Probing the physics of strong correlations with cold fermions in
Transcription
Probing the physics of strong correlations with cold fermions in
I C T py % The Abdus Salam " International Centre forTheoretical Physics 09 SMR 1666-32 SCHOOL ON QUANTUM PHASE TRANSITIONS AND NON-EQUILIBRIUM PHENOMENA IN COLD ATOMIC GASES 11-22 July 2005 Probing the physics of strong correlations with cold fermions in optical lattices: adiabatic cooling and quantum magnetism Presented by: Antoine Georges Centre de Physique Theorique, Ecole Polytechnique, France 1 I. 34014 II - I. *39 040 2240 11 I. F *39 040 22463 -.... Atoms in an optical lattice: when does the Hubbard model apply? (?) = T' (k 1 L x.) A wavelength of Laser A/2 lattice spacing V ER 7j2k2 Typical orders of magnitude (6Li) . f_A.) I I LI -1__ d -f - 2m . Pioneering article: Jaksch et al, PRL 81(1998)_3108 Free-particle bands: from Bloch waves to Wannier functions H1 I i5k) = E,ik k., -I-Vsin2(ktx)1 = 1t2 -2771 31 02 ., dx- " 2- e (x Wannier function localised on lattice site R: TV-) = LU = vN : - '3 -it k st VO=ER: 1 and 2' band (1 D) Contour plot of 2D Wannier function V0= 10 ER I Li -K.. ,1 -1 '3 yf 1 2 Hoppings and couplings... 10 0.1 0.01 0001 Fic. 13 10 VO Er 20 30 - Coefficient R du Harniltonien drns hi base de Wannier, en fonction de lit prefondeur du potentiel Vu/Er. Les coefficients tt' et A (traits pointiflé.s) a, sont expmies en unites de tancks que k's coefficients d.c l'interaction UU2 etc. (traits pleins) sont en unites de E a5/a. Large U/to. Mott insulator .k-t-t-t + +-+ 1 Intersite hopping is blocked if: tunneling amplitude (t) is small enough compared to U = on-site repulsive interaction Real-space picture is simple mostly singly-occupied sites NOTE: At large U, Mott localisation has nothing to do with spin ordering. Gap for charge motion U. However, at low-T, long-range spin order will (in most cases...) set in, at a critical temperature T, For T<T<U: random mixture of spins (paramagnet) The phase diagram at 'h-filling (3D case) 1.5 I I Coherence scale (effective Fermi energy) I It I ITINERANT (CORRE-+-+-O-t-t-ff4 "t-t-t-t-t-'t-t FERMI imd 015 o ' 0 I AN 4-t-4-t-t-t-4 i LGNET I . & " s I A I I 20 Critical boundary calculated for a 3D cubic lattice using: -Quantum Monte Carlo (Staiidt et i1 Piir Phvc T P17 (7fl1)Ifl 4111 - Dynamical Mean-Field Theory approximation Fermionse. Dynamical Mean-Field Theory cf Rev. Mod. Phys. 68 (1996) 13 & Physics Today, 2003 'N BATH EITECTIVF Effectit-ebith - - - IMPTRITY PROBLEM -- -_fl DNIFT LOOP SE Lf CO'S SISTE"C% CONDITION -/ dr/ dT' C+ (T)G~)'(T -r')c(Y)+U / /3 dT n. t (T) nj(T) LaTiO3 VIZ -EM, i Strongly correlated materials who are the suspects? Localized orbitals (close enough to nuclei): 3d, 4f [Materials with transition metals or rare-earth ions] >> Strong screening: on-site matrix element of Coulomb interaction plays the dominant role U - r')IFVj(r')2 Vnit (r '.(r)12 screene d /drdr'W &1 >> Narrow bandwidths (small kinetic energy) . -4-Cr What do real (strongly correlated) solids do ? A material poised close to the Mott instability: V203 Note: slope of Tc vs.p again the Pomeranchuk effect! Recent experiments (Limelette et al, Science 2003) show that critical Endpoint is indeed Ising-like Vi_Mx)aO3 500 CRITICAL MN 400 - OO P aramagn iIN nsMAUr 4 C Paramagnetic metal METAL I PRESSURE EXP. 4- 144 444-44+1-- w ° T 100 0 4-14-44-44-0 -t ric 4-1-fkntil'ferromagne insu1ator * INCREASING PRESSURE i4kbOr/cXVISIQN ZERO PRESSURE POINT MOVES WITH TOP SCAt.E FIG. 70. Phase CrO" and (V1 1973. for doped V2O- systems, rTj)2Q. From McWhan et a! 1971, diagram (V1 Example of RVB state: The Kagome quantum antiferromagnet I I ______ I I I I I -- " ___ (I 0.41 :!. 0 2E- i- ' TA I I i a Sb--I) 1<1 I a 4 S(S 1) spec-trum FIG. 2. The [ow-lying energy levels of the TAIl and 1CM-I of the N = 27 sample The levels which possess the symmetry expected for an ordered solution are denoted by a star. The Pisa tower of the TAH is easily seen, quite distinct from the first-mattnon excitations- In the ECAH1 on the contrary, the levels candidate for the building of a tower of states are mixed with other representations in a eontinuLLm of excitations. NO GAP IN 5=0 SECTOR! NO mD AMCT A "T'TCIM CmDV BREAKING Lecheminant et a!.- C.Lhuillier's group GAP TO S=1 SECTOR See also: recent work on Moessner and Sondhi on quantum dimer models. INkJ 11\±%INO.LiflhlkJIN LJIJXI lattice Kagome optical et al. Rev Lett 93 [Santos Phys (2004) 030601] 15 IS III ç Ii >r - II - J5 Ir!'!t!!W -15-li' -5 I) x 5 l'J IS x : II IS (C) sYfl- 7OS / / (b) TKL using = n/4. This lattice can be generated using/2.three SWs with a FIG. 1. (a) Ideal Kagonié lattice for = /3 angle between themselves. Each SW is generated by three lasers with a configuration shown in (c). (d) Enumeration of spins in a turner and of neighboring trilners.