File
Transcription
File
Cómo usar el glosario en español: 1. Busca el término en inglés que desees encontrar. 2. El término en español, junto con la definición, se encuentran en la columna de la derecha. Glossary/Glosario Español English A absolute value (58) The distance a number is from zero on the number line. valor absoluto Distancia que un número dista de cero en la recta numérica. accuracy (589) The degree of conformity of a measurement with the true value. exactitud Grado de conformidad de una medida con el valor verdadero. acute angle (449) An angle with a measure greater than 0° and less than 90°. ángulo agudo Ángulo con una medida mayor que 0° y menor que 90°. acute triangle (454) A triangle that has three acute angles. triángulo acutángulo Triángulo que posee tres ángulos agudos. adjacent angles (493) Two angles that have the same vertex, share a common side, and do not overlap. ángulos adyacentes Dos ángulos que poseen el mismo vértice, comparten un lado y no se traslapan. algebraic expression (17) An expression that is built out of numbers and variables using one or more operations. expresión algebraica Expresión compuesta por números y variables que usan una o más operaciones. algebraic fraction (170) A fraction with one or more variables in the numerator or denominator. fracción algebraica Fracción con una o más variables en el numerador o denominador. alternate exterior angles (492) Nonadjacent exterior angles found on opposite sides of the transversal. In the figure below, 1 and 7, 2 and 8 are alternate exterior angles. ángulos alternos externos Ángulos exteriores no adyacentes que se encuentran en lados opuestos de una transversal. En la siguiente figura, 1 y 7, 2 y 8 son ángulos alternos externos. 1 2 4 3 1 2 4 3 alternate interior angles (492) Nonadjacent interior angles found on opposite sides of the transversal. In the figure above, 4 and 6, 3 and 5 are alternate interior angles. ángulos alternos internos Ángulos interiores no adyacentes que se encuentran en lados opuestos de una transversal. En la figura anterior, 4 y 6, 3 y 5 son ángulos alternos internos. altitude (520) A line segment that is perpendicular to the base of a figure with endpoints on the base and the side opposite the base. altura Segmento de recta perpendicular a la base de una figura y cuyos extremos yacen en la base y en el lado opuesto de la base. angle (447) Two rays with a common endpoint form an angle. The rays and vertex are used to name an angle. The angle below is ABC. ángulo Dos rayos con un punto común forman un ángulo. Los rayos y el vértice se usan para identificar el ángulo. El siguiente ángulo es ABC. A A B C area (132) The measure of the surface enclosed by a geometric figure. B C área Medida de la superficie que encierra una figura geométrica. Glossary/Glosario R1 Glossary/Glosario 5 6 8 7 5 6 8 7 arithmetic sequence (249) A sequence in which the difference between any two consecutive terms is the same. sucesión aritmética Sucesión en que la diferencia entre dos términos consecutivos cualesquiera es siempre la misma. average (82) The sum of data divided by the number of items in the data set, also called the mean. promedio Suma de los datos dividida entre el número de elementos en el conjunto de datos. También llamado media. B back-to-back stem-and-leaf plot (607) Used to compare two sets of data. The leaves for one set of data are on one side of the stem and the leaves for the other set of data are on the other side. diagrama de tallo y hojas consecutivo Se usa para comparar dos conjuntos de datos. Las hojas de uno de los conjuntos de datos aparecen en un lado del tallo y las del otro al otro lado de éste. bar graph (722) A graphic form using bars to make comparisons of statistics. gráfica de barras Tipo de gráfica que usa barras para comparar estadísticas. bar notation (201) In repeating decimals the line or bar placed over the digits that repeat. For example, 2.6 3 indicates the digits 63 repeat. notación de barra En decimales periódicos, la línea o barra que se escribe encima de los dígitos que se repiten. Por ejemplo, en 2.6 3 la barra encima del 63 indica que los dígitos 63 se repiten. base (153) In 24, the base is 2. The base is used as a factor as many times as given by the exponent (4). That is, 24 2 2 2 2 . base En 24, la base es 2. La base se usa como factor las veces que indique el exponente (4). Es decir, 24 2 2 2 2 . base (288) In a percent proportion, the whole quantity, or the number to which the part is being compared. base En una proporción porcentual, toda la cantidad o número al que se compara la parte. parte por ciento base 100 Glossary/Glosario part percent base 10 0 base (520, 521, 522) The base of a parallelogram or a triangle is any side of the figure. The bases of a trapezoid are the parallel sides. base La base de un paralelogramo o de un triángulo es cualquier lado de la figura. Las bases de un trapecio son los lados paralelos. base (557) The bases of a prism are any two parallel congruent faces. base Las bases de un prisma son cualquier par de caras paralelas y congruentes. best-fit line (409) On a scatter plot, a line drawn that is very close to most of the data points. The line that best fits the data. recta de ajuste óptimo En una gráfica de dispersión, una recta que está muy cercana a la mayoría de los puntos de datos. La recta que mejor se ajusta a los datos. binomial (669) A polynomial with exactly two terms. binomio Polinomio con exactamente dos términos. boundary (419) A line that separates a graph into half planes. frontera Recta que divide una gráfica en semiplanos. box-and-whisker plot (617) A diagram that divides a set of data into four parts using the median and quartiles. A box is drawn around the quartile values and whiskers extend from each quartile to the extreme data points. diagrama de caja y patillas Diagrama que divide un conjunto de datos en cuatro partes usando la mediana y los cuartiles. Se dibuja una caja alrededor de los cuartiles y se extienden patillas de cada uno de ellos a los valores extremos. C center (533) The given point from which all points on the circle are the same distance. R2 Glossary/Glosario centro Punto dado del cual equidistan todos los puntos de un círculo. círculo Conjunto de todos los puntos del plano que están a la misma distancia de un punto dado del plano llamado centro. circle graph (723) A type of statistical graph used to compare parts of a whole. gráfica circular Tipo de gráfica estadística que se usa para comparar las partes de un todo. circumference (533) The distance around a circle. circunferencia Longitud del contorno de un círculo. coefficient (103) The numerical part of a term that contains a variable. coeficiente Parte numérica de un término que contiene una variable. combination (642) An arrangement or listing in which order is not important. combinación Arreglo o lista en que el orden no es importante. common difference (249) The difference between any two consecutive terms in an arithmetic sequence. diferencia común Diferencia entre dos términos consecutivos cualesquiera de una sucesión aritmética. common multiples (226) Multiples that are shared by two or more numbers. For example, some common multiples of 4 and 6 are 0, 12, and 24. múltiplos comunes Múltiplos compartidos por dos o más números. Por ejemplo, algunos múltiplos comunes de 4 y 6 son 0, 12 y 24. common ratio (250) The ratio between any two consecutive terms in a geometric sequence. razón común Razón entre dos términos consecutivos cualesquiera de una sucesión geométrica. compatible numbers (714) Numbers that have been rounded so when the numbers are divided by each other, the remainder is zero. números compatibles Números redondeados de modo que cuando se dividen, el residuo es cero. complementary (493) Two angles are complementary if the sum of their measures is 90°. complementarios Dos ángulos son complementarios si la suma de sus medidas es 90°. composite number (159) A whole number that has more than two factors. número compuesto Número entero que posee más de dos factores. compound event (650) Two or more simple events. evento compuesto Dos o más eventos simples. cone (569) A solid with a circular base lying in one plane plus a vertex not lying on that plane. The remaining surface of the cone is formed by joining the vertex to points on the circle by line segments. cono Sólido con una base circular que yace en un plano, más un vértice que no yace en ese plano. La superficie restante del cono se forma de la unión del vértice a puntos en el círculo mediante segmentos de recta. congruent (455, 493, 500) Line segments that have the same length, or angles that have the same measure, or figures that have the same size and shape. congruentes Segmentos de recta que tienen la misma longitud o ángulos que tienen la misma medida o figuras que poseen la misma forma y tamaño. conjecture (7) An educated guess. conjetura Suposición informada. constant (103) A term without a variable. constante Término sin variables. constant of variation (394) The slope, or rate of change, in the equation y kx, represented by k. constante de variación La pendiente, o tasa de cambio, en la ecuación y kx, representada por k. converse (462) The statement formed by reversing the phrases after if and then in an if-then statement. recíproca Un enunciado que se forma intercambiando los enunciados que vienen a continuación de si-entonces en un enunciado si-entonces. Glossary/Glosario R3 Glossary/Glosario circle (533) The set of all points in a plane that are the same distance from a given point called the center. coordinate (57) A number that corresponds with a point on a number line. coordenada Número que corresponde a un punto en la recta numérica. coordinate plane (33) Another name for the coordinate system. plano de coordenadas Otro nombre para el sistema de coordenadas. coordinate system (33) A coordinate system is formed by the intersection of two number lines that meet at right angles at their zero points, also called a coordinate plane. sistema de coordenadas Un sistema de coordenadas se forma de la intersección de dos rectas numéricas perpendiculares que se intersecan en sus puntos cero. También llamado plano de coordenadas. corresponding angles (492) Angles that have the same position on two different parallel lines cut by a transversal. In the figure, 1 and 5, 2 and 6, 3 and 7, 4 and 8 are corresponding angles. ángulos correspondientes Ángulos que tienen la misma posición en dos rectas paralelas distintas cortadas por una transversal. En la figura, 1 y 5, 2 y 6, 3 y 7, 4 y 8 son ángulos correspondientes. 1 2 4 3 1 2 4 3 5 6 8 7 5 6 8 7 corresponding parts (500) Parts of congruent or similar figures that match. partes correspondientes Partes de figuras congruentes o semejantes que se corresponden mutuamente. cosine (477) If ABC is a right triangle and A is an acute angle, coseno Si ABC es un ángulo rectángulo y A es uno de sus ángulos agudos, measure of the leg adjacent to A measure of the hypotenuse medida del cateto adyacente a A medida de la hipotenusa cosine A coseno A counterexample (25) An example that shows a conjecture is not true. a c contraejemplo Ejemplo que muestra que una conjetura no es verdadera. b d Glossary/Glosario a c b d a c cross products (270) If , then ad bc. If productos cruzados Si , entonces ad bc. Si b d a c ad bc, then . b d ad bc, entonces . cubic function (688) A function that can be described by an equation of the form y ax3 bx2 cx d, where a 0. función cúbica Función que puede describirse por una ecuación de la forma y ax3 bx2 cx d, donde a 0. cylinder (565) A solid with two parallel congruent circular bases. The third surface of the cylinder consists of all parallel circles of the same radius whose centers lie on the segment joining the centers of the bases. cilindro Sólido con dos bases circulares congruentes y paralelas. La tercera superficie del cilindro consta de todos los círculos paralelos del mismo radio cuyos centros yacen en el segmento que une los centros de las bases. D deductive reasoning (25) The process of using facts, properties, or rules to justify reasoning or reach valid conclusions. razonamiento deductivo Proceso de usar hechos, propiedades o reglas para justificar un razonamiento o para sacar conclusiones válidas. defining a variable (18) Choosing a variable and a quantity for the variable to represent in an equation. definir una variable Seleccionar una variable y una cantidad para la variable psts representst en una ecuación. R4 Glossary/Glosario degree (448) The most common unit of measure for angles. grado La unidad de medida angular más común. degree (670) The sum of the exponents of the variables of a monomial. grado Suma de los exponentes de las variables de un monomio. dependent events (651) Two or more events in which the outcome of one event does affect the outcome of the other event(s). eventos dependientes Dos o más eventos en que el resultado de uno de ellos afecta el resultado del otro o de los otros eventos. diagonal (528) A line segment that joins two nonconsecutive vertices of a polygon. diagonal Segmento de recta que une dos vértices no consecutivos de un polígono. diameter (533) The distance across a circle through its center. diámetro Distancia de un lado a otro de un círculo medida a través de su centro. dilation (512) A transformation that alters the size of a figure but not its shape. dilatación Transformación que altera el tamaño de una figura, pero no su forma. dimensional analysis (212) The process of including units of measurement when computing. análisis dimensional Proceso que incorpora las unidades de medida al hacer cálculos. direct variation (394) A special type of linear equation that describes rate of change. A relationship such that as x increases in value, y increases or decreases at a constant rate. variación directa Tipo especial de ecuación lineal que describe tasas de cambio. Relación en que a medida que x aumenta de valor, y aumenta o disminuye a una tasa constante . discount (299) The amount by which the regular price of an item is reduced. descuento Cantidad por la que se reduce el precio normal de un artículo. Distance Formula (466) The distance between two points, with coordinates (x1, y1) and (x2, y2), is Fórmula de la distancia La distancia entre dos puntos, con coordenadas (x1, y1) y (x2, y2), se given by d (x2 x1)2 (y2 y1)2. calcula con d (x2 x1)2 (y2 y1)2. divisible Un número es divisible entre otro si, al dividirlos, el residuo es cero. domain (35) The domain of a relation is the set of all x-coordinates from each pair. dominio El dominio de una relación es el conjunto de coordenadas x de todos los pares . E edge (556) Where two planes intersect in a line. arista Recta en donde se intersecan dos planos. empty set (336) A set with no elements shown by the symbol { } or . conjunto vacío Conjunto que carece de elementos y que se denota con el símbolo { } o . equation (28) A mathematical sentence that contains an equals sign (). ecuación Enunciado matemático que contiene el signo de igualdad (). equilateral triangle (455) A triangle with all sides congruent. triángulo equilátero Un triángulo cuyos lados son todos congruentes. equivalent equations (111) Two or more equations with the same solution. For example, x 4 7 and x 3 are equivalent equations. ecuaciones equivalentes Dos o más ecuaciones con las mismas soluciones. Por ejemplo, x 4 7 y x 3 son ecuaciones equivalentes. Glossary/Glosario R5 Glossary/Glosario divisible (148) A number is divisible by another if, upon division, the remainder is zero. equivalent expressions (98) Expressions that have the same value. expresiones equivalentes Expresiones que tienen el mismo valor. evaluate (12) Find the numerical value of an expression. evaluar Calcular el valor numérico de una expresión. expanded form (154) A number expressed using place value to write the value of each digit in the number. forma desarrollada Número que se escribe usando el valor de posición para indicar el valor de cada dígito de un número. experimental probability (311) What actually occurs when repeating a probability experiment many times. probabilidad experimental Lo que en realidad ocurre al repetir muchas veces un experimento de probabilidad. exponent (153) In 24, the exponent is 4. The exponent tells how many times the base, 2, is used as a factor. So, 24 2 2 2 2. exponente En 24, el exponente es 4. El exponente indica cuántas veces se usa la base, 2, como factor. Así, 24 2 2 2 2. exterior angles (492, 531) Four of the angles formed by the transversal and two parallel lines. Exterior angles lie outside the two parallel lines. ángulos exteriores Cuatro de los ángulos formados por una transversal y dos rectas paralelas. Los ángulos exteriores yacen fuera de las dos rectas paralelas. Glossary/Glosario F face (556) A flat surface, the side or base of a prism. cara Superficie plana, el lado o la base de un prisma. factorial (642) The expression n factorial (n!) is the product of all counting numbers beginning with n and counting backward to 1. factorial La expresión n factorial (n!) es el producto de todos los números naturales, comenzando con n y contando al revés hasta llegar al 1. factors (148) Two or more numbers that are multiplied to form a product. factores Dos o más números que se multiplican para formar un producto. factor tree (160) A way to find the prime factorization of a number. The factors branch out from the previous factors until all the factors are prime numbers. árbol de factores Forma de encontrar la factorización prima de un número. Los factores se ramifican de los factores anteriores hasta que todos los factores son números primos. formula (131) An equation that shows a relationship among certain quantities. fórmula Ecuación que muestra la relación entre ciertas cantidades. frequency table (623) A chart that indicates the number of values in each interval. tabla de frecuencias Tabla que indica el número de valores en cada intervalo. function (369) A function is a special relation in which each element of the domain is paired with exactly one element in the range. función Una función es una relación especial en que a cada elemento del dominio le corresponde un único elemento del rango. Fundamental Counting Principle (636) If event M can occur in m ways and is followed by event N that can occur in n ways, then the event M followed by event N can occur in m n ways. Principio fundamental de contar Si el evento M puede ocurrir de m maneras y lo sigue un evento N que puede ocurrir de n maneras, entonces el evento M seguido del evento N puede ocurrir de m n maneras. G geometric sequence (250) A sequence in which the ratio between any two consecutive terms is the same. sucesión geométrica Sucesión en que la razón entre dos términos consecutivos cualesquiera es siempre la misma. graph (34) A dot at the point that corresponds to an ordered pair on a coordinate plane. gráfica Marca puntual en el punto que corresponde a un par ordenado en un plano de coordenadas. R6 Glossary/Glosario greatest common factor (GCF) (164) The greatest number that is a factor of two or more numbers. máximo común divisor (MCD) El número mayor que es factor de dos o más números. greatest possible error (594) One-half the precision unit, used to describe the actual measure. error máximo posible La mitad de la unidad de precisión. Se usa para describir la medida exacta. H half plane (419) The region that contains the solution for an inequality. semiplano Región que contiene la solución de una desigualdad. histogram (623) A histogram uses bars to display numerical data that have been organized into equal intervals. histograma Un histograma usa barras para exhibir datos numéricos que han sido organizados en intervalos iguales. hypotenuse (460) The side opposite the right angle in a right triangle. hipotenusa Lado opuesto al ángulo recto en un triángulo rectángulo. hypotenuse hipotenusa I identidad Ecuación que es verdadera para cada valor de la variable. independent events (650) Two or more events in which the outcome of one event does not influence the outcome of the other event(s). eventos independientes Dos o más eventos en que el resultado de uno de ellos no afecta el resultado del otro o de los otros eventos . indirect measurement (472) Using the properties of similar triangles to find measurements that are difficult to measure directly. medición indirecta Uso de las propiedades de triángulos semejantes para hacer mediciones que son difíciles de realizar directamente. inductive reasoning (7) Reasoning based on a pattern of examples or past events. razonamiento inductivo Rezonamiento basada en un patrón de ejemplos o de sucesos pasados. inequality (57, 340) A mathematical sentence that contains , , , , or . desigualdad Enunciado matemático que contiene , , , o . integers (56) The whole numbers and their opposites. . . . , 3, 2, 1, 0, 1, 2, 3, . . . enteros Los números enteros y sus opuestos. . . . , 3, 2, 1, 0, 1, 2, 3, . . . interior angles (492, 528) Four of the angles formed by the transversal and two parallel lines. Interior angles lie between the two parallel lines. ángulos interiores Cuatro de los ángulos formados por una transversal y dos rectas paralelas. Los ángulos interiores yacen entre las dos rectas paralelas. interquartile range (613) The range of the middle half of a set of data. It is the difference between the upper quartile and the lower quartile. amplitud intercuartílica Amplitud de la mitad central de un conjunto de datos. Es la diferencia entre el cuartil superior y el inferior. inverse operations (110) Operations that undo each other, such as addition and subtraction. operaciones inversas Operaciones que se anulan mutuamente, como la adición y la sustracción. irrational number (441) A number that cannot be a expressed as , where a and b are integers and b b does not equal 0. número irracional Número que no puede escribirse a como , donde a y b son enteros y b b no es igual a 0. Glossary/Glosario R7 Glossary/Glosario identity (336) An equation that is true for every value of the variable. isosceles triangle (455) A triangle that has at least two congruent sides. triángulo isósceles Triángulo que posee por lo menos dos lados congruentes. Glossary/Glosario L lateral area (578) The sum of the areas of the lateral faces of a solid. área lateral Suma de las àreas de las caras laterales de un sólido. lateral faces (578) The lateral faces of a prism, cylinder, pyramid, or cone are all the surface of the figure except the base or bases. caras laterales Las caras laterales de un prisma, cilindro, pirámide o cono son todas las superficies de la figura, excluyendo la base o las bases. least common denominator (LCD) (227) The least common multiple of the denominators of two or more fractions. mínimo común denominador (mcd) El mínimo común múltiplo de los denominadores de dos o más fracciones. least common multiple (LCM) (226) The least of the nonzero common multiples of two or more numbers. The LCM of 4 and 6 is 12. mínimo común múltiplo (mcm) El menor de los múltiplos comunes no nulos de dos o más números. El MCM de 4 y 6 es 12. leaves (606) In a stem-and-leaf plot, the next greatest place value of the data after the stem forms the leaves. hojas En un diagrama de tallo y hojas, las hojas las forma el segundo valor de posición mayor después del tallo. legs (460) The sides that are adjacent to the right angle of a right triangle. catetos Lados adyacentes al ángulo recto de un triángulo rectángulo. legs catetos like terms (103, 674) Expressions that contain the same variables to the same power, such as 2n and 5n or 6xy2 and 4xy2. términos semejantes Expresiones que tienen las mismas variables elevadas a los mismos exponentes, como 2n y 5n ó 6xy2 y 4xy2. line (447) A never-ending straight path. recta Trayectoria rectilínea interminable. line graph (722) A type of statistical graph used to show how values change over a period of time. gráfica lineal Tipo de gráfica estadística que se usa para mostrar cómo cambian los valores durante un período de tiempo. line of symmetry (506) Each half of a figure is a mirror image of the other half when a line of symmetry is drawn. eje de simetría Cuando se traza un eje de simetría, cada mitad de una figura es una imagen especular de la otra mitad. line segment (453) Part of a line containing two endpoints and all the points between them. segmento de recta Parte de una recta que contiene dos extremos y todos los puntos entre éstos. linear equation (375) An equation in which the variables appear in separate terms and neither variable contains an exponent other than 1. The graph of a linear equation is a straight line. ecuación lineal Ecuación en que las variables aparecen en términos separados y en la cual ninguna de ellas tiene un exponente distinto de 1. La gráfica de una ecuación lineal es una recta. lower quartile (613) The median of the lower half of a set of data, indicated by LQ. cuartil inferior Mediana de la mitad inferior de un conjunto de datos, se denota con CI. R8 Glossary/Glosario M mean (82, 238) The sum of data divided by the number of items in the data set, also called the average. media Suma de los datos dividida entre el número de elementos en el conjunto de datos. También llamada promedio. measures of central tendency (238) For a list of numerical data, numbers that can represent the whole set of data. medidas de tendencia central Números que pueden representar todo el conjunto de datos en una lista de datos numéricos. measures of variation (612) Used to describe the distribution of statistical data. medidas de variación Se usan para describir la distribución de datos estadísticos. median (238) In a set of data, the middle number of the ordered data, or the mean of the two middle numbers. mediana En un conjunto de datos, el número central de los datos ordenados numéricamente o la media de los dos números centrales. midpoint (468) On a line segment, the point that is halfway between the endpoints. punto medio En un segmento de recta, el punto que equidista de ambos extremos. Midpoint Formula (468) On a coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates at (x1, y1) and (x2, y2) Fórmula del punto medio En el plano de coordenadas, el punto medio de un segmento cuyos extremos son (x1, y1) y (x2, y2) se calcula con la mixed number (200) The indicated sum of a whole 1 number and a fraction. For example, 3. número mixto Suma de un entero y una fracción. 1 Por ejemplo, 3. mode (238) The number or numbers that occurs most often in a set of data. moda Número o números de un conjunto de datos que aparecen más frecuentemente. monomial (150) An expression that is a number, a variable, or a product of numbers and/or variables. monomio Expresión que es un número, una variable y/o un producto de números y variables. multiple (226) The product of a number and a whole number. múltiplo Producto de un número por un número entero. mutually exclusive events (652) Two or more events that cannot happen at the same time. eventos mutuamente exclusivos Dos o más eventos que no pueden ocurrir simultáneamente. x x 2 x x 2 y y 2 y y 2 1 2 1 2 fórmula , . 1 2 1 2 are given by , . 2 2 número negativo Número menor que cero. nonlinear function (687) A function with a graph that is not a straight line. función no lineal Función cuya gráfica no es una recta. null set (336) A set with no elements shown by the symbol { } or . conjunto vacío Conjunto que carece de elementos y que se denota con el símbolo { } o . numerical expression (12) A combination of numbers and operations such as addition, subtraction, multiplication, and division. expresión numérica Combinación de números y operaciones, como adición, sustracción, multiplicación y división. O obtuse angle (449) An angle with a measure greater than 90° but less than 180°. ángulo obtuso Ángulo que mide más de 90°, pero menos de 180°. Glossary/Glosario R9 Glossary/Glosario N negative number (56) A number less than zero. obtuse triangle (454) A triangle with one obtuse angle. triángulo obtusángulo Triángulo que posee un ángulo obtuso. Glossary/Glosario obtuse angle triángulo obtusángulo odds (646) A way to describe the chance of an event occurring. posibilidades Una manera de describir la oportunidad de que ocurra un evento. open sentence (28) An equation that contains a variable. enunciado abierto Ecuación que contiene una variable. opposites (66) Two numbers with the same absolute value but different signs. opuestos Dos números que tienen el mismo valor absoluto, pero que tienen distintos signos. ordered pair (33) A pair of numbers used to locate any point on a coordinate plane. par ordenado Par de números que se usa para ubicar cualquier punto en un plano de coordenadas. order of operations (12) 1. Simplify the expressions inside grouping symbols. 2. Evaluate all powers. 3. Do all multiplications and/or divisions from left to right. 4. Do all additions and/or subtractions from left to right. orden de las operaciones 1. Reduce las expresiones dentro de símbolos de agrupamiento. 2. Evalúa todas las potencias. 3. Ejecuta todas las multiplicaciones y/o divisiones de izquierda a derecha. 4. Ejecuta todas las adiciones y/o sustracciones de izquierda a derecha. origin (33) The point at which the number lines intersect in a coordinate system. origen Punto de intersección de las rectas numéricas de un sistema de coordenadas. outcomes (310) Possible results of a probability event. resultado Resultados posibles de un experimento probabilístico. outliers (621) Data that are more than 1.5 times the interquartile range from the quartiles. valores atípicos Datos que distan de los cuartiles más de 1.5 veces la amplitud intercuartílica. P parallel lines (492) Two lines in the same plane that do not intersect. rectas paralelas Dos rectas en el mismo plano que no se intersecan. parallelogram (514) A quadrilateral with opposite sides parallel and congruent. paralelogramo Cuadrilátero con lados opuestos congruentes y paralelos. part (288) In a percent proportion, the number being compared to the whole quantity. parte En una proporción porcentual, el número que se compara con la cantidad total. percent (281) A ratio that compares a number to 100. por ciento Razón que compara un número con 100. percent equation (298) An equivalent form of percent proportion, where % is written as a decimal. Part Percent Base ecuación porcentual Forma equivalente a la proporción porcentual en que el % se escribe como decimal. Parte Por ciento Base percent of change (304) The ratio of the increase or decrease of an amount to the original amount. porcentaje de cambio Razón del aumento o disminución de una cantidad a la cantidad original. R10 Glossary/Glosario percent of decrease (306) The ratio of an amount of decrease to the previous amount, expressed as a percent. A negative percent of change. porcentaje de disminución Razón de la cantidad de disminución a la cantidad original, escrita como por ciento. Un por ciento de cambio negativo. percent of increase (305) The ratio of an amount of increase to the original amount, expressed as a percent. porcentaje de aumento Razón de la cantidad de aumento a la cantidad original, escrita como por ciento. percent proportion (288) proporción porcentual p per cent a part or b base 100 100 p parte por c iento a o base 100 b 100 cuadrados perfectos Números racionales cuyas raíces cuadradas son números racionales. 25 es un cuadrado perfecto porque 25 5. perimeter (132) The distance around a geometric figure. perímetro Longitud alrededor de una figura geométrica. period (201) In a repeating decimal, the digit or digits that repeats. The period of 0.6 is 6. período En un decimal periódico, el dígito o dígitos que se repiten. El período de 0.6 es 6. permutation (641) An arrangement or listing in which order is important. permutación Arreglo o lista en que el orden es importante. perpendicular lines (494) Lines that intersect to form a right angle. rectas perpendiculares Rectas que se intersecan formando un ángulo recto. pi, (533) The ratio of the circumference of a circle to the diameter of the circle. Approximations for 22 are 3.14 and . pi, Razón de la circunferencia de un círculo al 22 diámetro del mismo. 3.14 y son 7 aproximaciones de . plane (556) A two-dimensional flat surface that extends in all directions and contains at least three noncollinear points. plano Superficie plana bidimensional que se extiende en todas direcciones y que contiene por lo menos tres puntos no colineales. point (447) A specific location in space with no size or shape. punto Ubicación específica en el espacio sin tamaño o forma. polygon (527) A simple closed figure in a plane formed by three or more line segments. polígono Figura simple y cerrada en el plano formada por tres o más segmentos de recta. polyhedron (556) A solid with flat surfaces that are polygons. poliedro Sólido con superficies planas que son polígonos. polynomial (669) An algebraic expression that contains the sums and/or products of one or more monomials. polinomio Expresión algebraica que contiene sumas y/o productos de uno o más monomios. power (153) A number that is expressed using an exponent. potencia Número que puede escribirse usando un exponente. precision (590) The exactness to which a measurement is made. precisión Exactitud con que se realiza una medida. prime factorization (160) A composite number expressed as a product of prime factors. For example, the prime factorization of 63 is 3 3 7. factorización prima Número compuesto escrito como producto de factores primos. Por ejemplo, la factorización prima de 63 es 3 3 7. 7 Glossary/Glosario R11 Glossary/Glosario perfect squares (436) Rational numbers whose square roots are whole numbers. 25 is a perfect square because 25 5. prime number (159) A whole number that has exactly two factors, 1 and itself. número primo Número entero que sólo tiene dos factores, 1 y sí mismo. principle (300) The amount of money in an account. capital Cantidad de dinero en una cuenta. prism (557) A solid with two congruent parallel polygonal bases. The remaining edges join corresponding vertices of the bases so that the remaining faces are rectangles. prisma Sólido con dos bases poligonales paralelas y congruentes. Las aristas restantes unen los vértices correspondientes de las bases de modo que las caras restantes son rectángulos. rectangular prism triangular prism prisma rectangular probabilidad Si los resultados son equiprobables, la razón del número de maneras en que puede ocurrir el evento al número de resultados posibles. probability (310) If outcomes are equally likely, the ratio of the number of ways a certain event can occur to the number of possible outcomes. número de resultados favorables P(evento) number of favorable outcomes P(event) número de resultados posibles number of possible outcomes Glossary/Glosario prisma triangular proportion (270) A statement of equality of two or more ratios. proporción Enunciado de la igualdad de dos o más razones. protractor (448) An instrument used to measure angles. transportador Instrumento que se usa para medir ángulos. pyramid (557) A solid with a polygonal base lying in one plane plus one additional vertex not lying on that plane. The remaining edges of the pyramid join the additional vertex to the vertices of the base. pirámide Sólido con una base que es un polígono que yace en un plano, más un vértice adicional que no yace en ese plano. Las aristas restantes de la pirámide juntan los vértices adicionales a los vértices de la base. Pythagorean Theorem (460) If a triangle is a right triangle, then the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs or c2 a2 b2. Teorema de Pitágoras Si un triángulo es rectángulo, entonces el cuadrado de la longitud de la hipotenusa es igual a la suma de los cuadrados de las longitudes de los catetos, o c2 a2 b2. a c a b c b Q quadrants (86) The four regions into which the x-axis and y-axis separate the coordinate plane. cuadrantes Las cuatro regiones en que los ejes x y y dividen el plano de coordenadas. quadratic function (688) A function that can be described by an equation of the form y ax2 bx c, where a 0. función cuadrática Función que puede describirse por una ecuación de la forma y ax2 bx c, donde a 0. R12 Glossary/Glosario quadrilateral (513) A closed figure with four sides and four vertices, including squares, rectangles, and trapezoids. cuadrilátero Figura cerrada de cuatro lados y cuatro vértices, incluyendo cuadrados, rectángulos y trapecios. quartiles (613) The values that divide a set of data into four equal parts. cuartiles Valores que dividen un conjunto de datos en cuatro partes iguales. radical sign (436) The symbol used to indicate a positive square root of a number. R signo radical El símbolo que se usa para indicar la raíz cuadrada positiva de un número. radius (533) The distance from the center to any point on the circle. radio Distancia del centro a cualquier punto de un círculo. range (35) The range of a relation is the set of all y-coordinates from each ordered pair. rango El rango de una relación es el conjunto de coordenadas y de todos los pares. range (612) A measure of variation that is the difference between the least and greatest values in a set of data. amplitud Medida de variación que es la diferencia entre los valores máximo y mínimo de un conjunto de datos. rate (265) A ratio of two measurements having different units. tasa Razón de dos medidas que tienen unidades distintas. rate of change (393) A change in one quantity with respect to another quantity. tasa de cambio Cambio de una cantidad con respecto a otra. ratio (264) A comparison of two numbers or quantities. The ratio of 2 to 4 can be stated as 2 out 2 of 4, 2 to 4, 2:4, or . razón Comparación de dos números o cantidades. La razón de 2 a 4 se puede expresar como, 2 2 de 4, 2:4, ó . rational number (205) A number that can be a written as a fraction in the form , where a and b b are integers and b 0. número racional Número que puede escribirse como a una fracción de la forma donde a y b son b enteros y b 0. ray (447) A part of a line that extends indefinitely in one direction. rayo Parte de una recta que se extiende indefinidamente en una dirección. real numbers (441) The set of rational numbers together with the set of irrational numbers. números reales El conjunto de los números racionales junto con el de números irracionales. reciprocal (215) Another name for a multiplicative inverse. recíproco Otro nombre del inverso multiplicativo. rectangle (514) A parallelogram with four right angles. rectángulo Paralelogramo con cuatro ángulos rectos. reflection (506) A transformation where a figure is flipped over a line. Also called a flip. reflexión Transformación en que una figura se voltea a través de una recta. regular polygon (529) A polygon having all sides congruent and all angles congruent. polígono regular Polígono cuyos lados son todos congruentes y cuyos ángulos son también todos congruentes. relation (35) A set of ordered pairs. relación Conjunto de pares ordenados. repeating decimal (201) A decimal whose digits repeat in groups of one or more. Examples are 0.181818… and 0.8333… . decimal periódico Decimal cuyos dígitos se repiten en grupos de uno o más. 0.181818… y 0.8333… son ejemplos de este tipo de decimales. rhombus (514) A parallelogram with four congruent sides. rombo Paralelogramo con cuatro lados congruentes. 4 4 Glossary/Glosario Glossary/Glosario R13 right angle (449) An angle that measures 90°. ángulo recto Ángulo que mide 90°. right triangle (454) A triangle with one right angle. triángulo rectángulo Triángulo que tiene un ángulo recto. rotation (506) A transformation where a figure is turned around a fixed point. Also called a turn. rotación Transformación en que una figura se hace girar alrededor de un punto fijo. También se llama vuelta. Glossary/Glosario S sample (309) A subgroup or subset of a population used to represent the whole population. muestra Subgrupo o subconjunto de una población que se usa para representarla. sample space (311) The set of all possible outcomes. espacio muestral Conjunto de todos los resultados posibles. scale (276) The relationship between the measurements on a drawing or model and the measurements of the real object. escala Relación entre las medidas de un dibujo o modelo y las medidas de la figura verdadera. scale drawing (276) A drawing that is used to represent an object that is too large or too small to be drawn at actual size. dibujo a escala Dibujo que se usa para representar una figura que es demasiado grande o pequeña como para ser dibujada de tamaño natural. scale factor (277) The ratio of a length on a scale drawing or model to the corresponding length on the real object. factor de escala Razón de la longitud en un dibujo a escala o modelo a la longitud correspondiente en la figura verdadera. scale model (276) A model used to represent an object that is too large or too small to be built at actual size. modelo a escala Modelo que se usa para representar una figura que es demasiado grande o pequeña como para ser construida de tamaño natural. scalene triangle (455) A triangle with no congruent sides. triángulo escaleno Triángulo que no tiene lados congruentes. scatter plot (40) A graph that shows the relationship between two sets of data. gráfica de dispersión Gráfica en que se muestra la relación entre dos conjuntos de datos. scientific notation (186) A number in scientific notation is expressed as a 10n, where 1 a 10 and n is an integer. For example, 5,000,000 5.0 106. notación científica Un número en notación científica se escribe como a 10n, donde 1 a 10 y n es un entero. Por ejemplo, 5,000,000 5.0 106. sequence (249) An ordered list of numbers, such as, 0, 1, 2, 3, or 2, 4, 6, 8. sucesión Lista ordenada de números, como 0, 1, 2, 3 ó 2, 4, 6, 8. sides (447) The two rays that make up an angle. lados Los dos rayos que forman un ángulo. significant digits (590) The digits recorded from measurement, indicating the precision of the measurement. dígitos significativos Los dígitos de una medición que indican la precisión de la medición. similar solids (584) Solids that have the same shape but not necessarily the same size. sólidos semejantes Sólidos que tienen la misma forma, pero no necesariamente el mismo tamaño. similar triangles (471) Triangles that have the same shape but not necessarily the same size. triángulos semejantes Triángulos que tienen la misma forma, pero no necesariamente el mismo tamaño. R14 Glossary/Glosario simple event (310) One outcome or a collection of outcomes. evento simple Resultado o colección de resultados. simple interest (300) The amount of money paid or earned for the use of money. interés simple Cantidad que se paga o que se gana por usar el dinero. I prt (Interest principal rate time) I crt (Interés capital rédito tiempo) simplest form (104) An algebraic expression in simplest form has no like terms and no parentheses. forma reducida Una expresión algebraica reducida no tiene ni términos semejantes ni paréntesis. simplest form (169) A fraction is in simplest form when the GCF of the numerator and the denominator is 1. forma reducida Una fracción está reducida si el MCD de su numerador y denominador es 1. simplify (25) To write an expression in a simpler form. reducir Escribir una expresión en forma más simple. simulation (656) The process of acting out a situation to see possible outcomes. simulación Proceso de representación de una situación para averiguar los resultados posibles. sine (477) If ABC is a right triangle and A is an acute angle, seno Si ABC es un triángulo rectángulo y A es un ángulo agudo, measure of the leg opposite A measure of the hypotenuse sine A . medida del cateto opuesto a A medida de la hipotenusa seno A . skew lines (558) Lines that are neither intersecting nor parallel. Skew lines lie in different planes. rectas alabeadas Rectas que no se intersecan y que no son paralelas. Las rectas alabeadas yacen en distintos planos. slant height (578) The length of the altitude of a lateral face of a regular pyramid. altura oblicua En una pirámide regular, la longitud de la altura de una cara lateral. slope (387) The ratio of the rise, or vertical change, to the run, or horizontal change. The slope describes the steepness of a line. pendiente Razón de la elevación o cambio vertical al desplazamiento o cambio horizontal. La pendiente describe la inclinación de una recta. rise run slope elevación desplazamiento pendiente forma pendiente-intersección Una ecuación lineal de la forma y mx b, donde m es la pendiente y b es la intersección y. solution (28) A value for the variable that makes an equation true. For x 7 19, the solution is 12. solución Valosss y que posee cuatro ángulos rectos. solving the equation (28) The process of finding a solution to an equation. resolver la ecuación (28) Proceso de hallar una solución a una ecuación. solving a right triangle (461) Using the Pythagorean Theorem to find the length of the third side of a right triangle, if the lengths of the other two sides are known. resolver un triángulo rectángulo Uso del Teorema de Pitágoras para hallar la longitud de un tercer lado de un triángulo rectángulo, si se conocen las longitudes de los otros dos lados. square (514) A parallelogram with all sides congruent and four right angles. cuadrado Paralelogramo cuyos lados son todos congruentes y que posee cuatro ángulos rectos. square root (436) One of the two equal factors of a number. The square root of 25 is 5 since 52 25. raíz cuadrada Uno de los dos factores iguales de un número. Una raíz cuadrada de 25 es 5 porque 52 25. standard form (154) A number is in standard form when it does not contain exponents. The standard form for seven hundred thirty-nine is 739. forma estándar Un número está en forma estándar si no contiene exponentes. Por ejemplo, la forma estándar de setecientos treinta y nueve es 739. Glossary/Glosario R15 Glossary/Glosario slope-intercept form (398) A linear equation in the form y mx b, where m is the slope and b is the y-intercept. stem-and-leaf plot (606) A system used to condense a set of data where the greatest place value of the data forms the stem and the next greatest place value forms the leaves. diagrama de tallo y hojas Sistema que se usa para condensar un conjunto de datos, en que el valor de posición máximo de los datos forma el tallo y el segundo valor de posición máximo forma las hojas. stems (606) The greatest place value common to all the data values is used for the stem of a stemand-leaf plot. tallos Máximo valor de posición común a todos los datos que se usa como el tallo en un diagrama de tallo y hojas. straight angle (449) An angle with a measure equal to 180°. ángulo llano Ángulo que mide 180°. supplementary (494) Two angles are supplementary if the sum of their measures is 180°. suplementarios Dos ángulos son suplementarios si sus medidas suman 180°. surface area (573) The sum of the areas of all the surfaces (faces) of a 3-dimensional figure. área de superficie Suma de las áreas de todas las superficies (caras) de una figura tridimensional. system of equations (414) A set of equations with the same variables. The solution of the system is the ordered pair that is a solution for all of the equations. sistema de ecuaciones Conjunto de ecuaciones con las mismas variables. La solución del sistema es el par ordenado que resuelve ambas ecuaciones. T tangent (477) If ABC is a right triangle and A is an acute angle, measure of the leg opposite A tangent A measure of the leg adjacent to A term (103) When plus or minus signs separate an algebraic expression into parts, each part is a term. Glossary/Glosario term (249) Each number within a sequence is called a term. terminating decimal (200) A decimal whose digits end. Every terminating decimal can be written as a fraction with a denominator of 10, 100, 1000, and so on. theoretical probability (311) What should occur in a probability experiment. transformation (506) A movement of a geometric figure. translation (506) A transformation where a figure is slid from one position to another without being turned. Also called a slide. transversal (492) A line that intersects two parallel lines to form eight angles. tangente Si ABC es un triángulo rectángulo y A es un ángulo agudo, medida del cateto opuesto al A medida del cateto adyacente a A tangente A término Cada una de las partes de una expresión algebraica separadas por los signos de adición o sustracción. término Cada número de una sucesión se llama término. decimal terminal Decimal cuyos dígitos terminan. Todo decimal terminal puede escribirse como una fracción con un denominador de 10, 100, 1000, etc. probabilidad teórica Lo que debería ocurrir en un experimento probabilístico. transformación Desplazamiento de una figura geométrica. translación Transformación en que una figura se desliza sin girar, de una posición a otra. También se llama deslizamiento. transversal Recta que interseca dos rectas paralelas formando ocho ángulos. trapezoid (514) A quadrilateral with exactly one pair of parallel sides. trapecio Cuadrilátero con sólo un par de lados paralelos. tree diagram (635) A diagram used to show the total number of possible outcomes. diagrama de árbol Diagrama que se usa para mostrar el número total de resultados posibles. R16 Glossary/Glosario triangle (453) A polygon having three sides. triángulo Polígono de tres lados. trigonometric ratio (477) A ratio of the lengths of two sides of a right triangle. The tangent, sine, and cosine ratios are three trigonometric ratios. razón trigonométrica Razón de las longitudes de dos lados de un triángulo rectángulo. La tangente, el seno y el coseno son tres razones trigonométricas. trigonometry (477) The study of the properties of triangles. Trigonometry means angle measurement. trigonometría Estudio de las propiedades de los triángulos. La palabra significa medida de ángulos. trinomial (669) A polynomial with three terms. trinomio Polinomio de tres términos. two-step equation (120) An equation that contains two operations. ecuación de dos pasos Ecuación que contiene dos operaciones. U unit rate (265) A rate simplified so that it has a denominator of 1. tasa unitaria Tasa reducida que tiene denominador igual a 1. upper quartile (613) The median of the upper half of a set of data, indicated by UQ. cuartil superior Mediana de la mitad superior de un conjunto de datos, denotada por CS. V variable Marcador de posición para cualquier valor. Venn diagram (164) A diagram that is used to show the relationships among sets of numbers or objects by using overlapping circles in a rectangle. diagrama de Venn Diagrama que se usa para mostrar las relaciones entre conjuntos de números o elementos mediante círculos, que pueden traslaparse, dentro de un rectángulo. vertex (447) The common endpoint of the rays forming an angle. vértice Extremo común de los dos rayos que forman un ángulo. vertex (453) A vertex of a polygon is a point where two sides of the polygon intersect. vértice El vértice de un polígono es un punto en que se intersecan dos lados del mismo. vertex (556) Where three or more planes intersect in a point. vértice Punto en que se intersecan tres o más planos. vertical angles (493) Two pairs of opposite angles formed by two intersecting lines. The angles formed are congruent. In the figure, the vertical angles are 1 and 3, 2 and 4. ángulos opuestos por el vértice Dos pares de ángulos opuestos formados por dos rectas que se intersecan. Los ángulos que resultan son congruentes. En la figura, los ángulos opuestos por el vértice son 1 y 3, 2 y 4. 4 1 3 2 4 1 3 2 vertical line test (370) If any vertical line drawn on the graph of a relation passes through no more than one point on the graph for each value of x in the domain, then the relation is a function. prueba de la recta vertical Si todas las rectas verticales trazadas en la gráfica de una relación no pasan por más un punto para cada valor de x en el dominio, entonces la relación es una función. volume (563) The measure of space occupied by a solid region. volumen Medida del espacio que ocupa un sólido. X x-axis (33) The horizontal number line which helps to form the coordinate system. eje x Recta numérica horizontal que forma parte de un sistema de coordenadas. Glossary/Glosario R17 Glossary/Glosario variable (17) A placeholder for any value. x-coordinate (33) The first number of an ordered pair. coordenada x El primer número de un par ordenado. x-intercept (381) The x-coordinate of a point where a graph crosses the x-axis. intersección x La coordenada x de un punto en que una gráfica interseca el eje x. Y eje y Recta numérica vertical que forma parte de un sistema de coordenadas. y-coordinate (33) The second number of an ordered pair. coordenada y El segundo número en un par ordenado. y-intercept (381) The y-coordinate of a point where a graph crosses the y-axis. intersección y La coordenada y de un punto en que una gráfica interseca el eje y. Glossary/Glosario y-axis (33) The vertical number line which helps to form the coordinate system. R18 Glossary/Glosario Selected Answers Chapter 1 The Tools of Algebra Page 5 Chapter 1 Getting Started 1. 14.8 3. 3.1 5. 2.95 7. 3.55 9. 7.88 11. Sample answer: 1200 13. Sample answer: 120 15. Sample answer: 20,000 17. Sample answer: 220 19. Sample answer: 14 21. Sample answer: $5 23. Sample answer: 120 25. Sample answer: 4 27. Sample answer: 10 Pages 9–10 Lesson 1-1 1. when an exact answer is not needed 3. 1:33 P.M. 5. 17 7. 3072 9. 178 beats per min 11. 17 13. 25 15. 34 17. 27 19. 21. Since $68 $15 $20 $16 $119, Ryan does not have enough money for the ski trip. 23. about 5 h 25. Sample answer: about 21,800 transplants 27a. There are more even products. Since any even number multiplied by any number is even, and only an odd number multiplied by an odd number is odd, there are more even products in the table. There are about 3 times as many evens as odds. 27b. Yes; in the addition table, there is only one more even number than odd. 29. B 31. 3 33. 35 35. 109 Pages 14–16 Lesson 1-2 Pages 19–21 1. 14 Practice Quiz 1 3. 79 Pages 26–27 Lesson 1-5 1. Sample answer: b 7 12 and 8 h 3 3. 6 5. 5 7. 6 9. Symmetric 11. Let n the number; n 8 23; 15 13. C 15. 11 17. 12 19. 5 21. 15 23. 9 25. always 27. 15 29. 0 31. 15 33. 17 35. 11 37. 9 39. 3 41. 4 43. Let h the number; h 10 27; 37 45. Let w the number; 9 w 36; 27 47. Let x the number; 3x 45; 15 49. $8 51. Symmetric Property of Equality 53. Symmetric Property of Equality 55. 3 57. Sample answer: Once the variable(s) are replaced in the open sentence, the order of operations is used to find the value of the expression. Answers should include the following. • To evaluate an expression, replace the variable(s) with the given values, and then find the value of the expression. • To solve an open sentence, find the value of the variable that makes the sentence true. 59. B 61. 23 d 63. 10 n 65. 11 67. 42 69. 18 71. 50 73. 90 Lesson 1-3 1. Sample answer: 7n and 3x 1; 2 3 and 3 8 3. Sample answer: 4 c d 5. 6 7. 17 9. g 5 11. 7 n 8 13. 11 15. 38 17. 2 19. 9 21. 27 23. 56 25. 53 27. 44 29. 32 31. 71°F 33. s $200 35. h 6 37. 5q 4 39. n 6 9 41. 17 4w 43. 10 45. x 3 47. p 4 49. s c m d 51. 1 53. D 55. 7 57. 9 59. 36 61. 22 Page 21 Pages 30–32 Page 32 Practice Quiz 2 1. Identity () 3. 24h Pages 36–38 5. 8 Lesson 1-6 1. Sample answer: (3, 5); the x-coordinate is 3 and the y-coordinate is 5. 3. The domain of a relation is the set of x-coordinates. The range is the set of y-coordinates. 5. 7. (6, 5) y 5. 22 Lesson 1-4 1. Sample answer: 3 · 4 4 · 3 3. Kimberly; the Associative Property only holds true if all numbers are added or all numbers are multiplied, not a combination of the two. 5. Additive Identity 7. 28 9. 45 11. n 13 13. $42; To find the total cost, add the three costs together. D O x Selected Answers R19 Selected Answers 1. Sample answer: (8 3) 2 3. Emily; she followed the order of operations and divided first. 5. ; 20 7. ; 66 9. ; 15 11. 12 9 13. 4 15. 25 17. 38 19. 2 21. 55 23. 24 25. 64 27. 180 29. 50 31. 6 3 33. 9 5 35. 24 6 37. 3 $6 39. (4 2) (2 13) 41. (3 57) (2 12) 43. 61 (15 3) 43 45. 56 (2 6) 4 3 47. (50 25) (7 24) (4 22) (3 16) 49. 0-07-825200-8 51. Sample answer: 111 (1 1 1) (11 1) 53. C 55. 64 57. 28 59. $275 61. Sample answer: about 26 compact cars 63. 126 65. 563 Since the order in which the costs are added does not matter, the Commutative Property of Addition holds true and makes the addition easier. By adding 4 and 26, the result is 30, and 30 12 is 42. 15. Multiplicative Identity 17. Commutative Property of Multiplication 19. Associative Property of Addition 21. Additive Identity 23. Associative Property of Multiplication 25. Commutative Property of Addition 27. 55 29. 40 31. 990 33. 0 35. false; (100 10) 2 100 (10 2) 37. false; 9 3 3 9 39. m 12 41. a 27 43. 12y 45. 48c 47. 75s 49. There are many real-life situations in which the order in which things are completed does not matter. Answers should include the following. • Reading the sports page and then the comics, or reading the comics and then the sports page. No matter the order, both parts of the newspaper will be read. • When washing clothes, you would add the detergent and then wash the clothes, not wash the clothes and then add the detergent. Order matters. 51. B 53. 36 55. w 12 57. 35 59. 15, 21 61. 296 63. 1050 65. 7493 y y 1 6 6 4 0 2 3 1 29. Science Experiment 100 90 80 domain {1, 6, 0, 3}; range {6, 4, 2, 1} x O x Height (cm) 9. 70 60 50 40 30 20 11. y 10 24 21 0 18 Cost 15 12 9 31. y x y 6 4 5 3 5 2 1 6 0 1 2 3 4 5 6 7 8 x Number of Tickets 13. y 1 2 3 4 5 Bounce domain {4, 5, 1}; range {5, 2, 6} 15. x O y D 33. y X x O 17. O x 19. (7, 3) 21. (6, 6) 23. (3, 4) 25. on the x-axis; on the y-axis y 35. y N x O 27. Speed of a House Mouse O x y 7 0 3 2 4 4 5 1 domain {7, 3, 4, 5}; range {0, 2, 4, 1} x y 0 1 0 3 0 5 2 0 domain {0, 2}; range {1, 3, 5, 0} 80 70 Distance (ft) Selected Answers x O x 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 Time (sec) R20 Selected Answers 37. (0, 14.7), (1, 10.2), (2, 6.4), (3, 4.3), (4, 2.7), (5, 1.6) 39. domain {0, 1, 2, 3, 4, 5}; range {14.7, 10.2, 6.4, 4.3, 2.7, 1.6} 41. {(0, 100), (1, 95), (2, 90), (3, 85), (4, 80), (5, 75)} 43. about 93°C; about 96°C 45. Ordered pairs can be used to graph real-life data by expressing the data as ordered pairs and then graphing the ordered pairs. Answers should include the following. • The x- and y-coordinate of an ordered pair specifies the point on the graph. • longitude and latitude lines. 47. D 49a. 49b. triangle 49c. (4, 2), (4, 8), (10, 2) 49d. triangle 49e. The figures have the same shape but not the same size. y 51. 6 53. Multiplicative Identity 61. 28 63. 7 65. 9 55. 7 57. 10 · 30 Field Goal Attempts 3 6 1 7 5 x O 59. 12 35. Positive; as the height increases, the circumference increases. Lesson 1-7 1. Sample answer: make predictions, draw conclusions, spot trends 3. negative, positive, and none 5. No; hair color is not related to height. 7. Since the points appear to be random, there is no relationship. 9. The number of songs on a CD usually does not affect the cost of the CD; no. 11. As speed increases, distance traveled increases; positive. 13. The size of a television screen and the number of channels it receives are not related; no. 15. The number decreases. 17. Player Statistics 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 2 27. 10 domain: {2, 6, 7}; range: {3, 1, 5} x O Pages 42–44 Addition 25. Multiplicative Property of Zero 29. 17 31. 6 y 33. x y Chapter 2 Integers Page 55 1. 22 Chapter 2 Getting Started 3. 42 5. 8 Pages 59–61 7. 4 9. T 11. V 13. Q Lesson 2-1 1. Draw a number line. Draw a dot at 4. 3. The absolute value of a number is its distance from 0 on a number line. 5. 15 8 9 10 11 12 13 14 15 16 7. 4 2; 2 4 9. 11. 13. 10 15. 21 17. 3 19. 54, 52, 45, 37, 36, 34, 27, 27, 2 21. 6 ⫺8 ⫺7⫺6⫺5⫺4 ⫺3 ⫺2⫺1 0 23. 9 5 6 7 8 9 10 11 12 13 25. 5 ⫺8⫺7⫺6⫺5⫺4 ⫺3⫺2⫺1 0 27. 200 600 1000 1400 1800 2200 2600 3000 400 800 1200 1600 2000 2400 2800 Minutes Played y y M O O 29. (0, 4) 31. domain {0, 4, 2, 6}; range {9, 8, 3, 1} 33. 7 35. b 18 37. 31 Pages 47–50 Chapter 1 Study Guide and Review 1. d 3. e 5. c 7. 20 9. 22 11. 22 13. 16 15. 12 17. 14 19. 10 21. 25 23. Commutative Property of ⫺8 ⫺6⫺4⫺2 0 2 4 6 8 31. 5 10; 10 5 33. 248 425; 425 248 35. 212 32; 32 212 37. 39. 41. 43. 45. {15, 4, 2, 1} 47. {60, 57, 38, 98, 188} 49. 46 51. 5 53. 7 55. 2 57. 9 59. –20 61. 4 63. 40 65. 3 67. ⫺54 ⫺90 ⫺70 ⫺50 ⫺30 ⫺10 69. 54 70 71. 7 73. Sometimes; if A and B are both positive, both negative, or one is 0, it is true. If one number is negative and the other is positive, it is false. 75. B 77. Positive; as height increases, so does arm length. 79. x y {(3, 2), (3, 4), (2, 1), (2, 4)} K x 29. x 3 2 3 4 2 1 2 4 81. Commutative Property of Multiplication 83. Commutative Property of Multiplication 87. 17 89. 1049 85. 388 Selected Answers R21 Selected Answers 19. about 800 21. Sample answer: Yes; as more emphasis is placed on standardized tests, students will become more comfortable taking the tests, and the scores will increase. 23. C 25. 27. ⫺3⫺2 ⫺1 0 1 2 3 4 5 Pages 67–68 Lesson 2-2 Pages 87–89 1a. Negative; both addends are negative. 1b. Positive; 12 2. 1c. Negative; 11 9. 1d. Positive; both addends are positive. 3. 6 5. 5 7. 3 9. 4 11. 4 (5) 1 13. 7 15. 11 17. 16 19. 21 21. 66 23. 2 25. 2 27. 6 29. 26 31. 21 33. 2 35. 6 37. 3 39. 0 41. 5 43. 8 45. 40 47. 107,680 49. To add integers on a number line, start at 0. Move right to show positive integers and left to show negative integers. Answers should include the following. 3 • Sample answer: 5 23–34. R (3, 5) 1 y A (4, 5) E (0,3) 21 0 1 2 3 4 5 6 • Sample answer: Lesson 2-6 1. Sample answer: (3, 6) represents a point 3 units to the right and 6 units up from the origin. (6, 3) represents a point 6 units to the right and 3 units up from the origin. 3. Keisha; a point in Quadrant I has two positive coordinates. Interchanging the coordinates will still result in two positive coordinates, and the point will be in Quadrant I. 5. (1, 3) 7. (5, 4) 9. II 11. III 13. (2, 4) 15. (4, 2) 17. (2, 2) 19. (0, 2) 21. (3, 5) K (5, 1) 4 D (0, 0) G (5, 0) x F (4, 0) O 6543 21 0 1 2 H (0, 3) B (5, 5) 51. D 53. {12, 9, 8, 0, 3, 14} 55. no relationship 57. 6 59. 20 61. 25 63. 42 65. 65 Pages 72–74 5 Page 74 b 69. 20 1. 80, 70, 69 Selected Answers 71. 75 3. 6 5. 7 7. 32 9. 9 Lesson 2-5 1. Sample answer: 16 4 4 3. 11 5. 3 7. 10 9. 13 11. 0 13. 9 15. 8 17. 10 19. 50 21. 11 23. 11 25. 19 27. 12 29. 13 31. 16 33. 49 points 35. 61 37. Sample answer: x 144; y 12; z 12 39. When the signs of the integers are the same, both a product and a quotient are positive; when the signs are different, the product and quotient are negative. Answers should include the following. • Sample answer: 4 (6) 24 and 24 4 6; 3 2 6 and 6 (3) 2 • Sample answers: same sign: 30 (5) 6, 30 5 6; different signs: 24 8 3, 24 (8) 3 41. B 43. 39 45. 50cd 47. B 49. D Page 84 1. 84 27. IV 29. none Practice Quiz 2 3. 126 5. 31 R22 Selected Answers 7. 25 9. 20xy 31. none 33. none 35. Sample answer: y x x O Lesson 2-4 1. 3(5) 15 3. Sample answer: (4)(9)(2) 5. 40 7. 28 9. 540 11. 21y 13. 120 15. A 17. 42 19. 72 21. 70 23. 128 25. 45 27. 130 29. 308 31. 528 33. 1344 35. 56°F 37. 96y 39. 55b 41. 108mn 43. 135xy 45. 88bc 47. –90jk 49. 99 51. 80 53. 216 55. 248 ft 57a. True; 3(5) 5(3) 57b. True; 2(3 5) (2 3)(5) 59. B 61. 16 63. 4 65. 10 67. 126°F 69. 14 71. (6, 2) 73. (1, 5) 75. (5, 5) 77. 480 79. 550 81. 6 83. 15 85. 4 Pages 83–84 23. I 25. IV 73. 120 Practice Quiz 1 Pages 77–79 S (2, 5) Lesson 2-3 1. Sample answer: 5, 5; 9, 9 3. 3 5. 9 7. 2 9. 20 11. 21 13. Utah, Washington, Wisconsin, or Wyoming 15. 1 17. 3 19. 9 21. 12 23. 10 25. 12 27. 3 29. 9 31. 14 33. 28 35. 239 37. 1300 39. 14,776 ft 41. 24 43. 36 45. 9 47. 20 49. 23 51. 17 53. 10,822 55a. False; 3 4 4 3 55b. False; (5 2) 1 5 (2 1) 57. A 59. 2450 61. 3 63. 7 x 86 65. 67. C (6, 1) M (4, 2) The points are along a line slanting down to the right, crossing the y-axis at 5 and the x-axis at 5. y 1 4 2 3 3 2 4 1 5 0 6 1 37. Sample answer: y x O x y 2 4 1 2 0 0 1 2 2 4 3 6 The points are along a line slanting up, through the origin. 39. Sample answer: y O x x y 3 1 2 0 1 1 0 2 1 3 2 4 The points are along a line slanting up, crossing the y-axis at 2 and the x-axis at 2. 41. 5-point star y 40–43. A, F K (1, 3) D C x O 41. III 43. None y A (4, 3) O x R (3, 0) J (2, 4) E B 43. Sample answer: y The graph can include any integer pairs where x 3 or x 3. x O 47. The new triangle is translated right 2 units and up 2 units; it is the same size as the original triangle. y C' B' C A' B A' A B' x B x O 51. Sample answer: x O 53. D 55. 3 67. 0 57. 8 59. 96 61. 13°F 63. 24h 65. 45b Chapter 2 Study Guide and Review 1. negative number 3. coordinate 5. integers 7. inequality 9. 11. 13. 25 15. 22 17. 5 19. 4 21. 10 23. 8 25. 5 27. 4 29. 9 31. 66 33. 48 35. 7 37. 4 39. 2 Lesson 3-1 1. Sample answer: 2(3 4) 2 3 2 4 3. 5 7 5 8, 75 5. 2 6 4 6, 36 7. 3n 6 9. 6x 30 11. $56.25 13. 5 7 5 3, 50 15. 4 3 3 3, 21 17. 8 2 8 2, 32 19. 6 8 6(5), 18 21. 3 9 (3)(2), 21 23. 10(5) 3(5), 35 25. 12($15 $10 $8), 12($15) 12($10) 12($8); $396 27. 5y 30 29. 7y 56 31. 10y 20 33. 10 5x 35. 9m 18 37. 15s 45 39. 12x 36 41. 2w 20 43. 5a 50 45. 5w 40 47. 5a 30 49. 3a 3b 51. $9918 53. No; 3 (4 5) 23, (3 4)(3 5) 56 55. C 57. 8(20 3) 184 59. 16(10 1) 176 61. 9(100 3) 927 63. 12(1000 4) 12,048 65. 6 67. 4 69. 21, 25, 29 71. 80, 160, 320 73. 8 (4) 75. 3 (9) 77. 7 (10) Lesson 3-2 1. terms that contain the same variable or are constants 3. Koko; 5x x 6x, not 5x. 5. terms: 2m, 1n, 6m; like terms: 2m, 6m; coefficients: 2, 1, 6: constant: none 7. 8a 9. 7c 12 11. 9y 13. 3y 16 15. 4x 12y 17. terms: 3, 7x, 3x, x; like terms: 7x, 3x, x; coefficients: 7, 3, 1; constant: 3 19. terms 2a, 5c, 1a, 6a; like terms: 2a, 1a, 6a; coefficients: 2, 5, 1, 6; constant: none 21. terms: 6m, 2n, 7; like terms: none; coefficients: 6, 2; constant: 7 23. 7x 25. 11y 27. 7a 3 29. 7y 9 31. 2x 33. y 35. 4x 8 37. 8y 39. x 12 41. 5b 6 43. 4a 6 45. 8 47. 16m 2n 49. 9c 2d 51. 3s 80 53. 5d 2 55. 6x 2 57a. Distributive Property 57b. Commutative Property 57c. Substitution Property of Equality 57d. Distributive Property 59. C 61. 2y 16 63. III 65. 17 67. 2 69. 11 71. 5 73. 13 Page 107 Practice Quiz 1 1. 6x 12 3. 7y 4 Pages 113–114 5. 2m 15 Lesson 3-3 1. Addition Property of Equality 3. 11 9. 3 2 1 Pages 90–92 11. 0 0 1 2 3 5. 4 7. 55 4 11. C 13. 13 15. 8 17. 15 19. 1 21. 15 23. 24 25. 36 27. 4 29. 31 31. 118 33. n 9 2; 11 35. n 3 6; 3 37. 6 5 4 3 2 1 0 1 Selected Answers R23 Selected Answers The points lie outside a rhombus defined by (0, 4), (4, 0), (0, 4), and (4, 0). y Chapter 3 Getting Started 1. 6 3. 10 5. 5 (7) 7. 5 (9) 9. 3 13. 5 2n 15. n 3 Pages 105–107 A O Page 97 Pages 100–102 45. The new triangle is twice the size of the original triangle, and is moved to the right and up. y C' C Chapter 3 Equations 39. 5 6 7 8 9 ⫺4 ⫺3 ⫺2 ⫺1 0 10 11 12 41. 1 2 3 43. 12 x 20; 32 47. 17 million 49. When you solve an equation, you perform the same operation on each side so that the two sides remain equal. Answers should include the following. • In an equation, both sides are equal. In a balance scale, the weight of the items on both sides are equal. • The Addition and Subtraction Properties of Equality allow you to add or subtract the same number from each side of an equation. The two sides of the equation remain equal. 51. C 53. 3t 12 55. 4z 4 57. 4m 1 59. Additive Inverse Property 61. 84 63. 25 65. 9 67. 4 Pages 117–119 with a certain amount and increase or decrease at a certain rate. Answers should include the following. • You’ve been running 15 minutes each day as part of a fitness program. You plan to increase your time by 5 minutes each week. After how many weeks do you plan to run 30 minutes each day? (5w 15 30, 3 weeks) • You are three years older than your sister is. Together the sum of your ages is 21. How old is your sister? (2x 3 21, 9 years old) 29. D 31. 4 33. 5 35. 11 37. 4 39. 5 41. 6 Page 130 1. 13 Practice Quiz 2 3. 18 Pages 133–136 5. 3n 20 32, 4 Lesson 3-7 1. d rt 3. Sample answer: 5 in. 4 in. Lesson 3-4 1. Multiplication Property of Equality 3. Sample answer: 5x 20 5. 5 7. 27 9. 66 11. 7 13. 8 15. 8 17. 24 19. 14 21. 33 23. 9 25. 43 27. 135 29. 130 31. 29 33. 168 35. 6x 42; 7 x 37. 8; 32 4 5. 34 km, 30 km2 7. 4 in. 9. 8 h 11. 15 mph 13. 54 cm, 162 cm2 15. 136 in., 900 in2 17. 48 m, 144 m2 19. 20 m, 25 m2 21. 11 yd 23. 5 m 25. 39 ft 27. 19 yd 29. 390 yd, 9000 yd2 31. d 2r 33. 4300 ft2 35. 23.5 mph 4 ft 4 cm 37. 39. 39. ⫺9 ⫺8 ⫺7 ⫺6 ⫺5 ⫺4 ⫺3 ⫺2 3 ft 4 cm 41. ⫺3 ⫺2 ⫺1 0 1 2 3 4 43. 30 31 32 33 34 35 36 37 45. 12,000 5x; 2400 mi2 47. 6p 24, 4 painters 49a. True; one pyramid balances two cubes, so this is the same as adding one cube to each side. 49b. True; one pyramid and one cube balance three cubes, which balance one cylinder. 49c. False; one cylinder and one pyramid balance five cubes. 51. B 53. 13 55. 28 57. 7y 6 59. 36 61. 10 63. 2 65. 2 67. 19 69. 27 Selected Answers Pages 122–124 Lesson 3-5 1. You undo the operations in reverse order. 3. 8 5. 2 7. 40 9. 4 11. 10 13. 2 15. 4 17. 8 19. 13 21. 3 23. 28 25. 64 27. 65 29. 21 31. 11 33. 30 35. 33 37. 13 39. 5 41. 5 43. –2 45. 10 47. 3 h 49. 131 bikes 51. 5x 2 8 53. C 55. 7 57. 2 59. 2 61. 5y 15 63. 9y 36 65. 8r 40 67. (2, 3) 69. (3, 4) 71. x 15 73. 2x 10 Pages 128–130 Lesson 3-6 1. is, equals, is equal to 3. Ben; Three less than means that three is subtracted from a number. 5. 2n 4 2, 1 7. 2x 5 37, 21 yr 9. 3n 20 4, 8 11. 10n 8 82, 9 n 13. 8 42, 136 4 15. 3n 8 2, 2 17. 17 2n 5, 6 19. 4n 3n 5 47, 6 21. 8 5x 7, 3 h 23. 2x 2 12. 5 million people 25. Sample answer: By 2020, Texas is expected to have 10 thousand more people age 85 or older than New York will have. Together, they are expected to have 846 thousand people age 85 or older. Find the expected number of people age 85 or older in New York by 2020. 27. Two-step equations can be used when you start R24 Selected Answers 41. Sometimes; a 3-inch by 4-inch rectangle has a perimeter of 14 inches and an area of 12 square inches; a 6-inch by 8-inch rectangle has a perimeter of 28 inches and an area of 48 square inches. 43. Formulas are important in math and science because they summarize the relationships among quantities. Answers should include the following. • Sample answer: The formula to find acceleration is vf vi a where vf is the final velocity and vi is the t initial velocity. • You can find the acceleration of an automobile with this formula. 45. C 47. 9 49. 8 51. 4x 9 53a. {(1870, 14), (1881, 600), (1910, 1000), (2000, 1500)} 53b. domain: {1870, 1881, 1910, 2000}, range: {14, 600, 1000, 1500} Pages 138–140 Chapter 3 Study Guide and Review 1. like terms 3. Multiplication Property of Equality 5. Distributive Property 7. coordinate 9. constant 11. 3h 18 13. 5k 5 15. 9t 45 17. 2b 8 19. 9a 21. 2n 8 23. 3 25. 5 27. 8 29. 18 31. 1 33. 6 35. 2n 3 53; 25 37. 34 ft, 72 ft2 Chapter 4 Factors and Fractions Page 147 Chapter 4 Getting Started 1. 2x 2 3. 2k 16 5. 12c 24 7. 7a 7b 9. 14 11. 28 13. 63 15. 30 17. 45 19. 78 21. 0.39 23. 0.005 Pages 150–152 Lesson 4-1 1. Use the rules for divisibility to determine whether 18,450 is divisible by both 2 and 3. If it is, then the number is also divisible by 6 and there is no remainder. 3a. Sample answer: 102 3b. Sample answer: 1035 3c. Sample answer: 343 5. 2 7. 2, 5, 10 9. 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 11. yes; a number 13. No; two terms are added. 15. 2000, 2004, and 2032 are leap years. 17. 3, 5 19. 2, 3, 5, 6, 10 21. 2 23. 5 25. 2, 3, 6 27. 2, 5, 10 29. 1, 2, 3, 6, 19, 38, 57, 114 31. 1, 5, 13, 65 33. 1, 2, 4, 31, 62, 124 35. 1, 3, 5, 9, 15, 27, 45, 135 37. yes; a number 39. No; one term is subtracted from another term. 41. No; two terms are added. 43. No; one term is subtracted from another term. 45. yes; the product of a number and a variable 47. yes; the product of numbers and variables 49. 6 ways; 1 72, 2 36, 3 24, 4 18, 6 12, 8 9 51. Alternating rows of a flag contain 6 stars and 5 stars, respectively. Fifty is not divisible by a number that would make the arrangement of stars in an appropriate-sized rectangle. 53. Never; a number that has 10 as a factor is divisible by 2 5, so it is always divisible by 5. 55a. 24 cases 55b. 36 bags 55c. Sample answer: 12 cases, 18 bags; 14 cases, 15 bags; 16 cases, 12 bags 57. The side lengths or dimensions of a rectangle are factors of the number that is the area of the rectangle. Answers should include the following. • A rectangle with dimensions and area labeled; for example, a 4 5 rectangle would have length 5 units, width 4 units, and area 20 square units. • Factors are numbers that are multiplied to form a product. The dimensions of a rectangle are factor pairs of the area since they are multiplied to form the area. 59. C 61. 34 in., 60 in2 63. 5n 2 3; 1 65. 2 67. 64 69. 27 71. 2304 Pages 155–157 Lesson 4-2 Pages 161–163 Lesson 4-3 1. A prime number has exactly two factors: 1 and itself. A composite number has more than two factors. 3. Francisca; 4 is not prime. 5. prime 7. 2 32 9. 2 52 11. 5 a a b 13. 3 and 5, 5 and 7, 11 and 13, 17 and 19, 29 and 31, 41 and 43 15. composite 17. composite 19. composite 21. prime 23. 34 25. 32 7 27. 22 52 Page 163 Practice Quiz 1 1. 3, 5 3. none Pages 166–168 5. 37 7. 7 11 x 9. 1 23 n n n Lesson 4-4 1. Sample answer: Find the prime factorization of each number. Multiply the factors that are common to both. 3. Jack; the common prime factors of the expressions are 2 and 11, so the GCF is 2 11 or 22. 5. 3 7. 14 9. 36 11. 14n 13. 3(n 3) 15. 5(3 4x) 17. 4 19. 8 21. 10 23. 9 25. 8 27. 5 29. 4 31. 3 33. 4 35. 4x 37. 2s 39. 14b 41. 4n 43. Sample answer: 2x, 6x2 45. 3(r 4) 47. 3(2 y) 49. 7(2 3c) 51. 4(y 4) 53a. 7; Sample answer: 7 14 21 28 35 ↓ ↓ ↓ ↓ ↓ 7(1) 7(2) 7(3) 7(4) 7(5) The terms increase by a factor of 7. 53b. 42, 49 55a. 6-in. squares 55b. 20 tiles 57. Yes; the GCF of 2 and 8 is 2. 59. D 61. yes 63. no 65. yes 67. 3 3 n 69. 1 5 j k 71. 92 73. 6 75. 10 77. 36 79. 24 81. 1000 Pages 171–173 Lesson 4-5 1 7 1. The GCF of the numerator and denominator is 1. 3. 16 17 5. simplified 7. a 2 5 6 9. 11. simplified 13. B 15. 9 5 1 19 21. simplified 23. 25. 27. 22 12 3 20 y2 1 20 7z2 2 31. or y 33. 35. 37. 39. simplified 8t 21 4 1 24 330 3 294 43. 45a. yes; 45b. No; cannot 25 440 4 349 7 264 1 31 be simplified. 45c. yes; 47. 49. 10 528 2 50 2 9 3 29. 92 gh 41. 3 17. 19. 51. Fractions represent parts of a whole. So, measurements that contain parts of units can be represented using fractions. Answers should include the following. • Measurements can be given as parts of a whole because smaller units make up larger units. For example, inches make up feet. 3 • Twelve inches equals 1 foot. So, 3 inches equals or 12 1 foot. 4 53. A 55. 2 57. 5 59. composite 65. (6 7)(k3) 67. (3 5)(x4 x2) 61. prime 63. 27 Selected Answers R25 Selected Answers 1. Sample answer: 25, x5 3. When n is even, 1n (1)n 1. When n is odd, 1n 1 and (1)n 1. 5. 72 7. (2 103) (6 102) (9 101) (5 100) 9. 11 11. 132 13. 61 15. (8)4 17. (t)3 19. m4 21. 2x2y2 23. 9(p 1)2 25. (8 102) (0 101) (3 100) 27. (2 104) (3 103) (7 102) (8 101) (1 100) 29. 1000 31. 32 33. 81 35. 54 37. 13 39. 9 41. 243 43. 64 82 or 43 or 26, 49 72 45. (8)3; (8)(8)(8); 512 47. Always; the product of two negative numbers is always positive. 49. 21, 22, 23, 24, 25 51. After 10 folds, the noodles are 5(210) 5(1024) or 5120 feet long, which is slightly less than a mile. So, after 11 folds the length of the noodles will be greater than a mile. 53. 55. 6 32 cm2 57. No; the surface area is multiplied by 4. The volume is multiplied by 8. 59. As the capacity of computer memory increases, the factors of 2 in the number of megabytes increases. Answers should include the following. • Computer data are measured in small units that are based on factors of 2. • In describing the amount of memory in modern computers, it would be impractical to list all the factors of 2. Using exponents is a more efficient way to describe and compare computer data. 61. B 63. 2, 5, 10 65. 150 mph 67. 4 69. 3y 8 71. 1, 5 73. 1, 2, 4, 8, 16 75. 1, 5, 7, 35 29. 2 5 11 31. 3 3 t t 33. 1 5 5 z z z 35. 1 2 19 m n p 37. 3 7 g h h h 39. 2 2 2 2 2 2 n n n 41. 1 2 2 2 3 5 r r s t t t 43. Sample answer: 25x 45. The number of rectangles that can be modeled to represent a number indicate whether the number is prime or composite. Answers should include the following. • If a number is prime, then only one rectangle can be drawn to represent the number. If a number is composite, then more than one rectangle can be drawn to represent the number. • If a model has a length or width of 1, then the number may be prime or composite. If a model does not have a length or width of 1, then the number must be composite. 47. C 49. (5)3h2k 51. yes 53. no 55. 9 57. 28 59. 5x 35 61. 10a 60 63. 72 8y Pages 177–179 Lesson 4-6 Pages 191–194 1. Neither; the factors have different bases. 3. Sample answer: 5 52 53 5. a6 7. 12x5 9. 102 11. a4 13. 35 15. d10 17. n9 19. 99 21. 18y5 23. 8a3b10 25. 53 27. b3 29. m12 31. (2)1 or 2 33. n6 35. k2m 37. 97 39. 79 41. 102 or 100 times 43. 3 45. 2 times 47. 8 49. 5 51. Each level on the Richter scale is 10 times greater than the previous level. So, powers of 10 can be used to compare earthquake magnitudes. Answers should include the following. • On the Richter scale, each whole-number increase represents a 10-fold increase in the magnitude of seismic waves. • An earthquake of magnitude 7 is 105 times greater than an earthquake of magnitude 2 because 107 102 107 2 or 105. 3x 2y 53. B 55. simplified 57. 59. 2 61. a 63. Positive; as the high temperature increases, the amount of electricity 1 10 1 20 Pages 183–185 1 64 67. that is used also increases. 65. 69. Lesson 4-7 1. To get each successive power, divide the previous power by 3. Therefore, 30 3 3 or 1. 1 5 1 t 3. 2 5. 6 7. 34 1 21. 10 a 1 1 1 13. 103 15. 3 17. 3 19. 32 5 (3) 1 1 23. 4 25. x2 27. 4 ; 0.0016 29. 55 q 5 33. 35. 9. 72 11. 92 24 or 42 1 41. 128 1 43. 729 a3 51. a3b2 or 2 b 37. 102 or 1001 39. 59. 0.0029 51. 1 53. 2 7 r2 1 55. 4 b 45. simplified 1 57. 3 (4) 63. 8.0 103 65. 4.571 107 61. 70,450 Chapter 5 Rational Numbers Page 199 Chapter 5 Getting Started 1. 0.6 3. 34 5. 0.2 7. 75 17. 13 19. 15 21. 9 Pages 202–204 9. 1.7 3 5 18 25 11. 13. 15. 6 Lesson 5-1 1. Sample answer: write the fractions as decimals and then compare. 3. Sample answer: 0.14 5. 2.08 7. 0.26 9. 11. 13. 0.2 15. 0.32 17. 7.3 19. 5.125 21. 0.1 23. 0.4 5 25. 0.16 27. 0.3125 29. 0.83 7 9 7 8 31. , 0.8, 33. 35. 37. 39. 41. 43. 45. Sample 8 9 45. 128 times 47. x5 49. x3 47. This is greater than those who chose English in the survey because 1 0.14, and 0.14 0.13. 7 105 49. All coins were made with a fraction of silver that was contained in a silver dollar. Answers should include the following. • A quarter had one-fourth the amount of silver as a silver dollar, a dime had one-tenth the amount, and a nickel had one-twentieth the amount. • It is easier to perform arithmetic operations using decimals rather than using fractions. (x2)3 (x2)(x2)(x2) 51. D 53. 7.7 102 55. 9.25 105 1 or 6 x 55. C 57. 9 101 59. (1 101) (7 102) (3 103) 61. 37 63. 53 65. 8y 48 67. 5n 15 69. 720 71. 40.5 73. 0.0005 Selected Answers 49. c4 both greater than 0.16 and less than 0.8. 132 1 (x ) 1 1 or x3 x3 x6 5c2 47. 8b 10 17 39. 2(15 2n) 41. 43. 1 6 53. Yes; (x3)2 32 x6 3 5 37. 2(t 10) answer: 0.7 and 0.7; 0.16 and 0.8 ; 0.7 and 0.7 are 1 4 10 31. Chapter 4 Study Guide and Review 1. true 3. true 5. true 7. true 9. 3 11. 5 13. 2, 3, 6 15. 2, 5, 10 17. 27 19. 25 21. 90 23. 112 25. 32 5 27. 22 17 29. 7 7 k 31. 2 13 p p p 33. 6 35. n 61. 29 63. 32 65. 56 Pages 207–209 1 13 67. 1 1 59. 3 (2) y 4 1 71. 73. 7 8 57. 7 2 3 69. Lesson 5-2 1. any number that can be written as a fraction 4 5 7 9 39 1,000,000 11 7 2 25. 5 3 60 1 25 27. 2 99 Page 185 5. 7. 9. I, Q 1. 5 9 1 17 1 21. 8 23. 100 250 25 3 3 59 4 29. 31. 33. 35. I, Q 37. N, W, I, Q 39. Q 50 200 25 19 1 41. not rational 43. 200 45. Sometimes; and 2 are 100 2 1 both rational numbers, but only 2 is an integer. 47. in. 1250 3 49. Yes; 2 2.375 and 2.375 2.37. 51. The set of rational 8 Practice Quiz 2 1 2 3. 2a 5. 7. 2n7 9. 6 b 5 Pages 188–190 17. 19. 1 Lesson 4-8 1. Sample answer: Numbers that are greater than 1 can be expressed as the product of a factor and a positive power of 10. So, these numbers are written in scientific notation using positive exponents. Numbers between 0 and 1 cannot be expressed as the product of a factor and a whole number power of 10, so they are written in scientific notation using negative exponents. 3. 0.000308 5. 849,500 7. 6.97 105 9. 1.0 103 11. Mars, Venus, Earth 13. 57,200 15. 0.005689 17. 0.0901 19. 2505 21. 2.0 106 23. 6.0 103 25. 5.0 107 27. 5.894 106 29. 4.25 104 31. 6.25 106 33. 7.53 107 35. 37. 39. Arctic, Indian, Atlantic, Pacific 41. 6.1 105, 0.0061, 6.1 102, 6100, 6.1 104 43. 48,396 45. 2.52 105; 252,000 47. Bezymianny; Santa Maria; Agung; Mount St. Helens tied with Hekla 1947; Hekla, 1970; Ngauruhoe 57. 15a4 59. c $2.50 R26 Selected Answers 49. 3.14 1 81 51. B 53. 1 49 55. 11. 13. 7 3 3. 15. numbers includes the set of natural numbers, whole numbers, and integers. In the same way, natural numbers are part of the set of whole numbers and the set of whole numbers is part of the set of integers. Answers should include the following. • The number 5 belongs to the set of natural numbers, whole numbers integers, and rational numbers. 1 • The number belongs only to the set of rational 2 numbers. 53. C 55. 7.8 57. 2.5 59. 3,050,000 61. 0.01681 63. (4 102) (8 101) (3 100) 65. 24 cm; 27 cm2 67. 8 2 1 2 69. 7x 28 71. Sample answer: 5 4 20 73. Sample answer: 7 2 14 75. Sample answer: 16 2 32 Pages 212–214 Lesson 5-3 3 1 1 5 13 6 8 1. Sample answer: , 3. 5. 7. 9. 11. 20 2 3 9 22 7 t 1 8 12 1 1 3 1 13. 15. 17. 19. 21. 23. 25. 1 40 45 49 3 4 8 6 1 2 4 27. 3 29. 14 31. 10 33. 4 35. 6 37. 27 39. 27 3 3 9 8c 9 11 xz2 41. 43. 45. 47. 49. 12.7 51. 10.257 11 25 60 3 8 3 3 5 53a. Sample answer: 53b. Sample answer: 4 5 4 6 5 13 1 7 55. A 57. 59. 61. 63. 65. 0.16 67. 4.875 8 32 5 9 69. 8n 71. 2t 73. 9 Pages 217–219 Lesson 5-4 1. Dividing by a fraction is the same as multiplying by its reciprocal. 8 25 5 4 3. 5. 7 15 4 5 7. 9. 1 29 36 11. 1 3a 2 13. 5 8 1 9 15. 6 boards 17. or 5 19. 21. 23. 1 9 24 29 15 15 1 1 25. 27. 29. 1 31. 1 33. 10 35. 1 37. 2 22 16 2 3 5 81 1 4 16 39. 6 41. 43. 45. 5 47. 6 ribbons 49. 6r 256 4 3 t 51. 8 days 53. Dividing by a fraction is the same as multiplying by its reciprocal. Answers should include the following. • For example, a model of two circles, each divided into 1 4 four sections, represents 2 . Since there are 8 sections, 1 4 2 8. • Division of fractions and multiplication of fractions are 1 4 inverse operations. So, 2 equals 2 4 or 8. 55. C 5 24 10 61. Q 63. not rational 21 2 2 71. 3 73. 1 3 3 59. 57. 1 7 1 4 67. 1 69. 6 65. 7 2 7 4 7 8r 1 3 1 3 15. 11 3x 4 2 5 2 1 1 2 4 1 3 17. 19. 21. 1 23. 25. 11 27. 9 29. 3 2 2 9 5 3 4 3 6 1 3 1 5x 3 31. 4 33. 8 35. 2 37. 39. 41. 43. 2c m 7 8 5 5 8 7 3 45. 5 in. 47. 38 ft 49. When you use a ruler or a tape 8 4 7 5. 7. 9. 8 11. 13. measure, measurements are usually a fraction of an inch. Answers should include the following. 1 16 1 8 • The marks on a ruler represent of an inch, of an 1 2 inch, of an inch, and of an inch. • Fractional measures are used in sewing and construction. 7 8 3 10 51. A 53. 1 55. 61. 52 7 Pages 228–230 5 12 9. Lesson 5-6 1. The LCM involves the common multiples of a set of numbers; the LCD is the LCM of the denominators of two or more fractions. 3. 24 5. 70 7. 48 9. 8 11. 100x 13. 15. front gear: 5; back gear: 13 17. 60 19. 48 21. 84 23. 100 25. 96 27. 84 29. 630 31. 112a2b 33. 75n4 35. 15 37. 35 39. 24 41. 16c2d 43. 60 s 45. 47. 49. 51. 53. amphibians 55. 12 and 18 57. Never; sample answer: 5 and 6 do not contain any factors in common, and the LCM of 5 and 6 is 30. 59a. If two numbers are relatively prime, then their LCM is the product of the two numbers. For example, the LCM of 4 and 5 is 22 5 or 20; the LCM of 6 and 25 is 2 3 52 or 150. 59b. Always; the LCM contains all of the factors of both numbers. Therefore, it must contain any common factors. 1 2 1 7 ad 5 69. 71. 7 2n 11; 2 61. B 63. 65. 1 67. 3 73. 20 75. Sample answer: 0 1 1 77. Sample answer: 1 2 3 79. Sample answer: 8 7 15 Pages 234–236 Lesson 5-7 1. Find the least common denominator. 3. José; he finds a common denominator by multiplying the denominators. Daniel incorrectly adds the numerators and the 2 5 1 9 6 4 9 5 1 1 1 1 5 11. 13. 15. 1 17. 19. 21. 1 23. 7 10 28 16 15 8 8 9 11 7 5 3 3 25. 11 27. 14 29. 3 31. 5 lb 33. 8 in. 36 9 8 5 4 1 1 35. Sample answer: Fill the -cup. From the -cup, fill the 2 2 1 1 1 1 1 1 -cup. cup will be left in the -cup because . 3 6 2 2 3 6 denominators of unlike fractions. 5. 7. 9. 4 37. Find the LCM of the denominators. Then rename the fractions as like fractions with the LCM as the denominators. Answers should include the following. • For example, the LCM of 4 and 6 is 12. So, 1 3 57. 1 59. 42 cm; 90 cm2 63. 22 3 n 65. 2 3 7 a2 b 4 5 4 5 49. 2 51. 1 53. 27 Pages 241–242 2 55. 9 10 2 Lesson 5-8 1. Mean; when an extreme value is added to the other data, it can raise or lower the sum, and therefore the mean. 3. 12.4; 8; none 5. 3.6; 3.5; 4 7. Sample answer: 13 could be an extreme value because it is 12 less than the next value. It lowers the mean by 2.1. 9. 98 11. 8.9; 8; 8 13. 7.6; 7.5; 7.1 and 7.4 15. 4.3; 4.2; 4.1 and 4.2 17. Sample answer: the median, 95, or the modes, 95 and 97, because most students scored higher than mean, which is 91. 19. Sample answer: The median home price would be useful because it is not affected by the cost of the very expensive homes. The cost of half the homes in the county would be greater than the median cost and half would be less. 33. 7.9 21. C 5 6 7 8 23. 9 25. 3 27. 29. 18 31. 5 35. 3 Selected Answers R27 Selected Answers 3. Kayla; Ethan incorrectly left out the negative sign on the 1 4 Practice Quiz 1 3 2 5. 7. 25 27 3. 3.125 • Writing the prime factorization of the denominators is the first step in finding the LCM of the denominators, which is the LCD. Then the fractions can be added or subtracted. 1 1 1 39. B 41. Sample answer: 43. 36 45. 6n3 47. 9 6 7 first term. 1. 0.16 3 1 1 5 10 13 or 1. 12 12 4 6 12 12 Pages 222–224 Lesson 5-5 1. Page 224 Pages 246–248 5 9 1 3 2 65. 1 3 4 57. 120 59. 21c2 61. 3x 11 1 69. 1 71. 3 73. 6.0; 6.5; 3.6 15 6 1 77. 2 79. G; 3; 81, 243, 729 2 3 5 5 67. 2 6 49. 51. 1 53. 2 55. Lesson 5-9 1. Subtraction Property of Equality 3. Ling; dividing 0.3 by 3 does not isolate the variable on one side. 5. 18.7 63. 1 9. 2 11. –90 13. 29.15 in. 15. 2.4 17. 12.24 12 2 3 31 7 19. 5.9 21. 23. 6 25. 27. 2 29. 4 15 10 36 9 1 3 7 1 31. 5 33. 32 35. 1 37. 5 39. 2 41. 13 in. by 4 4 8 2 1 1 21 in. 43. $16.66 45. 2 ft 47. Equations with fractions 2 4 13 7. 1 30 can be written to represent the number of vibrations per second for different notes. To solve, multiply each side of the equation by the reciprocal of the fraction. Answers should include the following. • For example, if n vibrations per second produce middle 5 4 and 7.2 75. 3.25 81. neither Chapter 6 Ratio, Proportion, and Percent Page 263 Chapter 6 Getting Started 1. 24 3. 10,560 5. 480 7. 4000 9. 6 11. 580 13. 50 15. 15,000 17. 48.8 19. 13.44 21. 0.18 1 3 3 4 25. 27. simplified 29. simplified 31. 23. 3.04 C, then n vibrations per second produce the note E Pages 266–268 above middle C. 1. Sample answer: 5 3 Lesson 6-1 • The equation n 440 represents the number of vibrations per second to produce middle C. To solve, 5 8 49. D 51. 13; 12; 11 and 12 17 24 55. 53. 70.8; 66; 60 17 36 57. 11 3 1 61. 63. 6 65. 6 67. 5 69. 15 8 3 Page 248 Practice Quiz 2 13 2 1. 72 3. 10 5. 7. 1 9. 32.4; 30.5; 29 16 3 Pages 251–252 Lesson 5-10 9. 0.75 inch/hour 11. 24.2 miles/gallon 13. 576 15. No; the ratio will be 2 to 3. 2 5 9 32,000 3 7 17. 19. 21. 59. 7 23. 1. Arithmetic sequences have a common difference and the terms can be found by adding or subtracting. Geometric sequences have a common ratio and the terms can be found by multiplying or dividing. 3. A; 4; 19, 23, 27 31. 4.5 m/sec 33. 7.8 ft/h 35. 39 pages/week 37. The 6-pack of soda costs $0.37 per can. The 12-pack of soda costs $0.35 per can. So, the 12-pack is less expensive. 39. 26.4 41. 19.2 43. 45. 47. about 579 mi/h 49. $9 51. C 53b. The ratios should be close in value. 53c. Sample answer: Pyramid of Khufu in Giza, Egypt; The Taj Mahal in India; The Lincoln Memorial in Washington, D.C. 55. arithmetic; 0.3; 13.3, 13.6, 13.9 1 5 4 3 3 3 5. neither 7. A; ; , , 1 49, 60 9. $11,027.36 1 1 125 625 1 5 1 3125 11. A; 11; 38, 1 2 5 6 3 6 2 2 1 2 25. G; ; , , 27 81 3 9 2.5, 2, 1.5 23. neither 19. A; ; , , 1 21. A; 0.5, 1 1 1 1 2 32 64 128 27. G; ; , , 29a. Arithmetic; the common difference is $3. 29b. $48 31. Find the pattern, continue the sequence, and use the new values to make predictions. Answers should include the following. • The difference between any two consecutive terms in an arithmetic sequence is the common difference. To find the next value in such a sequence, add the common difference to the last term. The ratio of any two consecutive terms in a geometric sequence is the common ratio. So, to find the next value in such a sequence, multiply the last term by the common ratio. • Sequences occurring in nature include geysers spouting every few minutes, the arrangement of geese in migration patterns, and ocean tides. 33. A 35. 56 37. 5.28 39. 10 41. 3.3; 3.3; 3.6 7 45. b3 47. 6 49. 15 8 Pages 254–258 Chapter 5 Study Guide and Review 43. 102 in. 1. rational 3. algebraic fraction 5. LCD 7. reciprocal 3 1 5 8 11 4 7 5 7 2 1 21. 4 23. 25. 1 27. 3 29. 31. 6 33. 1 25 11 27 9 9 5 3 4 4 3 1 35. 3 37. 9 39. x 41. 6 43. 3 45. 4 47. 21x 9 4 5 9. arithmetic 11. 0.45 R28 Selected Answers 13. 0.46 15. 6.36 17 118 1760 1 13. G; 3; 162, 486, 1458 15. A; 3; 13, 10, 7 17. G; ; , , Selected Answers 1 3 3. Sample answer: $12 per person 5. 7. 5 3 3 5 multiply each side by the reciprocal of , . 1 12 1 3 57. 67. 40 3 1 25. 27. 29. 0.10 cents/pencil 59. 13 61. 5.2 107 63. 3.8 102 65. 30 69. 13 Pages 272–274 Lesson 6-2 1. A statement of equality of two ratios. 3. Yes 5. 15 7. 4.2 9. yes 11. no 13. yes 15. 4 17. 20 19. 15 21. 1.4 23. 7.5 25. 0.94 27. 0.8 29. 15 31. 26 12 3 5 6.25 72 m 33. ; 18 39. $22.47 a c d 8.75 35. ; 7 1 2 41. chocolate pieces: 3 c; peanuts: 1 c b b c d d d a a c b 4 51. 53. 102 55. 6.5 7y 43. , , or 45. C 49. 4 Pages 278–280 1. 1 unit 7. 37. about 360.8 ft Lesson 6-3 3 units 10 ft 5. 1 in. 5 ft 3. 40 mi 9. 12 ft 15 ft 17. 19. 47. 57.3 mph 11. 24.6 ft 13. 11.4 ft 1 15. 49 ft 2 2 3 17. 19. 1 cm 0.25 cm 0.5 in. ⫽ 10 ft 21. A scale factor less than 1 means that the drawing or model is drawn smaller than actual size. A scale factor of 1 means that the drawing or model is drawn actual size. A scale factor greater than 1 means the drawing or model is 1 2 1 4 23. B 25a. 25b. drawn larger than actual size. 25c. The perimeter of a 3-inch by 5-inch rectangle is 16 inches. The area is 15 square inches. For a 6-inch by 10-inch rectangle, the perimeter should be double the 3-inch by 5-inch rectangle. That is, 16 2 or 32 inches. The area should be 4 times the area of the 3-inch by 5-inch rectangle. That is, 4 15 or 60 square inches. Since the perimeter of the 6-inch by 10-inch rectangle is 32 and its 1 area is 60, the conjecture is true. 27. 3.5 29. 21.6 31. 6 12 33. 4m3 35. 3 18t5 1 37. 20 2 39. 5 39 41. 50 41 43. 50 3 10 11. 0.8% 3. , 0.3 1 4 5. 1, 1.25 7 20 7. 1, 1.35 7 8 53 10,000 27. , 0.0053 37. 175% 61 100 1 2 21. 3, 3.5 22 25 39. 1.7% 2 3 47. 61%, , 0.69 31. 270% 37 1000 41. 49. 0.4 23 100 23. , 0.61 29. 9% 9. 45% 17. , 0.88 13. 133.3% 15. daily newspaper 19. , 0.875 21 50 29. 1 5 25. 2, 2.23 33. 0.06% 35. 22.5% 43. 0.45 1 4 Page 292 41. 25 Practice Quiz 1 1. $0.14 per can 3. 1 ft 3069 ft Pages 295–297 Lesson 6-6 1 5 5. 19.5 1 5 5. Sample answer: 13 7. Sample answer: 72 9. Sample answer: 8; fraction 1 3 method: 24 or 8 11. Sample answer: 21; meaning of percent method: 152% means about 150 for every 100 or about 15 for every 10. 14 has 1 tens. 1 15 15. So, 152% of 14 is about 21. 13. Sample answer: 14 15. Sample answer: 33 17. Sample answer: 49 19. Sample answer: 4 21. Sample answer: 90 23. Sample answer: 375 1 4 25. Sample answer: 8 or 2 billion 27. Sample answer: 3 10 27; fraction method: 90 or 27 29. Sample answer: 36; 1 4 2 5 1 4 8 or 2. 33. Sample answer: 78; meaning of percent: 127% means about 130 for every 100 or about 13 for every 10. 64 has 6 tens. 6 13 78. So, 127% of 64 is about 78. 35. Sample answer: 450; meaning of percent: 295% means about 300 for every 100 or about 30 for every 10. 145 has one 100 and about 5 tens. (300 1) (30 5) 300 150 or 450. 37. Sample answer: Pluto and Mars, or Neptune and Jupiter 1 3 39. Sample answer: 90,000 or 30,000 miles 41. about 10% 43. 7 to 8 45. C 47. 21 49. Maine: 31,813 sq mi; New Hampshire: 8238 sq mi; West Virginia: 18,779 sq mi; Vermont: 7279 sq mi; Alabama: 35,071 sq mi 51. 160% 53. 0.77 55. 4.21 57. 8.9 59. 21 61. 0.5 63. 0.25 65. 0.07 30% 40% 65% 3 10 2 5 • 25% 0.25; 30% 0.3; 40% 0.4; 1 11 3 55. A 57. 59. 61. 1 12 21 13 65. composite 67. 800 69. 0.94 71. 320 5. 104 7. 60% 9. 45% 11. 50 13. 77 15. 36% 17. 112 19. 0.2% 21. 16% 23. about 70% 25. 26.8 lbs 27. In real-world situations, percents are important because they show how something compares to the whole. Answers should include the following. Lesson 6-7 1. Use the percent equation in any situation where the rate and base are known. 3. I interest; p principal; r annual interest rate; t time in years 5. 50 7. 3% 9. $1680 11. 1.5 years 13. 95% 15. 50 17. 63 19. 37.5% 21. 14.52 23. 218% 25. 0.9% 27. 13.2 29. $25.49 31. $17 33. $18.50 35. $1113.75 37. $244.76 39. 16 41. $1.20 43. If you know two of the three values, you can use the percent proportion to solve for the missing value. Answers should include the following. • To find the amount of tax on an item, you can use the percent proportion or the percent equation. • For example, the following methods can be used to find 6% tax on $24.99. Method 1: Percent Proportion x 6 24.99 100 Method 2: Percent Equation n 0.06(24.99) Using either method, x 1.50. The amount of tax is $1.50. 45. B 47. Sample answer: 250; meaning of percent method: 126% means about 125 for every 100 and 12.5 for every 10. Selected Answers R29 Selected Answers Pages 300–302 Pages 291–292 Lesson 6-5 % number correct 1. 3. 40% 100 50 39. 6 method: Since 1% of 806 is about 8, % of 806 is about of 53. Percents are related to fractions and decimals because they can be expressed as them. Answers should include the following. • 63. composite 1 2 2 5 possibilities that satisfy the conditions, and . 1 4 13 65% 0.65 20 1 fraction method: 90 or 36 31. Sample answer: 2; 1% 45. 19% 51. There are only two 25% 7 9 31. 1 33. 35. 3 37. 8 So, 18% of 216 is about 44. 1. Sample answer: write an equivalent fraction with a denominator of 100 or express the fraction as a decimal and then express the decimal as a percent. A fraction is greater than 100% if it is greater than 1. It is less than 1% if it is less 1 100 3 copper, nickel). The outer layer is or 75% copper and 4 4 or 25% nickel. 1. 18% is about 20% or . 216 is about 220. of 220 is 44. Pages 283–285 Lesson 6-4 than . • For example, the outer layer of the new state quarters is an alloy of 3 parts copper to 1 part nickel. • Thus, there are 4 parts to the outer layer (copper, copper, 198 has about 2 one-hundreds. 125 2 250. So, 126% of 198 is about 250. 49. 121 51. 41 53. 38 cm 55. 8w 24 57. 89% 59. 156% 61. 22.4% Pages 306–308 Lesson 6-8 1. If the amount increases, it is a percent of increase. If the amount decreases, it is a percent of decrease. 3. Mark; he divided the difference of the new amount and the original amount by the original amount. 5. 60%; D 7. 10.1%; I 9. A 11. 170%; I 13. 12%; D 15. 5.4%; D 17. 164%; I 19. 10.1% 21. 14.3% 23. 150% 25. The amount by which a rectangle is increased or decreased can be represented by a percent. Answers should include the following. • If the size of the new rectangle is greater than the size of the original rectangle, the percent of increase is greater than 100%. • Original Rectangle Less than 100% 12 100 9 8 6 100 100 100 4 3 or 6%; D, L, S, U: or 4%; G: or 3%; B, C, F, H, M, 100 100 2 1 P, V, W, Y, blank: or 2%; J, K, Q, X, Z: or 1% 100 100 18n2 41. 146.9% 43. 23.9 45. 2x5 47. 7 • E: or 12%; A, I: or 9%; O: or 8%; N, R, T: Pages 316–320 1. proportion 3 4 Chapter 6 Study Guide and Review 3. scale factor 5. experimental probability 1 4 20 9 7. 9. 11. 2 25 21. ; 0.08 31. 40% 13. 30 1 5 23. 1; 1.2 33. 7.5% 15. 0.9 17. 45.6 ft 5 8 25. ; 0.625 35. 40% 27. 24% 37. 25 39. 50 7 20 19. ; 0.35 29. 45.2% 41. 43 43. 9 1 45. 8 47. Sample answer: 16; fraction method: 32 or 16 2 1 49. Sample answer: 10; fraction method: 50 or 10 5 51. Sample answer: 1; 1% method: Since 1% of 304 is about 1 3 1 3 3, % of 304 is about of 3 or 1. 57. 200 59. D; 70% 53. 48% 61. I; 86.2% 1 63. 3 55. 94.5 2 3 65. 67. 0 Chapter 7 Equations and Inequalities Page 327 Greater than 100% Chapter 7 Getting Started 1. 4 3. 24 5. 44 7. 11 9. 17 15. 15 17. 72 19. 5 21. 1 Pages 332–333 11. 16 Lesson 7-1 1. Subtraction Property of Equality 3. 8 9. 75 miles 27. D 29. $149.85 31. $13.46 33. Sample answer: 63; 9 fraction method: 70 or 63 35. integer, rational 10 1 37. rational 39. 20% 41. 83% 3 Page 308 Practice Quiz 2 2 5 1. Sample answer: 28; fraction method: 70 or 28 3. $14.50 5. 158% Selected Answers Pages 312–314 Lesson 6-9 1. The event will not happen. 3. Sample answer: Spinning the spinner shown and having it land on 4. 1 2 1 2 4 3 2 5 1 4 5. ; 50% 7. ; 40% 9. 1; 100% 11. 75 13. ; 25% 1 7 15. ; 50% 17. 0; 0% 19. ; 87.5% 21. 2 8 11 1 1 23. ; 61.1% 25. ; 33% 27. 1; 100% 18 3 3 1 33. 35. 0.05; 5% 37. 1140 4 2 ; 22.2% 9 1 1 29. 31. 16 6 39. Once the probability or likeliness of something happening is known, then you can use the probability to make a prediction. For example, in football, if you know the number of field goals a player has made in the past, you can use the information to predict the number of field goals he/she will make in upcoming games. Answers should include the following. R30 Selected Answers 13. 14 11. 13 13. 7 15. 0.5 5. 3 17. 6 7. 0.3 4 19. 3 21. 3 23. 4.2 25. 0.3 27. 3.4 29. 3y 14 y; 7 31. 16 33. 72 35. 70 min 37. 29 39. A 41. 40° 43. 12.5% 45. 6.48 47. 70 Pages 336–338 49. 6a 27 51. 2.4c 28 1 2 9 2 53. n Lesson 7-2 1. Multiply 4 times (x 1). Subtract 2x from each side. Add 4 to each side. Divide each side by 2. 3. 11 5. 13 7. 9. 7 ft; w 3 ft; A 21 ft2 11. 6 13. 2.5 15. 18 17. 3 19. 35 21. 23. all numbers 25. 6 27. all numbers 29. 0 31. 70 yd by 150 yd 33. w: 3 ft; : 13 ft; A: 39 ft2 35. triangle: 7, 8, 9; rectangle, 4, 8; perimeter: 24 37. 2 gal 39. Many equations include grouping symbols. You must use the Distributive Property to correctly solve the equation. Answers should include the following. • The Distributive Property states that a(b c) ab ac. • You use the Distributive Property to remove the grouping symbols when you are solving equations. 41. D 43. 0.4 45. 40% 47. 0.375 49. 3.24 51. 7 53. 24 55. 8 Page 338 Practice Quiz 1 1. 2x 5x 150; 50 Pages 342–344 3. 3.1 5. all numbers Lesson 7-3 1. An inequality represents all numbers greater or less than a given number. A number line graph can represent all those numbers. 3. n 14 25 5. true 7. ⫺2 ⫺1 0 1 2 3 4 5 6 9. 1 2 3 4 5 6 7 8 9 11. x 20 13. f 18,000 19. false 21. true 15. 86 2w 17. true Pages 353–354 23. Lesson 7-5 1. Multiply each side by 12 and reverse the inequality symbol. 3. Tamika is correct. She divided each side of the inequality by 9. Since 9 is a positive number, she did not reverse the inequality symbol. ⫺1 0 1 2 3 4 5 6 7 25. 4 5 6 7 8 9 10 11 12 5. x 2 27. ⫺4 ⫺3⫺2 ⫺1 0 1 2 3 4 6 7 8 9 10 11 12 13 14 7. a 50 29. ⫺2 ⫺1 0 1 2 3 4 5 6 10 31. 9. m 8.4 ⫺6 ⫺5⫺4 ⫺3⫺2 ⫺1 0 1 2 33. 11. y 72 ⫺8⫺7⫺6 ⫺5⫺4 ⫺3 ⫺2 ⫺1 0 35. x 13 37. x 3 39. x 32 41. m 6.4 43. b 14,600 30,000; b 15,400 45. Symmetric: If a b, then b a; not true. Sample counterexample: 4 5, but 5 4. Transitive: If a b and b c, then a c; true. 47. B 49a. 30 ⫺9 50 70 90 ⫺8.6 ⫺8.2 ⫺7.8 ⫺7.4 ⫺80 ⫺76 ⫺72 ⫺68 ⫺64 13. C 15. y 9 5 6 7 8 9 10 11 12 13 17. b 3 ⫺4 ⫺3⫺2 ⫺1 0 1 2 3 4 ⫺3 ⫺2 ⫺1 0 1 2 3 4 5 19. t 5 49b. 1 2 3 4 5 6 7 8 9 ⫺3 ⫺2 ⫺1 0 1 2 3 4 5 51. 5 53. 4n 6 3n 2; 8 59. 7 61. 19.8 55. G: 16, 32, 64 57. 13 1. Use addition to undo subtraction; use subtraction to undo addition. 3. Sample answer: Joanna works part-time at a clothing store. Part-time workers must work fewer than 30 hours a week. If Joanna has already worked 8 hours this week, how many hours can she still work? 5. y 7 7. a 11 9. t 3 11. x 10 7 8 9 10 11 12 13 14 15 15. b 22 25. y 1.4 94 98 102 106 17. y 5 19. r 7 25. w 2 ⫺4 ⫺3 ⫺2 ⫺1 0 1 2 3 4 27. r 4 1 2 3 4 5 6 7 8 9 29. k 18 ⫺20 ⫺18 21. j 4 1 29. b 3 4 27. f 5.4 1 2 3 4 5 6 7 8 9 ⫺16 ⫺14 ⫺12 31. t 16 ⫺20 ⫺18 ⫺16 ⫺14 ⫺12 1 2 3 4 5 6 7 8 9 Selected Answers 23. w 6 31. n 5 90 23. z 3 Pages 347–349 Lesson 7-4 13. p 2 21. h 98 33. n 4 33. p 2 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 35. x 5 35. y 5.7 5.2 5.4 5.6 5.8 74 78 82 86 37. b 72 37. m 27 23 3 4 25 27 29 31 39. b 1 0 2 3 5 ⫺7⫺6 ⫺5 ⫺4 ⫺3⫺2 ⫺1 0 1 1 2 1 1 12 2 41. s 4 3 4 5 43. 980 lb 45. 42 x 74; x 32; at least 32 mph 47. Always; subtracting x gives 1 0, which is always true. 49. C 51. F 53. F 55. 3 cm, 9 cm 57. 8 32 59. 5x 17.5 61. 3 63. 15 65. 2 67. 4 69. 48 70 39a. 40m 2000 39b. at least 50 min 41. Inequalities can be used to compare the weights of objects on different planets. Answers should include the following. • Comparing the weight of an astronaut in a space suit on Mars to the same astronaut on the moon: 113 50. • If you multiply or divide the astronaut’s weight by the same number, the inequality comparing the weights on different planets would still be true. 43. 40 45. c 20 55. 9 57. 32 47. 2n 14 5 21 2a c 49. 51. 53. 4 Selected Answers R31 Page 354 Practice Quiz 2 Pages 360–362 1. ⫺4 ⫺3 ⫺2 ⫺1 0 1 2 3 4 3. a 40 5. n 124 Pages 357–359 7. r 225 9. g 7 Lesson 7-6 1. Check the solution by replacing the variable with a number in the solution. If the inequality is true, the solution checks. 3. Jerome is correct. By the Distributive Property 2(2y 3) 4y 6 not 4y 3. Chapter 7 Study Guide and Review 1. true 3. false; identity 5. false; inequality 7. true 9. false; is greater than or equal to 11. 3 13. 4 15. 1 17. 1 19. 1.2 21. 9 23. 16 25. all numbers 27. true 29. b 17 1 31. t 3 2 14 16 18 20 22 24 0 1 2 3 4 5 33. k 5.1 ⫺1 0 1 2 3 4 5 6 7 8 9 5. n 2 35. y 7 1 2 3 4 5 6 7 8 9 ⫺12 ⫺10 7. c 1 2 37. a 2 5 ⫺4 ⫺3⫺2 ⫺1 0 1 2 3 4 9. x 8 39. n 4 1 2 3 4 5 6 7 8 9 1 2 ⫺4 ⫺2 41. t 12 ⫺8 ⫺6 ⫺4 0 2 4 6 1 4 43. b 4 Chapter 8 Functions and Graphing 11. d 9 ⫺10 ⫺9 ⫺8 ⫺7 ⫺6 Page 367 1. 13. x 8 1 2 3 4 5 6 7 8 9 15. c 4 ⫺4 ⫺3 ⫺2 ⫺1 0 1 2 3 4 3. 17. x 3 ⫺4 ⫺3 ⫺2 ⫺1 0 1 2 3 4 19. k 5 ⫺7⫺6⫺5 ⫺4 ⫺3 ⫺2 ⫺1 0 1 5. 21. n 5 ⫺7 ⫺6 ⫺5 ⫺4 ⫺3 ⫺2 ⫺1 0 1 x 0 y 4 3 3 x 6 y 8 7 10 8 12 Chapter 8 Getting Started domain {0, 3}; range {4, 3} domain {6, 7, 8}; range {8, 10, 12} x 8 y 5 7 1 6 1 1 2 domain {8, 7, 6, 1}; range {5, 1, 1, 2} 23. b 2 ⫺4 ⫺3 ⫺2 ⫺1 0 1 2 3 4 Pages 371–373 25. y 30 Selected Answers 7. E 9. A 11. F 13. true 15. true 17. true 10 30 50 70 90 ⫺10 ⫺8 ⫺6 ⫺4 ⫺2 27. c 4 29. n 7 31. n 4.5 1 2 3 4 5 6 7 8 9 Lesson 8-1 1. Sample answer: a set of ordered pairs: {(1, 2), (4, 3), (2, 1), (3, 3)} a table: a graph: y x 1 y 2 4 3 2 1 3 3 (⫺3, 3) (4, 3) (1, 2) x O (⫺2, ⫺1) 33. t 1 ⫺4⫺3 ⫺2 ⫺1 0 1 2 3 4 35. c 4 ⫺10 ⫺8 ⫺6 ⫺4 ⫺2 37. 0.55c 0.35 2; 3 candy bars 39. 2s 10 40, 15 subscriptions 41. x 200; Sample explanation: The inequality finds at what mileage Able’s charge is greater than Baker’s charge. 43. more than 100 minutes 45. k 3 and k 3, or k {2, 1, 0, 1, 2} 47. D 49. 5 x 1 51. y 37 53. n 5 55. a 18.6 57. 0.5% 59. 16.6 mpg 61. $1.25 an issue 63. 6 m R32 Selected Answers 3. Sample answer: This graph does not represent a function because when x equals 1, there are two y values, 0 and 2. y O x 5. Yes; each x value is paired with only one y value. 7. No; 5 is paired with 4 and 14. 9. Yes; any vertical line passes through no more than one point of the graph. 11. As wind speed increases, the windchill temperature decreases. 13. Yes; each x value is paired with only one y value. 15. No; 5 in the domain is paired with 4 and 1 in the range. 17. No; 2 in the domain is paired with 5 and 1 in the range. 19. Yes; each x value is paired with only one y value. 21. No; a vertical line passes through more than one point. 23. Yes; any vertical line passes through no more than one point of the graph. 25. Generally, as the years progress, the number of farms decreases. An exception is in the year 2000. 27. Generally, as the years progress, the size of farms increases. An exception is in the year 2000. 29. Generally, as foot length increases, height increases. 31. Sometimes; a relation that has a member of the domain paired with more than one member in the range is not a function. 33. For a given wind speed, there is only one windchill temperature for each actual temperature. So, the relationship between actual temperatures and windchill temperatures is a function. Answers should include the following. • For a given wind speed, as the actual temperature increases, the windchill temperature increases. • Since the relationship between actual temperatures and windchill temperatures is a function, there cannot be two different windchill temperatures for the same actual temperature when the wind speed remains the same. 35. A 37. a 21 39. x 6 41. 43. 18 45. 75 47. 13 49. 5 51. 0 15. Sample answer: (1, 8), (0, 7), (1, 6), (2, 5) 17. Sample answer: (1, 5), (0, 0), (1, 5), (2, 10) 19. Sample answer: (1, 2), (0, 1), (1, 4), (2, 7) 21. Sample answer: (1, 5), (0, 6), (1, 7), (2, 8) 23. Sample answer: (1, 13), (0, 10), (1, 7), (2, 4) 25. Sample answer: (1, 0), (1, 1), (1, 2), (1, 3) 27. 6.2 mi 29. Quadrant I; a person cannot have a negative age or heart rate. 31. 33. y y O x yx5 y x 6 x O 35. 37. y y x O x O y 3x 4 x y 6 39. 41. y y Pages 377–379 Lesson 8-2 1. Sample answer: Infinitely many values can be substituted for x, or the domain. 3. x (3, 2), (1, 4), x5 y 3 3 5 1 1 5 4 0 05 5 1 15 6 2 y 3 x 3x y 7 x O 2 2(0) 6 6 2 2(2) 6 10 4 2(4) 6 14 14 12 10 8 6 4 2 0 11. Sample answer: (1, 186,000) means that light travels 186,000 miles in 1 second. (2, 372,000) means that light travels 372,000 miles in 2 seconds. 13. x (4, 2), (0, 6), 2x 6 y 0 43. P (2, 10), (4, 14) Selected Answers 7. Sample y 2x 1 2(4) 6 O (0, 5), (1, 6) 5. Sample answer: (1, 4), (0, 0), (1, 4), (2, 8) answer: (1, 1), (0, 6), (1, 11), (2, 16) 9. y 4 x O (3, 12) (2, 8) (1, 4) 1 2 3 4 5 6 7s 45. Yes; the points lie on a straight line. 47. Yes; the points lie on a straight line. 49. No; the exponent of x is not 1. 51. Sample answer: In the first table, as the x values increase by 1, the y values increase by 2. In the second table, as the x values increase by 1, the y values do not change by a constant amount. 53. B 55. Yes; each x value is paired with only one y value. 57. No; 11 in the domain is paired with 8 and 21 in the range. 59. x 4; 1 6 61. 63. 3 7 2 3 4 5 6 7 65. 4 Selected Answers R33 Lesson 8-3 1. To find the x-intercept, let y 0 and solve for x. To find the y-intercept, let x 0 and solve for y. 3. 1; 3 5. 4; 4 7. 3; 2 9. 35. Money ($) Pages 384–385 y (6, 0) x O x 2y 6 (0, 3) 11. y 18 16 14 12 10 8 6 4 2 y 18 3x 0 (0, 3) (0.5, 0) x O y 39. B 41. Sample answer: (1, 5), (0, 7), (1, 9), (2, 11) 43. Sample answer: (1, 1), (0, 5), (1, 9), (2, 13) 45. no 47. n 12 49. 2.8% 51. 16 53. 25 y 6x 3 (1, 2) y 2x 15. none; 5 13. 1; 1 23. 5; 4 17. 5; 5 25. 19. none; 4 x The x-intercept 6 represents the number of books that she can buy with no money left over. The y-intercept 18 represents the money she has before she buys any books. 37. The x- and y-intercept are both 0. Therefore, the line passes through the origin. Since two points are needed to graph a line, y 2x cannot be graphed using only the intercepts. The y-intercept 3 represents the base fee of $3. y 1 2 3 4 5 6 7 8 9 Number of Books 21. 8; 4 (1, 2) x O 27. y y (0, 4) (0, 2) (2, 0) Pages 389–391 xy4 x O x (4, 0) O Lesson 8-4 1. Sample answer: horizontals do not rise, so 0 rise slope or 0. run 3. Mike; Chloe should have run subtracted 2 from 11 in the denominator. yx2 9. 0 11. B 13. 4 3 4 15. 17. 0 19. 1 2 3 5. 7. 2 3 2 21. 3 4 23. undefined 25. 27. It decreased; negative slope. Selected Answers 29. 31. y y (0, 4) y 2x 4 O x (0, 2) (2, 0) y 2 x O 29. Slope can be used to describe the steepness of roller coaster hills. Answers should include the following. • Slope is the steepness of a line or incline. It is the ratio of the rise to the run. • An increase in rise with no change in run makes a roller coaster hill steeper. An increase in run with no change in rise makes a roller coaster less steep. 31. A 33. 2; 6 35. Sample answer: (1, 3), (0, 5), (1, 7), (2, 9) 37. Sample answer: (1, 8), (0, 7), (1, 6), (2, 5) 39. y 2x 33. 1 3 41. y x y (0, 3) Pages 395–397 3x 6y 18 x O R34 Selected Answers (6, 0) Lesson 8-5 1. The slope is 60, the rate of change is 60 units for every 1 unit, and the constant of variation is 60. 3. Justin; any linear function, including direct variations, has a rate of change. 5. increase of $12 per hour 7. y 6x 9. increase of 12 in./ft 11. decrease of 2°F/min 13. Sample answer: The population of wild condors decreased from 1966 to 1990. Then the population increased from 1990 to 1996. The population of condors in captivity increased slowly from 1966 to 1982, then increased more rapidly from 1982 to 1996. Rate of Change (number per year) Interval 1966–1982 Condors in the Wild 2.25 1982–1990 3 1990–1992 0 7. 9. y y y 1x 1 4 Condors in Captivity 0.1875 x O x 2y 4 4.625 8 1992–1994 1.5 14.5 1994–1996 12.5 3.5 15. y 5x 17. y 0.75x 19. y 2.54x 21. A line representing the relationship between time and distance has a slope that is equal to the speed. Answers should include the following. • Sample drawing: 11. The y-intercept 25 represents the charge for a basic cake. Slope 1.5 represents the cost per additional slice. 13. 2; 4 15. 2; 3 17. 0; 4 19. 21. y y y x 6 y Distance (mi) x O 300 x O 200 x O 100 0 1 2 3 4 5 6 x 23. 25. Time (h) y y xy0 • As speed increases, the slope of the graph becomes steeper. 23. B 25. 2 27. y y 3x 2 4 O x O x y x 1 (0, 1) (1, 0) x O 27. 29. y y x O Page 397 Practice Quiz 1 1. No; 1 is paired with 2 and 3. 3. y x 5x y 3 O 31. x O yx4 5. 9; 9 y 7. 5; 4 O x y 3 9. 2 Pages 400–401 Lesson 8-6 1. a 3. Alex; the equation in slope-intercept form is 1 2 y x 4. 5. 1; 0 33. slope 50, the descent in feet per minute; b m y-intercept 300, initial altitude 35. . Replace y with 0 Selected Answers R35 Selected Answers 2x 3y 12 31. y 1 3x 29. 14 in y mx b and solve for x. 37. B 39. y 4x 41. 2 3 43. 4 45. 6x 2x 28; 7 47. 5 Pages 407–408 Lesson 8-7 49. 29 51. 11 1. Sample answer: Find the y-intercept b and another point on the line. Use the points to determine the slope m. Then substitute these values in y mx b and write the equation. 1 2 3 9. y x 1 4 5. y 2x 3 17. y 2x 3 19. y 2.5 3. y x 1 1 2 7. y x 1 11. y 2x 6 1 3 13. y 5 15. y x 8 1 2 21. y x 23. y x 1 25. y x 27. y 7 29. y 4x 3 31. y 1088x; The speed of sound is 1088 feet per second. 33a. d 0.5(0.7c 1.06) or d 0.371c 33b. $18.55 35. C 37. 6; 7 39. 3; 2 41. positive Pages 410–413 11. No, the equation gives a negative value for barometric pressure, which is not possible. Also, the data in the scatter plot do not appear to be linear. 13. Sample answer: 238 in. 15. As latitude increases, temperature decreases. 17. Sample answer: 61.3°F 19. The data describing the life expectancy for past generations can be displayed using a scatter plot. Then a line is drawn as close to as many of the points as possible. Then the line can be extended and used to predict the life expectancy for future generations. Answers should include the following. • A best-fit line is a line drawn as close to as many of the data points as possible. • Although the points may not be exactly linear, a best-fit line can be used to approximate the data set. 21. A 23. y 2x 2 25. y 4 27. y y x 3 Lesson 8-8 Number of Households (millions) 1. Sample answer: Use a ruler to extend the line so that it passes through the x value for which you want to predict. Locate the x value on the line and determine the corresponding y value. Or, write an equation for the best-fit line and substitute the desired value of x to find the corresponding value of y. y 3. Sample answer: 40 35 30 29. n 7 41. 2 25 20 15 10 5 ’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 Year Selected Answers Attendance (millions) y 1500 1450 1400 x 35. 4.5 37. 3 39. 1 Lesson 8-9 1. Sample answer: A group of two or more equations form a system of equations. The solution is the ordered pair that satisfies all the equations in the system. If the equations are graphed, the solution is the coordinates of the point where the graphs intersect. The system has infinitely many solutions if the equations are the same and the graphs coincide. 3. (5, 4) 5. no solution y xy4 xy2 1350 1300 1250 1200 x O 1150 0 ’93 ’94 ’95 ’96 ’97 ’98 ’99 Year 9. Sample answer: x 7. (2, 6) Barometric Pressure (in. mercury) y 35 9. (3, 2) 11. infinitely many 13. (3, 3) 30 25 20 15 y 15. infinitely many y x y 6 y 2x 3 yx 10 5 0 R36 Selected Answers 3 2 31. d 33. 2 Pages 416–418 0 5. y 20x 320 7. Sample answer: x O (3, 3) 10 20 30 40 50 60 70 Altitude (1000s ft) O x O x 2x 3y 0 x 17. (2, 4) 5. y 7. y y 2x y 1x 3 2 y y 3x 2 y x1 (2, 4) x O x O 9. 0 40 35 27b. Sample answer: The line representing runner B has a steeper slope than the line representing runner A. The intersection point represents the time and distance at which runner B catches up to runner A. y Children 25 20 10 5 25x 15y 630 5 10 15 20 25 30 35 x Adults 0 B A 75 Distance (m) 30 15 x 1 2 3 4 5 6 7 Time (s) Sample answer: 5 adults, 30 children; 10 adults, 22 children; 15 adults, 15 children y 45 Distance (m) 19. (2, 0) 21. (4, 10) 23. (3, 6) 25. (6, 11); an order of 6 pounds will cost the same, $11.00, for both sites. 27a. Sample answer: y A No; since slope 75 represents rate, the slopes of the B graphs are the 50 same. Therefore, the runners will 25 never meet. 11. 13. y y 50 25 x O 0 29. C 31. positive slope 39. yes 1 2 3 4 5 6 7 Time (s) 33. y 3x 35. yes x y 3 37. no 15. 17. y y y0 y Age 30 29 28 27 26 25 24 23 0 x O y x4 O x 19. 21. y x ’84 ’88 ’92 ’96 ’00 ’04 ’08 Year x O 9. (0, 5) Pages 421–422 Lesson 8-10 y y 13 x 1 O x y 2x 4 1. y x 3 3a. Sample answer: (0, 1), (1, 0), (2, 1) 3b. Sample answer: (0, 0), (1, 1), (2, 2) Selected Answers R37 Selected Answers Practice Quiz 2 1 3. ; 3 5. y 1 2 7. Sample answer: x O y x Page 418 1. 1; 8 x O 23. 19. y y x 3000 6000 Sales ($) 21. y y 5000 4000 xy 4 y 3x 2 3000 x O 2000 1000 25. No; the number of sales and the costs cannot be negative. 27. 10x 25y 1440 29. Sample answer: 25 small, 45 large; 50 small, 30 large; 100 small, 10 large 31. y 23. 25. y y (0, 2) y x 2 (2, 0) Econo Rafts (3, 0) O x O 30 x O x 3000 6000 Costs ($) 0 100x 40y 1500 x y x 3 (0, 3) 20 10 27. 5 0 29. x 10 15 Super Rafts y y x y 2 x 4 (4, 0) 3 2 33a. y x 1, y x 2 x O (2, 0) 33b. Sample answers: (0, 2), (1, 2), (3, 2) 35. C x O (0, 2) 39. (2, 5) 37. (0, 3) yx 3 y y (0, 3) O x O x y 2x 1 31. 1 7 33. 35. undefined 37. increase of 8 m/s 8 39. y x 3 41. y y (2, 5) x y x4 O 41. 0.4 43. 0.5 Pages 424–428 y 1x 2 x O 3 Chapter 8 Study Guide and Review 1. d 3. h 5. a 7. f 9. c 11. Yes; each x value is paired with only one y value. 13. Yes; each x value is paired with only one y value. 15. 43. y x 3 45. Sample answer: 17. y y y x 4 y x O y Attendance Selected Answers x0 x 3000 2900 2800 2700 2600 2500 2400 O R38 Selected Answers x 0 x 2000 2001 2002 2003 Year 47. (3, 3) 65. y 67. (5, 7) y ( 3, 3) y3 2 71. 3 49. no solution 73. 9 75. It can be written as a fraction. yx x O 69. (4, 3) 3 4 6 79. It can be written as . 1 77. It can be written as . x O y y 3x 5 Pages 443–445 Lesson 9-2 1. Whereas rational numbers can be expressed in the form a , where a and b are integers and b does not equal 0, b x O irrational numbers cannot. 3. N, W, Z, Q 10 9. , 3 3x y 1 3 3, 5 5. Q 7. , 3.7 11. 8.6, 8.6 13. N, W, Z, Q 15. Q 13 17. Q 19. I 21. I 23. Z, Q 25. Q 27. Z, Q 29. always 1 2 41. 10, 105 , 10, 1.05 51. (4, 4) 53. 55. y y y x 4 x x O O 1 4 43. Sample answer: 4 and 49 45. 7, 7 47. 4.7, 4.7 49. 12, 12 51. 11.3, 11.3 53. 1.3, 1.3 55. 1.9, 1.9 57. 12 or –12 59. 4 or –4 61. 36 63. If a square has an area that is not a perfect square, the lengths of the sides will be irrational. Answers should include the following. • Area y 3x 1 Area 56 in 2 64 in 2 65. B 67. 2621.2 ft2 69. 7 71. 3 73. Sample answer: (0, 5), (1, 6), (6, 2) 75. x 5 77. $0.53/cupcake Chapter 9 Real Numbers and Right Triangles Page 435 6 5 33. 35. 37. 39. , 4, 2.1, 5 31. always 79. 81. 83. Chapter 9 Getting Started 1. 3. 5. 7. 9. 8 19. 34 21. 97 11. 60 13. 9 15. 11 17. 8 3:00 Pages 438–440 Lesson 9-1 1.69 Pages 449–451 55˚ 10 9 8 7 6 5 4 3 2 1 5. 8a 7. 3.9 9. 8 11. 44.9 mi 13. 6 15. 5a 17. not possible 19. 14y 21. 18, 18 23. 1.5 25. 7.5 27. 9.3 29. 15.8 31. 1.7 33. 70.7 35. 9 37. 7 39. 14 41. 17 43. 2 45. 6 47. 14.8 mi 49. 9; Since 64 65 81, 64 65 81. Thus it follows that 8 65 9. So, 9 is greater than 65. 51a. 10.4 in.; 41.6 in. 51b. 14.2 cm; 56.8 cm 51c. 8.4 m; 33.6 m 53. 10 55. 2 57. Sample answer: A number that has a rational square root will have an ending digit of 0, 1, 4, 5, 6, or 9. The last digit is the ending digit in one of the squares from 1–100. There are just six ending digits. 59. D 61. Sample answer: addition and subtraction 63. a Lesson 9-3 , NP ; 1, MNP, PNM, N 3. 20°; acute 1. N; NM 5. 70°; acute 7. acute 9. straight angle 11. 15°; acute 13. 85°; acute 17. 60°; acute 19. 90° 15. 135°; obtuse 21. 23. acute 40˚ 25. acute 65˚ obtuse 27. 155˚ obtuse 95˚ Selected Answers R39 Selected Answers 1. A positive number squared results in a positive number, and a negative number squared results in a positive number. 3. Sample answer: 1.69 7:45 10:00 31a. obtuse 31b. right 31c. acute 33. better self-image: about 95°; better health: about 101°; more alert: 38˚ about 79°; more relaxed: about 56°; other: about 29° 35. 24 37. C 39. Z, Q 41. I 43. 4 45. x 7 22 47. 99 49. 60 51. 18 29. acute Page 451 1. 6 Page 470 Practice Quiz 2 3. Yes; 342 302 162 5. (1, 5) 1. obtuse isosceles Pages 473–475 Lesson 9-7 1. Sample answer: A corresponding sides: X AB BC AC XY YZ XZ Practice Quiz 2 3. 8.2, 8.2 Pages 455–457 5. obtuse Y B Lesson 9-4 1. Whereas an isosceles triangle has at least two sides congruent, an equilateral triangle has three sides congruent. 3. Sample answer: 30 ˚ 120˚ Z C x 6 5. 6 km 7. 15 9 7 x 11. ; 5 13. always 4.2 3 3. ; 10 15. 68 yd 4 5. 90; right 7. right isosceles 9. acute isosceles 11. 27; right 13. 112; obtuse 15. 90; right 17. 20°, 60°, 100° 19. acute equilateral 21. right scalene 23. acute scalene 25. always 27. obtuse 29. acute 31. not possible 33. not possible 35. 45°; 50°; 85° 37. 10, 15, 21 39. B 41. 180°; straight 43. 145°; obtuse 45. 9, 9 47. 9.2, 9.2 49. 144 51. 324 53. 729 Lesson 9-5 1. Sample answer: 8, 15, 17 3. 25 5. 15 7. no 9. B 11. 26 13. 12.5 15. 18.9 17. 23 in. 19. 12 21. 12.1 23. 37.3 25. 28 27. 33.5 29. yes 31. no 33. no 35. 32 in. 37. There is enough information to find the lengths of the legs. Since the right triangle is an isosceles right triangle, we know that the lengths of the legs are equal. So, in the Pythagorean Theorem, we can say that a b. In addition, we know that c 8. c2 a2 b2 Pythagorean Theorem 82 a2 a2 a b and c 8 82 2a2 Add a2 and a2. 64 2a2 Evaluate 82. Selected Answers 64 2a2 2 2 32 a2 Simplify. Take the square root of each side. 39. D 41. 17 units 45. 90; right 49. n 9 51. 5 a 32 Pages 479–481 Lesson 9-6 1. the point halfway between two endpoints 3. Sample answer: ; The coordinates of the y 1 midpoint of AB are , 0. 2 Midpoint 1, 0 2 ( A O 2 Lesson 9-8 1. The sine ratio compares the measure of the leg opposite the angle to the measure of the hypotenuse. The cosine ratio compares the measure of the leg adjacent to the angle to the measure of the hypotenuse. The tangent ratio compares the measure of the leg opposite the angle to the measure of the leg adjacent to the angle. 3. 0.8824 5. 1.875 7. 0.9455 9. 25.6 11. 7.8 13. 0.9231 15. 0.7241 17. 2.4 19. 0.8944; 0.4472; 2.0 21. 0.1045 23. 0.8572 25. 0.2126 27. 6.8 29. 24.9 31. 97.6 33. about 21 m 35. about 44 m 37. 24.0 39. 40.4 41. sin 45° cos 45°; sin 60° cos 30°; sin 30° cos 60° 43. To find heights of buildings. Answers should include the following. • If two of the three measures of the sides of a right triangle are known, you can use the Pythagorean Theorem to find the measure of the third side. If the measure of an acute angle and the length of one side of a right triangle are known, trigonometric ratios can be used to find the missing measures. x • sin 6° 19 19(sin 6°) x 2.0 x 19 ft 6˚ x ft The height of the ramp is about 2 feet. 45. C 47. 1, 49. (3, 4) 51. a 6 1 1 2 2 Pages 483–486 (3, 1) 17. 6 ft Divide each side by 2. Pages 468–470 ) B (2, 1) 5. 11.2 7. (2, 5) 9. 9.2 11. 10.2 13. 16.6 15. 4.8 17. 19.2 19. (1, 3) 21. (4, 2) x 23. (2, 2) 25. (3, 4) 27. 11, 5 1 2 Chapter 9 Study Guide and Review 1. real numbers 3. obtuse 5. hypotenuse 7. trigonometric ratio 9. 6 11. –9 13. not possible 15. 9, 9 17. 1.2, 1.2 19. 90°; right 21. 35°; acute 23. obtuse isosceles 25. 13.7 27. 15.9 29. 9.4 31. (3, 5) AB HJ BC JK 33. (0, 2) 35. ; 10 Chapter 10 Page 491 1. 44 3. 51 15. 10.7 37. 1.3333 Two-Dimensional Figures Chapter 10 Getting Started 5. 28 1 6 7. 39 9. 44 7 8 11. 71.8 3 8 13. 12.5 2 9 17. 10 19. 3 21. 5 23. 6 Pages 495–497 29. Yes; PM and M N have equal measures. 31. (2, 3) 33. C 35. 9.2 37. 35.1 39. 2, 1 41. –4, 6 43. 28 45. 21 47. 59 R40 Selected Answers 20 15 9. ; 24 19. No, triangles ABC and DEF are not similar since the corresponding sides are not proportional. 21. A 23. 3.6 1 1 25. 7.1 27. 77.4 29. 31. 1 33. 0.7143 35. 0.225 30˚ Pages 462–464 x 18 x 10 ; 8 4 5 Lesson 10-1 1. Complementary angles have a sum of 90° and supplementary angles have a sum of 180°. 3. 56° 5. 124° 7. 28 9. D 11. 127° 13. 53° 15. 127° 17. 148 19. 175 21. 9 23. 41° 25. 73° 27. 112° 29. 5 31. 9 33. They are supplementary. 35. A 37. Sample answer: Both graphs intersect to form right angles. 39. Sample answer: The slopes of the graphs of perpendicular lines are negative reciprocals of each other. 41. 0.8910 43. 7.5 45. 9m 47. 49. 11. R(4, 3), S(0, 3), T(4, 1); y R N Q O Q' O P P' x O' T' 45˚ x O T Pages 502–504 Lesson 10-2 1. They have the same size and shape. 3. J C, K B, M G, KM BG GC BC , M J , K J ; BGC 5. M 7. M N 9. 15 ft 11. K N, J P, M M, K NP PM NM J , JM , K M ; NPM 13. Z S, W T, Y R, ZW ST TR , W Y , Z SR Y ; STR 15. sometimes 17. 30° 19. F 21. A 23. H F 25. D C 27. 20 29. 6 31. Sample answer: ZQN 33. Sample answer: WQO 35. Congruent triangles can be found on objects in nature like leaves and animals. Answers should include the following. • Congruent triangles are triangles with the same angle measures and the same side lengths. • Sample answer: A bird’s wings when extended are an example of congruent angles. Another example of congruent angles would be the wings of a butterfly. 37. D 39. 0.1219 41. 1.1585 43. 6 45–49. y H A J D y S M 145˚ O 13. M(1, 2), N(4, 4), O(3, 2), P(3, 0), Q(0, 0); x M' S' R' N' 15. y 17. C' B' A' y D' E' B x O A B E' C C B' D' D E x A' O A C' E D 19. translation 21. Sample answer: ; The image of the figures reflection is the same as the image of its translation to the right 6 units. y x O T W Pages 509–511 Lesson 10-3 O U x T x O A' C T' U' 23. reflection 25. Since many of the movements used in recreational activities involve rotating, sliding, and flipping, they are examples of transformations. Answers should include the following. • a translation is a slide, a reflection is a mirror-image, and a rotation is a turn. • sample answer: the swing represents a rotation, the scooter represents a translation, and the skateboard represents reflection. 27. C 29. DF 31. 110° 33. x 9.6; 7.0 9. D1, 3, E3, 4, 1 2 7. A(2, 5), B(1, 3), C(2, 0); 1 2 G1, 1, F3, ; 1 2 1 2 y y A' E' D' B' E A D B C' O x F' x O G' C F G 35. 113 37. 47 Pages 515–517 8.0 9.0 10.0 39. 106 Lesson 10-4 1. Sample answer: A textbook is an example of a quadrilateral; the tiles in a shuffleboard scoring region are examples of parallelograms; a “dead end” road sign is an example of a rhombus; and a floppy disk is an example of a square. 3. 110; 110° 5. rectangle 7. trapezoids, parallelograms 9. 102; 102° 11. 60; 60°; 60°; 120° 13. 70; 70°; 80°; 120° 15. Sample answer: A chessboard; it is a square because it is a parallelogram with 4 congruent sides and 4 right angles. 17. square 19. parallelogram 21. rhombus 23. always 25. sometimes 27. quadrilateral Selected Answers R41 Selected Answers 1. The figure is moved 5 units to the right and 2 units down. y y 3. 5. C' R B' B S A R' S' 19. 2880° 21. Sample answer: hexagon, triangle, decagon, quadrilateral, and pentagon 23. 140° 25. 135° 27. 150° 29. octagons, squares 31. 180 cm 33. 58.5 in. 35. In tessellations, polygons are fit together to create a pattern such that there are no gaps or spaces. Answers should include the following. • Sample answer: 29a. Yes; a rhombus is equilateral but may not be equiangular. 29b. Yes; a rectangle is equiangular but may not be equilateral. 31. B 33. F 35. M A 37. 14.4 39. 28.52 y E D E' G F' D' G' Page 517 37. B 39. 120° 41. 60° 43. 30° 45. 18 cm2 47. quadrilateral 49. 16.4x 51. 33.9 53. 18.1 x O Pages 536–538 Practice Quiz 1 1. 35° 3. Q(3, 3), R(5, 6), S(7, 3) 5. 60; 60°; 120° Pages 523–525 Lesson 10-5 1. Sample answer: 3 in. Selected Answers 8 in. 3. 8 ft2 5. 60 m2 7. 11 m2 9. 90 cm2 11. 43.99 cm2 13. 28 in2 15. 22.8 yd2 17. 36.75 m2 19. about 95,284 mi2 21. 147 km2 23. 57 ft2 25. 5 bags 27. 16 in. 29. 24.5% 31. The area of a parallelogram is found by multiplying the base and the height of the parallelogram. The area of a rectangle is found by multiplying the length and the width of the rectangle. Since in a parallelogram, the base is the length of the parallelogram, and the height is the width of the parallelogram, both areas are found by multiplying the length and the width. Answers should include the following. • Parallelograms and rectangles are similar in that they are quadrilaterals with opposite sides parallel and opposite sides congruent. They are different in that rectangles always have 4 right angles. • 33. B 35. 24; 24°; 96° 37. 30 Pages 529–531 39. 26 41. 900 43. 1260 Lesson 10-6 1. R42 Selected Answers • Sample answer: 3. The number of triangles is 2 less than the number of sides. 5. octagon; regular 7. 128.6° 9. hexagon; regular 11. nonagon; not regular 13. decagon, not regular 15. 540° 17. 1440° Lesson 10-7 1. Multiply 2 times times the radius. 3. Mark; since the diameter of the circle is 7 units, its radius is 3.5 units. Thus, the area of the circle is · (3.5)2 or 38.5 square units. 5. 50.3 m; 201.1 m2 7. 8.2 km; 5.3 km2 9. about 9.1 mi2 11. 40.8 in.; 132.7 in2 13. 131.9 km; 1385.4 km2 15. 79.8 m; 506.7 m2 17. 22.9 cm; 41.9 cm2 19. 96.6 in; 742.6 in2 21. 1.5 m 23. 13 cm 25. about 3979 mi 27. d 29. a 31. about 26 times 33. are safe: 30.5 in2; are unsafe: 13.3 in2; unsure: 19.7 in2 35. 4 37. C 39. 125° 41. 235° 43. 125° 45. 62.5° 47. Sample answer: S S Q P , , R P 49. 144° 51. 38 m2 53. x 7 55. 150.5 Page 538 Practice Quiz 2 1. 112.86 cm2 3. 32 m2 Pages 541–543 5. 29.5 in.; 69.4 in2 Lesson 10-8 1. Sample answer: 3. 49.5 yd2 5. 2 7. 72 ft2 9. 56.1 cm2 11. 18.3 in2 13. 45 ft2 15. 86.8 yd2 17. 85 units2 19. 6963.5 yd2 21. Sample answer: Separate the area into a rectangle and a trapezoid. 23. 68,679 mi2 25. You can use polygons to find the area of an irregular figure by finding the area of each individual polygon and then finding the total area of the irregular figure. Answers should include the following. • • To find the area of the irregular figure shown above, the figure can be separated into two rectangles and a triangle. 27. C 29. 44.0 cm, 153.9 cm2 31. 540° 33. 1080° 35. 24xy Pages 544–548 Chapter 10 Study Guide and Review 1. supplementary 3. corresponding angles 7. 109° 9. 71° 11. H 13. R S 15. G F 5. equilateral 17. 19. 112; 112° 21. 70; 70°; 70° 23. 11 yd2 25. hexagon; 720° 27. decagon; 1440° 29. 13.2 m; 13.9 m2 31. 118 in2 33. 863.4 cm2 y H' H x O J J' I I' Pages 570–572 Chapter 11 Three-Dimensional Figures Page 553 Chapter 11 Getting Started 1. yes; triangle 15. yes 3. no 5. 17 7. 7 9. 155 11. yes 13. yes Pages 559–561 Lesson 11-1 1. Five planes form a square pyramid because the solid has five faces. An edge is formed when two planes intersect; a vertex is formed when three or four planes intersect. 3. triangular pyramid; any one of the following faces can be considered a base: RST, QRS, QST, QRT; Q R , Q S , Q T , R T , RS , S T ; Q, R, S, T 5. intersecting 7. top front side 4 cm 25. The volume of a pyramid is one-third the volume of a prism with the same base and height. Answers should include the following. • The height of the pyramid and prism are equal. The bases of the pyramid and prism are squares with equal side lengths. Therefore, their base areas are equal. • The formula for the volume of a pyramid is one-third times the formula for the volume of a prism. 27. B 29. 904.8 cm3 31. 107.5 mm3 33. 10.1 in3 35. 7.8 37. 36 Page 572 Practice Quiz 1 1. triangular prism Pages 575–577 37. n 11 3 4 Lesson 11-2 39. y 1 41. 14 in2 Pages 565–567 43. 6.5 cm2 1. Sample answer: Finding how much sand is needed to fill a child’s rectangular sandbox; measure the length, width, and height, and then multiply to find the volume. 3. 183.6 cm3 5. 1608.5 ft3 7. 282.7 yd3 9. 198.9 ft 11. 512 cm3 13. 748 in3 15. 88.0 ft3 17. 225 mm3 19. 18.6 m3 21. 6.2 m 23. 1728 25. 1,000,000 27. 11.5 in. 1 2 29. The volume will be greater if the height is 8 inches. By using the formula for circumference, you can find the radius and volume of each cylinder. If the height is 1 2 8 inches, the volume is 86.5 in3; if the height is 11 inches, the volume is 67.7 in3. 31. C 33. Sample answer: QT and Y Z 35. x 8 37. 25 39. 4 41. 28 3. 12.6 cm3 5. 11,545,353 ft3 Lesson 11-4 1. Sample answer: The surface of a solid is twodimensional. Its area is the sum of the face areas, which are given in square units. 3. 150 ft2 5. 571.8 in2 7. 140.7 mm2 9. 282 in2 11. 264 m2 13. 1885.0 ft2 15. 294 ft2 17. 628.3 in2 19. 264.0 in2 21. 754 ft2 23. The surface area is 4 times greater. 25. D 27. square or rectangle 29. rectangle 31. 565.5 in3 Pages 580–582 33. 15.21 35. 1.3 1 4 37. 3 Lesson 11-5 1. Slant height is the altitude of a triangular face of a pyramid; it is the length from the vertex of a cone to the edge of its base. Height of a pyramid or cone is the altitude of the whole solid. 3. Sample answer: An architect might use the formulas to calculate the amount of materials needed for parts of a structure. 5. 42.9 m2 7. 336 ft2 9. 96.3 in2 11. 62.4 in2 13. 339.3 in2 15. 311.9 m2 17. 506.6 mm2 19. Style 8M has 29 in2 more plastic. 21. 339 ft2; 4 squares 23. Many building materials are priced and purchased by square footage. Architects use surface area when designing buildings. Answers should include the following. • Surface area is used in covering building exteriors and in designing interiors. • It is important to know surface areas so the amounts and costs of building materials can be estimated. 25. C 27. 5541.8 mm2 29. 7 ft2 31. 25.1 in3 33. infinitely many solutions 35. 3 37. 3 39. 3.15 Pages 586–588 Lesson 11-6 1. Sample answer: The cones are similar because the ratios comparing their radii and slant heights are 2 3 5 7.5 equal: . 5m 7.5 m 2m 3m Selected Answers R43 Selected Answers 9. rectangular prism; LMNP, QRST or LPTQ, MNSR or PNST, LMRQ; LMNP, QRST, LPTQ, MNSR, PNST, LMRQ; L M , M N , N P , P L , L Q , M R , N S , P T , Q R , R S , S T , T Q ; L, M, N, P, Q, R, S, T 11. triangular pyramid; any one of the following faces can be considered a base: WXY, WYZ, WZX, XYZ; W X , W Y , W Z , X Z , X Y , Y Z ; W, X, Y, Z 13. W R 15. skew 17. top 19. rectangular and pentagonal prisms 23. Never; only three or more planes can intersect in a single point. 25. Sometimes; three planes may intersect in a line. Or, the planes may be parallel and not intersect at all. 27. Two-dimensional figures form three-dimensional figures. Answers should include the following. • Two-dimensional figures have length and width and therefore lie in a single plane. Three-dimensional figures have length, width, and depth. • Two-dimensional figures form the faces of threedimensional figures. 29. D 31. 37.7 cm; 113.1 cm2 33. 0.5000 35. c 8 Lesson 11-3 1. The base is a circle. 3. Sample answer: V 134.0 cm3 5. 37.7 cm3 7. 378 ft3 9. 91,636,272 ft3 11. 412 cm3 13. 150 in3 15. 78.5 m3 8 cm 17. 270.8 cm3 19. 565.5 m3 21. 44.0 m3 23a. 2.4 ft3 23b. 314.4 lb 3. no 1 3 5. x 33 ft 7. 525 m 9. 2,976,750 m3 11. yes 13. yes 15. x 7 m, y 18 m 17. Sometimes; bases must be the same polygon and the corresponding side lengths must be proportional. 19. always; same shape, diameters or radii are proportional 21. 2003 or 8,000,000 times greater 23. If the ratios of corresponding linear dimensions are equal, the solids are similar. Answers should include the following. • For example, if the ratio comparing the heights of two cylinders equals the ratio comparing their radii, then the cylinders are similar. • A cone and a prism are not similar. 25. C 5 9 29. 65° 31. 33. 19.3 27. 184 ft2 35. 6.0 37. 9.4 Page 588 Practice Quiz 2 1. 166 mm2 3. 9.4 m2 5. Yes; their corresponding dimensions are proportional. Pages 592–594 23. 45 in. 1 32 13. in. 25. 2 ft2 15. 3 17. 2 19. 1 21. 4 27. 84.47 m 29. 49.5 cm 31. 26 m2 1 33. b; The precision unit of ruler a is inch. The precision 8 1 unit of ruler b is inch. 35. No, the numbers are 16 estimated to the nearest 0.1 million. 37. 46,700,000; 3 39. Not necessarily, because the actual size of the 2.0 mm wrench can range from 1.95 mm to 2.05 mm and the actual size of the 2 mm bolt can range from 1.5 mm to 2.5 mm. So, the bolts could be larger than the corresponding wrenches. 41. A 43. 0.05 mi; between 132.75 mi and 132.85 mi 45. 26.5 cm2 47. 14.8 m2 Selected Answers Pages 595–598 Chapter 11 Study Guide and Review 1. false; lateral area 3. false; slant height 5. false; cylinder 7. true 9. rectangular prism; QRST, UVWX or QTXU, RSWV or QRVU, TSWX; QRST, UVWX, QTXU, RSWV, QRVU, TSWX; Q R , R S , S T , T Z , U V , V W , W X , X U , Q U , T X , SW , R V ; Q, R, S, T, U, V, W, X 11. rectangular pyramid; YNPZ; AYZ, AZP, ANP, ANY, YNPZ; A Y , A Z , A P , A N , Y Z , Z P , P N , N Y ; A, Y, Z, P, N 13. 0.8 mm3 15. 4 ft3 17. 1721.9 cm3 19. 548.7 mm2 21. 45 in2 23. 37.1 in2 25. yes 27. 19.0 cm 29. 0.9 m 31. 973 ft2 Chapter 12 More Statistics and Probability Page 605 Chapter 12 Getting Started 1 1 1. 16; 15; none 3. 5.3, 5.8, 6.5 5. 7. 3 2 1 1 1 13. 15. 17. 8 6 6 Pages 608–611 1 2 1 2 9. 11. Lesson 12-1 1. Sample answer: The age of the youngest President at the time of his inauguration was 42 and the age of the oldest President to be inaugurated was 69. However, most of the Presidents were 50 to 59 years old at the time of their inauguration. R44 Selected Answers Leaf 0 1 2 3 4 67 255 0 5 0 1 20 20 11. Stem 1 2 3 4 5 6 7 8 15. Stem Lesson 11-7 1. Josh; the first two 0s are not significant because they are placeholders for the decimal point. The 0 between 2 and 5 is significant because it is between two significant digits and shows the actual value in the thousandths place. 3. Sample answer: 0.012 or 2500 5. 3 7. 3 9. 7.1 L 11. 544.5 in2 3. Stem 40 41 42 43 44 45 46 47 48 49 50 51 52. .. 62. .. 76 77 78 Leaf 5. 50, 99 7. Sample answer: The lowest score was 50. The highest score was 99. Most of the scores were in the 70–79 interval. 9. Chicken; whereas chicken sandwiches have 8–20 grams of fat, burgers have 10–36 grams of fat. 13. Stem 3 68 49 0 1 2 3 4 5 23 227 79 4 77 77 Leaf 005 5 06 047 0 0 5 4 9 764 764 Leaf 668 01468 025 27 0 37 37 17. never 19. 73 21. Sample answer: In this 10-year period, most of the leaders hit between 40 and 50 home runs. 23. 5 25. The average number of games won by the teams in the Big East Conference is less than the average number of games won by the teams in the Big Ten Conference. 29a. Sample answer: It would be easier to find the median in a stem-and-leaf plot because the data are arranged in order from least to greatest. 29b. Sample answer: It would be easier to find the mean in a table because once you find the sum, it may be easier to count the number of items in a table. 29c. Sample answer: It would be easier to find the mode in a stem-and-leaf plot because the value or values that occur most often are grouped together. 31. C 33. no 35. 62.8 ft; 314.2 ft2 37. 247% 39. 0.65% 41. 57.1% 43. 1.6% 45. 6 47. 1.1 Pages 614–616 Lesson 12-2 1. The range describes how the entire set of data is distributed, while the interquartile range describes how the middle half of the data is distributed. 3. Sample answer: {8, 9, 13, 25, 26, 26, 26, 27, 28, 30, 35, 40} 5. 27; 6 7. 24 h 9. 77; 39 11. 50; 10 13. 25; 15.5 15. 22 17. Feb.: 13.5; July: 8 19. National League: 42, 44, 48, 38, 10; American League: 39, 44, 49, 39, 10 21a. Sample answer: {43, 49, 50, 50, 58, 60, 60, 66, 70, 70, 71, 78} 21b. Sample answer: {15, 18, 20, 20, 44, 60, 60, 64, 70, 70, 75, 79} 21c. Sample answer: The first set of data has a smaller interquartile range, thus the data in the first set are more tightly clustered around the median and the data in the second are more spread out over the range. 23. C 25. Stem 0 1 2 3 Leaf 9 2458 17 7 37 $37 27. 461.8 cm3 29. 1.6 ft 31. {0.2, 0.3, 0.6, 0.8, 1.2, 1.4, 1.5} 33. {9.8, 9.9, 10.5, 10.9, 11.2, 11.4} Pages 619–621 Lesson 12-3 Pages 625–628 1. lower quartile, least value; upper quartile, greatest value 3. Sample answer: {28, 30, 52, 68, 90, 92} 1. Sample answer: Because the intervals are continuous. Lesson 12-4 Pet Survey 3. Number of Participants 5. 14 18 22 26 30 34 38 42 46 50 7. Sample answer: The length of the box-and-whisker plot shows that the winning times of the men’s marathons are not concentrated around a certain time. 9. The most fuelefficient SUV and the least fuel-efficient sedan both average 22 miles per gallon. 22 20 18 16 14 12 10 8 6 4 2 0 1–3 11. 70 60 80 90 100 110 120 130 4–6 7–9 10–12 13–15 Number of Pets 5. the number of states that have a certain number of roller coasters 7. The numbers between 10 and 34 are omitted. 9. 2 or more national monuments 13. 11. 70 90 26.0 28.0 30.0 110 130 150 15. 34.0 36.0 Tampa, FL 0 10 20 30 40 50 60 70 80 90 23. C 1 2 3 4 Leaf 4 147 9 8 24 24 4–6 7–9 10–12 13–15 Time (hr) Touchdowns in a Season 13. 10 8 6 4 2 0 Number of Touchdowns 25. 4 27. Stem 0–3 1 18 5– 16 64 1 8– 14 7 14 1– 13 0 13 4– 11 3 1 –1 97 6 –9 80 • Sample answer: Tampa has a median temperature of 73 and Caribou has a median temperature of 40.5. Whereas the highest average temperature for Tampa is 82, the highest average temperature for Caribou is 66. • Sample answer: You can easily see how the temperatures vary. 12 11 10 9 8 7 6 5 4 3 2 1 0 Selected Answers 17. 50% 19. Sample answer: The least number of games won for NFC is 3 and the least number of games won for the AFC is 1. The most number of games won for the NFC is 12 and the most number of games won for the AFC is 13. In addition, for both conferences, the median number of games won is about 9. 21. A box-and-whisker plot would clearly display any upper and lower extreme temperatures and the median temperature. Answers should include the following. • Caribou, ME Number of Players 32.0 Weekly Study Time 170 Number of Students 50 29. 14 15. 13 17. 37.5% 19. Dallas 21. true 23. false 25. true 27. A 29. absolute frequency: 2, 9, 17, 12, 7, 2; relative 2 9 17 12 1 2 49 49 49 49 7 49 frequency: , , , , , ; cumulative frequency: 2, 11, 28, 40, 47, 49 Selected Answers R45 area codes in 1999 is about 1.5 times the number of area codes in 1996. The graph is misleading because the drawing of the phone for 1999 is about 3 times the size of the phone for 1996. Also, there is a break in the vertical scale. 7. Graph B 9. Graph B; the vertical scale used makes the decrease in the unemployment rates appear more drastic. 11a. Sample answer: Commuter Train Average Length of U.S. States 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 Passengers 60 55 50 12 00 45 40 35 30 25 20 15 10 –1 49 5 0 9 99 9 9 11 0– 59 89 0– 90 60 9 0– 29 30 1– Amount (millions) Number of States 31. Length (mi) ’96 Source: The World Almanac ’97 ’98 ’99 Year 33. 44; 15 35. Sample answer: Brand B costs one-third more than brand C. Page 628 1. Stem Commuter Train Passengers 11b. Sample answer: Practice Quiz 1 59 58 Leaf 6899 026888 02 023 5 69 57 56 55 Amount (millions) 1 2 3 4 5 6 7 8 55 55 3. 54 53 52 51 50 49 48 47 0 10 20 30 40 50 60 70 80 90 100 45 0 Costs 5. Frequency Selected Answers 46 10 9 8 7 ’96 ’97 ’98 ’99 Year 13. B 15. 6 5 4 3 2 1 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 17. 20.3 m2 9 –8 80 9 –7 70 9 –6 60 9 –5 50 9 –4 40 9 –3 30 9 –2 20 9 –1 10 9 0– Cost ($) Pages 631–633 Lesson 12-5 1. Sample answer: inconsistent vertical scale and break in vertical scale 3. Graph A has a break in the vertical scale. 5. From the vertical scale, you can see that the number of R46 Selected Answers 1 6 2 3 5 6 1 3 19. or 16% 21. or 83% 5 6 23. or 83.3% Pages 637–639 Lesson 12-6 1. Sample answer: Both methods find the number of outcomes. Using the Fundamental Counting Principle is faster and uses less space; using a tree diagram shows what each outcome is. 3. First find the number of outcomes possible. The possible outcomes are taco-chicken, taco-beef, taco-bean, burrito-chicken, burrito-beef, and burrito-bean, for a total of 6 outcomes. Two of the outcomes have chicken 2 6 1 16 1 3 filling, so the probability of chicken filling is or . 1 7. 4 5. 9. 9 11. H H T T H H T H H T 19. 31:5 21. 1:17 3 N B T B N T N B 1 8192 25. 9:4 27. 23. 5:4 4 5 6 7 8 BN BT YB YN YT WB WN WT 15. 36 outcomes 17. 24 outcomes 5 1 19. 1024 outcomes 21. 23. B N T SB SN ST 25. Either; the probability of rolling either odd or even is one-half. 27. Sample answer: any two letters followed by any four digits 29. D 31. Sample answer: Vertical scale that does not start at zero. 33. 11–20 18 35. 10 ; y 3 39. S 12 outcomes 9 T ⫺6 ⫺5 ⫺4 ⫺3 ⫺2 ⫺1 BB 100,000 37. y y 0 1 2 1 56 1 3 41. 43. Pages 653–655 Lesson 12-9 1. Independent and dependent events are similar because both are a connection of two or more simple events and the probability of the compound event is found by multiplying the probabilities of each simple event. They are different because the second event in a dependent event is influenced by the outcome of the first event. Therefore, the probability of the second event used in calculating the probability of the compound event is dependent on the outcome of the first event. 3. The result of the 1st event 1 12 must be taken into account. 5. 1 91 1 5 10 91 13. 15. O x x 1 30 5 8 3 7 19. 21. 23. 25. 1 2 9 27. Pages 643–645 Lesson 12-7 1. Sample answer: How many 3-digit numbers can be made from the digits 1, 2, 3, and 4 if no digit is repeated? 3. Sarah; five CDs from a collection of 30 is a combination because order is not important. 5. P; 120 ways 7. C; 84 ways 9. 220 pizzas 11. P; 24 flags 13. C; 105 ways 15. P; 1320 ways 17. C; 364 ways 19. 40,320 21. 39,916,800 23. 36 handshakes 25. 3003 ways 31. When order is not important, duplicate arrangements are not included in the number of arrangements. Answers should include the following. • When order was not important there were half as many pairs. • Order is important when you arrange things in a line; order is not important when you choose a group of things. 1 21 2 35. 3 37. 3:10 39. 17,576,000 41. 65° 43. 65° 45. 90° 47. 40.6 49. 16 Pages 658–662 Chapter 12 Study Guide and Review Leaf 1. b 3. c 5. d 7. Stem 4 5 6 7 8 9. 23; 7 11. 22; 10 19. 16 outcomes 27. 1:3 55 0055 00000 555 5 5 75 75¢ 13. 80°F 15. 50% 17. Graph A 21. C; 364 ways 23. C; 21 ways 25. 3:5 1 30 29. Chapter 13 Polynomials and Nonlinear Functions Page 667 Chapter 13 Getting Started 1. 1 3. 2 5. 0 7. 5a 20 13. yes 15. yes 9. 4 32n 11. 27b 27c Selected Answers R47 Selected Answers 41. 28 27. 10 combinations 5 364 3 4 9. 11. combination of 3, 2, and 4 will have a probability of . 33. B 2 29. 5 17. 3 14 7. 29. 0.16 31a. Sample answer: 3 red, 2 white, and 4 blue 31b. Sample answer: The numerator must be 24. Any O 39. 15 29. 47:53 31. No; 512 is the total number of possible outcomes, so it could not be a number in the odds of winning. 33. A 35. 6 ways 37. ;a6 W Y Lesson 12-8 1. Write a ratio comparing the ways the event can occur to the ways the event cannot occur. 3. Hoshi; the probability of rolling a 2 is 1 out of 6. The odds of rolling a 2 are 1 in 5. 5. 1:2 7. 5:1 9. 1:2 11. 2:1 13. 1:1 15. 1:3 17. 5:7 HHH HHT HTH HTT THH THT TTH TTT 8 outcomes 13. B Practice Quiz 2 Pages 648–649 T T Page 645 1. Sample answer: Bars are different widths. 3. 256 outcomes 5. 15 segments T H 33. C 35. Yes; the vertical axis does not include zero. 37. Q 39. I 41. 1:8 43. 11:2 Pages 670–672 Lesson 13-1 Page 681 1. The degree of a monomial is the sum of the exponents of its variables. The degree of a polynomial is the same as the degree of the term with the greatest degree. 3. Tanisha; the degree of a binomial is the degree of the term with the greater degree. 5. yes; monomial 7. yes; binomial 9. yes; trinomial 11. 0 13. 1 15. 4 17. 2 19. yes; binomial 21. yes; monomial 23. no 25. yes; trinomial 27. no 29. yes; trinomial 31. 0 33. 3 35. 5 37. 5 39. 3 41. 5 43. Always; any number is a monomial. 45. 2x 2y z xy 49. Polynomials approximate realworld data by using variables to represent quantities that are related. Answers should include the following. • Heat index is found by using a polynomial in which one variable represents the percent humidity and another variable represents the temperature. • Heat index cannot be approximated using a linear equation because the values do not change at a constant rate. 2 51. C 53. mutually exclusive; 55. 70 in3 1. 4 Pages 676–677 Lesson 13-2 1. x2 and 2x2; 5x and 4x; 2 and 7 3. Hai; the terms have the same variables in a different order. 5. 7a2 9a 4 7. 13x 4y 9. 4x2 3x 2 11. 3x 3 13. 11x2 5xy 4y2 15. 4x 14 17. 8y 2r 19. 5x2 xy y 21. 7x2 9x 5 23. 5a 4b; 31 25. 4a 6b c; 14 27. 56 29. 23x 12 31. 42x 22 33. Use algebra tiles to model each polynomial and combine the tiles that have the same size and shape. Answers should include the following. • Algebra tiles that represent like terms have the same size and shape. • When adding polynomials, a red tile and a white tile that have the same size and shape are zero pairs and may be removed. The result is the sum of the polynomials. 35. B 37. 2 2 13 39. 3 26 41. 43. 15c (26) 45. 1 (2x) 47. (n rt) (r2) Selected Answers Pages 680–681 Lesson 13-3 1. Subtracting one polynomial from another is the same as adding the additive inverse. 3. 4r 5. 5x 2 7. 3x2 3x 8 9. 7x 5 units 11. 2n2 6n 13. y2 7y 10 15. 15w2 2w 10 17. 4x 3 19. 2t 2 21. 3a2 2b2 23. 9n2 n 12 25. 2x2 2xy 3y2 27. x y 68 (x y); 34°F 29. In subtracting polynomials and in subtracting measurements, like parts are subtracted. Answers should include the following. • To subtract measurements with two or more units, subtract the like units. To subtract polynomials with two or more terms, subtract the like terms. • For example, to subtract 1 foot 5 inches from 3 feet 8 inches, subtract the feet 3 1 and subtract the inches 8 5. The difference is 2 feet 3 inches. 31. B 33. 12x 3y 35. t2 12t 2 37. yes; binomial 39. Stem Leaf 41. 8y2 43. 4m3 45. 10r5 5 6 7 8 9 49 468 0112 59 1 54 54 R48 Selected Answers Practice Quiz 1 5. 2x 2 Pages 684–686 7. 8r 3s 9. 3x 5y Lesson 13-4 1. False; the order in which numbers or terms are multiplied does not change the product, by the Commutative Property of Multiplication; x(2x 3) 2x2 3x and (2x 3)x 2x2 3x. 3. Sample answer: 2x(x 1) 2x2 2x 5. a2 4a 7. 12x2 28x 9. 15x2 35x 45 11. 14n 35 13. t2 9t 15. 7a2 6a 17. 40n 8n2 19. 3y3 6y 21. 5x2 5xy 23. 14x2 35x 77 25. 4c4 28c2 40c 27. –1 29. high school, 84 ft by 50 ft; college, 94 ft by 50 ft a b 33. D 35. 7x 1 37. 4y2 2y 14 39. 8x 11y c d ac ad bc bd 31. 3 57. (x 2x) 4 59. (6n 3n) (2 5) 61. (s 5s) (t 3t) 3. 3 (a b)(c d) ac ad bc bd 41. Sample answer: The scales are labeled inconsistently or the bars on a bar graph are different widths. 43. reflection 45. x 0 2x2 3 3 (x, y) (0, 3) 1 1 (1, 1) 2 5 (2, 5) 3 15 (3, 15) Pages 689–691 Lesson 13-5 1. Sample answer: Determine whether an equation can be written in the form y mx b or look for a constant rate of change in a table of values. 3. Sample answer: population growth 5. Nonlinear; graph is a curve. 7. Nonlinear; equation cannot be written as y mx b. 9. Linear; rate of change is constant. 11. Nonlinear; graph is a curve. 13. Linear; graph is a straight line. 15. Nonlinear; graph is a curve. 17. Linear; equation can be written as y 0.9x 0. 19. Linear; equation can be written as 3 4 y x 0. 21. Nonlinear; equation cannot be written as y mx b. 23. Linear; rate of change is constant. 25. Nonlinear; rate of change is not constant. 27. Nonlinear; the points (year, subscribers) would lie on a curved line, not on a straight line. Or, the rate of change is not constant. 29. No, the difference between the years varies, so the change is not constant. 31. A 33. 4t 9t2 35. a2b 2ab2 37. x 39. acute 41. 43. y y y 1x 3 2 O x O yx4 x Page 691 Practice Quiz 2 23. 1. 2c3 8c 3. 5a2 a3 2a4 5. Nonlinear; equation cannot be written as y mx b. y y y 4x 3 Pages 694–696 Lesson 13-6 5. 7. y y x x 3 x O Both equations are functions because every value of x is paired with a unique value of y. 25. (0, 7) 27. Similar shape; y 3x2 is y more narrow. y x2 x O 11. y y y 3x 2 x O x y x2 4 y 3x 2 9. O y O y 2x 2 x O 1. Sample answer: The graph of y nx2 has line symmetry and the graph of y nx3 does not. 3. Sample answer: y x2 3; make a table of values and plot the points. 29. Same shape; y 2x2 is y 2x2 reflected over the x-axis. y x O y x 3 2 y 2x 2 x O y 2x 2 13. 15. y y 31. A 50x x2 33. 25 ft by 25 ft 35. V 0.2r2 or V 0.6r2 y 2x 3 O x x O y x 2 19. y y y 2x 3 O y x3 1 x O x 0 21. y 1 2 y 2x 1 O x V V 0.6r 2 1 2 3 4 5 6 7r 37. Formulas, tables, and graphs are interchangeable ways to represent functions. Answers should include the following. • To make a graph, use a rule to make a table of values. Then plot the points and connect them to make a graph. • To write a rule, find points that lie on a graph and make a table of values using the coordinates. Look for a pattern and write a rule that describes the pattern. 39. C 41. Sample answer: 18 units2 43. 10x 20 45. 24y 21y2 47. y 4x 3 Pages 698–700 Chapter 13 Study Guide and Review 1. trinomial 3. cubic 5. like terms 7. curve 9. yes; binomial 11. yes; monomial 13. yes; trinomial 15. no Selected Answers R49 Selected Answers 17. 11 10 9 8 7 6 5 4 3 2 1 17. 1 19. 3 21. 6 23. 5 25. 8b 3 27. 5y2 2y 4 29. y2 y 1 31. 3x2 4x 7 33. x 1 35. 20t 10 37. 6k2 3k 39. 18a 2a3 41. Linear; graph is a straight line. 43. Nonlinear; rate of change is not constant. 45. 47. y y y 3x 2 O y x3 1 x 49. y y 2x 2 4 Selected Answers O R50 Selected Answers x O x Photo Credits About the Cover The Great Bear at Hersheypark in Hershey, Pennsylvania, is an inverted coaster – that is, you ride below it, not above it. With four inversions, including loops, twists, and rolls, this ride reaches a speed of almost 60 miles per hour and at one point falls 124 feet. Roller coasters use math in their design and operation from beginning to end. Their designers want to make the tallest, fastest, most exciting coasters ever! Cover Alan Schein/CORBIS Stock Market; ix Tom Pidgeon/ Getty Images, x Roy Ooms/Masterfile; xi David YoungWolff/PhotoEdit; xii Robert Fried/Stock Boston; xiii Kay Chernush/Getty Images; xiv Tony Demin/ International Stock; xv Douglas Faulkner/Photo Researchers; xvi Chris Cole/DUOMO; xvii Adam Jones/ Photo Researchers; xviii SuperStock; xix Georgette Douwma/Getty Images; xx Matt Meadows; xxi Antonio M. Rosario/Getty Images; 1 Laura Sifferlin; 2-3 Ken Chernus/Getty Images, (bkgd) CORBIS; 4-5 ZSSD/SuperStock; 10 Doug Martin; 15 Tom Pidgeon/Getty Images, 19 TempSport/CORBIS; 27 Ken Eward/Photo Researchers; 31 Erik Dreyer/Getty Images; 35 Michael Boys/CORBIS; 37 Rhoda Sidney/Stock Boston; 42 Galen Rowell/CORBIS; 54–55 Jeff Hunter/Getty Images; 57 Jonathan Daniel/Getty Images; 66 NASA; 73 Doug Martin; 78 Mike Mazzaschi/ Stock Boston; 96–97 Jan Butchofsky-Houser/CORBIS; 99 AP/Wide World Photos; 105 Kit Kittle/CORBIS; 106 Mary Kate Denny/PhotoEdit; 112 file photo; 116 Stuart Westmorland/CORBIS; 123 Index Stock/Eric Kamp; 127 David Young-Wolff/PhotoEdit; 129 Dwayne Newton/ PhotoEdit; 131 PhotoDisc; 134 AFP/CORBIS; 144-145 Getty Images, (bkgd) CORBIS; 146–147 Thomas Mangelsen/ Minden Pictures; 149 Elizabeth Whiting & Associates/ CORBIS; 151 Aaron Haupt; 156 Christophe Loviny/ CORBIS; 165 AP/Wide World Photos; 172 Geoff Butler; 178 Laura Sifferlin; 180 Latent Image; 182 Ralph A. Clevenger/CORBIS; 184 VCG/Getty Images; 189 Robert Fried/Stock Boston; 198–199 SuperStock; 208 Lester Lefkowitz/CORBIS Stock Market; 214 JPL/ NASA; 217 Tony Anderson/Getty Images; 219 David Barnes/CORBIS Stock Market; 220 John Cancalosi/Stock Boston; 223 Tony Freeman/PhotoEdit; 229 NASA; 231 237 Geoff Butler; 247 Andy Caulfield/Getty Images; 253 (t)Kay Chernush/Getty Images, (b)Geoff Butler; 262–263 SuperStock; 267 Chuck Pefley/ Stock Boston; 272 Louisville Slugger Museum, Louisville, KY; 275 Matt Meadows; 276 (t)Landscape plans provided by 1 8 3 8 252.4 458.2 (100 180 in.)Hirshhorn Museum and Sculpture Garden, Smithsonian Institution; 537 Charles E. Rotkin/ CORBIS; 552–553 Rohan/Getty Images; 556 EyeWire, Yann Arthus-Bertrand/CORBIS; 558 Walter Bibikow/Getty Images; 560 (t)SHOE 8/31/94 ©Tribune Media Services. All Rights Reserved. Reprinted by permission, (bl)Roberto Otero/Black Star/PictureQuest, (br)Hermitage Museum, St. Petersburg, Russia/SuperStock; 575 Bob Mullenix; 578 SuperStock; 579 Bob Daemmrich; 581 (l)John Elk III/ Stock Boston, (r)John Elk III/Stock Boston; 583 Matt Meadows; 584 Aaron Haupt; 586 NASA; 602-603 Getty Images, (bkgd) Richard Price/Getty Images; 604-605 Mike Dobel/Masterfile; 607 610 CORBIS; 614 Eastcott/Momatiuk/Getty Images; 634 David YoungWolff/PhotoEdit; 638 Michael Zito/ SportsChrome USA; 640 Aaron Haupt; 644 Mark Burnett; 649 Aaron Haupt; 651 Matt Meadows; 654 CORBIS; 656 Aaron Haupt; 666–667 (bkgd)Digital Stock, David Madison Sports Images; 670 Raymond Gehman/CORBIS; 675 Antonio M. Rosario/Getty Images; 683 Dallas & John Heaton/CORBIS; 685 Bettmann/CORBIS; 693 Photri/Tom Sanders/CORBIS Stock Market; 793 William Floyd Holdman/Index Stock Imagery. Photo Credits R51 Photo Credits Greenscapes Landscape Architects and Contractors, Columbus, OH, (bl)Matt Meadows, (br)Ron Kimball/Ron Kimball Stock; 277 Kunio Owaki/CORBIS Stock Market; 278 Jeff Greenberg/Southern Stock/ PictureQuest; 284 Gary White Photography/StockFood; 288 Geoff Butler; 296 Frans Lanting/Minden Pictures; 299 Tony Demin/International Stock; 306 Michael Paras/ International Stock; 324-325 Mark Richards/PhotoEdit, (bkgd) Jon Arnold Images/Alamy; 326–327 Michael Melford/Getty Images; 331 SW Productions/Index Stock/Picturequest; 337 Matt Meadows; 344 Bob Daemmrich/Stock Boston; 347 Bob Daemmrich; 348 Douglas Faulkner/Photo Researchers; 356 SuperStock; 358 Doug Martin; 366-367 Paul J. Sutton/Duomo/CORBIS; 370 Peter/Stef Lamberti/Getty Images; 383 David Keaton/CORBIS Stock Market; 386 Matt Meadows; 387 Tony Freeman/PhotoEdit; 392 Doug Martin; 395 NASA/JSC; 399 Cris Haigh/Getty Images; 401 DUOMO; 408 Gail Shumway/Getty Images; 412 Michael Steele/Allsport; 417 Chris Cole/DUOMO; 422 Roy Ooms/Masterfile; 432-433 Jeff Hunter/Getty Images, (bkgd) Ken Biggs/Getty Images; 434-435 Richard Cummins/CORBIS; 438 Kunio Owaki/CORBIS Stock Market; 444 Kennan Ward/CORBIS Stock Market; 456 Garry Gay/ImageBank; 463 Steven E. Sutton/DUOMO; 472 Geoff Butler; 474 Adam Jones/Photo Researchers; 480 David Young-Wolff/ PhotoEdit; 490–491 J. David Andrews/Masterfile; 500 SuperStock; 503 Chuck Szymanski/International Stock; 511 Pete Saloutos/CORBIS Stock Market; 513 Richard Hamilton Smith/CORBIS; 515 (l)Pat LaCroix/Getty Images, (r)Irene Rica Pereira. Untitled, 1951. Oil on board, 101.5 61 cm (40 24 in.). Solomon R. Guggenheim Museum, New York, NY. Gift of Jerome B. Lurie, 1981; 516 Elizabeth Murray. Museum of Modern Art, New York, NY. Acquired through the Bernhill Fund. Gift of Agnes Gund; 524 SuperStock; 529 Papilio/CORBIS; 530 Roy Lichtenstein. Modern Painting with Clef, 1967. Oil on synthetic polymer and pencil on canvas. Index A Index Absolute frequencies, 627 Absolute value, 58, 59, 61, 63, 64, 65, 66, 91 algebraic expressions, 58 integers, 90 Accuracy, 589 Activity. See Algebra Activity; Geometry Activity Acute angles, 449, 450, 451, 457, 484, 745 Acute triangles, 454, 456, 746 Addends, 63, 64, 66 Addition, 11, 16, 726, 734, 735, 756 algebraic fractions, 221 Associative Property, 24, 26, 49, 63, 66, 130, 725 Commutative Property, 23, 26, 32, 49, 63, 66, 107, 114, 725 decimals, 5, 538, 712, 713 fractions, 220, 233, 716 integers, 62–63, 64–66, 74, 82, 84, 91, 97, 107, 199, 327 like fractions, 220–224, 256 measurements, 591–592 mixed numbers, 220, 233, 491, 716 polynomials, 674–677, 699 properties, 672 solving equations, 111–112, 113, 139, 244 solving inequalities, 345–349 unlike fractions, 232–236, 257 Addition expressions, 97, 102, 677 Addition Property of Equality, 111, 360 Addition table, 63 Additive identity, 24, 48, 49, 66 Additive inverse, 66, 67, 70, 71, 72, 91, 112, 114, 677, 679, 681, 699 Adjacent angles, 476, 493, 495 Algebra Activity Analyzing Data, 237 Area and Geoboards, 518–519 Base 2, 158 Capture-recapture, 275 Constructions, 498–499 Dilations, 512 Equations with Variables on Each Side, 328–329 R52 Index Fibonacci Sequence, 253 Graphing Irrational Numbers, 465 Half-Life Simulation, 180 Input and Output, 367 It’s All Downhill, 386 Juniper Green, 231 Modeling Multiplication, 682 Modeling Polynomials with Algebra Tiles, 673 Probability and Pascal’s Triangle, 640 Pythagorean Theorem, 458–459 Ratios in Right Triangles, 476 Scatter Plots, 39 Simulations, 656–657 Slope and Rate of Change, 392 Solving Equations using Algebra Tiles, 108–109 Symmetry, 505 Taking a Survey, 309 Tessellation, 532 Using a Percent Model, 286–287 Algebra Connection, 25, 35, 58, 77, 150, 161, 166, 170, 176, 181, 211, 217, 221, 227 Algebraic equations, solving, 30, 31, 118, 130, 136, 152, 157, 163, 219, 230, 235, 242, 246, 248, 252, 328–329, 330–333, 338, 344, 349, 443, 444, 457, 484, 685 Algebraic expressions, 17, 19, 69, 99, 667 absolute value, 58 evaluating, 17, 19, 20, 27, 32, 38, 44, 48, 51, 55, 59, 60, 68, 72, 73, 74, 77, 78, 79, 82, 83, 84, 89, 93, 118, 147, 155, 156, 168, 170, 182, 185, 190, 213, 218, 222, 223, 235, 338, 373 factoring, 166, 167, 193 finding value, 27, 32, 48, 74, 457 identify parts, 104 simplifying, 25, 26, 27, 32, 44, 48, 51, 77, 78, 84, 89, 100, 103–107, 118, 139, 147, 157, 213, 224, 439 translating verbal phrases into, 18, 19, 20, 32, 74, 105, 724 writing, 20, 97, 124, 125 Algebraic fractions, 211 addition, 221 division, 217 lowest common denominator, 227 multiplication, 211 simplifying, 169–173, 185, 193 Algebraic relationships, graphing, 87 Algebra tiles. See also Modeling adding integers, 62–63 algebraic expressions, 103, 106 Distributive Property, 99 equations with variables on each side, 328–329 multiplication, 682 multiplication, polynomials by monomial, 683 polynomials, 673, 674, 677 properties of equality, 120, 123 representing expressions, 103 solving equations, 108–109 solving two-step equations, 120 Alternate exterior angles, 492, 493 Alternate interior angles, 492, 493 Altitude, 520 Angles, 447–451, 484 acute, 449, 450, 451, 457, 484, 745 adjacent, 476, 493, 495 alternate exterior, 492, 493 alternate interior, 492, 493 central, 452, 538 complementary, 493, 494, 495, 496, 517, 544 congruent, 493 corresponding, 474, 492, 493, 500, 544 of elevation, 480 exterior, 492, 531 inscribed, 538 interior, 492, 528, 530, 538, 543 measurement, 447, 448 measures, 448, 454 obtuse, 449, 450, 451, 457, 484, 745 quadrilateral, 514 right, 449, 450, 451, 457, 484, 745 straight, 447, 449, 450, 451, 457, 484, 745 supplementary, 494, 495, 496 vertical, 493, 495 Applications. See also CrossCurriculum Connections; More About accounting, 67 aerospace, 759 ages, 128 aircraft, 172 air pressure, 37 animals, 172, 184, 229, 266, 306, 619, 639 economics, 761, 769 education, 618 elections, 113 electricity, 761 employment, 758, 762 energy, 83, 179 engineering, 566 entertainment, 36, 141, 391, 411, 415, 421, 760, 769 environment, 289 farming, 372 fast food, 763 fencing, 760 ferris wheel, 763 finance, 677, 765 fish, 291 fitness, 450 flags, 523 floods, 78 flooring, 444 flowers, 644 food, 21, 48, 219, 284, 296, 301, 608, 626, 643, 758, 762 food costs, 397 food service, 129, 637 football, 64, 67 forestry, 297 fuel, 765 fund-raising, 358, 581 furniture, 762 games, 516, 638, 653, 726, 759 gardening, 15, 213, 223, 429 gardens, 279 golf, 67 grilling, 235 grocery shopping, 764 handshakes, 644 health, 9, 248, 610, 762, 763 height, 31, 141 highway maintenance, 570 hiking, 358 hobbies, 312 home improvement, 540 home repair, 252, 390 homework, 343, 769 hourly pay, 240 houses, 234 insects, 279 interior design, 761 Internet, 764, 770 kites, 765 landmarks, 473 landscape design, 540 landscaping, 135, 502, 672 lawn care, 524 license plates, 644 light bulbs, 136 literature, 163 lunchtime, 761 machinery, 209 magazines, 267 maintenance, 766 manufacturing, 208, 767, 768, 770 maps, 88, 292, 472, 473, 759 masonry, 592 measurement, 118, 171, 172, 183, 189, 207, 213, 222, 372, 378, 593, 762 measurement error, 593 media, 283 medicine, 10, 122, 184, 671 metals, 566 meteorology, 128, 157, 246, 759 microwaves, 567 military, 133 mining, 572 mirrors, 511 models, 768 money, 9, 10, 51, 100, 105, 152, 173, 295, 296, 357, 385, 409, 754, 759, 762, 763 monuments, 537, 768 movies, 101, 632 moving, 767 music, 151, 536 Native Americans, 129 newspapers, 758 nutrition, 239, 341, 762, 763, 765 oceanography, 74 oil production, 762 olympics, 128, 273, 619, 624 online service, 762 paint, 274 painting, 118 parades, 167 parks, 474 patterns, 758, 761 pet care, 768 pets, 73, 763 phone calling cards, 123 phone services, 358 photography, 272, 273 picnics, 407 pools, 123, 577, 684 population, 68, 114, 129, 302, 307, 735, 770 postal service, 7, 724 presents, 768 presidents, 629 pressure, 411 production, 770 public safety, 767 publishing, 15, 235, 246, 762 purchasing, 760 quilts, 504 racing, 449 reading, 631 real estate, 301, 525 recreation, 479, 766 remodeling, 762 rides, 475 roller coasters, 279, 439, 625 Index R53 Index aquariums, 576 architecture, 277, 479, 558, 579, 580, 581, 587, 626, 769, 770 art, 463, 509, 515, 516, 530 astronauts, 606 astronomy, 759, 761 auto racing, 229 aviation, 765, 766 baking, 768 ballooning, 134 banking, 300, 301 baseball, 450, 615–616, 766 baseball cards, 739 basketball, 83, 241, 337, 761 batteries, 567 bicycles, 536 bicycling, 135 birds, 291, 758 birthdays, 106 blood types, 655 books, 291, 766 boxes, 685 brand names, 763 breakfast, 202 bridges, 767 buildings, 480, 559 business, 16, 21, 73, 123, 190, 247, 301, 307, 384, 399, 400, 421, 760, 761, 763, 765, 769 calculators, 301 calendars, 151 camping, 768 candy, 10, 358, 763 carpentry, 167, 218, 390 car rental, 332, 358, 765 cars, 251 car sales, 764 catering, 385 celebrations, 290, 291 census, 764 city planning, 767 codes, 761 college, 762 comics, 560 communication, 10, 185, 631 community service, 134 computers, 177, 203, 638 construction, 589, 695, 766, 770 consumerism, 769 cooking, 218, 247, 516, 763 crafts, 421, 576 cruises, 107 currency, 273 cycling, 228 decorating, 768 design, 277, 279–280, 321 driving, 313 earnings, 353 earthquakes, 177, 761 ecology, 670 Index running, 135 safety, 343, 480, 495, 496 sailing, 766 salaries, 242 sales, 21, 121, 135, 358, 363, 418, 758 savings, 303, 347 school, 42, 107, 185, 203, 213, 307, 358, 413, 420, 537, 608, 631, 764 school colors, 642 school concert, 765 school supplies, 106 sewing, 218, 223, 235, 259 shadows, 473, 480 shapes, 767 shipping, 679, 768 shipping rates, 765 shoes, 283 shopping, 26, 101, 106, 265, 267, 300, 363, 376, 760, 763, 764 signs, 767 skyscrapers, 438 snacks, 274 soccer, 353 sound, 155 space, 187, 188, 189, 296, 758 space exploration, 758 space shuttle, 16, 19 space travel, 212 spending, 411 sports, 93, 101, 238, 301, 515, 542, 759, 760, 764 statistics, 83, 686, 764 statues, 279 submarines, 759 surveying, 766 surveys, 243 swimming, 410, 641 technology, 393, 411, 744 telecommunications, 690 telephone rates, 251 telephones, 229 television, 463, 769 temperature, 78 tennis, 685 tepees, 768 tessellations, 529 tests, 241 test scores, 40 time, 9, 449 towers, 502 toys, 117 traffic laws, 614 trains, 247 transportation, 10, 14, 204, 348, 760, 761, 767 travel, 8, 15, 16, 134, 156, 212, 219, 259, 267, 594, 620, 630, 632, 760, 766 trees, 534, 758 trucks, 202 R54 Index utilities, 766 vacations, 241, 625 volleyball, 753, 758, 769 voting, 235 walkways, 542 water parks, 623 weather, 59, 60, 71, 72, 73, 83, 89, 93, 113, 248, 307, 333, 348, 371, 608, 615–616 weather records, 79 white house, 208 wildlife, 129 working, 760 world cultures, 769 write a problem, 130 Approximations, 594, 672 Area, 132, 137, 518–519. See also Surface area circles, 533–538, 548, 749 irregular figures, 539–543, 548 parallelograms, 520, 547 rectangles, 132, 133, 134, 135, 140, 141, 152, 214, 224, 349, 671, 730, 767 square, 523 trapezoids, 521, 522–523, 547 triangles, 521, 522, 523, 547 Arithmetic sequences, 249–252, 258, 259, 268, 344, 736 Assessment Extended Response, 53, 95, 143, 197, 261, 323, 365, 431, 489, 551, 601, 665, 703 Multiple Choice, 52, 94, 142, 196, 260, 322, 364, 430, 488, 550, 600, 664, 702 Open Ended, See Extended Response Practice Chapter Test, 51, 93, 141, 195, 259, 321, 363, 429, 487, 549, 599, 663, 701 Practice Quiz, 21, 32, 74, 84, 107, 130, 163, 185, 224, 248, 292, 308, 338, 354, 397, 418, 451, 470, 517, 538, 572, 588, 628, 645, 681, 691 Prerequisite Skills, 5, 10, 16, 21, 27, 32, 38, 55, 61, 68, 74, 79, 84, 97, 102, 107, 114, 119, 124, 130, 147, 152, 157, 163, 168, 173, 179, 185, 199, 204, 209, 213, 219, 224, 230, 236, 242, 248, 263, 268, 274, 280, 285, 292, 297, 302, 308, 327, 333, 338, 344, 349, 354, 367, 373, 379, 385, 391, 397, 401, 408, 413, 418, 435, 440, 445, 451, 457, 464, 470, 475, 491, 497, 504, 511, 517, 525, 531, 538, 553, 561, 567, 572, 577, 582, 588, 605, 611, 616, 621, 628, 633, 639, 645, 649, 667, 672, 677, 681, 686, 691, 706–723 Short Response/Grid In, 53, 95, 124, 143, 197, 261, 323, 354, 365, 431, 489, 517, 531, 537, 551, 601, 665, 703 Standardized Test Practice, 10, 16, 21, 29, 30, 32, 39, 44, 51, 61, 68, 74, 76, 77, 79, 84, 89, 93, 102, 107, 112, 113, 114, 119, 124, 130, 136, 141, 152, 157, 163, 168, 171, 173, 179, 184, 190, 204, 209, 213, 219, 224, 230, 236, 240, 241, 242, 247, 252, 259, 268, 274, 280, 285, 292, 297, 302, 305, 306, 308, 314, 321, 333, 338, 344, 349, 351, 353, 354, 359, 363, 373, 379, 385, 389, 390, 391, 397, 401, 408, 413, 418, 422, 429, 440, 445, 451, 457, 461, 462, 464, 470, 475, 481, 487, 494, 495, 497, 504, 511, 517, 525, 531, 537, 543, 549, 561, 564, 566, 567, 572, 577, 582, 588, 594, 599, 611, 616, 621, 627, 633, 639, 645, 647, 648, 649, 655, 663, 672, 677, 681, 686, 689, 691, 695, 701 Test-Taking Tips, 29, 52, 76, 95, 143, 171, 196, 240, 305, 322, 351, 364, 389, 430, 461, 488, 494, 550, 564, 600, 647, 664, 689, 702. See also Preparing for Standardized Tests Associative Property of Multiplication, 24, 26, 49, 51, 76, 78, 114, 522, 725 Average (mean), 82, 92 B Backsolving, 29, 112 Back-to-back stem-and-leaf plots, 607–608, 609, 611 Bar graphs, 722–723 double, 722–723 misleading, 631 Bar notation, 201 Base 2 numbers, 158 Base 10 numbers, 158 Bases, 153, 290, 299, 520, 557, 559, 570, 595, 599 Best-fit lines, 409–413, 427, 429 Bias, 634 Bilateral symmetry, 505 Binary numbers, 158 Binomials, 669, 671, 676, 681, 698, 755 Box-and-whisker plots, 617–621, 622, 633, 659, 753 double, 619 drawing, 619, 620 interpretation, 618–619 Brackets [ ], as grouping symbol, 12 C Calculator skills, 437, 438, 439, 478, 479, 480, 497, 504, 531, 534, 561. See also Graphing Calculator Investigation Career Choices architect, 579 artist, 515 biologist, 42 business owner, 399 carpenter, 223 cartographer, 472 civil engineer, 480 ecologist, 670 interior designer, 278 marine biologist, 348 meteorologist, 129 musician, 172 real estate agent, 358 statistician, 649 veterinarian, 73 Center, circles, 533 Central angles, 452, 538 Challenge. See Critical Thinking: Extend the Activity; Extending the Lesson Change, rate of, 393–397, 426 Checking reasonableness, 82, 586, 684 Checking solutions, 99, 111, 113, 116, 117, 118, 121, 122, 123, 124, 130, 136, 141, 152, 157, 163, 176, 201, 204, 212, 217, 230, 242, 245, 246, 248, 252, 258, 297, 330, 331, 332, 334, 335, 336, 338, 346, 347, 351, 352, 353, 354, 355, 356, 359, 360, 373, 377, 379, 382, 406, 413, 414, 420, 437, 438, 454, 514, 561, 588, 689, 729, 736, 739, 740, 741 Chords, 538 Circle graphs, 451, 452 Circles area, 535–538, 548, 749 center, 533 circumference, 533–538, 548, 749 diameter, 533, 536, 749 pi, 208, 533, 534 radius, 533, 536, 749 Closure Property, 27 Coefficients, 103, 104, 105, 106 negative, 122, 161 Columns, 705 Combinations, 642–643, 644, 661, 754 notation, 643 Commission, 301 Compare and order decimals, 710 fractions, 228 integers, 57, 59 numbers in scientific notation, 188 percents, 283, 284 real numbers, 442 Complementary angles, 493, 494, 495, 496, 517, 544 Complex solids, volume, 564 Common Misconceptions, 58, 132, 154, 175, 355, 420, 449, 467, 507, 557, 591, 617. See also Find the Error Compound events, 650–655, 662 Common multiples, 226 Compound interest, 303 Common ratios, 250, 251, 258 Commulative, 23 Communication choose, 592 classify, 529 compare and contrast, 228, 251, 312, 455, 549, 637, 643, 653, 674 define, 19, 36, 59, 105, 207, 272, 300, 468, 523, 614 describe, 202, 234, 283, 371, 389, 395, 429, 515, 559, 580, 589, 599, 653, 680, 689, 694 determine, 150, 272, 684 display, 608 draw, 222, 266, 549 estimate, 295 explain, 59, 83, 87, 117, 122, 133, 141, 150, 155, 161, 166, 171, 177, 188, 202, 217, 241, 266, 295, 300, 306, 342, 347, 377, 384, 407, 410, 416, 421, 438, 443, 468, 495, 502, 529, 570, 575, 580, 586, 614, 619, 625, 637, 648, 670, 684, 689, 694 find, 228, 241, 540 identify, 207, 608 list, 42, 51, 128, 336, 353, 421, 438, 570 name, 36, 42, 246, 332, 449, 455, 631, 676 replace, 228 state, 67, 77, 117, 141, 177, 251, 400, 429 tell, 9, 14, 26, 30, 113, 312, 529, 535, 619 write, 19, 51, 77, 133, 207, 357, 421, 509, 540 Commutative Property of Addition, 23, 26, 32, 49, 63, 66, 107, 114, 725 Commutative Property of Multiplication, 23, 26, 49, 61, 75, 78, 522, 725 Composite numbers, 159, 161, 162, 192, 229, 285, 731 Computation, choosing method, 8 Concept Summary, 41, 47, 48, 49, 50, 82, 90, 91, 92, 138, 139, 140, 148, 154, 191, 192, 193, 194, 207, 254, 255, 256, 257, 258, 289, 293, 298, 316, 317, 318, 319, 320, 341, 360, 361, 362, 377, 416, 424, 425, 426, 427, 428, 442, 483, 484, 485, 486, 495, 544, 545, 546, 547, 548, 595, 596, 597, 598, 658, 659, 660, 661, 662, 688, 698, 699, 700 Cones, 569 diameter, 571 radius, 571 surface area, 578–582, 597 volume, 568–572, 596, 616 Congruence statements, 501, 502, 503, 511, 517, 545, 549 Congruent angles, 493 Conjectures, 7, 12, 22, 25, 26, 32, 38, 39, 63, 137, 155, 162, 175, 180, 204, 215, 253, 275, 303, 368, 386, 392, 393, 445, 453, 476, 512, 563, 583, 584, 640, 697 Constants, 103, 104, 105, 106 proportionality, 394 variation, 394, 395 Constructed Response. See Preparing for Standardized Tests Constructions, 498–499 Converting measurements, 397, 566 Coordinate plane, 45, 57, 87, 88, 89, 92, 93, 124, 728 reflections, 508 rotations, 509 transformations, 506–511, 545–546 translations, 507 Index R55 Index Cake method, 161 Cicumference circles, 533–538, 548, 749 D Coordinates, 69, 468, 486 Coordinate system, 33–34, 36, 38, 39, 44, 50, 51, 79, 85–89, 92, 367, 475, 504, 725 Index Corresponding parts, 471, 500, 501, 502, 503 Cosine, 477–481, 486, 747 Counterexamples, 25, 26, 27, 73, 208, 444, 510, 684 Counting outcomes, 661, 635, 639 Critical Thinking, 10, 16, 21, 27, 32, 37, 44, 60, 61, 68, 73, 78, 84, 89, 102, 107, 114, 119, 124, 130, 135, 152, 157, 163, 168, 173, 179, 184, 190, 204, 209, 213, 219, 223, 230, 236, 242, 247, 251, 268, 274, 280, 284, 285, 292, 297, 302, 307, 314, 333, 338, 344, 348, 354, 358, 373, 379, 385, 391, 397, 401, 408, 412, 417, 422, 440, 445, 450, 457, 464, 469, 475, 481, 497, 504, 511, 517, 525, 531, 537, 543, 560, 567, 572, 577, 581, 587, 593, 610, 616, 621, 627, 633, 639, 644, 649, 654, 672, 677, 680, 685, 690, 695 Cross-Curriculum Connections. See also Applications; More About biology, 42, 156, 761 chemistry, 68, 178, 768 earth science, 235, 383 geography, 60, 73, 208, 284, 296, 332, 524, 543, 617, 759, 767 geology, 571, 758, 759 history, 151, 156, 168, 537, 570, 587, 766, 768 life science, 178, 291 physical science, 184, 190, 251, 396 physics, 765, 766 science, 20, 27, 36, 37, 45, 131, 291, 378, 438, 536, 571, 614, 696, 760, 761 Cross products, 270, 271, 272 Cubes, 584 surface area, 157, 694 volume, 157 Cubic functions, 688 graphing, 692–696, 700 Cubic units, 575 Cumulative frequencies, 627 Customary system, 118 converting measurements, 720–721, 734 Cylinders surface area, 573–577, 597 volume, 563–567, 596 R56 Index Data analysis, 39, 180, 237, 240, 253, 275, 386, 392, 562, 583, 640, 656, 657 box-and-whisker plots, 633, 659, 753 collecting, 39, 180, 237, 253, 275, 369, 386, 392, 562, 583, 640, 656, 657 comparisons, 269 display, 606, 722–723 frequency tables, 627 histograms, 623–628, 629, 633, 660, 753 line plot, 239 matrices, 414, 669, 705 mean, 82, 92, 238–239, 240, 248, 252, 258, 605, 618, 735 median, 238–239, 240, 248, 252, 258, 605, 611, 615, 618, 735 mode, 238–239, 240, 248, 252, 258, 605, 735 modeling, 657 patterns, 22 scatter plots, 39, 40–42, 43, 45–46, 50, 61, 68, 107, 408, 410, 411, 412, 422, 427, 429, 726 stem-and-leaf plots, 606–611, 658, 681, 752 Decimal numbers, 158 Decimals, 206, 281–285, 318, 435 addition, 5, 538, 712, 713 comparison with fractions, 202 division, 242, 714, 715 estimating, 5 multiplication, 263, 491, 714, 715 with negative exponents, 183 ordering, 616, 710 repeating, 201, 202, 203, 206, 214, 224, 254, 338, 733 rounding, 588, 711 subtraction, 5, 712, 713 terminating, 200, 203, 206 writing as fractions or mixed numbers, 207, 208, 224, 254, 422, 733 writing as percents, 282–283, 297, 302 writing fractions as, 200–209, 214, 338, 475 writing mixed numbers as, 209, 214 Decision making. See Critical Thinking; Problem solving Deductive reasoning, 25, 107 Degrees, 448 Density, 566 Dependent events, 652 Dependent variable, 375 Diagonals, 528, 558 Diameter circles, 533, 536 cones, 571 Differences, 13, 21, 61, 70, 71, 72, 73, 74, 84, 91, 93, 118, 230, 235, 242, 256, 257, 327, 349, 605, 712, 716, 727, 734, 735, 756. See also Subtraction Dilations, 512 Dimensional analysis, 212, 213, 217, 266, 267, 280 Dimensions, 705 Direct variation, 394 Discounts, 299, 308, 738 Distance, 746 Distance Formula, 131, 212, 466–470, 485–486 Distributive Property, 98–102, 104, 107, 138, 147, 163, 164, 166, 185, 193, 209, 333, 334, 338, 349, 361, 667, 683, 686, 699, 728 Divisibility Rules, 148, 149, 150, 151, 157, 191, 730 Division, 11 decimals, 242, 714, 715 integers, 80–84, 92, 114, 199, 327 negative numbers, 351–352 notation, 13 positive numbers, 350–351 rational numbers, 215–219, 256 solving equations, 115–119, 139, 245, 435 solving inequalities, 350–354 Division expressions, 117 Division Property of Equality, 115 Division sentence, 80 Divisor, 69 Domain, 35, 36, 37, 38, 44, 50, 51, 136, 367, 725 Double bar graphs, 722–723 Double box-and-whisker plots, 619 Double line graphs, 722–723 E Edges, 556, 557, 559, 595, 599 Element, 705 Endpoints, 468, 469, 481, 486, 527, 746 Enrichment. See Critical Thinking; Extend the Activity; Extending the Lesson Equals sign, 126 negative, 181–185, 187, 194 positive, 182, 183, 185, 187, 194 Extending the Lesson, 32, 102, 168, 185, 214, 236, 252, 268, 280, 333, 344, 359, 392, 440, 445, 464, 497, 531, 538, 572, 577, 582, 594, 621, 627, 655, 696 Equilateral figures, 517 Extra Practice, 724–757 Equivalent equations, 104, 111 Extreme value, 239 Expressions, 12–13. See also Addition expressions; Algebraic expressions; Binomial expressions; Division expressions; Equivalent expressions; Numerical expressions; Subtraction expressions; Verbal expressions evaluating, 12, 107, 154, 155, 724, 726, 727, 731, 732 with exponents, 154, 155 factoring, 731 finding value, 14, 21, 724 simplifying, 104, 114, 497, 525, 725, 727, 728 translating, into words, 11 Extend the Activity, 39, 158, 253, 368, 386, 392, 640, 656, 657, 682 Extended Response. See Preparing for Standardized Tests Equivalent expressions, 98 Error Analysis. See Find the Error; Common Misconceptions Estimation, 5, 9, 121, 209, 220, 230, 233, 294, 295, 296, 297, 298, 302, 308, 319, 321, 397, 437, 438, 439, 445, 456, 564, 567, 586, 712, 714, 716, 717, 738, 745 F Free Response. See Preparing for Standardized Tests Frequencies absolute, 627 cumulative, 627 relative, 627 Frequency distribution, 623 Factor expressions, 166 Frequency tables, comparison to histograms, 627 Factorial notation, 642 Factoring, 157 Even numbers, 148 Factor tree, 160 Events compound, 650–655, 662 dependent, 652 inclusive, 672 independent, 650–651 mutually exclusive, 652, 672 simple, 310 Families of quadratic functions, 697 Exponents, 153–157, 190, 192, 252, 435, 464, 731, 732 Fractions, 281, 318. See also Algebraic fractions addition, 220, 233, 716 comparison, 202, 228 computations, 605 division, 216, 717 multiplication, 567, 649, 717 percents as, 281–282, 283 simplifying, 171, 172, 173, 179, 185, 199, 732 subtraction, 221, 716 unit, 236 writing decimals, 200–209, 214, 224, 254, 338, 422, 475, 733 writing rational numbers, 205 writing ratios, 264–265 writing repeating decimals, 206 writing simplest form, 263 writing terminating decimals, 206 Frequency polygon, 628 Factor monomials, 161 Experimental probability, 311 Fraction bars as grouping symbol, 12, 13, 224, 264 Faces, 557, 559, 595, 599 Evaluating expressions. See Expressions Expanded form, 154, 156, 185, 192 Four-step problem-solving plan, 5, 6–8, 9, 10, 47–48, 51 Factors, 69, 79, 148–152, 151, 191, 730 Family of graphs, 402–403 Find the Error, 14, 26, 72, 87, 100, 105, 128, 161, 166, 212, 222, 234, 246, 278, 291, 306, 347, 353, 357, 389, 395, 400, 462, 479, 536, 565, 592, 643, 648, 671, 676. See also Common Misconceptions Foldables™ Study Organizer, iv, 1, 5, 55, 97, 147, 199, 263, 327, 367, 435, 491, 553, 605, 667 Functional notation, 380 Functions, 369–373, 424, 537, 741 graphing, 370, 757 quadratic and cubic, 692–696, 700 linear, 687–691, 700 nonlinear, 687–691, 700 Fundamental Counting Principle, 636, 661 G Geometric sequences, 249–252, 258, 259, 268, 344, 736 Geometry angles, 447–451, 484 acute, 449, 450, 451, 457, 484, 745 Index R57 Index Equations, 28, 49, 96–143, 126, 326. See also Algebraic equations; Linear equations; Percent equations; Systems of equations; Two-step equations graphing, 691 identifying functions, 687–688 negative coefficients, 122 solving, 28–29, 49, 68, 113, 118, 121, 122, 123, 124, 141, 157, 443, 491, 511, 588, 725, 729, 730, 736, 739, 740, 744, 745 addition, 111–112, 139 division, 115–119, 139, 435 with grouping symbols, 334–338, 361 by multiplication, 115–119, 139 rational numbers, 244–248, 258 subtraction, 110–111, 139 variables on each side, 330–333, 360 solving systems, 414–418, 428 solving two-step, 120–122, 140, 327, 354, 451 translating verbal sentences into, 30, 125 writing inequalities, 340–342 writing linear, 404–408, 427 writing two-step, 126–130 Formulas, 131–133, 140, 300 distance, 466–470, 485–486 midpoint, 466–470, 485–486 Index adjacent, 476, 493, 495 alternate exterior, 492, 493 alternate interior, 492, 493 central, 452, 538 complementary, 493, 494, 495, 496, 517, 544 congruent, 493 corresponding, 474, 492, 493, 500, 544 of elevation, 480 exterior, 492, 531 inscribed, 538 interior, 492, 528, 530, 538, 543 measures, 447, 448, 454 obtuse, 449, 450, 451, 457, 484, 745 quadrilateral, 514 right, 449, 450, 451, 457, 484, 745 straight, 447, 449, 450, 451, 457, 484, 745 supplementary, 494, 495, 496 vertical, 493, 495 area circles, 533–538, 548, 561, 749 irregular figures, 539–543, 548 parallelograms, 520–521, 547 rectangles, 132, 133, 134, 135, 140, 141, 152, 214, 224, 349, 671, 730, 767 shaded region, 770 squares, 439, 523 triangles, 445, 561 circumference of circle, 561, 749 diameter of circle, 533, 749 inequality involving acute angle, 764 isosceles triangle, 469 length of hypotenuse in right triangles, 462, 470 length of rectangle, 764 length of sides of golden rectangles, 675 line segments, 473, 644, 645 obtuse angles, 691 patterns, 9 perimeter, 469 equilateral triangles, 394 geometric figures, 106 golden rectangles, 675 isosceles trapezoid, 680 isosceles triangles, 680 rectangles, 132, 133, 134, 135, 140, 141, 152, 224, 302, 335, 336, 349, 359, 363, 385, 417, 676, 701, 730 squares, 378, 394, 440, 463, 760 triangles, 467, 503, 591, 681, 760, 770 pi, 208, 533, 534 radius of circle, 443, 533, 536, 749 ratio of width to length, 266 R58 Index rectangular prism, 464 right angles, 464, 691 scalene triangle, 469 straight angles, 691 sum of angles of triangle, 676 surface area, 594, 751 cubes, 157, 694 prisms and cylinders, 573–577, 597 pyramids and cones, 578–582, 597 three-dimensional figures, 552–601 triangles, 38, 453–457, 468, 485, 528 acute, 454, 456, 746 angle measures, 453 area, 521, 522, 523, 547 congruent, 500–504, 545, 748 equilateral, 455 isosceles, 455 obtuse, 454, 456, 746 obtuse isosceles, 455, 470, 485 right, 454, 456, 460, 461, 462, 463, 464, 481, 485, 746 right scalene, 470, 485 scalene, 455 similar, 471–475, 486 vertice, 88 vertices, 88, 447, 453, 527, 545–546, 556, 557, 559, 595, 599 volume, 750, 751 complex solid, 564 cones, 568–572, 596, 616 cubes, 157 prisms and cylinders, 563–567, 596 pyramids and cones, 568–572, 596 rectangular prisms, 695 Geometry Activity Building Three-Dimensional Figures, 554–555 Similar solids, 583 Volume, 562 systems of equations, 414, 416, 417, 422, 428 systems of inequalities, 346, 348 Graphing Calculator Investigation Box-and-Whisker Plots, 622 Families of Graphs, 402–403 Families of Quadratic Functions, 697 Finding Angles of a Right Triangle, 482 Function Tables, 374 Graphing Inequalities, 423 Histograms, 629 Mean and Median, 243 Probability Simulation, 315 Scatter Plots, 45–46 Graph pairs, 88 Graph points, 55, 85, 86, 87, 92, 93 Graphs bar, 722–723 circle, 723 data display, 722–723 identifying functions, 687 line, 722–723 relations as, 35, 36, 37, 50 writing equations, 405 Greatest common factor (GCF), 164–168, 179, 193, 199, 214, 252, 731 Greatest possible error, 594 Grid In. See Assessment. Gridded Response. See Preparing for Standardized Tests Grouping symbols, 48 brackets, 12 fraction bars, 12, 13 inequalities, 356 parentheses, 12, 15, 75 solving equations, 334–338, 361 Guess and Check, 709 Golden ratio, 253, 268 Golden rectangle, 268 Graphing algebraic relationships, 87 cubic functions, 692–696, 700 equations, 691 functions, 370, 757 inequalities, 342, 343, 353, 354, 361, 362, 379, 419–422, 440, 740, 744 linear equations, 376–377 quadratic functions, 692–696, 700 solutions of equations, 111, 113, 118, 428, 744 H Half-Life Simulation, 180 Heptagon, 528 Hexagon, 528 Hexagonal prism, 572 Hexagonal pyramid, 571 Histograms, 623–628, 629, 633, 660, 753 comparison to frequency tables, 627 interpretation, 624 Horizontal lines, 383 Hypotenuse, 460, 463, 470, 475, 477, 481, 485, 487, 746 I Identity Property, 32, 63 Inclusive events, 672 Independent events, 650–651 Independent variable, 375 Indirect measurement, 471–475, 486 Inductive reasoning, 7, 25, 71 Inequalities, 326, 340–344, 361, 367, 464 graphing, 342, 343, 353, 354, 361, 362, 379, 419–422, 428, 440, 740, 744 solving, 354, 373, 379, 385, 445, 481, 561, 567, 649, 740, 741 addition, 345–349, 361 division, 350–354, 362 multiplication, 350–354, 362 multi-step, 355–359, 362 subtraction, 345–349, 361 symbols, 57 truth, 341 writing, 740 Integers, 69, 451, 487, 745 absolute value, 90 addition, 62–63, 64–66, 74, 82, 84, 91, 97, 107, 199, 327 comparing and ordering, 56, 57, 59, 60, 68 division, 80–84, 92, 114, 199, 327 modeling real-world situations, 61 multiplication, 75–79, 82, 84, 91–92, 97, 152, 199, 327 number line, 56, 57, 59, 68 problem solving, 66 for real-world situations, 56–57 subtraction, 70–72, 74, 82, 84, 91, 118, 199, 327, 385 writing as fractions, 205 Intercepts, graphing linear equations using, 381–385, 425 Interest, 299, 738 Internet Connections www.pre-alg.com/careers, 42, 73, 129, 172, 223, 278, 339, 348, 358, 399, 472, 480, 515, 579, 649, 670 www.pre-alg.com/chapter_test, 51, 93, 141, 259, 321, 363, 429, 487, 549, 599, 663, 701 www.pre-alg.com/data_update, 43, 68, 114, 119, 157, 190, 229, 267, 348, 396, 439, 543, 587, 649, 690 www.pre-alg.com/ extra_examples, 7, 13, 19, 25, 35, 41, 57, 65, 71, 77, 81, 87, 99, 105, 111, 117, 121, 127, 133, 149, 155, 161, 165, 171, 177, 187, 201, 207, 211, 217, 221, 227, 233, 239, 245, 249, 265, 271, 277, 283, 289, 295, 299, 305, 311, 331, 335, 341, 347, 351, 355, 369, 377, 383, 389, 395, 399, 405, 409, 415, 419–422, 437, 443, 449, 455, 461, 467, 473, 479, 493, 501, 507, 515, 521, 529, 535, 541, 557, 565, 569, 575, 579, 585, 591, 607, 613, 619, 625, 631, 637, 643, 647, 651, 669, 675, 679, 683, 689, 693 www.pre-alg.com/ other_calculator_keystrokes, 45, 243, 315, 402, 423, 482, 629, 697 www.pre-alg.com/ self_check_quiz, 9, 15, 21, 27, 31, 37, 43, 59, 67, 79, 83, 89, 101, 107, 113, 119, 123, 129, 135, 151, 157, 163, 167, 173, 179, 183, 189, 203, 209, 213, 219, 223, 229, 235, 241, 247, 251, 267, 273, 279, 285, 291, 297, 301, 307, 313, 333, 337, 343, 349, 353, 357, 371, 379, 385, 391, 397, 401, 407, 411, 417, 421, 439, 445, 451, 457, 463, 469, 475, 481, 497, 503, 511, 517, 525, 531, 537, 543, 559, 567, 571, 577, 581, 587, 593, 609, 615, 621, 627, 633, 639, 645, 649, 653, 671, 677, 681, 685, 691, 695 www.pre-alg.com/ standardized_test, 53, 95, 143, 197, 261, 322, 365, 430, 489, 551, 601, 665, 703 www.pre-alg.com/ vocabulary_review, 47, 90, 138, 191, 316, 360, 483, 595, 658, 698 www.pre-alg.com/ webquest.com, 43, 79, 135, 136, 145, 173, 242, 301, 314, 325, 333, 412, 422, 433, 481, 542, 571, 594, 603, 626, 690, 696 Interquartile range, 613, 614, 615, 628, 659, 753 Intersecting lines, 493, 560 Inverse operations, 110, 121, 258, 373, 440 Inverse Property of Multiplication, 215 Investigations. See Algebra Activity; Geometry Activity; Graphing Calculator Investigation; Spreadsheet Investigation; WebQuest Irrational numbers, 206, 441, 443, 444, 451, 484, 487, 745 Irregular figures, area, 539–543, 548 Isosceles triangles obtuse, 455, 470, 485 K Key Concepts, 18, 23, 29, 58, 64, 65, 66, 70, 75, 76, 80, 81, 111, 115, 117, 132, 175, 176, 181, 186, 210, 215, 216, 221, 232, 233, 238, 270, 271, 282, 288, 310, 345, 350, 352, 376, 382, 388, 394, 436, 441, 449, 453, 454, 455, 460, 466, 468, 472, 477, 492, 493, 500, 507, 508, 514, 520, 521, 522, 528, 533, 557, 563, 565, 568, 569, 573, 575, 579, 585, 636, 646, 650, 652, 688 Keystrokes. See Graphing Calculator Investigation; Internet Connections L Lateral area, 578 Lateral faces, 578 Least common denominator (LCD), 227, 228, 229, 234, 236, 252, 735 Least common multiple (LCM), 226–230, 228, 236, 257, 735 Leaves, 606 Like fractions addition, 220–224, 256 subtraction, 220–224, 256 Index R59 Index Homework Help, 9, 14, 20, 26, 31, 36, 43, 59, 67, 73, 78, 83, 88, 101, 106, 113, 118, 123, 129, 134, 151, 156, 162, 167, 172, 178, 183, 189, 203, 208, 213, 218, 222, 229, 235, 241, 246, 251, 267, 273, 279, 284, 291, 296, 301, 307, 313, 332, 337, 343, 348, 353, 357, 371, 378, 384, 390, 396, 400, 407, 411, 417, 421, 439, 444, 450, 456, 463, 469, 474, 480, 496, 503, 510, 516, 524, 530, 542, 559, 566, 571, 576, 580, 587, 593, 609, 615, 620, 626, 632, 638, 644, 648, 653, 671, 676, 680, 685, 690, 695 Index Like terms, 103, 104, 105, 106, 122, 674, 676, 677, 728 Linear equations, 408, 447, 667 graphing, 376–377 with intercepts, 381–385, 425 two variables, 375–379, 425 writing, 404–408, 427 Linear functions, 687–691, 700, 701, 757 Line graphs, 722–723 double, 722–723 Line of symmetry, 506, 507 Line plot, 239 Lines best-fit, 409–413, 427, 429 horizontal, 383 intersecting, 493, 560 parallel, 492–497, 495, 497, 544, 560 perpendicular, 494, 495 skew, 558, 560, 567 vertical, 383 geometric measures, 137, 213–214, 272, 566–567, 718–721, 794–796 metric, 718–719, 790–796 multiplication, 592 temperatures, 59–61, 333, 792–793 times, 213, 219, 789 weights, 213, 218, 718–721, 791–793 Measures of central tendency, 238–242, 258, 605, 735 Measures of variation, 612–616, 659 Median, 238–239, 248, 252, 258, 605, 611, 615, 618, 735 Mental Math, 25, 26, 29, 30, 31, 38, 44, 49, 51, 66, 74, 79, 102, 104, 122, 127, 150, 160, 201, 282, 525, 725, 738 Metric system, converting measurements, 718–719 Midpoint, 468, 486, 746 Line segments, 453, 644, 645 Midpoint Formula, 466–470, 485–486 Line symmetry, 505 Minimum point, 695 Lists, 708 Minor arc, 538 Logical Reasoning. See Critical Thinking Mixed numbers, 200–201 addition, 220, 233, 491, 716 division, 216, 717 multiplication, 211, 717 subtraction, 221, 234, 716 writing as decimals, 200, 201, 202, 214, 422 writing as fractions, 205, 209 writing decimals as, 207–208, 224, 733 Look Back, 18, 71, 76, 100, 111, 166, 176, 210, 244, 264, 266, 293, 330, 334, 335, 369, 442, 460, 466, 497, 523, 535, 540, 570, 584, 607, 635, 637, 652, 683, 684 M Major arc, 538 Make a Conjecture. See Conjectures Make a table or list, 708 Markup, 301 Matrices, 414, 669, 705 Maximum point, 695 Mean, 82, 92, 238–239, 248, 252, 258, 605, 618, 735 Measurements, 213 addition, 592 capacities, 566–567, 718–721, 791–793 comparing, 721, 790, 792 converting, 118, 168, 213–214, 263, 272, 274, 718–721, 734, 789–796 customary, 118, 720–721, 734, 790–796 R60 Index Mode, 238–239, 248, 252, 258, 605, 735 Modeling, 276–280, 317, 464 adding integers, 62–63, 222 algebraic expressions, 103, 106 area circles, 535 parallelograms, 520–521 rectangles, 132 trapezoids, 522 triangles, 521 area and geoboards, 518–519 circumference of circles, 533 congruent triangles, 500 constructions, 498–499 direct variation, 394, 395 distance formula, 466 Distributive Property, 99 equations with variables on each side, 328–329 integers on number line, 65 irrational numbers, 465 manipulatives, 62–63 midpoint formula, 468 monomials, 673 multiplication, 682 polynomial by monomial, 683 percent, 286–287 polyhedrons, 557 polynomials, 673, 677 prime numbers, 162 properties of equality, 123 Pythagorean Theorem, 458–459, 460 rational numbers, 207, 210, 215 ratios of similar solids, 585 real-world situations, 61 right triangles, 476 similar triangles, 472 simulations, 656–657 slope, 388 solving equations, 108–109 solving two-step equations, 120 surface area cones, 579 cylinders, 575 rectangular prisms, 573 three-dimensional figures, 554–555, 560 triangles, 453 trigonometric ratios, 477 volume, 562 cones, 569 cylinders, 565 prisms, 563, 565 pyramids, 568 Monomials, 148–152, 161, 163, 191, 195, 667, 668, 669, 671, 681, 698, 730, 731, 755 degrees, 670 division, 175–179, 176, 194 factoring, 161, 162, 192, 195 greatest common factor (GCF), 166, 167, 193 identify, 150 least common multiple (LCM), 227 multiplication, 175–179, 194, 681 powers, 179 More About. See also Applications; Cross-Curriculum Connections airports, 247 amusement parks, 99, 644 animals, 474 architecture, 277, 503 art, 560 astronomy, 66 attractions, 272 aviation, 112 Multiple Choice. See Assessment Multiple representations, 18, 23, 29, 58, 64, 65, 66, 70, 75, 76, 80, 81, 98, 110, 111, 115, 117, 132, 175, 176, 186, 207, 210, 215, 216, 221, 225, 232, 233, 238, 270, 288, 298, 310, 345, 350, 352, 377, 388, 394, 436, 453, 460, 466, 468, 472, 477, 500, 514, 522, 533, 535, 563, 565, 568, 569, 573, 575, 579, 613, 636, 650, 652 Multiplication, 11, 756 algebraic fractions, 211 decimals, 263, 491, 714, 715 fractions, 567, 649 integers, 75–79, 82, 84, 91–92, 97, 152, 199, 327 measurements, 592 mixed numbers, 211 monomials, 176, 681 negative fractions, 211 negative numbers, 351–352 notation, 13 polynomials by monomials, 683–686, 699 positive numbers, 350–351 rational numbers, 256, 553, 577 solving equations, 115–119, 139, 245 solving inequalities, 350–354 Multiplication Properties Associative, 24, 26, 49, 522 Commutative, 23, 26, 49, 75, 522 of Zero, 24, 49, 61, 725 Multiplicative identity, 24, 38, 49, 725 Multiplicative inverse, 215–216, 218, 504, 734 Multi-step inequalities, solving, 355–359, 362 Mutually exclusive events, 652, 672 N Natural numbers, 205, 444, 451, 487, 745 multiplication, 75, 77 subtraction, 70 Numbers, 12–13, 48 base 2, 158 base 10, 158 binary, 158 comparison, 283 composite, 159, 161, 162, 192, 229, 285, 731 decimal, 158 even, 148 factoring, 149 irrational, 206, 441, 443, 444, 451, 484, 487, 745 mixed, 200–201 natural, 205, 444, 451, 487, 745 negative, 56, 351–352 odd, 148 positive, 56, 350–351 prime, 159, 161, 162, 192, 440, 731 properties, 24 rational, 198–261, 205–209, 210–214, 215–219, 244–248, 255, 256, 258, 440, 441, 443, 444, 451, 487, 553, 577, 745 real, 441, 745 triangular, 457 whole, 27, 84, 205, 216, 444, 451 Number theory, 156, 162, 740 Numerical expressions, 12, 14 evaluating, 13, 17, 21, 22, 58, 60, 72, 74 finding value, 14 translating, 11, 13, 14, 15, 38, 51 writing for verbal phase, 724 Negative coefficients, 122, 161 Negative exponents, 181–185, 187, 194 Negative fractions, multiplication, 211 O Octagonal prism, 566 Octagons, 528 Negative integers, 64 Odd numbers, 148 Negative numbers, 56 division, 351–352 multiplication, 351–352 Odds, 646–649, 662, 755 notation, 647 Negative slope, 388 Nonlinear functions, 687–691, 700, 701, 757 Nonscientific calculators, 12 Number line, 56, 57, 113, 740 absolute value, 58 addition, 64, 65, 68 comparison and ordering of integers, 56, 57 integers, 56, 57, 59 Online Research. See also Internet Connections; Research career choices, 42, 73, 129, 172, 223, 278, 348, 358, 399, 472, 480, 515, 579, 649, 670 data update, 43, 68, 114, 119, 157, 190, 229, 267, 348, 396, 439, 543, 587, 625, 690 Open circles, 346 Open Ended, 9, 14, 19, 26, 30, 36, 42, 59, 67, 72, 77, 83, 87, 100, 105, 113, 117, 128, 133, 155, 158, 161, 162, Index R61 Index baby-sitting, 106 backpacking, 356 baseball cards, 105 basketball, 610, 685 billiards, 456 calling cards, 123 candy, 10 cheerleading, 217 decorating, 337 food, 284 football, 15 fruit drinks, 575 games, 511, 651 golf, 57 gymnastics, 463 hang gliding, 401 Internet, 654 movie industry, 31 oceans, 189 parks, 116 planets, 229 plants, 35 pole vaulting, 412 pools, 395 population, 267 presidents, 607 rafting, 422 ranching, 118 recycling, 208 scooters, 127 scuba diving, 370 skateboards, 299, 638 skydiving, 693 snow, 529 snowboards, 417 soccer, 19, 134 sound, 408 space, 586 sports, 344 state fairs, 347 stock market, 306 tides, 78 track and field, 165 travel, 219 videos, 331 water, 182 weather, 444 weddings, 149 Index 166, 171, 177, 183, 188, 202, 212, 217, 222, 228, 234, 241, 246, 266, 272, 278, 283, 291, 295, 300, 306, 312, 332, 336, 342, 347, 353, 357, 371, 377, 384, 389, 395, 400, 407, 410, 416, 421, 429, 438, 443, 449, 455, 462, 468, 473, 479, 487, 495, 502, 509, 515, 523, 529, 535, 540, 559, 565, 570, 575, 580, 586, 592, 599, 608, 614, 619, 625, 631, 637, 643, 648, 653, 670, 676, 680, 684, 689, 694 Open Response. See Preparing for Standardized Tests Open sentences, 28, 31, 32 solving, 28 Operations integers, 82 inverse, 110 Opposites, 66, 476 Ordered pairs, 33–35, 36, 37, 39, 44, 50, 51, 55, 61, 79, 84, 85, 86, 87, 88, 124, 136, 367, 377, 378, 391, 422, 425, 429, 725, 728, 742 functions, 369–370 Ordered pair solutions, tables, 375, 378, 686 Ordering decimals, 616 Ordering integers, 59, 68, 87, 88, 726 Order of operations, 12–13, 14, 16, 24, 48, 51, 147, 154, 192, 401, 464, 525 Origin, 33, 34 Pentagon, 528 Percent equations, 298–302, 319, 373 Percent-fraction equivalents, 293 Percent of change, 304–308, 320 Percent of decrease, 306, 320, 739 Percent of increase, 305, 306, 320, 739 Percent proportion, 288–292, 297, 318, 321, 738 Percents, 281–308, 318, 359, 525, 737, 738 applying, 289, 290, 299–308 of change, 304–308 comparing, 283 compound interest, 303 decimals as, 282–283 equations, 298–302 estimating with, 294–295 finding mentally, 293 finding percent, 288, 289, 299 finding the base, 290, 299 finding the part, 290, 298 fractions as, 282 greater than 100%, 283 less than 1%, 283 modeling, 281, 286, 287 and predictions, 312 and probability, 310 proportion, 288–292 simple interest, 299, 300 writing as decimals, 282, 298 writing as fractions, 281–282, 283, 288, 475 Perfect squares, 436, 438 Outcomes, 310 Outliers, 621 P Parabola, 697 Perimeter, 137 polygon, 530 rectangle, 132, 134, 140 rectangles, 132, 133, 134, 135, 140, 141, 152, 224, 302, 335, 336, 349, 359, 363, 385, 417, 676, 701, 730 Parallel lines, 495, 560 angles and, 492–497, 497, 544 Permutations, 641–645, 661, 754 Parallelogram, 514, 515, 546 altitude, 520 area, 520–521, 547 base, 520 Perspective, 554–555 Parentheses ( ), 15, 75 as grouping symbol, 12, 15 solving equations, 334–335 Points, 447 writing equations given two, 406 Pascal’s triangle, 640 Patterns, 9, 16, 47, 48, 55, 74, 84, 102, 167 R62 Index Perpendicular lines, 494, 495 Pi, 208, 533, 534 Plane, 556 Polygons, 527–531, 547, 553 classification, 527–528, 530, 549, 749 frequency, 628 interior angles, 528 measures of angles, 528–529, 530 regular, 529 Polyhedron, 556 Polynomials, 669–672, 698, 755 addition, 674–677, 699 classification, 669, 681, 698, 701 degrees, 670, 671, 677, 681, 698, 701 multiplication, 683–686, 699 monomials, 683–686, 699 subtraction, 678–681, 699 Positive exponents, 182, 183, 185, 187, 194 Positive integer, 64 Positive numbers, 56 division, 350–351 multiplication, 350–351 Positive slope, 388, 391 Powers, 153–157, 174, 192, 194 Practice Chapter Test. See Assessment Practice Quiz. See Assessment Precision, 589, 590–594, 598 Precision unit, 590, 591, 592, 593 Predictions, 310–314, 320, 395 best-fit lines, 409, 410, 412, 413 equations, 410 scatter plots, 42 sequences, 251 Preparing for Standardized Tests, 771–778 Constructed Response, 780–783, 784–788 Extended Response, 771, 784–788 Free Response, 780–783 Grid In, 776–779 Gridded Response, 771, 776–779 Multiple Choice, 771, 772–775 Open Response, 780–783 Selected Response, 772–775 Short Response, 771, 780–783 Student-Produced Questions, 780–783 Student-Produced Response, 776–779 Test-Taking Tips, 771, 773, 776, 777, 780, 781 Prerequisite Skills. See also Assessment Adding and Subtracting Decimals, 713 Comparing and Ordering Decimals, 710 Prime, 285 relatively, 168 twin, 162 Prime factorization, 159–162, 192, 224, 236, 731 Prime factors, 227, 230 Prime numbers, 159, 161, 162, 192, 440, 731 Prisms, 557, 595 height, 564 hexagonal, 572 octagonal, 566 rectangular, 557, 560, 563, 565, 566, 575, 576, 582, 597 surface area, 573–577, 597 triangular, 557, 562, 564, 566, 572, 587 volume, 563–567, 596 Probability, 310–314, 320, 333, 338, 604–605, 672, 677, 739, 754, 755 compound events, 650–655, 662 dependent events, 652 event, 636–637 experimental, 311 mutually exclusive events, 652 notation, 650 outcomes, 310 simple, 605 simple events, 310 theoretical, 311 two independent events, 650–651 Probability simulation, 315 Problem solving adding polynomials, 675 angles, 449 area, 523 circumference, 534 combinations, 643 comparing fractions in, 202 direct variation, 395 distance formula, 467 distributive property, 99 dividing powers, 177 divisibility rules, 149 equations, 116, 125, 405 four-step plan, 5, 6–8, 9, 10, 47–48, 51 fractions, 234 functions, 693 graphing equations, 399 graphing inequalities, 420 guess and check, 709 inequalities, 347 integers, 66, 76 integers in, 76 making a table or list, 708 mixed, 758–770 polynomials, 675, 684 proportions, 271 scientific notation, 187 solving simpler problem, 706 square roots, 438 subtracting integers, 71 subtracting polynomials, 679 trigonometric ratios, 479 volume, 570 work backward, 122, 707, 709, 712, 713, 714, 715, 716, 717, 719 Product of Powers rule, 184 Products, 27, 69, 74, 78, 79, 84, 91–92, 93, 147, 175, 176, 177, 178, 185, 224, 252, 255, 280, 285, 327, 567, 577, 605, 715, 725, 727, 732, 756. See also Multiplication estimating, 714, 717 signs, 79 Profit, 301 Projects. See WebQuest Properties of Equality, 23–25, 29, 30, 31, 49 Substitution, 18 Symmetric, 29, 30, 31 Transitive, 29, 30, 31 Proportions, 262, 270–274, 280, 285, 317, 413, 440, 470, 473, 474, 553, 582, 599, 677, 747 identifying, 271 property, 271 solving, 271, 272, 737 Protractor, 448, 449, 450, 457, 464, 484, 497, 512, 745 Pyramids, 557, 595 hexagonal, 571 rectangular, 557, 570, 572, 577 square, 557, 571, 581, 582, 585 surface area, 578–582, 597 triangular, 557 volume, 568–572, 596 Pythagorean Theorem, 460–464, 469, 485 converse, 462 Pythagorean triple, 459 Q Quadrants, 86, 87, 92 Quadratic functions, 688 families, 697 graphing, 692–696, 700 Quadrilaterals, 513–517, 528, 546 angles of, 514 classification, 514–515, 516, 531 naming, 513 Quantitative relationships, 96 Quartiles, 613 Quotient of Powers rule, 184 Quotients, 13, 38, 69, 79, 83, 84, 89, 92, 93, 177, 178, 185, 218, 224, 230, 242, 252, 256, 274, 280, 327, 714, 715, 717, 727, 732, 734. See also Division Index R63 Index Converting Measurements within the Customary System, 720–721 Converting Measurements within the Metric System, 718–719 Displaying Data in Graphs, 722–723 Estimating Products and Quotients of Decimals, 714 Estimating Products and Quotients of Fractions and Mixed Numbers, 717 Estimating Sums and Differences of Decimals, 712 Estimating Sums and Differences of Fractions and Mixed Numbers, 716 Getting Ready for the Next Lesson, 10, 16, 21, 27, 32, 38, 61, 68, 74, 79, 84, 102, 107, 114, 119, 124, 130, 152, 157, 163, 168, 173, 179, 185, 204, 209, 213, 219, 224, 230, 236, 242, 248, 268, 274, 280, 285, 292, 297, 302, 308, 333, 338, 344, 349, 354, 373, 379, 385, 391, 397, 401, 408, 413, 418, 440, 445, 451, 457, 464, 470, 475, 497, 504, 511, 517, 525, 531, 538, 561, 567, 572, 577, 582, 588, 611, 616, 621, 628, 633, 639, 645, 649, 672, 677, 681, 686, 691 Getting Started, 5, 55, 97, 147, 199, 263, 327, 367, 435, 491, 553, 605, 667 Multiplying and Dividing Decimals, 715 Problem-Solving Strategy Guess and Check, 709 Make a Table or List, 708 Solve a Simpler Problem, 706 Work Backward, 707, 709, 712, 713, 714, 715, 716, 717, 719 Rounding Decimals, 711 Index R Real numbers, 441, 745 Rhombus, 514, 546 Radical sign, 436, 437 Real number system, 441–445, 484 Rotational symmetry, 505 Radius circles, 443, 533, 536, 749 cones, 571 Reasonableness, 7, 586 Rotations, 506, 507, 508, 509, 510, 512, 532, 686 coordinate plane, 509 Range, 35, 36, 37, 44, 50, 51, 136, 367, 612–616, 618, 628, 659, 725, 753 Rate of change, 392, 393–397, 426, 743 Rates, 264–268, 316 converting, 266, 280 Rational numbers, 198–261, 440, 441, 443, 444, 451, 487, 745 division, 215–219, 256 identifying and classifying, 206 multiplication, 210–214, 255, 553, 577 solving equations, 244–248, 258 writing as fractions, 205–206 Reasoning. See also Critical Thinking deductive, 25 inductive, 7, 25, 71 Reciprocals, 215, 247 Rectangles, 514, 546 area, 132, 133, 134, 135, 140, 141, 152, 214, 224, 349, 671, 730, 767 perimeter, 132, 133, 134, 135, 140, 141, 152, 224, 302, 335, 336, 349, 359, 363, 385, 417, 676, 701, 730 Rectangular prisms, 557, 560, 563, 565, 566, 575, 576, 582, 597 Rounding, 9, 10, 201, 242, 283, 284, 291, 314, 443, 445, 457, 462, 463, 468, 469, 475, 478, 480, 481, 482, 484, 486, 487, 491, 531, 534, 535, 536, 543, 548, 549, 565, 566, 568, 569, 570, 571, 572, 577, 580, 581, 582, 588, 592, 593, 596, 597, 598, 599, 605, 611, 672, 711, 735, 736, 737, 738, 745, 746, 747, 749, 750, 751, 752 Rows, 705 Rectangular pyramid, 557, 570, 572, 577 Reflections, 506, 508, 509, 510, 512, 686, 748 S Sample space, 311 Ratios, 264–268, 273, 316, 321, 359, 386, 445, 454, 481, 553, 645, 736 common, 250, 251, 258 comparison, 269 writing as fractions, 264–265 Regular tessellations, 527 Reading and Writing, 5, 55, 97, 147, 199, 263, 327, 367, 435, 491, 553, 605, 667 Relationships, types of, 41, 42, 43, 51 50, 68 Scalene triangles right, 470, 485 Relative frequencies, 627 Scatter plots, 39, 40–42, 43, 45–46, 50, 61, 68, 107, 408, 410, 411, 412, 422, 427, 429, 726 constructing, 40 interpreting, 41 predictions, 42 trends, 44 Reading Math, 17, 23, 24, 56, 57, 64, 75, 80, 88, 98, 103, 148, 149, 150, 159, 177, 200, 205, 206, 281, 300, 311, 341, 370, 381, 383, 437, 448, 453, 471, 472, 477, 493, 500, 508, 624, 641, 642, 643, 647, 650, 678, 688 Reading Mathematics Dealing with Bias, 634 Factors and Multiples, 225 Language of Functions, 380 Learning Geometry Vocabulary, 446 Learning Mathematics Prefixes, 526 Learning Mathematics Vocabulary, 69 Making Comparisons, 269 Meanings of At Most and At Least, 339 Powers, 174 Precision and Accuracy, 589 Prefixes and Polynomials, 668 Translating Expressions into Words, 11 Translating Verbal Problems into Equations, 125 R64 Index Regular polygon, 529 Relations, 35, 50, 367 as tables and graphs, 35, 36, 37, 50 Relatively prime, 168 Repeating decimals, 201, 202, 203, 206, 214, 224, 254, 338, 733 Replacement set, 102 Research, 43, 46, 83, 113, 151, 225, 253, 268, 291, 308, 380, 446, 526, 530, 543, 560, 583, 589, 610, 668, 672. See also Online Research Review Lesson-by-Lesson, 47–53, 90–92, 138, 191–194, 254–258, 316, 360–362, 424–428, 483–486, 544–548, 595, 658–662, 698 Mixed, 16, 21, 27, 32, 44, 61, 68, 74, 79, 84, 89, 102, 107, 114, 119, 124, 130, 136, 152, 157, 163, 168, 173, 179, 185, 190, 204, 209, 213, 219, 224, 230, 236, 242, 248, 252, 268, 274, 280, 285, 292, 297, 302, 308, 314, 333, 338, 344, 349, 354, 359, 373, 379, 385, 391, 397, 401, 408, 413, 418, 422, 440, 445, 451, 457, 464, 470, 475, 481, 497, 504, 511, 517, 525, 538, 543, 561, 567, 572, 577, 582, 588, 594, 611, 616, 621, 628, 633, 639, 649, 655, 672, 677, 681, 686, 691, 696 Scale, 276, 631, 737 Scale drawings, 276–280, 317 Scale factor, 277, 285, 583, 587 Scale model, 276 Scientific calculators, 12, 16 Scientific notation, 186–190, 194, 195, 204, 268, 733 Segment measure, 472 Selected Response. See Preparing for Standardized Tests Sequences arithmetic, 249–252, 258, 259, 268, 344, 736 Fibonacci, 253 geometric, 249–252, 258, 259, 344, 736 Sets, 733 replacement, 102 Shadow reckoning, 473 Short Response. See Preparing for Standardized Tests Side lengths of rectangles, 152 Sides of the angle, 447 Sierpinski’s triangle, 471 Significant digits, 590–594, 598, 599, 752 Standardized Test Practice. See Assessment Statistics, 418, 604–665, See also Data bias, 634 misleading, 630–633, 661 Simple interest, 300 Stems, 606 Simplest form, 104 Straight line, 102 Similar figures, 471–475, 486 Simulation probability, 315 Simulations, 656–657 half-life, 180 Sine, 477–481, 486, 747 Skew lines, 558, 560, 567 Slant height, 578 Slides, 506 Slope, 387–391, 395, 397, 398, 400, 401, 404, 408, 412, 413, 418, 426, 427, 429, 470, 639, 742, 743 negative, 388 positive, 388, 391 undefined, 389 zero, 388 Slope-intercept form, 398–401, 401, 406, 407, 413, 418, 427, 696, 742, 743 Solids, 556, 750, 751, 752 similar, 584–588, 598 Solution, 28 Solving Equations. See Equations Spreadsheet Investigation Circle Graphs and Spreadsheets, 452 Compound Interest, 303 Expressions and Spreadsheets, 22 Perimeter and Area, 137 Spreadsheets, 22 Square pyramid, 557, 571, 581, 582, 585 Square roots, 436–440, 451, 483, 628, 745 solving equations, 443 Squares, 436–440, 483, 514, 546 area, 439, 523 Square units, 575 Standard form, 154, 188, 189, 194, 195, 209, 733 Student-Produced Questions. See Preparing for Standardized Tests Student-Produced Response. See Preparing for Standardized Tests Study organizer. See Foldables™ Study Organizer Study Tips, 6, 7, 12, 13, 18, 25, 28, 34, 41, 58, 60, 65, 70, 71, 76, 82, 86 algebra tiles, 674 alternate strategy, 406 alternative methods, 128, 170, 220, 250, 265, 335, 522 altitudes, 521 angles, 447 Base, 289 box-and-whisker plots, 618 break in scale, 624 calculating with Pi, 534 calculator, 187 checking equations, 111, 405 checking reasonableness of results, 494 checking solutions, 121, 346 check your work, 443 choosing a method, 164 choosing points, 388 choosing x values, 376 circles and rectangles, 574 classifying polynomials, 669 common misconceptions, 58, 132, 154, 175, 355, 420, 449, 467, 507, 557, 591, 617 commutative, 160 cones, 569 congruence statements, 501 cross products, 271 degrees, 670 dependent variable, 375 diagonals, 558 different forms, 398 dimensions, 556 dividing by a whole number, 216 division expressions, 117 equiangular, 454 equivalent expressions, 104 estimation, 288, 409 Index R65 Index Similar solids, 599 Stem-and-leaf plots, 606–611, 658, 681, 752 back-to-back, 607–608, 609, 611 interpretation, 607 exponents, 155 expression, 126 finding percents, 295 first power, 153 fractions, 283 frequency distribution, 623 graphing, 692 graphing shortcuts, 382 growth of functions, 688 height of pyramid, 568 hypotenuse, 460 independent variable, 375 inequalities, 341, 345 irregular figures, 539 labels and scales, 631 Look Back, 18, 71, 76, 100, 111, 166, 176, 210, 244, 264, 266, 293, 330, 334, 335, 369, 442, 466, 472, 523, 535, 540, 570, 584, 635, 637, 652, 683, 684 matrices, 414, 669 mean, median, mode, 238 measures of volume, 563 mental computation, 122 mental math, 127, 160, 201, 282 multiplying more than two factors, 636 naming quadrilaterals, 513 negative fractions, 211 negative number, 352 negative signs, 233, 675 negative slopes, 399 n-gon, 528 notation, 507 parallel lines, 492 percents, 294 pi, 533, 565 plotting points, 377 positive and negative exponents, 187 positive number, 350 powers of ten, 186 precision, 590, 592 precision units, 591 prime factors, 226 probability, 310 properties, 270 Reading Math, 215, 455 reciprocals, 245 relatively prime, 230 remainders, 161 repeating decimals, 206 rolling number cubes, 646 rounding, 478 scale factors, 277, 585 slopes, 394 slopes/intercepts, 415 solutions, 421 statistics, 613, 630 substitution, 467 trends, 372 Index triangular pyramids, 581 use a table, 405 use a venn diagram, 169 writing prime factors, 165 zeros, 679 Substitution, 107, 379, 413, 440 solving equations, 744 solving systems of equations, 416, 417, 418, 428 Substitution Property of Equality, 18 Subtraction, 11, 328, 727, 734, 735, 756 decimals, 5, 712, 713 fractions, 221, 716 integers, 70–72, 74, 82, 84, 91, 118, 199, 327, 385 like fractions, 220–224, 256 mixed numbers, 221, 234, 716 polynomials, 678–681, 699 simplifying expressions, 100 solving equations, 110–111, 113, 139, 244 solving inequalities, 345–349 unlike fractions, 232–236, 257 Subtraction expressions, 100, 102, 104 Subtraction Property of Equality, 110, 111, 360 Sums, 61, 64, 67, 74, 79, 91, 93, 107, 230, 235, 242, 256, 257, 327, 605, 712, 716, 725, 726, 734, 735, 756. See also Addition Surface area, 594, 751 cubes, 157, 694 prisms and cylinders, 573–577, 597 pyramids and cones, 578–582, 597 Symbols. See also Grouping symbols bar notation, 201 break in scale, 624 congruent, 493 equality, 28 equals sign, 126 inequality, 28, 57, 59, 90, 93 (is about equal to), 437 negative signs, 675 radical sign, 436 variable, 17 Symmetric Property of Equality, 29, 30, 31 Symmetry, 505 bilateral, 505 line, 505 rotational, 505 turn, 505 R66 Index Systems of equations graphing, 422 solving, 414–418, 428, 440, 582 Systems of inequalities, 422 graphing, 346, 348 T Tables, 708 functions, 369–370 identifying functions, 688 ordered pair solutions, 375, 378, 686 relations, 35, 36, 37, 50 writing equations, 406 Tangent, 747 Tangent ratios, 477–481, 479, 486 Term, 103 area, 521, 522–523, 547 Tree diagram, 635, 637, 638, 645 Triangles, 38, 453–457, 485, 528 acute, 454, 456, 746 angle measures, 453 area, 521, 522, 523, 547 congruent, 500–504, 545, 748 equilateral, 455 isosceles, 455 obtuse, 454, 456, 746 obtuse isosceles, 455, 470, 485 right, 454, 456, 460, 461, 462, 463, 464, 481, 485, 746 right scalene, 470, 485 scalene, 455 similar, 471–475, 486 vertex, 88 Triangular numbers, 457 Terminating decimals, 200, 203, 206 Triangular prisms, 557, 562, 564, 566, 572, 587 Tessellations, 527, 529, 530, 531, 532 Triangular pyramid, 557 Test preparation. See Assessment Trigonometric ratios, 477–481, 486 Test-Taking Tips. See Assessment Trigonometry terms, 477 Theoretical probability, 311 Trinomials, 669, 671, 681, 698, 755 Three-dimensional figures, 552–601 building, 554–555 identifying, 556–561 precision and significant digits, 589, 590–594, 598 similar solids, 583, 584–588, 598 surface area prisms and cylinders, 573–577, 597 pyramids and cones, 578–583, 597 volume prisms and cylinders, 563–567, 596 pyramids and cones, 568–572, 596 Turn symmetry, 505 Transformations, 512, 686 coordinate plane, 506–511, 545–546 Unlike fractions addition, 232–236, 257 subtraction, 232–236, 257 Transitive Property of Equality, 29, 30, 31 Unlike terms, 674, 677 Translations, 506, 507, 509, 510, 512, 686, 748 Transversal, 492–493, 495, 496, 544, 549, 747 Trapezoids, 514, 515, 546 Twin primes, 162 Two-dimensional figures, 490–551, 561 Two-step equations, 120 solve, 327 solving, 120–122, 140, 327, 354, 451 writing, 126–130, 140 U Unit fraction, 236 Unit rates, 265–268, 359, 445, 736 V Variables, 17, 18, 19, 28, 30, 31, 48, 49, 725 defining, 18 dependent, 375 independent, 375 linear equations in two, 375–379, 425 showing relationships, 17, 21 solving equations, 328–329, 330–333, 360, 397 Venn diagram, 164, 441 Verbal problems, two-step, 127 Vertical lines, 383 Vertical line test, 370 Vertices, 88, 447, 453, 527, 545–546, 556, 557, 559, 595, 599 Volume, 750, 751 complex solid, 564 cones, 568–572, 596, 616 prisms and cylinders, 563–567, 596 pyramids and cones, 568–572, 596 WebQuest, 43, 79, 135, 136, 145, 173, 242, 301, 314, 325, 333, 412, 422, 433, 481, 543, 571, 594, 603, 626, 691, 696 Whole numbers, 27, 84, 205, 216, 444, 451 x-axis, 33, 36, 40, 86, 92, 508 x-coordinate, 33, 34, 35, 38, 50, 85, 86, 508 x-intercept, 381–385, 391, 397, 425, 429, 742 Work backward, 122, 240, 362, 707, 709, 712, 713, 714, 715, 716, 717, 719 Writing in Math, 10, 16, 27, 32, 37, 44, 61, 68, 74, 79, 84, 89, 101, 106, 114, 119, 123, 130, 136, 152, 157, 162, 168, 173, 179, 184, 190, 204, 213, 219, 223, 236, 242, 247, 251, 268, 274, 280, 285, 292, 297, 302, 307, 314, 333, 338, 344, 349, 354, 359, 373, 379, 385, 391, 397, 401, 408, 412, 418, 422, 440, 445, 451, 457, 464, 469, 475, 481, 497, 504, 511, 517, 525, 531, 537, 543, 561, 567, 571, 577, 582, 588, 594, 611, 616, 621, 627, 633, 639, 645, 649, 654, 672, 677, 681, 686, 691, 695 Y y-axis, 33, 36, 40, 86, 92, 508, 509 y-coordinate, 33, 34, 35, 36, 38, 50, 85, 86, 508 y-intercept, 381–385, 391, 397, 398–399, 400, 401, 404, 406, 408, 410, 412, 413, 418, 425, 427, 429, 470, 639, 742, 743 Z Zero, 56 Multiplicative Property, 24, 49, 61, 725 Zero pair, 62 Zero slope, 388 Index R67 Index Verbal expressions translating expressions into, 11, 38, 124, 125 translating into expressions, 13, 14, 15, 18, 19, 20, 30, 32, 51, 74, 105 writing numerical phrases, 724 X W