reinforcement leren is ook gebruikt om robots te controlleren, om te leren schaken, om liften in een gesimuleerd gebouw te controlleren, voor verkeerslicht controle, etc. De theorie van reinforcement leren gaat terug naar de theorie om systemen optimaal te controlleren in een bekende omgeving. Deze theorie van "optimale controle" hield zich bezig met dynamisch programmeren om gegeven een probleem specificatie een optimale oplossing te berekenen. Het interessante van reinforcement leren is dat de omgeving initieel geheel onbekend kan zijn, en de agent zelf de effecten van zijn acties moet leren en ook moet leren wat het doel is in deze omgeving. Een RL agent zal dus in het begin willekeurige acties uitvoeren om informatie mee te vergaren. Als de agent een keer beloning krijgt, kan deze natuurlijk het gedrag herhalen dat tot de beloning leidde, maar dat heeft weinig zin om bepaalde redenen: (1) De omgeving is meestal stochastisch dus een herhaling van gekozen acties hoeft niet altijd tot het bereiken van het doel te leiden; (2) De agent wil een optimale controller te leren en initiele "trials" die tot het doel leiden zijn meestal verreweg van optimaal. Dus moet de agent exploreren om ook andere acties uit te proberen. De theorie van reinforcement leren vertelt ons dat een agent uiteindelijk optimaal zal worden als aan een aantal condities voldaan is. Uiteindelijk betekent hier dat de agent alle acties in alle toestanden oneindig vaak moet hebben uitgeprobeerd. Hoewel dat voor praktische toepassingen dus onmogelijk is, kan er vaak na een eindig aantal "trials" al gestopt worden, en is de controller meestal al vrij goed. Langer uitproberen kan de agent wel verbeteren, maar een optimale oplossing kan nooit gegarandeerd worden in eindige tijd. Dit heeft te maken met de stochasticiteit in de omgeving. De agent zal namelijk nooit de kansen precies kennen van de echte transitie functie: wat is de kans dat de agent zich na het uitvoeren van een bepaalde actie in een bepaalde toestand in een nieuwe toestand bevindt? Als deze kans bijvoorbeeld 0.543 is, en de agent probeert deze actie 1000 keer uit, dan kan de voorspelde kans bijvoorbeeld 0.527 zijn, maar precies weet de agent het nooit. In sommige gevallen is het noodzakelijk om alle overgangskansen precies te kennen om het optimale gedrag te leren en dit kost nu eenmaal oneindig veel tijd. Toch laten allerlei onderzoeken zien dat het goed mogelijk is om een agent na eindige tijd te stoppen. In de meeste gevallen is dan een goede of bijna optimale oplossing gevonden. In dit korte overzichtsartikel zullen we allereerst de modellering van het probleem aan de hand van Markov decision problems (MDPs) bespreken en ingaan hoe we met dynamisch programmeer algoritmen hiervoor optimale oplossingen kunnen berekenen. Vervolgens komt in Hoofdstuk 3 reinforcement leren aan de orde. Hier worden de principes van reinforcement−leer (RL) algoritmen besproken en worden drie verschillende algoritmen beschreven. In Hoofdstuk 4 wordt kort beschreven hoe de agent kan exploreren om de hele toestandsruimte te doorlopen en hoe de agent m.b.v. functie approximatoren waardefuncties voor zeer grote of continue toestandsruimtes kan leren. Hoofdstuk 5 concludeert dit overzicht. 2 Dynamisch Programmeren Dynamisch programmeren wordt gebruikt voor verschillende toepassingen zoals in vision, bio−informatica, en optimale controle theorie. De toepassing is meestal om door herhaalde updates van een bepaalde functie over een toestandstuimte, een resulterende (optimale) functie te vinden. We zullen hier allereerst ingaan op de modellering van het controle probleem waarin wij geinteresseerd zijn. 2.1 Markov Decision Problems Markov decision problems (MDPs) zijn problemen welke bestaan uit een aantal discrete toestanden, een aantal acties welke in de verschillende toestanden verricht kunnen worden, een transitiefunctie welke aangeeft naar welke toestand de wereld zal gaan als de agent een bepaalde actie in een toestand zal uitvoeren, en een beloningsfunctie welke aangeeft hoeveel beloning de agent krijgt als deze een actie uitvoert in een bepaalde toestand. Meer formeel bestaat een MDP uit: 1) Een verzameling mogelijke toestanden van de wereld: S = {s1 , s2 , ...., sN} 2) Een verzameling acties welke uitgevoerd kunnen worden: A = {a1, a2, ... aM} 3) Een transitiefunctie welke de kans aangeeft om naar een nieuwe toestand s(t+1) te gaan na het uitvoeren van actie a(t) in toestand s(t). Deze kans wordt genoteerd als: P(s(t), a(t), s(t+1)). Deze transitiefunctie moet voor alle acties in alle toestanden gespecificeerd worden en is gewoonlijk stationair (onafhankelijk van de tijd). 4) Een beloningsfunctie welke aangeeft hoe veel beloning r(t) de agent krijgt voor het uitvoeren van actie a(t) in toestand s(t) waarna de agent een stap maakt naar toestand s(t+1). Deze beloningsfunctie wordt genoteerd als R(s(t), a(t), s(t+1)). 5) Een discountfactor γ welke onmiddelijke beloningen afweegt tegen beloningen die later worden ontvangen. Dit zorgt er b.v. voor dat een agent liever zo snel mogelijk een schaakwedstrijd wint in plaats van te winnen na een groot aantal zetten. 6) Een tijdsindicator t = {1, 2, ....., T} waarin T ook oneindig kan zijn. De bedoeling is nu dat de agent een reeks acties executeert welke zijn behaalde gedisconteerde som van beloningen maximaliseert. De agent gebruikt zijn policy− functie π(.) om toestanden op acties te mappen: a(t) = π(s(t)) In het begin is de optimale policy onbekend. Het doel is nu om de policy te vinden die de volgende functie maximaliseert: π*(.) = arg max E(Σt γt R(s(t), π(s(t)), s(t+1))) π(.) Hier wordt dus gekeken naar alle mogelijke policy−functies en wordt bekeken hoeveel "discounted" beloning de agent gemiddeld ontvangt door het volgen van een bepaalde policy. De E−operator is hier een verwachtings operator welke het gemiddelde van alle mogelijke trajecten in de toestandsruimte bepaalt. De hoeveelheid beloning is de (gedisconteerde) som van alle beloningen verkegen tijdens alle toekomstige stapjes (acties). Het moge duidelijk zijn dat we deze optimale policy niet zo maar kunnen berekenen. We zouden de verwachte beloningssom van alle mogelijke policies wel kunnen uitrekenen, maar er zijn een exponentieel aantal policies. Het aantal policies is namelijk MN waarbij M het aantal mogelijke acties van de agent is, en N het aantal mogelijke toestanden. 2.2 Dynamisch Programmeren We kunnen de optimale policy berekenen met behulp van dynamisch programmeer algoritmen. Allereerst voeren we twee waardefuncties in: een toestand waardefunctie V(s) welke aangeeft hoeveel de som van de toekomstige beloningen wordt als de agent zich in toestand s bevindt en policy π gebruikt wordt om acties te selecteren. Ten tweede gebruiken we een actie−selectie waardefunctie Q(s,a) welke aangeeft hoe groot de verwachte som van de toekomstige beloningen wordt als de agent in toestand s zit en actie a selecteert, waarna de agent met policy π verder gaat. Deze functies dienen ervoor om verschillende policies met elkaar te vergelijken en kunnen recursief berekend worden. We willen allereerst dus dat V(s) de volgende waarde aanneemt: V(s) = E(Σt γt R(s(t), π(s(t)), s(t+1)) | s(0) = s) Of te wel de gedisconteerde som van toekomstige beloningen. Nu kunnen we gebruik maken van een lokale vergelijking om Q(s,a) te bepalen. We constateren dat de waarde van een actie in een toestand gelijk moet zijn aan de onmiddelijk ontvangen beloning plus de som van de beloningen die vanuit de nieuwe toestand wordt verkregen. Verder is er een kansverdeling om naar opvolgende toestanden te gaan. Met deze kennis kunnen we Q(s,a) dus als volgt bepalen: Q(s,a) = Σs’ P(s,a,s’) ( R(s,a,s’) + γ V(s’)) Hiermee kunnen we dus Q bepalen als we V kennen. V kennen we nog niet, maar we kunnen V recursief uitdrukken in een vergelijking over de Q−waarden van de verschillende acties. De waarde van een toestand is namelijk gelijk aan de Q−waarde van de beste actie in die toestand. Dit houdt dus in dat we V als volgt kunnen bepalen: V(s) = Maxa Q(s,a) Tenslotte kunnen we de policy bepalen als we de Q−waarden van de verschillende acties weten. De beste actie in een toestand is namelijk de actie met de hoogste Q− waarde in die toestand: π(s) = Arg Maxa Q(s,a) Nu hebben we dus drie formules om V, Q, en π te bepalen. Ze zijn echter allemaal van elkaar afhankelijk: als we de waarde van een toestand niet weten, kunnen we ook de waarde van een actie in een toestand, die een kans heeft om naar de nog niet geevalueerde toestand te gaan, nog niet bepalen. Dit lossen we op door recursief te itereren. De Bellman vergelijking (Bellman, 57) vertelt ons dat de optimale Q* en V* waarden aan de volgende vergelijking moeten voldoen: Q*(s,a) = Σs’ P(s,a,s’) ( R(s,a,s’) + γ V*(s’)), waarbij V* opnieuw uitgedrukt kan worden in termen van Q: V*(s) = Maxa Q*(s,a) Dit betekent dus dat er een fixed point is in de waardefunctie ruimte. Als we eenmaal de optimale Q* en V* functie hebben gevonden, maakt dooritereren niets meer uit: alles blijft dan gelijk. Ter illustratie Figuren 2a en 2b: hier worden de optimale policy en waardefunctie afgebeeld voor een klein doolhof probleem waarbij elke stap 1 punt kost en het bereiken van het doel met 10 punten beloond wordt. Merk op dat er maar 1 optimale V−functie bestaat, maar meerdere optimale policies (sommige toestanden hebben meerdere mogelijke optimale acties). G 5 6 6 7 5 6 4 Figuur 2a: De optimale policy in een doolhof 10 8 9 8 6 7 Figuur 2b: De optimale waarde functie in deze doolhof Hoe kunnen we deze optimale policy en waardefuncties nu berekenen? We beginnen met een initiele Q− en V−functie en itereren totdat er niets meer verandert. Dit wordt bijvoorbeeld gedaan door het Value Iteratie algoritme: 1) Initialiseer V(s) en Q(s,a) voor alle toestanden s en acties a. Meestal wordt hier V(s) = 0 en Q(s,a) = 0 voor alle toestanden en acties. 2) Herhaal stappen 3−5 totdat de waarde−functie niet of nauwelijks meer verandert. 3) Update de Q−functie voor alle toestanden en acties m.b.v. de volgende vergelijking: Q(s,a) = Σs’ P(s,a,s’) ( R(s,a,s’) + γ V(s’)) 4) Pas de V−functie aan: V(s) = Maxa Q(s,a) 5) Pas de policy aan: π(s) = Arg Maxa Q(s,a) Dit algoritme geeft de optimale Q*, V*, en policy terug, hoewel je hiervoor oneindig vaak moet dooritereren. Meestal wordt met de iteratie gestopt als de waarde−functie V nauwelijks meer verandert; dus als |Vt+1(s) − Vt(s)| < ε, voor alle toestanden s, waarbij ε een kleine waarde heeft. Als we dat doen, verkrijgen we een sub−optimale oplossing welke beter is naarmate ε kleiner is. 2.3 Dynamisch Programmeren als Tool voor Planning Als het model met transitiekansen en beloningen a−priori gegeven is, kan met behulp van dynamisch programmeer algoritmen de optimale oplossing berekend worden. Voor Pad−plannings problemen is dit vaak veel efficienter dan het gebruik van conventionele padplanners zoals Breadth of Depth first search. In principe lijkt het algoritme wel wat op A* of Dijkstra’s korste pad algoritme, maar deze standaard algoritmen kunnen niet met kansverdeling omgaan of met positieve beloningen (negatieve kosten), hetgeen DP algoritmen algemener bruikbaar maakt. Een voordeel van DP is dat alle informatie om een actie te selecteren in de policy zit. Dus als de Q− en V−functies nauwkeurig zijn hoeft er tijdens de executie van een agent niets meer geplanned te worden; de agent kan reactief in een toestand een actie selecteren en executeren. Er is dus een trade−off tussen de nauwkeurigheid van de waardefuncties en een mogelijke planning of lookahead strategie waarin gekeken wordt welke reeksen van acties ondernomen kunnen worden. Een goed voorbeeld om dit onderscheid duidelijk te maken is een spelprogramma zoals een schaakprogramma. Een schaakprogramma bestaat uit een evaluatie functie en een methode om zetten vooruit te rekenen. Als de evaluatie functie perfect is, is er geen noodzaak om dieper dan 1 zet te rekenen. Voor schaakprogramma’s is het echter vrijwel onmogelijk om een perfecte evaluatie functie te hebben vanwege het enorme aantal toestanden, lookahead blijft hiervoor dus noodzakelijk. Voor bepaalde problemen als pad− planning of navigatie in stationaire werelden is lookahead echter niet noodzakelijk en kunnen we dus een snelle reactieve agent gebruiken. Helaas is DP alleen mogelijk als het model a−priori gegeven is. Als dit niet het geval is, moeten reinforcement−leer algoritmen toegepast worden. Dit wordt besproken in het volgende hoofdstuk. 3 Reinforcement Leren Reinforcement leren (Kaelbling et al, 96; Sutton en Barto, 98) stelt een agent in staat te leren van zijn interactie met een omgeving. Initieel wordt de agent in een startpositie gezet en weet de agent niets over de overgangskansen en beloningen. Merk dus op dat de agent geen initieel doel kent; het enige dat de agent wil is zijn som van toekomstige beloningen maximaliseren, maar hoe hij dit moet doen moet hij zelf leren. Nadat een trial is begonnen, verkrijgt de agent na elke actie informatie om van te leren (we gaan allereerst weer uit van een discrete toestand/actie ruimte): Agent zit in toestand s(t) Agent selecteert actie a(t) = π(s(t)) Agent executeert actie en gaat naar toestand s(t+1) en vergaart beloning r(t) Agent maakt een aanpassing van zijn waarde−functies m.b.v. de informatie (s(t), a(t), s(t+1), r(t)) Als nu een RL algoritme gebruikt wordt, leert de agent steeds beter om acties te selecteren welke hem een hoge lange termijn som aan beloningen geven. Voor de aanpassing van de waarde functies bestaan er 3 conventionele RL algoritmen: (1) Q− leren, (2) Monte Carlo Sampling en (3) Model−gebaseerde RL. We zullen ze alle 3 bespreken. 3.1 Q−leren Q−leren (Watkins, 89) past 1 Q−waarde aan na elke stap. Nadat een stap gemaakt is en de informatie (s(t), a(t), s(t+1), r(t)) bekend is, maakt Q−leren de volgende leerstap: Q(s(t), a(t)) = (1 − α) Q(s(t), a(t)) + α (r(t) + γ V(s(t+1))) Hierin is α de leersnelheid welke een waarde tussen 0.0 en 1.0 heeft. In principe verschuift de Q−leerregel de Q−functie na elk stapje een beetje om met de laatste ervaring (stap) rekening te houden. Merk op hoe dicht de Q−leerregel bij DP algortimen staat: de kansverdeling is vervangen door een leersnelhied. Als α langzaamaan afneemt zodat aan bepaalde eisen voldaan is, convergeert de Q−functie met Q−leren naar de optimale Q*−functie als alle toestanden/actie paren oneindig vaak uitgeprobeerd worden. Q−leren is onder andere gebruikt om liften mee te controleren in een gesimuleerd gebouw. Hiervoor werd Q−leren gecombineerd met neurale netwerken (Crites and Barto, 96). Het resulterende algoritme was in staat om 4 liften beter te controlleren dan conventionele controllers en kan daarmee de totale wachttijd met 15% reduceren. Q−leren leert steeds maar 1−stapje terug; de updates die van een doellokatie naar een beginlokatie gaan worden dus maar langzaam verricht. Stel bijvoorbeeld dat een agent moet leren dat er honderd passen rechts een doellokatie is. De eerste trial beweegt de agent zich random (hij heeft immers nog niets geleerd). Als de doellokatie nu gevonden wordt, en de agent daarvoor beloning krijgt, wordt enkel de laatste stap geupdated door de uiteindelijke positieve beloning. Dit zorgt soms dus voor een lang leerproces. Manieren om dit leren te versnellen zijn om gebruik te maken van Q(λ) leren (Peng and Williams, 96). We zullen daar nu niet verder op ingaan. 3.2 Monte Carlo Sampling Monte Carlo sampling wordt gebruikt voor verschillende sampling methoden. In principe berust deze methode op het genereren van uitkomsten en het middelen van deze uitkomsten om een schatting te krijgen van de echte waarde (of kans op iets). Monte Carlo sampling werkt als volgt; de agent maakt een trial en stelt het leren uit (het is dus een off−line lerende agent). Tijdens de trial houdt de agent precies bij welke toestanden deze heeft gezien, welke actie hij daarin heeft verricht en hoeveel beloning hij heeft gekregen. Nadat de trial van de agent afgelopen is, wordt allereerst een cumulatieve reinforcement signaal berekend voor elk tijdstip tot het einde van de trial: R(t) = Σi=t γi−t r(i) Vervolgens worden alle voorgekomen (s(t), a(t)) paren geupdated m.b.v.: Q(s(t), a(t)) = (1 − α) Q(s(t), a(t)) + α R(t) Er wordt hierbij dus een verschuiving gemaakt van de Q−functie naar de bepaalde som van beloningen in de trial. Er valt nog onderscheid te maken tussen first−visit en every−visit Monte Carlo methoden. De first−visit methode maakt 1 update (alleen voor de allereerst voorkomende (s, a) paar en de every−visit methode maakt een update voor alle keren dat (s, a) is voorgekomen in een trial. Als we een waar gemiddelde als uitkomst willen hebben (we berekenen dan het gemiddelde van alle trials waarin (s, a) voorkwam) dan kunnen we dan doen door de leersnelheid als volgt te laten afnemen: α = 1 / Ν(s,a) Waarin N(s,a) het aantal keren is dat paar (s,a) is geupdated. Monte Carlo sampling heeft als voordeel dat de hele toekomst wordt gebruikt om te updaten. Het lijkt daarom wellicht dat Monte Carlo sampling sneller naar de optimale Q−functie zal convergeren dan Q−leren. Dit is echter vaak niet het geval, de variantie van de updates wordt namelijk veel groter. Hoewel Monte Carlo sampling geen bias heeft (de huidige Q−functie wordt helemaal niet gebruikt) is de variantie erg hoog. De variantie is erg hoog omdat de hele stochastische toekomst gebruikt wordt in de update, en deze toekomst kan veel verschillende uitkomsten genereren. Aangezien de fout van de Q− functie opgesplitst moet worden in de bias en variantie, kan het zo zijn dat Monte Carlo sampling een hoge fout in zijn huidige schatting heeft door de hoge variantie in de updates. Een andere probleem is dat exploratie acties een grote verstorende rol kunnen hebben in Monte Carlo sampling. Exploratie is nodig (zie ook het volgende hoofdstuk) om de optimale Q−functie te kunnen leren, maar veel exploratie met Monte Carlo sampling zorgt voor een door de exploratie gebiasde feedback. Aangezien door exploratie soms slechte of sub−optimale acties geselecteerd worden, kan de verkregen som van beloningen soms veel lager uitvallen dan wat de huidige beste policy zou hebben verkregen. Q−leren heeft hier geen last van en wordt ook wel off−policy leren genoemd: bij Q−leren wordt altijd enkel de Q−functie aangepast op de direct gekozen actie en hebben exploratie acties geen verstorende invloed. 3.3 Model−gebaseerd Reinforcement Leren Het derde en laatste reinforcement−leer algoritme is gebaseerd op het gebruik van een model. Dit model schat de transitie kansen en beloningen op de transities en gebruikt vervolgens dynamisch programmeer−achtige algoritmen om de waarde− functies te updaten. Dit zorgt vaak voor een leeralgortime welke veel minder ervaringen nodig heeft om een goede of de optimale Q−functie te leren. Het algoritme vereist echter wel dat de transitiefunctie wordt opgeslagen, dus is de ruimte− complexiteit van het leeralgoritme hoger dan bij Q−leren of Monte Carlo sampling. In model gebaseerd reinforcement leren gebruiken we een aantal tellers om de transitie en beloningsfunctie te schatten uit de verkregen ervaringen van de agent. Hiervoor introduceren we de volgende tellers: C(s, a) C(s, a, s’) = aantal keren dat actie a in toestand s is verricht. = aantal keren dat actie a in toestand s is verricht en de agent een stap heeft gemaakt naar toestand s’. RT(s, a, s’) = som van onmiddelijke beloningen nadat actie a in toestand s is verricht en er een stapje werd gemaakt naar toestand s’. Uit deze tellers (welke real numbers kunnen zijn), kunnen we de transitie− en beloningsfunctie als volgt schatten: P’(s, a, s’) = C(s, a, s’) / C(s, a) en R’(s, a, s’) = RT(s, a, s’) / C(s, a, s’) Na het aanpassen van de transitie− en beloningsfunctie na elk stapje kunnen we dynamisch programmeer algoritmen (value iteratie) gebruiken om direct een nieuwe waarde functie te berekenen. Dit is echter erg traag, omdat de hele Q−functie opnieuw berekend gaat worden op basis van 1 verandering van het model. Om hier versnelling in aan te brengen zijn er 2 algoritmen bedacht: real−time dynamisch programmeren en Prioritized Sweeping (Moore and Atkeson, 93). Real− time dynamisch programmeren past de Q−functie in een beperkt aantal iteraties (b.v. 1 of 5) aan zodat elke update niet te lang gaat duren. Prioritized Sweeping (PS) bekijkt welke Q−waarden aangetast worden door de laatste update en past enkel deze waarden aan. In principe werkt PS net als een nieuwsflits, als er ergens in een gebied een waarde geupdated wordt, worden enkel naburige toestanden opnieuw geupdated. Dit zorgt voor een heel snel algoritme om de noodzakelijke updates door te voeren voor de grootste aangetaste Q−waarden en andere Q−waarden niet te updaten. Experimenten hebben aangetoond dat PS veel sneller dan Q−leren of Monte Carlo sampling een goede schatting van de optimale Q−functie kan leren. Model− gebaseerde RL kan echter alleen gebruikt worden als de toestandsruimte goed gediscretiseerd kan worden en niet te groot is. 4 RL in de Praktijk We hebben nu gezien hoe drie verschillende RL−algoritmen eruit zien. In de praktijk combineren we deze technieken met enkele andere methoden om een goed werkend syteem te verkijgen. De eerste methode is het gebruik van exploratie om de optimale Q−functie te leren, de tweede methode maakt gebruik van functie approximatoren voor het omgaan met grote of continue toestand/actie ruimtes. 4.1 Exploratie Als we steeds acties selecteren met behulp van de huidige greedy policy π(.) verkrijgen we meestal een lokaal optimum terug. Het kan namelijk zo zijn dat de Q−waarden van de huidige policy hoger zijn dan de Q−waarden van alternatieve acties waardoor deze nooit uitgeprobeerd worden. Het doel van exploratie is dus om van tijd tot tijd alternatieve acties te selecteren om zo op zoek te gaan naar de optimale policy. De meest eenvoudige exploratie methode is de Max−random methode. Hierin wordt de huidige beste actie gekozen met kans (1 − ε) en een alternatieve random actie met kans ε. Als de exploratie−rate ε langzaam naar 0 gaat, worden er steeds meer acties verricht volgens de greedy policy, terwijl er aan het begin veel geexploreerd wordt. De Max−random exploratie methode wordt het vaakst gebruikt. Men kan ook gebruik maken van de Boltzmann exploratie methode welke kansen om een actie te selecteren gegeven de Q−functie als volgt bepaald: P(a(t) | s(t)) = exp(Q(s(t), a(t)) / τ) / Σ a exp(Q(s(t), a) / τ) Hierin is τ de (afnemende) temperatuur (als deze 0 is wordt de greedy actie geselecteerd, als deze oneindig is worden random acties geselecteerd). De twee bovengenoemde exploratie methoden zijn indirecte exploratie methoden; ze houden geen rekening met wat de agent al bezocht heeft of in welke toestanden de agent al veel informatie verzameld heeft. Directe exploratie methoden maken hier wel gebruik van. Zo kan de agent bijvoorbeeld steeds de actie selecteren welke het minst vaak geselecteerd is en als alle acties in alle toestanden een N aantal keer geselecteerd zijn, kan de agent meer greedy gedrag gaan vertonen. Voor model−gebaseerd leren bestaan er enkele efficiente directe exploratie algoritmen om de hele toestandstuimte te doorlopen (Wiering and Schmidhuber, 1998). Deze algoritmen kunnen het leren van een (bijna) optimale policy aanzienlijk versnellen. Onderzoek naar exploratie heeft ook duidelijk gemaakt dat optimistische waardefuncties welke de waarde van toestanden optimistisch bekijken (volgens een statistische methode) zeer goede exploratie methoden kunnen opleveren. 4.2 Functie Approximatie Als de toestandsruimte heel groot (b.v. door meerdere input dimensies) of continu is, dan is het vaak ondoenlijk om alle toestand/actie paren in een tabulaire representatie op te slaan. Daarom worden functie approximatoren in zulke gevallen gebruikt. Dit biedt de volgende voordelen: als een toestand nog nooit bezocht is, kan de functie approximator toch een Q−waarde voor die toestand hebben geleerd door gebruik te maken van generalisatie; daarom hoeft niet de hele toestandsruimte doorzocht te worden. Het leren kan dus veel sneller gaan met functie approximatoren, maar een nadeel is dat de functie approximator vaak problemen heeft om de exacte optimale waardefunctie op te slaan. Verder vergeet de functie approximator bepaalde toestandswaarden en kan de functie approximator soms overgeneraliseren zodat de preciese waarde van een toestand/actie paar niet goed geleerd wordt. Er zijn verschillende mogelijke functie approximatoren; (1) neurale netwerken worden veel gebruikt voor spelprogramma’s en ook wel voor robots; (2) CMACs worden gebruikt om eerst de toestandsruimte te discretiseren en op te splitsen in een verzameling discrete cellen, waarna de cellen de Q−waarde van een toestand bepalen. CMACs zijn onder andere gebruikt om gesimuleerd multi−agent voetbal mee te leren. (3) Verder worden self organizing netwerken, beslisbomen, locally weighted regression etc. gebruikt in combinatie met RL. Het gebruik van de combinatie van functie approximatoren en RL biedt geen grote problemen indien Q−leren of Monte Carlo sampling gebruikt wordt. In dit geval kan de functie approximator direct gebruikt worden om de updates mee te maken. In het geval van model−gebaseerd RL kunnen neurale netwerken niet goed gebruikt worden, omdat het leren van de transitie− en beloningsfunctie met een neuraal netwerk grote problemen oplevert; namelijk hoeveel outputs moet het netwerk hebben als de omgeving stochastisch is? Zelfs als dit een vaststaand gegeven aantal is, is de combinatie neurale−netwerken model−gebaseerde RL vaak erg traag en daarom vanwege efficientie redenen niet altijd goed toepasbaar. In (Kaelbling et al., 96) staat een overzicht van onderzoek naar het gebruik van functie approximatoren in combinatie met RL. 4.3 Toepassingen RL heeft veel verschillende toepassingen. Over het algemeen wordt het gebruikt voor controle of predictie, maar er zijn ook toepassingen van RL voor combinatorische optimalisatie problemen. Onder het laatste vallen onder andere de Ant Colony Systemen (Dorigo, 97). RL is al efficient toegepast om spelletjes te leren (schaken, dammen, backgammon) en biedt wellicht de meestbelovende methode om een spelletje te leren door een programma tegen zichzelf te laten spelen. Ook is RL gebruikt voor network routing (Littman and Boyan, 93), waarin een aantal pakketjes over een verbonden netwerk getransporteerd moeten worden (vergelijk internet routing systemen). De RL systemen kunnen vaak goed omgaan met de beschikbare resources of met veranderingen in de omgeving. RL is ook toegepast op lift controle (Crites and Barto, 96) en verkeerslicht controle (Wiering, 00). Voor verkeerslicht controle werd met RL geleerd wat de wachttijd van auto’s is als een bepaald verkeerslicht op rood en op groen staat. Elk auto heeft een bepaald voordeel als zijn licht nu op groen wordt gezet en dit voordeel is gelijk aan de wachttijd voor een rood licht min de wachttijd op een groen licht. Vervolgens werden de verkeerslichten op een kruising gezet om de winst ta maximaliseren. Er is nu een verkeerslicht simulator (http://www.sourceforge.net/project/stoplicht) waarmee men met verschillende lerende en statische verkeerslicht controllers kan experimenteren. De voorlopige resultaten tonen aan dat RL de doorstroming van het verkeer aanzienlijk kan verbeteren ten opzichte van vaste controllers. RL wordt ook gebruikt in combinatie met speltheorie om rationele agenten te leren welke bepaalde matrix spelen tegen elkaar spelen en van de uitkomst kunnen leren. Zo onderzochten Sandholm and Crites (1995) of RL agenten de tit−for−tat strategie in de Prisoner’s dilemma konden leren en dit bleek wel het geval te zijn. RL wordt ook gebruikt om robots mee te controleren, maar omdat RL veel trials nodig kan hebben, wordt vaak a−priori hand gegeven data gebruikt (joystick of programma) zodat het startpunt al vrij redelijk is en de agent niet heel veel moeite heeft om af en toe beloningen te vergaren. 5 Conclusie We hebben in dit korte overzichtsartikel beschreven hoe reinforcement leren werkt. Allereerst hebben we de theoretische achtergrond van optimale controle beschreven en dynamisch programmeren besproken. Dynamisch programmeer algoritmen gebruiken waarde functies voor toestanden en toestand/actie paren en kunnen hiermee een optimale policy berekenen als het model bekend is. Als het model onbekend is, dan kunnen we reinforcement leren (RL) gebruiken om door middel van interactie met de omgeving een policy te leren. Als RL met een tabulaire representatie gebruikt wordt, leert een agent onder bepaalde condities de optimale policy als alle toestanden oneindig vaak bezocht worden. Hoewel dit geen sterk theoretisch uitgangspunt is (oneindig lang exploreren is in realiteit onhaalbaar), leren de agenten vaak al na een relatief korte tijd een goede policy welke daarna langzaamaan beter wordt. We hebben ook de combinatie van RL met exploratie methoden en functie approximatoren kort besproken. Huidig onderzoek in RL bekijkt hoe het opschalen van problemen gedaan kan worden door nog efficientere RL methoden, en welke functie approximatoren geschikt zijn voor het oplossen van bepaalde problemen. Ook wordt RL steeds vaker gebruikt in lerende multi−agent systemen. Dat RL een interessant gebied is met vele mogelijke nieuwe toepassingen, zal ertoe leiden dat steeds meer mensen RL als methode gaan gebruiken voor het oplossen van een bepaald probleem. Referenties Bellman, 57: R. Bellman, Dynamic Programming. Princeton University Press, 1957. Crites and Barto, 96: R. Crites and A. Barto, Improving Elevator Performance using Reinforcement Learning. Advances in Neural Information Processing Systems 8, pp: 1017−1023, 1996. Dorigo, 97: M. Dorigo and L. Gambardella, Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. Evolutionary Computation 1(1), pp: 53−66, 1997. Kaelbling et al., 96: L. Kaelbling, M. Littman, and A. Moore, Reinforcement Learning: a Survey. Journal of Artificial Intelligence Research 4, pp: 257−285, 1996. Littman and Boyan, 93: M. Littman and J. Boyan, A Distributed Reinforcement Learning Scheme for Network Routing. First International Workshop on Applications of Neural Networks to Telecommunication, pp: 45−51, 1993. Moore and Atkeson, 93: A. Moore and C. Atkeson, Prioritized Sweeping: Reinforcement Learning with less Data and less Time. Machine Learning 13, pp: 103−130, 1993. Peng and Williams, 96: J. Peng and R. Williams, Incremental Multi−step Q−learning. Machine Learning 22, pp: 283−290, 1996. Sandholm, 95. T. Sandholm and R. Crites. On Multi−agent Q−learning in a Semi− Competitive Domain. IJCAI’95 workshop: Adaption and Learning in Multi−Agent Systems, pp: 164−176, 1995. Sutton and Barto, 98: R. Sutton and A. Barto, Reinforcement Learning: an Introduction. MIT Press, 1998. Tesauro, 92: G. Tesauro. Practical Issues in Temporal Difference Learning. Advances in Neural Information Processing Systems 4, pp: 259−266, 1992. Watkins, 89: C. Watkins. Learning from Delayed Rewards, PhD thesis, King’s College, Cambridge, England, 1989. Wiering and Schmidhuber, 98: M. Wiering and J. Schmidhuber, Efficient Model− based Exploration. Sixth International Conference on Simulation of Adaptive Behavior: From Animals to Animats 6, pp: 223−228, 1998. Wiering, 00: M. Wiering, Multi−agent Reinforcement Learning for Traffic Light Control. Seventeenth International Conference on Machine Learning, pp: 1151−1158, 2000.