Estrutura de taxocenoses de lagartos em áreas de Cerrado e de
Transcription
Estrutura de taxocenoses de lagartos em áreas de Cerrado e de
UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE ZOOLOGIA Estrutura de taxocenoses de lagartos em áreas de Cerrado e de Savanas Amazônicas do Brasil Daniel Oliveira Mesquita Brasília-DF 2005 Universidade de Brasília Instituto de Ciências Biológicas Departamento de Zoologia Estrutura de taxocenoses de lagartos em áreas de Cerrado e de Savanas Amazônicas do Brasil Orientador: Guarino Rinaldi Colli, Ph. D. Tese apresentada ao Instituto de Ciências Biológicas da Universidade de Brasília como parte dos requisitos necessários para a obtenção do Título de Doutor em Biologia Animal Brasília-DF 2005 Trabalho realizado com o apoio financeiro da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), como parte dos requisitos para a obtenção do título de Doutor em Biologia Animal pelo Programa de Pós-graduação em Biologia Animal da Universidade de Brasília. APROVADO POR: Prof. Ph. D. Guarino Rinaldi Colli (Orientador) Prof. Dr. Marcio Roberto Costa Martins (Membro da Banca Examinadora) Prof. Dr. Marcos Di-Bernardo (Membro da Banca Examinadora) Prof. Ph. D. Miguel Ângelo Marini (Membro da Banca Examinadora) Prof. Dr. Raimundo Paulo Barros Henriques (Membro da Banca Examinadora) Agradecimentos Aos meus pais, tios e avós por todo apoio e incentivo. Ao meu orientador Guarino Rinaldi Colli pelo apoio e pela oportunidade dada para a realização deste trabalho. A todos os meus colegas de sala Helga, Ayrton, Mariana Zatz, Gabriel, Alison, Mariana Mira, Fred, Vívian, Reuber, Fernanda, Lilia, Maria Adelaida, Chuck, Verônica, Paula, Gustavo, Adrian, Leonora e Ruscaia que muito contribuíram para a realização deste trabalho. A todos meus colegas de Norman, principalmente Adrian Garda e Don Shepard, que fizeram de minha passagem pelos EUA algo bastante prazeroso. Aos Profs. Laurie Vitt e Janalee Caldwell, por terem me aceitado no doutorado sanduíche e muito contribuído para o resultado final da tese. Às pessoas que participaram das coletas: Ajax, Fred, Cris, Gabriel, Adrian, Alexandra, Alison, Ayrton, Joana, Laurie Vitt, Janalee Caldwell, Don Shepard, Guarino, Kátia e Santos. Ao Prof. Alexandre F. Bamberg de Araújo, pelas conversas e pelo incentivo. Aos Professores Miguel Marini e Laurie Vitt, pela participação na defesa de qualificação. Aos Professores Miguel Marini, Marcio Martins, Marcos Di-Bernardo, Raimundo Henriques pela participação da banca examinadora. Aos Professores Vera Lúcia e Fernando Bauab pela atenção prestada. À Alexandra pela paciência que teve comigo nessa correria. Aos colegas Eddie, Girlene, Renato, José Roberto, Tati, Marcos, Darse, Darse Jr., Catarina, Milton, Olímpia, Socorro, Dora, Léo, Dailton (in memorian), Dí, Bonito (in memorian), Renê, Renata, Raíssa, Sandra, Marcelo, Blue, André, Eduardo, Evandro entre outros. A todos os colegas da UnB. À CAPES pela bolsa Sanduíche e de doutorado. À FINATEC, PROBIO-MMA (“Estrutura e Dinâmica da Biota de Isolados Naturais e Antrópicos do Cerrado”, “Paisagens e Biodiversidade: Uma Perspectiva Integrada Para Inventário e Conservação da Serra do Cachimbo” e “Inventário da Biodiversidade do Vale e Serra do Rio Paranã e do Sul do Tocantins”), National Geografic Society (4994-3), Conservation International (“Proposta de Levantamento da Herpetofauna da Micro Região do Jalapão” e “Subsídios à Conservação da Biodiversidade na Bacia do Rio Paranã”), PIE-CNPq (“Biogeografia e Diversidade Faunística das Savanas Amazônicas”), MacArthur Foundation (“Faunistic Survey of Brazilian Amazonia”), WWF - Fundo Mundial para Natureza (9579009, SR 022-94), Fundação O Boticário de Proteção à Natureza (“Herpetofauna das Savanas Amazônicas: Subsídios Para sua Preservação”) e ao Programa de Pós-Graduação em Biologia Animal, pelo apoio financeiro. VITAE PRODUÇÃO BIBLIOGRÁFICA Artigos completos publicados em periódicos *1 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi; VITT, Laurie Joseph. Ecological release in lizard assemblages of Neotropical savannas. Oikos, v. 00, n. 00, p. 00-00, submetido. *2 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi; FRANÇA, Frederico Gustavo Rodrigues; VITT, Laurie Joseph. Ecology of a Cerrado lizard assemblage in the Jalapão region of Brazil. Copeia, v. 00, n. 00, p. 00-00, submetido. *3 VITT, Laurie Joseph; CALDWELL, Janalee Paige; COLLI, Guarino Rinaldi; MESQUITA, Daniel Oliveira; GARDA, Adrian Antônio; FRANÇA, Frederico Gustavo Rodrigues. Variation in habitat structure on small geographic scales affects structure of Cerrado lizard assemblages. Journal of Tropical Ecology, v. 00, n. 00, p. 00-00, submetido. *4 MESQUITA, Daniel Oliveira; COSTA, Gabriel Corrêa; ZATZ, Mariana Gonzaga. Ecological aspects of the casque-headed frog Aparasphenodon brunoi (Anura, Hylidae) in a restinga habitat in southeastern Brazil. Phyllomedusa, v. 3, n. 1, p. 51-60, 2004. *5 COLLI, Guarino Rinaldi; COSTA, Gabriel Correa; GARDA, Adrian Antônio; MESQUITA, Daniel Oliveira; KOPP, Kátia; PÉRES JR, Ayrton Klier; VALDUJO, Paula Hanna; VIEIRA, Gustavo Henrique C; WIEDERHECKER, Helga Correa. A critically endangered new species of Cnemidophorus (Squamata, Teiidae) from Cerrado enclave in southwestern Amazonia, Brazil. Herpetologica, v. 59, n. 1, p. 76-88, 2003. *6 COLLI, G R; CALDWELL, J P; COSTA, G C; GAINSBURY, A M; GARDA, A A; MESQUITA, Daniel Oliveira; R FILHO, C M M; SOARES, A H B; SILVA, V N; VALDUJO, P H; VIEIRA, G H C; VITT, L J; WERNECK, F P; WIEDERHECKER, H C; ZATZ, M G. A new species of Cnemidophorus (Squamata, Teiidae) from the Cerrado biome in central Brazil. Occasional Papers Of The Oklahoma Museum Of Natural History, v. 14, p. 1-14, 2003. *7 MESQUITA, Daniel Oliveira; BRITES, V L C. Aspectos taxonômicos e ecológicos da população de Bothrops alternatus DUMÉRIL, BIBRON & DUMÉRIL, 1854 (Serpentes, Viperidae) das regiões do Triângulo e Alto Paranaíba, Minas Gerais. Biologia Geral e Experimental, v. 3, n. 2, p. 33-38, 2003. *8 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi. Geographical variation in the ecology of populations of some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia, v. 2003, n. 2, p. 285-298, 2003. *9 MESQUITA, Daniel Oliveira; WIEDERHECKER, H C. Influência da massa corporal e da temperatura no deslocamento e na vocalização de três espécies de anuros do Cerrado. Biologia Geral e Experimental, v. 3, n. 2, p. 21-24, 2003. * 10 MESQUITA, Daniel Oliveira; COLLI, G R. The ecology of Cnemidophorus ocellifer (Squamata, Teiidae) in a neotropical savanna. Journal of Herpetology, v. 37, n. 3, p. 498-509, 2003. * 11 COLLI, G R; MESQUITA, Daniel Oliveira; RODRIGUES, P V V; KITAYAMA, K. The ecology of the gecko Gymnodactylus geckoides amarali in a neotropical savanna. Journal of Herpetology, v. 37, n. 4, p. 694-706, 2003. * 12 VITT, Laurie Joseph; CALDWELL, Janalee Paige; COLLI, Guarino Rinaldi; GARDA, Adrian Antônio; MESQUITA, Daniel Oliveira; FRANÇA, Frederico Gustavo Rodrigues; BALBINO, Santos Fernandes. Um guia fotográfico dos répteis e anfíbios da região do Jalapão no Cerrado brasileiro. Norman, Oklahoma: Special Publications in Herpetology. San Noble Oklahoma Museum of Natural History, 2002. (Guia Fotográfico). * 13 MESQUITA, Daniel Oliveira; BRITES, Vera Lucia de Campos. Estudio de las marcas naturales de Bothrops alternatus Duméril, Bibron & Duméril, 1854 (Serpentes, Crotalinae). Acta Zoologica Lilloana, v. 46, n. 1, p. 138-140, 2002. 14 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi; PÉRES JR, Ayrton Klier; VIEIRA, Gustavo H C. Mabuya guaporicola. Natural History. Herpethological Review, v. 31, n. 4, p. 240-241, 2000. 15 VIEIRA, Gustavo H C; MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi; PÉRES JR, Ayrton Klier. Micrablepharus atticolus. Natural history. Herpethological Review, v. 31, n. 4, p. 241-242, 2000. Artigos resumidos publicados em periódicos *1 COSTA, Gabriel Corrêa; MESQUITA, Daniel Oliveira; FRANÇA, Frederico Gustavo Rodrigues. Crocodilurus amazonicus (Jacarerana). Diet. Herpetological Review, v. 00, n. 00, p. 00-00, no prelo. *2 FRANÇA, Frederico Gustavo Rodrigues; MESQUITA, Daniel Oliveira; GARDA, Adrian Antônio. Phalotris labiomaculatus. (falsa coral). Geographic Distribution. Herpetological Review, v. 36, n. 1, p. 00-00, no prelo. 3 MESQUITA, Daniel Oliveira; COLLI, Guarino Rinaldi. Aspectos da ecologia de Gymnodactylus geckoides de um Cerrado no Brasil central. Publicação Extra do Museo Nacional, Montevideo-Uruguay, v. 50, p. 85-85, 1999. 4 MESQUITA, Daniel Oliveira; BRITES, Vera Lucia de Campos. Aspectos ecológicos da população de Bothrops alternatus (Serpentes, Crotalinae) da Zona Geográfica do Triângulo e Alto Paranaíba-MG. Publicação Extra do Museo Nacional, Montevideo-Uruguay, v. 50, p. 84-84, 1999. 5 MESQUITA, Daniel Oliveira; BRITES, Vera Lucia de Campos. Folidose, biometria e cromatismo da população de Bothrops alternatus (Serpentes, Crotalinae) da Zona Geográfica do Triângulo e Alto Paranaíba-MG. Publicação Extra do Museu Nacional de Historia Natural, Montevideo-Uruguay, v. 50, p. 84-84, 1999. * Trabalhos publicados durante o doutorado. There are places I’ll remember All my life though some have changed Some forever not for better Some have gone and some remain All these places have their moments With lovers and friends I still can recall Some are dead and some are living In my life I’ve loved them all Lennon/McCartney ÍNDICE Introdução ....................................................................................................................................1 Materiais e métodos .....................................................................................................................5 Capítulo 1.....................................................................................................................................10 Capítulo 2.....................................................................................................................................12 Capítulo 3.....................................................................................................................................14 Capítulo 4.....................................................................................................................................16 Discussão .....................................................................................................................................18 Referências bibliográficas............................................................................................................21 Apêndice 1 ...................................................................................................................................27 Apêndice 2 ...................................................................................................................................76 Apêndice 3 ...................................................................................................................................117 Apêndice 4 ...................................................................................................................................151 1 INTRODUÇÃO As comunidades são usualmente definidas como associações entre populações que coexistem em determinado local. Por uma questão metodológica, um grupo de espécies filogeneticamente relacionadas que coexistem em determinada área geográfica é chamado de taxocenose (“assemblage”) (Ricklefs e Miller, 1999). A estrutura das taxocenoses é resultante da área geográfica onde as populações ocorrem, das suas interações, padrões do uso de recursos e relações evolutivas (Ricklefs e Miller, 1999). Há poucos anos, ecólogos acreditavam que fatores locais (ecológicos) eram os principais determinantes da estrutura das taxocenoses (Dunham, 1983). Hoje em dia, fatores históricos têm recebido especial atenção em estudos sobre estrutura das taxocenoses e se considera que, se as informações históricas forem ignoradas, pode-se chegar a conclusões totalmente equivocadas sobre os determinantes da estrutura de uma taxocenose (Losos, 1996). Em uma taxocenose, divergências em algum aspecto ecológico (por exemplo, no uso de microhábitat) entre espécies filogeneticamente aparentadas, indicam a prevalência de fatores ecológicos sobre fatores históricos. Por outro lado, a ausência de divergências ecológicas entre espécies próximas indica a prevalência de fatores históricos (Brooks e McLennan, 1991; Brooks e Mclennan, 1993). Da mesma forma, padrões similares na estrutura de diferentes taxocenoses sugerem que fatores históricos são predominantes, enquanto que a variação destes padrões entre taxocenoses de ambientes similares indicam a prevalência de fatores ecológicos (Brooks e McLennan, 1991; Cadle e Greene, 1993). Entretanto, deve ser tomado um cuidado especial com o real parentesco de espécies-irmãs em uma taxocenose. Por mais próximas que pareçam ser, ao 2 se considerar a topologia que une as espécies de uma taxocenose, elas podem ser de linhagens distintas quando se considera a filogenia do gênero (Losos, 1996). A ausência de espécies que se alimentam de invertebrados em uma taxocenose de serpentes na Caatinga foi considerada como resultado da competição com mamíferos insetívoros (Vitt e Vangilder, 1983). Posteriormente, Cadle e Greene (1993), analisando dados de tamanho do corpo, hábitat, horário de atividade e dieta de 21 taxocenoses de serpentes neotropicais, chegaram a conclusões diferentes por verificar que as principais linhagens de serpentes que se alimentam de invertebrados se concentram na América Central e do Norte. Assim, a ausência de serpentes que se alimentam de invertebrados na Caatinga se deve à ausência de membros de certas linhagens (fator histórico) e não à presença de competidores (fator ecológico). Na ilha de Grand Cayman, na América Central, onde existia previamente Anolis conspersus, foi introduzida A. sagrei. Comparações do uso de microhábitat antes da introdução de A. sagrei indicaram que, em locais com vegetação aberta onde A. sagrei é abundante agora, A. conspersus utiliza poleiros mais altos, e em áreas com vegetação fechada, onde A. sagrei não ocorre, não foi detectada nenhuma diferença evidente na altura do poleiro utilizado (Losos et al., 1993). Estes resultados indicam a importância das relações interespecíficas (fator ecológico), mostrando que as mesmas podem ser importantes na estruturação das taxocenoses. Vários trabalhos sobre taxocenoses de lagartos foram realizados recentemente na Região Neotropical. Em uma restinga, no estado do Rio de Janeiro, foi estudada uma taxocenose de lagartos através de dados morfométricos, de dieta e de microhábitat, sendo que a estruturação da taxocenose através dos dados morfométricos mostrou uma separação de dois grupos dentro da assembléia: um de espécies bromelícolas e outro de “corredoras de areia” (Araújo, 1991). Na Caatinga, Vitt (1995) descreveu a taxocenose de lagartos utilizando dados de horário de 3 atividade, temperatura corporal, hábitat, microhábitat e padrões de utilização de recursos (dieta), e concluiu que a filogenia tem um papel de maior importância na estruturação da taxocenose do que as interações entre as espécies. Vitt e Carvalho (1998a) realizaram um trabalho semelhante em uma floresta de transição na Amazônia, encontrando evidências da maior influência de fatores históricos, principalmente na utilização de microhábitats. No Cerrado, foi estudada uma taxocenose de lagartos na região de Alto Araguaia, estado do Mato Grosso, com apenas nove espécies, sendo encontrada uma divergência no uso de microhábitat entre tropidurídeos e policrotídeos, e sobreposição entre teiídeos e gymnoftalmídeos, mas a diferença de tamanho entre os dois últimos taxóns promoveu divergência na dieta (Vitt, 1991). Araújo (1992) realizou um estudo de estrutura morfométrica em três taxocenoses de lagartos no Cerrado e duas de Restingas do sudeste brasileiro, tendo encontrado uma forte relação entre as interações ecológicas entre espécies e seus atributos morfológicos, mostrando a importância da estrutura morfométrica como instrumento para estudos de estrutura de taxocenoses de lagartos. Em uma taxocenose de lagartos de Savana Amazônica, em Roraima, foram encontradas apenas oito espécies, separadas em três guildas alimentares: herbívoros, forrageadores ativos e forrageadores “senta e espera”, sendo que o principal determinante destas guildas não foi a composição da dieta, mas a forma de aquisição das presas (Vitt e Carvalho, 1995). Entretanto, nos trabalhos realizados no Cerrado e Savanas Amazônicas, os autores não levaram em conta a influência de fatores históricos. Uma explicação para a formação das Savanas Amazônicas é a “Hipótese dos Refúgios Pleistocênicos” e um dos seus princípios básicos é que, durante períodos glaciais de precipitação reduzida, grandes extensões da Amazônia foram cobertas por savanas, restringindo a floresta a manchas isoladas (Ab'Sáber, 1982; Bigarella e Andrade-Lima, 1982; Eden, 1974; Huber, 1982), 4 sendo assim, as Savanas Amazônicas representariam resquícios de uma extensa savana que se estendeu do Brasil central até as Guianas (Prance, 1978). Atualmente, as Savanas Amazônicas ocorrem como ilhas dispersas no interior das áreas florestais da Amazônia e cobrem cerca de 150.000 Km2, cerca de 2% do território brasileiro (Pires, 1973). Eiten (1978) observou que muitas espécies vegetais típicas do Cerrado são dominantes nas Savanas Amazônicas, porém estas sempre apresentam baixa diversidade e endemismo. As taxocenoses de lagartos também apresentam baixa diversidade, porém com uma grande quantidade de endêmicos ou espécies que, na Amazônia, só ocorrem nestas áreas abertas (Ávila-Pires, 1995; Colli, 1996; Vitt e Carvalho, 1995). Usualmente, ilhas apresentam uma diversidade menor quando comparadas com áreas contínuas, mas geralmente suas espécies ocorrem em maiores densidades que em áreas contínuas. Este fenômeno foi inicialmente descrito para taxocenoses de aves e chamado de compensação da densidade (“density compensation”) (Crowell, 1962; Pianka, 1994; Ricklefs e Miller, 1999). Nestas condições, as espécies das ilhas podem expandir seu hábitat, ocupando hábitats normalmente ocupados por outras espécies. Este fenômeno também foi descrito inicialmente para taxocenoses de aves e foi chamado de expansão de nicho (“niche expansion”) (MacArthur et al., 1972; Pianka, 1994; Ricklefs e Miller, 1999). Estes dois fenômenos são conjuntamente referidos como “liberação ecológica” (“ecological release”) (Pianka, 1994; Ricklefs e Miller, 1999) e também já foram relatados em taxocenoses de anfíbios e répteis. Rodda e Dean-Bradley (2002) encontraram fortes evidências de que anfíbios e répteis (principalmente lagartos) apresentam uma maior densidade e biomassa em ilhas menores do que em ilhas maiores e em áreas contínuas. Por outro lado, um estudo correlacionando o tamanho de ilhas com a densidade de populações animais mostrou uma correlação positiva, sugerindo que a 5 compensação da densidade pode ser pouco comum (Connor et al., 2000). De acordo com a hipótese de "liberação ecológica", espera-se que várias dimensões do nicho, do corpo, microhábitat, dieta e a abundância, sejam maiores em espécies de Savanas Amazônicas quando comparadas com espécies próximas do Cerrado. Os objetivos deste trabalho são (1) comparar as taxocenoses de lagartos de Cerrado e Savanas Amazônicas, para testar a hipótese de "liberação ecológica", levando-se em conta a importância de fatores locais (ecológicos) e regionais (históricos) na estruturação dessas taxocenoses; descrever as taxocenoses de lagartos das regiões do Cerrado no Jalapão (2) e da Savana Amazônica em Monte Alegre (3), através da combinação de dados ecológicos e morfológicos com a filogenia das espécies, com o objetivo de examinar a influência da história na estrutura da mesma; e (4) determinar a relação entre a composição, diversidade de espécies (abundância relativa) e estrutura de taxocenoses com a estrutura do hábitat em duas áreas facilmente distinguíveis e quase contíguas na região do Jalapão. MATERIAIS E MÉTODOS Foram utilizados animais coletados em cinco áreas contínuas do Cerrado (GOIÁS: Alvorada do Norte e São Domingos; TOCANTINS: Mateiros, Paranã e Dianópolis), cinco isolados periféricos do Cerrado (RONDÔNIA: Vilhena, Pimenta Bueno e Guajará-Mirim; PARÁ: Novo Progresso e Carajás) e cinco Savanas Amazônicas (PARÁ: Alter do Chão e Monte Alegre; AMAZONAS: Humaitá; RORAIMA: Boa Vista; AMAPÁ: Amapá). Os animais das áreas de Cerrado (solados e não isolados) foram coletados pelo autor da dissertação, seu orientador, o Dr. Guarino R. Colli e a equipe do Laboratório de Herpetologia da Universidade de Brasília. Os animais 6 coletados nas áreas de Savanas Amazônicas (exceto em Monte Alegre, que foram coletados pelo autor) foram coletados pelo Dr. Guarino R. Colli (Orientador), durante seu doutorado. Todos os espécimes coletados estão depositados na Coleção Herpetológica da Universidade de Brasília (CHUNB). A diferença entre Savanas Amazônicas e isolados periféricos do Cerrado foi proposta por Eiten (1978), sendo baseada principalmente em similaridade de espécies vegetais. Usualmente, as Savanas Amazônicas são mais pobres, quando comparadas com todos os tipos de áreas de Cerrado (isolados e não isolados) (Eiten, 1972; Eiten, 1978). Aqui, todos os enclaves estão sendo considerados como ilhas, para se testar a hipótese de “liberação ecológica”. A amostragem foi feita com armadilhas de interceptação e queda, sendo 25 conjuntos em cada área, consistindo de 4 baldes dispostos em 3 linhas de 5 m, formando ângulos de 120º a partir de um mesmo ponto central e ligados por uma lona plástica fixada com grampos em estacas de madeira. Também foram realizadas coletas manuais com o auxílio de uma espingarda calibre 36. No momento da coleta foram anotados dados referentes a horário de atividade, temperatura corporal e microhábitat. A largura do nicho (microhábitat) foi calculada através do inverso do índice de diversidade de Simpson (Simpson, 1949) e, para examinar a sobreposição de microhábitats foi utilizada a equação de sobreposição de nicho, segundo Pianka (1973). Através de um paquímetro digital foram obtidas medidas de comprimento rostro-anal, altura e largura do corpo, comprimento, altura e largura da cabeça, e comprimento dos membros anterior e posterior. Posteriormente, os estômagos dos animais foram removidos e seus conteúdos analisados através de uma lupa, sendo as presas identificadas até ordem e, quando possível, categorias inferiores. Quando as presas estavam inteiras, seu comprimento e largura foram medidos com um paquímetro digital e seu volume estimado pela fórmula do volume de 7 um elipsóide. Também foi calculada a largura de nicho e a sobreposição da dieta entre as espécies utilizando-se os mesmos procedimentos descritos anteriormente para o microhábitat. Foram feitas comparações entre taxocenoses. Quando uma espécie, ou espécies próximas, ocorreram em taxocenoses de biomas diferentes, elas tiveram aspectos da sua ecologia, como largura do nicho de microhábitat e dieta, comparados. Nestas comparações, as diferenças entre Cerrado e Savanas Amazônicas foram utilizadas como modelo para se testar a hipótese de "liberação ecológica". Esta hipótese prediz que em ilhas (Savanas Amazônicas e isolados de Cerrado), onde a diversidade é menor, as espécies tendem a expandir seu hábitat e ocorrer em maior abundância, devido ao espaço vago que em áreas contínuas (Cerrado) estaria ocupado por outras espécies. Portanto, espera-se que estes parâmetros ecológicos sejam maiores nas espécies de isolados que nas espécies de Cerrado. Para comparar as comunidades através das variáveis morfométricas, foram utilizadas as distâncias Euclidianas das variáveis transformadas para logaritmo (para satisfazer as premissas de normalidade). Para cada taxocenose, foi calculada a média da distância do vizinho mais próximo e estas foram comparadas. Baseando na hipótese de "liberação ecológica", espera-se que em ilhas (Savanas Amazônicas e isolados do Cerrado), a média das distâncias ao vizinho mais próximo seja maior que em áreas contínuas (Cerrado). Nestas comparações, foi levada em conta a influência de fatores históricos nos padrões encontrados. Quando as variações do meio influenciam fortemente as espécies mais aparentadas, modificando os padrões de coexistência, espera-se que fatores locais sejam mais importantes para a explicação dos padrões encontrados. Se as espécies aparentadas não apresentarem divergência na ecologia, espera-se que sua ecologia seja bastante conservativa e independente de fatores externos, sendo assim, fatores históricos seriam mais importantes para a manutenção do 8 padrão em questão (Brooks e McLennan, 1991; Brooks e Mclennan, 1993; Losos, 1994; Losos, 1996). Estes tópicos fazem parte do primeiro capítulo da dissertação. Ainda, os dados de microhábitat, horário de atividade, temperatura corporal, tamanho do corpo, e largura do nicho (microhábitat e dieta), foram mapeados em uma árvore filogenética das espécies que compõem a taxocenose para realizar comparações entre as espécies. Quando ocorrem divergências entre aspectos ecológicos e as espécies não são próximas filogeneticamente, temos o indício da prevalência de fatores históricos sobre fatores locais e, quando as espécies são próximas, espera-se que fatores locais sejam mais importantes para a relação em questão (Brooks e McLennan, 1991; Cadle e Greene, 1993; Brooks e Mclennan, 1993). Se as interações em nível local forem os principais determinantes na estruturação da taxocenose, espera-se que os aspectos ecológicos estejam mapeados aleatoriamente na filogenia das espécies (Vitt, 1995). Para determinar a importância da história na estrutura da taxocenose, foi utilizada uma análise de ordenação canônica filogenética (Giannini, 2003) juntamente com permutações de Monte Carlo (9,999) no CANOCO 4.5 para Windows. Esta análise consiste de uma ordenação canônica para identificar pontos de divergência dentro de uma matriz filogenética reduzida que melhor explica os padrões ecológicos (Giannini, 2003). Estas análises foram feitas para duas áreas, uma de Cerrado no estado do Tocantins (Jalapão) e uma para as Savanas Amazônicas (Monte Alegre, PA), e fazem parte respectivamente do segundo e terceiro capítulos da dissertação. Na região do Jalapão, foram utilizadas armadilhas de queda (“pitfall”) para determinar a relação entre a composição de espécies (abundância relativa) e a estrutura da taxocenose e do hábitat em dois tipos de fitofisionomias do Cerrado, facilmente distinguíveis e contínuas, um ambiente aberto (Cerrado Típico) e outro parcialmente fechado (Cerrado Denso). Para 9 caracterizar o hábitat, em cada transecto de armadilhas de queda (num raio de 6 m do balde central), foram medidas as seguintes variáveis estruturais e da vegetação: 1) massa do folhiço, 2) percentual de solo exposto, 3) percentual de cobertura de copa, 4) número de árvores (5 cm de diâmetro) ao redor, 5) número de buracos no chão, 6) número de cupinzeiros, 7) distância da árvore mais próxima, 8) circunferência do tronco como medida do tamanho da árvore, e 9) número de troncos caídos. Foi realizada uma Análise de Correspondência Canônica (CCA; ver Ter Braak, 1986), uma ordenação multivariada que associa diretamente a variação na taxocenose (nesse caso a ocorrência dos lagartos) às características do hábitat. Foram utilizadas as variáveis estruturais e da vegetação para caracterizar o hábitat em cada armadilha e abundância relativa dos lagartos como medida de estrutura de taxocenose. Nestas análises foi investigado se existe associação entre características específicas do hábitat e a ocorrência das espécies de lagartos. A CCA foi realizada com o CANOCO 4.5 para Windows. Estes tópicos fazem parte do quarto capítulo da dissertação. 10 CAPÍTULO 1 “Liberação ecológica” em taxocenoses de lagartos em savannas Neotropicais Foram comparadas as taxocenoses de lagartos do Cerrado e de Savanas Amazônicas para testar a hipótese de “liberação ecológica”, levando em conta a influência de fatores históricos. A hipótese de “liberação ecológica” prediz que dimensões do nicho e abundância devem ser maiores em espécies das Savanas Amazônicas e em fragmentos isolados do Cerrado, quando comparados com áreas não isoladas do Cerrado. Foi calculada a largura de nicho de microhábitat e dieta com dados de seis populações do Cerrado do Brasil central e 14 de fragmentos isolados do Cerrado e de áreas de Savanas Amazônicas. Os dados morfológicos foram comparados através da média das distâncias Euclidianas e a abundância dos lagartos foi estimada através do número de lagartos capturados nas armadilhas de queda por um período prolongado. Não foi encontrada evidência de “liberação ecológica” quando utilizados os dados de uso de microhábitat nestas áreas, sugerindo que os fatores históricos são mais importantes que fatores ecológicos na estruturação dessas taxocenoses. Entretanto, os dados dos estômagos individuais indicaram que a “liberação ecológica” ocorre nessas áreas para Tropidurus, mas não para Ameiva ameiva, Anolis, Cnemidophorus e Micrablepharus. Esses resultados sugerem que diferentes linhagens respondem de maneira diferente às pressões ambientais, sendo tropidurídeos mais afetados por fatores ecológicos que policrotídeos, teiídeos e gimnoftalmídeos. A análise dos dados morfológicos e de abundância não evidenciaram que ocorra “liberação ecológica” nestas áreas. A ecologia das espécies é bastante conservativa, variando pouco de taxocenose para taxocenose. 11 Entretanto, o aumento na largura de nicho de algumas espécies (Tropidurus) indicou que a “liberação ecológica” pode ocorrer. O presente capítulo, sintetizado no parágrafo acima foi finalizado durante o doutoradosanduíche, realizado em Norman, OK, USA, de março a agosto de 2004, e submetido para a publicação na revista OIKOS em janeiro de 2005. O manuscrito intitulado “Ecological release in lizard assemblages of Neotropical savannas”, de autoria de Daniel Oliveira Mesquita, Guarino Rinaldi Colli e Laurie J. Vitt, está anexado no Apêndice 1. 12 CAPÍTULO 2 Ecologia de uma taxocenose de lagartos na região do Jalapão no Brasil A taxocenose de lagartos da região do Jalapão, uma das últimas grandes regiões não perturbadas no Cerrado, localizada no estado do Tocantins, foi descrita através da combinação de dados ecológicos e morfológicos com a filogenia das espécies, com o objetivo de examinar a influência da história na estrutura da mesma. A taxocenose de lagartos da região do Jalapão contém 14 espécies. A largura de nicho de microhábitat foi baixa para todas as espécies. A sobreposição de nicho, baseado nos dados de microhábitat, variou de praticamente nenhuma até quase total e parece estar relacionada com a distância filogenética. A análise de pseudocomunidades mostrou que a média da sobreposição de microhábitat e de dieta não diferiu estatisticamente de zero, indicando a ausência de estrutura. A sobreposição de presas foi alta entre os gimnoftalmídeos e teiídeos. O gráfico dos escores dos fatores dos dois primeiros componentes principais mostrou os grupos correspondendo às famílias de lagartos, sugerindo uma forte associação entre morfologia e filogenia. Uma inspeção detalhada do cladograma mostrou similaridades entre as espécies mais aparentadas, sugerindo uma maior importância da história na taxocenose, quando comparada com a ecologia. A ordenação filogenética canônica não mostrou nenhum efeito filogenético no uso de microhábitat e na composição da dieta dos lagartos. Os resultados contraditórios da ordenação filogenética canônica sugerem que os efeitos históricos potenciais são de difícil detecção porque os táxons mais basais (famílias) são subrepresentados. Portanto, as amostragens de dados ecológicos em taxocenoses pobres em espécies 13 filogeneticamente próximas podem dificultar a detecção do efeito histórico através de análises dos aspectos ecológicos das taxocenoses baseadas em métodos filogenéticos. O presente capítulo, sintetizado no parágrafo acima também foi finalizado durante o doutorado-sanduíche, realizado em Norman, OK, USA, de março a agosto de 2004, e submetido para a publicação na revista Copeia em janeiro de 2005. O manuscrito intitulado “Ecology of a Cerrado lizard assemblage in the Jalapão region of Brazil”, de autoria de Daniel Oliveira Mesquita, Guarino Rinaldi Colli, Frederico Gustavo Rodrigues França e Laurie J. Vitt, está anexado no Apêndice 2. 14 CAPÍTULO 3 Ecologia de uma taxocenose de lagartos de Savanas Amazônicas na região de Monte Alegre, Pará, Brasil Foi descrita a taxocenose de lagartos de uma Savana Amazônica na região de Monte Alegre, estado do Pará, através de dados ecológicos, morfológicos e de história de vida, avaliando a importância da filogenia na taxocenose. A taxocenose amostrada contém sete espécies. A largura de nicho de microhábitat foi baixa para todas as espécies e a sobreposição de nicho, baseado no uso de microhábitat, variou de quase nenhuma até quase completa, sendo os menores valores entre espécies mais distantes filogeneticamente e entre os teiídeos. A atividade dos lagartos ocorreu das 9:00 h até as 17:00 h e, geralmente, os forrageadores ativos foram mais comumente observados durantes as horas mais quentes do dia, enquanto os forrageadores senta e espera foram mais comuns no entardecer. O teste de Tukey nas temperaturas corporais identificou dois grupos estatisticamente homogêneos, um com os teiídeos e outro com as outras espécies. A análise de pseudocomunidades mostrou que a média de sobreposição de uso de microhábitat pelos lagartos não foi diferente de zero, indicando ausência de estrutura. Os maiores índices de sobreposição de dieta ocorreram entre os teiídeos. A análise de pseudocomunidades mostrou que a média de sobreposição de composição de dieta não foi diferente de zero, indicando ausência de estrutura. O gráfico com as médias dos escores por espécie dos dois primeiros componentes principais mostrou clusters correspondentes às famílias de lagartos. Uma inspeção detalhada das variáveis ecológicas mapeadas na filogenia das espécies e comparações 15 com espécies próximas que ocorrem em outros biomas, indicaram que a história das espécies é extremamente importante para a manutenção do padrão encontrado na taxocenose de Monte Alegre, principalmente em Teioidea, o que foi corroborado pelos resultados da ordenação filogenética canônica. O presente capítulo, sintetizado no parágrafo acima, foi finalizado em janeiro de 2005 e submetido para a publicação na revista Biotropica em fevereiro de 2005. O manuscrito intitulado “Ecology of an Amazonian Savanna lizard assemblage in Monte Alegre, Brazil”, de autoria de Daniel Oliveira Mesquita, Gabriel Corrêa Costa e Guarino Rinaldi Colli, está anexado no Apêndice 3. 16 CAPÍTULO 4 Riqueza e diversidade de lagartos determinadas pelas características do hábitat em uma escala microgeográfica: implicações para conservação no Cerrado brasileiro Foram utilizadas armadilhas de queda para determinar a relação entre a composição, diversidade de espécies e estrutura de taxocenoses com a estrutura do hábitat em dois fragmentos facilmente distinguíveis e quase contíguos na região do Jalapão, estado do Tocantins no Cerrado brasileiro. Um hábitat era relativamente aberto (Cerrado Típico) e o outro era parcialmente fechado (Cerrado Denso); eles diferiram significativamente em cinco das nove variáveis de hábitat e o hábitat mais aberto manteve durante o dia as temperaturas dos diversos microhábitats mais altas que as do hábitat mais fechado. A análise de componentes principais mostrou que o hábitat mais fechado apresentou uma combinação de mais troncos caídos, buracos e folhiço que o hábitat mais aberto. Um total de 531 indivíduos de 12 espécies de lagartos foi amostrado. As curvas de acumulação de espécies mostraram que após 23 dias de amostragem contínua o número assintótico de espécies foi de 10 para o hábitat mais aberto e 12 para o mais fechado. A estrutura de taxocenose dos lagartos também foi diferente entre hábitats. Uma análise de correspondência canônica (CCA) comparando as variáveis do hábitat em cada ponto de armadilhas com as espécies amostradas mostrou que as espécies são extremamente relacionadas com características do microhábitat. Os resultados indicaram que a estrutura do microhábitat pode causar um forte impacto na composição de espécies de lagartos, na diversidade e na 17 estrutura de taxocenoses. Portanto, os programas de conservação que visam à manutenção da biodiversidade deveriam considerar os microhábitats que as espécies utilizam. O presente capítulo, sintetizado no parágrafo acima também foi finalizado durante o doutorado-sanduíche, realizado em Norman, OK, USA, de março a agosto de 2004, e submetido para a publicação na revista Journal of Tropical Ecology em outubro de 2004. O manuscrito intitulado “Lizard species richness and diversity are determined by habitat characteristics at a microgeographic scale: implications for conservation in the Brazilian Cerrado”, de autoria de Laurie J. Vitt, Guarino Rinaldi Colli, Janalee P. Caldwell, Daniel Oliveira Mesquita, Adrian Antônio Garda e Frederico Gustavo Rodrigues França, está anexado no Apêndice 4. 18 DISCUSSÃO A hipótese de “liberação ecológica” prediz que em ilhas, onde a diversidade de espécies é menor, as espécies devem ser mais generalistas (maior largura de nicho) que em áreas continentais, onde a diversidade é maior (Crowell, 1962; Ricklefs e Miller, 1999; Pianka, 1994). Esta hipótese decorre da teoria da competição. Em locais com reduzida competição interespecífica, as espécies devem expandir seu nicho (microhábitat, dieta e morfologia) em resposta ao reduzido número de competidores (Crowell, 1962; Losos e Queiroz, 1997). A hipótese de “liberação ecológica” foi inicialmente desenvolvida em comparações entre continente e ilhas. O modelo “áreas não isoladas do Cerrado vs. áreas isoladas e Savanas Amazônicas” foi utilizado para testar a hipótese. As predições foram que, se a “liberação ecológica” ocorre, a largura de nicho (dieta e microhábitat) e aspectos da morfologia dos lagartos das ilhas deveriam ser maiores que nas áreas contínuas do Cerrado. Não foram encontradas diferenças na largura de nicho de microhábitat das espécies entre os enclaves e o Cerrado. Entretanto, baseando-se na dieta (estômagos individuais) das espécies, os resultados parcialmente suportam a hipótese, sendo que a teoria de “liberação ecológica” parece ser aplicável para Tropidurus, mas não para Ameiva ameiva, Anolis, Cnemidophorus, e Micrablepharus. A compensação da densidade é um fenômeno usualmente definido como um aumento na densidade das espécies de ilhas em resposta ao reduzido número de espécies, quando comparados com as populações de áreas continentais (MacArthur et al., 1972; Pianka, 1994; Ricklefs e Miller, 1999). A hipótese da compensação da densidade também é derivada da teoria da competição e a maioria das explicações parte da premissa de que em taxocenoses mais 19 simples (ilhas) os recursos são mais abundantes, resultando em reduzida competição quando comparado com áreas continentais, permitindo que as espécies ocorram em altas densidades (Crowell, 1962; MacArthur et al., 1972). Os dados não suportaram esta hipótese. As espécies não são mais abundantes nas áreas isoladas que nas áreas não isoladas. Os fatores ecológicos (e.g., competição e predação) têm sido considerados como os mais importantes fatores afetando as relações entre as espécies nas taxocenoses (Wiens, 1977; Diamond, 1978; Wilbur, 1972; Dunham, 1983). Mais recentemente, a história tem sido identificada como um fator que muito contribui para a estrutura das taxocenoses e, se ignorada, conclusões completamente equivocadas podem ser adotadas (Losos, 1994; Losos, 1996; Brooks e McLennan, 1991; Cadle e Greene, 1993). Embora exita dúvida que a competição e predação influenciam a estrutura das taxocenoses (Losos et al., 1993; Spiller e Schoener, 1989; Case e Bolger, 1991), a origem das diferenças ecológicas parece ter raízes muito antigas na história evolutiva das espécies (Losos, 1996; Losos, 1995; Vitt et al., 2003; Vitt et al., 1999; Webb et al., 2002). A hipótese de “liberação ecológica” prediz que os fatores ecológicos devam ser mais importantes que os históricos na determinação da estrutura das taxocenoses, e isso seria perceptível com o aumento da densidade nas áreas isoladas juntamente com expansão de nicho. Entretanto, as espécies têm a ecologia bastante conservativa, e isso é refletido na pouca variação de largura de nicho, morfologia e abundância entre as populações (ver Mesquita e Colli, 2003; Vitt e Colli, 1994; Vitt et al., 1998), enfatizando a importância da história evolutiva das espécies na estrutura das taxocenoses. As pressões ambientais parecem promover respostas diferenciadas entre táxons diferentes. Os resultados indicaram que Ameiva ameiva, Cnemidophorus (Teiidae), Anolis (Polychrotidae) e Micrablepharus (Gymnophthalmidae) apresentam aspectos da dieta mais conservados, e lagartos do gênero Tropidurus (Tropiduridae) são mais afetados pelos 20 fatores ecológicos, corroborando resultados prévios (ver Vitt et al., 1997a; Vitt, 1993; Vitt et al., 1997b; Mesquita e Colli, 2003). A ecologia e abundância das espécies são bastante conservativas, variando pouco de taxocenose para taxocenose, evidenciando a importância da história das espécies. Entretanto, diferenças na dieta em tropidurídeos sugerem que os fatores ecológicos também são importantes para a manutenção da estrutura das taxocensoses. A influência da história também fica evidenciada quando são feitas comparações em uma única taxocenose. Uma análise detalhada nos dados ecológicos com uma perspectiva histórica sugere que os lagartos da região do Jalapão são fortemente influenciados pela história filogenética. Se a interação entre as espécies determina os aspectos ecológicos dos lagartos do Jalapão, esses traços deveriam estar mapeados aleatoriamente na filogenia das espécies e este não é o caso. Mesmo com os resultados contraditórios da ordenação filogenética canônica (ver capítulo 2), foram demonstradas inúmeras evidências de que a história das espécies desempenha um importante papel nas estrutura das taxocenoses. Além disso, a aplicação de métodos filogenéticos para interpretação de relações entre espécies em uma taxocenose ainda são incipientes (e.g.,Webb et al., 2002). Ainda, os resultados encontrados na análise da taxocenose de Savana Amazônica de Monte Alegre, PA, corroboram estes resultados. Finalmente, várias análises em nível local (e.g., Vitt e Zani, 1996; Vitt e Zani, 1998b; Vitt et al., 2000; Giannini, 2003) e uma em nível global (Vitt et al., 2003) indicaram que várias porções da estrutura de taxocenoses de lagartos têm base histórica. Levando-se em conta outro aspecto da estrutura das taxocenoses, os resultados apresentam uma ampla implicação para a biologia da conservação em geral, mais especificamente para a conservação e manejo do Cerrado. Primeiro, como qualquer ser vivo, os lagartos são importantes componentes dos ecossistemas naturais. Segundo, eles são excelentes 21 modelos para se examinar os padrões de ocorrência e abundância relativa em escalas microgeográficas, porque eles são facilmente coletados, identificados e monitorados. Finalmente, como mostrado aqui (Capítulo 4), muitas espécies dependem de aspectos específicos da vegetação e do hábitat onde vivem. A habilidade de se identificar as características do microhábitat, essencial para a presença de várias espécies, nos providencia informações necessárias para desenvolver estratégias para conservação e manejo dos ecossistemas. Neste exemplo, a remoção de árvores, folhiço, trocos caídos, e cupinzeiros pode ter um impacto imediato na diversidade de lagartos e na estrutura das taxocenoses. Como mostrado aqui, as espécies animais não estão distribuídas uniformemente no Cerrado, sendo que variações microgeográficas na estrutura do microhábitat afetam a composição e a abundância relativa das espécies. Consequentemente, as taxocenoses são fortemente afetadas pela modificação do hábitat, mesmo aquelas controladas pelas agências de proteção ambiental, como o corte seletivo de madeira e subseqüente replantio. REFERÊNCIAS BIBLIOGRÁFICAS AB'SÁBER, A. N. 1982. The paleoclimate and paleoecology of Brazilian Amazonia, p. 41-59. In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University Press, New York. ARAÚJO, A. F. B. 1991. Structure of a white sand-dune lizard community of coastal Brazil. Revta. Brasil. Biol. 51:857-865. —. 1992. Estrutura morfométrica de comunidades de lagartos de áreas abertas do litoral sudeste e Brasil central, p. 191. Universidade de Campinas, Campinas. 22 ÁVILA-PIRES, T. C. S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, Leiden. 1995:3-706. BIGARELLA, J. J., e D. ANDRADE-LIMA. 1982. Paleoenvironmental changes in Brazil, p. 27-40. In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University Press, New York. BOURNE, G. R., A. C. COLLINS, A. M. HOLDER, e C. L. MCCARTHY. 2001. Vocal communication and reproductive behavior of the frog Colostethus beebei in Guyana. J. Herpetol. 35:272281. BROOKS, D. R., e D. A. MCLENNAN. 1991. Phylogeny, Ecology, and Behavior, a Research Program in Comparative Biology. The University of Chicago Press, Chicago. BROOKS, D. R., e D. A. MCLENNAN. 1993. Historical ecology: examining phylogenetic components of community evolution, p. 267-280. In: Species Diversity in Ecological Communities, Historical and Geographical Perspectives. R. E. Ricklefs e D. Schluter (eds.). The University of Chicago Press, Chicago, Illinois. CADLE, J. E., e H. W. GREENE. 1993. Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages, p. 281-293. In: Species Diversity in Ecological Communities: Historical and Geographical Perspectives. R. E. Ricklefs e D. Schluter (eds.). University of Chicago Press, Chicagi. CASE, T. J., e D. T. BOLGER. 1991. The role of interspecific competition in the biogeography of island lizards. TREE. 6:135-139. COLLI, G. R. 1996. Amazonian savanna lizards and the historical biogeography of Amazonia, p. 137. University of California, Los Angeles. 23 CONNOR, E. F., A. C. COURTNEY, e J. M. YODER. 2000. Individuals-area relationships: the relationship between animal population density and area. Ecology. 81:734-748. CROWELL, K. L. 1962. Reduced interspecific competition among the birds of Bermuda. Ecology. 43:75-88. DIAMOND, J. M. 1978. Niche shifts and the rediscovery of interspecific competition. Am. Sci. 66:322-331. DUNHAM, A. E. 1983. Realized niche overlap, resource abundance, and interespecific competition, p. 261-280. In: Lizard Ecology: Studies of a Model Organism. R. B. Huey, E. R. Pianka, e T. H. Schoener (eds.). Harvard University Press, Cambridge, Massachusetts. EDEN, M. J. 1974. Paleoclimatic influences and the development of savanna in Southern Venezuela. J. Biogeogr. 1:95-109. EITEN, G. 1972. The Cerrado vegetation of Brazil. Bot. Rev. 38:201-341. —. 1978. Delimitation of the Cerrado concept. Vegetatio. 36:169-178. GIANNINI, N. P. 2003. Canonical phylogenetic ordination. Syst. Biol. 52:684-695. HUBER, O. 1982. Significance of savanna vegetation in the Amazon Territory of Venezuela, p. 221-244. In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University Press, New York. LOSOS, J. B. 1994. Historical contingency and lizard community ecology, p. 319-333. In: Lizard Ecology: Historical and Experimental Perspectives. L. J. Vitt e E. R. Pianka (eds.). Princeton University Press, Princeton, New Jersey. —. 1995. Community evolution in greater antillean Anolis lizards: phylogenetic patterns and experimental tests. Phil. Trans. R. Soc. London B. 349:69-75. 24 —. 1996. Phylogenetic perspectives on community ecology. Ecology. 77:1344-1354. LOSOS, J. B., J. C. MARKS, e T. W. SCHOENER. 1993. Habitat use and ecological interactions of an introduced and a native species of Anolis lizard on Grand Cayman, with a review of the outcomes of anole introductions. Oecologia. 95:525-532. LOSOS, J. B., e K. QUEIROZ. 1997. Evolutionary consequences of ecological relaease in Caribbean Anolis lizards. Biol. J. Linn. Soc. 61:459-483. MACARTHUR, R. H., J. M. DIAMOND, e J. R. KARR. 1972. Density compensation in island faunas. Ecology. 53:330-342. MESQUITA, D. O., e G. R. COLLI. 2003. Geographical variation in the ecology of populations of some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia. 2003:285-298. PIANKA, E. R. 1973. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4:53-74. —. 1994. Evolutionary Ecology. HarperCollins College Publishers, New York, NY. PIRES, J. M. 1973. Tipos de vegetação da Amazônia. Publ. Av. Mus. Par. Em. Goel. 20:179-202. PRANCE, G. T. 1978. The origin and evolution of the Amazon flora. Interciencia. 3:207-222. RICKLEFS, R. E., e G. L. MILLER. 1999. Ecology. Freeman, W H and Company, New York, NY. RODDA, G. H., e K. DEAN-BRADLEY. 2002. Excess density compensation of island herpetofaunal assemblages. J. Biogeogr. 29:623-632. SIMPSON, E. H. 1949. Measurement of diversity. Nature. 163:688. SPILLER, D. A., e T. W. SCHOENER. 1989. Effect of a major predator on grouping of an orbweaving spider. J. An. Eco. 58:509-523. TER BRAAK, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology. 76:1167–1179. VITT, L. J. 1991. An introduction to the ecology of Cerrado lizards. J. Herpetol. 25:79-90. 25 —. 1993. Ecology of isolated open-formation Tropidurus (Reptilia: Tropiduridae) in Amazonian lowland rain forest. Can. J. Zool. 71:2370-2390. —. 1995. The ecology of tropical lizards in the Caatinga of northeast Brazil. Occ. Pap. Oklahoma Mus. Nat. Hist. 1:1-29. VITT, L. J., J. P. CALDWELL, P. A. ZANI, e T. A. TITUS. 1997a. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. Proceedings of the National Academy of Sciences of the United States of America. 94:3828-3832. VITT, L. J., e C. M. CARVALHO. 1995. Niche partitioning in a tropical wet season: lizards in the Lavrado area of Northern Brazil. Copeia. 1995:305-329. VITT, L. J., e G. R. COLLI. 1994. Geographical ecology of a neotropical lizard: Ameiva ameiva (Teiidae) in Brazil. Can. J. Zool. 72:1986-2008. VITT, L. J., E. R. PIANKA, W. E. COOPER, JR., e K. SCHWENK. 2003. History and the global ecology of squamate reptiles. Am. Nat. 162:44-60. VITT, L. J., S. S. SARTORIUS, T. C. S. ÁVILA-PIRES, M. C. ESPÓSITO, e D. B. MILES. 2000. Niche segregation among sympatric Amazonian teiid lizards. Oecologia. 122:410-420. VITT, L. J., e L. D. VANGILDER. 1983. Ecology of a snake community in northeastern Brazil. Amphibia-Reptilia. 4:273-296. VITT, L. J., e P. A. ZANI. 1996. Organization of a taxonomically diverse lizard assemblage in Amazonian Ecuador. Can. J. Zool. 74:1313-1335. —. 1998a. Ecological relationships among sympatric lizards in a transitional forest in the Northern Amazon of Brazil. J. Trop. Ecol. 14:63-86. —. 1998b. Prey use among sympatric lizard species in lowland rain forest of Nicaragua. J. Trop. Ecol. 14:537-559. 26 VITT, L. J., P. A. ZANI, T. C. S. ÁVILA-PIRES, e M. C. ESPOSITO. 1998. Geographical ecology of the gymnophthalmid lizard Neusticurus ecpleopus in the Amazon rainforest. Can. J. Zool. 76:1671-1680. VITT, L. J., P. A. ZANI, J. P. CALDWELL, M. C. D. ARAUJO, e W. E. MAGNUSSON. 1997b. Ecology of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. Copeia. 1997:745757. VITT, L. J., P. A. ZANI, e M. C. ESPOSITO. 1999. Historical ecology of Amazonian lizards: implications for community ecology. Oikos. 87:286-294. WEBB, C. O., D. D. ACKERLEY, M. A. MCPEEK, e M. J. DONOGHUE. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33:475-505. WIENS, J. A. 1977. On competition and variable environments. Am. Sci. 65:590-597. WILBUR, H. M. 1972. Competition, predation, and the structure of the Ambystoma-Rana sylvatica community. Ecology. 53:3-21. 27 APÊNDICE 1- manuscrito submetido para a publicação na revista OIKOS em fevereiro de 2005. Ecological release in lizard assemblages of Neotropical savannas Daniel Oliveira Mesquita1, Guarino Rinaldi Colli1 and Laurie J. Vitt2 1 Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910- 900 Brasília - DF, Brazil, Tel/fax: 55-61-307-2265 ext: 21, email: danmesq@unb.br 2 Sam Noble Oklahoma Museum of Natural History and Zoology Department, University of Oklahoma, Norman, OK 73072 USA 28 We compare lizard assemblages of Cerrado and Amazon savannas testing the ecological release hypothesis, accounting for historical factors. The ecological release hypothesis predicts that niche dimensions and abundance should be greater in species from Amazon savannas and isolated Cerrado patches when compared with non isolated areas in central Cerrado. We calculated microhabitat and diet niche breadths with data from six central Cerrado populations and 14 from isolated Cerrado patches and Amazon savanna areas. Morphological data were compared using average Euclidean distances and lizard abundance was estimated using the number of lizards captured in pitfall traps over an extended time period. We found no evidence of ecological release with respect to microhabitat use, suggesting that historical factors are more important than ecological factors. However, data from individual stomachs indicate that ecological release occurs in these areas for Tropidurus but not for Ameiva ameiva, Anolis, Cnemidophorus, and Micrablepharus. These results suggest that different lineages respond differently to environmental pressures, with tropidurids being more affected by ecological factors than polychrotids, teiids, and gymnophthalmids. We found no evidence that ecological release occurs in these areas using morphological data. Based on abundance data, our results indicate that the ecological release (density compensation) hypothesis is not supported: lizard species are not more abundant in isolated areas than in non isolated areas. The ecology of species is highly conservative, varying little from assemblage to assemblage. Nevertheless, increases in niche breadth for some species indicate that ecological release occurs as well. 29 Introduction Communities are usually defined as associations among populations that coexist in an easily defined place. Most community studies focus on assemblages, groups of phylogenetically related species that coexist in a specific geographic area (Ricklefs and Miller 1999). Primary determinants of assemblage structure are species interactions, resource use patterns, and historical relationships among taxa comprising the assemblage (Begon, et al. 1990, Pianka 1994, Ricklefs and Miller 1999). Historically, ecological factors have received the most attention from ecologists who argued that competition and predation were the main causes of assemblage organization (Wiens 1977, Mitchell 1979, Dunham 1983). More recently, historical factors have received special attention (Losos 1994, 1996, Vitt, et al. 1999, Webb, et al. 2002). Evidence of historical factors includes lack of divergence in ecological traits (e. g., microhabitat use, diet) among closely related species independent of the assemblage in which they reside. Divergence in ecological traits among closely related species is viewed as evidence of the importance of ecological factors (Brooks and McLennan 1991, Losos 1996). Clearly, both historical and ecological factors contribute to structure in present-day animal assemblages (Brooks and McLennan 1991, Cadle and Greene 1993, Losos 1994, 1996, Vitt 1995). Islands generally contain fewer species compared with continental areas, but often, species are more abundant on islands. This phenomenon was described initially for bird assemblages and called “density compensation” (Crowell 1962, Pianka 1994, Ricklefs and Miller 1999). In addition, island species often expand their habitat niche breadth in response to a lower number of competitors, occupying habitats that are occupied by other species in continental areas, a phenomenon known as “niche expansion” (MacArthur, et al. 1972, Pianka 1994, 30 Ricklefs and Miller 1999). In combination, both processes (density compensation and niche expansion) are referred to as “ecological release” (Pianka 1994, Ricklefs and Miller 1999). Ecological release has been documented for amphibian and reptile assemblages. Rodda and Dean-Bradley (2002) found strong evidence that amphibians and reptiles (mainly lizards) have higher biomass and density in small islands than in continental areas. Conversely, a study correlating island size with density of animal populations suggested that density compensation might be less common than previously thought (Connor, et al. 2000). A study on Anolis lizards in the Antilles tested the hypothesis that lizards from small islands (few species) should exhibit a generalized morphology and greater microhabitat niche breadth compared with lizards from large islands (more species). However, results did not confirm these predictions. Lizards on small islands did not have a generalized morphology and did not have greater microhabitat niche breadth (Losos and Queiroz 1997). We set out to test the ecological release hypothesis using lizard assemblages from the Cerrados of Brazil. Cerrado lizard assemblages are ideal for testing this hypothesis because the Cerrado contains a vast core area (the “mainland”) and numerous variously sized enclaves (“islands”) embedded in Amazon rainforest. We compare lizard assemblages of Cerrado and Amazon enclaves testing the ecological release hypothesis, considering both ecological and historical factors. Based on the ecological release hypothesis, we predict that niche dimensions (e. g., microhabitat, diet and morphology) should be greater and abundance should be higher in species of Amazon isolated enclaves when compared with species in non isolated areas in the central Cerrado. 31 Materials and methods Study sites The Cerrado covers about 2,000,000 km2, about 25% of Brazil and is located in the central region of Brazil, with some isolated patches in northern Brazil (Oliveira and Marquis 2002). The region receives annually 1,500-2,000 mm of highly predictable and strongly seasonal precipitation, from October to April. Monthly temperatures average 20 to 22 C (Nimer 1989). The Cerrado biome harbors forests, where arboreal species predominate; savannas, with trees and shrubs dispersed in an herbaceous stratum; and grasslands, with herbaceous species and some shrubs. Tree trunks are tortuous, with thick corky barks and hard, coriaceous leaves (Ribeiro and Walter 1998). We sampled several isolated and non isolated Cerrado areas. Among the non isolated areas, we sampled in a gradient of sandy Cerrado and rocky field in Alvorada do Norte, Goias State (14º 36’ S, 46º 24’ W) in August 2003 and March 2004, Dianópolis, Tocantins State (11º 42’ S, 46º 48’ W) in September 2003, Mateiros, Tocantins State (10º 11’ S, 46º 40’ W) in February 2002, Paranã, Tocantins State (12º 54’ S, 47º 42’) in September 2003 and April 2004; in a dry forest in São Domingos, Goias State (13º 24’ S, 46º 19’ W) in August and December 2003; and in a latosoil Cerrado in Paracatu, Minas Gerais State (17º 24’ S, 47º 18’ W) in October-December 2001. Among the isolated Cerrado areas, we sampled in a gradient of sandy Cerrado and rocky field in Serra do Cachimbo, Novo Progresso, Pará State (8º 42’ N, 55º 20’ W) in July 2002, in two different habitats in Guajará-Mirim, Rondônia State (10º 48’ S, 65º 22’ W), a rocky field and a sandy Cerrado, in December 2000-January 2001, in two diferrent areas in Vilhena, Rondônia State (12º 43’ S, 60º 07’ W), a sandy Cerrado and a latosoil Cerrado, in in August 1998 and September–October 1999, and in three different areas in Pimenta Bueno, 32 Rondônia State (12º 30’ S, 60º 49’ W), a latosoil Cerrado, a transitional forest, and a sandy Cerrado, in July-August 2000. Amazon savannas occur like scattered islands inside the Amazon Forest and cover about 150,000 km2, or 2% of Brazil (Pires 1973). The precipitation is highly seasonal and annual precipitation averages 1,700 mm (Eidt 1968). Vegetation is dominated by typical species of the Cerrado, but diversity is usually lower (Eiten 1978). Among the Amazon savannas, we sampled in two different areas with sandy soils, in Macapá (0º 02’ N, 51º 03’ W) and Tartarugalzinho (1º 26’ N, 1º 04’ W), in Amapá State, in September-October 1991, which we considered as a single assemblage because of the similarity in vegetation structure and composition of the lizard fauna, a rocky field in Serra dos Carajás, Paraupebas, Pará State (6º 10’ N, 51º 20’ W) in July-August 1992, a latosoil area in Humaitá, Amazonas State (7º 31’ S, 63º 02’ W), in October-November 1991 and June-July 2003, in a sandy soil area in in Alter do Chão, Pará State (7º 40’ S, 39º 12’ W), in August 1992, in a gradient of sandy soils and rocky fields in Monte Alegre, Pará State (2º 6’ S, 54º 20’ W), in December 2002, and in sandy soil area in Boa Vista, Roraima State (2º 49’ N, 60º 40’ W), in September 1992. The separation between Amazonian savannas and isolated Cerrado areas was proposed by Eiten (1978), and is based mainly on plant species similarities. Usually, the Amazonian savannas are poorest when compared with all kind of Cerrado areas (isolated and noon isolated) (Eiten 1972, 1978). Here, we are considering all enclaves as islands, to test the ecological release hypothesis. All specimens examined are deposited in the Coleção Herpetológica da Universidade de Brasília (CHUNB). Collecting sites are indicated in Fig. 1. 33 Species composition and microhabitat We captured lizards with drift fences, by hand, or using a shotgun. In the lab, we humanely killed live lizards with an injection of Tiopental® and fixed them with 10% formalin. We recorded microhabitat for each lizard collected. We used the following microhabitat categories: clear ground, grass, hole, inside termite nest, leaf, leaf litter, log, rock, shrub, stick, tree trunk, under leaf, under leaf litter, under log, under manure, under rock, tree bark, under tree bark, and wall. We computed microhabitat niche breadths (B) using the inverse of Simpson's (1949) diversity index: B= 1 n ∑p 2 i i =1 , where p is the proportion of microhabitat category i and n is the number of categories. We made comparisons among assemblages using differences among isolated and non isolated areas as a model to test the ecological release hypothesis. We compared average microhabitat niche breadth of species among assemblages. If ecological release occurs in isolated areas, we expect average niche breadth to be higher than in non isolated areas Diet composition We analyzed stomach contents under a stereoscopic microscope, identifying prey items to ordinal level. We recorded length and width (0.01 mm) of intact items with Mitutoyo® electronic calipers, and estimated prey volume (V) as an ellipsoid: 4 ⎛ w ⎞2⎛ l⎞ V = π⎝ ⎠ ⎝ ⎠ 2 2 , 3 34 where w is prey width and l is prey length. We calculated numeric and volumetric percentages of each prey category for pooled and individual stomachs. From these percentages, we computed niche breadths (B) for pooled and individual stomachs, using the inverse of Simpson's diversity index (Simpson 1949), as described above. We excluded from the volumetric analyses prey items that were too fragmented to allow a reliable estimation of their volumes. Average niche breadths of all species from each assemblage were compared between isolated and non isolated areas, as a test of the ecological release hypothesis. We also made comparisons with just closely related species, to minimize the effect of history. Because analyses with pooled stomachs provided only a single diet niche breadth value for each species, we made comparisons among closely related species of different assemblages with data generated for individual stomach means. We used averages of numeric and volumetric niche breadths for both individual and pooled stomachs. This balances the cost of acquiring prey (energy expended capturing each prey item) with energy gains associated with individual prey types. Throughout the text, this average is referred as diet niche breadth. Morphometry Using Mitutoyo® electronic calipers, we recorded morphometric variables to the nearest 0.01 mm, including: snout-vent length (SVL), body width (at its broadest point), body height (at its highest point), head width (at its broadest point), head height (at its highest point), head length (from the tip of the snout to the commissure of the mouth), hindlimb length, forelimb length, and tail length (from the cloaca to the tip of the tail). To maximize the availability of data, we estimated intact tail length of lizards with broken or regenerated tails using a regression equation 35 relating tail length to SVL, calculated from lizards with intact tails, separately for populations and species. When the regression was not statistically significant, we used the average of intact tails. We log-transformed (base 10) all morphometric variables prior to analyses to meet requirements of normality (Zar 1998). To compare the assemblages using morphometry, we calculated a matrix of Euclidean distance among all pairs of species at each locality using the following formula: 1 2 ⎡9 2⎤ Dij = ⎢∑ (X ik − X jk ) ⎥ , ⎣ k =1 ⎦ where Dij is the Euclidean distance between species i and j, and Xik and Xjk are averages of logtransformed morphometric variables k for species i and j. From the matrix of distances for each assemblage, we calculated the average neighbor distance and compared them between isolated and versus isolated areas. Based on the ecological release hypothesis, we expected average neighbor distance to be greater in isolated than in non isolated areas. Abundance We used pitfall traps with drift fences to estimate abundance of lizards. Each trap consists of four buckets, with one in the center and the others in the extremities, connected with plastic, at angles of 120° from each other. In most areas, 100 buckets were used in each sampled area. When more than 100 buckets were used in an area, we corrected abundance data by dividing the original data by one plus the additional proportion of buckets. Our density estimates consisted of the average number of lizards per species per day collected in the buckets. We compared abundances among assemblages, ignoring species. We 36 then used data from the four most widely distributed genera (Ameiva, Cnemidophorus, Anolis, and Micrablepharus) to make comparisons among sampled areas. Next, we performed regressions, on a species by species basis, to determine the relationship between lizard abundance and number of species in the assemblages. The ecological release hypothesis predicts that in isolated areas, where diversity is lower, species should occur at higher densities (density compensation).We expect that, if ecological release occurs in these areas, species in isolated areas should be more abundant than in non isolated areas, having expanded their niches to include microhabitats used by lizard species that are missing. Statistical analysis We carried out statistical analyses using SYSTAT 11.0 and SAS 8.1 for Windows, with a significance level of 5% to reject null hypotheses. Throughout the text, means appear ± 1 SD. Results Species composition and microhabitat We collected 51 lizard species in the 20 study sites (Appendix 1). Lizards in non isolated areas were significantly richer than isolated areas (Table 1). Isolated areas richness varied from 11 species in Vilhena to two species in the rock field at Guajará-Mirim (Appendix 1). Among non isolated areas, richness was greatest in dry forest at São Domingos and in latosoil cerrado in Paracatu-MG, with 16 lizard species. The lowest richness was in the gradient of sandy cerrado and rocky field in Alvorada do Norte, with eight species (Appendix 1). The most diverse lizard 37 clade was Teiidae, with 11 open vegetational species and three typical forest species, followed by Gymnophthalmidae (8/4), Tropiduridae (7/0), Gekkonidae (6/1), Polychrotidae (5/1), and Scincidae (5/0) (Appendix 1). Microhabitat niche breadths were generally low, ranging from 1.00, in several species to 5.04 in Gymnodactylus geckoides from São Domingos (Appendix 2). Average niche breadth among species in each assemblage varied from 1.32 in the sand Cerrado in Jalapão to 2.74 in the rock field of Guajará-Mirim-RO (Appendix 2). No differences were detected in average niche breadths between isolated vs. non isolated areas (Table 1). Further, there was no significant association between average niche breadth and number of species in each assemblage (R = 0.311, F1,11 = 0.178, P = 0.301) (Fig. 2). To minimize historical effects, we conducted separate analyses on populations of closely related species of the four most widely widespread genera (Ameiva, Cnemidophorus, Anolis and Tropidurus). No differences were detected in average microhabitat niche breadths of isolated vs. non isolated areas considering only these four genera (Table 1). Likewise, there was no significant relationship between microhabitat niche breadths and number of species in each assemblage for these genera, except for Ameiva ameiva (Fig. 2). Even if the results for Ameiva are significant, the comparisons between average microhabitat niche breadths of isolated vs. non isolated are not, leading us to believe that ecological release does not occur, considering this species. These results indicate that ecological release in microhabitat use does not occur in the studied assemblages. 38 Diet composition We analyzed the contents of 3,583 lizard stomachs and recognized 38 prey categories. Based on pooled stomachs, Mabuya nigropunctata from the transitional forest in Pimenta Bueno-RO and Kentropyx paulensis from the latosoil Cerrado in Paracatu had the smallest diet niche breadth and Kentropyx striata from Roraima had the greatest niche breadth (Appendix 3). Based on individual stomachs, the smallest diet niche breadth was observed in Mabuya nigropunctata from the transitional forest in Pimenta Bueno-RO and in Kentropyx paulensis from the latosoil Cerrado in Paracatu-MG; and the greatest niche breadth was observed in Ameiva ameiva from the sandy Cerrado in Vilhena-RO (Appendix 3). Based on pooled stomachs, there was no difference in average niche breadths between isolated vs. non isolated areas (Table 1) and the relationship between dietary niche breadths and number of species in the assemblage was not significant (Fig. 3). Considering only the five most widespread genera (Ameiva, Cnemidophorus, Micrablepharus, Anolis and Tropidurus), there was no evidence of ecological release (Table 2), and there was no relationship between diet niche breadths and number of species of each assemblage for these five genera (Fig. 3).These results indicate that, based on pooled stomachs, ecological release do not occur in these areas. Based on individual stomachs niche breadths was higher in isolated relative to non isolated areas (Table 1), and there was also a significant relationship between dietary niche breadths and number of species in the assemblage (R = 0.471, F1,18 = 5.128, P = 0.036) (Fig. 4). Considering the five most widely widespread genera (Ameiva, Cnemidophorus, Micrablepharus, Anolis and Tropidurus), we did not find statistical differences in diet niche breadths on isolated vs. non isolated areas, except for Tropidurus (Table 2). Linear regression analyses failed to detected significant relationship between diet niche breadths and number of species of each 39 assemblage for these four genera (Fig. 4). These results indicate that, based on individual stomachs of all species, ecological release should occur, and that among the four most widely widespread genera, it occurs only in Tropidurus. Morphometry We found significant differences in average nearest neighbor Euclidean distance among populations (ANOVA F19,640 = 6.877, P < 0.0001). The smallest average distance was in in the rock field assemblage at Guajará Mirim ( x = 0.66 ± 0.00) and the sandy Cerrado in Amapá ( x = 0.66 ± 0.29). The largest was in the lizard assemblage in transitional forest in Pimenta Bueno ( x = 1.95 ± 1.15). We found no significant differences in average nearest neighbor Euclidean distance of lizard assemblages between isolated and non isolated areas (Table 1), and no significant relationship between nearest neighbor Euclidean distance and number of species in each assemblage (R = 0.169, F1,18 = 0.526, P = 0.447) (Fig. 5). These results indicate that ecological release does not occur in these areas. Abundance Based on all assemblages combined, the rarest lizard species were Enyalius cf bilineatus, Kentropyx paulensis, and Bachia cacerensis, and the most abundant species were Cnemidophorus cf ocellifer, Tropidurus cf oreadicus, and Ameiva ameiva. Based on each assemblage, the rarest lizards were Enyalius cf bilineatus and Kentropyx paulensis, from Paracatu-MG, and Bachia cacerensis, from the sandy Cerrado in Vilhena, and the most abundant 40 lizards were Cnemidophorus cryptus, from Monte Alegre, and Cnemidophorus cf ocellifer, from Paranã (Appendix 4). The assemblage with lowest lizard abundance was Humaitá-AM, and those with the highest abundances were Paranã and Monte Alegre. Based on abundance relative to number of species in each assemblage, lizards were less abundant in Paracatu and Humaitá and more abundant in Alvorada do Norte, the sandy cerrado in Pimenta Bueno, Dianópolis, Paranã, and Monte Alegre (Appendix 4). There was no significant difference in lizard abundance between isolated and non isolated areas (Table 1). Because richer assemblages have higher probabilities than poorer assemblages to exhibit higher lizard abundances, we repeated the analyses with number of species in each assemblage as a covariate. Likewise, we did not find a significant difference in abundance of lizards between isolated and non isolated areas (ANCOVA F1,9 = 0.312, P = 0.590). To further refine our analyses, we compared the abundances of Ameiva, Anolis, Cnemidophorus and Micrablepharus, but in no genus there was a significant difference in lizard abundance between isolated and non isolated habitats (Table 1). A significant negative correlation existed between number of species in assemblages and abundance of Micrablepharus (P = 0.039, r = 0.834) (Fig. 6). Our results indicate that the density compensation hypothesis appears not to be applicable to Cerrado lizard assemblages, with lizard species being equally abundant in isolated and non isolated areas. 41 Discussion Species composition and microhabitat The ecological release hypothesis predicts that on islands, where species diversity is lower, species should be more generalized (have wider niche breadths) than in continental areas where diversity is higher (Crowell 1962, Pianka 1994, Ricklefs and Miller 1999). The ecological release hypothesis is a consequence of competition theory. In places with reduced interspecific competition, species should expand their use of microhabitats in response to fewer competitors (Crowell 1962, Losos and Queiroz 1997). The ecological release hypothesis was initially developed based on island-continent comparisons. We applied the model to non isolated Cerrado areas (“mainland”) vs. isolated enclaves (“islands”) to test the hypothesis. Our prediction was that, if ecological release occurs in these areas, microhabitat niche breadths of lizards from isolated areas should be higher than in non isolated areas. However, our results do not support these predictions. We found no difference in average microhabitat niche breadth between isolated vs. non isolated areas both considering all species or the most widespread genera (Ameiva, Cnemidophorus, Anolis and Tropidurus). Moreover, there was no significant correlation between microhabitat niche breadth and number of species in assemblages. Our results showed that ecological release in microhabitat niche breadth did not occur in these areas. Ecological factors (e. g., competition and predation) have been considered the most important factors affecting relationships among species in assemblages (Wilbur 1972, Wiens 1977, Diamond 1978, Dunham 1983). More recently, history has been identified as a factor contributing to community structure and if ignored, erroneous conclusions can result (Brooks and McLennan 1991, Cadle and Greene 1993, Losos 1994, 1996). Although we have no doubt 42 that competition and predation influence assemblage structure (Spiller and Schoener 1989, Case and Bolger 1991, Losos, et al. 1993), origins of some ecological differences in assemblages have their roots deep in the evolutionary history of species (Losos 1995, 1996, Vitt, et al. 1999, 2003, Webb, et al. 2002). The ecological release hypothesis maintains that ecological factors should be more important than history in determining assemblage structure, and this should be detectable as increases in density in isolated areas along with niche expansion. We were unable to support this. Lizard species are highly conservative in their ecological traits, and this is reflected in low variation among populations in niche breadth (see Vitt and Colli 1994, Vitt, et al. 1998, Mesquita and Colli 2003), emphasizing the importance of the evolutionary history of species in assemblage structure. Diet composition Food has been considered a primary niche axis in studies of coexistence of sympatric species (Pianka 1973, 1986) and the center of attention in studies of species interactions (Schoener 1968, Dunham 1983, Spiller and Schoener 1994). Considering the ecological release hypothesis, the low number of species in isolated areas should promote reduced competition and consequently allow the species to eat a larger spectrum of prey resulting in larger diet niche breadths (MacArthur, et al. 1972, Pianka 1994, Ricklefs and Miller 1999). Our results partially support this hypothesis. The results based on pooled stomachs indicate that ecological release does not occur in these areas. However, based on individual stomachs, the ecological release hypothesis appears to be applicable for Tropidurus, but not Ameiva ameiva, Anolis, Cnemidophorus, and Micrablepharus. In the analyses of the pooled stomachs, we used the sum 43 of all items of all individuals of same species in an assemblage. In analyses of individual stomachs, we have one value of niche breadth per individual, permitting us to calculate the mean and standart deviation for each individual and posteriorly for all individuals in the assemblage. Thus we believe that results from individual stomachs are more appropriated for these comparisons. Environmental pressures appear to promote differential evolutionary responses among different taxa. Our results indicate that Ameiva ameiva, Cnemidophorus (Teiidae), Anolis (Polychrotidae) and Micrablepharus (Gymnophthalmidae) are more conservative in diets. Comparisons among several populations from different assemblages, with different numbers of syntopic lizard species and differences in potential competitors and predators, show that diets of these lizards do not vary considerably. Consequently, historical effects are stronger than ecological factors (e. g. Brooks and McLennan 1991, Miles and Dunham 1993, Losos 1994, 1996). Apparently, teiids, gymnophthalmids and polychrotids are more conservative in diets than tropidurids. Teiids occur from Argentina through the United States, gymnophthalmids occur throughout South America extending north through most of Central America and polychrotids occur from southeastern United States through Central America and most of South America (Pough, et al. 1998, Zug, et al. 2001). Despite this wide distribution, ecological traits among species are conservative (see Pianka 1970, Vitt, et al. 1997, 1998, Mesquita and Colli 2003). For example, studies on the South American teiids Ameiva ameiva and lizards of genus Cnemidophorus reveal striking similarities in ecological traits among sites in different biomes (Vitt and Colli 1994, Mesquita and Colli 2003). Similar results were found for the gymnophthalmid Neusticurus ecpleopus, which has a wide distribution in Amazon rainforest (Vitt, et al. 1998) and for Anolis nitens tandai in Amazon forest (Vitt, et al. 2001). 44 On the contrary, tropidurids appear much more variable in their ecological traits. Closely related tropidurids from several populations in Brazil differ in diets and morphology in response to use of different microhabitats (Vitt 1981, 1993, Vitt, et al. 1997). Our results suggest that different lineages show differential responses to environmental pressures; tropidurids were more affected by ecological factors than teiids, polychrotids and gymnophthalmids, corroborating previous results (see Vitt 1993, Vitt, et al. 1997a, 1997b, Mesquita and Colli 2003). In addition, our results suggest that both historical and ecological factors are important for maintenance of assemblage structure. Morphometry The first attempt to use morphological analyses to assess ecological relationships was described by Hutchinson (1959). Subsequent studies used birds (Schoener 1965, Ricklefs and Travis 1980), lizards (Ricklefs, et al. 1981, Pianka 1986, Pounds 1988), snakes (Vitt and Vangilder 1983), and other taxa (Findley 1973, 1976, Gatz Jr. 1979). The advantage of morphological analyses is that they are easily comparable with other studies (Ricklefs and Miller 1999). Conversely, morphology is relatively fixed and might render it difficult to detect subtle aspects of ecological variation (Pianka 1994, Ricklefs and Miller 1999). Nevertheless, individual taxa respond differently to evolutionary pressures (Vitt 1981, Losos, et al. 1993, Losos 1995, Vitt, et al. 1997). Several recent studies reveal strong associations between morphology and ecology (Ricklefs, et al. 1981, Vitt 1981, Vitt and Vangilder 1983, Pounds 1988, Losos, et al. 1993, Losos 1994), indicating that morphological analyses are a powerful tool, particularly when used in conjunction with other data. On islands, rapid morphological evolution resulting from 45 habitat change occurs in Anolis lizards (Pounds 1988, Losos, et al. 1993, Losos 1995), indicating that under the right circumstances, rapid evolutionary response can occur. The ecological release hypothesis predicts that in isolated areas, due to habitat expansion (see Crowell 1962, MacArthur, et al. 1972), morphology of lizards should be more generalized than in non isolated areas, and this should be reflected as higher average neighbor Euclidean distance in isolated areas than in non isolated areas. However, in spite of differences in average neighbor Euclidean distance among assemblages, there were no differences between isolated and non isolated areas. Morphological data do not support the ecological release hypothesis. These conclusions are consistent with conclusions based on studied of Anolis lizards on Caribbean Islands (Losos and Queiroz 1997). Our results suggest that morphology of lizards is very conservative among assemblages, being little affected by ecological factors, emphasizing the importance of history of species. Abundance Density compensation is a phenomenon usually defined as increased density of island species in response to a reduction in the number of species compared with mainland populations (MacArthur, et al. 1972, Pianka 1994, Ricklefs and Miller 1999). This phenomenon was described initially for birds (Crowell 1962, MacArthur, et al. 1972, Case, et al. 1979), but was also described for other taxa, like lizards (Case 1975, Wright 1979, Rodda and Dean-Bradley 2002), small mammals (Webb 1965), bats (Stevens and Willig 2000) and invertebrates (Janzen 1973, Dean and Ricklefs 1979, Faeth and Simberloff 1981, Faeth 1984). When density compensation occurs, abundance of island species can be extremely exaggerated. For example, 46 the tiny leaf litter gecko Sphaerodactylus macrolepis reaches densities greater than 50,000 per hectare in coccoloba forest in the Virgin Islands, a density substantially higher than that reported for any mainland lizard (Rodda, et al. 2001). The density compensation hypothesis is derived from competition theory and most explanations rest on the premise that, in simple assemblages, resources are more abundant resulting in less competition when compared with mainland areas, permitting species to occur at higher densities (Crowell 1962, MacArthur, et al. 1972). Several explanations not based in competition theory have been provided to explain the occurrence of density compensation in islands. The increase of animal populations could be related to predation and parasitism, which may be reduced in islands (Grant 1966, MacArthur, et al. 1972, Case 1975, Rodda and DeanBradley 2002). Gene flow, which is restricted between islands and mainland, could promote high levels of local adaptations, and consequently higher densities (Emlem 1978, 1979). Climate tends to be more moderate on islands also, affecting population size by increased survivorship (Case 1975). Another explanation proposed to explain density compensation is the “fence” effect. Population density may be higher on islands because isolating mechanisms obstruct escape of individuals that would otherwise emigrate (Krebs, et al. 1969, MacArthur, et al. 1972, Emlem 1979). Our density data do not support the density compensation hypothesis for lizards in the Cerrado and in Amazon savannas. Species are not more abundant in isolated areas than in non isolated areas. Until recently, ecological factors have been focused as the most important factors affecting assemblage structure (Wilbur 1972, Wiens 1977, Diamond 1978). Nowadays, special attention has been given to history of the species (Brooks and McLennan 1991, Losos 1996, Webb, et al. 2002). Although we have no doubt that ecological factors exert influence in 47 assemblage structure, most ecological differences appear to be originated long ago in history of species (Spiller and Schoener 1989, Case and Bolger 1991, Losos, et al. 1993, Losos 1995, Vitt, et al. 1999, 2003). The density compensation hypothesis maintains that ecological factors should be more important than history in determining assemblage structure, and this should be detectable as increases in density in isolated areas. However, lizard abundance was similar in isolated and non isolated areas, showing that the low number of competitors and predators on islands (the number of competitors and predators should decrease proportionally with the number of species) do not promote density compensation, emphasizing the importance of the evolutionary history of species in assemblage structure. Our results suggest that both historical and ecological factors are important for the maintenance of assemblage structure, and that different lineages respond differently to environmental pressures, with tropidurids being more affected by ecological factors than teiids, polychrotids and gymnophthalmids. Further, the ecology and abundance of many species in Neotropical savannas is highly conservative, with little inter-assemblage variation, evidencing the importance of lineage history. In addition, dietary differences among tropidurids suggest that ecological factors (e. g. predation and competition) are also important for the maintenance of assemblage structure. Acknowledgements - We thank Alison Gainsbury, Adrian Garda, Ayrton Péres Jr., Cristiane Batista, Daniel Diniz, Frederico França, Gabriel Costa, Gustavo Vieira, Helga Wiederhecker, Janalee Caldwell, Kátia Colli, Mariana Zatz and S. Balbino for help with the fieldwork. This work was supported by a doctorate’s fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES to DOM, a research fellowship from Conselho Nacional de 48 Desenvolvimento Científico e Tecnológico - CNPq to GRC (# 302343/88-1). Programa Nacional de Diversidade Biológica-PRONABIO (project “Estrutura e dinâmica de isolados naturais e antrópicos de Cerrado: lições para biologia da conservação”), Fundação o Boticário de Proteção à Natureza (project “Herpetofauna das savanas amazônicas: subsídios para sua preservação”) and Conservation International do Brasil (project “Proposta de levantamento da herpetofauna da micro-região do Jalapão”) funded the research. References Begon, M., Harper, J. L. and Townsend, C. R. 1990. Ecology: Individuals, Populations and Communities. - Blackwell Sci. Publ. Brooks, D. R. and McLennan, D. A. 1991. Phylogeny, Ecology, and Behavior, a Research Program in Comparative Biology. – Univ. Chicago Press. Cadle, J. E. and Greene, H. W. 1993. Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages. - In: Ricklefs, R. E. and Schluter, D. (eds.), Species Diversity in Ecological Communities: Historical and Geographical Perspectives. Univ. Chicago Press, pp. 281-293. Case, T. J. 1975. Species numbers, density compensation, and colonization ability of lizards on islands in the Gulf of California. - Ecology 56: 3-18. Case, T. J. and Bolger, D. T. 1991. The role of interspecific competition in the biogeography of island lizards. - TREE 6: 135-139. Case, T. J., Gilpin, N. E. and Diamond, J. M. 1979. Overexploitation, interference competition, and excess density compensation in insular faunas. - Am. Nat. 113: 843-854. 49 Connor, E. F., Courtney, A. C. and Yoder, J. M. 2000. Individuals-area relationships: the relationship between animal population density and area. - Ecology 81: 734-748. Crowell, K. L. 1962. Reduced interspecific competition among the birds of Bermuda. - Ecology 43: 75-88. Dean, J. M. and Ricklefs, R. E. 1979. Do parasites of lepidoptera larvae compete for hosts? No! Am. Nat. 113: 302-306. Diamond, J. M. 1978. Niche shifts and the rediscovery of interspecific competition. - Am. Sci. 66: 322-331. Dunham, A. E. 1983. Realized niche overlap, resource abundance, and interespecific competition. - In: Huey, R. B., Pianka, E. R. and Schoener, T. H. (eds.), Lizard Ecology: Studies of a Model Organism. Harvard Univ. Press, pp. 261-280. Eidt, R. C. 1968. The climatology of South America. - In: Fitkau, E. J., Illies, J., Klinge, H., Schwabe, G. H. and Sioli, H. (eds.), Biogeography and Ecology in South America. Dr. W. Junk N. V. Publishers, pp. 54-81. Eiten, G. 1972. The Cerrado vegetation of Brazil. - Bot. Rev. 38: 201-341. Eiten, G. 1978. Delimitation of the Cerrado concept. - Vegetatio 36: 169-178. Emlem, J. T. 1978. Density anomalies and regulatory mechanisms in the land bird populations on the Florida peninsula. - Am. Nat. 112: 265-286. Emlem, J. T. 1979. Land bird densities on Baja California islands. - Auk 96: 152-167. Faeth, S. H. 1984. Density compensation in vertebrates and invertebrates: a review and an experiment. - In: Strong Jr., D. R., Simberloff, D., Abele, L. G. and Thistle, A. B. (eds.), Ecological Communities: Conceptual Issues and the Evidence. Princeton Univ. Press, pp. 491-509. 50 Faeth, S. H. and Simberloff, D. 1981. Experimental isolation of oak host plants: effects on mortality, survivorship, and abundances of leaf-mining insects. - Ecology 62: 625-635. Findley, J. S. 1073. Phenetic packing as a measure of faunal diversity. - Am. Nat. 107: 580-584. Findley, J. S. 1976. The structure of bat communities. - Am. Nat. 110: 129-139. Gatz Jr., A. J. 1979. Community organization in fishes as indicated by morphological features. Ecology 60: 711-718. Grant, P. R. 1966. The density of land birds on Tres Marias Islands in Mexico. I. Numbers and biomass. - Can. J. Zool. 44: 805-815. Hutchinson, G. H. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 95: 145-159. Janzen, D. H. 1973. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. - Ecology 54: 687-708. Krebs, C. J., Keller, B. L. and Tamarin, R. H. 1969. Microtus population biology: demographic changes in fluctuating populations of M. ochrogaster and M. pennsylvanicus in southern Indiana. - Ecology 50: 587-607. Losos, J. B. 1994. Historical contingency and lizard community ecology. - In: Vitt, L. J. and Pianka, E. R. (eds.), Lizard Ecology: Historical and Experimental Perspectives. Princeton Univ. Press, pp. 319-333. Losos, J. B. 1995. Community evolution in greater antillean Anolis lizards: phylogenetic patterns and experimental tests. - Phil. Trans. R. Soc. London B 349: 69-75. Losos, J. B. 1996. Phylogenetic perspectives on community ecology. - Ecology 77: 1344-1354. 51 Losos, J. B., Marks, J. C. and Schoener, T. W. 1993. Habitat use and ecological interactions of an introduced and a native species of Anolis lizard on Grand Cayman, with a review of the outcomes of anole introductions. - Oecologia 95: 525-532. Losos, J. B. and Queiroz, K. 1997. Evolutionary consequences of ecological relaease in Caribbean Anolis lizards. - Biol. J. Linn. Soc. 61: 459-483. MacArthur, R. H., Diamond, J. M. and Karr, J. R. 1972. Density compensation in island faunas. Ecology 53: 330-342. Mesquita, D. O. and Colli, G. R. 2003. Geographical variation in the ecology of populations of some Brazilian species of Cnemidophorus (Squamata, Teiidae). - Copeia 2003: 285-298. Miles, D. B. and Dunham, A. E. 1993. Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses. - Annu. Rev. Ecol. Syst. 24: 587619. Mitchell, J. C. 1979. Ecology of Southeastern Arizona whiptail lizards (Cnemidophorus: Teiidae): population densities, resource partitioning, and niche overlap. - Can. J. Zool. 57: 1487-1499. Nimer, E. 1989. Climatologia da região centro-oeste. - In: Climatologia do Brasil. Fundação Instituto Brasileiro de Geografia e Estatística - IBGE, pp. 393-421. Oliveira, P. S. and Marquis, R. J. 2002. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. - Columbia Univ. Press. Pianka, E. R. 1970. Comparative autecology of the lizard Cnemidophorus tigris in different parts of its geographic range. - Ecology 51: 703-720. Pianka, E. R. 1973. The structure of lizard communities. - Annu. Rev. Ecol. Syst. 4: 53-74. 52 Pianka, E. R. 1986. Ecology and Natural History of Desert Lizards: Analyses of the Ecological Niche and Community Structure. - Princeton Univ. Press. Pianka, E. R. 1994. Evolutionary Ecology. - HarperCollins College. Publ. Pires, J. M. 1973. Tipos de vegetação da Amazônia. - Publ. Av. Mus. Par. Em. Goel. 20: 179202. Pough, F. H., Andrews, R. M., Cadle, J. E., Crump, M. L., Savitzky, A. H. and Wells, K. D. 1998. Herpetology. - Prentice Hall. Pounds, J. A. 1988. Ecomorphology, locomotion, and microhabitat structure: patterns in a tropical mainland Anolis community. - Ecol. Monog. 58: 299-320. Ribeiro, J. F. and Walter, B. M. T. 1998. Fitofisionomias do bioma Cerrado. - In: Sano, S. M. and Almeida, S. P. (eds.), Cerrado: Ambiente e Flora. EMBRAPA-CPAC, pp. 89-166. Ricklefs, R. E., Cochran, D. and Pianka, E. R. 1981. A morphological analysis of the structure of communities of lizards in desert habitats. - Ecology 62: 1474-1483. Ricklefs, R. E. and Miller, G. L. 1999. Ecology. - Freeman, W H and Company. Ricklefs, R. E. and Travis, J. 1980. A morphological approach to the study of avian community organization. - Auk 97: 321-338. Rodda, G. H., Campbell, E. W. and Fritts, T. H. 2001. A high validity sensus technique for herpetofaunal assemblages. - Herpetol. Rev. 32: 24-30. Rodda, G. H. and Dean-Bradley, K. 2002. Excess density compensation of island herpetofaunal assemblages. - J. Biogeogr. 29: 623-632. Schoener, T. W. 1965. The evolution of bill size differences among sympatric congeneric species of birds. - Evolution 19: 189-213. 53 Schoener, T. W. 1968. The Anolis lizards of Bimini: resourse partitioning in a complex fauna. Ecology 49: 704-726. Simpson, E. H. 1949. Measurement of diversity. - Nature 163: 688. Spiller, D. A. and Schoener, T. W. 1989. Effect of a major predator on grouping of an orbweaving spider. - J. An. Eco. 58: 509-523. Spiller, D. A. and Schoener, T. W. 1994. Effects of top and intermediate predators in a terrestrial food web. - Ecology 75: 182-196. Stevens, R. D. and Willig, M. R. 2000. Density compensation in new world bat communities. Oikos 89: 367-377. Vitt, L. J. 1981. Lizard reproduction: habitat specificity and constraints on relative clutch mass. Am. Nat. 117: 506-514. Vitt, L. J. 1993. Ecology of isolated open-formation Tropidurus (Reptilia: Tropiduridae) in Amazonian lowland rain forest. - Can. J. Zool. 71: 2370-2390. Vitt, L. J. 1995. The ecology of tropical lizards in the Caatinga of northeast Brazil. - Occ. Pap. Oklahoma Mus. Nat. Hist. 1: 1-29. Vitt, L. J., Caldwell, J. P., Zani, P. A. and Titus, T. A. 1997a. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. - Proc. Natl. Acad. Sci. 94: 3828-3832. Vitt, L. J. and Colli, G. R. 1994. Geographical ecology of a neotropical lizard: Ameiva ameiva (Teiidae) in Brazil. - Can. J. Zool. 72: 1986-2008. Vitt, L. J., Pianka, E. R., Cooper, W. E., Jr. and Schwenk, K. 2003. History and the global ecology of squamate reptiles. - Am. Nat. 162: 44-60. 54 Vitt, L. J., Sartorius, S. S., Ávila-Pires, T. C. S. and Esposito, M. C. 2001. Life on the leaf litter: The ecology of Anolis nitens tandai in the Brazilian Amazon. - Copeia 2001: 401-412. Vitt, L. J. and Vangilder, L. D. 1983. Ecology of a snake community in northeastern Brazil. Amphibia-Reptilia 4: 273-296. Vitt, L. J., Zani, P. A., Ávila-Pires, T. C. S. and Esposito, M. C. 1998. Geographical ecology of the gymnophthalmid lizard Neusticurus ecpleopus in the Amazon rainforest. - Can. J. Zool. 76: 1671-1680. Vitt, L. J., Zani, P. A., Caldwell, J. P., Araujo, M. C. D. and Magnusson, W. E. 1997b. Ecology of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. - Copeia 1997: 745757. Vitt, L. J., Zani, P. A. and Esposito, M. C. 1999. Historical ecology of Amazonian lizards: implications for community ecology. - Oikos 87: 286-294. Webb, C. O., Ackerley, D. D., McPeek, M. A. and Donoghue, M. J. 2002. Phylogenies and community ecology. - Annu. Rev. Ecol. Syst. 33: 475-505. Webb, W. L. 1965. Small mammal populations on islands. - Ecology 46: 479-488. Wiens, J. A. 1977. On competition and variable environments. - Am. Sci. 65: 590-597. Wilbur, H. M. 1972. Competition, predation, and the structure of the Ambystoma-Rana sylvatica community. - Ecology 53: 3-21. Wright, S. J. 1979. Competition between insectivorous lizards and birds in Central Panamá. Am. Zool. 19: 1145-1156. Zar, J. H. 1998. Biostatistical Analysis. - Prentice-Hall, Inc. Zug, G. R., Vitt, L. J. and Caldwell, J. P. 2001. Herpetology: An Introductory Biology of Amphibians and Reptiles. - Academic Press. 55 Table 1. Summary of ecological traits of lizard assemblages from 20 isolated and non isolated open vegetation areas from Brazil. Sample sizes are in parentheses. Variable All species richness Microhabitat niche breadth Diet niche breadth (pooled) Diet niche breadth (individual) Nearest neighbor Euclidean distance Abundance of shared species Ameiva ameiva Microhabitat niche breadth Abundance Cnemidophorus Microhabitat niche breadth Abundance Anolis Microhabitat niche breadth Abundance Tropidurus Microhabitat niche breadth Micrablepharus Abundance Isolated 5.786 ± 2.778 (6) 1.959 ± 0.428 (9) 3.386 ± 1.057 (14) 1.503 ± 0.267 (14) 1.151 ± 0.395 (14) 4.744 ± 5.328 (7) Non isolated 12.000 ± 3.847 (14) 1.879 ± 0.463 (4) 2.722 ± 0.561 (6) 1.233 ± 0.135 (6) 1.119 ± 0.224 (6) 7.905 ± 3.083 (5) Comparisons F1,18 = 16.744 P = 0.001 F1,11 = 0.093 P = 0.766 F1,18 = 2.072 P = 0.167 F1,18 = 5.422 P = 0.032 F1,18 = 0.032 P = 0.859 F1,10 = 1.399 P = 0.264 2.194 ± 0.626 (9) 1.406 ± 1.699 (7) 1.643 ± 0.593 (4) 0.541 ± 0.398 (4) F1,11 = 2.206 P = 0.166 F1,10 = 1.215 P = 0.296 1.974 ± 0.367 (5) 3.130 ± 3.492 (2) 1.442 ± 0.565 (4) 2.525 ± 2.583 (5) F1,7 = 2.949 P = 0.130 F1,5 = 0.067 P = 0.806 2.286 ± 1.818 (2) 1.568 ± 1.820 (3) 1.823 ± 1.164 (2) 1.374 ± 1.693 (2) F1,2 = 0.092 P = 0.790 F1,3 = 0.014 P = 0.913 2.446 ± 0.823 (5) 2.812 ± 0.862 (4) F1,7 = 0.422 P = 0.537 1.610 ± 0.787 (2) 1.054 ± 0.839 (4) F1,4 = 0.605 P = 0.480 56 Table 2. Comparisons of diet niche breadths based on individual stomach means of five lizard genera from Cerrado assemblages. Bold face indicates statically significant differences, upper values are based on pooled means of stomachs and lower values are based on individual stomachs, and sample sizes are in parentheses. Genera Ameiva ameiva Cnemidophorus Micrablepharus Anolis Tropidurus x isolated x non isolated Comparisons 4.324 ± 1.731 (14) 3.707 ± 1.958 (6) F1,18 = 0.496, P = 0.490 1.632 ± 0.258 (14) 1.605 ± 0.208 (6) F1,18 = 0.049, P = 0.827 4.006 ± 1.149 (5) 2.540 ± 0.808 (5) F1,8 = 5.444, P = 0.048 1.606 ± 0.285 (5) 1.226 ± 0.243 (5) F1,8 = 5.141, P = 0.053 2.398 ± 0.855 (4) 3.162 ± 0.837 (5) F1,7 = 1.821, P = 0.219 1.142 ± 0.148 (4) 0.990 ± 0.263 (5) F1,7 = 1.050, P = 0.340 3.419 ± 1.765 (7) 4.053 ± 1.053 (3) F1,8 = 0.324, P = 0.585 1.290 ± 0.364 (7) 1.014 ± 0.194 (3) F1,8 = 1.472, P = 0.260 3.818 ± 0.829 (5) 3.360 ± 0.949 (6) F1,9 = 0.421, P = 0.421 1.662 ± 0.278 (5) 1.333 ± 0.107 (6) F1,9 = 7.223, P = 0.025 57 Figure Legends Figure 1. Collecting localities in savannas of Brazil. 1- Paracatu - MG, 2- Alvorada do Norte – GO, 3- São Domingos – GO, 4- Dianópolis - TO, 5- Mateiros - TO, 6- Paranã - TO, 7- Vilhena RO, 8- Pimenta Bueno - RO, 9- Guajará – Mirim - RO, 10- Humaitá - AM, 11- Cachimbo – PA, 12- Paraupebas - PA, 13- Alter do Chão - PA, 14- Monte Alegre - PA, 15- Macapá - AP, 16Tartarugalzinho - AP, and 17- Boa Vista. Adapted from “Mapa de Vegetação do Brasil” by Instituto Brasileiro de Geografia e Estatística (IBGE). Figure 2. Relationship between average microhabitat niche breadths and number of species of lizards from Cerrado-like open vegetation habitats in Brazil. Circle = isolated and triangle = non isolated. Figure 3. Relationship between average diet niche breadths based on pooled stomachs and number of species of Ameiva ameiva, Cnemidophorus, Micrabepharus, Anolis, Tropidurus and all species combined from Cerrado-like open vegetation habitats in Brazil. Circle = isolated and triangle = non isolated. Figure 4. Relationship between average diet niche breadths based on individual stomachs and number of species of Ameiva ameiva, Cnemidophorus, Micrabepharus, Anolis, Tropidurus and all species combined from Cerrado-like open vegetation habitats in Brazil. Circle = isolated and triangle = non isolated. 58 Figure 5. Relationship between average nearest neighbor Euclidean distance of log transformed morphometrical data of lizards from 20 Cerrado-like open vegetation habitats in Brazil and number of species of each assemblage. Figure 6. Relationship between abundance (individuals per day) of lizards in the genera Anolis, Micrablepharus, Ameiva, and Cnemidophorus and number of species in each assemblage collected in 100 pitfall traps in several Cerrado-like open vegetation habitats in Brazil. 59 60 61 62 63 64 65 Appendix 1. Composition of lizard assemblages and number of individuals in 20 Cerrado like open vegetation enclaves from Brazil. dr = dry forest, lc = latosoil cerrado, rf = rocky field, sc = sandy cerrado, and tf = transitional forest. 1- Alter do Chão, 2- Alvorada, 3Amapá, 4- Cachimbo, 5- Carajás, 6- Dianópolis, 7- Guajará-Mirim, 8- Humaitá, 9- Jalapão, 10- Monte Alegre, 11- Paracatu, 12Paranã, 13- Pimenta Bueno, 14- Roraima, 15- São Domingos, and 16- Vilhena. Lizard Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sc sc-rf sc sc-rf rf sc-rf rf lc sc sc-rf sc-rf lc sc-rf lc tf sc sc df lc sc Gekkonidae Briba brasiliana b Coleodactylus meridionalis Gonatodes humeralis a Gymnodactylus geckoides Hemidactylus palaichthus Lygodactylus klugei b Phyllopezus pollicaris Gymnophthalmidae Bachia bresslaui Bachia cacerensis Bachia dorbignyi a Cercosaura ocellata Colobosaura modesta Gymnophthalmidae sp a Gymnophthalmus leucomystax Gymnophthalmus underwoodi Iphisa elegans a Micrablepharus atticolus Micrablepharus maximiliani Prionodactylus eigenmanni a Vanzosaura rubricauda Leiosauridae Enyalius cf bilineatus Polychrotidae - - - - - 5 14 1 - - - - 8 - 107 - 3 - - 7 85 19 1 - 12 27 - - 1 3 - 2 - 4 - 8 - 1 6 - 20 48 33 14 - 12 11 14 13 - 19 - - - - - - - - - - - - 6 - - - - 21 79 2 1 1 3 - 110 9 - - - 2 - 25 75 8 19 3 - - - - - 2 - - - 7 6 - - - - - - - - 3 - - 69 14 - - 2 - - - - - - - - - 66 Anolis auratus Anolis meridionalis Anolis nitens Anolis ortonii a Iguana iguana Polychrus acutirostris Scincidae Mabuya dorsivittata Mabuya frenata Mabuya guaporicola Mabuya cf heathi b Mabuya nigropunctata Mabuya sp. Teiidae Ameiva ameiva Cnemidophorus cryptus Cnemidophorus lemniscatus Cnemidophorus mumbuca Cnemidophorus cf ocellifer Cnemidophorus parecis Kentropyx altamazonica a Kentropyx calcarata a Kentropyx paulensis Kentropyx striata Kentropyx vanzoi Tupinambis merianae Tupinambis quadrilineatus Tupinambis teguixin a Tropiduridae Stenocercus sp. Tropidurus sp. 10 - 2 - 180 - 1 2 20 - - - - - 5 14 1 56 3 - 53 1 2 1 - - 1 - - - 5 - - 2 - - 1 - - - - 20 6 - 10 - 7 21 1 1 - 10 9 - - 1 - - - - - - 13 1 - - - - 7 1 35 - - 40 47 - 193 - -2 - 2 - 80 85 9 3 61 27 90 10 22 162 9 45 4 1 1c 1 4 9 - 71 1c - 116 125 146 13 6 33 77 - - - - - - 1 - - - 99 - 23 7 - 2 - - - - - - 69 3 1c 2 1 - - - - - - 43 54 32 - 19 102 115 34 81 77 43 2c 3 2 - - - - 5 104 166 27 2 2 - 126 - - - - 55 - - - 6 48 - 191 - - - 1 6 - 8 1 2 - 2 - - 67 Tropidurus cf hispidus Tropidurus insulanus Tropidurus itambere Tropidurus cf oreadicus Total species richness Isolated Total No. a - 44 - 73 - - - 154 41 - 72 48 - - 165 - 51 5 8 5 8 5 8 2 4 4 13 10 16 12 6 8 5 X X X X X X X X X X X 140 183 471 217 132 105 230 271 49 668 307 397 426 129 149 183 Forest species. Caatinga species c Species sighted but not captured. b 130 - - - - - - - 26 - 9 16 11 10 X X X 591 439 92 376 68 Appendix 2. Microhabitat niche breadths of lizard assemblages in 13 Cerrado like open vegetation from Brazil. DF = dry forest, LC = latosoil Cerrado, RF = rocky field, SC = sandy Cerrado, and TF = transitional forest. Collecting sites numbers are in Appendix 1. Lizard Species Gekkonidae Coleodactylus meridionalis Gonatodes humeralis Gymnodactylus geckoides Hemidactylus palaichthus Phylopezus policaris Gymnophthalmidae Cercosaura ocellata Colobosaura modesta Gymnophthalmus leucomystax Gymnophthalmus underwoodi Micrablepharus atticolus Micrablepharus maximiliani Polychrotidae Anolis auratus Anolis meridionalis Anolis nitens Iguana iguana Polychrus acutirostris Scincidae Mabuya frenata Mabuya guaporicola Mabuya nigropunctata Mabuya sp. Teiidae 1 SC 2 SC-RF 3 SC 4 SC-RF 5 RF 7 RF 9 10 12 SC-RF SC-RF SC-RF 14 SC - - - - - - 1.05 - 2.00 - 1.00 4.37 2.00 3.00 5.04 2.00 1.47 1.00 - 1.00 2.67 - - 1.00 - - 1.00 - 1.00 2.00 3.00 1.80 1.00 4.83 - 1.00 - 1.00 - 1.58 - 1.00 1.00 1.00 - - 2.00 - 2.27 - 1.00 - 1.91 2.65 1.00 1.00 2.00 - 1.00 - - - - - 1.00 - 2.00 - 1.00 - - 15 DF 16 LC SC - - - 3.57 1.00 2.00 1.00 3.00 1.00 4.21 - 69 Ameiva ameiva Cnemidophorus cryptus Cnemidophorus lemniscatus Cnemidophorus mumbuca Cnemidophorus cf ocellifer Cnemidophorus parecis Kentropyx altamazonica Kentropyx striata Kentropyx vanzoi Tupinambis merianae Tupinambis quadrilineatus Tupinambis teguixin Tropiduridae Tropidurus sp. Tropidurus cf hispidus Tropidurus insulanus Tropidurus cf oreadicus Isolated Average niche breadths 2.26 1.68 2.50 - 2.00 1.59 - 2.56 2.31 3.56 - 2.89 1.00 2.44 2.67 1.80 - 1.30 1.00 1.00 - 1.14 1.49 2.00 - 2.27 2.18 - 2.67 2.22 3.29 2.16 X 1.69 3.85 X 2.50 2.21 X 1.62 2.81 2.69 X X 1.79 2.74 2.22 1.16 X 1.72 1.99 3.35 3.18 X X X 2.27 2.46 1.61 1.69 1.87 1.32 1.87 1.00 1.35 1.77 1.00 2.18 1.69 2.08 1.00 1.00 1.00 - 70 Appendix 3. Diet niche breadths based on individual (upper) and pooled (down) stomachs of lizard assemblages in 20 Cerrado like open vegetation from Brazil. df = dry forest, lc = latosoil cerrado, rf = rocky field, sc = sandy cerrado, and tf = transitional forest. Collecting sites numbers are in Appendix 1. Lizard Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sc sc sc sc- rf sc rf sc lc sc- sc- lc sc- lc tf sc sc df lc sc rf rf rf rf Gekkonidae Briba brasiliana - - - - - - 0.94 1.31 0.95 1.13 - Coleodactylus meridionalis - - - - - Gonatodes humeralis Gymnodactylus geckoides - - - - Hemidactylus palaichthus Lygodactylus klugei - - - - - Phyllopezus pollicaris - - - - - - - Bachia cacerensis Bachia dorbignyi Cercosaura ocellata - - Colobosaura modesta - Gymnophthalmidae sp Gymnophthalmus leucomystax Gymnophthalmus underwoodi - 1.00 1.56 - Gymnophthalmidae Bachia bresslaui - - - - - - - - - - - - - - - - - - - - - - - - - 1.33 3.53 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.00 3.16 0.93 2.28 0.88 2.77 0.93 4.04 - - - - - - - - - 1.18 2.38 - - - 1.06 1.21 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.81 2.75 0.88 - 0.75 3.50 1.46 - 1.09 - 0.74 2.55 2.53 - 0.86 - - 1.18 1.27 1.00 3.81 5.30 1.00 - - - - 0.69 1.52 0.86 1.34 - - 71 Iphisa elegans - - - - - - - - - - 1.78 - Micrablepharus atticolus - - - - - - - - - - - Micrablepharus maximiliani - - - - - - - - 1.45 4.45 - - - 1.34 2.29 - - - 1.15 1.24 - - Prionodactylus eigenmanni 0.94 3.10 - Vanzosaura rubricauda - - - - - 0.67 1.30 - - - 1.28 3.26 - - - - - - - - - - - - - - - 1.35 2.54 - - - - - - - - - - 1.28 4.57 - - - - - - - Anolis nitens - - - - - - - - Anolis ortonii Iguana iguana Polychrus acutirostris - - - - 0.74 1.98 - - - - - - - - - - - - - - - - Mabuya frenata - - - - - - - - - - - Mabuya guaporicola - 1.29 2.53 - - - - - - - - - Leiosauridae Enyalius cf bilineatus Polychrotidae Anolis auratus Anolis meridionalis Scincidae Mabuya dorsivittata - - - - - - - - - - - - 1.00 2.89 - - - - - - 1.20 1.99 - - - - - - - - - - - - - - - - - - - - - - 1.92 6.80 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.28 3.79 - 0.78 2.56 - 0.88 2.31 - 1.01 2.14 - 1.04 3.20 0.81 3.73 - 1.15 3.46 0.97 3.71 1.00 1.50 1.00 3.16 - 1.00 1.00 - 1.07 3.17 0.91 3.39 - 1.00 2.00 - - 1.34 1.40 2.24 3.66 1.19 5.23 1.27 2.93 - 72 Mabuya cf heathi - - - - - - - - - Mabuya nigropunctata - - - - - - - - - Mabuya sp. - - - - - - - - - Teiidae Ameiva ameiva Cnemidophorus cryptus Cnemidophorus lemniscatus Cnemidophorus mumbuca Cnemidophorus cf ocellifer Cnemidophorus parecis Kentropyx altamazonica Kentropyx calcarata Kentropyx paulensis Kentropyx striata Kentropyx vanzoi Tupinambis merianae 1.55 6.27 1.12 1.35 2.02 2.91 - - - - - - - - - - - - - - - - - - - - 1.22 2.62 1.02 3.28 - - 0.50 0.50 - - - 1.39 1.34 1.55 1.58 1.57 1.66 1.99 1.97 1.60 1.91 1.30 1.72 1.41 1.59 1.35 1.34 1.92 1.59 1.62 2.07 2.59 2.41 2.82 5.55 1.97 3.55 5.66 6.19 3.41 4.81 3.09 7.11 2.16 3.80 2.19 4.09 7.32 2.20 5.99 5.87 - 1.72 - 1.27 5.17 3.20 1.54 - 2.03 3.73 5.23 - 1.36 - 1.59 2.08 3.62 - 1.13 - 1.01 1.05 1.48 2.68 2.84 - 1.48 2.70 - 1.42 - 1.36 0.98 - 1.29 1.00 2.83 2.52 3.89 3.34 1.00 - 1.66 1.66 - 0.50 0.50 1.25 - 1.16 - 1.01 - 1.73 4.50 4.93 2.93 8.93 - 1.23 5.40 - 0.67 - 1.51 1.00 1.68 73 Tupinambis quadrilineatus - - - - - - - - Tupinambis teguixin - - - - - - - - - - - - - - - - Tropidurus cf hispidus - - - - - - 1.94 3.87 - - Tropidurus insulanus - - - - - - Tropidurus itambere - - - 1.61 3.32 - - - Tropidurus cf oreadicus - Tropiduridae Stenocercus sp. Tropidurus sp. Total species richness Isolated 1.37 4.18 5 8 5 X X - - - - - - - - - - - - - - - - 1.66 3.06 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.95 5.24 - - - 1.48 3.33 - - - - - - - - - - - - - - - 1.32 1.33 3.33 2.51 8 5 8 2 X X X - 1.26 4.13 - 1.53 - 1.24 4.33 2.27 4 13 10 16 12 6 X X X - - - 8 X 5 X - 4 X - 1.64 1.89 1.01 1.01 1.27 2.74 9 16 11 X X 10 X 74 Appendix 4. Abundance of lizards (number of lizards/day) from 13 Cerrado like open vegetation from Brazil. DR = dry forest, LC = latosoil Cerrado, RF = rocky field, SC = sandy Cerrado, and TF = transitional forest. Collecting sites numbers are in Appendix 1. Lizard Species Gekkonidae Briba brasiliana Coleodactylus meridionalis Gonatodes humeralis Gymnodactylus geckoides Lygodactylus klugei Phylopezus policaris Gymnophthalmidae Bachia bresslaui Bachia cacerensis Cercosaura ocellata Colobosaura modesta Gymnophthalmidae sp Gymnophthalmus underwoodi Iphisa elegans Micrablepharus atticolus Micrablepharus maximiliani Prionodactylus eigenmanni Vanzosaura rubricauda Leiosauridae Enyalius cf bilineatus Polychrotidae Anolis auratus Anolis meridionalis 2 SC 6 SC 8 LC 9 SCRF 10 SCRF 11 LC 12 SCRF LC 13 TF SC 15 DF LC SC - 0.20 - - 0.04 0.32 - 0.13 - - 0.21 2.71 - - - - 0.13 0.63 0.38 0.13 - - 0.28 0.65 0.57 0.87 - 0.04 0.04 0.04 0.05 - 1.86 - 0.35 0.62 1.63 0.30 - 16 0.02 0.50 1.73 0.04 0.36 0.63 0.02 0.02 0.02 0.12 2.25 1.05 0.63 0.20 - - - - - - 0.01 - - - - - - - - - 3.67 - 0.18 - - - - - - - 0.48 0.68 75 Anolis nitens Polychrus acutirostris Scincidae Mabuya dorsivittata Mabuya frenata Mabuya guaporicola Mabuya cf heathi Mabuya nigropunctata Mabuya sp. Teiidae Ameiva ameiva Cnemidophorus cryptus Cnemidophorus mumbuca Cnemidophorus cf ocellifer Cnemidophorus parecis Kentropyx altamazonica Kentropyx paulensis Kentropyx striata Kentropyx vanzoi Tropiduridae Stenocercus sp. Tropidurus itambere Tropidurus cf oreadicus Total abundance Relative abundance (total abundance/richness) - - - 0.03 - - 0.01 0.07 - - - - 2.25 0.04 - 0.19 - - - 0.28 - 0.67 - 0.08 0.38 0.02 - 0.50 - - 0.02 - - 0.36 0.63 - - 1.19 0.30 0.35 2.20 0.81 - 0.45 2.71 - 5.00 5.60 0.6 - 0.15 0.07 0.01 - 0.42 6.71 - 1.38 4.80 5.81 7.80 0.71 0.73 0.98 0.12 1.95 7.27 0.56 16.53 1.65 0.49 1.21 0.09 0.13 13.14 1.10 1.89 0.18 1.44 0.28 0.96 0.66 0.20 0.98 0.68 1.09 0.16 0.08 0.13 2.80 3.16 3.83 5.50 2.40 4.48 0.47 0.40 0.77 0.34 0.22 0.45 76 APÊNDICE 2- manuscrito submetido para a publicação na revista Copeia em janeiro de 2005. Ecology of a Cerrado lizard assemblage in the Jalapão region of Brazil Daniel O. Mesquita1, Guarino R. Colli1, Frederico G. R. França1 and Laurie J. Vitt2 1 Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brazil, Tel/fax: 55-61-307-2092, email: danmesq@unb.br 2 Sam Noble Oklahoma Museum of Natural History and Zoology Department, University of Oklahoma, 2401 Chautauqua Ave., Norman, OK 73072 USA, email: vitt@ou.edu Corresponding author: Daniel Oliveira Mesquita Manuscript type: major article Running title: Jalapão lizard assemblage Key words: assemblage structure, community ecology, historical factors 77 A lizard assemblage from one of the last remaining large expanses of undisturbed Cerrado is described combining ecological and morphometric data with phylogenetic data to examine the role of history in structuring it. The lizard assemblage contains 14 species. Niche breadth for microhabitat was low for all species in the assemblage. Microhabitat niche overlaps varied from none to almost complete and appears associated with phylogenetic distance. A pseudocommunity analysis revealed that mean microhabitat and diet overlap among lizard species did not differ statistically from random, indicating lack of structure. Prey overlaps were high within gymnophthalmids and teiids. A plot of factor scores for the first two principal components reveals clusters corresponding to lizard families, suggesting a strong association between morphology and phylogeny. A detailed inspection of the phylogenetic cladogram reveals similarities among closely related species suggesting the role of history in the assemblage. Canonical Phylogenetic Ordination revealed no significant phylogenetic effect on microhabitats used or dietary composition of the lizards. Contradictory results from Canonical Phylogenetic Ordination suggest that potential historical effects are undetectable because higher taxa (families) are underrepresented. 78 Introduction Structure of animal assemblages is defined by the geographic area where species live, their ecological interactions, resource use patterns, and evolutionary relationships among species (Ricklefs and Miller, 1999). Ecological factors (competition and predation in particular) were deemed the primary determinants of assemblage structure until recently (Wiens, 1977; Diamond, 1978; Semlitsch, 1987). Although community-level processes may influence structure of some assemblages (e.g., Spiller and Schoener, 1990; Spiller and Schoener, 1989; Case and Bolger, 1991), it is becoming increasingly clear that some ecological differences among syntopic species have their origins deep in the evolutionary history of clades comprising present-day assemblages (Losos, 1996; Losos, 1994; Vitt et al., 2003). Several recent studies have demonstrated structure in Neotropical lizard assemblages. In a lizard assemblage of a Restinga area in the Brazilian state of Rio de Janeiro, morphometric data distinguished two groups: one of bromeliad lizards and another of “sandy runners” (Araújo, 1991). In a Caatinga lizard assemblage, similarities among closely related species suggested that phylogeny contributed to observed structure (Vitt, 1995). Vitt & Zani (1998a) reached the same conclusion in describing the structure of a lizard assemblage in a transitional forest in Amazonia. Gainsbury & Colli (2003) used a null model analyses to assess structure in lizard assemblages from open vegetation enclaves in the Brazilian state of Rondônia and suggested lack of organization in the assemblages. In a lizard assemblage in Amazonian Savanna (in Roraima), eight species sorted into three foraging guilds: herbivores, active foragers, and sit-and-wait foragers (Vitt and Carvalho, 1995). A Cerrado lizard assemblage near Alto Araguaia, in Mato 79 Grosso State with only nine species contained some species that diverged in microhabitat use (Tropiduridae and Polychrotidae) and others that appeared to converge in microhabitat use (Teiidae and Gymnophthalmidae) (Vitt, 1991). However, in Cerrado and Amazonian Savanna lizard assemblage studies, historical factors were not considered. The Cerrado harbors a diverse herpetofauna with numerous endemic species (Colli et al., 2002) and covers about 2,000,000 km2, 25% of Brazil (Oliveira and Marquis, 2002). It is considered among the most threatened biomes in the world as the result of anthropogenic activities (Alho and Martins, 1995). Monthly temperatures average 20 to 22°C 1,500-2,000 mm of highly predictable and strongly seasonal precipitation falls annually, mostly from October to April (Nimer, 1989). The biome includes: forests, where arboreal species predominate; savannas, with trees and shrubs dispersed in an herbaceous stratum; and grasslands, with herbaceous species and some shrubs. Tree trunks are tortuous, with thick corky barks and hard, coriaceous leaves (Ribeiro and Walter, 1998). Considering that the Cerrado covers 25% of Brazil, the largest country in South America, it is surprising that so few studies have focused on lizard assemblages. Lizards have been shown to be model organisms for ecological research, particularly studies aimed at understanding patterns of community structure (Huey et al., 1983; Vitt and Pianka, 1994). The most relevant study on lizard assemblages from the Cerrado was carried out in Alto Araguaia, Mato Grosso State and the lizard assemblage was considered depauperate compared with those of other Neotropical biomes (Vitt, 1991). 80 More recent studies have shown that many Cerrado lizard assemblages are nearly as diverse as Amazonian lizard assemblages (Colli et al., 2002). Herein, we describe the lizard assemblage from the Jalapão region, one of the last remaining large expanses of undisturbed Cerrado. We combine ecological and morphometric data with phylogenetic data to examine the role of history (e. g., Brooks and McLennan, 1991; Losos, 1996) in structure of this assemblage. Because the Cerrado is one of the most threatened biomes in world, these data should also be useful in developing conservation and management strategies for the Cerrado. Materials and methods Study site.- Field work was conducted from 13 February to 10 March 2002 in a Cerrado area in the Jalapão region near the city of Mateiros (10º 32' 46.69'' S, 46º 25' 13.20'' W) in eastern Tocantins state, Brazil. The Jalapão covers approximately 53,340.90 km2. The region is characterized by an open and low Cerrado on sandy soils with strong influence of the Caatinga biome from northeastern Brazil. It has one of the lowest demographic densities in Brazil, with 1.21 inhabitants per km2, but anthropic pressures are increasing mainly due to tourism. Microhabitat and activity, and temperatures.- We captured lizards with pitfall traps with drift fences, by hand or using a shotgun. In the lab, we killed live lizards with an injection of Tiopental®, in accordance with approved protocols, and fixed them with 10% formalin. When we captured lizards by hand or shot gun, we took cloacal, substrate, and air temperatures (at 5 cm and 1.5 m above ground) to the nearest 0.2 C, with a Miller & 81 Weber® cloacal thermometer at the time of capture. We also recorded microhabitat and hour of capture. We recorded microhabitats in which lizards were first observed using the following microhabitat categories: grass, open ground, termite nests, tree trunks, and rocks. We computed microhabitat niche breadths (B) using the inverse of Simpson's diversity index (Simpson, 1949): 1 B= n ∑ pi2 , i =1 where p is the proportion of microhabitat category i and n is the number of categories. Values vary from 1.0 (exclusive use of a single microhabitat) to 5.0 (equal use of all five microhabitats). We also calculated microhabitat use overlap with the equation: n φij = ∑p pik n n ij i =1 ∑p ∑p 2 ij i=1 , 2 ik i =1 where p represents the proportion of microhabitat category i, n is the number of categories, and j and k represent the species being compared (Pianka, 1973). Øij varies from 0 (no overlap) to 1 (complete overlap). To investigate presence of non-random patterns in microhabitat niche overlap, we used the Niche Overlap Module of EcoSim (Gotelli and Entsminger, 2003). Data for such analysis consists of a matrix in which each species is a row and each microhabitat category is a column. The matrix is reshuffled to produce random patterns that would be expected in the absence of underlying structure. We used the options “Pianka’s niche overlap index” and “randomization algorithm two” in EcoSim. Randomization algorithm two substitutes the microhabitat category in the 82 original matrix with a random uniform number between zero and one, but retains the zero structure in the matrix (Winemiller and Pianka, 1990). Diet.- We analyzed stomach contents under a stereoscopic microscope, identifying prey items to level of order, with the exception of ants (Formicidae), which were considered as a separate prey category. We recorded the length and width (0.01 mm) of intact items with Mitutoyo® electronic calipers, and estimated prey volume (V) as an ellipsoid: 4 ⎛ w ⎞2⎛ l⎞ V = π⎝ ⎠ ⎝ ⎠ , 3 2 2 where w is prey width and l is prey length. We calculated the numeric and volumetric percentages of each prey category for pooled stomachs. From these percentages, we computed niche breadths (B) using the inverse of Simpson's diversity index (Simpson, 1949), as described above except that values for diet niche breadth can vary from 1.0 to 30 (30 prey categories were recognized). Throughout the text we used the average between numeric and volumetric niche breadths, referred to as diet niche breadth. We also calculated the percentage of occurrence of each prey category (number of stomachs containing prey category i, divided by the total number of stomachs). We excluded from the volumetric analyses prey items that were too fragmented to allow a reliable estimate of their volumes. To determine relative contribution of each prey category, we calculated the importance index for pooled stomachs using the following equation: I= F% + N% + V% , 3 where F% is the percentage of occurrence, N% is the numeric percentage, and V% is the volumetric percentage. 83 We calculated dietary overlap using the overlap equation as described above for microhabitat (Pianka, 1973). To investigate presence of non-random patterns in microhabitat niche overlap, we used “Niche Overlap Module” of EcoSim (Gotelli and Entsminger, 2003) as described above for microhabitat. Morphometry.- Using Mitutoyo® electronic calipers, were recorded the following morphometric variables to the nearest 0.01 mm: snout-vent length (SVL), body width (at its broadest point); body height (at its highest point), head width (at its broadest point), head height (at its highest point), head length (from the tip of the snout to the commissure of the mouth), hind limb length, forelimb length, and tail length (from the cloaca to the tip of the tail). To maximize availability of data, we estimated intact tail length of lizards with broken or regenerated tails using a regression equation relating tail length to SVL, calculated from lizards with intact tails, separately for populations and sexes. We logtransformed (base 10) all morphometric variables prior to analyses to meet requirements of normality (Zar, 1998). To partition total morphometric variation between size and shape variation, we defined body size as an isometric size variable (Rohlf and Bookstein, 1987) following the procedure described by Somers (1986). We calculated an isometric eigenvector, defined a priori with values equal to p-0.5, where p is the number of variables (Jolicoeur, 1963). Next, we obtained scores from this eigenvector, hereafter called body size, by post-multiplying the n by p matrix of log-transformed data, where n is the number of observations, by the p by 1 isometric eigenvector. To remove the effects of body size from the log-transformed variables, we used residuals of regression between body size and each variable. The resultant residuals were used in a principal component 84 analysis to examine size-free morphological variation and to identify the taxonomic level at which ecological variation among species occurred. Statistical analysis.- We used SYSTAT 11.0 and SAS 8.1 for Windows, with a significance level of 5% to reject null hypotheses for statistical hypothesis testing. Throughout the text, means appear ± 1 SD. To assess the role of history in structuring the assemblage, we used Canonical Phylogenetic Ordination (Giannini, 2003) coupled with Monte Carlo permutations (9,999) in CANOCO 4.5 for Windows. The analysis consists of canonical ordination to identify divergence points within a reduced tree matrix that best explain ecological patterns (Giannini, 2003). Because of differences in completeness of data for microhabitat use and diets, we used two different trees, defined in Figure 1. Results Species composition, microhabitat, activity, and body temperatures.- The lizard assemblage in Jalapão contains 14 species; one iguanid (Iguana iguana), two polychrotids (Anolis nitens and Polychrus acutirostris), one tropidurid (Tropidurus “oreadicus”), two gekkonids (Briba brasiliana and Gymnodactylus geckoides), three teiids (Ameiva ameiva, Cnemidophorus mumbuca and Tupinambis quadrilineatus), three gymnophthalmids (Colobosaura modesta, Micrablepharus maximiliani and Vanzosaura rubricauda) and two scincids (Mabuya heathi and Mabuya nigropunctata). Almost all species are diurnal, with exception of the gekkonids B. brasiliana, which is strictly nocturnal, and G. geckoides, which is active both during the day and at night. Although 85 we did not find G. geckoides during searches at night, they were abundant in drift fences that were monitored early in the morning suggesting that they were active outside of termite nests early in the evening the night before, at night, or early in the morning. A majority of the lizard fauna occurs in open areas, but a small portion was restricted to gallery forest. The teiids, gymnophthalmids and scincids are primarily terrestrial, the iguanid and polychrotids are both terrestrial and arboreal, and the tropidurid is ubiquitous (Fig. 2). Ameiva ameiva occurs primarily in open ground and grass microhabitats (Fig. 2), similar to the other teiids Cnemidophorus mumbuca and Tupinambis quadrilineatus, but T. quadrilineatus lives only inside gallery forests. Briba brasiliana was observed active at night. A few individuals were found inactive during the day under loose bark on tree trunks. Gymnodactylus geckoides was found almost exclusively inside termite nests (Fig. 2). Iguana iguana occurs on the ground and in trees (Fig. 2), in open and forested habitats, closely associated with watercourses. Mabuya nigropunctata was observed in open and forested areas, occurring in the open ground microhabitat (Fig. 2). Micrablepharus maximiliani was collected inside of termite nests (Fig. 2) and in drift fences, indicating that the termite nests are important to these lizards. Individuals move on open ground, especially in areas with leaf litter. Tropidurus "oreadicus" was found in most microhabitats (Fig. 2). Anolis nitens was associated with forested habitats, where it used the ground and low perches on trees. Polychrus acutirostris lives in trees in open habitats but descends to the ground to disperse. Because of their cryptic coloration and behavior, they are difficult to observe. Colobosaura modesta is associated with forested 86 habitats, but also occurs in open areas, on the ground. Vanzosaura rubricauda and M. heathi were observed in open ground in open areas of Cerrado. Niche breadth for microhabitat was low for all species in the assemblage. T. "oreadicus" had the largest (2.22) and C. mumbuca, T. quadrilineatus, M. maximiliani and M. nigropunctata had the smallest (1.00) niche breath values. Microhabitat niche overlap varied from none to almost complete (Table 1). The lowest results for niche overlap were found between species most distant phylogenetically. I. iguana had intermediate values for niche overlap with most other species, but probably does not interact with other species because it is more often found in gallery forests whereas other species are usually found in open Cerrado. The sit-andwait forager T. “oreadicus” also had intermediate values of overlap with most other species, but not M. maximiliani and G. geckoides, which were found nearly exclusively inside termite nests. However, both of these were also common in drift fences, suggesting that they frequently move about outside termite nests. Microhabitat overlaps among active foragers tended to be high for all species combinations. Lizard activity occurred from 7:00 h to 22:00 h and varied among species. Usually, sit-and-wait lizards tended to be active earlier than active foragers. For example, the first active T. “oreadicus” was observed near 8:00 h, whereas the first active A. ameiva and C. mumbuca were not observed until nearly 10:00 h. Activity of diurnal lizards ended around 18:00 h and nocturnal lizards initiated activity around 18:00 h. The latest record was 22:00 h for the gecko B. brasiliana. Because we did not search for lizards after 22:00 h, their activity period may be longer. The diurnal lizard M. maximiliani was common in pitfall traps indicating that most activity was during the day. 87 Several found between 18:00 h and 20:00 h were inside termite nests and probably not active. Mean body temperatures ranged from 29.1°C in M. maximiliani to 40.0°C in I. iguana. Because of a high association between body and air temperature (R2 = 0.66, F3,102 = 66.04, P < 0.0001), we removed the effect of air temperature by calculating residuals of a regression between body and air temperatures and then performed an ANOVA on the residuals followed by a post-hoc Tukey test. The ANOVA detected significant differences among species (F4,98 = 11.32, P < 0.0001) and a post-hoc Tukey test identified two statistically homogeneous groups, one with the teiids A. ameiva and C. mumbuca and another with G. geckoides, M. maximiliani and T. “oreadicus.” The pseudocommunity analysis showed that mean microhabitat overlap among lizard species did not differ statistically from random (P = 0.09), indicating lack of structure with respect to microhabitat. Diet composition.- We analyzed contents of 557 stomachs and recognized 30 prey categories. The percentage of empty stomachs was 8.26% (46). Based on all lizard species, orthopterans were the most important prey type followed by termites and spiders (Table 2). The most important prey for A. ameiva were termites (38.78%) and insect larvae (11.02%); for C. mumbuca, termites (30.96%) and orthopterans (24.51%); for T. quadrilineatus, plant material (60.42%), mainly fruits, and vertebrates (19.39%), a single individual of the toad, Bufo granulosus; for T. “oreadicus,” mainly ants (42.29%); for B. brasiliana, millipedes (42.15%) and mole crickets (34.09%); for G. geckoides, termites (55.8%); for C. modesta, spiders (33.34%); for M. maximiliani, spiders (21.65%) and 88 homopterans (20.71%); for V. rubricauda, grasshoppers (45.52%) and spiders (34.73%); for M. heathi, grasshoppers (23.42%) and insect larvae (18.53%); for M. nigropunctata, termites (50.93%) and spiders (24.69%); and for A. nitens, grasshoppers (43.07%) and insect larvae (30.73%) (Table 2). Diet niche breadths calculated from the average between numeric and volumetric percentages of prey were usually low, with lowest values for T. quadrilineatus (1.89) and M. nigropunctata (1.99) and the largest values for M. heathi (6.32), A. ameiva (4.81), Tropidurus oreadicus (4.50) and Micrablepharus maximiliani (4.46). Prey overlap varied from 0 (B. brasiliana vs. A. nitens, C. modesta, T. quadrilineatus and V. rubricauda) to 0.991 (V. rubricauda vs. C. modesta) (Table 1). Tupinambis quadrilineatus had low overlaps with all species, the greatest of which was with A. ameiva (0.144) (Table 1). Overlaps were high among the gymnophthalmids, the lowest of which was between M. maximiliani and C. modesta (0.889) and the greatest between C. modesta and V. rubricauda (0.991) (Table 1). With the exception of T. quadrilineatus, teiid lizards had high overlaps (Table 1). A pseudocommunity analysis with all original prey categories showed that mean diet overlap among lizard species did not differ statistically from random (P = 0.06), indicating lack of structure. Morphometry.- The principal component analyses of size-free morphological variables revealed two factors accounting for 58.5% of the variation (Table 3). The first factor (33.39%) described a gradient of increasing SVL, as leg length, forelimb length and head height decrease (Table 3). The second factor (25.11%) describes a gradient of increasing 89 head width and body width and a tail length decreases. The third factor an increasing head length and a decreasing forelimb length (Table 3). A plot of the average of factor scores per species for the first two principal components reveals clusters corresponding to lizard families (Fig. 3). Historical effects.- A detailed inspection of the cladogram (Fig. 4) reveals several patterns suggesting the role of history in the Jalapão lizard assemblage. Microhabitats used by teiids, gymnophthalmids, and scincids were similar, suggesting that at least a portion of microhabitat use patterns reflect general traits of scleroglossan lizards. The same occurs with the polychrotids, with species using similar microhabitats. Activity is very similar among all species except the gekkonids, one of which is nocturnal and the other crepuscular/nocturnal. Body temperature data indicate that teiid lizards are active at very similar body temperatures. The teiids also have similar microhabitat niche breadth values. The two scincids differ in diet niche breadths values. Monte Carlo permutations (based on 9999 permutations) revealed no significant phylogenetic effect on microhabitats used or dietary composition of the lizards (Table 4). Gekkonids (23.72%) and teiids (18.76%) contributed most to dietary variation (Fig. 1), but even their contributions were not significant (P = 0.199 and 0.240, respectively). For microhabitat, taxonomic groups that best explained variation were the basal separation between Iguania and Scleroglossa (Fig. 1), accounting 32.65%, and teid lizards. Neither of these was significant (P = 0.054 and 0.213 respectively) (Table 4). 90 Discussion Species composition, microhabitat, activity, and body temperatures.- The first known survey in a Cerrado area was in Pirassununga municipality, São Paulo State, where only seven lizard species were found (Vanzolini, 1948). In a Cerrado area near Alto Araguaia, Mato Grosso State, only nine species were found, leading Vitt (1991) to consider it depauperate when compared with other South American biomes. The Jalapão site has 14 species. This appears low when compared with other South American biomes like Amazon forest, which typically has about 25 species (Vitt, 1996; Vitt and Zani, 1996). When compared with other South American open formations, lizard species richness is similar or greater, like in Caatinga, Exu municipality area, Pernambuco State, with 18 species (Vitt, 1995) and in an Amazonian savanna, in state of Roraima, with only eight species (Vitt and Carvalho, 1995). Well-sampled localities in Cerrado average 14 – 25 species (Colli et al., 2002). Most estimates of lizard species diversity in South America are based on data from numerous sites. Lizard species diversity for the entire Jalapão region is greater than the 14 species that we report, but this serves well as an estimate of lizard species diversity at a single site. A preliminary survey recorded 18 species for the region (Vitt et al., 2002) and recently, more have been added to the list, including a Cnemidophorus species that is currently being described (unpublished data), enhancing the importance of the Jalapão region and Cerrado biome based on their biodiversity. Additional species with secretive habits will undoubtedly be found with additional surveys. Difference in time of activity among diurnal species was small. Tropidurid lizards were active somewhat earlier in the day than teiid lizards, a pattern that appears common 91 in other South American lizard assemblages. For example, various species of Tropidurus tend to be more active in morning and late afternoon avoiding the hottest hours of the day (Vitt, 1993; Van Sluys, 1992; Rocha and Bergalo, 1990), whereas teiid lizards tend to be active primarily during warmer periods near mid-day (Mesquita and Colli, 2003b; Mesquita and Colli, 2003a; Vitt et al., 1997c). Activity body temperature data are consistent with differences in activity. Not only do the teiids have higher body temperatures than the tropidurid in this study, they have higher body temperatures than all other species in the assemblage. The post-hoc Tukey test on body temperatures grouped A. ameiva and C. mumbuca together. In all Neotropical lizard assemblages studied, teiid lizards had the highest body temperatures suggesting that high body temperatures and associated high activity levels have an historical basis. With few exceptions, microhabitat niche overlaps in the Jalapão lizard assemblage tended to be highest among closely related species. Thus, at least some ecological traits can be traced to ancestors within the phylogeny, suggesting that ongoing interactions among species do not sufficiently explain observed patterns of resource use (Losos, 1996; Brooks and McLennan, 1991). Historical effects have been detected in several Neotropical lizard assemblages, including Amazon forest (Vitt and Zani, 1996; Vitt and Zani, 1998a) and Caatinga (Vitt, 1995). However, very few studies have been conducted on lizard assemblages in Neotropical open formations. Lack of structure in microhabitat overlaps among Jalapão lizards, although unusual (e. g., Winemiller and Pianka, 1990; Vitt and Carvalho, 1995; Pianka, 1986), may suggest lack of competition for space; microhabitats may not be limited for these lizards (Connor and Simberloff, 1979). One possible explanation for this finding is that lizard populations are maintained 92 well below carrying capacity by predators. Alternatively, failure to detect microhabitat structure may result from sampling problems. Microhabitat data for several species were poor, and additional data might reveal different patterns of microhabitat use. Although lizards can be easily trapped in Cerrado habitats, they are very difficult to observe while active making it difficult to accurately quantify microhabitat use. Diet composition.- With exception of Vanzosaura rubricauda, which ate mainly grasshoppers and spiders in Jalapão but thysanurans and dermapterans in Caatinga (Vitt, 1995), most species from Jalapão had diets similar to those of different populations or closely related species from other Neotropical lizard assemblages. These include Ameiva ameiva (termites and insect larvae) (Vitt and Colli, 1994), Cnemidophorus mumbuca (termites and orthopterans) (Mesquita and Colli, 2003a; Eifler and Eifler, 1998; Mesquita and Colli, 2003b), T. quadrilineatus (plant material and vertebrates) (Colli et al., 1998), Tropidurus “oreadicus” (ants) (Van Sluys, 1993; Van Sluys, 1995; Vitt et al., 1997b), Gymnodactylus geckoides (termites) (Colli et al., 2003), M. maximiliani (spiders and homopterans) (Vieira et al., 2000), M. heathi (grasshoppers and insect larvae) (Vitt, 1995), M. nigropunctata (termites and spiders) (Vitt and Blackburn, 1991) and A. nitens (grasshoppers and insect larvae) (Vitt et al., 2001). These results suggest a historical origin for diets of the majority of Jalapão lizards. The diet of these lizards appears conservative with little detectable variation among populations from different places. Phylogenetic inertia appears more important than ecological interactions in determining diets of Jalapão lizards (e. g., Brooks and McLennan, 1991; Losos, 1996). 93 The highest dietary overlaps were found within gymnophthalmids, teiids, except for T. quadrilineatus, and between teiids, the gecko G. geckoides, and the skink M. nigropunctata. The primary contributor to these high overlaps was the high consumption of termites in these species. These lizards do not necessarily capture termites in the same places or at the same times. For example, teiid lizards dig and break into materials containing termites whereas gymnophthalmids do not. Gymnodactylus geckoides likely capture termites within the termite nests where they live. Similar differences in temporal or spatial acquisition of similar prey have been reported by Pianka (1986). High dietary overlap among closely related species suggests that phylogenetic inertia accounts for a large portion of dietary similarity among closely related species (Brooks and McLennan, 1991; Losos, 1996). A similar pattern was reported for an assemblage of Neotropical lizards in central Amazon of Brazil (Vitt et al., 1999). Dietary overlap between M. nigropunctata and M. heathi was low, suggesting that ecological factors are more important that historical factors in these species. Because the antiquity of the relationship between these skinks remains unknown, phylogenetic information will be necessary to determine the historical basis for the differences (Losos, 1996). Low overlap between T. quadrilineatus and the other teiids may simply reflect the small sample size for T. quadrilineatus. However, the large body size of these lizards compared to other teiids and other species in the assemblage likely contributes to actual differences in diet (Magnusson and Silva, 1993; Vitt and Zani, 1998a). Lack of structure found with the pseudocommunity analysis could indicate a lack of detectable competition among species suggesting that resources are effectively nonlimiting (Connor and Simberloff, 1979). A previous study on fat storage cycles in 94 Amazonia Savanna and Cerrado lizards showed that most species accumulate fat during dry season when insect availability is low, suggesting that food is not a limiting factor (Colli et al., 1997). Considering the range of body sizes of lizards in the Jalapão assemblage, structure may be more affected by prey size than prey type (Vitt and Zani, 1998a). For example, the difference between T. quadrilineatus and other teiids may simply reflect the difference in the influence of body size on prey size. Morphometry.- Use of morphological analyses to assess ecological relationships was first described by Hutchinson (1959). Early attempts to analyze morphological differentiation in an ecological context were applied to bird assemblages in temperate and subtropical forests (Schoener, 1965). Morphological analyses are independent of habitat and easily comparable with other studies (Ricklefs and Miller, 1999). On the other hand, morphology is relatively fixed (historical) such that morphological analyses might not be sensitive enough to detect ecological differences when they do exist (Ricklefs and Miller, 1999). Nevertheless, a study carried out on lizards in three different deserts revealed a reasonable association between morphological and ecological attributes, confirming patterns revealed by previous ecological studies (Ricklefs et al., 1981). Use of morphological analyses as a complementary analysis can be particularly useful when other kinds of data (e.g., microhabitat use data as in this study) are difficult to obtain. Our data suggest a strong association between morphology and phylogeny, with closely related species clustered in morphological space. The best evidence for cause and effect has been among closely related species or populations when habitat shifts have resulted in morphological change. Closely related tropidurids have differentiated 95 morphologically in response to shifts from a variety of microhabitats in open areas to rock surfaces surrounded by rainforest (Vitt, 1981; Vitt et al., 1997a). Likewise Anolis have responded morphologically to microhabitat shifts (Pounds, 1988; Losos et al., 1993; Losos, 1995). Iguanian lizards in the Jalapão assemblage are not closely related. Morphological differences among these species evolved in distant ancestors under different ecological conditions. Anolis nitens and T. “oreadicus,” for example, are quite similar morphologically and ecologically to their close relatives in other habitats, suggesting that pre-existing morphological and ecological traits have allowed them to coexist in the Jalapão lizard assemblage. Gekkonid lizards vary greatly in morphology (Zug et al., 2001). Geckos in the Jalapão assemblage occupied similar positions in morphological space, suggesting a strong association between morphology and phylogeny. Teiids and gymnophthalmids are conservative in body shape but differ considerably in body size, most likely a consequence of intraguild interactions. Even though the bauplan appears to be affected very little by ecological interactions, body size may determine to some extent which species can coexist (Vitt et al., 1998; Vitt and Zani, 1996; Vitt et al., 2000). Most tropical New World skinks of genus Mabuya are conservative morphologically. Until recently, only a few species had been described. Recent descriptions of new species indicate that diversity of Mabuya is much greater than previously thought (Rodrigues, 2000; Rebouças-Spieker, 1981; Ávila-Pires, 1995). Morphological similarity among Mabuya species also suggests that historical factors may be more important than local interactions in determining the ecology of these lizards. 96 Historical effects.- An examination of the ecological data with an historical perspective suggests that phylogenetic history of lizards in the Jalapão area influences assemblage structure (Fig. 4). Several patterns emerged by plotting ecological traits on the cladogram. Even that the lack of data on microhabitat use for several species in this assemblage limits some of our conclusions, the niche breadth and the microhabitat used by teiids, gymnophthalmids and scincids appear to be similar within families, differing little among families, suggesting that historical factors may determine patterns of microhabitat use. In addition, several studies comparing closely related species among drastically different habitats show that ecological traits of lizards are highly conservative (Vitt and Colli, 1994; Vitt et al., 1998; Mesquita and Colli, 2003b). For example, four geographically separated populations of the gymnophthalmid Neusticurus ecpleopus are nearly identical ecologically even though they differ considerably from other species in their respective assemblages (Vitt et al., 1998). The same is true for polychrotids with respect to microhabitats. Among teiid lizards, high body temperatures and activity levels have a historic origin (see Pianka and Vitt, 2003). Regardless of locality or species, teiid lizards exhibit similar body temperatures and all are highly active (Vitt et al., 1997c; Vitt and Colli, 1994; Mesquita and Colli, 2003b). Diet niche breadth values for the gekkonids and some gymnophytalmids and teiids also suggest the importance of history. Body size differences among teiids accounts for some variation in dietary niche data (Vitt et al., 2000). The two scincids had completely different diet niche breadth values. However, additional phylogenetic data for the genus will be necessary to confirm whether ecological divergence is historical or the result of species interactions. Even though the lack of data for several species limit some 97 of our conclusions, data we present are the best for any studied Cerrado lizard assemblage. The Cerrado biome harbors a diverse saurofauna, but some species are very difficult to observe while active making it difficult to quantify some ecological aspects. Some species, like most gymnophthalmids, are commonly collected in drift fences, but difficult to observe, making it difficult to acquire microhabitat use data. Others, like Briba brasiliana and some species of Mabuya are difficult to collect even using traps, biasing dietary data. Finally, the lack of data for some species reflects to a certain extent, differences in local abundance. Comparisons of ecological traits of lizards within the Jalapão assemblage and with closely related species in different assemblages revealed that history played an important role in most ecological traits of Jalapão lizards. If species interactions determine ecological traits of Jalapão lizards, then ecological traits should map randomly on their phylogeny, but this is not the case. This appears contradictory to our results from the Canonical Phylogenetic Ordination, which detected no significant phylogenetic effect (although the P value for the node A/F was marginally significant. 0.0541). We offer two possible explanations for this apparent inconsistency, one of which may have broad implications. First, sample size for microhabitat data was either too small or completely nonexistent for four of the 14 species rendering a portion of the results unreliable. Small sample sizes for calculation of niche breadth values effectively results in low estimates potentially falsely creating specialists (see Pianka, 1986). Because of this, overlap values between these species and others with large sample sizes could be misleading. Even concluding that data for a species with small sample size might be a reasonable estimate 98 because close relatives in other habitats have similar ecological traits is inherently circular logic. Secondly, and more importantly, ecological data sets on depauperate lizard assemblages may suffer from taxon sampling deficiencies such that real historical effects are undetectable because major taxa are underrepresented. Only a single species pair, M. heathi and M. nigropunctata, is represented by more than one species in a genus, and in this case, the two species are highly divergent ecologically. Mabuya nigropunctata is widespread in Amazon rainforest entering the Cerrado in gallery forests (Vitt and Blackburn, 1991; Vitt, 1996). Mabuya heathi is known only from open areas, Caatinga in particular (Vitt, 1995). Lack of structure in the Jalapão lizard assemblage and the inability to detect a phylogenetic effect using Canonical Phylogenetic Ordination may result from a data deficiency in the phylogenetically based ecological analysis. Phylogenetic effects detected in an Amazonian lizard assemblage by Vitt et al. (1999) and Giannini (2003) using different analyses was facilitated by a rich lizard fauna and one that contained several pairs of relatively closely related species. One of the primary phylogenetic effects found was in tropidurid lizards, in which two closely related species (Plica plica and P. umbra) were ant specialists. In assemblages with greater numbers of closely related species, differences in ecological traits should be more easily detectable even if a portion of those differences is historical. Studies showing rapid ecological and morphological evolution in closely related Anolis species in the Caribbean suggest this (Losos et al., 1993; Losos, 1995). Application of phylogenetic analyses to interpretations of underlying causes of community organization is in its infancy (e.g.,Webb et al., 2002). Nevertheless, several 99 analyses at the local (e.g., Vitt and Zani, 1998b; Vitt et al., 2000; Giannini, 2003) and one at the global (Vitt et al., 2003) level indicate that portions of lizard community structure have an historical base. Because some of the ecological differences among lizard clades are deeply rooted in evolutionary history, evolutionary and ecological responses of individual species to changes in assemblage structure and resource abundance and diversity should vary in a manner predictable to some degree on how closely related species in different habitats and assemblages respond to such change. Finally, phylogenetic analyses in which species from different assemblages are combined are essential to understand the relative importance of ecological and historical factors in determining structure in lizard assemblages because the probability of detecting historical effects may be inversely related to the number of species in each major clade. Acknowledgements We thank J. P. Caldwell, A. A. Garda and S. F. Balbino for help with the fieldwork. This work was supported by a doctorate fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES to DOM and a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq to GRC (# 302343/88-1). Conservation International of Brazil and the Division of Herpetology of the Sam Noble Oklahoma Museum of Natural History funded the field research. 100 Literature Cited ALHO, C. J. R., and E. S. MARTINS. 1995. De Grão em Grão, o Cerrado Perde Espaço. WWF-Fundo Mundial para a Natureza, Brasília. ARAÚJO, A. F. B. 1991. Structure of a white sand-dune lizard community of coastal Brazil. Revta. Brasil. Biol. 51:857-865. ÁVILA-PIRES, T. C. S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, Leiden. 1995:3-706. BROOKS, D. R., and D. A. MCLENNAN. 1991. Phylogeny, Ecology, and Behavior, a Research Program in Comparative Biology. The University of Chicago Press, Chicago. CASE, T. J., and D. T. BOLGER. 1991. The role of interspecific competition in the biogeography of island lizards. TREE. 6:135-139. COLLI, G. R., R. P. BASTOS, and A. F. B. ARAÚJO. 2002. The character and dynamics of the Cerrado herpetofauna, p. 223-241. In: The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. P. S. Oliveira and R. J. Marquis (eds.). Columbia University Press, New York, NY. COLLI, G. R., D. O. MESQUITA, P. V. V. RODRIGUES, and K. KITAYAMA. 2003. The ecology of the gecko Gymnodactylus geckoides amarali in a neotropical savanna. J. Herpetol. 37:694-706. COLLI, G. R., A. K. PÉRES, JR., and H. J. CUNHA. 1998. A new species of Tupinambis (Squamata: Teiidae) from central Brazil, with analysis of morphological and genetic variation in the genus. Herpetologica. 54:477-492. 101 COLLI, G. R., A. K. PÉRES, JR., and M. G. ZATZ. 1997. Foraging mode and reproductive seasonality in tropical lizards. J. Herpetol. 31:490-499. CONNOR, E. F., and D. SIMBERLOFF. 1979. The assembly of species communities: chance or competition? Ecology. 60:1132-1140. DIAMOND, J. M. 1978. Niche shifts and the rediscovery of interspecific competition. American Scientist. 66:322-331. EIFLER, D. A., and M. A. EIFLER. 1998. Foraging behavior and spacing patterns of the lizard Cnemidophorus uniparens. J. Herpetol. 32:24-33. ESTES, R., K. DE QUEIROZ, and J. GAUTHIER. 1988. Phylogenetic relationships within Squamata, p. 119-281. In: Phylogenetic Relationships of the Lizard Families. Essays Commemorating Charles L. Camp. R. Estes and G. Pregill (eds.). Stanford University Press, Stanford, California. GAINSBURY, A. M., and G. R. COLLI. 2003. Lizard assemblages from natural Cerrado enclaves in southwestern Amazonia: the role of stochastic extinctions and isolation. Biotropica. 35:503-519. GIANNINI, N. P. 2003. Canonical phylogenetic ordination. Syst. Biol. 52:684-695. GOTELLI, N. J., and G. L. ENTSMINGER. 2003. EcoSim: Null models software for ecology. In: Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/~gentsmin/ecosim.htm, Burlington, VT. 05465. HUEY, R. B., E. R. PIANKA, and A. SCHOENER. 1983. Lizard Ecology: Studies of a Model Organism. Harvard University Press, Cambridge, Mass. HUTCHINSON, G. H. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 95:145-159. 102 JOLICOEUR, P. 1963. The multivariate generalization of the allometry equation. Biometrics. 19:497-499. LOSOS, J. B. 1994. Historical contingency and lizard community ecology, p. 319-333. In: Lizard Ecology: Historical and Experimental Perspectives. L. J. Vitt and E. R. Pianka (eds.). Princeton University Press, Princeton, New Jersey. —. 1995. Community evolution in greater antillean Anolis lizards: phylogenetic patterns and experimental tests. Phil. Trans. R. Soc. London B. 349:69-75. —. 1996. Phylogenetic perspectives on community ecology. Ecology. 77:1344-1354. LOSOS, J. B., J. C. MARKS, and T. W. SCHOENER. 1993. Habitat use and ecological interactions of an introduced and a native species of Anolis lizard on Grand Cayman, with a review of the outcomes of anole introductions. Oecologia. 95:525-532. MAGNUSSON, W. E., and E. V. SILVA. 1993. Relative effects of size, season and species on the diets of some amazonian Savanna lizards. J. Herpetol. 27:380-385. MESQUITA, D. O., and G. R. COLLI. 2003a. The ecology of Cnemidophorus ocellifer (Squamata, Teiidae) in a neotropical savanna. J. Herpetol. 37:498-509. —. 2003b. Geographical variation in the ecology of populations of some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia. 2003:285-298. NIMER, E. 1989. Climatologia da região centro-oeste, p. 393-421. In: Climatologia do Brasil. Fundação Instituto Brasileiro de Geografia e Estatística - IBGE, Rio de Janeiro, Brazil. OLIVEIRA, P. S., and R. J. MARQUIS. 2002. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. Columbia University Press, New York, NY. 103 PIANKA, E. R. 1973. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4:53-74. —. 1986. Ecology and Natural History of Desert Lizards: Analyses of the Ecological Niche and Community Structure. Princeton Univ. Press, Princeton, New Jersey. PIANKA, E. R., and L. J. VITT. 2003. Lizards: Windonws of the Evolution of Diversity. University of California Press, Los Angeles, CA. POUNDS, J. A. 1988. Ecomorphology, locomotion, and microhabitat structure: patterns in a tropical mainland Anolis community. Ecol. Monog. 58:299-320. REBOUÇAS-SPIEKER, R. 1981. Sobre uma nova espécie de Mabuya da Amazônia brasileira (Sauria, Scincidae). Papéis Avulsos de Zoologia, São Paulo. 34:161163. RIBEIRO, J. F., and B. M. T. WALTER. 1998. Fitofisionomias do bioma Cerrado, p. 89-166. In: Cerrado: Ambiente e Flora. S. M. Sano and S. P. Almeida (eds.). EMBRAPACPAC, Planaltina, DF. RICKLEFS, R. E., D. COCHRAN, and E. R. PIANKA. 1981. A morphological analysis of the structure of communities of lizards in desert habitats. Ecology. 62:1474-1483. RICKLEFS, R. E., and G. L. MILLER. 1999. Ecology. Freeman, New York, NY. ROCHA, C. F. D., and H. G. BERGALO. 1990. Thermal biology and flight distance of Tropidurus oreadicus (Sauria: Iguanidae) in an area of amazonian Brazil. Eth. Eco. Evo. 2:263-268. RODRIGUES, M. T. 2000. A new species of Mabuya (Squamata: Scincidae) from the semiarid Caatingas of Northeastern Brazil. Papéis Avulsos de Zoologia, São Paulo. 41:313-328. 104 ROHLF, F. J., and F. L. BOOKSTEIN. 1987. A comment on shearing as a method for "size correction". Syst. Zool. 36:356-367. SCHOENER, T. W. 1965. The evolution of bill size differences among sympatric congeneric species of birds. Evolution. 19:189-213. SEMLITSCH, R. D. 1987. Relationship of pond drying to the reproductive success of the salamander Ambystoma talpoideum. Copeia. 1987:61-69. SIMPSON, E. H. 1949. Measurement of diversity. Nature. 163:688. SOMERS, K. M. 1986. Multivariate allometry and removal of size with principal component analysis. Syst. Zool. 35:359-368. SPILLER, D. A., and T. W. SCHOENER. 1989. Effect of a major predator on grouping of an orb-weaving spider. J. An. Eco. 58:509-523. —. 1990. A terrestrial field experiment showing the impact of eliminating top predators on foliage damage. Nature. 347:469-472. VAN SLUYS, M. 1992. Aspectos da ecologia do lagarto Tropidurus itambere (Tropiduridae), em uma área do sudeste do Brasil. Revta. Brasil. Biol. 52:181185. —. 1993. Food habits of the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil. J. Herpetol. 27:347-351. —. 1995. Seasonal variation in prey choice by the lizard Tropidurus itambere (Tropiduridae) in Southeastern Brazil. Ciência e Cultura. 47:61-65. VANZOLINI, P. E. 1948. Notas sobre os ofídios e lagartos da Cachoeira de Emas, no município de Pirassununga, estado de São Paulo. Revta. Brasil. Biol. 8:377-400. 105 VANZOLINI, P. E., A. M. M. RAMOS-COSTA, and L. J. VITT. 1980. Répteis das Caatingas. Academia Brasileira de Ciências, Rio de Janeiro, Brasil. VIEIRA, G. H. C., D. O. MESQUITA, A. K. P. JR, K. KITAYAMA, and G. R. COLLI. 2000. Natural History: Micrablepharus atticolus. Herpetol. Rev. 31:241-242. VITT, L. J. 1981. Lizard reproduction: habitat specificity and constraints on relative clutch mass. Am. Nat. 117:506-514. —. 1991. An introduction to the ecology of Cerrado lizards. J. Herpetol. 25:79-90. —. 1993. Ecology of isolated open-formation Tropidurus (Reptilia: Tropiduridae) in Amazonian lowland rain forest. Can. J. Zool. 71:2370-2390. —. 1995. The ecology of tropical lizards in the Caatinga of northeast Brazil. Occ. Pap. Oklahoma Mus. Nat. Hist. 1:1-29. —. 1996. Biodiversity of Amazonian lizards, p. 89-108. In: Neotropical Biodiversity and Conservation. A. C. Gibson (ed.). Occasional Publication of the Mildred E. Mathias Botanical Garden 1, Los Angeles. VITT, L. J., and D. G. BLACKBURN. 1991. Ecology and life history of the viviparous lizard Mabuya bistriata (Scincidae) in the Brazilian Amazon. Copeia. 1991:916-927. VITT, L. J., and J. P. CALDWELL. 1993. Ecological observations on Cerrado lizards in Rondônia, Brazil. J. Herpetol. 27:46-52. VITT, L. J., J. P. CALDWELL, G. R. COLLI, A. A. GARDA, D. O. MESQUITA, F. G. R. FRANÇA, and S. F. BALBINO. 2002. Um guia fotográfico dos répteis e anfíbios da região do Jalapão no Cerrado brasileiro. Spec. Pub. Herp. 1:1-17. VITT, L. J., J. P. CALDWELL, P. A. ZANI, and T. A. TITUS. 1997a. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. 106 Proceedings of the National Academy of Sciences of the United States of America. 94:3828-3832. VITT, L. J., and C. M. CARVALHO. 1995. Niche partitioning in a tropical wet season: lizards in the Lavrado area of Northern Brazil. Copeia. 1995:305-329. VITT, L. J., and G. R. COLLI. 1994. Geographical ecology of a neotropical lizard: Ameiva ameiva (Teiidae) in Brazil. Can. J. Zool. 72:1986-2008. VITT, L. J., and E. R. PIANKA. 1994. Lizard Ecology. Princeton University Press, Princeton. VITT, L. J., E. R. PIANKA, W. E. COOPER, JR., and K. SCHWENK. 2003. History and the global ecology of squamate reptiles. Am. Nat. 162:44-60. VITT, L. J., S. S. SARTORIUS, T. C. S. ÁVILA-PIRES, and E. C. ESPOSITO. 2001. Life on the leaf litter: The ecology of Anolis nitens tandai in the brazilian Amazon. Copeia. 2001:401-412. VITT, L. J., S. S. SARTORIUS, T. C. S. ÁVILA-PIRES, M. C. ESPÓSITO, and D. B. MILES. 2000. Niche segregation among sympatric Amazonian teiid lizards. Oecologia. 122:410-420. VITT, L. J., and P. A. ZANI. 1996. Organization of a taxonomically diverse lizard assemblage in Amazonian Ecuador. Can. J. Zool. 74:1313-1335. —. 1998a. Ecological relationships among sympatric lizards in a transitional forest in the Northern Amazon of Brazil. J. Trop. Ecol. 14:63-86. —. 1998b. Prey use among sympatric lizard species in lowland rain forest of Nicaragua. J. Trop. Ecol. 14:537-559. 107 VITT, L. J., P. A. ZANI, and T. C. S. ÁVILA-PIRES. 1997b. Ecology of the arboreal tropidurid lizard Tropidurus (= Plica) umbra in the Amazon region. Can. J. Zool. 75:1876-1882. VITT, L. J., P. A. ZANI, T. C. S. ÁVILA-PIRES, and M. C. ESPOSITO. 1998. Geographical ecology of the gymnophthalmid lizard Neusticurus ecpleopus in the Amazon rainforest. Can. J. Zool. 76:1671-1680. VITT, L. J., P. A. ZANI, J. P. CALDWELL, M. C. D. ARAUJO, and W. E. MAGNUSSON. 1997c. Ecology of whiptail lizards (Cnemidophorus) in the amazon region of Brazil. Copeia. 1997:745-757. VITT, L. J., P. A. ZANI, and M. C. ESPOSITO. 1999. Historical ecology of Amazonian lizards: implications for community ecology. Oikos. 87:286-294. WEBB, C. O., D. D. ACKERLEY, M. A. MCPEEK, and M. J. DONOGHUE. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33:475-505. WIENS, J. A. 1977. On competition and variable environments. American Scientist. 65:590-597. WINEMILLER, K. O., and E. R. PIANKA. 1990. Organization in natural assemblages of desert lizards and tropical fishes. Ecol. Monog. 60:27-55. ZAR, J. H. 1998. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. ZUG, G. R., L. J. VITT, and J. P. CALDWELL. 2001. Herpetology: An Introductory Biology of Amphibians and Reptiles. Academic Press, San Diego, California. 108 Table 1- Overlap in microhabitat (boldface) and diet for Jalapão lizards. I. i. I. i. A. n. T. o. B. b. G. g. A. a. C. m. T. q. C. mo. M. m. V. r. M. h. M. n. - - - - - - - - - - - - 0.282 0.000 0.208 0.277 0.559 0.097 0.611 0.754 0.646 0.856 0.168 0.106 0.468 0.337 0.469 0.049 0.292 0.319 0.300 0.361 0.262 0.393 0.448 0.302 0.000 0.000 0.081 0.000 0.034 0.348 0.928 0.874 0.019 0.216 0.401 0.217 0.298 0.881 0.883 0.144 0.263 0.427 0.263 0.431 0.872 0.068 0.611 0.719 0.610 0.667 0.801 0.081 0.077 0.090 0.129 0.058 0.889 0.991 0.71 0.344 0.902 0.784 0.552 0.72 0.352 A. n. - T. o. 0.585 - B. b. - - - G. g. 0.000 - 0.000 - A. a. 0.699 - 0.736 - 0.003 C. m. 0.707 - 0.745 - 0.000 0.989 T. q. 0.707 - 0.745 - 0.000 0.988 1.000 C. mo. - - - - - - - - M. m. 0.000 - 0.000 - 0.999 0.000 0.000 0.000 - V. r. - - - - - - - - - - M. h. - - - - - - - - - - - M. n. 0.707 - 0.745 - 0.000 0.988 1.000 1.000 - 0.000 - 0.323 - Note: I. i.- Iguana iguana, A. n.- Anolis nitens, T. o.- Tropidurus oreadicus, B. b.- Briba brasiliana, G. g.- Gymnodactylus geckoides, A. a.- Ameiva ameiva, C. m.- Cnemidophorus mumbuca, T. q.- Tupinambis quadrilineatus, C. mo.- Colobosaura modesta, M. m.Micrablepharus maximiliani, V. r.- Vanzosaura rubricauda, M. h.- Mabuya heathi, M. n.- Mabuya nigropunctata. 109 Table 2. Importance index of prey categories in the diet of 12 lizard species from Jalapão. Prey Type A. a. C. m. T. q. T. o. B. b. G. g. C. mo. Annelida 0.55 Aranae 7.00 9.07 8.57 2.47 3.16 33.34 Blattaria 5.73 2.86 1.30 2.22 4.63 Coleoptera 6.49 4.54 11.05 3.78 Dermaptera 0.47 Diplopoda 0.92 0.49 1.27 42.15 1.07 Diptera 0.28 Egg (insects) 0.95 0.16 Formicidae 0.45 4.45 42.29 11.76 3.67 Gastropoda 0.45 0.38 Gryllidae 0.84 1.87 1.40 Gryllotalpidae 5.78 34.09 Hemiptera 5.11 1.36 2.45 Homoptera 2.89 5.47 3.06 4.08 Hymenoptera (non ants) 0.14 Insect larvae 11.02 8.69 11.61 6.03 3.73 Isoptera 38.78 30.96 10.29 23.75 55.80 Lepidoptera 0.52 Mantoidea 1.81 0.44 4.34 Neuroptera 0.57 0.63 0.15 Odonata 0.58 0.86 Opilionida 0.30 Orthoptera 8.69 24.51 11.07 12.25 45.27 Phasmida 0.48 0.18 Plant material 3.36 60.42 0.87 Pseudoscorpionida 0.13 0.43 Chilopoda 0.93 0.55 0.21 0.84 Scorpionida 0.15 Solifuga 3.13 3.70 4.68 Vertebrate 1.34 19.39 N 37 167 2 142 3 73 13 Numeric niche breadth 1.47 2.28 1.18 2.21 3.00 1.66 3.13 Volumetric niche breadth 8.14 5.48 2.60 6.84 2.06 2.98 2.55 Note: Species abbreviations are the same as in Table 1. M. m. 21.65 4.71 3.77 0.91 20.71 2.99 9.25 1.85 32.68 1.49 33 4.34 4.58 V. r. 34.73 3.79 7.13 2.38 45.52 6.46 23 2.95 2.74 M. h. 9.49 4.76 10.25 11.19 18.53 3.20 7.27 6.83 23.42 5.06 12 7.86 4.96 M. n. 24.69 5.75 13.15 50.93 5.49 4 1.30 2.68 A. n. 26.20 30.73 43.07 2 3.00 2.12 110 Table 3. Principal component analysis of size-free morphological data from Jalapão lizards. Factor I Factor II Factor III Adjusted-SVL 0.837 -0.080 0.226 Adjusted-TL 0.195 -0.700 0.140 Adjusted-HW 0.025 0.897 0.191 Adjusted-HL 0.024 0.136 0.948 Adjusted-HH -0.607 0.511 0.247 Adjusted-BW 0.456 0.617 -0.197 Adjusted-BH 0.678 0.303 -0.309 Adjusted-LL -0.810 -0.311 0.008 Adjusted-FL -0.757 0.331 -0.280 Eigenvalues 3.005 2.260 1.278 Percent of variance explained 33.393 25.108 14.198 Note: SVL- snout-vent length, TL- tail length, HW- head width, HL- head length, HH- head height, BW- body width, BH- body height, LL- leg length, and FL- forelimb length. 111 Table 4. Historical effects on the ecology of Cerrado lizards. Results of Monte Carlo permutation tests of individual groups (defined in Fig. 1) for the Y matrices of diet and microhabitat. Percentage of the variation explained (relative to total unconstrained variation), and F and P values for each variable are given (9999 permutations were used) for each main matrix. Note that no groups used for selection of variables yielded individual P ≤ 0.05. Group(s) Variation Variation % F P Diet B 0.268 23.717 1.759 0.1994 G 0.212 18.761 1.345 0.2404 F 0.194 17.168 1.214 0.3043 I 0.170 15.044 1.046 0.4077 H 0.126 11.150 0.753 0.8633 E 0.118 10.442 0.707 0.5250 D 0.116 10.265 0.693 0.5429 A/J 0.101 8.938 0.596 0.6945 C 0.090 7.965 0.530 0.7882 Microhabitat A/F 0.461 32.649 1.986 0.0541 C 0.359 25.425 1.441 0.2130 E 0.296 20.963 1.138 0.4991 B 0.218 15.439 0.800 0.5654 D 0.149 10.552 0.525 0.6534 112 FIGURE LEGENDS Figure 1. Individual groups used in canonical phylogenetic ordination for microhabitat and diet data. Phylogeny based in Estes et al. (1988). Figure 2. Frequency distribution of individuals according to microhabitat categories for Jalapão lizards. Sample sizes are indicated at the top of the bars. Figure 3. Plot of the average per species of the first two principal components derived from size-free morphological data for Jalapão lizards. Figure 4. Phylogeny of Jalapão lizards showing the topology of ecological characteristics. Abbreviations for habitat are: C = Cerrado, GF = gallery forest, R = rocky field. Abbreviations for microhabitat are: A = arboreal, OG = open ground, B = bushes, LD = litter-dwelling, S = saxicolous, TN = termite nest. Abbreviations for activity are: D = diurnal, N = nocturnal, CN = crepuscular/nocturnal. Note: general microhabitat categories are based on data from this work and from Vieira et al. (2000), Vitt (1991), Vitt and Caldwell (1993), Vanzolini et al. (1980) and Ávila-Pires (1995). 113 114 115 116 117 APÊNDICE 3- manuscrito submetido para a publicação na revista Biotropica em fevereiro de 2005. Ecology of an Amazonian savanna lizard assemblage in Monte Alegre, Pará State, Brazil Daniel O. Mesquita, Gabriel C. Costa, and Guarino R. Colli Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910900 Brasília, Distrito Federal, Brazil, Tel/fax: 55-61-307-2265 r. 21, email: danmesq@unb.br Corresponding author: Daniel Oliveira Mesquita Manuscript type: major article Running title: Amazonian savanna lizard assemblage Key words: assemblage structure, community ecology, historical factors 118 We describe the lizard assemblage from an Amazonian savanna in the region of Monte Alegre, Pará, Brazil, using ecological, morphological, and life history data, examining the role of history in the assemblage. The lizard assemblage in Monte Alegre contained seven species. Microhabitat niche breadth was low for all species in the assemblage and niche overlap varied from none to almost complete. The least overlap in microhabitat occurred among more distantly related species and the greatest overlap occurred among teiids. Lizards were active between 9:00 h to 17:00 h. “Active foraging” lizards tended to be active during the hottest hours of day, whereas “sit and wait foraging” lizards were more commonly observed later in the day, when temperatures were lower. Analysis of body temperatures identified two statistically homogeneous groups, one with teiids and another with the remaining species. Dietary overlap was highest among teiids. Pseudocommunity analyses showed that neither mean dietary overlap nor mean microhabitat overlap differed statistically from random, indicating lack of structure. Factor scores of morphological variables per species reveals clusters corresponding to lizard families. An examination of ecological traits mapped onto a tree depicting phylogenetic relationships among species and comparisons with related species from other biomes clearly indicated the role of history in the Monte Alegre lizard assemblage. This result was corroborated by Canonical Phylogenetic Ordination analysis. 119 Introduction An assemblage is a group of closely related species that coexist in a defined area and assemblage structure may be the result of several factors (Begon et al. 1990, Pianka 1994, Ricklefs & Miller 1999). Ecologists have traditionally considered that ecological relationships among taxa were the primary factors in structuring assemblages (Roughgarden & Diamond 1986, Werner 1986, Yodzis 1986); recently, however, more attention has been given to the importance of historical factors, since ignoring the role of phylogenetic history may result in equivocal conclusions about the determinants of assemblage structure (Losos 1994, Losos 1996, Webb et al. 2002). Divergence along niche axes (e.g., food, time, or microhabitats) among closely related species is usually viewed as evidence of ecological factors prevailing over historical factors (e.g., Pianka 1973). On the other hand, lack of divergence among closely related species suggests that historical factors prevail over ecological factors (Brooks & McLennan 1991, Losos 1996, Vitt 1995). Likewise, similar patterns of structure in different assemblages suggest that historical factors predominate, whereas variation in patterns among assemblages indicates the prevalence of ecological factors (Brooks & McLennan 1991, Cadle & Greene 1993). Recently, several studies were performed in Neotropical open formations. In Caatinga, the lizard assemblage was described throughout activity, body temperatures, habitat, microhabitat and diet data and phylogeny influenced lizard assemblage structure more than present-day ecological relationships among species (Vitt 1995). In Cerrado, a lizard assemblage showed microhabitat divergence between tropidurids and polychrotids and overlap between teiids and gymnophytalmids, but differences in body size promoted divergence in diet (Vitt 1991). In Amazonian Savanna, eight species were grouped into three alimentary guilds: 120 herbivores, active, and sit-and-wait foragers, and the main determinant of guilds was not diet composition, but prey acquisition mode (Vitt & Carvalho 1995). However, in the Cerrado and Amazonian Savanna studies, authors failed to consider the influence of historical factors. During Pleistocene glacial periods, great expanses of the Amazon basin were covered by savannas, with forest restricted to isolated patches (Ab'Sáber 1982, Bigarella & Andrade-Lima 1982, Eden 1974, Huber 1982). Presumably, Amazonian savannas represent vestiges of a large savanna that once extended from central Brazil through Guianas (Prance 1978) and now persist as islands embedded in the Amazon forest (Pires 1973). Eiten (1978) found that Amazonian savannas were dominated by several common Cerrado plant species, but had low levels of species diversity and endemism. Amazonian savanna lizard assemblages also show low diversity, but instead, have high endemism (Ávila-Pires 1995, Colli 1996, Vitt & Carvalho 1995). In addition, Amazonian savannas are still poorly known, are highly threatened by agricultural expansion, mining, cattle ranching, and fire (Machado et al. 2004, Mesquita 2003), and are under-represented in conservation units (Cavalcanti 1995). Herein, we describe the lizard assemblage of an Amazonian savanna, from Monte Alegre region, Pará State, using ecological, morphological, and life history data and we examine the role of phylogenetic history in assemblage structure (e. g., Brooks & McLennan 1991, Giannini 2003, Losos 1996). Materials and methods Study site.-We conducted field work from 27 November to 18 December 2002 in an Amazonian savanna near Monte Alegre, northern Pará, Brazil (2º 00' S, 44º 20' W). The region is characterized by open and low Cerrado-like vegetation (Amazonian savanna) on sandy soil with rocky areas. Amazonian savannas occur like scattered islands inside the Amazon Forest and 121 cover about 150,000 km2, or 2% of Brazil (Pires 1973). The climate (Aw) is highly seasonal and annual precipitation averages 1,700 mm (Eidt 1968). The vegetation is dominated by species typical of the Cerrado, but diversity is lower (Eiten 1978). Microhabitat and activity, and temperatures.-We captured lizards using drift fences with pitfall traps, by hand, or using a shotgun. In the lab, we killed live lizards with an injection of Thiopental® in accordance with approved protocols and preserved them in 10% formalin. When we captured lizards by hand or gun, we took cloacal, substrate, and air temperatures (at 5 cm and 1.5 m above ground) at the time of capture to the nearest 0.2 C with a Miller & Weber® cloacal thermometer. We also recorded microhabitat where the lizard was first observed (grass, open ground, termite nests, tree trunks, or rocks) and the time of capture. We computed microhabitat niche breadths (B) using the inverse of Simpson's diversity index (Simpson 1949): 1 B= n ∑ pi2 , i =1 where p is the proportion of microhabitat category i and n is the number of categories. Values vary from 1.0 (exclusive use of a single microhabitat) to 5.0 (equal use of all five microhabitats). We also calculated microhabitat use overlap with the equation: n φij = ∑p pik n n ij i =1 ∑p ∑p 2 ij i=1 , 2 ik i =1 where p represents the proportion of microhabitat category i, n is the number of categories, and j and k represent the species being compared (Pianka 1973). Øij varies from 0 (no overlap) to 1 (complete overlap). To investigate the presence of non-random patterns in microhabitat niche 122 overlap, we used the Niche Overlap Module of EcoSim (Gotelli & Entsminger 2003). Data for such analysis consist of a matrix in which each species is a row and each microhabitat category is a column. The matrix is reshuffled to produce random patterns that would be expected in the absence of underlying structure. We used the options “Pianka’s niche overlap index” and “randomization algorithm two” in EcoSim. Randomization algorithm two substitutes the microhabitat category in the original matrix with a random uniform number between zero and one, but retains the zero structure in the matrix (Winemiller & Pianka 1990). Diet.-We analyzed stomach contents under a stereoscope, identifying prey items to the level of order, with the exception that ants (Formicidae) were considered a separate category. We recorded the length and width (to the nearest 0.01 mm) of intact items with Mitutoyo® electronic calipers and estimated prey volume (V) as an ellipsoid: V= 4 ⎛ w ⎞2⎛ l⎞ , π 3 ⎝ 2 ⎠ ⎝ 2⎠ where w is prey width and l is prey length. We calculated the numeric and volumetric percentages of each prey category for pooled stomachs. From these percentages, we computed niche breadths (B) using the inverse of Simpson's diversity index (Simpson 1949), as described above except that values for diet niche breadth can vary from 1.0 to 25 (25 prey categories were recognized). Throughout the text, we refer to diet niche breadth, which is the average between numeric and volumetric niche breadths. We also calculated the percent occurrence of each prey category (number of stomachs containing prey category i divided by the total number of stomachs). We excluded prey items that were too fragmented to allow a reliable estimate of their volumes from volumetric analyses. To determine the relative contribution of each prey category, we calculated an importance index for pooled stomachs using the equation: 123 I= F% + N% + V% , 3 where F% is the percentage of occurrence, N% is the numeric percentage, and V% is the volumetric percentage. We calculated dietary overlap using the equation for microhabitat overlap above (Pianka 1973). To investigate the presence of non-random patterns in microhabitat niche overlap, we used “Niche Overlap Module” of EcoSim (Gotelli & Entsminger 2003) in the same manner described for microhabitat above. Morphometry.-Using Mitutoyo® electronic calipers, we recorded the following morphometric variables to the nearest 0.01 mm: snout-vent length (SVL), body width (at its broadest point), body height (at its highest point), head width (at its broadest point), head height (at its highest point), head length (from the tip of the snout to the commissure of the mouth), hind limb length, forelimb length, and tail length (from the cloaca to the tip of the tail). To maximize availability of data, we estimated tail length of lizards with broken or regenerated tails using a regression equation relating tail length to SVL, calculated from lizards with intact tails. We calculated separate regression equations for sexes. Prior to analysis, we log10-transformed all morphometric variables to meet requirements of normality (Zar 1998). The transformed morphometric variables were used in a principal component analysis to examine the morphological variation and to identify the taxonomic level at which ecological variation among species occurred. To conduct statistical analyses we used SYSTAT 11.0 and SAS 8.1 for Windows, with a significance level of 0.05 to reject null hypotheses. Throughout the text, means appear ± 1 SD. To assess the role of history in assemblage structure, we used Canonical Phylogenetic Ordination (Giannini 2003) coupled with Monte Carlo permutations (9,999) in CANOCO 4.5 for Windows. 124 The analysis consists of canonical ordination to identify divergence points within a reduced tree matrix that best explains ecological patterns (Giannini 2003). Because of differences in completeness of data for microhabitat use and diets, we used two different trees (Figure 1). For diet, we used the average of the importance index based on individual stomach means and pooled data. Results Species composition, microhabitat, activity, and body temperatures.-The lizard assemblage in Monte Alegre contained 7 species; one polychrotid (Anolis auratus), one tropidurid (Tropidurus hispidus), three teiids (Ameiva ameiva, Cnemidophorus cryptus and Kentropyx striata), one gymnophthalmid (Gymnophthalmus underwoodi) and one scincid (Mabuya nigropunctata). In the study region, we documented more lizard species, like the forest-dweller gekkonids Gonatodes humeralis and Thecadactylus rapicauda (pers. comm. Jossehan Frota), the teiid Tupinambis teguixin, and the iguanid Iguana iguana; however, in this paper, we consider only the species that occurred in the area of the pitfall traps. All species in the assemblage are diurnal and typical of open areas, except M. nigropunctata that also occurs in the forest. The teiid Ameiva ameiva occurred mainly in open ground and grass microhabitats, like the other teiids Cnemidophorus cryptus and Kentropyx striata and the scincid Mabuya nigropunctata. Tropidurus hispidus was found almost exclusively in saxicolous microhabitats. Anolis auratus occurred on the ground and low perches on trees (Fig. 2). Niche breadth for microhabitat was low for all species in the assemblage. Anolis auratus had the largest (2.27) and A. ameiva and T. hispidus had the smallest (1.14 and 1.16, 125 respectively) niche breath values (Fig. 3). Microhabitat niche overlap varied from none to almost complete (Table 1). The lowest results for niche overlap were found between species most distant phylogenetically (e.g., between T. hispidus and A. ameiva and between M. nigropunctata and A. auratus) whereas the greatest overlap occurred among teiids (Table 1). The pseudocommunity analysis showed that mean microhabitat overlap among lizard species did not differ statistically from random (P=0.31), indicating lack of assemblage structure with respect to microhabitat. Lizards were active from 9:00 h to 17:00 h, but activity times varied among species. Usually, “active forager” lizards tended to be active during the hottest hours of day. For example, most teiids and scincids were active between 9:30 h and 13:30 h, whereas the “sit and wait forager” T. hispidus was active from 10:30 h until 17:00 h. Mean body temperatures ranged from 28.2°C in Anolis auratus to 41.8°C in Ameiva ameiva. Because of a high association between body and substrate temperature (R2 = 0.53, F1,93 =102.45, P < 0.0001), we removed the effect of substrate temperature by calculating residuals of a regression between body and substrate temperatures and then performed an ANOVA on the residuals followed by post-hoc Tukey tests. The ANOVA detected significant differences among species (F5,88 = 7.642, P < 0.0001) and post-hoc Tukey tests identified two statistically homogeneous groups, one containing the teiids and another consisting of the other species (A. auratus, M. nigropunctata, and T. hispidus). Diet composition.-We analyzed the contents of 245 stomachs and recognized 25 prey categories. The percentage of empty stomachs was 6.94 % (n = 17). Based on all lizard species, termites were the most important prey type followed by orthopterans and spiders. The results based on 126 data from individual and pooled stomachs were similar. The most important prey for A. ameiva and C. cryptus were termites and spiders; for K. striata, spiders and orthopterans; for T. hispidus, mainly ants; for M. nigropunctata, orthopterans and beetles; for G. underwoodi, spiders; and for A. auratus, termites (Table 2). Diet niche breadths calculated from the average between numeric and volumetric percentages of prey were usually low, with lowest values for G. underwoodi and A. auratus and the largest values for A. ameiva and C. cryptus (Table 2). Prey overlap varied from 0.125 (G. underwoodi vs. T. hispidus) to 0.951 (A. ameiva vs. C. cryptus) (Table 1). Tropidurus hispidus had low overlap with all other species, with the greatest overlap with C. cryptus (0.422) (Table 1). Overlaps were high among teiids, with the lowest between K. striata and A. ameiva (0.686) (Table 1). A pseudocommunity analysis with all original prey categories showed that mean diet overlap among lizard species did not differ statistically from random (P=0.98), indicating lack of structure. Morphometry.-The first two factors of the principal component analysis of morphological variables accounted for 97.46% of the variation (Table 3). The first factor (56.06%) described a gradient of increasing hind limb length, forelimb length and tail length and decreasing head height and head length (Table 3). The second factor (41.40%) described a gradient of increasing body height and body width (Table 3). A plot of the average of factor scores by species for the first two principal components revealed clusters corresponding to lizard families (Fig. 4). Historical effects.-A detailed inspection of the cladogram (Fig. 3) reveals several patterns indicating a role of history in the Monte Alegre lizard assemblage, mainly among Teioidea 127 lizards. Microhabitats, body temperatures, and diet niche breadths of teiids and gymnophthalmids were similar, suggesting that history plays an important role in determining the observed pattern. Some differences occurred in niche breadth (diet and microhabitat), microhabitat use, and body temperature of A. auratus and T. hispidus; however, these species are not closely related even though they were placed together in the cladogram, which suggests that differences are not promoted by ecological factors. Monte Carlo permutations (based on 9,999 permutations) revealed a significant phylogenetic effect on dietary composition of Teioidea, which accounted for 33.6% of the dietary variation (Table 4). No significant phylogenetic effects on microhabitats use or dietary composition were detected in any other clades (Table 4). Discussion Species composition, microhabitat, activity, and body temperatures.- Data available on species richness for Amazonian savannas and isolated Cerrado areas in the Amazon show a great disparity, varying from two species in Guajará-Mirim, Rondônia State (Gainsbury & Colli 2003), five in Carajás, Pará State (Cunha et al. 1985), eight in Boa Vista, Roraima State (Vitt & Carvalho 1995), to nine in Vilhena, Rondônia State (Gainsbury & Colli 2003). Considering all open-vegetation species collected in Monte Alegre region (9 species), the area harbors one of the richest lizard faunas from open areas in the Amazon region. The reason for this variation is still unclear, however, it has been suggested that time of isolation may be a determining factor (Gainsbury & Colli 2003). Activity times were similar among species, except for T. hispidus, which was active later in the day compared to teiid lizards. This pattern appears to be common in other species of 128 Tropidurus, which avoid the hottest hours of the day and are more active early in the morning and late afternoon (Bergallo & Rocha 1993, Rocha & Bergalo 1990, Vitt et al. 1996). On the other hand, teiid lizards commonly concentrate their activity during warmer periods near midday (Mesquita & Colli 2003a, Vitt & Colli 1994, Vitt et al. 1993). Furthermore, teiids maintained higher body temperatures than all other species and temperatures were similar among them. In most Neotropical lizard assemblages studied previously (see Vieira & Alves 1975, Vitt 1991, Vitt 1995, Vitt & Carvalho 1995), teiid lizards had the highest body temperatures, suggesting that phylogenetic history plays an important role in the thermal ecology and activity cycles of these lizards. In most cases, microhabitat niche overlaps in Monte Alegre lizards were highest among closely related species, especially teiids. Several other studies also detected a historical effect in ecological traits, such as microhabitat (Vitt 1995, Vitt & Zani 1996, Vitt et al. 1999). Additionally, previous studies where ecological traits were mapped on the phylogeny revealed that present-day interactions cannot explain observed patterns of resource use (Brooks & McLennan 1991, Losos 1994, Losos 1996). Although structure in microhabitat use was found in several assemblages (e. g., Pianka 1986, Vitt 1995, Vitt & Carvalho 1995, Winemiller & Pianka 1990), we did not find such structure in Monte Alegre, which indicates a lack of competition for space. Therefore, microhabitat may not be a limiting for these lizards (see Connor & Simberloff 1979). Because some species were difficult to observe (e.g., gymnophthalmids), microhabitat data for some species were poor, which may have influenced the results. Additional data could reveal different patterns of microhabitat use. 129 Diet composition.- Most species from the Monte Alegre lizard assemblage showed similar diet composition when compared with other conspecific populations, e.g., C. cryptus from Amazonian savanna area in Amapá State (Mesquita & Colli 2003b), K. striata from Amazonian savanna area in Roraima (Vitt & Carvalho 1995), M. nigropunctata from Brazilian Amazonia (Vitt & Blackburn 1991), Tropidurus sp. from open vegetation areas in Rondônia (Vitt 1993), Gymnophthalmus spp. from Roraima (Vitt & Carvalho 1995), and A. ameiva range wide (Vitt & Colli 1994). These results emphasize the importance of history in the diet of Monte Alegre lizards, which regardless of differences in prey availability among localities, ingested similar prey. One exception to this was A. auratus, which differed in diet composition compared to other localities (Magnusson et al. 1985, Vitt & Carvalho 1995). In Monte Alegre, A. auratus had a high proportion of termites in the diet, which is unusual among Anolis (Vitt et al. 2003a, Vitt et al. 2002, Vitt et al. 2003b, Vitt et al. 2001) and even for iguanian lizards (Vitt et al. 2003c). This result suggests an important role of ecological factors influencing the diet of this species in Monte Alegre. Several explanations are possible, including local prey availability, inter-specific interactions and/or seasonality effects; however, more work is necessary to elucidate this issue. Overall, when examining diet composition, the Monte Alegre lizard assemblage appears to be more shaped by phylogenetic inertia than ecological interactions. The highest dietary overlaps were found within teiids, mainly due to high consumption of termites, spiders and orthopterans. Arthropod abundance may not be a limiting resource (e. g., Colli et al. 1997) and/or differences in foraging mode and home range between these species allow partitioning of food resources (Pianka 1973, Pianka 1986). Nevertheless, high dietary overlap among closely related species suggests the influence of phylogeny (Brooks & McLennan 1991, Losos 1996). On the other hand, low dietary overlap among distantly related species, such 130 as T. hispidus vs. K. striata, G. underwoodi vs. T. hispidus, and A. auratus vs. K. striata, cannot be interpreted as evidence of competition or local scale effects (see Brooks & McLennan 1993, Harvey & Pagel 1991, Losos 1996). Furthermore, lack of structure found in the pseudocommunity analysis suggests absence of competition among species (i.e., the resources may not be limiting) (Connor & Simberloff 1979). Indeed, a previous study on fat storage cycles in Amazonian Savanna and Cerrado lizards showed that most species accumulate fat bodies during the dry season when insect availability is lowest, which supports that food is not a limiting factor (Colli et al. 1997). Morphometry.- Morphological approaches for assessing ecological relationships have been used for many years and have several advantages (Ricklefs et al. 1981, Ricklefs & Travis 1980, Schoener 1965). Although morphology is relatively fixed and consequently not suitable to detect delicate aspects of the ecology, it is easily comparable with other studies and is useful when combined with other kinds of data (Ricklefs & Miller 1999). Our data suggest a strong association between morphology and ecology, with closely related species grouping together in morphological space, especially teiid lizards. Traditionally, tropidurids and polychrotids (both iguanians) have a high association between morphology and ecology, typically evidenced when habitat shifts promote changes in morphology (Losos 1992, Losos et al. 1994, Pounds 1988, Vitt 1981). Several studies have shown adaptive morphological differentiation in response to habitat shifts in closely related tropidurids (Vitt 1981, Vitt et al. 1997a) and in Anolis lizards (Losos 1995, Losos et al. 1993, Pounds 1988). The iguanians from Monte Alegre did not cluster together in morphological space and this could be interpreted as evidence of morphological differentiation in response to interactions between these lizards. 131 However, iguanians from Monte Alegre are not closely related and this likely explains the morphological differentiation. Tropidurus hispidus and Anolis auratus are morphologically similar to their close relatives in other habitats (see Magnusson & Silva 1993, Vitt 1993, Vitt & Carvalho 1995), suggesting that differences originated long ago in the history of these species. The morphological similarity among teiid lizards suggests a major influence of history, whereas the gymnophthalmid plotted far from teiids in morphological space. Teiids and gymnophthalmids are characterized by a strong similarity in body shape, but differ in body size. These morphological differences are likely a historical consequence of intraguild interactions rather than more recent ecological interactions (Vitt et al. 2000, Vitt & Zani 1996, Vitt et al. 1998). Historical effects.-Like most lizard assemblages from Neotropical savannas, Monte Alegre is depauperate of closely related species (Vitt 1991, Vitt 1995, Vitt & Carvalho 1995). With the exception of teiids, species belonged to different families, complicating comparisons to access the role of historical and local factors on assemblage structure. Nevertheless, the conservative ecology of most species when examined across different habitats is strong evidence for historical influence (Brooks & McLennan 1991, Brooks & McLennan 1993, Losos 1996). Among all Monte Alegre lizards, only Anolis auratus differed in an ecological trait (diet composition) compared to other populations (Magnusson et al. 1985, Magnusson & Silva 1993, Vitt & Carvalho 1995), showing that local factors are also important. Anoles have been shown to respond quickly, even in morphology, to changes in ecological conditions (Losos 1995, Losos et al. 1993, Pounds 1988). Conversely, scleroglossan lizards tend to have more conservative ecological traits (Vitt et al. 2003c). 132 An examination of ecological traits mapped on the current phylogenetic hypothesis clearly shows the role of history in the Monte Alegre lizard assemblage (Fig. 3). This is particularly evident for Teiioidea (teiids and gymnophthalmids), which showed high similarity in most ecological traits examined. Studies with these lizards from drastically different habitats have shown that their ecology is little influenced by local differences, such as environmental and species interactions, further emphasizing the influence of history in their ecology (Mesquita & Colli 2003b, Vitt & Colli 1994, Vitt et al. 1998, Vitt et al. 1997b). If present-day interactions exert more influence on the Monte Alegre lizard assemblage than the history of species, we would expect ecological traits to map randomly on the phylogeny (see Vitt 1995). The cladogram, however, revealed the opposite pattern, especially in Teioidea. Canonical Phylogenetic Ordination detected significant phylogenetic effects in Teioidea when considering the diet data. However, we found no phylogenetic effect for any other taxa in the assemblage for diet and no effect in any species when considering microhabitat. Some caution should be used when interpreting our results. Microhabitat data may be biased by differences in local abundance. Although most lizard species from Amazonian savannas are abundant and easy to observe, some did not occur in high abundance or were more difficult to capture (e.g., gymnophthalmids). On the other hand, assemblages from Amazonian savannas are depauperate of closely related species. In the Monte Alegre assemblage, historical effects could be undetectable because major taxa are underrepresented. In more complex assemblages, with greater numbers of closely related species, historic effects may be more easily detected. In Amazon forest, a significant phylogenetic effect was detected, primarily in tropidurid lizards, which are represented by two closely related species, Plica plica and P. umbra 133 (Giannini 2003, Vitt et al. 1999). Finally, the lack of a phylogenetic effect may have resulted from a data deficiency in the Canonical Phylogenetic Ordination analysis. Although there are some analyses of niche structure to examine the influences of historical factors on species interactions, the use of phylogenetically based analyses is not well established and the nature of forces acting on assemblages remains unclear (see Webb et al. 2002). Previous studies have suggested that ecological differences originated long ago in the history of species (Losos 1996, Vitt et al. 1999, Webb et al. 2002). In addition, observations on ecological characteristics of sympatric, closely related species and comparisons among different assemblages with phylogenetically based analyses are essential to elucidate the relative importance of ecological and historical factors in structuring assemblages. Acknowledgments We thank D. B. Shepard and Tony Gamble for review of a previous version of the manuscript. This work was supported by a doctorate fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES to DOM and a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq to GRC (# 302343/88-1). Fundação O Boticário de Proteção à Natureza funded the field research. Literature Cited AB'SÁBER, A. N. 1982. The paleoclimate and paleoecology of Brazilian Amazonia, p. 41-59. In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University Press, New York. 134 ÁVILA-PIRES, T. C. S. 1995. Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische Verhandelingen, Leiden. 1995:3-706. BEGON, M., HARPER, J. L. & TOWNSEND, C. R. 1990. Ecology: Individuals, Populations and Communities. Blackwell Scientific Publications, Cambridge, Massachusetts. BERGALLO, H. G. & ROCHA, C. F. D. 1993. Activity patterns and body temperatures of two sympatric lizards (Tropidurus torquatus and Cnemidophorus ocellifer) with different foraging tactics in Southeastern Brazil. Amphibia-Reptilia. 14:312-315. BIGARELLA, J. J. & ANDRADE-LIMA, D. 1982. Paleoenvironmental changes in Brazil, p. 27-40. In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University Press, New York. BROOKS, D. R. & MCLENNAN, D. A. 1991. Phylogeny, Ecology, and Behavior, a Research Program in Comparative Biology. The University of Chicago Press, Chicago. BROOKS, D. R. & MCLENNAN, D. A. 1993. Historical ecology: examining phylogenetic components of community evolution, p. 267-280. In: Species Diversity in Ecological Communities, Historical and Geographical Perspectives. R. E. Ricklefs & D. Schluter (eds.). The University of Chicago Press, Chicago, Illinois. CADLE, J. E. & GREENE, H. W. 1993. Phylogenetic patterns, biogeography, and the ecological structure of Neotropical snake assemblages, p. 281-293. In: Species Diversity in Ecological Communities: Historical and Geographical Perspectives. R. E. Ricklefs & D. Schluter (eds.). University of Chicago Press, Chicagi. CAVALCANTI, R. B. 1995. Subsídios para o zoneamento ecológico econômico do Amapá: uma análise das unidades de conservação biológica, http://www.bdt.org.br/amapa/irda/. 135 COLLI, G. R. 1996. Amazonian savanna lizards and the historical biogeography of Amazonia, p. 137. University of California, Los Angeles. COLLI, G. R., PÉRES, A. K., JR. & ZATZ, M. G. 1997. Foraging mode and reproductive seasonality in tropical lizards. Journal of Herpetology. 31:490-499. CONNOR, E. F. & SIMBERLOFF, D. 1979. The assembly of species communities: chance or competition? Ecology. 60:1132-1140. CUNHA, O. R., NASCIMENTO, F. P. & ÁVILA-PIRES, T. C. S. 1985. Os répteis da área de Carajás, Pará, Brasil (Testudines e Squamata). Publicações Avulsas do Museu Paraense Emílio Goeldi. 40:9-92. EDEN, M. J. 1974. Paleoclimatic influences and the development of savanna in Southern Venezuela. Journal of Biogeography. 1:95-109. EIDT, R. C. 1968. The climatology of South America, p. 54-81. In: Biogeography and Ecology in South America. Vol. 1. E. J. Fitkau, J. Illies, H. Klinge, G. H. Schwabe & H. Sioli (eds.). Dr. W. Junk N. V. Publishers, The Hague, Netherlands. EITEN, G. 1978. Delimitation of the Cerrado concept. Vegetatio. 36:169-178. ESTES, R., DE QUEIROZ, K. & GAUTHIER, J. 1988. Phylogenetic relationships within Squamata, p. 119-281. In: Phylogenetic Relationships of the Lizard Families. Essays Commemorating Charles L. Camp. R. Estes & G. Pregill (eds.). Stanford University Press, Stanford, California. GAINSBURY, A. M. & COLLI, G. R. 2003. Lizard assemblages from natural Cerrado enclaves in southwestern Amazonia: the role of stochastic extinctions and isolation. Biotropica. 35:503-519. GIANNINI, N. P. 2003. Canonical phylogenetic ordination. Systematic Biology. 52:684-695. 136 GOTELLI, N. J. & ENTSMINGER, G. L. 2003. EcoSim: Null models software for ecology. In: Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/~gentsmin/ecosim.htm, Burlington, VT. 05465. HARVEY, P. H. & PAGEL, M. D. 1991. The Comparative Method in Evolutionary Biology. Oxford Univ. Press, New York. HUBER, O. 1982. Significance of savanna vegetation in the Amazon Territory of Venezuela, p. 221-244. In: Biological Diversification in the Tropics. G. T. Prance (ed.). Columbia University Press, New York. LOSOS, J. B. 1992. The evolution of convergent structure in Caribbean Anolis communities. Systematic Biology. 41:403-420. LOSOS, J. B. 1994. Historical contingency and lizard community ecology, p. 319-333. In: Lizard Ecology: Historical and Experimental Perspectives. L. J. Vitt & E. R. Pianka (eds.). Princeton University Press, Princeton, New Jersey. LOSOS, J. B. 1995. Community evolution in greater antillean Anolis lizards: phylogenetic patterns and experimental tests. Philosophical Transactions of the Royal Society of London B. 349:69-75. LOSOS, J. B. 1996. Phylogenetic perspectives on community ecology. Ecology. 77:1344-1354. LOSOS, J. B., IRSCHICK, D. J. & SCHOENER, T. W. 1994. Adaptation and constraint in the evolution of specialization of Bahamian Anolis lizards. Evolution. 48:1786-1798. LOSOS, J. B., MARKS, J. C. & SCHOENER, T. W. 1993. Habitat use and ecological interactions of an introduced and a native species of Anolis lizard on Grand Cayman, with a review of the outcomes of anole introductions. Oecologia. 95:525-532. 137 MACHADO, R. B., RAMOS NETO, M. B., PEREIRA, P. G. P., CALDAS, E. F., GONÇALVES, D. A., SANTOS, N. S., TABOR, K. & STEININGER, M. 2004. Estimativas de perda de área do Cerrado brasileiro, p. 1-23. Conservation International, Brasília, DF. MAGNUSSON, W. E., PAIVA, L. J. D., ROCHA, R. M. D., FRANKE, C. R., KASPER, L. A. & LIMA, A. P. 1985. The correlates of foraging mode in a community of Brazilian lizards. Herpetologica. 41:324-332. MAGNUSSON, W. E. & SILVA, E. V. 1993. Relative effects of size, season and species on the diets of some amazonian Savanna lizards. Journal of Herpetology. 27:380-385. MESQUITA, D. O. 2003. Herpetofauna das Savanas Amazônicas: subsídios para sua preservação, http://www.unb.br/ib/zoo/grcolli/alunos/daniel/paginaprincipal.html. MESQUITA, D. O. & COLLI, G. R. 2003a. The ecology of Cnemidophorus ocellifer (Squamata, Teiidae) in a neotropical savanna. Journal of Herpetology. 37:498-509. MESQUITA, D. O. & COLLI, G. R. 2003b. Geographical variation in the ecology of populations of some Brazilian species of Cnemidophorus (Squamata, Teiidae). Copeia. 2003:285-298. PIANKA, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics. 4:53-74. PIANKA, E. R. 1986. Ecology and Natural History of Desert Lizards: Analyses of the Ecological Niche and Community Structure. Princeton Univ. Press, Princeton, New Jersey. PIANKA, E. R. 1994. Evolutionary Ecology. HarperCollins College Publishers, New York, NY. PIRES, J. M. 1973. Tipos de vegetação da Amazônia. Publicações Avulsas do Museu Paraense Emílio Goeldi. 20:179-202. POUNDS, J. A. 1988. Ecomorphology, locomotion, and microhabitat structure: patterns in a tropical mainland Anolis community. Ecological Monographs. 58:299-320. 138 PRANCE, G. T. 1978. The origin and evolution of the Amazon flora. Interciencia. 3:207-222. REEDER, T. W., COLE, C. J. & DESSAUER, H. C. 2002. Phylogenetic relationships of Whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. American Museum Novitates. 3365:1-61. RICKLEFS, R. E., COCHRAN, D. & PIANKA, E. R. 1981. A morphological analysis of the structure of communities of lizards in desert habitats. Ecology. 62:1474-1483. RICKLEFS, R. E. & MILLER, G. L. 1999. Ecology. Freeman, W H and Company, New York, NY. RICKLEFS, R. E. & TRAVIS, J. 1980. A morphological approach to the study of avian community organization. The Auk. 97:321-338. ROCHA, C. F. D. & BERGALO, H. G. 1990. Thermal biology and flight distance of Tropidurus oreadicus (Sauria: Iguanidae) in an area of amazonian Brazil. Ethology, Ecology and Evolution. 2:263-268. ROUGHGARDEN, J. & DIAMOND, J. M. 1986. Overview: The role of species interactions in community ecology, p. 333-343. In: Community Ecology. J. Diamond & T. J. Case (eds.). Harper & Row, Publishers, Inc., New York, NY. SCHOENER, T. W. 1965. The evolution of bill size differences among sympatric congeneric species of birds. Evolution. 19:189-213. SIMPSON, E. H. 1949. Measurement of diversity. Nature. 163:688. VANZOLINI, P. E., RAMOS-COSTA, A. M. M. & VITT, L. J. 1980. Répteis das Caatingas. Academia Brasileira de Ciências, Rio de Janeiro, Brasil. VIEIRA, G. H. C., MESQUITA, D. O., JR, A. K. P., KITAYAMA, K. & COLLI, G. R. 2000. Natural History: Micrablepharus atticolus. Herpetological Review. 31:241-242. 139 VIEIRA, M. I. & ALVES, M. L. M. 1975. Estudo revisivo de Bothrops neuwiedi pubescens (Cope 1869). Serpentes, Viperidae. Iheringia. 48:57-74. VITT, L. J. 1981. Lizard reproduction: habitat specificity and constraints on relative clutch mass. The American Naturalist. 117:506-514. VITT, L. J. 1991. An introduction to the ecology of Cerrado lizards. Journal of Herpetology. 25:79-90. VITT, L. J. 1993. Ecology of isolated open-formation Tropidurus (Reptilia: Tropiduridae) in Amazonian lowland rain forest. Canadian Journal of Zoology. 71:2370-2390. VITT, L. J. 1995. The ecology of tropical lizards in the Caatinga of northeast Brazil. Occasional Papers of the Oklahoma Museum of Natural History. 1:1-29. VITT, L. J., AVILA-PIRES, T. C. S., ESPÓSITO, M. C., SARTORIUS, S. S. & ZANI, P. A. 2003a. Sharing amazonian rain-forest trees: ecology of Anolis punctatus and Anolis transversalis (Squamata: Polychrotidae). Journal of Herpetology. 37:276-285. VITT, L. J., ÁVILA-PIRES, T. C. S., ZANI, P. A. & ESPOSITO, E. C. 2002. Life in the shade: the ecology of Anolis trachyderma (Squamata: Polychrotidae) in amazonian Ecuador and Brazil, with comparisons to ecologically similar anoles. Copeia. 2002:275-286. VITT, L. J., AVILA-PIRES, T. C. S., ZANI, P. A., SARTORIUS, S. S. & ESPÓSITO, M. C. 2003b. Life above ground: ecology of Anolis fuscoauratus in the Amazon rain forest, and comparisons with its nearest relatives. Canadian Journal of Zoology. 81:142-156. VITT, L. J. & BLACKBURN, D. G. 1991. Ecology and life history of the viviparous lizard Mabuya bistriata (Scincidae) in the Brazilian Amazon. Copeia. 1991:916-927. VITT, L. J. & CALDWELL, J. P. 1993. Ecological observations on Cerrado lizards in Rondônia, Brazil. Journal of Herpetology. 27:46-52. 140 VITT, L. J., CALDWELL, J. P., ZANI, P. A. & TITUS, T. A. 1997a. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. Proceedings of the National Academy of Sciences of the United States of America. 94:3828-3832. VITT, L. J. & CARVALHO, C. M. 1995. Niche partitioning in a tropical wet season: lizards in the Lavrado area of Northern Brazil. Copeia. 1995:305-329. VITT, L. J. & COLLI, G. R. 1994. Geographical ecology of a neotropical lizard: Ameiva ameiva (Teiidae) in Brazil. Canadian Journal of Zoology. 72:1986-2008. VITT, L. J., PIANKA, E. R., COOPER, W. E., JR. & SCHWENK, K. 2003c. History and the global ecology of squamate reptiles. The American Naturalist. 162:44-60. VITT, L. J., SARTORIUS, S. S., ÁVILA-PIRES, T. C. S. & ESPOSITO, M. C. 2001. Life on the leaf litter: The ecology of Anolis nitens tandai in the Brazilian Amazon. Copeia. 2001:401412. VITT, L. J., SARTORIUS, S. S., ÁVILA-PIRES, T. C. S., ESPÓSITO, M. C. & MILES, D. B. 2000. Niche segregation among sympatric Amazonian teiid lizards. Oecologia. 122:410-420. VITT, L. J. & ZANI, P. A. 1996. Organization of a taxonomically diverse lizard assemblage in Amazonian Ecuador. Canadian Journal of Zoology. 74:1313-1335. VITT, L. J., ZANI, P. A., ÁVILA-PIRES, T. C. S. & ESPOSITO, M. C. 1998. Geographical ecology of the gymnophthalmid lizard Neusticurus ecpleopus in the Amazon rainforest. Canadian Journal of Zoology. 76:1671-1680. VITT, L. J., ZANI, P. A. & CALDWELL, J. P. 1996. Behavioural ecology of Tropidurus hispidus on isolated rock outcrops in Amazonia. Journal of Tropical Ecology. 12:81-101. 141 VITT, L. J., ZANI, P. A., CALDWELL, J. P., ARAUJO, M. C. D. & MAGNUSSON, W. E. 1997b. Ecology of whiptail lizards (Cnemidophorus) in the Amazon region of Brazil. Copeia. 1997:745-757. VITT, L. J., ZANI, P. A., CALDWELL, J. P. & DURTSCHE, R. D. 1993. Ecology of the whiptail lizard Cnemidophorus deppii on a tropical beach. Canadian Journal of Zoology. 71:2391-2400. VITT, L. J., ZANI, P. A. & ESPOSITO, M. C. 1999. Historical ecology of Amazonian lizards: implications for community ecology. Oikos. 87:286-294. WEBB, C. O., ACKERLEY, D. D., MCPEEK, M. A. & DONOGHUE, M. J. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics. 33:475-505. WERNER, E. E. 1986. Species interactions in freshwater fish communities, p. 344-357. In: Community Ecology. J. Diamond & T. J. Case (eds.). Harper & Row, Publishers, Inc., New York, NY. WINEMILLER, K. O. & PIANKA, E. R. 1990. Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs. 60:27-55. YODZIS, P. 1986. Competition, mortality, and community structure, p. 480-491. In: Community Ecology. J. Diamond & T. J. Case (eds.). Harper & Row, Publishers, Inc., New York, NY. ZAR, J. H. 1998. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 142 Table 1- Overlap in microhabitat (lower half of matrix) and diet (upper half) for Monte Alegre lizards. A. ameiva A. ameiva C. cryptus K. striata T. hispidus M. nigropunctata G. underwoodi A. auratus 0.951 0.686 0.226 0.579 0.683 0.748 0.709 0.422 0.513 0.716 0.799 0.132 0.512 0.730 0.193 0.312 0.125 0.487 0.187 0.312 C. cryptus 0.993 K. striata 0.756 0.807 T. hispidus 0.027 0.105 0.019 M. nigropunctata 0.705 0.696 0.500 0.019 - - - - - 0.365 0.439 0.853 0.008 0.213 G. underwoodi A. auratus 0.286 - 143 Table 2. Importance index, based on individual stomach means and pooled data (in parenthesis), of prey categories in the diet of seven lizard species from Monte Alegre. Prey Type A. ameiva C. cryptus K. striata T. hispidus M. nigropunctata G. underwoodi A. auratus Annelida 0.52 (0.52) Aranae 21.19 (13.99) 22.68 (21.37) 38.83 (41.37) 5.17 (4.85) 8.53 (8.40) 38.10 (20.68) 5.67 (5.48) Blattaria 8.67 (8.66) 3.77 (4.41) 2.78 (3.03) 4.82 (5.44) 8.33 (4.17) 14.29 (8.87) Coleoptera 6.18 (4.50) 5.62 (4.03) 18.53 (15.12) 12.50 (6.41) 9.00 (15.12) Diplopoda 0.43 (0.07) 1.59 (1.14) Diptera 3.62 (3.16) Formicidae 1.61 (0.81) 9.71 (9.14) 64.82 (65.86) 8.01 (12.42) 18.58 (13.70) Gastropoda 1.09 (1.02) Hemiptera/Homoptera 3.44 (2.43) 2.96 (2.69) 5.84 (5.16) 14.29 (6.88) Hymenoptera (non ants) 2.02 (1.83) 6.68 (7.16) Insect larvae 4.50 (3.37) 3.73 (2.74) 16.67 (12.27) 5.41 (9.51) Isoptera 25.27 (42.42) 21.86 (34.23) 3.27 (1.40) 9.38 (48.45) 40.61 (60.69) Isopoda 0.45 (0.46) Lizard skin 0.83 (0.31) Mantodea 0.69 (0.67) 5.00 (4.95) Neuroptera 1.92 (1.62) 1.03 (0.76) Non identified 2.09 (0.13) 3.70 (0.91) 5.56 (3.03) 0.14 (0.83) 2.64 (0.94) Orthoptera 18.03 (20.62) 13.33 (17.74) 19.51 (34.74) 6.04 (8.28) 48.40 (59.58) 10.00 (9.17) Ooteca 0.65 (0.67) Plant material 2.16 (2.21) 4.50 (3.94) 1.76 (1.75) Pseudoscorpionida 5.91 (6.65) Chilopoda 4.44 (4.29) 1.93 (2.32) 1.98 (1.96) Scorpionida 2.44 (2.03) 2.63 (2.29) 12.48 (14.88) Solifuga 0.85 (0.49) 1.97 (1.28) Vertebrate 1.13 (6.08) 0.07 (0.11) N 72 77 6 38 8 7 20 Numeric niche breadth 1.52 (1.29) 1.54 (2.15) 1.30 (3.46) 1.44 (1.53) 1.53 (4.00) 1.01 (1.53) 1.20 (1.88) Volumetric niche breadth 1.54 (4.89) 1.32 (4.25) 1.09 (2.40) 1.57 (5.12) 1.54 (1.82) 1.00 (2.03) 1.08 (2.39) 144 Table 3. Principal component analysis of log transformed morphological data from Monte Alegre lizards. Factor I Factor II Factor III Snout-vent length 0.373 0.263 0.434 Tail length 0.419 0.160 0.367 Head width -0.226 0.441 -0.039 Head length -0.352 0.307 -0.151 Head height -0.354 0.307 0.012 Body width 0.087 0.494 0.353 Body height 0.048 0.510 0.193 Leg length 0.434 0.089 -0.126 Forelimb length 0.432 0.105 -0.213 Eigenvalues 5.045 3.726 0.0896 Percent of variance explained 56.059 41.405 0.991 145 Table 4. Historical effects on the ecology of Cerrado lizards. Results of Monte Carlo permutation tests of individual groups (defined in Fig. 1) for diet and microhabitat matrices. Percentage of variation explained (relative to total unconstrained variation), and F and P values for each variable are given (9,999 permutations were used) for each main matrix. Group(s) Variation Variation % F P Diet D 0.223 33.635 1.458 0.0426 A/E 0.190 28.658 1.187 0.1899 C 0.162 24.434 0.979 0.4961 B 0.114 17.195 0.650 0.9626 Microhabitat A/D 0.427 47.870 1.509 0.2031 C 0.301 33.744 0.956 0.6549 B 0.136 15.247 0.382 0.9803 146 FIGURE LEGENDS Figure 1. Individual groups used in canonical phylogenetic ordination for microhabitat and diet data. Phylogeny based in Estes et al. (1988) and Reeder et al. (2002). Figure 2. Frequency distribution of individuals according to microhabitat categories for Monte Alegre lizards. Sample sizes are indicated at the top of bars. Figure 3. Phylogeny of Monte Alegre lizards showing the mapping of ecological characteristics. Abbreviations for habitat are: C = cerrado, GF = gallery forest, R = rocky field. Abbreviations for microhabitat are: A = arboreal, OG = open ground, B = bushes, LD = litter-dwelling, S = saxicolous, TN = termite nest. Abbreviations for activity are: D = diurnal, N = nocturnal, CN = crepuscular/nocturnal. Note: general microhabitat categories are based on data from this work and from Vieira et al. (2000), Vitt (1991), Vitt and Caldwell (1993), Vanzolini et al. (1980) and Ávila-Pires (1995). Figure 4. Plot of species means on first two principal components derived from log-transformed morphological data for Monte Alegre lizards. 147 148 149 150 151 APÊNDICE 4- manuscrito submetido para a publicação na revista Journal of Tropical Ecology em outubro de 2004. Lizard species richness and diversity are determined by habitat characteristics at a microgeographic scale: implications for conservation in the Brazilian Cerrado Laurie J. Vitt,* Guarino R. Colli,‡ Janalee P. Caldwell,* Daniel O. Mesquita,‡ Adrian A. Garda,* and Frederico G. R. França‡ *Sam Noble Oklahoma Museum of Natural History, 2401 Chautauqua Ave., Norman, OK 73072-7029, USA ‡ Departamento de Zoologia, Universidade de Brasília, 70910-900 Brasília, DF Brasil Running head: Habitat structure and lizard diversity Key words: Brazil, Cerrado, community, conservation, scale, lizard, tropical. 152 We used a pitfall-trap system to determine the relationship of species composition, species diversity (relative abundance), and community structure to habitat structure in two easily distinguished and nearly contiguous habitat patches in the Brazilian Cerrado. One habitat patch was relatively open (no canopy) and the other was relatively closed (partial canopy); they differed significantly in 5 of 9 habitat variables and the more open habitat maintained higher microhabitat temperatures throughout the day than did the closed habitat. A PCA on habitat variables revealed that the closed habitat contained a combination of more fallen logs, burrows, and leaf litter than the open habitat. A total of 531 individuals of twelve lizard species were sampled. Species accumulation curves show that after 23 continuous days of sampling, species numbers asymptote at 10 in the open habitat and 12 in the closed habitat. Lizard community structure also differs between habitats. A CCA comparing habitat variables at each array with lizards sampled within the array shows that lizard species are tied to particular microhabitat characteristics. Our results indicate that variation in habitat structure at small scales can impact lizard species composition, diversity, and community structure. Moreover, conservation programs aimed at maintaining natural diversity will by necessity need to consider microhabitats that individual species use. 153 INTRODUCTION Identification and protection of areas with high biodiversity require surveys and inventories of existing flora and fauna. Unfortunately, many large regions, for example, the Brazilian Cerrado Biome, were transformed from natural habitat to agriculture prior to biotic surveys (see below). Only patches of undisturbed Cerrado remain today (e.g., Ratter et al. 1997), and it is undetermined whether intensive surveys of these patches will paint an accurate picture of the biodiversity that was lost during development. The scale at which plant and animal distributions are examined can influence conclusions on distributions because habitat structure affects species distributions at several scales (Hamer & Hill 2000; Levin 2000; Gering et al. 2002; Johnson et al. 2003). It is well known, for example, that mammals (Lindenmayer et al. 1999), birds (Renjifo 1999; MacFaden & Capen 2002; Rodewald & Yahner 2002; Bennett et al. 2004), reptiles (Rocha & Bergallo 1997; Bini et al. 2000; Fisher et al. 2002; Marchand & Litvaitis 2004a, b), amphibians (Welsh & Lind 2002; Guerry & Hunter 2002; Lowe & Bolger 2002) and terrestrial invertebrates (Bestelmeyer & Wiens 2001; Chust et al. 2003; Summerville et al. 2003) respond to variation in habitat structure at various scales in a wide variety of environments throughout the world. We first comment on the threatened nature of the Cerrado Biome, then introduce a study designed to examine lizard diversity and community structure at a small spatial scale. Largely because of the Amazon rainforest, the Atlantic rainforest, and the Cerrado, Brazil shares the lead with Indonesia as one of the top two “megadiversity” countries in the world (Mittermeier et al. 1997). The Amazon rainforest has received considerable attention and threats to its biodiversity are well known (Adis & Ribeiro 1989; Hecht & Cockburn 1989; Myers 1980, 1990; Sayer & Whitmore 1991; Skole & Tucker 1993). In contrast, the Cerrado has only recently become the focus of conservation efforts, yet its biodiversity is more threatened than 154 that of the Amazon or Atlantic rainforest because of rapid and uncontrolled development for agriculture and large scale hydroelectric projects (Ratter et al. 1997; Myers et al. 2000; Oliveira & Marquis 2002; Cavalcanti & Joly 2002). The Cerrado Biome is a savanna-like grassland with varying vegetative structure (Oliveira-Filho & Ratter 2003) that covered approximately 2 million km2 prior to development. Vegetative structure and physiognomy of the Cerrado have only been described since the mid1970s (Oliveira & Marquis 2002). Soils and water availability vary geographically at large and small scales and influence vegetative structure. Cerrado with rich soils maintains mesophytic forests, streams maintain gallery forests, and some well-drained areas have no forest. Like African savannas, Cerrado grasslands are deciduous. Unlike African savannas, Cerrado trees are evergreen due to a high water table during the extended dry season. Biodiversity of the Cerrado remains poorly documented, but 1992 estimates suggested that at least 160,000 species of plants, animals, and fungi were represented (Dias 1992; see also Ratter et al. 1992). Many previously unknown species have been added to the Cerrado faunal and floral lists, indicating that much of the diversity remains undiscovered (e.g., Mendonça et al. 1998; Oliveira-Filho & Ratter 2002; Brown & Gifford 2002; Colli et al. 2002; Macedo 2002; Marinho-Filho et al. 2002). Habitat diversity varies across the Cerrado, but several habitat types are easily recognizable. Much of the Cerrado is open, savanna-like grassland. Open areas that lack trees are referred to as campos limpos (a Portuguese term literally meaning, “clean fields”). Widespread grasslands, with characteristic “buriti” (Mauritia flexuosa) palm trees, saturated with water yearround are referred to as veredas. Extensive areas of mesotropic forests including a dense and tall stand referred to as cerradão, and semi-deciduous and deciduous forests occur in many areas. The Cerrado is intersected by gallery forest along rivers, tributaries, and small streams. These 155 waters drain into the Amazon Basin (e.g., Rio Araguaia, Rio Tocantins, Rio Xingu, Rio Tapajós), the Pantanal (e.g., Rio Cuiabá, Rio Taquari), the western drainages of the Rio Paranaíba, or the Rio São Francisco. Scattered throughout the Cerrado are sandstone and limestone rock outcrops that contain vegetation and faunal elements similar to those of the semiarid Caatinga to the northeast. Similar rock outcrops are scattered across the northern and southern Amazon. Estimates of habitat loss vary for the Cerrado. As early as 1994, Dias (1994) reported that 41% of Cerrado was used for cattle grazing and 37% had been converted to agriculture; thus, the only patches of undisturbed Cerrado comprised about 22% of its original area. Satellite imagery from 1993 indicated that 67% of Cerrado was either highly modified or disturbed (Mantovani & Pereira 1998). Development for cattle grazing usually involves clearing natural vegetation and planting non-native grasses, which has an impact similar to clearing and planting crops. The most recent estimate is that about 80% of the Cerrado has been impacted by humans, resulting in its inclusion as one of the world’s 25 principal “hotspots” (Myers et al. 2000; Cavalcanti & Joly 2002). “Hotspots” are defined by Myers et al. (2000) based on two primary criteria: endemism and degree of threat. According to these authors, only 20% (356,630 km2) of the Cerrado remains as primary vegetation and only 6.2% (22,000 km2) is protected. Several integrated analyses organized by federal agencies in Brazil have painted a much more dismal view of what remains of this once vast habitat (e.g., Santos & Câmara 2000, Rambaldi & Oliveira 2003). Scattered across a virtual sea of agriculture (e.g., soy, corn, and cotton) and pasture (e.g., cattle, goats) are relictual patches of natural Cerrado vegetation. Major rivers have been dammed resulting in total loss of gallery forest in many areas. Two large dams on the Rio Tocantins, the Serra da Mesa (1800 km2) and the Luis Eduardo Magalhães (600 km2) 156 hydroelectric facilities, have been constructed in the last six years, and three others are planned for the next decade (Secretaria do Planejamento e Meio Ambiente, 1999). The Rio São Francisco may be redirected due to a highly controversial development program currently under consideration (Mamede et al. 2002). The region is already known to contain endangered bird species (Braz et al. 2003), and changes in drainage will undoubtedly adversely affect many species that rely on gallery forest as dispersal corridors. We know from recent surveys that 1) the herpetofauna varies from site to site and 2) each site contains undescribed frogs, lizards, and snakes, all of which are endemic to the Cerrado (e.g., see Colli et al. 2002, 2003a, b). Consequently, endemism is much greater than previously indicated. Because the Cerrado contains a mosaic of habitats, it offers an ideal opportunity to examine the effect of habitat structure on vertebrate assemblages. Lizards, which have proven to be excellent models for ecological research (Milstead 1967; Huey et al. 1983; Vitt & Pianka 1994), are abundant but often difficult to observe in the Cerrado (Vitt 1991). We designed a study to test the hypothesis that lizard assemblages vary on a microgeographic scale and that their distribution on such a scale is predictable based on habitat structure. Our results show that lizard assemblages in the Cerrado vary on a microgeographic scale and, because most species are tied to specific microhabitat characteristics, species distributions within the structural habitat mosaic that the Cerrado offers is predictable based on that structure. However, we know little about community structure or microhabitat requirements of individual species. Nevertheless, our results suggest that poorly planned development projects may have drastic effects on cerrado lizard assemblages. 157 METHODS The Jalapão site We conducted the study from 13 February to 10 March 2002 near “Escola D. Isabel Barreira de Oliveira” (10° 15’ 46” S, 46° 33’ 56’’ W), ca. 35 km NW from the city of Mateiros, Tocantins state, Brazil, in a region known as Jalapão. Located in the eastern part of the state of Tocantins, with portions in southern Maranhão and Piauí, and western Bahia, the Jalapão region covers approximately 53,340 km2 of relatively undisturbed Brazilian Cerrado (Fig. 1). This is the largest remaining undisturbed patch of Cerrado and among the least populated regions of Brazil. Much of it has recently been designated as national and state reserves, including the Área de Proteção Ambiental da Serra de Tabatinga (61,000 ha), Estação Ecológica Serra Geral do Tocantins (716,306 ha), Parque Estadual do Jalapão (158,885.5 ha), and Parque Nacional das Nascentes do Rio Parnaíba (729,813.55 ha). These contiguous reserves form the largest protected tract of Cerrado in Brazil. The habitat is relatively open, with gallery forests associated with streams and large as yet unexplored buttes harboring quite different vegetation than surrounding flatlands. Field methods We selected two adjacent habitat patches that we could visually distinguish based on vegetation structure. The first was open grassland with sparse stunted trees (Fig. 2A). The second, which was approximately 100 m from the first site, was grassland with higher density of trees, a partial canopy, and leaf litter (Fig. 2B). Soils were sandy in both. We established linear 158 pitfall trap arrays in each habitat. Each array consisted of a central 20-liter plastic bucket sunk into the ground with the top flush with the surface, three 5-m drift fences at angles of 120° from each other, and a terminal 20-liter bucket also sunk flush with the ground surface. Thus each array had four bucket traps. Array 1 (open habitat) contained 38 pitfall trap arrays evenly spaced along a 1,437 m transect; Array 2 (closed habitat) contained 37 arrays evenly spaced along a 1,257 m transect. Traps were monitored 4 times per day (early morning, late morning, early afternoon, and late afternoon) to minimize mortality resulting from thermal stress during 23 consecutive days in the field. Considering each day as a trap day and each bucket as a trap, we completed 6,900 trap days. When we monitored traps, we identified each lizard to species and recorded time of day and the number of the array. We removed all lizards captured, humanely killed them following standard approved protocols (Anonymous 1987), gave each individual an unique numbered tag, took tissue samples that were frozen in liquid nitrogen, took a series of morphological measurements, and preserved them. Later, we removed stomachs and identified all prey items for other studies. Thus our sampling protocol was a total removal one. This protocol allowed us to examine the effect of continual sampling on a local population as well. We used linear regression with day as the independent variable and number of lizards collected as the dependent variable to determine whether trapping success was a function of time. To examine success rate in terms of species sampling, we assembled matrices for each habitat type that contained species as rows and day of collection as columns. Entries in the matrices were the number of lizards of each species collected that day. We then calculated species accumulation curves using EstimateS (Colwell & Coddington 1994; Colwell 1997). Shape of species accumulation curves based strictly on empirical data is determined by the order 159 in which samples are added. EstimateS randomizes sample order to generate smooth species accumulation curves. The Abundance-base Coverage Estimator (ACE) was used to estimate completeness of sampling (see Colwell 1997). In each array, we measured the following vegetative and structural habitat variables: 1) leaf litter mass, 2) percent open ground, 3) percent of surface open to the sky, 4) number of plant stem contacts, 5) number of burrows in ground, 6) number of termite nests within 6 meters, 7) distance to nearest tree, 8) trunk circumference as a measure of tree size, and 9) total number of fallen logs. To do this, we constructed a 0.5-m square from wooden dowels and placed strings across at 0.1 meter intervals to form 25 equal-size squares. In each area delineated by drift fences within each array, the square was thrown over the researcher’s shoulder and its landing point was used as our random sample site. We counted squares represented by more than 50% open ground, squares not under canopy (open to sky), and picked up all leaf litter under it and weighed it. At the center of the spot where the square landed, we placed a vertical stake with a 1-m horizontal dowel 20 cm above ground and rotated the stick 360°. We counted the number of plant stem contacts with the horizontal stick. We then measured the distance to nearest tree from center of square. This procedure gave three independent measurements for each variable in each array. We used means for each array for analysis. From 1 m beyond end of wings (6 m from center of array), we counted all burrows, all termite nests, and the total number of fallen logs in the array. In addition to collecting data on the vegetative and structural characteristics of the habitats, we used TidBit electronic temperature recording devices (made by Onset Computer, http://www.onsetcomp.com/) to examine thermal characteristics of the arrays at ground level (where lizards live). These devices have been shown to estimate lizard operative temperatures 160 (Vitt & Sartorius 1999; Shine & Kearney 2001). However, we used them specifically to test for thermal differences in microhabitats within arrays, making no assumptions about thermal preferences of lizards using the habitats. The four microhabitats that we sampled were 1) under grass clump, 2) under small shrub, 3) in leaf litter, and 4) on open ground (exposed to sun). Nine replicates for each microhabitat were run in each habitat type. Each replicate sampled temperature at 5-min intervals over a 48-hr period. These data were collected during an 8-day period from 22 February through 29 February. We calculated means and SD for all replicates for each microhabitat for each of the two habitats to provide a 24 h representation of temperature changes throughout the day with data from all days combined. We used two different approaches to examine relationship of lizard species to habitat characteristics. In the first, we simply considered the two sets of arrays as representing distinct habitat patches. We performed a Principal Components Analysis (PCA) on vegetative and structural habitat characteristics to compare the two patches. We log10 transformed all variables. For several variables that contained zero entries (number of stems, burrows, termite nests, and fallen logs) we added 1 to each value prior to log transformation because there is no log of zero (Tabachnick & Fidell 2001). We then compared frequencies of collection records for lizards between the patches. This method provided a descriptive assessment of the association between relative lizard abundances and habitat type. For the second analysis, we performed a Canonical Correspondence Analysis (CCA; Ter Braak 1986), a multivariate ordination procedure that directly associates variation in communities (lizards in this case) to habitat characteristics. We used vegetation and structural habitat variables to characterize the habitat within individual arrays and lizard species identities and relative abundance as a measure of lizard community structure within individual arrays. Thus, in this analysis, we were asking if an association exists 161 between specific habitat characteristics and abundance of particular lizard species. CCA was performed with CANOCO (Ter Braak & Smilauer 1998). RESULTS The Jalapão lizard fauna A total of 531 lizards of 12 species were sampled with pitfall arrays, including representatives from the three major lizard clades: Iguania, Gekkota, and Autarchoglossa (Fig. 3). Mean body size (SVL) varied from 31.5 ± 0.3 mm in Vanzosaura rubricauda to 98.5 ± 4.5 in Ameiva ameiva (Fig. 4). Five additional species were collected in the area, but not on our plots. They were Iguana iguana, an arboreal iguanid lizard distributed primarily along gallery forest, Tipinambis quadrilineatus, a large teiid also distributed in gallery forests in Cerrado, and three species of subterranean amphisbaenians, Leposternon polystegum, Amphisbaena alba, and Bronia kraoh. We do not consider these further. Although we had collected all 12 species in the arrays by day 11, the simulated species accumulation curve for all arrays combined shows that about 23 days are required to reliably sample the lizard fauna at these sites (Fig. 5). Trapping success was greatest during the first 10 days, dropping off considerably by the 23rd day (Fig. 6). The reduction in trapping success was significant (rs = –0.8, P = 0.0002). Habitat type comparison Our qualitative descriptions of the two pitfall trap arrays as “open” versus “closed” were confirmed but slightly different based on single variable comparisons (Table 1) versus the PCA (Fig. 7). Based on single variable comparisons, the “open habitat” had greater sun exposure, less 162 open ground (denser grass stands), less leaf litter, fewer fallen logs, and the nearest trees were farther away. In the PCA, factor I described a gradient based on the number of fallen logs and burrow and total leaf litter mass (Table 2). Factor II described a gradient based on number of termite nests and the number of plant stems (negative loading). Scores for factor I were significantly different between open and closed Cerrado (ANOVA F1, 73 = 20.2, P < 0.0001). The two habitats did not differ in respect to Factor II (ANOVA F1, 73 = 0.2, P = 0.6668). Microhabitat temperatures were significantly higher (all P values < 0.0001 based on ANOVA) in the open Cerrado habitat than in the closed Cerrado habitat (Fig. 8). Daily fluctuations of microhabitat temperatures indicate that temperatures in microhabitats of open Cerrado were higher than those in closed Cerrado during the time period in which lizard activity occurs, with the exception of the open ground microhabitat. Open ground microhabitats remained lower in temperature in closed Cerrado habitat until about 1130 hr, at which time open ground microhabitats exceeded those in open Cerrado (Fig. 9). Structure of the lizard assemblages differed considerably between open and closed Cerrado sites (Fig. 10). Two species, Cnemidophorus mumbuca and Tropidurus oreadicus, dominated the lizard fauna in open Cerrado, with all but one other (Vanzosaura rubricauda) being relatively rare. Cnemidophorus mumbuca and T. oreadicus were less abundant in closed Cerrado where six other species were moderately abundant. Analysis by array Based on 1000 permutations of a Monte Carlo test, and the first canonical axis, there was a significant association between habitat structure within arrays and lizards found there (eigenvalue = 0.335, F = 12.73, P = 0.001). In addition, all canonical axes were significant (trace 163 = 0.543, F = 2.611, P = 0.001). Vanzosaura rubricauda, Tropidurus oreadicus, and Cnemidophorus mumbuca were associated with open sky (Fig. 11). Briba brasiliana was associated with the nearest tree. Mabuya heathi was associated with fallen logs. Mabuya nigropunctata, Colobosaura modesta, and Gymnodactylus geckoides were associated with leaf litter. DISCUSSION Pitfall trap arrays are highly successful for censusing reptiles and amphibians and crucial for sampling lizards in habitats where they are difficult to observe and collect (Jones 1986; Gibbons 2004). In our arrays, we were able to determine species composition and relative abundance in a relatively short period of time. However, number of lizards collected dropped off significantly (rs = 0.0002) with time (Fig. 5) indicating that either 1) linear trapping and removal reduced density along the linear transect or 2) real changes had occurred in lizard populations during the study. We believe that both occurred. During the first 14 days of sampling, number of lizards collected per day remained stable and no significant effect was evident (rs = 0.0569). However, numbers of lizards trapped dropped off by the 15th day, when a significant effect of time became detectable (rs = 0.0297). Coincident with the drop-off in trapping success was a transition from the end of the wet season to the beginning of the dry season. A portion of the drop-off in lizard numbers may have resulted from reduced lizard activity associated with a seasonal resource shortage. Open Cerrado habitat contained 10 species and was dominated by two species, C. mumbuca and T. oreadicus; one species, V. rubricauda, was moderately abundant. Closed Cerrado not only contained more species (12), but many of them were moderately abundant. The 164 closed Cerrado habitat was structurally more complex than the open Cerrado habitat, had a more moderate thermal landscape, and contained a greater density of microhabitats that might harbor lizards (fallen logs, termite nests, leaf litter, tree trunks). These results are not surprising because lizard diversity is generally associated with structural diversity of the habitat (e.g., Pianka 1966a, b; Schall & Pianka 1978). Increased midday temperatures in open patches within the closed Cerrado habitat relative to the open Cerrado appear counterintuitive. However, in open Cerrado, most of the ground was covered with grass whereas open patches (the open ground microhabitat) in closed Cerrado tended to not contain as much grass. Consequently, during midday when the sun angle is highest, open patches in the closed Cerrado habitat receive direct sunlight and are not as well buffered from temperature change as similar microhabitats in the grassier open Cerrado. However, closed Cerrado does provide numerous refuges from extreme temperatures in leaf litter, trees, termite nests, and fallen logs. The CCA shows that lizard species are tied to specific vegetative and physical characteristics of Cerrado habitats on a microgeographic level. Absence of leaf litter, open sky (as in Cerrado with a closed canopy), or fallen logs, for example, would result in absence, or at best, rarity of some species. Lizard species are often associated with particular microhabitats, not only in Cerrado, but in habitats as different as Amazonian rainforest (Vitt & Zani 1996) and Australian deserts (Pianka 1973, 1986) on a global level (Vitt et al. 2003). Similar to our results, studies of birds in northern temperate habitats, identified microhabitat as the most important contributor to bird distributions at several scales based on a CCA (MacFadden & Capen 2002). Our results have broad implications for conservation biology in general, and in particular, for conservation and management of the Jalapão region. First, lizards are important components of natural ecosystems, particularly in arid and tropical lands where their species diversity and 165 abundance is greatest (e.g., Pianka 1973, 1986; Duellman 1978, 1987; Lieberman 1986). Second, they are excellent models for examining patterns of occurrence and relative abundance on microgeographic scales, because they can be easily trapped, identified, and monitored. Finally, as we have shown, many species depend on specific vegetative or structural aspects of the habitats in which they live. The ability to identify microhabitat characteristics essential to presence of individual species provides necessary information to develop conservation and management plans for ecosystems. In this example, removal of trees, leaf litter, fallen logs, and termite nests from relatively closed Cerrado sites would have immediate and measurable effects on lizard diversity and community structure. Hydroelectric projects will flood or otherwise impact gallery forest, which is well known to provide a link between Amazon and Atlantic rainforest (Costa 2003; da Silva 1996). Loss of these habitats is likely to interfere with gene flow for those species using gallery forests for dispersion. As we’ve shown, animal species are not distributed uniformly across the Cerrado. Rather, microgeographic variation in habitat structure affects species composition and relative abundance such that species assemblages will easily be changed by habitat modification. ACKNOWLEDGMENTS This research was conducted under the project “Proposta de levantamento da herpetofauna da micro-região do Jalapão,” funded by Conservation International do Brasil, Universidade de Brasília, and the Sam Noble Oklahoma Museum of Natural History. Portions of the project were conducted under the auspices of NSF grant DEB-0415430 to LJV and JPC. Santos F. Balbino and Graziela Biaviati assisted in fieldwork. Daniel Mesquita, Frederico França, and Adrian Garda were supported by graduate student fellowships from Coordenação de 166 Aperfeiçoamento de Pessoal de Nível Superior - CAPES. Guarino Colli was supported by a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico– CNPq (# 302343/88-1). LITERATURE CITED ADIS, J., & RIBEIRO, M. de N. J. 1989. Impact of deforestation on soil invertebrates from central Amazonian inundation forests and their survival strategies to long-term flooding. Water Quality Bulletin 14:88-98. ANONYMOUS. 1987. Guidelines for the use of live amphibians and reptiles in field research. Publication of the American Society of Ichthyologists and Herpetologists, the Herpetologists’ League, and the Society for the Study of Amphibians and Reptiles. 14 pp. BENNETT, A. F., HINSLEY, S. A., BELLAMY, P. E., SWETNAM, R. D. & MACNALLY, R. 2004. Do regional gradients in land-use influence richness, composition and turnover of bird assemblages in small woods? Biological Conservation 119:191-206. BESTELMEYER, B. T., & WIENS, J. A. 2001. Local and regional-scale responses of ant diversity to a semiarid biome transition. Ecography 24:381-392. BINI, L. M., DINIZ-FILHO, J. A. F., BONFIM, F. & BASTOS, R. P. 2000. Local and regional species richness relationships in viperid snake assemblages from South America: unsaturated patterns at three different spatial scales. Copeia 2000:799-205. BRAZ, V. S., ABREU, T. L. S., LOPES, L. E., LEITE, L. O., FRANÇA, F. G. R., VASCONCELLOS, M. M. & BALBINO, S. F. 2003. Brazilian merganser Mergus octosetaceus discovered in Jalapão State Park, Tocantins, Brazil. Cotinga 20:68-71. 167 BROWN, K. S., JR. & GIFFORD, D. R. 2002. Lepidoptera in the Cerrado landscape and the conservation of vegetation, soil, and topographic mosaics. Pp. 201-222 in Oliveira, P. S., & Marquis, R. J. (eds). The Cerrados of Brazil. Columbia University Press, New York. 398 pp. CAVALCANTI, R. B. & JOLY, C. A. 2002. Biodiversity and conservation priorities in the Cerrado region. Pp. 351-367 in Oliveira, P. S., & Marquis, R. J. (eds). The Cerrados of Brazil. Columbia University Press, New York. 398 pp. CHAO, A. & LEE, S.-M. 1992 Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87:210-217. CHUST, G., PRETUS, J. L., DUCROT, D., BEDÒS, A. & DEHARVENG, L. 2003. Response of soil fauna to landscape heterogeneity: determining optimal scales for biodiversity modeling. Conservation Biology 17:1712-1723. COLLI, G. R., BASTOS, R. P. & ARAUJO, A. F. B. 2002. The character and dynamics of the Cerrado herpetofauna. Pp. 223-241 in Oliveira, P. S., & Marquis, R. J. (eds). The Cerrados of Brazil. Columbia University Press, New York. 398 pp. COLLI, G. R., COSTA, G. C., GARDA, A. A., KOPP, K. A., MESQUITA, D. O., PÉRES, A. K. JR., VALDUJO, P. H., VIEIRA, G. H. C. & WIEDERHECKER, H. C. AND ZATZ, M. G. 2003a. A critically endangered new species of Cnemidophorus (Squamata, Teiidae) from a Cerrado enclave in southwestern Amazonia, Brazil. Herpetologica 59:7688. COLLI, G. R., PÉRES, A. K. & CUNHA, H. J. 1998. A new species of Tupinambis (Squamata: Teiidae) from central Brazil, with an analysis of morphological and genetic variation in the genus. Herpetologica 54:477-492. 168 COLLI, G. R., CALDWELL, J. P., COSTA, G. C., GAINSBURY, A. M., GARDA, A. A., MESQUITA, D. O., FILHO, C. M. M. R., SOARES, A. H. B., SILVA, V. N., VALDUJO, P. H., VIEIRA, G. H. C., VITT, L. J., WERNECK, F. P., WIEDERHECKER, H. C. & ZATZ, M. G. 2003b. A new species of Cnemidophorus (Squamata, Teiidae) from the Cerrado Biome in central Brazil. Occasional Papers of the Sam Noble Oklahoma Museum of Natural History 14:1-14. COLWELL, R. K. 1997. EstimateS: Statistical estimation of species richness and shared species from samples. Version 5. User's Guide and application published at: http://viceroy.eeb.uconn.edu/estimates. COLWELL, R. K., & CODDINGTON, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society (Series B) 345:101-118. COOPER, W. E., JR., & VITT, L. J. 2002. Distribution, extent, and evolution of plant consumption by lizards. Journal of Zoology, London 257:487-517. COSTA, L. P. 2003. The historical bridge between the Amazon and Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography 30:71-86. DA SILVA, J. M. C. 1996. Distribution of Amazonian and Atlantic birds in gallery forests of the Cerrado region, South America. Ornitologia Neotropical 7:1-18. DIAS, B. F. S. 1992. Cerrados: uma caracterização. Pp. 11-25 in Dias, B. F. S. (ed). Alternativas de desenvolvimento dos cerrados: Manejo e conservação dos recursos naturais renováveis. Fundação PróNatureza, Brasília. DIAS, B. F. S. 1994. Conservação da natureza do cerrado brasileiro. Pp. 607-663 in Pinto, M. N. (ed). Cerrado: caracterização, ocupação e perspectivas. Brasília, Editoria da 169 Universidade de Brasília e Secretaria do Meio Ambiente, Ciência e Tecnologia do Distrito Federal. FISHER, R. N., SUAREZ, A. V. & CASE, T. J. 2002. Spatial patterns in the abundance of the coastal horned lizard. Conservation Biology 16:205-215. FROST, D. R., ETHERIDGE, R., JANIES, D. & TITUS, T. A. 2001. Total evidence, sequence alignment, evolution of polychrotid lizards, and a reclassification of the Iguania (Squamata: Iguania). American Museum Novitates 3343:1-38. GERING, J. C., CRIST, T. O. & VEECH, J. A. 2002. Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conservation Biology 17:488-499. GUERRY, A. D., & HUNTER, M., JR. 2002. Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conservation Biology 16:745-754. HAMER, K. C., & HILL, J. K. 2000. Scale-dependent effects of habitat disturbance on species richness in tropical forests. Conservation Biology 14:1435-1440. JOHNSON, M. P., FROST, N. J., MOSLEY, M. W. J., ROBERTS, M. E. & HAWKINS, S. J. 2003. The area-independent effects of habitat complexity on biodiversity vary between regions. Ecology Letters 6:126-132. JONES, K. B. 1986. Amphibians and reptiles. Pp. 267-290 in Cooperrider, A. Y. Boyd, R. J. and Stuart, H. R. (eds). Inventory and monitoring of wildlife habitat. U. S. Department of the Interior. Bureau of Land Management, Denver, CO. Hecht, S., & Cockburn, A. 1989. The fate of the forest: developers, destroyers, and defenders of the Amazon. Verso, New York. 170 HUEY, R. B., PIANKA, E. R. & SCHOENER, T. W. (eds.) 1983. Lizard ecology: studies of a model organism. Harvard University Press, Cambridge, Massachussetts. LEVIN, S. A. 2000. Multiple scales and the maintenance of biodiversity. Ecosystems 3:498-506. LIEBERMAN, S. S. 1986. Ecology of the leaf litter herpetofauna of a neotropical rain forest: La Selva, Costa Rica. Acta Zoologica Mexicana 15:1-72. LINDENMAYER, D. B., CUNNINGHAM, R. B. & POPE, M. L. 1999. A large-scale “experiment” to examine the effects of landscape context and habitat fragmentation on mammals. Biological Conservation 88:387-403. LOWE, W. H., & BOLGER, D. T. 2002. Local and landscape-scale predictors of salamander abundance in New Hampshire headwater streams. Conservation Biology 16:183-193. MACEDO, R. H. F. 2002. The avifauna: ecology, biogeography, and behavior Pp. 242-265 in Oliveira, P. S., & Marquis, R. J. (eds). The Cerrados of Brazil. Columbia University Press, New York. 398 pp. MACFADEN, S. W., & CAPEN, D. E. 2002. Avian habitat relationships at multiple scales in a New England forest. Forest Science 48:243-253. MAMEDE F., GARCIA, P. Q., & SOUZA, W. C. 2002. Análise de Viabilidade sócioeconômico-ambiental da transposição de águas da bacia do rio Tocantins para o rio São Francisco, região do Jalapão/TO. Caderno de Política Ambiental, 1. Brasília: Conservation Strategy Fund/Conservation International do Brasil/ Instituto Internacional de Educação do Brasil. MANTOVANI, J. E., & PEREIRA, L. A. 1998. Estimativa da integridade da cobertura vegetal do Cerrado/Pantanal através de dados TM/Landstat. Relatório apresentado no Workshop 171 “Ações Prioritárias para a Conservação do Cerrado e Pantanal,” Brasília, Brasil. Funatura, Conservation International, Universidade de Brasília, Fundação Biodiversitas. MARCHAND, M. N., & LITVAITIS, J. A. 2004a. Effects of habitat features and landscape composition on the population structure of a common aquatic turtle in a region undergoing rapid development. Conservation Biology 18:758-767. MARCHAND, M. N., & LITVAITIS, J. A. 2004b. Effects of landscape composition, habitat features, and nest distribution on predation rates of simulated turtle nests. Biological Conservation 117:243-251. MARINHO-FILHO, J., RODRIGUES, F. H. G. & JAUREZ, K. M. The Cerrado mammals: diversity, ecology, and natural history. Pp. 266-284 in Oliveira, P. S., & Marquis, R. J. (eds). The Cerrados of Brazil. Columbia University Press, New York. 398 pp. MENDONÇA, R. C., FELFLI, J. M., WALTER, B. M. T., SILVA-JÚNIOR, M.C., REZENDE, A. V., SANO, S. M. & ALMEIDA, S. P. (eds). 1998. Flora vascular do cerrado. Pp. 289556 in Sao, S. M. & Almeida, S. P. (eds). Cerrado: ambiente e flora. Empresa Brasileira de Pesquisa Agropecuaria, Brasília. MILSTEAD, W. W. (ed). 1967. Lizard ecology: a symposium. University of Missouri Press, Columbia, Missouri. MITTERMEIER, R. A., MYERS, N. & MITTERMEIER, C. G. 2000. Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Conservation International. MYERS, N. 1980. Conversion of tropical moist forests. National Academy of Sciences, Washington, D. C. 430 pp. 172 MYERS, N. 1990. The biodiversity challenge: expanded hot-spots analysis. The Environmentalist 10:243-256. MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., FONSECA, G. A. B. DA & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858. OLIVEIRA, P. S., & MARQUIS, R. J. 2002. The Cerrados of Brazil. Columbia University Press, New York. 398 pp. OLIVEIRA-FILHO, A. T., & RATTER. J. A. 2002. Vegetation physiognomies and woody flora of the Cerrado Biome. Pp. 91-120 in Oliveira, P. S., & Marquis, R. J. (eds). The Cerrados of Brazil. Columbia University Press, New York. 398 pp. PELLEGRINO, K. C. M., RODRIGUES, M. T., YONENAGA-YASSUDA, Y. & SITES, J. W. 2001. A molecular perspective on the evolution of microteiid lizards (Squamata, Gymnophthalmidae), and a new classification for the family. Biological Journal of the Linnean Society 74:315-338. PIANKA, E. R. 1966a. Latitudinal gradients in species diversity: a review of concepts. American Naturalist 100:33–46. PIANKA, E. R. 1966b. Convexity, desert lizards and spatial heterogeneity. Ecology 47:10551059. PIANKA, E. R., & VITT, L. J. 2003. Lizards: windows to the evolution of diversity. University of California Press, Berkeley. 333 pp. PRESCH, W. 1974. Evolutionary relationships and biogeography of the macroteiid lizards (Family Teiidae, Subfamily Teiinae). Bulletin of the Southern California Academy of Science 73:23-32. 173 PRESCH, W. 1983. The lizard family Teiidae: is it a monophyletic group. Zoological Journal of the Linnean Society 77:189-197. RAMBALDI, D. M., & OLIVEIRA, D. A. S. 2003. Fragmentação de ecossitemas: causas, efeitos sobre a biodiversidade e recomendações de políticas públicas. Brasília, Ministério do Meio Ambiente, Secretaria de Biodiversidade e Florestas. RATTER, J. A., RIBEIRO, J. F. & BRIDGEWATER, S. 1997. The Brazilian cerrado vegetation and threats to its biodiversity. Annals of Botany 80:223–230. RENJIFO, L. M. 1999. Composition changes in a subandean avifauna after long-term forest fragmentation. Conservation Biology 13:1124-1139. ROCHA, C. F. D., & BERGALLO, H. G. 1997. Intercommunity variation in the distribution of abundance of dominant lizard species in restinga habitats. Ciência e Cultura 49:269-274. RODEWALD, A. D., & YAHNER, R. H. 2002. Influence of landscape composition on avian community structure and associated mechanisms. Ecology 82:3493-3502. SANTOS, T. C. C., & CÂMARA, J. B. D. 2002. GEO Brazil 2002—Environmental outlooks in Brazil. Brasília, IBAMA Editions. SAYER, J. A., & WHITMORE, T. C. 1991. Tropical moist forests: destruction and species extinction. Biological Conservation 55:199-213. SCHALL, J. J., & PIANKA, E. R. 1978. Geographical trends in numbers of species. Science 201:679-686. SECRETARIA DO PLANEJAMENTO E MEIO AMBIENTE. 1999. Atlas do Tocantins: subsídios ao planejamento de gestão territorial. Secretaria do Planejamento e Meio Ambiente, Diretoria de Zoneamento Ecológico-Econômico-DZE: Palmas. 174 SHINE, R., & KEARNEY, M. 2001. Field studies of reptilian thermoregulation: how well do physical models predict operative temperatures? Functional Ecology 15:282–288. SKOLE, D., & TUCKER, C. 1993. Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978-1988. Science 260:1905-1910. SUMMERVILLE, K. S., BOULWARE, M. J., VEECH, J. A. & CRIST, T. O. 2003. Spatial variation in species diversity and composition of forest Lepidoptera in eastern deciduous forests of North America. Conservation Biology 17:1045-1047. TABACHNICK, B. G., & FIDELL, L. S. 2001. Multivariate Statistics, Fourth Edition. Allyn & Bacon, Needham Heights, Mass. TER BRAAK, C. J. F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179. TER BRAAK, C. J. F., & SMILAUER, P. 1998. CANOCO reference manual and user's guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power. Ithaca, New York. VITT, L. J. 1991. An introduction to the ecology of cerrado lizards. Journal of Herpetology 25:79-90. VITT, L. J., & PIANKA, E. R. (eds.) 1994. Lizard ecology: historical and experimental perspectives. Princeton University Press, Princeton, New Jersey. VITT, L. J., & SARTORIUS, S. S. 1999. HOBO's, Tidbits and lizard models: the utility of electronic devices in field studies of ectotherm thermoregulation. Functional Ecology 13:670-674. VITT, L. J., & ZANI, P. A. 1996. Organization of a taxonomically diverse lizard assemblage in Amazonian Ecuador. Canadian Journal of Zoology 74:1313-1335. 175 VITT, L. J., PIANKA, E. R., COOPER, W. E., JR., & SCHWENK, K. 2003. History and the global ecology of squamate reptiles. American Naturalist 162:44-60. WELSH, H. H., & LIND, A. J. 2002. Multiscale habitat relationships of stream amphibians in the Klamath-Siskiyou region of California and Oregon. Journal of Wildlife Management 66:581-602. 176 Table 1. Vegetative and structural habitat characteristics of open and closed Cerrado patches. Means ± SE are shown for actual measured values with min – max values in parentheses. ANOVA results are based on comparisons of log10 transformed variables. DF for F tests are 1, 73. ________________________________________________________________________ Habitat characteristic Open habitat Closed habitat F value P value ________________________________________________________________________ leaf litter mass 53.56 ± 4.19 343.65 ± 34.89 207.1 <0.0001 squares open ground squares open to sky plant stem contacts burrows termite nests nearest tree (m) trunk circumference (m) number of fallen logs (11.67–133.33) (96.67–965.00) 14.92 ± 0.69 19.79 ± 0.56 (5.00–22.00) (11.67–25.00) 24.51 ± 0.22 19.90 ± 0.70 (19.00–25.00) (8.33–26.00) 4.07 ± 0.48 3.47 ± 0.34 (0.33–14.00) (0.00–9.33) 0.03 ± 0.03 0.11 ± 0.05 (0–1) (0–1) 1.05 ± 0.32 0.74 ± 0.16 (0–10) (0–3) 2.32 ± 0.23 1.56 ± 0.12 (0.32–5.85) (0.38–3.88) 0.23 ± 0.02 0.22 ± 0.03 (0.10–0.50) (0.05–1.04) 0.87 ± 0.17 2.63 ± 0.29 (0.00–4.00) (0.00–9.00) 25.7 <0.0001 29.6 <0.0001 0.4 0.5301 1.8 0.1791 0.2 0.6663 5.5 0.0220 2.7 0.1044 34.5 <0.0001 ________________________________________________________________________ 177 Table 2. Results of PCA on vegetative characteristics of open and closed Cerrado patches in the Jalapão region of Tocantins, Brazil. ________________________________________________________________________ Variable Factor 1 Factor 2 Factor 3 Factor 4 ________________________________________________________________________ log leaf litter mass 0.501 -0.103 -0.133 0.625 log squares open Ground 0.079 0.303 -0.021 0.770 < 0.001 0.225 < 0.001 -0.792 -0.100 -0.627 -0.198 -0.088 0.624 0.552 0.199 -0.183 log number of termite nests -0.153 0.681 -0.221 -0.050 log trunk circumference -0.106 0.242 0.810 0.092 log number of fallen logs 0.770 -0.023 0.008 0.233 log distance to nearest tree 0.199 -0.085 0.794 -0.212 Eigenvectors 2.462 1.623 1.255 0.918 Percent of variation 0.274 0.180 0.139 0.102 log squares open Sky log number of plant stems log number of burrows ________________________________________________________________________ 178 Figure Legends Figure 1. Map showing location of the study site in eastern Tocantins state, Brazil. Shaded area is Cerrado and the study site is situated near the center of the Jalapão area. Figure 2. Habitats in which pitfall trap arrays were placed; A. Open Cerrado, B. Closed Cerrado. Figure 3. Phylogenetic relationships among lizard species observed near the Jalapão site. Species in bold text were not observed on the pitfall array sites. Relationships of lizards based on Pellegrino et al. (2001) for gymnophthalmids, Presch (1974, 1983) for teiids, and Frost et al. (2001) for iguanians, The three iguanians shown are in different families. They are, from left to right, Iguanidae, Polychrotidae, and Tropiduridae. Figure 4. Body sizes of Jalapão lizards ranked from largest to smallest (mean values). Size for T. quadrilineatus is based on data from Colli et al. (1998). Mean values are biased by varying proportions of juveniles collected. Rank order of size based on maximum SVL is, from largest to smallest: T. quadrilineatus, A. ameiva, M. nigropunctatus, T. oreadicus, M. heathi, A. nitens, C. mumbuca, G. geckoides, B. brasiliana, C. modesta, M. maximiliani, and V. rubricauda. Figure 5. Species accumulation curve for all arrays combined (open and closed Cerrado) based on 1000 randomizations from empirical data using EstimateS. Crosses show means ± SD for empirical data simulations and shaded triangles show the “abundance-base coverage estimator” (see Chao and Lee 1994; Colwell and Coddington 1994). Singletons are species for which only a single individual was observed. Doubletons are species for which just two individuals were observed. Uniques represent species for which all individuals were collected on a single day. Figure 6. Relationship between trapping success (number of lizards captured) and time in days. 179 Figure 7. Plot of the first two factors from a Principal Components Analysis on vegetative and structural habitat characteristics for open and closed Cerrado sites. Figure 8. Mean temperatures ± SE for microhabitats sampled within trap arrays in open and closed Cerrado sites based on nine replicates for each microhabitat. SE of means are shown. Figure 9. Daily patterns of temperature change for microhabitats sampled within trap arrays in open and closed Cerrado sites. Symbols show hourly means ± SE. Note that SE values are so small in most instances that they are hidden by symbols. All sampling days were combined for this analysis and nine replicates were made for each microhabitat. Figure 10. Structure of lizard assemblages in open and closed Cerrado sites based on numbers of individuals collected during a 23-day period. Figure 11. Plot of Canonical Correspondence Analysis comparing matrices of structural habitat characteristics with lizard sampling data. 180 181 182 183 184 185 186 187 188 189 190