ELE 312 Digital Electronics Textbooks
Transcription
ELE 312 Digital Electronics Textbooks
ELE 312 Digital Electronics Textbooks • DeMassa and Ciccone, Digital Integrated Circuits, John Wiley & Sons. • Taub and Schilling, Digital Integrated Electronics, McGraw-Hill 1 Contents • • • Basic Properties of Digital Integrated Circuits Diode Digital Circuits BJT Digital Circuits – Ebers & Moll equations – Transistor modelling – State of transistor in a circuit • • • • • • • • • Resistor-Transistor Logic (RTL) Diode-Transistor Logic (DTL) Transistor-Transistor Logic (TTL) Schottky Transistor – Transistor Logic (STTL) Different TTL Gates Emitter-Coupled Logic (ECL) MOS Digital Circuits NMOS Gates CMOS Gates Properties of Digital Integrated Circuits 2 Most important elements: Inverter and Noninverter Idealized Inverter and Voltage Transfer Characteristics( VTCs) 3 Propagation Delays Rise and fall times and turn-on and turn-off times 4 Power dissipation Logic Element Equivalent Circuit and Fan-out 5 Power - Delay Product: Speed-power product = (Average Power Diss) x (Propagation Delay) PD = PDISS(avg) x tP(avg) Diode Digital Circuits 6 Diodes Shockleys Eq I D = IS (e VD /VT − 1) for Forward Bias VD ≅ V0 = 0.7 V 7 IV Characteristics for PN Junction diodes for MN Schottky diodes SPICE model I′D = IS (e VD /VT − 1) 8 Basic Logic Gates: AND Basic Logic Gates: OR 9 Clamping Diodes Level shifting diodes Level Shifting Diode AND Gate Level Shifting Diode OR Gate 10 BJT Transistors BJT Fabrication Example 1 Multi-Emitter Fabrication Examples NPN BJT 2 Ebers-Moll NPN BJT Model I E = I D ,BE − α R I D ,BC I C = α F I D ,BE − I D ,BC IB = IE − IC I D ,BE = I ES (e VBE / VT − 1) I D ,BC = I CS (e VBC / VT − 1) Reciprocity theorem IS = α F I ES = α R I CS transport saturation current BJT Modes of Operation BE junction BC junction Mode Reverse Reverse Cutoff Forward Reverse Forward active (FA) Forward Forward Saturation (SAT) Reverse Forward Reverse active (RA) (OFF) 3 Reduced models of the operation modes βF = (a) Cutoff αF 1−αF (b) Forward active I C = σβ F I B σ ≤1 βR = (c) Saturation αR 1−αR (d) Reverse active IV Characteristics 4 Modes of Operation Examples βF = 65 IC, IB = ? Base and emitter voltages = ? 5 TTL Circuit Design Output-High Pull-up Driver Output-Low Pull-down Driver Discharge path and Base-Driving circuitry 6 Power Dissipation Example Resistor-Transistor Logic (RTL) 7 Voltage Transfer Characteritics (VTC) INVERTER VIL = VBE ( FA ) VIH = VBE (SAT ) + VCC − VCE (SAT ) β FR C RB NAND NOR 8 RTL Fan-out RTL fan-out analysis 9 RTL fan-out analysis Maximum fan-out? ⎢I ⎥ N = ⎢ OUT ⎥ ⎣ I IN ⎦ I OUT = I IN = VCC − VOUT RC VOUT − VBE (SAT ) RB VOUT = VIH VIH = VBE (SAT ) + VCC − VCE (SAT ) β FR C RB 10 RTL NONINVERTER 11 AND OR 12 RTL with Active Pull-up Fan-out of RTL with Active Pull-up Determined by the output high state as QS is cut-off for low-inputs Simplified output high state Simplified input high state 1 Simplified output-high fan-out configuration I OUT = I EP ≅ ⎢I ⎥ N = ⎢ OH ⎥ ⎣ I IH ⎦ I IN = VCC − VCE (SAT ) − VOUT R CP VOUT − VBE (SAT ) RB / 2 VOUT (min) = VIH VIH = VBE (SAT ) + VCC − VCE (SAT ) β FR C RB 2 Diode-Transistor Logic (DTL) Basic DTL Inverter Basic DTL NAND Gate 3 Diode Modified DTL Inverter Transistor Modified DTL Inverter 4 VTC of Transistor Modified DTL Inverter VOH = VCC VIL = VBE,O(FA) + VBE,L(FA) VOL = VCE,O(SAT) VIH = VBE,O(SAT) + VBE,L(FA) DTL Fan-out Determined by the output low state as DI is off for high-inputs 5 Cascaded DTL I B,O = I E ,L − I RD I OL = I C,O (SAT ) − I RC ⎢I ⎥ N = ⎢ OL ⎥ ⎣ I IL ⎦ I RC = VCC − VCE ,O (SAT ) RC I C ,O (SAT ) = σβ F I B,O (SAT ) For maximum fan-out σ = 1 I RD = Path 2 I E ,L ≅ I IL = VBE ,O (SAT ) RD VCC − VBE ,L ( FA ) − VD ,L ( ON ) − VBE ,O (SAT ) σR B VCC − VD ,I ( ON ) − VCE ,O (SAT ) RB Path 3 Example: Calculate the DTL fan-out for βF = 49 and σ = 0.85. Power Dissipation Example: Calculate the average power dissipation for the above example? 6 Tansistor-Transistor Logic (TTL) Basic TTL Inverter Basic DTL Inverter (compare) Basic TTL NAND Gate 7 Actual TTL NAND Gate with Totem Pole Output VTC of an actual TTL Inverter VOH = VCC – VBE,P(FA) – VD,L(ON) VIL = VBE,S(FA) – VCE,I(SAT)) VOL = VCE,O(SAT) VIH = VBE,O(SAT) + VBE,S(SAT) – VCE,I(SAT) VOB = VCC – IRCRC – VBE,P(FA) – VD,L(ON) VIB = VBE,O(FA) + VBE,S(FA) – VCE,I(SAT) I RC = I RD = VBE ,O ( FA ) RD 8 States of diodes and BJTs EOC: Edge of conduction TTL Fan-out Determined by the output low state as QI is cut-off for high-inputs 9 Cascaded TTL Path 1 I IL = VCC − VBE ,I (SAT ) − VCE ,O (SAT ) RB I E ,S(SAT ) = I B,S + I C,S I OL = I C,O (SAT ) = σβ F I B,O (SAT ) ⎢I ⎥ N = ⎢ OL ⎥ ⎣ I IL ⎦ I B,O (SAT ) = I E ,S(SAT ) − I RD I RD = I C ,S = Path 2 VBE ,O (SAT ) RD For maximum fan-out σ = 1 VCC − VCE ,S(SAT ) − VBE ,O (SAT ) RC I B,S = I C,I ( RA ) = (1 + β R )I B,I I B, I = VCC − VBC,I ( RA ) − VBE ,S(SAT ) − VBE ,O (SAT ) RB Example (TTL Fan-out) Example: Calculate the TTL fan-out for βF = 25, σ = 0.85 and βR = 0.1 IRB(OL) = 675 μA IIL= IRB(OH) = 1 mA IRC(OL) = 2.5 mA IOL= 51.9 mA ⎢I ⎥ N = ⎢ OL ⎥ = 51 ⎣ I IL ⎦ Example (Power Dissipation) Example: Calculate the average power dissipation for the above example? PCC(avg) = 10.4 mW 10 Open-Collector TTL Mostly used in data busses where multiple gate outputs must be ANDed. • This can be accomplished by using a single pull-up resistor with open-collector TTL gates • This type of connection is referred to as wired-AND. Low Power TTL (LTTL) Accomplished simply by increasing the resistance values. However this results in • Decreased fan-out • Longer transient-response times 1 LTTL Example Compare the power dissipation of the LTTL and TTL gates. IRB(OL) = 67.5 μA IRB(OH) = 100 μA PCC(avg) = 919 μW IRC(OL) = 200 μA TTL vs LTTL power dissipation ratio = 10.4 / 0.919 = 11.3 High Speed TTL (HTTL) Accomplished simply by decreasing the resistance values. However this results in • Increased power dissipation 2 Schottky Tansistor-Transistor Logic (STTL) Schottky Barrier MN diode Schottky-clamped BJT (Schottky Transistor) 3 Multi-Emitter Fabrication Examples Modes of Operation for SBJT 1. 2. 3. 4. OFF FA On Hard Reverse Schottky 4 Example (SBJT) Example: Draw the VTC graph of the SBJT inverter shown below STTL NAND Gate 5 STTL NAND Gate (VTC) VOH = VCC – VBE,P(FA) – VBE,P2(FA) VIL = VBE,O(FA) + VBE,S(FA)– VCE,I(HARD) VOL = VCE,O(HARD) VIH = VBE,O(HARD) + VBE,S(HARD) – VCE,I(HARD) STTL NAND Gate (Device states) Device state table 6 STTL Fan-out Determined by the output low state as QI is cut-off for high-inputs Cascaded STTL Path 1 I IL = VCC − VBE ,I ( HARD) − VCE ,O ( HARD) RB I E ,S( HARD) = I B,S + I C,S I OL = I C,O ( HARD) = β F I B,O ( HARD) I C ,S = VCC − VCE ,S( HARD) − VBE ,O ( HARD ) RC ⎢I ⎥ N = ⎢ OL ⎥ I B,O ( HARD) = I E ,S( HARD) − I C,D ( HARD) Path 2, 3 I B,S = I C,I ( RS) = ISBD ⎣ I IL ⎦ −V V I C ,D ( HARD ) = BE ,O ( HARD ) R CD CE , D ( HARD ) ISBD = VCC − VBC,I ( RS) − VBE ,S( HARD) − VBE ,O ( HARD) RB 7 Example (TTL Fan-out) Example: Calculate the STTL maximum fan-out for βF = 49. IRB(OL) = 1.11 mA IRC(OL) = 4.11 mA IRCD(OL) = 1.20 mA IOL= 197 mA IIL= IRB(OH) = 1.32 mA ⎢I ⎥ N = ⎢ OL ⎥ = 149 ⎣ I IL ⎦ IE,S(OL) = 4.22 mA IR,O(OL) = 4.02 mA Example (Power Dissipation) Example: Calculate the average power dissipation for the above example? IE,P(OL) = 0.182 mA IE,P(OH) = 1.3 mA PCC(avg) = 20.05 mW Low Power STTL (LSTTL) Accomplished by 1. Increasing the resistance value 2. Diode input section 3. Pull-down enhancements 8 Low Power STTL (LSTTL) LSTTL Example Compare the power dissipation of the LSTTL and STTL gates. IRB(OL) = 170 μA IRB(OH) = 210 μA PCC(avg) = 2.11 mW IRC(OL) = 463 μA STTL vs LSTTL power dissipation ratio = 20.05 / 2.11 = 9.5 9 Advanced Schottky TansistorTransistor Logic (ASTTL) Advanced Schottky Transistor Logic • Advanced Low-Power Schottky TTL (ALSTTL) • Fairchild Advanced Schottky TTL (FAST) • Advanced Schottky TTL (ASTTL) 10 ALSTTL ALSTTL VTC VOH = VCC – VBE,P(FA) VOL = VCE,O(HARD) VIL = VBE,O(FA) + VEB,IPA(FA) VIH = VBE,O(HARD) + VBE,S(HARD) + VBE,SB(HARD) – VBE,IPA(FA) 11 ALSTTL VTC FAST 12 FAST VTC VOH = VCC – VBE,P(FA) VOL = VCE,O(HARD) VIL = VBE,O(FA) + VBE,S(FA) + VBE,SB(FA) – VD,IA(ON) VIH = VBE,O(HARD) + VBE,S(HARD) + VBE,SB(HARD) – VD,IA(ON) ASTTL 13 ASTTL 14 Other TTL Gates Other TTL Gates • • • • • • • AND gates NOR gates OR gates AND-OR-INVERT (AOI) gates XOR gates Schmitt Trigger Inverters and NAND gates Tri-State buffers 1 TTL AND gate TTL AND gate - VTC 2 TTL NOR gate TTL NAND gate Power Dissipation Example IRB(IL) = 1 mA IRB(IH) = 675 μA ICC(LL) = 2 mA ICC(LH) = 4.175 mA ICC(HL) = 4.175 mA ICC(HH) = 3.85 mA IRC(OL) = 2.5 mA PCC(avg) = 17.75 mW TTL OR gate Example: Noise margins VNMH , VNML? TTL AND gate 3 Complex Logic TTL Gate Design 1. ANDing of signals • Multi-emitter input BJT sections 2. ORing of signals • Multiple input sections (QI and RB) • Multiple drive splitting BJTs (QS) 3. If non-inverting ORing is desired • Addional logic inversion circuitry 4. Totem-pole output branch AND-OR-INVERT (AOI) gate 4 Example Design a complex logic TTL gate that VOUT = VAVB + VC + VDVEVF Example Design a complex logic TTL gate that VOUT = VAVB + VC + VDVEVF 5 TTL XOR gate Hysteresis and Schmitt Trigger Gates 6 Hysteresis Hysteresis Base-Emitter coupled Schmitt Trigger Non-inverting circuit VOHS = VCC ⎛ VCC − VBE (SAT ) VCC − VCE (SAT ) ⎞ VOLS = ⎜⎜ − ⎟⎟R eq + VCE (SAT ) R CS1 R CS2 ⎠ ⎝ R eq = R CS1 || R CS 2 || R E ⎛ VCC − VBE (SAT ) VCC − VCE (SAT ) ⎞ ⎟⎟R eq + VBE ,S1( FA ) VIUS = ⎜⎜ − R CS1 R CS2 ⎠ ⎝ VIDS = VCC + α VBE ,S1(SAT ) − VBE ,S2 ( FA ) α α= R CS1 +1 RE 7 Example Find the VOHS, VOLS, VIUS and VIDS points where RCS1 = 4kΩ, RCS2 = 2.5kΩ, and RES = 1kΩ. VOHS = 5V Req = 606Ω ICS1 = 1.05mA VOLS = 2V VIUS = 2.5V VIDS = 1.66V ICS1 = 1.92mA TTL Schmitt Trigger NAND gate 8 Example Find the VOH, VOL, VIU and VID points where RCS1 = 4kΩ, RCS2 = 2.5kΩ, and RES = 1kΩ. VOH = 3.6V VOL = 0.2V VIUS = 2.5V VIDS = 1.66V VIU = 1.8V VID = 0.96V TTL Tri-state Buffers 9 TTL Tri-state Buffers Connecting TTL Tri-state buffers to a Bus 10 11 Emitter-Coupled Logic (ECL) Basic ECL Inverter/Non-inverter (ECL Current Switch) 1 Basic ECL Inverter/Non-inverter VTC According to inverting output: VINV VIL = VBB – 0.05 VIH = VBB + 0.05 VOH = VCC V OL = V CC − V IH − V BE ( ECL ) + V EE RE R CI ( V BE ( SAT ) − V EE ) RE R 1 + CI RE V CC + V BC ( SAT ) + R CI VS = Example Calculate the critical VTC points for the ECL current switch VCC = 5V, VEE = 0V, VBB = 2.6V, RCI = RCR = RE = 1kΩ, VBE(ECL) = 0.75V, VBE(SAT) = 0.8V, VBC(SAT) = 0.6V VOH = 5V VOL = 3.10V VIL = 2.55V VIH = 2.65V VS = 3.2V VINV (VIN = VS) = 2.6V 2 Basic ECL NOR/OR Gate 3 MECL I NOR/OR Gate V OH = − V OL = − V EE − V BE ( ECL ) R CI + (β F + 1) R DN R CI − V BE ( ECL ) V IH − V BE ( ECL ) + V EE RE R CI − V BE ( ECL ) Example Find the logical swing, noise margins and noise immunities for the MECL I circuit above. βF = 49, VBE(ECL) = 0.75V, VBE(FA) = 0.75V, VBE(SAT) = 0.8V, VBC(SAT) = 0.6V VOH = – 0.76V VOL = – 1.55V VLS = 0.79V VIL = – 1.225V VS = – 0.29V VIH = – 1.125V VNMH = 0.365V VNIH = 0.53V VNML = 0.325V VNIL = 0.475V 4 MECL I Fanout I OH = I E ,BN ( FA ) − I RDN ⎢I ⎥ N = ⎢ OH ⎥ ⎣ I IH ⎦ VOH + VEE R DN I E ,BN ( FA ) = (β F + 1)I B,BN − VOH − VBE ,BN ( ECL ) I B,BN = R CI I RDN = I IH = I RE βF +1 I RE = VE + VEE RE VE = VOH − VBE ( ECL ) Fan-out Example Find the maximum fan-out for the MECL I circuit above βF = 49, VBE(ECL) = 0.75V, VBE(FA) = 0.75V, VBE(SAT) = 0.8V, VBC(SAT) = 0.6V Assume load gates reduce VOH by 0.03 volts. VOH = – 0.79V IRDN = 2.205 mA VE = -1.54 V IB,BN = 148 μA IRE = 2.95 mA IE,BN = 7.4 mA IOH = 5.2 mA IIH = 59 μA ⎢I ⎥ N = ⎢ OH ⎥ = 87 ⎣ I IH ⎦ 5 Power Dissipation Example Find the average power dissipated in the MECL I circuit above IRE(NOH) = 2.64 mA IRE(NOL) = 2.98 mA IRDN(NOH) = 2.22 mA IRDN(NOL) = 1.825 mA IRDO(NOH) = 1.825 mA IRDO(NOL) = 2.22 mA IEE(NOH) = 6.685 mA IEE(NOL) = 7.035 mA PEE(avg) = 35.6 mW Other ECL Gates 6 DeMorgan’s Theorems • NOR and OR using ANDs and NANDs – NOR: A + B = A⋅B – OR: A + B = A⋅B • NAND and AND using ORs and NORs – NAND: A⋅B = A + B – AND: A⋅B = A + B Example Implement the following logic using only ECL gates (A + B)(C + D) Solution: (A + B)(C + D) ≡ (A + B) + (C + D) 7 Collector Dotting Wired-AND Gates Complex Logic Gates with Collector Dotting 8 Example Series Gating – Basic ECL NAND/AND Current Switch 9 Series Gating NAND/AND Gate Complex Logic Gates with Series Gating 10 Example ECL XOR/XNOR Gates 11 ECL Decoding Tree 12 MOS Logic MOS Logic • • NMOS gates – Fabrication – Modes of operation NMOS Inverters and Analysis – General NMOS Inverter – Resistor Loaded NMOS Inverter – E-MOSFET loaded NMOS Inverter – D-MOSFET loaded NMOS Inverter 1 NMOS (n-channel E-MOSFET) Fabrication Examples CMOS Fabrication Example 2 IV Characteristics NMOS modes of operation (a) Cutoff mode (c) Saturation mode (b) Linear mode (d) body-bias effect on threshold voltage 3 General NMOS Inverter Graphical analysis when load is a resistor 4 Load capacitance Power dissipation (a) Static power dissipation PDD = VDD (IDD(OH) + IDD(OL)) / 2 ≅ VDD IDD(OL) / 2 PTOTAL = PDD + PD (b) Transient power dissipation PD = CL ƒ V2DD ƒ: frequency at which the gate is switched 5 Resistor Loaded NMOS Resistor Loaded NMOS Inverter 6 Propagation Delay Fall time 7 E-MOSFET Loaded NMOS E-MOSFET Loaded NMOS Inverter 8 D-MOSFET Loaded NMOS D-MOSFET Loaded NMOS Inverter 9 NMOS Gates Symbol Shorthands 10 NOR Gate NOR Gates 11 NAND Gate ⎛ WO ⎞ ⎟⎟ k O = ⎜⎜ ⎝ LA + LB ⎠ VOL ( NAND) > VOL (Inverter) OR Gates 12 AND Gates Example 13 AOI (AND-OR-INVERT) Gates Examples 14 XOR/XNOR Gates Hysteresis 15 Schmitt Trigger Transmission Gate 16 Transmission Gate Array CMOS Logic 17 CMOS Inverter CMOS Inverter 18 Symmetric CMOS Inverter Capacitance Effect on Transition - 1 19 Capacitance Effect on Transition - 2 Electrostatic Discharge (ESD) Protection 20 CMOS Gates Symbol Shorthands 21 CMOS NAND Gate CMOS NAND Gates 22 CMOS NOR Gate CMOS NOR Gates 23 CMOS AND/NAND Gate CMOS OR/NOR Gate 24 CMOS AOI Gates CMOS AOI Gates 25 CMOS AND-OR Gate CMOS OAI Gates 26 CMOS AOI Gates Example 27 Example 28 XOR Gate 29